1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->block_dirty_folio) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->block_dirty_folio) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct page *page; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 page = xas_find(&xas, max); 483 if (xas_retry(&xas, page)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(page)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return page != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct pagevec pvec; 507 int nr_pages; 508 509 if (end_byte < start_byte) 510 return; 511 512 pagevec_init(&pvec); 513 while (index <= end) { 514 unsigned i; 515 516 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 517 end, PAGECACHE_TAG_WRITEBACK); 518 if (!nr_pages) 519 break; 520 521 for (i = 0; i < nr_pages; i++) { 522 struct page *page = pvec.pages[i]; 523 524 wait_on_page_writeback(page); 525 ClearPageError(page); 526 } 527 pagevec_release(&pvec); 528 cond_resched(); 529 } 530 } 531 532 /** 533 * filemap_fdatawait_range - wait for writeback to complete 534 * @mapping: address space structure to wait for 535 * @start_byte: offset in bytes where the range starts 536 * @end_byte: offset in bytes where the range ends (inclusive) 537 * 538 * Walk the list of under-writeback pages of the given address space 539 * in the given range and wait for all of them. Check error status of 540 * the address space and return it. 541 * 542 * Since the error status of the address space is cleared by this function, 543 * callers are responsible for checking the return value and handling and/or 544 * reporting the error. 545 * 546 * Return: error status of the address space. 547 */ 548 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 549 loff_t end_byte) 550 { 551 __filemap_fdatawait_range(mapping, start_byte, end_byte); 552 return filemap_check_errors(mapping); 553 } 554 EXPORT_SYMBOL(filemap_fdatawait_range); 555 556 /** 557 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 558 * @mapping: address space structure to wait for 559 * @start_byte: offset in bytes where the range starts 560 * @end_byte: offset in bytes where the range ends (inclusive) 561 * 562 * Walk the list of under-writeback pages of the given address space in the 563 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 564 * this function does not clear error status of the address space. 565 * 566 * Use this function if callers don't handle errors themselves. Expected 567 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 568 * fsfreeze(8) 569 */ 570 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 571 loff_t start_byte, loff_t end_byte) 572 { 573 __filemap_fdatawait_range(mapping, start_byte, end_byte); 574 return filemap_check_and_keep_errors(mapping); 575 } 576 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 577 578 /** 579 * file_fdatawait_range - wait for writeback to complete 580 * @file: file pointing to address space structure to wait for 581 * @start_byte: offset in bytes where the range starts 582 * @end_byte: offset in bytes where the range ends (inclusive) 583 * 584 * Walk the list of under-writeback pages of the address space that file 585 * refers to, in the given range and wait for all of them. Check error 586 * status of the address space vs. the file->f_wb_err cursor and return it. 587 * 588 * Since the error status of the file is advanced by this function, 589 * callers are responsible for checking the return value and handling and/or 590 * reporting the error. 591 * 592 * Return: error status of the address space vs. the file->f_wb_err cursor. 593 */ 594 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 595 { 596 struct address_space *mapping = file->f_mapping; 597 598 __filemap_fdatawait_range(mapping, start_byte, end_byte); 599 return file_check_and_advance_wb_err(file); 600 } 601 EXPORT_SYMBOL(file_fdatawait_range); 602 603 /** 604 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 605 * @mapping: address space structure to wait for 606 * 607 * Walk the list of under-writeback pages of the given address space 608 * and wait for all of them. Unlike filemap_fdatawait(), this function 609 * does not clear error status of the address space. 610 * 611 * Use this function if callers don't handle errors themselves. Expected 612 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 613 * fsfreeze(8) 614 * 615 * Return: error status of the address space. 616 */ 617 int filemap_fdatawait_keep_errors(struct address_space *mapping) 618 { 619 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 620 return filemap_check_and_keep_errors(mapping); 621 } 622 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 623 624 /* Returns true if writeback might be needed or already in progress. */ 625 static bool mapping_needs_writeback(struct address_space *mapping) 626 { 627 return mapping->nrpages; 628 } 629 630 bool filemap_range_has_writeback(struct address_space *mapping, 631 loff_t start_byte, loff_t end_byte) 632 { 633 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 634 pgoff_t max = end_byte >> PAGE_SHIFT; 635 struct folio *folio; 636 637 if (end_byte < start_byte) 638 return false; 639 640 rcu_read_lock(); 641 xas_for_each(&xas, folio, max) { 642 if (xas_retry(&xas, folio)) 643 continue; 644 if (xa_is_value(folio)) 645 continue; 646 if (folio_test_dirty(folio) || folio_test_locked(folio) || 647 folio_test_writeback(folio)) 648 break; 649 } 650 rcu_read_unlock(); 651 return folio != NULL; 652 } 653 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 654 655 /** 656 * filemap_write_and_wait_range - write out & wait on a file range 657 * @mapping: the address_space for the pages 658 * @lstart: offset in bytes where the range starts 659 * @lend: offset in bytes where the range ends (inclusive) 660 * 661 * Write out and wait upon file offsets lstart->lend, inclusive. 662 * 663 * Note that @lend is inclusive (describes the last byte to be written) so 664 * that this function can be used to write to the very end-of-file (end = -1). 665 * 666 * Return: error status of the address space. 667 */ 668 int filemap_write_and_wait_range(struct address_space *mapping, 669 loff_t lstart, loff_t lend) 670 { 671 int err = 0, err2; 672 673 if (mapping_needs_writeback(mapping)) { 674 err = __filemap_fdatawrite_range(mapping, lstart, lend, 675 WB_SYNC_ALL); 676 /* 677 * Even if the above returned error, the pages may be 678 * written partially (e.g. -ENOSPC), so we wait for it. 679 * But the -EIO is special case, it may indicate the worst 680 * thing (e.g. bug) happened, so we avoid waiting for it. 681 */ 682 if (err != -EIO) 683 __filemap_fdatawait_range(mapping, lstart, lend); 684 } 685 err2 = filemap_check_errors(mapping); 686 if (!err) 687 err = err2; 688 return err; 689 } 690 EXPORT_SYMBOL(filemap_write_and_wait_range); 691 692 void __filemap_set_wb_err(struct address_space *mapping, int err) 693 { 694 errseq_t eseq = errseq_set(&mapping->wb_err, err); 695 696 trace_filemap_set_wb_err(mapping, eseq); 697 } 698 EXPORT_SYMBOL(__filemap_set_wb_err); 699 700 /** 701 * file_check_and_advance_wb_err - report wb error (if any) that was previously 702 * and advance wb_err to current one 703 * @file: struct file on which the error is being reported 704 * 705 * When userland calls fsync (or something like nfsd does the equivalent), we 706 * want to report any writeback errors that occurred since the last fsync (or 707 * since the file was opened if there haven't been any). 708 * 709 * Grab the wb_err from the mapping. If it matches what we have in the file, 710 * then just quickly return 0. The file is all caught up. 711 * 712 * If it doesn't match, then take the mapping value, set the "seen" flag in 713 * it and try to swap it into place. If it works, or another task beat us 714 * to it with the new value, then update the f_wb_err and return the error 715 * portion. The error at this point must be reported via proper channels 716 * (a'la fsync, or NFS COMMIT operation, etc.). 717 * 718 * While we handle mapping->wb_err with atomic operations, the f_wb_err 719 * value is protected by the f_lock since we must ensure that it reflects 720 * the latest value swapped in for this file descriptor. 721 * 722 * Return: %0 on success, negative error code otherwise. 723 */ 724 int file_check_and_advance_wb_err(struct file *file) 725 { 726 int err = 0; 727 errseq_t old = READ_ONCE(file->f_wb_err); 728 struct address_space *mapping = file->f_mapping; 729 730 /* Locklessly handle the common case where nothing has changed */ 731 if (errseq_check(&mapping->wb_err, old)) { 732 /* Something changed, must use slow path */ 733 spin_lock(&file->f_lock); 734 old = file->f_wb_err; 735 err = errseq_check_and_advance(&mapping->wb_err, 736 &file->f_wb_err); 737 trace_file_check_and_advance_wb_err(file, old); 738 spin_unlock(&file->f_lock); 739 } 740 741 /* 742 * We're mostly using this function as a drop in replacement for 743 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 744 * that the legacy code would have had on these flags. 745 */ 746 clear_bit(AS_EIO, &mapping->flags); 747 clear_bit(AS_ENOSPC, &mapping->flags); 748 return err; 749 } 750 EXPORT_SYMBOL(file_check_and_advance_wb_err); 751 752 /** 753 * file_write_and_wait_range - write out & wait on a file range 754 * @file: file pointing to address_space with pages 755 * @lstart: offset in bytes where the range starts 756 * @lend: offset in bytes where the range ends (inclusive) 757 * 758 * Write out and wait upon file offsets lstart->lend, inclusive. 759 * 760 * Note that @lend is inclusive (describes the last byte to be written) so 761 * that this function can be used to write to the very end-of-file (end = -1). 762 * 763 * After writing out and waiting on the data, we check and advance the 764 * f_wb_err cursor to the latest value, and return any errors detected there. 765 * 766 * Return: %0 on success, negative error code otherwise. 767 */ 768 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 769 { 770 int err = 0, err2; 771 struct address_space *mapping = file->f_mapping; 772 773 if (mapping_needs_writeback(mapping)) { 774 err = __filemap_fdatawrite_range(mapping, lstart, lend, 775 WB_SYNC_ALL); 776 /* See comment of filemap_write_and_wait() */ 777 if (err != -EIO) 778 __filemap_fdatawait_range(mapping, lstart, lend); 779 } 780 err2 = file_check_and_advance_wb_err(file); 781 if (!err) 782 err = err2; 783 return err; 784 } 785 EXPORT_SYMBOL(file_write_and_wait_range); 786 787 /** 788 * replace_page_cache_page - replace a pagecache page with a new one 789 * @old: page to be replaced 790 * @new: page to replace with 791 * 792 * This function replaces a page in the pagecache with a new one. On 793 * success it acquires the pagecache reference for the new page and 794 * drops it for the old page. Both the old and new pages must be 795 * locked. This function does not add the new page to the LRU, the 796 * caller must do that. 797 * 798 * The remove + add is atomic. This function cannot fail. 799 */ 800 void replace_page_cache_page(struct page *old, struct page *new) 801 { 802 struct folio *fold = page_folio(old); 803 struct folio *fnew = page_folio(new); 804 struct address_space *mapping = old->mapping; 805 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 806 pgoff_t offset = old->index; 807 XA_STATE(xas, &mapping->i_pages, offset); 808 809 VM_BUG_ON_PAGE(!PageLocked(old), old); 810 VM_BUG_ON_PAGE(!PageLocked(new), new); 811 VM_BUG_ON_PAGE(new->mapping, new); 812 813 get_page(new); 814 new->mapping = mapping; 815 new->index = offset; 816 817 mem_cgroup_migrate(fold, fnew); 818 819 xas_lock_irq(&xas); 820 xas_store(&xas, new); 821 822 old->mapping = NULL; 823 /* hugetlb pages do not participate in page cache accounting. */ 824 if (!PageHuge(old)) 825 __dec_lruvec_page_state(old, NR_FILE_PAGES); 826 if (!PageHuge(new)) 827 __inc_lruvec_page_state(new, NR_FILE_PAGES); 828 if (PageSwapBacked(old)) 829 __dec_lruvec_page_state(old, NR_SHMEM); 830 if (PageSwapBacked(new)) 831 __inc_lruvec_page_state(new, NR_SHMEM); 832 xas_unlock_irq(&xas); 833 if (free_folio) 834 free_folio(fold); 835 folio_put(fold); 836 } 837 EXPORT_SYMBOL_GPL(replace_page_cache_page); 838 839 noinline int __filemap_add_folio(struct address_space *mapping, 840 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 841 { 842 XA_STATE(xas, &mapping->i_pages, index); 843 int huge = folio_test_hugetlb(folio); 844 bool charged = false; 845 long nr = 1; 846 847 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 848 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 849 mapping_set_update(&xas, mapping); 850 851 if (!huge) { 852 int error = mem_cgroup_charge(folio, NULL, gfp); 853 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 854 if (error) 855 return error; 856 charged = true; 857 xas_set_order(&xas, index, folio_order(folio)); 858 nr = folio_nr_pages(folio); 859 } 860 861 gfp &= GFP_RECLAIM_MASK; 862 folio_ref_add(folio, nr); 863 folio->mapping = mapping; 864 folio->index = xas.xa_index; 865 866 do { 867 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 868 void *entry, *old = NULL; 869 870 if (order > folio_order(folio)) 871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 872 order, gfp); 873 xas_lock_irq(&xas); 874 xas_for_each_conflict(&xas, entry) { 875 old = entry; 876 if (!xa_is_value(entry)) { 877 xas_set_err(&xas, -EEXIST); 878 goto unlock; 879 } 880 } 881 882 if (old) { 883 if (shadowp) 884 *shadowp = old; 885 /* entry may have been split before we acquired lock */ 886 order = xa_get_order(xas.xa, xas.xa_index); 887 if (order > folio_order(folio)) { 888 /* How to handle large swap entries? */ 889 BUG_ON(shmem_mapping(mapping)); 890 xas_split(&xas, old, order); 891 xas_reset(&xas); 892 } 893 } 894 895 xas_store(&xas, folio); 896 if (xas_error(&xas)) 897 goto unlock; 898 899 mapping->nrpages += nr; 900 901 /* hugetlb pages do not participate in page cache accounting */ 902 if (!huge) { 903 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 904 if (folio_test_pmd_mappable(folio)) 905 __lruvec_stat_mod_folio(folio, 906 NR_FILE_THPS, nr); 907 } 908 unlock: 909 xas_unlock_irq(&xas); 910 } while (xas_nomem(&xas, gfp)); 911 912 if (xas_error(&xas)) 913 goto error; 914 915 trace_mm_filemap_add_to_page_cache(folio); 916 return 0; 917 error: 918 if (charged) 919 mem_cgroup_uncharge(folio); 920 folio->mapping = NULL; 921 /* Leave page->index set: truncation relies upon it */ 922 folio_put_refs(folio, nr); 923 return xas_error(&xas); 924 } 925 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 926 927 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 928 pgoff_t index, gfp_t gfp) 929 { 930 void *shadow = NULL; 931 int ret; 932 933 __folio_set_locked(folio); 934 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 935 if (unlikely(ret)) 936 __folio_clear_locked(folio); 937 else { 938 /* 939 * The folio might have been evicted from cache only 940 * recently, in which case it should be activated like 941 * any other repeatedly accessed folio. 942 * The exception is folios getting rewritten; evicting other 943 * data from the working set, only to cache data that will 944 * get overwritten with something else, is a waste of memory. 945 */ 946 WARN_ON_ONCE(folio_test_active(folio)); 947 if (!(gfp & __GFP_WRITE) && shadow) 948 workingset_refault(folio, shadow); 949 folio_add_lru(folio); 950 } 951 return ret; 952 } 953 EXPORT_SYMBOL_GPL(filemap_add_folio); 954 955 #ifdef CONFIG_NUMA 956 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 957 { 958 int n; 959 struct folio *folio; 960 961 if (cpuset_do_page_mem_spread()) { 962 unsigned int cpuset_mems_cookie; 963 do { 964 cpuset_mems_cookie = read_mems_allowed_begin(); 965 n = cpuset_mem_spread_node(); 966 folio = __folio_alloc_node(gfp, order, n); 967 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 968 969 return folio; 970 } 971 return folio_alloc(gfp, order); 972 } 973 EXPORT_SYMBOL(filemap_alloc_folio); 974 #endif 975 976 /* 977 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 978 * 979 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 980 * 981 * @mapping1: the first mapping to lock 982 * @mapping2: the second mapping to lock 983 */ 984 void filemap_invalidate_lock_two(struct address_space *mapping1, 985 struct address_space *mapping2) 986 { 987 if (mapping1 > mapping2) 988 swap(mapping1, mapping2); 989 if (mapping1) 990 down_write(&mapping1->invalidate_lock); 991 if (mapping2 && mapping1 != mapping2) 992 down_write_nested(&mapping2->invalidate_lock, 1); 993 } 994 EXPORT_SYMBOL(filemap_invalidate_lock_two); 995 996 /* 997 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 998 * 999 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1000 * 1001 * @mapping1: the first mapping to unlock 1002 * @mapping2: the second mapping to unlock 1003 */ 1004 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1005 struct address_space *mapping2) 1006 { 1007 if (mapping1) 1008 up_write(&mapping1->invalidate_lock); 1009 if (mapping2 && mapping1 != mapping2) 1010 up_write(&mapping2->invalidate_lock); 1011 } 1012 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1013 1014 /* 1015 * In order to wait for pages to become available there must be 1016 * waitqueues associated with pages. By using a hash table of 1017 * waitqueues where the bucket discipline is to maintain all 1018 * waiters on the same queue and wake all when any of the pages 1019 * become available, and for the woken contexts to check to be 1020 * sure the appropriate page became available, this saves space 1021 * at a cost of "thundering herd" phenomena during rare hash 1022 * collisions. 1023 */ 1024 #define PAGE_WAIT_TABLE_BITS 8 1025 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1026 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1027 1028 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1029 { 1030 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1031 } 1032 1033 void __init pagecache_init(void) 1034 { 1035 int i; 1036 1037 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1038 init_waitqueue_head(&folio_wait_table[i]); 1039 1040 page_writeback_init(); 1041 } 1042 1043 /* 1044 * The page wait code treats the "wait->flags" somewhat unusually, because 1045 * we have multiple different kinds of waits, not just the usual "exclusive" 1046 * one. 1047 * 1048 * We have: 1049 * 1050 * (a) no special bits set: 1051 * 1052 * We're just waiting for the bit to be released, and when a waker 1053 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1054 * and remove it from the wait queue. 1055 * 1056 * Simple and straightforward. 1057 * 1058 * (b) WQ_FLAG_EXCLUSIVE: 1059 * 1060 * The waiter is waiting to get the lock, and only one waiter should 1061 * be woken up to avoid any thundering herd behavior. We'll set the 1062 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1063 * 1064 * This is the traditional exclusive wait. 1065 * 1066 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1067 * 1068 * The waiter is waiting to get the bit, and additionally wants the 1069 * lock to be transferred to it for fair lock behavior. If the lock 1070 * cannot be taken, we stop walking the wait queue without waking 1071 * the waiter. 1072 * 1073 * This is the "fair lock handoff" case, and in addition to setting 1074 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1075 * that it now has the lock. 1076 */ 1077 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1078 { 1079 unsigned int flags; 1080 struct wait_page_key *key = arg; 1081 struct wait_page_queue *wait_page 1082 = container_of(wait, struct wait_page_queue, wait); 1083 1084 if (!wake_page_match(wait_page, key)) 1085 return 0; 1086 1087 /* 1088 * If it's a lock handoff wait, we get the bit for it, and 1089 * stop walking (and do not wake it up) if we can't. 1090 */ 1091 flags = wait->flags; 1092 if (flags & WQ_FLAG_EXCLUSIVE) { 1093 if (test_bit(key->bit_nr, &key->folio->flags)) 1094 return -1; 1095 if (flags & WQ_FLAG_CUSTOM) { 1096 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1097 return -1; 1098 flags |= WQ_FLAG_DONE; 1099 } 1100 } 1101 1102 /* 1103 * We are holding the wait-queue lock, but the waiter that 1104 * is waiting for this will be checking the flags without 1105 * any locking. 1106 * 1107 * So update the flags atomically, and wake up the waiter 1108 * afterwards to avoid any races. This store-release pairs 1109 * with the load-acquire in folio_wait_bit_common(). 1110 */ 1111 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1112 wake_up_state(wait->private, mode); 1113 1114 /* 1115 * Ok, we have successfully done what we're waiting for, 1116 * and we can unconditionally remove the wait entry. 1117 * 1118 * Note that this pairs with the "finish_wait()" in the 1119 * waiter, and has to be the absolute last thing we do. 1120 * After this list_del_init(&wait->entry) the wait entry 1121 * might be de-allocated and the process might even have 1122 * exited. 1123 */ 1124 list_del_init_careful(&wait->entry); 1125 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1126 } 1127 1128 static void folio_wake_bit(struct folio *folio, int bit_nr) 1129 { 1130 wait_queue_head_t *q = folio_waitqueue(folio); 1131 struct wait_page_key key; 1132 unsigned long flags; 1133 wait_queue_entry_t bookmark; 1134 1135 key.folio = folio; 1136 key.bit_nr = bit_nr; 1137 key.page_match = 0; 1138 1139 bookmark.flags = 0; 1140 bookmark.private = NULL; 1141 bookmark.func = NULL; 1142 INIT_LIST_HEAD(&bookmark.entry); 1143 1144 spin_lock_irqsave(&q->lock, flags); 1145 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1146 1147 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1148 /* 1149 * Take a breather from holding the lock, 1150 * allow pages that finish wake up asynchronously 1151 * to acquire the lock and remove themselves 1152 * from wait queue 1153 */ 1154 spin_unlock_irqrestore(&q->lock, flags); 1155 cpu_relax(); 1156 spin_lock_irqsave(&q->lock, flags); 1157 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1158 } 1159 1160 /* 1161 * It's possible to miss clearing waiters here, when we woke our page 1162 * waiters, but the hashed waitqueue has waiters for other pages on it. 1163 * That's okay, it's a rare case. The next waker will clear it. 1164 * 1165 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1166 * other), the flag may be cleared in the course of freeing the page; 1167 * but that is not required for correctness. 1168 */ 1169 if (!waitqueue_active(q) || !key.page_match) 1170 folio_clear_waiters(folio); 1171 1172 spin_unlock_irqrestore(&q->lock, flags); 1173 } 1174 1175 static void folio_wake(struct folio *folio, int bit) 1176 { 1177 if (!folio_test_waiters(folio)) 1178 return; 1179 folio_wake_bit(folio, bit); 1180 } 1181 1182 /* 1183 * A choice of three behaviors for folio_wait_bit_common(): 1184 */ 1185 enum behavior { 1186 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1187 * __folio_lock() waiting on then setting PG_locked. 1188 */ 1189 SHARED, /* Hold ref to page and check the bit when woken, like 1190 * folio_wait_writeback() waiting on PG_writeback. 1191 */ 1192 DROP, /* Drop ref to page before wait, no check when woken, 1193 * like folio_put_wait_locked() on PG_locked. 1194 */ 1195 }; 1196 1197 /* 1198 * Attempt to check (or get) the folio flag, and mark us done 1199 * if successful. 1200 */ 1201 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1202 struct wait_queue_entry *wait) 1203 { 1204 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1205 if (test_and_set_bit(bit_nr, &folio->flags)) 1206 return false; 1207 } else if (test_bit(bit_nr, &folio->flags)) 1208 return false; 1209 1210 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1211 return true; 1212 } 1213 1214 /* How many times do we accept lock stealing from under a waiter? */ 1215 int sysctl_page_lock_unfairness = 5; 1216 1217 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1218 int state, enum behavior behavior) 1219 { 1220 wait_queue_head_t *q = folio_waitqueue(folio); 1221 int unfairness = sysctl_page_lock_unfairness; 1222 struct wait_page_queue wait_page; 1223 wait_queue_entry_t *wait = &wait_page.wait; 1224 bool thrashing = false; 1225 unsigned long pflags; 1226 bool in_thrashing; 1227 1228 if (bit_nr == PG_locked && 1229 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1230 delayacct_thrashing_start(&in_thrashing); 1231 psi_memstall_enter(&pflags); 1232 thrashing = true; 1233 } 1234 1235 init_wait(wait); 1236 wait->func = wake_page_function; 1237 wait_page.folio = folio; 1238 wait_page.bit_nr = bit_nr; 1239 1240 repeat: 1241 wait->flags = 0; 1242 if (behavior == EXCLUSIVE) { 1243 wait->flags = WQ_FLAG_EXCLUSIVE; 1244 if (--unfairness < 0) 1245 wait->flags |= WQ_FLAG_CUSTOM; 1246 } 1247 1248 /* 1249 * Do one last check whether we can get the 1250 * page bit synchronously. 1251 * 1252 * Do the folio_set_waiters() marking before that 1253 * to let any waker we _just_ missed know they 1254 * need to wake us up (otherwise they'll never 1255 * even go to the slow case that looks at the 1256 * page queue), and add ourselves to the wait 1257 * queue if we need to sleep. 1258 * 1259 * This part needs to be done under the queue 1260 * lock to avoid races. 1261 */ 1262 spin_lock_irq(&q->lock); 1263 folio_set_waiters(folio); 1264 if (!folio_trylock_flag(folio, bit_nr, wait)) 1265 __add_wait_queue_entry_tail(q, wait); 1266 spin_unlock_irq(&q->lock); 1267 1268 /* 1269 * From now on, all the logic will be based on 1270 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1271 * see whether the page bit testing has already 1272 * been done by the wake function. 1273 * 1274 * We can drop our reference to the folio. 1275 */ 1276 if (behavior == DROP) 1277 folio_put(folio); 1278 1279 /* 1280 * Note that until the "finish_wait()", or until 1281 * we see the WQ_FLAG_WOKEN flag, we need to 1282 * be very careful with the 'wait->flags', because 1283 * we may race with a waker that sets them. 1284 */ 1285 for (;;) { 1286 unsigned int flags; 1287 1288 set_current_state(state); 1289 1290 /* Loop until we've been woken or interrupted */ 1291 flags = smp_load_acquire(&wait->flags); 1292 if (!(flags & WQ_FLAG_WOKEN)) { 1293 if (signal_pending_state(state, current)) 1294 break; 1295 1296 io_schedule(); 1297 continue; 1298 } 1299 1300 /* If we were non-exclusive, we're done */ 1301 if (behavior != EXCLUSIVE) 1302 break; 1303 1304 /* If the waker got the lock for us, we're done */ 1305 if (flags & WQ_FLAG_DONE) 1306 break; 1307 1308 /* 1309 * Otherwise, if we're getting the lock, we need to 1310 * try to get it ourselves. 1311 * 1312 * And if that fails, we'll have to retry this all. 1313 */ 1314 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1315 goto repeat; 1316 1317 wait->flags |= WQ_FLAG_DONE; 1318 break; 1319 } 1320 1321 /* 1322 * If a signal happened, this 'finish_wait()' may remove the last 1323 * waiter from the wait-queues, but the folio waiters bit will remain 1324 * set. That's ok. The next wakeup will take care of it, and trying 1325 * to do it here would be difficult and prone to races. 1326 */ 1327 finish_wait(q, wait); 1328 1329 if (thrashing) { 1330 delayacct_thrashing_end(&in_thrashing); 1331 psi_memstall_leave(&pflags); 1332 } 1333 1334 /* 1335 * NOTE! The wait->flags weren't stable until we've done the 1336 * 'finish_wait()', and we could have exited the loop above due 1337 * to a signal, and had a wakeup event happen after the signal 1338 * test but before the 'finish_wait()'. 1339 * 1340 * So only after the finish_wait() can we reliably determine 1341 * if we got woken up or not, so we can now figure out the final 1342 * return value based on that state without races. 1343 * 1344 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1345 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1346 */ 1347 if (behavior == EXCLUSIVE) 1348 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1349 1350 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1351 } 1352 1353 #ifdef CONFIG_MIGRATION 1354 /** 1355 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1356 * @entry: migration swap entry. 1357 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1358 * for pte entries, pass NULL for pmd entries. 1359 * @ptl: already locked ptl. This function will drop the lock. 1360 * 1361 * Wait for a migration entry referencing the given page to be removed. This is 1362 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1363 * this can be called without taking a reference on the page. Instead this 1364 * should be called while holding the ptl for the migration entry referencing 1365 * the page. 1366 * 1367 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1368 * 1369 * This follows the same logic as folio_wait_bit_common() so see the comments 1370 * there. 1371 */ 1372 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1373 spinlock_t *ptl) 1374 { 1375 struct wait_page_queue wait_page; 1376 wait_queue_entry_t *wait = &wait_page.wait; 1377 bool thrashing = false; 1378 unsigned long pflags; 1379 bool in_thrashing; 1380 wait_queue_head_t *q; 1381 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1382 1383 q = folio_waitqueue(folio); 1384 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1385 delayacct_thrashing_start(&in_thrashing); 1386 psi_memstall_enter(&pflags); 1387 thrashing = true; 1388 } 1389 1390 init_wait(wait); 1391 wait->func = wake_page_function; 1392 wait_page.folio = folio; 1393 wait_page.bit_nr = PG_locked; 1394 wait->flags = 0; 1395 1396 spin_lock_irq(&q->lock); 1397 folio_set_waiters(folio); 1398 if (!folio_trylock_flag(folio, PG_locked, wait)) 1399 __add_wait_queue_entry_tail(q, wait); 1400 spin_unlock_irq(&q->lock); 1401 1402 /* 1403 * If a migration entry exists for the page the migration path must hold 1404 * a valid reference to the page, and it must take the ptl to remove the 1405 * migration entry. So the page is valid until the ptl is dropped. 1406 */ 1407 if (ptep) 1408 pte_unmap_unlock(ptep, ptl); 1409 else 1410 spin_unlock(ptl); 1411 1412 for (;;) { 1413 unsigned int flags; 1414 1415 set_current_state(TASK_UNINTERRUPTIBLE); 1416 1417 /* Loop until we've been woken or interrupted */ 1418 flags = smp_load_acquire(&wait->flags); 1419 if (!(flags & WQ_FLAG_WOKEN)) { 1420 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1421 break; 1422 1423 io_schedule(); 1424 continue; 1425 } 1426 break; 1427 } 1428 1429 finish_wait(q, wait); 1430 1431 if (thrashing) { 1432 delayacct_thrashing_end(&in_thrashing); 1433 psi_memstall_leave(&pflags); 1434 } 1435 } 1436 #endif 1437 1438 void folio_wait_bit(struct folio *folio, int bit_nr) 1439 { 1440 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1441 } 1442 EXPORT_SYMBOL(folio_wait_bit); 1443 1444 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1445 { 1446 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1447 } 1448 EXPORT_SYMBOL(folio_wait_bit_killable); 1449 1450 /** 1451 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1452 * @folio: The folio to wait for. 1453 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1454 * 1455 * The caller should hold a reference on @folio. They expect the page to 1456 * become unlocked relatively soon, but do not wish to hold up migration 1457 * (for example) by holding the reference while waiting for the folio to 1458 * come unlocked. After this function returns, the caller should not 1459 * dereference @folio. 1460 * 1461 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1462 */ 1463 static int folio_put_wait_locked(struct folio *folio, int state) 1464 { 1465 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1466 } 1467 1468 /** 1469 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1470 * @folio: Folio defining the wait queue of interest 1471 * @waiter: Waiter to add to the queue 1472 * 1473 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1474 */ 1475 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1476 { 1477 wait_queue_head_t *q = folio_waitqueue(folio); 1478 unsigned long flags; 1479 1480 spin_lock_irqsave(&q->lock, flags); 1481 __add_wait_queue_entry_tail(q, waiter); 1482 folio_set_waiters(folio); 1483 spin_unlock_irqrestore(&q->lock, flags); 1484 } 1485 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1486 1487 #ifndef clear_bit_unlock_is_negative_byte 1488 1489 /* 1490 * PG_waiters is the high bit in the same byte as PG_lock. 1491 * 1492 * On x86 (and on many other architectures), we can clear PG_lock and 1493 * test the sign bit at the same time. But if the architecture does 1494 * not support that special operation, we just do this all by hand 1495 * instead. 1496 * 1497 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1498 * being cleared, but a memory barrier should be unnecessary since it is 1499 * in the same byte as PG_locked. 1500 */ 1501 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1502 { 1503 clear_bit_unlock(nr, mem); 1504 /* smp_mb__after_atomic(); */ 1505 return test_bit(PG_waiters, mem); 1506 } 1507 1508 #endif 1509 1510 /** 1511 * folio_unlock - Unlock a locked folio. 1512 * @folio: The folio. 1513 * 1514 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1515 * 1516 * Context: May be called from interrupt or process context. May not be 1517 * called from NMI context. 1518 */ 1519 void folio_unlock(struct folio *folio) 1520 { 1521 /* Bit 7 allows x86 to check the byte's sign bit */ 1522 BUILD_BUG_ON(PG_waiters != 7); 1523 BUILD_BUG_ON(PG_locked > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1526 folio_wake_bit(folio, PG_locked); 1527 } 1528 EXPORT_SYMBOL(folio_unlock); 1529 1530 /** 1531 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1532 * @folio: The folio. 1533 * 1534 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1535 * it. The folio reference held for PG_private_2 being set is released. 1536 * 1537 * This is, for example, used when a netfs folio is being written to a local 1538 * disk cache, thereby allowing writes to the cache for the same folio to be 1539 * serialised. 1540 */ 1541 void folio_end_private_2(struct folio *folio) 1542 { 1543 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1544 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1545 folio_wake_bit(folio, PG_private_2); 1546 folio_put(folio); 1547 } 1548 EXPORT_SYMBOL(folio_end_private_2); 1549 1550 /** 1551 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1552 * @folio: The folio to wait on. 1553 * 1554 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1555 */ 1556 void folio_wait_private_2(struct folio *folio) 1557 { 1558 while (folio_test_private_2(folio)) 1559 folio_wait_bit(folio, PG_private_2); 1560 } 1561 EXPORT_SYMBOL(folio_wait_private_2); 1562 1563 /** 1564 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1565 * @folio: The folio to wait on. 1566 * 1567 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1568 * fatal signal is received by the calling task. 1569 * 1570 * Return: 1571 * - 0 if successful. 1572 * - -EINTR if a fatal signal was encountered. 1573 */ 1574 int folio_wait_private_2_killable(struct folio *folio) 1575 { 1576 int ret = 0; 1577 1578 while (folio_test_private_2(folio)) { 1579 ret = folio_wait_bit_killable(folio, PG_private_2); 1580 if (ret < 0) 1581 break; 1582 } 1583 1584 return ret; 1585 } 1586 EXPORT_SYMBOL(folio_wait_private_2_killable); 1587 1588 /** 1589 * folio_end_writeback - End writeback against a folio. 1590 * @folio: The folio. 1591 */ 1592 void folio_end_writeback(struct folio *folio) 1593 { 1594 /* 1595 * folio_test_clear_reclaim() could be used here but it is an 1596 * atomic operation and overkill in this particular case. Failing 1597 * to shuffle a folio marked for immediate reclaim is too mild 1598 * a gain to justify taking an atomic operation penalty at the 1599 * end of every folio writeback. 1600 */ 1601 if (folio_test_reclaim(folio)) { 1602 folio_clear_reclaim(folio); 1603 folio_rotate_reclaimable(folio); 1604 } 1605 1606 /* 1607 * Writeback does not hold a folio reference of its own, relying 1608 * on truncation to wait for the clearing of PG_writeback. 1609 * But here we must make sure that the folio is not freed and 1610 * reused before the folio_wake(). 1611 */ 1612 folio_get(folio); 1613 if (!__folio_end_writeback(folio)) 1614 BUG(); 1615 1616 smp_mb__after_atomic(); 1617 folio_wake(folio, PG_writeback); 1618 acct_reclaim_writeback(folio); 1619 folio_put(folio); 1620 } 1621 EXPORT_SYMBOL(folio_end_writeback); 1622 1623 /* 1624 * After completing I/O on a page, call this routine to update the page 1625 * flags appropriately 1626 */ 1627 void page_endio(struct page *page, bool is_write, int err) 1628 { 1629 struct folio *folio = page_folio(page); 1630 1631 if (!is_write) { 1632 if (!err) { 1633 folio_mark_uptodate(folio); 1634 } else { 1635 folio_clear_uptodate(folio); 1636 folio_set_error(folio); 1637 } 1638 folio_unlock(folio); 1639 } else { 1640 if (err) { 1641 struct address_space *mapping; 1642 1643 folio_set_error(folio); 1644 mapping = folio_mapping(folio); 1645 if (mapping) 1646 mapping_set_error(mapping, err); 1647 } 1648 folio_end_writeback(folio); 1649 } 1650 } 1651 EXPORT_SYMBOL_GPL(page_endio); 1652 1653 /** 1654 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1655 * @folio: The folio to lock 1656 */ 1657 void __folio_lock(struct folio *folio) 1658 { 1659 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1660 EXCLUSIVE); 1661 } 1662 EXPORT_SYMBOL(__folio_lock); 1663 1664 int __folio_lock_killable(struct folio *folio) 1665 { 1666 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1667 EXCLUSIVE); 1668 } 1669 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1670 1671 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1672 { 1673 struct wait_queue_head *q = folio_waitqueue(folio); 1674 int ret = 0; 1675 1676 wait->folio = folio; 1677 wait->bit_nr = PG_locked; 1678 1679 spin_lock_irq(&q->lock); 1680 __add_wait_queue_entry_tail(q, &wait->wait); 1681 folio_set_waiters(folio); 1682 ret = !folio_trylock(folio); 1683 /* 1684 * If we were successful now, we know we're still on the 1685 * waitqueue as we're still under the lock. This means it's 1686 * safe to remove and return success, we know the callback 1687 * isn't going to trigger. 1688 */ 1689 if (!ret) 1690 __remove_wait_queue(q, &wait->wait); 1691 else 1692 ret = -EIOCBQUEUED; 1693 spin_unlock_irq(&q->lock); 1694 return ret; 1695 } 1696 1697 /* 1698 * Return values: 1699 * true - folio is locked; mmap_lock is still held. 1700 * false - folio is not locked. 1701 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1702 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1703 * which case mmap_lock is still held. 1704 * 1705 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1706 * with the folio locked and the mmap_lock unperturbed. 1707 */ 1708 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1709 unsigned int flags) 1710 { 1711 if (fault_flag_allow_retry_first(flags)) { 1712 /* 1713 * CAUTION! In this case, mmap_lock is not released 1714 * even though return 0. 1715 */ 1716 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1717 return false; 1718 1719 mmap_read_unlock(mm); 1720 if (flags & FAULT_FLAG_KILLABLE) 1721 folio_wait_locked_killable(folio); 1722 else 1723 folio_wait_locked(folio); 1724 return false; 1725 } 1726 if (flags & FAULT_FLAG_KILLABLE) { 1727 bool ret; 1728 1729 ret = __folio_lock_killable(folio); 1730 if (ret) { 1731 mmap_read_unlock(mm); 1732 return false; 1733 } 1734 } else { 1735 __folio_lock(folio); 1736 } 1737 1738 return true; 1739 } 1740 1741 /** 1742 * page_cache_next_miss() - Find the next gap in the page cache. 1743 * @mapping: Mapping. 1744 * @index: Index. 1745 * @max_scan: Maximum range to search. 1746 * 1747 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1748 * gap with the lowest index. 1749 * 1750 * This function may be called under the rcu_read_lock. However, this will 1751 * not atomically search a snapshot of the cache at a single point in time. 1752 * For example, if a gap is created at index 5, then subsequently a gap is 1753 * created at index 10, page_cache_next_miss covering both indices may 1754 * return 10 if called under the rcu_read_lock. 1755 * 1756 * Return: The index of the gap if found, otherwise an index outside the 1757 * range specified (in which case 'return - index >= max_scan' will be true). 1758 * In the rare case of index wrap-around, 0 will be returned. 1759 */ 1760 pgoff_t page_cache_next_miss(struct address_space *mapping, 1761 pgoff_t index, unsigned long max_scan) 1762 { 1763 XA_STATE(xas, &mapping->i_pages, index); 1764 1765 while (max_scan--) { 1766 void *entry = xas_next(&xas); 1767 if (!entry || xa_is_value(entry)) 1768 break; 1769 if (xas.xa_index == 0) 1770 break; 1771 } 1772 1773 return xas.xa_index; 1774 } 1775 EXPORT_SYMBOL(page_cache_next_miss); 1776 1777 /** 1778 * page_cache_prev_miss() - Find the previous gap in the page cache. 1779 * @mapping: Mapping. 1780 * @index: Index. 1781 * @max_scan: Maximum range to search. 1782 * 1783 * Search the range [max(index - max_scan + 1, 0), index] for the 1784 * gap with the highest index. 1785 * 1786 * This function may be called under the rcu_read_lock. However, this will 1787 * not atomically search a snapshot of the cache at a single point in time. 1788 * For example, if a gap is created at index 10, then subsequently a gap is 1789 * created at index 5, page_cache_prev_miss() covering both indices may 1790 * return 5 if called under the rcu_read_lock. 1791 * 1792 * Return: The index of the gap if found, otherwise an index outside the 1793 * range specified (in which case 'index - return >= max_scan' will be true). 1794 * In the rare case of wrap-around, ULONG_MAX will be returned. 1795 */ 1796 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1797 pgoff_t index, unsigned long max_scan) 1798 { 1799 XA_STATE(xas, &mapping->i_pages, index); 1800 1801 while (max_scan--) { 1802 void *entry = xas_prev(&xas); 1803 if (!entry || xa_is_value(entry)) 1804 break; 1805 if (xas.xa_index == ULONG_MAX) 1806 break; 1807 } 1808 1809 return xas.xa_index; 1810 } 1811 EXPORT_SYMBOL(page_cache_prev_miss); 1812 1813 /* 1814 * Lockless page cache protocol: 1815 * On the lookup side: 1816 * 1. Load the folio from i_pages 1817 * 2. Increment the refcount if it's not zero 1818 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1819 * 1820 * On the removal side: 1821 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1822 * B. Remove the page from i_pages 1823 * C. Return the page to the page allocator 1824 * 1825 * This means that any page may have its reference count temporarily 1826 * increased by a speculative page cache (or fast GUP) lookup as it can 1827 * be allocated by another user before the RCU grace period expires. 1828 * Because the refcount temporarily acquired here may end up being the 1829 * last refcount on the page, any page allocation must be freeable by 1830 * folio_put(). 1831 */ 1832 1833 /* 1834 * mapping_get_entry - Get a page cache entry. 1835 * @mapping: the address_space to search 1836 * @index: The page cache index. 1837 * 1838 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1839 * it is returned with an increased refcount. If it is a shadow entry 1840 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1841 * it is returned without further action. 1842 * 1843 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1844 */ 1845 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1846 { 1847 XA_STATE(xas, &mapping->i_pages, index); 1848 struct folio *folio; 1849 1850 rcu_read_lock(); 1851 repeat: 1852 xas_reset(&xas); 1853 folio = xas_load(&xas); 1854 if (xas_retry(&xas, folio)) 1855 goto repeat; 1856 /* 1857 * A shadow entry of a recently evicted page, or a swap entry from 1858 * shmem/tmpfs. Return it without attempting to raise page count. 1859 */ 1860 if (!folio || xa_is_value(folio)) 1861 goto out; 1862 1863 if (!folio_try_get_rcu(folio)) 1864 goto repeat; 1865 1866 if (unlikely(folio != xas_reload(&xas))) { 1867 folio_put(folio); 1868 goto repeat; 1869 } 1870 out: 1871 rcu_read_unlock(); 1872 1873 return folio; 1874 } 1875 1876 /** 1877 * __filemap_get_folio - Find and get a reference to a folio. 1878 * @mapping: The address_space to search. 1879 * @index: The page index. 1880 * @fgp_flags: %FGP flags modify how the folio is returned. 1881 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1882 * 1883 * Looks up the page cache entry at @mapping & @index. 1884 * 1885 * @fgp_flags can be zero or more of these flags: 1886 * 1887 * * %FGP_ACCESSED - The folio will be marked accessed. 1888 * * %FGP_LOCK - The folio is returned locked. 1889 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1890 * instead of allocating a new folio to replace it. 1891 * * %FGP_CREAT - If no page is present then a new page is allocated using 1892 * @gfp and added to the page cache and the VM's LRU list. 1893 * The page is returned locked and with an increased refcount. 1894 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1895 * page is already in cache. If the page was allocated, unlock it before 1896 * returning so the caller can do the same dance. 1897 * * %FGP_WRITE - The page will be written to by the caller. 1898 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1899 * * %FGP_NOWAIT - Don't get blocked by page lock. 1900 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1901 * 1902 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1903 * if the %GFP flags specified for %FGP_CREAT are atomic. 1904 * 1905 * If there is a page cache page, it is returned with an increased refcount. 1906 * 1907 * Return: The found folio or %NULL otherwise. 1908 */ 1909 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1910 int fgp_flags, gfp_t gfp) 1911 { 1912 struct folio *folio; 1913 1914 repeat: 1915 folio = mapping_get_entry(mapping, index); 1916 if (xa_is_value(folio)) { 1917 if (fgp_flags & FGP_ENTRY) 1918 return folio; 1919 folio = NULL; 1920 } 1921 if (!folio) 1922 goto no_page; 1923 1924 if (fgp_flags & FGP_LOCK) { 1925 if (fgp_flags & FGP_NOWAIT) { 1926 if (!folio_trylock(folio)) { 1927 folio_put(folio); 1928 return NULL; 1929 } 1930 } else { 1931 folio_lock(folio); 1932 } 1933 1934 /* Has the page been truncated? */ 1935 if (unlikely(folio->mapping != mapping)) { 1936 folio_unlock(folio); 1937 folio_put(folio); 1938 goto repeat; 1939 } 1940 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1941 } 1942 1943 if (fgp_flags & FGP_ACCESSED) 1944 folio_mark_accessed(folio); 1945 else if (fgp_flags & FGP_WRITE) { 1946 /* Clear idle flag for buffer write */ 1947 if (folio_test_idle(folio)) 1948 folio_clear_idle(folio); 1949 } 1950 1951 if (fgp_flags & FGP_STABLE) 1952 folio_wait_stable(folio); 1953 no_page: 1954 if (!folio && (fgp_flags & FGP_CREAT)) { 1955 int err; 1956 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1957 gfp |= __GFP_WRITE; 1958 if (fgp_flags & FGP_NOFS) 1959 gfp &= ~__GFP_FS; 1960 if (fgp_flags & FGP_NOWAIT) { 1961 gfp &= ~GFP_KERNEL; 1962 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1963 } 1964 1965 folio = filemap_alloc_folio(gfp, 0); 1966 if (!folio) 1967 return NULL; 1968 1969 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1970 fgp_flags |= FGP_LOCK; 1971 1972 /* Init accessed so avoid atomic mark_page_accessed later */ 1973 if (fgp_flags & FGP_ACCESSED) 1974 __folio_set_referenced(folio); 1975 1976 err = filemap_add_folio(mapping, folio, index, gfp); 1977 if (unlikely(err)) { 1978 folio_put(folio); 1979 folio = NULL; 1980 if (err == -EEXIST) 1981 goto repeat; 1982 } 1983 1984 /* 1985 * filemap_add_folio locks the page, and for mmap 1986 * we expect an unlocked page. 1987 */ 1988 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1989 folio_unlock(folio); 1990 } 1991 1992 return folio; 1993 } 1994 EXPORT_SYMBOL(__filemap_get_folio); 1995 1996 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1997 xa_mark_t mark) 1998 { 1999 struct folio *folio; 2000 2001 retry: 2002 if (mark == XA_PRESENT) 2003 folio = xas_find(xas, max); 2004 else 2005 folio = xas_find_marked(xas, max, mark); 2006 2007 if (xas_retry(xas, folio)) 2008 goto retry; 2009 /* 2010 * A shadow entry of a recently evicted page, a swap 2011 * entry from shmem/tmpfs or a DAX entry. Return it 2012 * without attempting to raise page count. 2013 */ 2014 if (!folio || xa_is_value(folio)) 2015 return folio; 2016 2017 if (!folio_try_get_rcu(folio)) 2018 goto reset; 2019 2020 if (unlikely(folio != xas_reload(xas))) { 2021 folio_put(folio); 2022 goto reset; 2023 } 2024 2025 return folio; 2026 reset: 2027 xas_reset(xas); 2028 goto retry; 2029 } 2030 2031 /** 2032 * find_get_entries - gang pagecache lookup 2033 * @mapping: The address_space to search 2034 * @start: The starting page cache index 2035 * @end: The final page index (inclusive). 2036 * @fbatch: Where the resulting entries are placed. 2037 * @indices: The cache indices corresponding to the entries in @entries 2038 * 2039 * find_get_entries() will search for and return a batch of entries in 2040 * the mapping. The entries are placed in @fbatch. find_get_entries() 2041 * takes a reference on any actual folios it returns. 2042 * 2043 * The entries have ascending indexes. The indices may not be consecutive 2044 * due to not-present entries or large folios. 2045 * 2046 * Any shadow entries of evicted folios, or swap entries from 2047 * shmem/tmpfs, are included in the returned array. 2048 * 2049 * Return: The number of entries which were found. 2050 */ 2051 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2052 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2053 { 2054 XA_STATE(xas, &mapping->i_pages, *start); 2055 struct folio *folio; 2056 2057 rcu_read_lock(); 2058 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2059 indices[fbatch->nr] = xas.xa_index; 2060 if (!folio_batch_add(fbatch, folio)) 2061 break; 2062 } 2063 rcu_read_unlock(); 2064 2065 if (folio_batch_count(fbatch)) { 2066 unsigned long nr = 1; 2067 int idx = folio_batch_count(fbatch) - 1; 2068 2069 folio = fbatch->folios[idx]; 2070 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2071 nr = folio_nr_pages(folio); 2072 *start = indices[idx] + nr; 2073 } 2074 return folio_batch_count(fbatch); 2075 } 2076 2077 /** 2078 * find_lock_entries - Find a batch of pagecache entries. 2079 * @mapping: The address_space to search. 2080 * @start: The starting page cache index. 2081 * @end: The final page index (inclusive). 2082 * @fbatch: Where the resulting entries are placed. 2083 * @indices: The cache indices of the entries in @fbatch. 2084 * 2085 * find_lock_entries() will return a batch of entries from @mapping. 2086 * Swap, shadow and DAX entries are included. Folios are returned 2087 * locked and with an incremented refcount. Folios which are locked 2088 * by somebody else or under writeback are skipped. Folios which are 2089 * partially outside the range are not returned. 2090 * 2091 * The entries have ascending indexes. The indices may not be consecutive 2092 * due to not-present entries, large folios, folios which could not be 2093 * locked or folios under writeback. 2094 * 2095 * Return: The number of entries which were found. 2096 */ 2097 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2098 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2099 { 2100 XA_STATE(xas, &mapping->i_pages, *start); 2101 struct folio *folio; 2102 2103 rcu_read_lock(); 2104 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2105 if (!xa_is_value(folio)) { 2106 if (folio->index < *start) 2107 goto put; 2108 if (folio->index + folio_nr_pages(folio) - 1 > end) 2109 goto put; 2110 if (!folio_trylock(folio)) 2111 goto put; 2112 if (folio->mapping != mapping || 2113 folio_test_writeback(folio)) 2114 goto unlock; 2115 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2116 folio); 2117 } 2118 indices[fbatch->nr] = xas.xa_index; 2119 if (!folio_batch_add(fbatch, folio)) 2120 break; 2121 continue; 2122 unlock: 2123 folio_unlock(folio); 2124 put: 2125 folio_put(folio); 2126 } 2127 rcu_read_unlock(); 2128 2129 if (folio_batch_count(fbatch)) { 2130 unsigned long nr = 1; 2131 int idx = folio_batch_count(fbatch) - 1; 2132 2133 folio = fbatch->folios[idx]; 2134 if (!xa_is_value(folio) && !folio_test_hugetlb(folio)) 2135 nr = folio_nr_pages(folio); 2136 *start = indices[idx] + nr; 2137 } 2138 return folio_batch_count(fbatch); 2139 } 2140 2141 /** 2142 * filemap_get_folios - Get a batch of folios 2143 * @mapping: The address_space to search 2144 * @start: The starting page index 2145 * @end: The final page index (inclusive) 2146 * @fbatch: The batch to fill. 2147 * 2148 * Search for and return a batch of folios in the mapping starting at 2149 * index @start and up to index @end (inclusive). The folios are returned 2150 * in @fbatch with an elevated reference count. 2151 * 2152 * The first folio may start before @start; if it does, it will contain 2153 * @start. The final folio may extend beyond @end; if it does, it will 2154 * contain @end. The folios have ascending indices. There may be gaps 2155 * between the folios if there are indices which have no folio in the 2156 * page cache. If folios are added to or removed from the page cache 2157 * while this is running, they may or may not be found by this call. 2158 * 2159 * Return: The number of folios which were found. 2160 * We also update @start to index the next folio for the traversal. 2161 */ 2162 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2163 pgoff_t end, struct folio_batch *fbatch) 2164 { 2165 XA_STATE(xas, &mapping->i_pages, *start); 2166 struct folio *folio; 2167 2168 rcu_read_lock(); 2169 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2170 /* Skip over shadow, swap and DAX entries */ 2171 if (xa_is_value(folio)) 2172 continue; 2173 if (!folio_batch_add(fbatch, folio)) { 2174 unsigned long nr = folio_nr_pages(folio); 2175 2176 if (folio_test_hugetlb(folio)) 2177 nr = 1; 2178 *start = folio->index + nr; 2179 goto out; 2180 } 2181 } 2182 2183 /* 2184 * We come here when there is no page beyond @end. We take care to not 2185 * overflow the index @start as it confuses some of the callers. This 2186 * breaks the iteration when there is a page at index -1 but that is 2187 * already broken anyway. 2188 */ 2189 if (end == (pgoff_t)-1) 2190 *start = (pgoff_t)-1; 2191 else 2192 *start = end + 1; 2193 out: 2194 rcu_read_unlock(); 2195 2196 return folio_batch_count(fbatch); 2197 } 2198 EXPORT_SYMBOL(filemap_get_folios); 2199 2200 static inline 2201 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2202 { 2203 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2204 return false; 2205 if (index >= max) 2206 return false; 2207 return index < folio->index + folio_nr_pages(folio) - 1; 2208 } 2209 2210 /** 2211 * filemap_get_folios_contig - Get a batch of contiguous folios 2212 * @mapping: The address_space to search 2213 * @start: The starting page index 2214 * @end: The final page index (inclusive) 2215 * @fbatch: The batch to fill 2216 * 2217 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2218 * except the returned folios are guaranteed to be contiguous. This may 2219 * not return all contiguous folios if the batch gets filled up. 2220 * 2221 * Return: The number of folios found. 2222 * Also update @start to be positioned for traversal of the next folio. 2223 */ 2224 2225 unsigned filemap_get_folios_contig(struct address_space *mapping, 2226 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2227 { 2228 XA_STATE(xas, &mapping->i_pages, *start); 2229 unsigned long nr; 2230 struct folio *folio; 2231 2232 rcu_read_lock(); 2233 2234 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2235 folio = xas_next(&xas)) { 2236 if (xas_retry(&xas, folio)) 2237 continue; 2238 /* 2239 * If the entry has been swapped out, we can stop looking. 2240 * No current caller is looking for DAX entries. 2241 */ 2242 if (xa_is_value(folio)) 2243 goto update_start; 2244 2245 if (!folio_try_get_rcu(folio)) 2246 goto retry; 2247 2248 if (unlikely(folio != xas_reload(&xas))) 2249 goto put_folio; 2250 2251 if (!folio_batch_add(fbatch, folio)) { 2252 nr = folio_nr_pages(folio); 2253 2254 if (folio_test_hugetlb(folio)) 2255 nr = 1; 2256 *start = folio->index + nr; 2257 goto out; 2258 } 2259 continue; 2260 put_folio: 2261 folio_put(folio); 2262 2263 retry: 2264 xas_reset(&xas); 2265 } 2266 2267 update_start: 2268 nr = folio_batch_count(fbatch); 2269 2270 if (nr) { 2271 folio = fbatch->folios[nr - 1]; 2272 if (folio_test_hugetlb(folio)) 2273 *start = folio->index + 1; 2274 else 2275 *start = folio->index + folio_nr_pages(folio); 2276 } 2277 out: 2278 rcu_read_unlock(); 2279 return folio_batch_count(fbatch); 2280 } 2281 EXPORT_SYMBOL(filemap_get_folios_contig); 2282 2283 /** 2284 * find_get_pages_range_tag - Find and return head pages matching @tag. 2285 * @mapping: the address_space to search 2286 * @index: the starting page index 2287 * @end: The final page index (inclusive) 2288 * @tag: the tag index 2289 * @nr_pages: the maximum number of pages 2290 * @pages: where the resulting pages are placed 2291 * 2292 * Like find_get_pages_range(), except we only return head pages which are 2293 * tagged with @tag. @index is updated to the index immediately after the 2294 * last page we return, ready for the next iteration. 2295 * 2296 * Return: the number of pages which were found. 2297 */ 2298 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2299 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2300 struct page **pages) 2301 { 2302 XA_STATE(xas, &mapping->i_pages, *index); 2303 struct folio *folio; 2304 unsigned ret = 0; 2305 2306 if (unlikely(!nr_pages)) 2307 return 0; 2308 2309 rcu_read_lock(); 2310 while ((folio = find_get_entry(&xas, end, tag))) { 2311 /* 2312 * Shadow entries should never be tagged, but this iteration 2313 * is lockless so there is a window for page reclaim to evict 2314 * a page we saw tagged. Skip over it. 2315 */ 2316 if (xa_is_value(folio)) 2317 continue; 2318 2319 pages[ret] = &folio->page; 2320 if (++ret == nr_pages) { 2321 *index = folio->index + folio_nr_pages(folio); 2322 goto out; 2323 } 2324 } 2325 2326 /* 2327 * We come here when we got to @end. We take care to not overflow the 2328 * index @index as it confuses some of the callers. This breaks the 2329 * iteration when there is a page at index -1 but that is already 2330 * broken anyway. 2331 */ 2332 if (end == (pgoff_t)-1) 2333 *index = (pgoff_t)-1; 2334 else 2335 *index = end + 1; 2336 out: 2337 rcu_read_unlock(); 2338 2339 return ret; 2340 } 2341 EXPORT_SYMBOL(find_get_pages_range_tag); 2342 2343 /* 2344 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2345 * a _large_ part of the i/o request. Imagine the worst scenario: 2346 * 2347 * ---R__________________________________________B__________ 2348 * ^ reading here ^ bad block(assume 4k) 2349 * 2350 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2351 * => failing the whole request => read(R) => read(R+1) => 2352 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2353 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2354 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2355 * 2356 * It is going insane. Fix it by quickly scaling down the readahead size. 2357 */ 2358 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2359 { 2360 ra->ra_pages /= 4; 2361 } 2362 2363 /* 2364 * filemap_get_read_batch - Get a batch of folios for read 2365 * 2366 * Get a batch of folios which represent a contiguous range of bytes in 2367 * the file. No exceptional entries will be returned. If @index is in 2368 * the middle of a folio, the entire folio will be returned. The last 2369 * folio in the batch may have the readahead flag set or the uptodate flag 2370 * clear so that the caller can take the appropriate action. 2371 */ 2372 static void filemap_get_read_batch(struct address_space *mapping, 2373 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2374 { 2375 XA_STATE(xas, &mapping->i_pages, index); 2376 struct folio *folio; 2377 2378 rcu_read_lock(); 2379 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2380 if (xas_retry(&xas, folio)) 2381 continue; 2382 if (xas.xa_index > max || xa_is_value(folio)) 2383 break; 2384 if (xa_is_sibling(folio)) 2385 break; 2386 if (!folio_try_get_rcu(folio)) 2387 goto retry; 2388 2389 if (unlikely(folio != xas_reload(&xas))) 2390 goto put_folio; 2391 2392 if (!folio_batch_add(fbatch, folio)) 2393 break; 2394 if (!folio_test_uptodate(folio)) 2395 break; 2396 if (folio_test_readahead(folio)) 2397 break; 2398 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2399 continue; 2400 put_folio: 2401 folio_put(folio); 2402 retry: 2403 xas_reset(&xas); 2404 } 2405 rcu_read_unlock(); 2406 } 2407 2408 static int filemap_read_folio(struct file *file, filler_t filler, 2409 struct folio *folio) 2410 { 2411 bool workingset = folio_test_workingset(folio); 2412 unsigned long pflags; 2413 int error; 2414 2415 /* 2416 * A previous I/O error may have been due to temporary failures, 2417 * eg. multipath errors. PG_error will be set again if read_folio 2418 * fails. 2419 */ 2420 folio_clear_error(folio); 2421 2422 /* Start the actual read. The read will unlock the page. */ 2423 if (unlikely(workingset)) 2424 psi_memstall_enter(&pflags); 2425 error = filler(file, folio); 2426 if (unlikely(workingset)) 2427 psi_memstall_leave(&pflags); 2428 if (error) 2429 return error; 2430 2431 error = folio_wait_locked_killable(folio); 2432 if (error) 2433 return error; 2434 if (folio_test_uptodate(folio)) 2435 return 0; 2436 if (file) 2437 shrink_readahead_size_eio(&file->f_ra); 2438 return -EIO; 2439 } 2440 2441 static bool filemap_range_uptodate(struct address_space *mapping, 2442 loff_t pos, struct iov_iter *iter, struct folio *folio) 2443 { 2444 int count; 2445 2446 if (folio_test_uptodate(folio)) 2447 return true; 2448 /* pipes can't handle partially uptodate pages */ 2449 if (iov_iter_is_pipe(iter)) 2450 return false; 2451 if (!mapping->a_ops->is_partially_uptodate) 2452 return false; 2453 if (mapping->host->i_blkbits >= folio_shift(folio)) 2454 return false; 2455 2456 count = iter->count; 2457 if (folio_pos(folio) > pos) { 2458 count -= folio_pos(folio) - pos; 2459 pos = 0; 2460 } else { 2461 pos -= folio_pos(folio); 2462 } 2463 2464 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2465 } 2466 2467 static int filemap_update_page(struct kiocb *iocb, 2468 struct address_space *mapping, struct iov_iter *iter, 2469 struct folio *folio) 2470 { 2471 int error; 2472 2473 if (iocb->ki_flags & IOCB_NOWAIT) { 2474 if (!filemap_invalidate_trylock_shared(mapping)) 2475 return -EAGAIN; 2476 } else { 2477 filemap_invalidate_lock_shared(mapping); 2478 } 2479 2480 if (!folio_trylock(folio)) { 2481 error = -EAGAIN; 2482 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2483 goto unlock_mapping; 2484 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2485 filemap_invalidate_unlock_shared(mapping); 2486 /* 2487 * This is where we usually end up waiting for a 2488 * previously submitted readahead to finish. 2489 */ 2490 folio_put_wait_locked(folio, TASK_KILLABLE); 2491 return AOP_TRUNCATED_PAGE; 2492 } 2493 error = __folio_lock_async(folio, iocb->ki_waitq); 2494 if (error) 2495 goto unlock_mapping; 2496 } 2497 2498 error = AOP_TRUNCATED_PAGE; 2499 if (!folio->mapping) 2500 goto unlock; 2501 2502 error = 0; 2503 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2504 goto unlock; 2505 2506 error = -EAGAIN; 2507 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2508 goto unlock; 2509 2510 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2511 folio); 2512 goto unlock_mapping; 2513 unlock: 2514 folio_unlock(folio); 2515 unlock_mapping: 2516 filemap_invalidate_unlock_shared(mapping); 2517 if (error == AOP_TRUNCATED_PAGE) 2518 folio_put(folio); 2519 return error; 2520 } 2521 2522 static int filemap_create_folio(struct file *file, 2523 struct address_space *mapping, pgoff_t index, 2524 struct folio_batch *fbatch) 2525 { 2526 struct folio *folio; 2527 int error; 2528 2529 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2530 if (!folio) 2531 return -ENOMEM; 2532 2533 /* 2534 * Protect against truncate / hole punch. Grabbing invalidate_lock 2535 * here assures we cannot instantiate and bring uptodate new 2536 * pagecache folios after evicting page cache during truncate 2537 * and before actually freeing blocks. Note that we could 2538 * release invalidate_lock after inserting the folio into 2539 * the page cache as the locked folio would then be enough to 2540 * synchronize with hole punching. But there are code paths 2541 * such as filemap_update_page() filling in partially uptodate 2542 * pages or ->readahead() that need to hold invalidate_lock 2543 * while mapping blocks for IO so let's hold the lock here as 2544 * well to keep locking rules simple. 2545 */ 2546 filemap_invalidate_lock_shared(mapping); 2547 error = filemap_add_folio(mapping, folio, index, 2548 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2549 if (error == -EEXIST) 2550 error = AOP_TRUNCATED_PAGE; 2551 if (error) 2552 goto error; 2553 2554 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2555 if (error) 2556 goto error; 2557 2558 filemap_invalidate_unlock_shared(mapping); 2559 folio_batch_add(fbatch, folio); 2560 return 0; 2561 error: 2562 filemap_invalidate_unlock_shared(mapping); 2563 folio_put(folio); 2564 return error; 2565 } 2566 2567 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2568 struct address_space *mapping, struct folio *folio, 2569 pgoff_t last_index) 2570 { 2571 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2572 2573 if (iocb->ki_flags & IOCB_NOIO) 2574 return -EAGAIN; 2575 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2576 return 0; 2577 } 2578 2579 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2580 struct folio_batch *fbatch) 2581 { 2582 struct file *filp = iocb->ki_filp; 2583 struct address_space *mapping = filp->f_mapping; 2584 struct file_ra_state *ra = &filp->f_ra; 2585 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2586 pgoff_t last_index; 2587 struct folio *folio; 2588 int err = 0; 2589 2590 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2591 retry: 2592 if (fatal_signal_pending(current)) 2593 return -EINTR; 2594 2595 filemap_get_read_batch(mapping, index, last_index, fbatch); 2596 if (!folio_batch_count(fbatch)) { 2597 if (iocb->ki_flags & IOCB_NOIO) 2598 return -EAGAIN; 2599 page_cache_sync_readahead(mapping, ra, filp, index, 2600 last_index - index); 2601 filemap_get_read_batch(mapping, index, last_index, fbatch); 2602 } 2603 if (!folio_batch_count(fbatch)) { 2604 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2605 return -EAGAIN; 2606 err = filemap_create_folio(filp, mapping, 2607 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2608 if (err == AOP_TRUNCATED_PAGE) 2609 goto retry; 2610 return err; 2611 } 2612 2613 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2614 if (folio_test_readahead(folio)) { 2615 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2616 if (err) 2617 goto err; 2618 } 2619 if (!folio_test_uptodate(folio)) { 2620 if ((iocb->ki_flags & IOCB_WAITQ) && 2621 folio_batch_count(fbatch) > 1) 2622 iocb->ki_flags |= IOCB_NOWAIT; 2623 err = filemap_update_page(iocb, mapping, iter, folio); 2624 if (err) 2625 goto err; 2626 } 2627 2628 return 0; 2629 err: 2630 if (err < 0) 2631 folio_put(folio); 2632 if (likely(--fbatch->nr)) 2633 return 0; 2634 if (err == AOP_TRUNCATED_PAGE) 2635 goto retry; 2636 return err; 2637 } 2638 2639 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2640 { 2641 unsigned int shift = folio_shift(folio); 2642 2643 return (pos1 >> shift == pos2 >> shift); 2644 } 2645 2646 /** 2647 * filemap_read - Read data from the page cache. 2648 * @iocb: The iocb to read. 2649 * @iter: Destination for the data. 2650 * @already_read: Number of bytes already read by the caller. 2651 * 2652 * Copies data from the page cache. If the data is not currently present, 2653 * uses the readahead and read_folio address_space operations to fetch it. 2654 * 2655 * Return: Total number of bytes copied, including those already read by 2656 * the caller. If an error happens before any bytes are copied, returns 2657 * a negative error number. 2658 */ 2659 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2660 ssize_t already_read) 2661 { 2662 struct file *filp = iocb->ki_filp; 2663 struct file_ra_state *ra = &filp->f_ra; 2664 struct address_space *mapping = filp->f_mapping; 2665 struct inode *inode = mapping->host; 2666 struct folio_batch fbatch; 2667 int i, error = 0; 2668 bool writably_mapped; 2669 loff_t isize, end_offset; 2670 2671 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2672 return 0; 2673 if (unlikely(!iov_iter_count(iter))) 2674 return 0; 2675 2676 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2677 folio_batch_init(&fbatch); 2678 2679 do { 2680 cond_resched(); 2681 2682 /* 2683 * If we've already successfully copied some data, then we 2684 * can no longer safely return -EIOCBQUEUED. Hence mark 2685 * an async read NOWAIT at that point. 2686 */ 2687 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2688 iocb->ki_flags |= IOCB_NOWAIT; 2689 2690 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2691 break; 2692 2693 error = filemap_get_pages(iocb, iter, &fbatch); 2694 if (error < 0) 2695 break; 2696 2697 /* 2698 * i_size must be checked after we know the pages are Uptodate. 2699 * 2700 * Checking i_size after the check allows us to calculate 2701 * the correct value for "nr", which means the zero-filled 2702 * part of the page is not copied back to userspace (unless 2703 * another truncate extends the file - this is desired though). 2704 */ 2705 isize = i_size_read(inode); 2706 if (unlikely(iocb->ki_pos >= isize)) 2707 goto put_folios; 2708 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2709 2710 /* 2711 * Once we start copying data, we don't want to be touching any 2712 * cachelines that might be contended: 2713 */ 2714 writably_mapped = mapping_writably_mapped(mapping); 2715 2716 /* 2717 * When a read accesses the same folio several times, only 2718 * mark it as accessed the first time. 2719 */ 2720 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1, 2721 fbatch.folios[0])) 2722 folio_mark_accessed(fbatch.folios[0]); 2723 2724 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2725 struct folio *folio = fbatch.folios[i]; 2726 size_t fsize = folio_size(folio); 2727 size_t offset = iocb->ki_pos & (fsize - 1); 2728 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2729 fsize - offset); 2730 size_t copied; 2731 2732 if (end_offset < folio_pos(folio)) 2733 break; 2734 if (i > 0) 2735 folio_mark_accessed(folio); 2736 /* 2737 * If users can be writing to this folio using arbitrary 2738 * virtual addresses, take care of potential aliasing 2739 * before reading the folio on the kernel side. 2740 */ 2741 if (writably_mapped) 2742 flush_dcache_folio(folio); 2743 2744 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2745 2746 already_read += copied; 2747 iocb->ki_pos += copied; 2748 ra->prev_pos = iocb->ki_pos; 2749 2750 if (copied < bytes) { 2751 error = -EFAULT; 2752 break; 2753 } 2754 } 2755 put_folios: 2756 for (i = 0; i < folio_batch_count(&fbatch); i++) 2757 folio_put(fbatch.folios[i]); 2758 folio_batch_init(&fbatch); 2759 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2760 2761 file_accessed(filp); 2762 2763 return already_read ? already_read : error; 2764 } 2765 EXPORT_SYMBOL_GPL(filemap_read); 2766 2767 /** 2768 * generic_file_read_iter - generic filesystem read routine 2769 * @iocb: kernel I/O control block 2770 * @iter: destination for the data read 2771 * 2772 * This is the "read_iter()" routine for all filesystems 2773 * that can use the page cache directly. 2774 * 2775 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2776 * be returned when no data can be read without waiting for I/O requests 2777 * to complete; it doesn't prevent readahead. 2778 * 2779 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2780 * requests shall be made for the read or for readahead. When no data 2781 * can be read, -EAGAIN shall be returned. When readahead would be 2782 * triggered, a partial, possibly empty read shall be returned. 2783 * 2784 * Return: 2785 * * number of bytes copied, even for partial reads 2786 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2787 */ 2788 ssize_t 2789 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2790 { 2791 size_t count = iov_iter_count(iter); 2792 ssize_t retval = 0; 2793 2794 if (!count) 2795 return 0; /* skip atime */ 2796 2797 if (iocb->ki_flags & IOCB_DIRECT) { 2798 struct file *file = iocb->ki_filp; 2799 struct address_space *mapping = file->f_mapping; 2800 struct inode *inode = mapping->host; 2801 2802 if (iocb->ki_flags & IOCB_NOWAIT) { 2803 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2804 iocb->ki_pos + count - 1)) 2805 return -EAGAIN; 2806 } else { 2807 retval = filemap_write_and_wait_range(mapping, 2808 iocb->ki_pos, 2809 iocb->ki_pos + count - 1); 2810 if (retval < 0) 2811 return retval; 2812 } 2813 2814 file_accessed(file); 2815 2816 retval = mapping->a_ops->direct_IO(iocb, iter); 2817 if (retval >= 0) { 2818 iocb->ki_pos += retval; 2819 count -= retval; 2820 } 2821 if (retval != -EIOCBQUEUED) 2822 iov_iter_revert(iter, count - iov_iter_count(iter)); 2823 2824 /* 2825 * Btrfs can have a short DIO read if we encounter 2826 * compressed extents, so if there was an error, or if 2827 * we've already read everything we wanted to, or if 2828 * there was a short read because we hit EOF, go ahead 2829 * and return. Otherwise fallthrough to buffered io for 2830 * the rest of the read. Buffered reads will not work for 2831 * DAX files, so don't bother trying. 2832 */ 2833 if (retval < 0 || !count || IS_DAX(inode)) 2834 return retval; 2835 if (iocb->ki_pos >= i_size_read(inode)) 2836 return retval; 2837 } 2838 2839 return filemap_read(iocb, iter, retval); 2840 } 2841 EXPORT_SYMBOL(generic_file_read_iter); 2842 2843 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2844 struct address_space *mapping, struct folio *folio, 2845 loff_t start, loff_t end, bool seek_data) 2846 { 2847 const struct address_space_operations *ops = mapping->a_ops; 2848 size_t offset, bsz = i_blocksize(mapping->host); 2849 2850 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2851 return seek_data ? start : end; 2852 if (!ops->is_partially_uptodate) 2853 return seek_data ? end : start; 2854 2855 xas_pause(xas); 2856 rcu_read_unlock(); 2857 folio_lock(folio); 2858 if (unlikely(folio->mapping != mapping)) 2859 goto unlock; 2860 2861 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2862 2863 do { 2864 if (ops->is_partially_uptodate(folio, offset, bsz) == 2865 seek_data) 2866 break; 2867 start = (start + bsz) & ~(bsz - 1); 2868 offset += bsz; 2869 } while (offset < folio_size(folio)); 2870 unlock: 2871 folio_unlock(folio); 2872 rcu_read_lock(); 2873 return start; 2874 } 2875 2876 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2877 { 2878 if (xa_is_value(folio)) 2879 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2880 return folio_size(folio); 2881 } 2882 2883 /** 2884 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2885 * @mapping: Address space to search. 2886 * @start: First byte to consider. 2887 * @end: Limit of search (exclusive). 2888 * @whence: Either SEEK_HOLE or SEEK_DATA. 2889 * 2890 * If the page cache knows which blocks contain holes and which blocks 2891 * contain data, your filesystem can use this function to implement 2892 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2893 * entirely memory-based such as tmpfs, and filesystems which support 2894 * unwritten extents. 2895 * 2896 * Return: The requested offset on success, or -ENXIO if @whence specifies 2897 * SEEK_DATA and there is no data after @start. There is an implicit hole 2898 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2899 * and @end contain data. 2900 */ 2901 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2902 loff_t end, int whence) 2903 { 2904 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2905 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2906 bool seek_data = (whence == SEEK_DATA); 2907 struct folio *folio; 2908 2909 if (end <= start) 2910 return -ENXIO; 2911 2912 rcu_read_lock(); 2913 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2914 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2915 size_t seek_size; 2916 2917 if (start < pos) { 2918 if (!seek_data) 2919 goto unlock; 2920 start = pos; 2921 } 2922 2923 seek_size = seek_folio_size(&xas, folio); 2924 pos = round_up((u64)pos + 1, seek_size); 2925 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2926 seek_data); 2927 if (start < pos) 2928 goto unlock; 2929 if (start >= end) 2930 break; 2931 if (seek_size > PAGE_SIZE) 2932 xas_set(&xas, pos >> PAGE_SHIFT); 2933 if (!xa_is_value(folio)) 2934 folio_put(folio); 2935 } 2936 if (seek_data) 2937 start = -ENXIO; 2938 unlock: 2939 rcu_read_unlock(); 2940 if (folio && !xa_is_value(folio)) 2941 folio_put(folio); 2942 if (start > end) 2943 return end; 2944 return start; 2945 } 2946 2947 #ifdef CONFIG_MMU 2948 #define MMAP_LOTSAMISS (100) 2949 /* 2950 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2951 * @vmf - the vm_fault for this fault. 2952 * @folio - the folio to lock. 2953 * @fpin - the pointer to the file we may pin (or is already pinned). 2954 * 2955 * This works similar to lock_folio_or_retry in that it can drop the 2956 * mmap_lock. It differs in that it actually returns the folio locked 2957 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2958 * to drop the mmap_lock then fpin will point to the pinned file and 2959 * needs to be fput()'ed at a later point. 2960 */ 2961 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2962 struct file **fpin) 2963 { 2964 if (folio_trylock(folio)) 2965 return 1; 2966 2967 /* 2968 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2969 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2970 * is supposed to work. We have way too many special cases.. 2971 */ 2972 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2973 return 0; 2974 2975 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2976 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2977 if (__folio_lock_killable(folio)) { 2978 /* 2979 * We didn't have the right flags to drop the mmap_lock, 2980 * but all fault_handlers only check for fatal signals 2981 * if we return VM_FAULT_RETRY, so we need to drop the 2982 * mmap_lock here and return 0 if we don't have a fpin. 2983 */ 2984 if (*fpin == NULL) 2985 mmap_read_unlock(vmf->vma->vm_mm); 2986 return 0; 2987 } 2988 } else 2989 __folio_lock(folio); 2990 2991 return 1; 2992 } 2993 2994 /* 2995 * Synchronous readahead happens when we don't even find a page in the page 2996 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2997 * to drop the mmap sem we return the file that was pinned in order for us to do 2998 * that. If we didn't pin a file then we return NULL. The file that is 2999 * returned needs to be fput()'ed when we're done with it. 3000 */ 3001 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3002 { 3003 struct file *file = vmf->vma->vm_file; 3004 struct file_ra_state *ra = &file->f_ra; 3005 struct address_space *mapping = file->f_mapping; 3006 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3007 struct file *fpin = NULL; 3008 unsigned long vm_flags = vmf->vma->vm_flags; 3009 unsigned int mmap_miss; 3010 3011 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3012 /* Use the readahead code, even if readahead is disabled */ 3013 if (vm_flags & VM_HUGEPAGE) { 3014 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3015 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3016 ra->size = HPAGE_PMD_NR; 3017 /* 3018 * Fetch two PMD folios, so we get the chance to actually 3019 * readahead, unless we've been told not to. 3020 */ 3021 if (!(vm_flags & VM_RAND_READ)) 3022 ra->size *= 2; 3023 ra->async_size = HPAGE_PMD_NR; 3024 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3025 return fpin; 3026 } 3027 #endif 3028 3029 /* If we don't want any read-ahead, don't bother */ 3030 if (vm_flags & VM_RAND_READ) 3031 return fpin; 3032 if (!ra->ra_pages) 3033 return fpin; 3034 3035 if (vm_flags & VM_SEQ_READ) { 3036 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3037 page_cache_sync_ra(&ractl, ra->ra_pages); 3038 return fpin; 3039 } 3040 3041 /* Avoid banging the cache line if not needed */ 3042 mmap_miss = READ_ONCE(ra->mmap_miss); 3043 if (mmap_miss < MMAP_LOTSAMISS * 10) 3044 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3045 3046 /* 3047 * Do we miss much more than hit in this file? If so, 3048 * stop bothering with read-ahead. It will only hurt. 3049 */ 3050 if (mmap_miss > MMAP_LOTSAMISS) 3051 return fpin; 3052 3053 /* 3054 * mmap read-around 3055 */ 3056 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3057 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3058 ra->size = ra->ra_pages; 3059 ra->async_size = ra->ra_pages / 4; 3060 ractl._index = ra->start; 3061 page_cache_ra_order(&ractl, ra, 0); 3062 return fpin; 3063 } 3064 3065 /* 3066 * Asynchronous readahead happens when we find the page and PG_readahead, 3067 * so we want to possibly extend the readahead further. We return the file that 3068 * was pinned if we have to drop the mmap_lock in order to do IO. 3069 */ 3070 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3071 struct folio *folio) 3072 { 3073 struct file *file = vmf->vma->vm_file; 3074 struct file_ra_state *ra = &file->f_ra; 3075 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3076 struct file *fpin = NULL; 3077 unsigned int mmap_miss; 3078 3079 /* If we don't want any read-ahead, don't bother */ 3080 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3081 return fpin; 3082 3083 mmap_miss = READ_ONCE(ra->mmap_miss); 3084 if (mmap_miss) 3085 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3086 3087 if (folio_test_readahead(folio)) { 3088 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3089 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3090 } 3091 return fpin; 3092 } 3093 3094 /** 3095 * filemap_fault - read in file data for page fault handling 3096 * @vmf: struct vm_fault containing details of the fault 3097 * 3098 * filemap_fault() is invoked via the vma operations vector for a 3099 * mapped memory region to read in file data during a page fault. 3100 * 3101 * The goto's are kind of ugly, but this streamlines the normal case of having 3102 * it in the page cache, and handles the special cases reasonably without 3103 * having a lot of duplicated code. 3104 * 3105 * vma->vm_mm->mmap_lock must be held on entry. 3106 * 3107 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3108 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3109 * 3110 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3111 * has not been released. 3112 * 3113 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3114 * 3115 * Return: bitwise-OR of %VM_FAULT_ codes. 3116 */ 3117 vm_fault_t filemap_fault(struct vm_fault *vmf) 3118 { 3119 int error; 3120 struct file *file = vmf->vma->vm_file; 3121 struct file *fpin = NULL; 3122 struct address_space *mapping = file->f_mapping; 3123 struct inode *inode = mapping->host; 3124 pgoff_t max_idx, index = vmf->pgoff; 3125 struct folio *folio; 3126 vm_fault_t ret = 0; 3127 bool mapping_locked = false; 3128 3129 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3130 if (unlikely(index >= max_idx)) 3131 return VM_FAULT_SIGBUS; 3132 3133 /* 3134 * Do we have something in the page cache already? 3135 */ 3136 folio = filemap_get_folio(mapping, index); 3137 if (likely(folio)) { 3138 /* 3139 * We found the page, so try async readahead before waiting for 3140 * the lock. 3141 */ 3142 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3143 fpin = do_async_mmap_readahead(vmf, folio); 3144 if (unlikely(!folio_test_uptodate(folio))) { 3145 filemap_invalidate_lock_shared(mapping); 3146 mapping_locked = true; 3147 } 3148 } else { 3149 /* No page in the page cache at all */ 3150 count_vm_event(PGMAJFAULT); 3151 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3152 ret = VM_FAULT_MAJOR; 3153 fpin = do_sync_mmap_readahead(vmf); 3154 retry_find: 3155 /* 3156 * See comment in filemap_create_folio() why we need 3157 * invalidate_lock 3158 */ 3159 if (!mapping_locked) { 3160 filemap_invalidate_lock_shared(mapping); 3161 mapping_locked = true; 3162 } 3163 folio = __filemap_get_folio(mapping, index, 3164 FGP_CREAT|FGP_FOR_MMAP, 3165 vmf->gfp_mask); 3166 if (!folio) { 3167 if (fpin) 3168 goto out_retry; 3169 filemap_invalidate_unlock_shared(mapping); 3170 return VM_FAULT_OOM; 3171 } 3172 } 3173 3174 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3175 goto out_retry; 3176 3177 /* Did it get truncated? */ 3178 if (unlikely(folio->mapping != mapping)) { 3179 folio_unlock(folio); 3180 folio_put(folio); 3181 goto retry_find; 3182 } 3183 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3184 3185 /* 3186 * We have a locked page in the page cache, now we need to check 3187 * that it's up-to-date. If not, it is going to be due to an error. 3188 */ 3189 if (unlikely(!folio_test_uptodate(folio))) { 3190 /* 3191 * The page was in cache and uptodate and now it is not. 3192 * Strange but possible since we didn't hold the page lock all 3193 * the time. Let's drop everything get the invalidate lock and 3194 * try again. 3195 */ 3196 if (!mapping_locked) { 3197 folio_unlock(folio); 3198 folio_put(folio); 3199 goto retry_find; 3200 } 3201 goto page_not_uptodate; 3202 } 3203 3204 /* 3205 * We've made it this far and we had to drop our mmap_lock, now is the 3206 * time to return to the upper layer and have it re-find the vma and 3207 * redo the fault. 3208 */ 3209 if (fpin) { 3210 folio_unlock(folio); 3211 goto out_retry; 3212 } 3213 if (mapping_locked) 3214 filemap_invalidate_unlock_shared(mapping); 3215 3216 /* 3217 * Found the page and have a reference on it. 3218 * We must recheck i_size under page lock. 3219 */ 3220 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3221 if (unlikely(index >= max_idx)) { 3222 folio_unlock(folio); 3223 folio_put(folio); 3224 return VM_FAULT_SIGBUS; 3225 } 3226 3227 vmf->page = folio_file_page(folio, index); 3228 return ret | VM_FAULT_LOCKED; 3229 3230 page_not_uptodate: 3231 /* 3232 * Umm, take care of errors if the page isn't up-to-date. 3233 * Try to re-read it _once_. We do this synchronously, 3234 * because there really aren't any performance issues here 3235 * and we need to check for errors. 3236 */ 3237 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3238 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3239 if (fpin) 3240 goto out_retry; 3241 folio_put(folio); 3242 3243 if (!error || error == AOP_TRUNCATED_PAGE) 3244 goto retry_find; 3245 filemap_invalidate_unlock_shared(mapping); 3246 3247 return VM_FAULT_SIGBUS; 3248 3249 out_retry: 3250 /* 3251 * We dropped the mmap_lock, we need to return to the fault handler to 3252 * re-find the vma and come back and find our hopefully still populated 3253 * page. 3254 */ 3255 if (folio) 3256 folio_put(folio); 3257 if (mapping_locked) 3258 filemap_invalidate_unlock_shared(mapping); 3259 if (fpin) 3260 fput(fpin); 3261 return ret | VM_FAULT_RETRY; 3262 } 3263 EXPORT_SYMBOL(filemap_fault); 3264 3265 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3266 { 3267 struct mm_struct *mm = vmf->vma->vm_mm; 3268 3269 /* Huge page is mapped? No need to proceed. */ 3270 if (pmd_trans_huge(*vmf->pmd)) { 3271 unlock_page(page); 3272 put_page(page); 3273 return true; 3274 } 3275 3276 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3277 vm_fault_t ret = do_set_pmd(vmf, page); 3278 if (!ret) { 3279 /* The page is mapped successfully, reference consumed. */ 3280 unlock_page(page); 3281 return true; 3282 } 3283 } 3284 3285 if (pmd_none(*vmf->pmd)) 3286 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3287 3288 /* See comment in handle_pte_fault() */ 3289 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3290 unlock_page(page); 3291 put_page(page); 3292 return true; 3293 } 3294 3295 return false; 3296 } 3297 3298 static struct folio *next_uptodate_page(struct folio *folio, 3299 struct address_space *mapping, 3300 struct xa_state *xas, pgoff_t end_pgoff) 3301 { 3302 unsigned long max_idx; 3303 3304 do { 3305 if (!folio) 3306 return NULL; 3307 if (xas_retry(xas, folio)) 3308 continue; 3309 if (xa_is_value(folio)) 3310 continue; 3311 if (folio_test_locked(folio)) 3312 continue; 3313 if (!folio_try_get_rcu(folio)) 3314 continue; 3315 /* Has the page moved or been split? */ 3316 if (unlikely(folio != xas_reload(xas))) 3317 goto skip; 3318 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3319 goto skip; 3320 if (!folio_trylock(folio)) 3321 goto skip; 3322 if (folio->mapping != mapping) 3323 goto unlock; 3324 if (!folio_test_uptodate(folio)) 3325 goto unlock; 3326 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3327 if (xas->xa_index >= max_idx) 3328 goto unlock; 3329 return folio; 3330 unlock: 3331 folio_unlock(folio); 3332 skip: 3333 folio_put(folio); 3334 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3335 3336 return NULL; 3337 } 3338 3339 static inline struct folio *first_map_page(struct address_space *mapping, 3340 struct xa_state *xas, 3341 pgoff_t end_pgoff) 3342 { 3343 return next_uptodate_page(xas_find(xas, end_pgoff), 3344 mapping, xas, end_pgoff); 3345 } 3346 3347 static inline struct folio *next_map_page(struct address_space *mapping, 3348 struct xa_state *xas, 3349 pgoff_t end_pgoff) 3350 { 3351 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3352 mapping, xas, end_pgoff); 3353 } 3354 3355 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3356 pgoff_t start_pgoff, pgoff_t end_pgoff) 3357 { 3358 struct vm_area_struct *vma = vmf->vma; 3359 struct file *file = vma->vm_file; 3360 struct address_space *mapping = file->f_mapping; 3361 pgoff_t last_pgoff = start_pgoff; 3362 unsigned long addr; 3363 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3364 struct folio *folio; 3365 struct page *page; 3366 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3367 vm_fault_t ret = 0; 3368 3369 rcu_read_lock(); 3370 folio = first_map_page(mapping, &xas, end_pgoff); 3371 if (!folio) 3372 goto out; 3373 3374 if (filemap_map_pmd(vmf, &folio->page)) { 3375 ret = VM_FAULT_NOPAGE; 3376 goto out; 3377 } 3378 3379 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3380 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3381 do { 3382 again: 3383 page = folio_file_page(folio, xas.xa_index); 3384 if (PageHWPoison(page)) 3385 goto unlock; 3386 3387 if (mmap_miss > 0) 3388 mmap_miss--; 3389 3390 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3391 vmf->pte += xas.xa_index - last_pgoff; 3392 last_pgoff = xas.xa_index; 3393 3394 /* 3395 * NOTE: If there're PTE markers, we'll leave them to be 3396 * handled in the specific fault path, and it'll prohibit the 3397 * fault-around logic. 3398 */ 3399 if (!pte_none(*vmf->pte)) 3400 goto unlock; 3401 3402 /* We're about to handle the fault */ 3403 if (vmf->address == addr) 3404 ret = VM_FAULT_NOPAGE; 3405 3406 do_set_pte(vmf, page, addr); 3407 /* no need to invalidate: a not-present page won't be cached */ 3408 update_mmu_cache(vma, addr, vmf->pte); 3409 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3410 xas.xa_index++; 3411 folio_ref_inc(folio); 3412 goto again; 3413 } 3414 folio_unlock(folio); 3415 continue; 3416 unlock: 3417 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3418 xas.xa_index++; 3419 goto again; 3420 } 3421 folio_unlock(folio); 3422 folio_put(folio); 3423 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3424 pte_unmap_unlock(vmf->pte, vmf->ptl); 3425 out: 3426 rcu_read_unlock(); 3427 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3428 return ret; 3429 } 3430 EXPORT_SYMBOL(filemap_map_pages); 3431 3432 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3433 { 3434 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3435 struct folio *folio = page_folio(vmf->page); 3436 vm_fault_t ret = VM_FAULT_LOCKED; 3437 3438 sb_start_pagefault(mapping->host->i_sb); 3439 file_update_time(vmf->vma->vm_file); 3440 folio_lock(folio); 3441 if (folio->mapping != mapping) { 3442 folio_unlock(folio); 3443 ret = VM_FAULT_NOPAGE; 3444 goto out; 3445 } 3446 /* 3447 * We mark the folio dirty already here so that when freeze is in 3448 * progress, we are guaranteed that writeback during freezing will 3449 * see the dirty folio and writeprotect it again. 3450 */ 3451 folio_mark_dirty(folio); 3452 folio_wait_stable(folio); 3453 out: 3454 sb_end_pagefault(mapping->host->i_sb); 3455 return ret; 3456 } 3457 3458 const struct vm_operations_struct generic_file_vm_ops = { 3459 .fault = filemap_fault, 3460 .map_pages = filemap_map_pages, 3461 .page_mkwrite = filemap_page_mkwrite, 3462 }; 3463 3464 /* This is used for a general mmap of a disk file */ 3465 3466 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3467 { 3468 struct address_space *mapping = file->f_mapping; 3469 3470 if (!mapping->a_ops->read_folio) 3471 return -ENOEXEC; 3472 file_accessed(file); 3473 vma->vm_ops = &generic_file_vm_ops; 3474 return 0; 3475 } 3476 3477 /* 3478 * This is for filesystems which do not implement ->writepage. 3479 */ 3480 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3481 { 3482 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3483 return -EINVAL; 3484 return generic_file_mmap(file, vma); 3485 } 3486 #else 3487 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3488 { 3489 return VM_FAULT_SIGBUS; 3490 } 3491 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3492 { 3493 return -ENOSYS; 3494 } 3495 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3496 { 3497 return -ENOSYS; 3498 } 3499 #endif /* CONFIG_MMU */ 3500 3501 EXPORT_SYMBOL(filemap_page_mkwrite); 3502 EXPORT_SYMBOL(generic_file_mmap); 3503 EXPORT_SYMBOL(generic_file_readonly_mmap); 3504 3505 static struct folio *do_read_cache_folio(struct address_space *mapping, 3506 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3507 { 3508 struct folio *folio; 3509 int err; 3510 3511 if (!filler) 3512 filler = mapping->a_ops->read_folio; 3513 repeat: 3514 folio = filemap_get_folio(mapping, index); 3515 if (!folio) { 3516 folio = filemap_alloc_folio(gfp, 0); 3517 if (!folio) 3518 return ERR_PTR(-ENOMEM); 3519 err = filemap_add_folio(mapping, folio, index, gfp); 3520 if (unlikely(err)) { 3521 folio_put(folio); 3522 if (err == -EEXIST) 3523 goto repeat; 3524 /* Presumably ENOMEM for xarray node */ 3525 return ERR_PTR(err); 3526 } 3527 3528 goto filler; 3529 } 3530 if (folio_test_uptodate(folio)) 3531 goto out; 3532 3533 if (!folio_trylock(folio)) { 3534 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3535 goto repeat; 3536 } 3537 3538 /* Folio was truncated from mapping */ 3539 if (!folio->mapping) { 3540 folio_unlock(folio); 3541 folio_put(folio); 3542 goto repeat; 3543 } 3544 3545 /* Someone else locked and filled the page in a very small window */ 3546 if (folio_test_uptodate(folio)) { 3547 folio_unlock(folio); 3548 goto out; 3549 } 3550 3551 filler: 3552 err = filemap_read_folio(file, filler, folio); 3553 if (err) { 3554 folio_put(folio); 3555 if (err == AOP_TRUNCATED_PAGE) 3556 goto repeat; 3557 return ERR_PTR(err); 3558 } 3559 3560 out: 3561 folio_mark_accessed(folio); 3562 return folio; 3563 } 3564 3565 /** 3566 * read_cache_folio - Read into page cache, fill it if needed. 3567 * @mapping: The address_space to read from. 3568 * @index: The index to read. 3569 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3570 * @file: Passed to filler function, may be NULL if not required. 3571 * 3572 * Read one page into the page cache. If it succeeds, the folio returned 3573 * will contain @index, but it may not be the first page of the folio. 3574 * 3575 * If the filler function returns an error, it will be returned to the 3576 * caller. 3577 * 3578 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3579 * Return: An uptodate folio on success, ERR_PTR() on failure. 3580 */ 3581 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3582 filler_t filler, struct file *file) 3583 { 3584 return do_read_cache_folio(mapping, index, filler, file, 3585 mapping_gfp_mask(mapping)); 3586 } 3587 EXPORT_SYMBOL(read_cache_folio); 3588 3589 static struct page *do_read_cache_page(struct address_space *mapping, 3590 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3591 { 3592 struct folio *folio; 3593 3594 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3595 if (IS_ERR(folio)) 3596 return &folio->page; 3597 return folio_file_page(folio, index); 3598 } 3599 3600 struct page *read_cache_page(struct address_space *mapping, 3601 pgoff_t index, filler_t *filler, struct file *file) 3602 { 3603 return do_read_cache_page(mapping, index, filler, file, 3604 mapping_gfp_mask(mapping)); 3605 } 3606 EXPORT_SYMBOL(read_cache_page); 3607 3608 /** 3609 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3610 * @mapping: the page's address_space 3611 * @index: the page index 3612 * @gfp: the page allocator flags to use if allocating 3613 * 3614 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3615 * any new page allocations done using the specified allocation flags. 3616 * 3617 * If the page does not get brought uptodate, return -EIO. 3618 * 3619 * The function expects mapping->invalidate_lock to be already held. 3620 * 3621 * Return: up to date page on success, ERR_PTR() on failure. 3622 */ 3623 struct page *read_cache_page_gfp(struct address_space *mapping, 3624 pgoff_t index, 3625 gfp_t gfp) 3626 { 3627 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3628 } 3629 EXPORT_SYMBOL(read_cache_page_gfp); 3630 3631 /* 3632 * Warn about a page cache invalidation failure during a direct I/O write. 3633 */ 3634 void dio_warn_stale_pagecache(struct file *filp) 3635 { 3636 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3637 char pathname[128]; 3638 char *path; 3639 3640 errseq_set(&filp->f_mapping->wb_err, -EIO); 3641 if (__ratelimit(&_rs)) { 3642 path = file_path(filp, pathname, sizeof(pathname)); 3643 if (IS_ERR(path)) 3644 path = "(unknown)"; 3645 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3646 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3647 current->comm); 3648 } 3649 } 3650 3651 ssize_t 3652 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3653 { 3654 struct file *file = iocb->ki_filp; 3655 struct address_space *mapping = file->f_mapping; 3656 struct inode *inode = mapping->host; 3657 loff_t pos = iocb->ki_pos; 3658 ssize_t written; 3659 size_t write_len; 3660 pgoff_t end; 3661 3662 write_len = iov_iter_count(from); 3663 end = (pos + write_len - 1) >> PAGE_SHIFT; 3664 3665 if (iocb->ki_flags & IOCB_NOWAIT) { 3666 /* If there are pages to writeback, return */ 3667 if (filemap_range_has_page(file->f_mapping, pos, 3668 pos + write_len - 1)) 3669 return -EAGAIN; 3670 } else { 3671 written = filemap_write_and_wait_range(mapping, pos, 3672 pos + write_len - 1); 3673 if (written) 3674 goto out; 3675 } 3676 3677 /* 3678 * After a write we want buffered reads to be sure to go to disk to get 3679 * the new data. We invalidate clean cached page from the region we're 3680 * about to write. We do this *before* the write so that we can return 3681 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3682 */ 3683 written = invalidate_inode_pages2_range(mapping, 3684 pos >> PAGE_SHIFT, end); 3685 /* 3686 * If a page can not be invalidated, return 0 to fall back 3687 * to buffered write. 3688 */ 3689 if (written) { 3690 if (written == -EBUSY) 3691 return 0; 3692 goto out; 3693 } 3694 3695 written = mapping->a_ops->direct_IO(iocb, from); 3696 3697 /* 3698 * Finally, try again to invalidate clean pages which might have been 3699 * cached by non-direct readahead, or faulted in by get_user_pages() 3700 * if the source of the write was an mmap'ed region of the file 3701 * we're writing. Either one is a pretty crazy thing to do, 3702 * so we don't support it 100%. If this invalidation 3703 * fails, tough, the write still worked... 3704 * 3705 * Most of the time we do not need this since dio_complete() will do 3706 * the invalidation for us. However there are some file systems that 3707 * do not end up with dio_complete() being called, so let's not break 3708 * them by removing it completely. 3709 * 3710 * Noticeable example is a blkdev_direct_IO(). 3711 * 3712 * Skip invalidation for async writes or if mapping has no pages. 3713 */ 3714 if (written > 0 && mapping->nrpages && 3715 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3716 dio_warn_stale_pagecache(file); 3717 3718 if (written > 0) { 3719 pos += written; 3720 write_len -= written; 3721 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3722 i_size_write(inode, pos); 3723 mark_inode_dirty(inode); 3724 } 3725 iocb->ki_pos = pos; 3726 } 3727 if (written != -EIOCBQUEUED) 3728 iov_iter_revert(from, write_len - iov_iter_count(from)); 3729 out: 3730 return written; 3731 } 3732 EXPORT_SYMBOL(generic_file_direct_write); 3733 3734 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3735 { 3736 struct file *file = iocb->ki_filp; 3737 loff_t pos = iocb->ki_pos; 3738 struct address_space *mapping = file->f_mapping; 3739 const struct address_space_operations *a_ops = mapping->a_ops; 3740 long status = 0; 3741 ssize_t written = 0; 3742 3743 do { 3744 struct page *page; 3745 unsigned long offset; /* Offset into pagecache page */ 3746 unsigned long bytes; /* Bytes to write to page */ 3747 size_t copied; /* Bytes copied from user */ 3748 void *fsdata = NULL; 3749 3750 offset = (pos & (PAGE_SIZE - 1)); 3751 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3752 iov_iter_count(i)); 3753 3754 again: 3755 /* 3756 * Bring in the user page that we will copy from _first_. 3757 * Otherwise there's a nasty deadlock on copying from the 3758 * same page as we're writing to, without it being marked 3759 * up-to-date. 3760 */ 3761 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3762 status = -EFAULT; 3763 break; 3764 } 3765 3766 if (fatal_signal_pending(current)) { 3767 status = -EINTR; 3768 break; 3769 } 3770 3771 status = a_ops->write_begin(file, mapping, pos, bytes, 3772 &page, &fsdata); 3773 if (unlikely(status < 0)) 3774 break; 3775 3776 if (mapping_writably_mapped(mapping)) 3777 flush_dcache_page(page); 3778 3779 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3780 flush_dcache_page(page); 3781 3782 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3783 page, fsdata); 3784 if (unlikely(status != copied)) { 3785 iov_iter_revert(i, copied - max(status, 0L)); 3786 if (unlikely(status < 0)) 3787 break; 3788 } 3789 cond_resched(); 3790 3791 if (unlikely(status == 0)) { 3792 /* 3793 * A short copy made ->write_end() reject the 3794 * thing entirely. Might be memory poisoning 3795 * halfway through, might be a race with munmap, 3796 * might be severe memory pressure. 3797 */ 3798 if (copied) 3799 bytes = copied; 3800 goto again; 3801 } 3802 pos += status; 3803 written += status; 3804 3805 balance_dirty_pages_ratelimited(mapping); 3806 } while (iov_iter_count(i)); 3807 3808 return written ? written : status; 3809 } 3810 EXPORT_SYMBOL(generic_perform_write); 3811 3812 /** 3813 * __generic_file_write_iter - write data to a file 3814 * @iocb: IO state structure (file, offset, etc.) 3815 * @from: iov_iter with data to write 3816 * 3817 * This function does all the work needed for actually writing data to a 3818 * file. It does all basic checks, removes SUID from the file, updates 3819 * modification times and calls proper subroutines depending on whether we 3820 * do direct IO or a standard buffered write. 3821 * 3822 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3823 * object which does not need locking at all. 3824 * 3825 * This function does *not* take care of syncing data in case of O_SYNC write. 3826 * A caller has to handle it. This is mainly due to the fact that we want to 3827 * avoid syncing under i_rwsem. 3828 * 3829 * Return: 3830 * * number of bytes written, even for truncated writes 3831 * * negative error code if no data has been written at all 3832 */ 3833 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3834 { 3835 struct file *file = iocb->ki_filp; 3836 struct address_space *mapping = file->f_mapping; 3837 struct inode *inode = mapping->host; 3838 ssize_t written = 0; 3839 ssize_t err; 3840 ssize_t status; 3841 3842 /* We can write back this queue in page reclaim */ 3843 current->backing_dev_info = inode_to_bdi(inode); 3844 err = file_remove_privs(file); 3845 if (err) 3846 goto out; 3847 3848 err = file_update_time(file); 3849 if (err) 3850 goto out; 3851 3852 if (iocb->ki_flags & IOCB_DIRECT) { 3853 loff_t pos, endbyte; 3854 3855 written = generic_file_direct_write(iocb, from); 3856 /* 3857 * If the write stopped short of completing, fall back to 3858 * buffered writes. Some filesystems do this for writes to 3859 * holes, for example. For DAX files, a buffered write will 3860 * not succeed (even if it did, DAX does not handle dirty 3861 * page-cache pages correctly). 3862 */ 3863 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3864 goto out; 3865 3866 pos = iocb->ki_pos; 3867 status = generic_perform_write(iocb, from); 3868 /* 3869 * If generic_perform_write() returned a synchronous error 3870 * then we want to return the number of bytes which were 3871 * direct-written, or the error code if that was zero. Note 3872 * that this differs from normal direct-io semantics, which 3873 * will return -EFOO even if some bytes were written. 3874 */ 3875 if (unlikely(status < 0)) { 3876 err = status; 3877 goto out; 3878 } 3879 /* 3880 * We need to ensure that the page cache pages are written to 3881 * disk and invalidated to preserve the expected O_DIRECT 3882 * semantics. 3883 */ 3884 endbyte = pos + status - 1; 3885 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3886 if (err == 0) { 3887 iocb->ki_pos = endbyte + 1; 3888 written += status; 3889 invalidate_mapping_pages(mapping, 3890 pos >> PAGE_SHIFT, 3891 endbyte >> PAGE_SHIFT); 3892 } else { 3893 /* 3894 * We don't know how much we wrote, so just return 3895 * the number of bytes which were direct-written 3896 */ 3897 } 3898 } else { 3899 written = generic_perform_write(iocb, from); 3900 if (likely(written > 0)) 3901 iocb->ki_pos += written; 3902 } 3903 out: 3904 current->backing_dev_info = NULL; 3905 return written ? written : err; 3906 } 3907 EXPORT_SYMBOL(__generic_file_write_iter); 3908 3909 /** 3910 * generic_file_write_iter - write data to a file 3911 * @iocb: IO state structure 3912 * @from: iov_iter with data to write 3913 * 3914 * This is a wrapper around __generic_file_write_iter() to be used by most 3915 * filesystems. It takes care of syncing the file in case of O_SYNC file 3916 * and acquires i_rwsem as needed. 3917 * Return: 3918 * * negative error code if no data has been written at all of 3919 * vfs_fsync_range() failed for a synchronous write 3920 * * number of bytes written, even for truncated writes 3921 */ 3922 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3923 { 3924 struct file *file = iocb->ki_filp; 3925 struct inode *inode = file->f_mapping->host; 3926 ssize_t ret; 3927 3928 inode_lock(inode); 3929 ret = generic_write_checks(iocb, from); 3930 if (ret > 0) 3931 ret = __generic_file_write_iter(iocb, from); 3932 inode_unlock(inode); 3933 3934 if (ret > 0) 3935 ret = generic_write_sync(iocb, ret); 3936 return ret; 3937 } 3938 EXPORT_SYMBOL(generic_file_write_iter); 3939 3940 /** 3941 * filemap_release_folio() - Release fs-specific metadata on a folio. 3942 * @folio: The folio which the kernel is trying to free. 3943 * @gfp: Memory allocation flags (and I/O mode). 3944 * 3945 * The address_space is trying to release any data attached to a folio 3946 * (presumably at folio->private). 3947 * 3948 * This will also be called if the private_2 flag is set on a page, 3949 * indicating that the folio has other metadata associated with it. 3950 * 3951 * The @gfp argument specifies whether I/O may be performed to release 3952 * this page (__GFP_IO), and whether the call may block 3953 * (__GFP_RECLAIM & __GFP_FS). 3954 * 3955 * Return: %true if the release was successful, otherwise %false. 3956 */ 3957 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3958 { 3959 struct address_space * const mapping = folio->mapping; 3960 3961 BUG_ON(!folio_test_locked(folio)); 3962 if (folio_test_writeback(folio)) 3963 return false; 3964 3965 if (mapping && mapping->a_ops->release_folio) 3966 return mapping->a_ops->release_folio(folio, gfp); 3967 return try_to_free_buffers(folio); 3968 } 3969 EXPORT_SYMBOL(filemap_release_folio); 3970