1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave folio->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 if (test_bit(AS_KERNEL_FILE, &folio->mapping->flags)) 194 mod_node_page_state(folio_pgdat(folio), 195 NR_KERNEL_FILE_PAGES, -nr); 196 197 /* 198 * At this point folio must be either written or cleaned by 199 * truncate. Dirty folio here signals a bug and loss of 200 * unwritten data - on ordinary filesystems. 201 * 202 * But it's harmless on in-memory filesystems like tmpfs; and can 203 * occur when a driver which did get_user_pages() sets page dirty 204 * before putting it, while the inode is being finally evicted. 205 * 206 * Below fixes dirty accounting after removing the folio entirely 207 * but leaves the dirty flag set: it has no effect for truncated 208 * folio and anyway will be cleared before returning folio to 209 * buddy allocator. 210 */ 211 if (WARN_ON_ONCE(folio_test_dirty(folio) && 212 mapping_can_writeback(mapping))) 213 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 214 } 215 216 /* 217 * Delete a page from the page cache and free it. Caller has to make 218 * sure the page is locked and that nobody else uses it - or that usage 219 * is safe. The caller must hold the i_pages lock. 220 */ 221 void __filemap_remove_folio(struct folio *folio, void *shadow) 222 { 223 struct address_space *mapping = folio->mapping; 224 225 trace_mm_filemap_delete_from_page_cache(folio); 226 filemap_unaccount_folio(mapping, folio); 227 page_cache_delete(mapping, folio, shadow); 228 } 229 230 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 231 { 232 void (*free_folio)(struct folio *); 233 234 free_folio = mapping->a_ops->free_folio; 235 if (free_folio) 236 free_folio(folio); 237 238 folio_put_refs(folio, folio_nr_pages(folio)); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_fdatawrite_range_kick - start writeback on a range 446 * @mapping: target address_space 447 * @start: index to start writeback on 448 * @end: last (inclusive) index for writeback 449 * 450 * This is a non-integrity writeback helper, to start writing back folios 451 * for the indicated range. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 456 loff_t end) 457 { 458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 459 } 460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 461 462 /** 463 * filemap_flush - mostly a non-blocking flush 464 * @mapping: target address_space 465 * 466 * This is a mostly non-blocking flush. Not suitable for data-integrity 467 * purposes - I/O may not be started against all dirty pages. 468 * 469 * Return: %0 on success, negative error code otherwise. 470 */ 471 int filemap_flush(struct address_space *mapping) 472 { 473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 474 } 475 EXPORT_SYMBOL(filemap_flush); 476 477 /** 478 * filemap_range_has_page - check if a page exists in range. 479 * @mapping: address space within which to check 480 * @start_byte: offset in bytes where the range starts 481 * @end_byte: offset in bytes where the range ends (inclusive) 482 * 483 * Find at least one page in the range supplied, usually used to check if 484 * direct writing in this range will trigger a writeback. 485 * 486 * Return: %true if at least one page exists in the specified range, 487 * %false otherwise. 488 */ 489 bool filemap_range_has_page(struct address_space *mapping, 490 loff_t start_byte, loff_t end_byte) 491 { 492 struct folio *folio; 493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 494 pgoff_t max = end_byte >> PAGE_SHIFT; 495 496 if (end_byte < start_byte) 497 return false; 498 499 rcu_read_lock(); 500 for (;;) { 501 folio = xas_find(&xas, max); 502 if (xas_retry(&xas, folio)) 503 continue; 504 /* Shadow entries don't count */ 505 if (xa_is_value(folio)) 506 continue; 507 /* 508 * We don't need to try to pin this page; we're about to 509 * release the RCU lock anyway. It is enough to know that 510 * there was a page here recently. 511 */ 512 break; 513 } 514 rcu_read_unlock(); 515 516 return folio != NULL; 517 } 518 EXPORT_SYMBOL(filemap_range_has_page); 519 520 static void __filemap_fdatawait_range(struct address_space *mapping, 521 loff_t start_byte, loff_t end_byte) 522 { 523 pgoff_t index = start_byte >> PAGE_SHIFT; 524 pgoff_t end = end_byte >> PAGE_SHIFT; 525 struct folio_batch fbatch; 526 unsigned nr_folios; 527 528 folio_batch_init(&fbatch); 529 530 while (index <= end) { 531 unsigned i; 532 533 nr_folios = filemap_get_folios_tag(mapping, &index, end, 534 PAGECACHE_TAG_WRITEBACK, &fbatch); 535 536 if (!nr_folios) 537 break; 538 539 for (i = 0; i < nr_folios; i++) { 540 struct folio *folio = fbatch.folios[i]; 541 542 folio_wait_writeback(folio); 543 } 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 } 547 } 548 549 /** 550 * filemap_fdatawait_range - wait for writeback to complete 551 * @mapping: address space structure to wait for 552 * @start_byte: offset in bytes where the range starts 553 * @end_byte: offset in bytes where the range ends (inclusive) 554 * 555 * Walk the list of under-writeback pages of the given address space 556 * in the given range and wait for all of them. Check error status of 557 * the address space and return it. 558 * 559 * Since the error status of the address space is cleared by this function, 560 * callers are responsible for checking the return value and handling and/or 561 * reporting the error. 562 * 563 * Return: error status of the address space. 564 */ 565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 566 loff_t end_byte) 567 { 568 __filemap_fdatawait_range(mapping, start_byte, end_byte); 569 return filemap_check_errors(mapping); 570 } 571 EXPORT_SYMBOL(filemap_fdatawait_range); 572 573 /** 574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 575 * @mapping: address space structure to wait for 576 * @start_byte: offset in bytes where the range starts 577 * @end_byte: offset in bytes where the range ends (inclusive) 578 * 579 * Walk the list of under-writeback pages of the given address space in the 580 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 581 * this function does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 */ 587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 588 loff_t start_byte, loff_t end_byte) 589 { 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return filemap_check_and_keep_errors(mapping); 592 } 593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 594 595 /** 596 * file_fdatawait_range - wait for writeback to complete 597 * @file: file pointing to address space structure to wait for 598 * @start_byte: offset in bytes where the range starts 599 * @end_byte: offset in bytes where the range ends (inclusive) 600 * 601 * Walk the list of under-writeback pages of the address space that file 602 * refers to, in the given range and wait for all of them. Check error 603 * status of the address space vs. the file->f_wb_err cursor and return it. 604 * 605 * Since the error status of the file is advanced by this function, 606 * callers are responsible for checking the return value and handling and/or 607 * reporting the error. 608 * 609 * Return: error status of the address space vs. the file->f_wb_err cursor. 610 */ 611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 612 { 613 struct address_space *mapping = file->f_mapping; 614 615 __filemap_fdatawait_range(mapping, start_byte, end_byte); 616 return file_check_and_advance_wb_err(file); 617 } 618 EXPORT_SYMBOL(file_fdatawait_range); 619 620 /** 621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 622 * @mapping: address space structure to wait for 623 * 624 * Walk the list of under-writeback pages of the given address space 625 * and wait for all of them. Unlike filemap_fdatawait(), this function 626 * does not clear error status of the address space. 627 * 628 * Use this function if callers don't handle errors themselves. Expected 629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 630 * fsfreeze(8) 631 * 632 * Return: error status of the address space. 633 */ 634 int filemap_fdatawait_keep_errors(struct address_space *mapping) 635 { 636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 637 return filemap_check_and_keep_errors(mapping); 638 } 639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 640 641 /* Returns true if writeback might be needed or already in progress. */ 642 static bool mapping_needs_writeback(struct address_space *mapping) 643 { 644 return mapping->nrpages; 645 } 646 647 bool filemap_range_has_writeback(struct address_space *mapping, 648 loff_t start_byte, loff_t end_byte) 649 { 650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 651 pgoff_t max = end_byte >> PAGE_SHIFT; 652 struct folio *folio; 653 654 if (end_byte < start_byte) 655 return false; 656 657 rcu_read_lock(); 658 xas_for_each(&xas, folio, max) { 659 if (xas_retry(&xas, folio)) 660 continue; 661 if (xa_is_value(folio)) 662 continue; 663 if (folio_test_dirty(folio) || folio_test_locked(folio) || 664 folio_test_writeback(folio)) 665 break; 666 } 667 rcu_read_unlock(); 668 return folio != NULL; 669 } 670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 671 672 /** 673 * filemap_write_and_wait_range - write out & wait on a file range 674 * @mapping: the address_space for the pages 675 * @lstart: offset in bytes where the range starts 676 * @lend: offset in bytes where the range ends (inclusive) 677 * 678 * Write out and wait upon file offsets lstart->lend, inclusive. 679 * 680 * Note that @lend is inclusive (describes the last byte to be written) so 681 * that this function can be used to write to the very end-of-file (end = -1). 682 * 683 * Return: error status of the address space. 684 */ 685 int filemap_write_and_wait_range(struct address_space *mapping, 686 loff_t lstart, loff_t lend) 687 { 688 int err = 0, err2; 689 690 if (lend < lstart) 691 return 0; 692 693 if (mapping_needs_writeback(mapping)) { 694 err = __filemap_fdatawrite_range(mapping, lstart, lend, 695 WB_SYNC_ALL); 696 /* 697 * Even if the above returned error, the pages may be 698 * written partially (e.g. -ENOSPC), so we wait for it. 699 * But the -EIO is special case, it may indicate the worst 700 * thing (e.g. bug) happened, so we avoid waiting for it. 701 */ 702 if (err != -EIO) 703 __filemap_fdatawait_range(mapping, lstart, lend); 704 } 705 err2 = filemap_check_errors(mapping); 706 if (!err) 707 err = err2; 708 return err; 709 } 710 EXPORT_SYMBOL(filemap_write_and_wait_range); 711 712 void __filemap_set_wb_err(struct address_space *mapping, int err) 713 { 714 errseq_t eseq = errseq_set(&mapping->wb_err, err); 715 716 trace_filemap_set_wb_err(mapping, eseq); 717 } 718 EXPORT_SYMBOL(__filemap_set_wb_err); 719 720 /** 721 * file_check_and_advance_wb_err - report wb error (if any) that was previously 722 * and advance wb_err to current one 723 * @file: struct file on which the error is being reported 724 * 725 * When userland calls fsync (or something like nfsd does the equivalent), we 726 * want to report any writeback errors that occurred since the last fsync (or 727 * since the file was opened if there haven't been any). 728 * 729 * Grab the wb_err from the mapping. If it matches what we have in the file, 730 * then just quickly return 0. The file is all caught up. 731 * 732 * If it doesn't match, then take the mapping value, set the "seen" flag in 733 * it and try to swap it into place. If it works, or another task beat us 734 * to it with the new value, then update the f_wb_err and return the error 735 * portion. The error at this point must be reported via proper channels 736 * (a'la fsync, or NFS COMMIT operation, etc.). 737 * 738 * While we handle mapping->wb_err with atomic operations, the f_wb_err 739 * value is protected by the f_lock since we must ensure that it reflects 740 * the latest value swapped in for this file descriptor. 741 * 742 * Return: %0 on success, negative error code otherwise. 743 */ 744 int file_check_and_advance_wb_err(struct file *file) 745 { 746 int err = 0; 747 errseq_t old = READ_ONCE(file->f_wb_err); 748 struct address_space *mapping = file->f_mapping; 749 750 /* Locklessly handle the common case where nothing has changed */ 751 if (errseq_check(&mapping->wb_err, old)) { 752 /* Something changed, must use slow path */ 753 spin_lock(&file->f_lock); 754 old = file->f_wb_err; 755 err = errseq_check_and_advance(&mapping->wb_err, 756 &file->f_wb_err); 757 trace_file_check_and_advance_wb_err(file, old); 758 spin_unlock(&file->f_lock); 759 } 760 761 /* 762 * We're mostly using this function as a drop in replacement for 763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 764 * that the legacy code would have had on these flags. 765 */ 766 clear_bit(AS_EIO, &mapping->flags); 767 clear_bit(AS_ENOSPC, &mapping->flags); 768 return err; 769 } 770 EXPORT_SYMBOL(file_check_and_advance_wb_err); 771 772 /** 773 * file_write_and_wait_range - write out & wait on a file range 774 * @file: file pointing to address_space with pages 775 * @lstart: offset in bytes where the range starts 776 * @lend: offset in bytes where the range ends (inclusive) 777 * 778 * Write out and wait upon file offsets lstart->lend, inclusive. 779 * 780 * Note that @lend is inclusive (describes the last byte to be written) so 781 * that this function can be used to write to the very end-of-file (end = -1). 782 * 783 * After writing out and waiting on the data, we check and advance the 784 * f_wb_err cursor to the latest value, and return any errors detected there. 785 * 786 * Return: %0 on success, negative error code otherwise. 787 */ 788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 789 { 790 int err = 0, err2; 791 struct address_space *mapping = file->f_mapping; 792 793 if (lend < lstart) 794 return 0; 795 796 if (mapping_needs_writeback(mapping)) { 797 err = __filemap_fdatawrite_range(mapping, lstart, lend, 798 WB_SYNC_ALL); 799 /* See comment of filemap_write_and_wait() */ 800 if (err != -EIO) 801 __filemap_fdatawait_range(mapping, lstart, lend); 802 } 803 err2 = file_check_and_advance_wb_err(file); 804 if (!err) 805 err = err2; 806 return err; 807 } 808 EXPORT_SYMBOL(file_write_and_wait_range); 809 810 /** 811 * replace_page_cache_folio - replace a pagecache folio with a new one 812 * @old: folio to be replaced 813 * @new: folio to replace with 814 * 815 * This function replaces a folio in the pagecache with a new one. On 816 * success it acquires the pagecache reference for the new folio and 817 * drops it for the old folio. Both the old and new folios must be 818 * locked. This function does not add the new folio to the LRU, the 819 * caller must do that. 820 * 821 * The remove + add is atomic. This function cannot fail. 822 */ 823 void replace_page_cache_folio(struct folio *old, struct folio *new) 824 { 825 struct address_space *mapping = old->mapping; 826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 827 pgoff_t offset = old->index; 828 XA_STATE(xas, &mapping->i_pages, offset); 829 830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 832 VM_BUG_ON_FOLIO(new->mapping, new); 833 834 folio_get(new); 835 new->mapping = mapping; 836 new->index = offset; 837 838 mem_cgroup_replace_folio(old, new); 839 840 xas_lock_irq(&xas); 841 xas_store(&xas, new); 842 843 old->mapping = NULL; 844 /* hugetlb pages do not participate in page cache accounting. */ 845 if (!folio_test_hugetlb(old)) 846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 847 if (!folio_test_hugetlb(new)) 848 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 849 if (folio_test_swapbacked(old)) 850 __lruvec_stat_sub_folio(old, NR_SHMEM); 851 if (folio_test_swapbacked(new)) 852 __lruvec_stat_add_folio(new, NR_SHMEM); 853 xas_unlock_irq(&xas); 854 if (free_folio) 855 free_folio(old); 856 folio_put(old); 857 } 858 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 859 860 noinline int __filemap_add_folio(struct address_space *mapping, 861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 862 { 863 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 864 bool huge; 865 long nr; 866 unsigned int forder = folio_order(folio); 867 868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 871 folio); 872 mapping_set_update(&xas, mapping); 873 874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 875 huge = folio_test_hugetlb(folio); 876 nr = folio_nr_pages(folio); 877 878 gfp &= GFP_RECLAIM_MASK; 879 folio_ref_add(folio, nr); 880 folio->mapping = mapping; 881 folio->index = xas.xa_index; 882 883 for (;;) { 884 int order = -1; 885 void *entry, *old = NULL; 886 887 xas_lock_irq(&xas); 888 xas_for_each_conflict(&xas, entry) { 889 old = entry; 890 if (!xa_is_value(entry)) { 891 xas_set_err(&xas, -EEXIST); 892 goto unlock; 893 } 894 /* 895 * If a larger entry exists, 896 * it will be the first and only entry iterated. 897 */ 898 if (order == -1) 899 order = xas_get_order(&xas); 900 } 901 902 if (old) { 903 if (order > 0 && order > forder) { 904 unsigned int split_order = max(forder, 905 xas_try_split_min_order(order)); 906 907 /* How to handle large swap entries? */ 908 BUG_ON(shmem_mapping(mapping)); 909 910 while (order > forder) { 911 xas_set_order(&xas, index, split_order); 912 xas_try_split(&xas, old, order); 913 if (xas_error(&xas)) 914 goto unlock; 915 order = split_order; 916 split_order = 917 max(xas_try_split_min_order( 918 split_order), 919 forder); 920 } 921 xas_reset(&xas); 922 } 923 if (shadowp) 924 *shadowp = old; 925 } 926 927 xas_store(&xas, folio); 928 if (xas_error(&xas)) 929 goto unlock; 930 931 mapping->nrpages += nr; 932 933 /* hugetlb pages do not participate in page cache accounting */ 934 if (!huge) { 935 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 936 if (folio_test_pmd_mappable(folio)) 937 __lruvec_stat_mod_folio(folio, 938 NR_FILE_THPS, nr); 939 } 940 941 unlock: 942 xas_unlock_irq(&xas); 943 944 if (!xas_nomem(&xas, gfp)) 945 break; 946 } 947 948 if (xas_error(&xas)) 949 goto error; 950 951 trace_mm_filemap_add_to_page_cache(folio); 952 return 0; 953 error: 954 folio->mapping = NULL; 955 /* Leave folio->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); 957 return xas_error(&xas); 958 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 960 961 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, gfp_t gfp) 963 { 964 void *shadow = NULL; 965 int ret; 966 struct mem_cgroup *tmp; 967 bool kernel_file = test_bit(AS_KERNEL_FILE, &mapping->flags); 968 969 if (kernel_file) 970 tmp = set_active_memcg(root_mem_cgroup); 971 ret = mem_cgroup_charge(folio, NULL, gfp); 972 if (kernel_file) 973 set_active_memcg(tmp); 974 if (ret) 975 return ret; 976 977 __folio_set_locked(folio); 978 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 979 if (unlikely(ret)) { 980 mem_cgroup_uncharge(folio); 981 __folio_clear_locked(folio); 982 } else { 983 /* 984 * The folio might have been evicted from cache only 985 * recently, in which case it should be activated like 986 * any other repeatedly accessed folio. 987 * The exception is folios getting rewritten; evicting other 988 * data from the working set, only to cache data that will 989 * get overwritten with something else, is a waste of memory. 990 */ 991 WARN_ON_ONCE(folio_test_active(folio)); 992 if (!(gfp & __GFP_WRITE) && shadow) 993 workingset_refault(folio, shadow); 994 folio_add_lru(folio); 995 if (kernel_file) 996 mod_node_page_state(folio_pgdat(folio), 997 NR_KERNEL_FILE_PAGES, 998 folio_nr_pages(folio)); 999 } 1000 return ret; 1001 } 1002 EXPORT_SYMBOL_GPL(filemap_add_folio); 1003 1004 #ifdef CONFIG_NUMA 1005 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1006 { 1007 int n; 1008 struct folio *folio; 1009 1010 if (cpuset_do_page_mem_spread()) { 1011 unsigned int cpuset_mems_cookie; 1012 do { 1013 cpuset_mems_cookie = read_mems_allowed_begin(); 1014 n = cpuset_mem_spread_node(); 1015 folio = __folio_alloc_node_noprof(gfp, order, n); 1016 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1017 1018 return folio; 1019 } 1020 return folio_alloc_noprof(gfp, order); 1021 } 1022 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1023 #endif 1024 1025 /* 1026 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1027 * 1028 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1029 * 1030 * @mapping1: the first mapping to lock 1031 * @mapping2: the second mapping to lock 1032 */ 1033 void filemap_invalidate_lock_two(struct address_space *mapping1, 1034 struct address_space *mapping2) 1035 { 1036 if (mapping1 > mapping2) 1037 swap(mapping1, mapping2); 1038 if (mapping1) 1039 down_write(&mapping1->invalidate_lock); 1040 if (mapping2 && mapping1 != mapping2) 1041 down_write_nested(&mapping2->invalidate_lock, 1); 1042 } 1043 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1044 1045 /* 1046 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1047 * 1048 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1049 * 1050 * @mapping1: the first mapping to unlock 1051 * @mapping2: the second mapping to unlock 1052 */ 1053 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1054 struct address_space *mapping2) 1055 { 1056 if (mapping1) 1057 up_write(&mapping1->invalidate_lock); 1058 if (mapping2 && mapping1 != mapping2) 1059 up_write(&mapping2->invalidate_lock); 1060 } 1061 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1062 1063 /* 1064 * In order to wait for pages to become available there must be 1065 * waitqueues associated with pages. By using a hash table of 1066 * waitqueues where the bucket discipline is to maintain all 1067 * waiters on the same queue and wake all when any of the pages 1068 * become available, and for the woken contexts to check to be 1069 * sure the appropriate page became available, this saves space 1070 * at a cost of "thundering herd" phenomena during rare hash 1071 * collisions. 1072 */ 1073 #define PAGE_WAIT_TABLE_BITS 8 1074 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1075 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1076 1077 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1078 { 1079 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1080 } 1081 1082 /* How many times do we accept lock stealing from under a waiter? */ 1083 static int sysctl_page_lock_unfairness = 5; 1084 static const struct ctl_table filemap_sysctl_table[] = { 1085 { 1086 .procname = "page_lock_unfairness", 1087 .data = &sysctl_page_lock_unfairness, 1088 .maxlen = sizeof(sysctl_page_lock_unfairness), 1089 .mode = 0644, 1090 .proc_handler = proc_dointvec_minmax, 1091 .extra1 = SYSCTL_ZERO, 1092 } 1093 }; 1094 1095 void __init pagecache_init(void) 1096 { 1097 int i; 1098 1099 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1100 init_waitqueue_head(&folio_wait_table[i]); 1101 1102 page_writeback_init(); 1103 register_sysctl_init("vm", filemap_sysctl_table); 1104 } 1105 1106 /* 1107 * The page wait code treats the "wait->flags" somewhat unusually, because 1108 * we have multiple different kinds of waits, not just the usual "exclusive" 1109 * one. 1110 * 1111 * We have: 1112 * 1113 * (a) no special bits set: 1114 * 1115 * We're just waiting for the bit to be released, and when a waker 1116 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1117 * and remove it from the wait queue. 1118 * 1119 * Simple and straightforward. 1120 * 1121 * (b) WQ_FLAG_EXCLUSIVE: 1122 * 1123 * The waiter is waiting to get the lock, and only one waiter should 1124 * be woken up to avoid any thundering herd behavior. We'll set the 1125 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1126 * 1127 * This is the traditional exclusive wait. 1128 * 1129 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1130 * 1131 * The waiter is waiting to get the bit, and additionally wants the 1132 * lock to be transferred to it for fair lock behavior. If the lock 1133 * cannot be taken, we stop walking the wait queue without waking 1134 * the waiter. 1135 * 1136 * This is the "fair lock handoff" case, and in addition to setting 1137 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1138 * that it now has the lock. 1139 */ 1140 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1141 { 1142 unsigned int flags; 1143 struct wait_page_key *key = arg; 1144 struct wait_page_queue *wait_page 1145 = container_of(wait, struct wait_page_queue, wait); 1146 1147 if (!wake_page_match(wait_page, key)) 1148 return 0; 1149 1150 /* 1151 * If it's a lock handoff wait, we get the bit for it, and 1152 * stop walking (and do not wake it up) if we can't. 1153 */ 1154 flags = wait->flags; 1155 if (flags & WQ_FLAG_EXCLUSIVE) { 1156 if (test_bit(key->bit_nr, &key->folio->flags.f)) 1157 return -1; 1158 if (flags & WQ_FLAG_CUSTOM) { 1159 if (test_and_set_bit(key->bit_nr, &key->folio->flags.f)) 1160 return -1; 1161 flags |= WQ_FLAG_DONE; 1162 } 1163 } 1164 1165 /* 1166 * We are holding the wait-queue lock, but the waiter that 1167 * is waiting for this will be checking the flags without 1168 * any locking. 1169 * 1170 * So update the flags atomically, and wake up the waiter 1171 * afterwards to avoid any races. This store-release pairs 1172 * with the load-acquire in folio_wait_bit_common(). 1173 */ 1174 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1175 wake_up_state(wait->private, mode); 1176 1177 /* 1178 * Ok, we have successfully done what we're waiting for, 1179 * and we can unconditionally remove the wait entry. 1180 * 1181 * Note that this pairs with the "finish_wait()" in the 1182 * waiter, and has to be the absolute last thing we do. 1183 * After this list_del_init(&wait->entry) the wait entry 1184 * might be de-allocated and the process might even have 1185 * exited. 1186 */ 1187 list_del_init_careful(&wait->entry); 1188 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1189 } 1190 1191 static void folio_wake_bit(struct folio *folio, int bit_nr) 1192 { 1193 wait_queue_head_t *q = folio_waitqueue(folio); 1194 struct wait_page_key key; 1195 unsigned long flags; 1196 1197 key.folio = folio; 1198 key.bit_nr = bit_nr; 1199 key.page_match = 0; 1200 1201 spin_lock_irqsave(&q->lock, flags); 1202 __wake_up_locked_key(q, TASK_NORMAL, &key); 1203 1204 /* 1205 * It's possible to miss clearing waiters here, when we woke our page 1206 * waiters, but the hashed waitqueue has waiters for other pages on it. 1207 * That's okay, it's a rare case. The next waker will clear it. 1208 * 1209 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1210 * other), the flag may be cleared in the course of freeing the page; 1211 * but that is not required for correctness. 1212 */ 1213 if (!waitqueue_active(q) || !key.page_match) 1214 folio_clear_waiters(folio); 1215 1216 spin_unlock_irqrestore(&q->lock, flags); 1217 } 1218 1219 /* 1220 * A choice of three behaviors for folio_wait_bit_common(): 1221 */ 1222 enum behavior { 1223 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1224 * __folio_lock() waiting on then setting PG_locked. 1225 */ 1226 SHARED, /* Hold ref to page and check the bit when woken, like 1227 * folio_wait_writeback() waiting on PG_writeback. 1228 */ 1229 DROP, /* Drop ref to page before wait, no check when woken, 1230 * like folio_put_wait_locked() on PG_locked. 1231 */ 1232 }; 1233 1234 /* 1235 * Attempt to check (or get) the folio flag, and mark us done 1236 * if successful. 1237 */ 1238 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1239 struct wait_queue_entry *wait) 1240 { 1241 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1242 if (test_and_set_bit(bit_nr, &folio->flags.f)) 1243 return false; 1244 } else if (test_bit(bit_nr, &folio->flags.f)) 1245 return false; 1246 1247 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1248 return true; 1249 } 1250 1251 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1252 int state, enum behavior behavior) 1253 { 1254 wait_queue_head_t *q = folio_waitqueue(folio); 1255 int unfairness = sysctl_page_lock_unfairness; 1256 struct wait_page_queue wait_page; 1257 wait_queue_entry_t *wait = &wait_page.wait; 1258 bool thrashing = false; 1259 unsigned long pflags; 1260 bool in_thrashing; 1261 1262 if (bit_nr == PG_locked && 1263 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1264 delayacct_thrashing_start(&in_thrashing); 1265 psi_memstall_enter(&pflags); 1266 thrashing = true; 1267 } 1268 1269 init_wait(wait); 1270 wait->func = wake_page_function; 1271 wait_page.folio = folio; 1272 wait_page.bit_nr = bit_nr; 1273 1274 repeat: 1275 wait->flags = 0; 1276 if (behavior == EXCLUSIVE) { 1277 wait->flags = WQ_FLAG_EXCLUSIVE; 1278 if (--unfairness < 0) 1279 wait->flags |= WQ_FLAG_CUSTOM; 1280 } 1281 1282 /* 1283 * Do one last check whether we can get the 1284 * page bit synchronously. 1285 * 1286 * Do the folio_set_waiters() marking before that 1287 * to let any waker we _just_ missed know they 1288 * need to wake us up (otherwise they'll never 1289 * even go to the slow case that looks at the 1290 * page queue), and add ourselves to the wait 1291 * queue if we need to sleep. 1292 * 1293 * This part needs to be done under the queue 1294 * lock to avoid races. 1295 */ 1296 spin_lock_irq(&q->lock); 1297 folio_set_waiters(folio); 1298 if (!folio_trylock_flag(folio, bit_nr, wait)) 1299 __add_wait_queue_entry_tail(q, wait); 1300 spin_unlock_irq(&q->lock); 1301 1302 /* 1303 * From now on, all the logic will be based on 1304 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1305 * see whether the page bit testing has already 1306 * been done by the wake function. 1307 * 1308 * We can drop our reference to the folio. 1309 */ 1310 if (behavior == DROP) 1311 folio_put(folio); 1312 1313 /* 1314 * Note that until the "finish_wait()", or until 1315 * we see the WQ_FLAG_WOKEN flag, we need to 1316 * be very careful with the 'wait->flags', because 1317 * we may race with a waker that sets them. 1318 */ 1319 for (;;) { 1320 unsigned int flags; 1321 1322 set_current_state(state); 1323 1324 /* Loop until we've been woken or interrupted */ 1325 flags = smp_load_acquire(&wait->flags); 1326 if (!(flags & WQ_FLAG_WOKEN)) { 1327 if (signal_pending_state(state, current)) 1328 break; 1329 1330 io_schedule(); 1331 continue; 1332 } 1333 1334 /* If we were non-exclusive, we're done */ 1335 if (behavior != EXCLUSIVE) 1336 break; 1337 1338 /* If the waker got the lock for us, we're done */ 1339 if (flags & WQ_FLAG_DONE) 1340 break; 1341 1342 /* 1343 * Otherwise, if we're getting the lock, we need to 1344 * try to get it ourselves. 1345 * 1346 * And if that fails, we'll have to retry this all. 1347 */ 1348 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1349 goto repeat; 1350 1351 wait->flags |= WQ_FLAG_DONE; 1352 break; 1353 } 1354 1355 /* 1356 * If a signal happened, this 'finish_wait()' may remove the last 1357 * waiter from the wait-queues, but the folio waiters bit will remain 1358 * set. That's ok. The next wakeup will take care of it, and trying 1359 * to do it here would be difficult and prone to races. 1360 */ 1361 finish_wait(q, wait); 1362 1363 if (thrashing) { 1364 delayacct_thrashing_end(&in_thrashing); 1365 psi_memstall_leave(&pflags); 1366 } 1367 1368 /* 1369 * NOTE! The wait->flags weren't stable until we've done the 1370 * 'finish_wait()', and we could have exited the loop above due 1371 * to a signal, and had a wakeup event happen after the signal 1372 * test but before the 'finish_wait()'. 1373 * 1374 * So only after the finish_wait() can we reliably determine 1375 * if we got woken up or not, so we can now figure out the final 1376 * return value based on that state without races. 1377 * 1378 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1379 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1380 */ 1381 if (behavior == EXCLUSIVE) 1382 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1383 1384 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1385 } 1386 1387 #ifdef CONFIG_MIGRATION 1388 /** 1389 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1390 * @entry: migration swap entry. 1391 * @ptl: already locked ptl. This function will drop the lock. 1392 * 1393 * Wait for a migration entry referencing the given page to be removed. This is 1394 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1395 * this can be called without taking a reference on the page. Instead this 1396 * should be called while holding the ptl for the migration entry referencing 1397 * the page. 1398 * 1399 * Returns after unlocking the ptl. 1400 * 1401 * This follows the same logic as folio_wait_bit_common() so see the comments 1402 * there. 1403 */ 1404 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1405 __releases(ptl) 1406 { 1407 struct wait_page_queue wait_page; 1408 wait_queue_entry_t *wait = &wait_page.wait; 1409 bool thrashing = false; 1410 unsigned long pflags; 1411 bool in_thrashing; 1412 wait_queue_head_t *q; 1413 struct folio *folio = pfn_swap_entry_folio(entry); 1414 1415 q = folio_waitqueue(folio); 1416 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1417 delayacct_thrashing_start(&in_thrashing); 1418 psi_memstall_enter(&pflags); 1419 thrashing = true; 1420 } 1421 1422 init_wait(wait); 1423 wait->func = wake_page_function; 1424 wait_page.folio = folio; 1425 wait_page.bit_nr = PG_locked; 1426 wait->flags = 0; 1427 1428 spin_lock_irq(&q->lock); 1429 folio_set_waiters(folio); 1430 if (!folio_trylock_flag(folio, PG_locked, wait)) 1431 __add_wait_queue_entry_tail(q, wait); 1432 spin_unlock_irq(&q->lock); 1433 1434 /* 1435 * If a migration entry exists for the page the migration path must hold 1436 * a valid reference to the page, and it must take the ptl to remove the 1437 * migration entry. So the page is valid until the ptl is dropped. 1438 */ 1439 spin_unlock(ptl); 1440 1441 for (;;) { 1442 unsigned int flags; 1443 1444 set_current_state(TASK_UNINTERRUPTIBLE); 1445 1446 /* Loop until we've been woken or interrupted */ 1447 flags = smp_load_acquire(&wait->flags); 1448 if (!(flags & WQ_FLAG_WOKEN)) { 1449 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1450 break; 1451 1452 io_schedule(); 1453 continue; 1454 } 1455 break; 1456 } 1457 1458 finish_wait(q, wait); 1459 1460 if (thrashing) { 1461 delayacct_thrashing_end(&in_thrashing); 1462 psi_memstall_leave(&pflags); 1463 } 1464 } 1465 #endif 1466 1467 void folio_wait_bit(struct folio *folio, int bit_nr) 1468 { 1469 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1470 } 1471 EXPORT_SYMBOL(folio_wait_bit); 1472 1473 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1474 { 1475 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1476 } 1477 EXPORT_SYMBOL(folio_wait_bit_killable); 1478 1479 /** 1480 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1481 * @folio: The folio to wait for. 1482 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1483 * 1484 * The caller should hold a reference on @folio. They expect the page to 1485 * become unlocked relatively soon, but do not wish to hold up migration 1486 * (for example) by holding the reference while waiting for the folio to 1487 * come unlocked. After this function returns, the caller should not 1488 * dereference @folio. 1489 * 1490 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1491 */ 1492 static int folio_put_wait_locked(struct folio *folio, int state) 1493 { 1494 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1495 } 1496 1497 /** 1498 * folio_unlock - Unlock a locked folio. 1499 * @folio: The folio. 1500 * 1501 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1502 * 1503 * Context: May be called from interrupt or process context. May not be 1504 * called from NMI context. 1505 */ 1506 void folio_unlock(struct folio *folio) 1507 { 1508 /* Bit 7 allows x86 to check the byte's sign bit */ 1509 BUILD_BUG_ON(PG_waiters != 7); 1510 BUILD_BUG_ON(PG_locked > 7); 1511 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1512 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1513 folio_wake_bit(folio, PG_locked); 1514 } 1515 EXPORT_SYMBOL(folio_unlock); 1516 1517 /** 1518 * folio_end_read - End read on a folio. 1519 * @folio: The folio. 1520 * @success: True if all reads completed successfully. 1521 * 1522 * When all reads against a folio have completed, filesystems should 1523 * call this function to let the pagecache know that no more reads 1524 * are outstanding. This will unlock the folio and wake up any thread 1525 * sleeping on the lock. The folio will also be marked uptodate if all 1526 * reads succeeded. 1527 * 1528 * Context: May be called from interrupt or process context. May not be 1529 * called from NMI context. 1530 */ 1531 void folio_end_read(struct folio *folio, bool success) 1532 { 1533 unsigned long mask = 1 << PG_locked; 1534 1535 /* Must be in bottom byte for x86 to work */ 1536 BUILD_BUG_ON(PG_uptodate > 7); 1537 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1538 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1539 1540 if (likely(success)) 1541 mask |= 1 << PG_uptodate; 1542 if (folio_xor_flags_has_waiters(folio, mask)) 1543 folio_wake_bit(folio, PG_locked); 1544 } 1545 EXPORT_SYMBOL(folio_end_read); 1546 1547 /** 1548 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1549 * @folio: The folio. 1550 * 1551 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1552 * it. The folio reference held for PG_private_2 being set is released. 1553 * 1554 * This is, for example, used when a netfs folio is being written to a local 1555 * disk cache, thereby allowing writes to the cache for the same folio to be 1556 * serialised. 1557 */ 1558 void folio_end_private_2(struct folio *folio) 1559 { 1560 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1561 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1562 folio_wake_bit(folio, PG_private_2); 1563 folio_put(folio); 1564 } 1565 EXPORT_SYMBOL(folio_end_private_2); 1566 1567 /** 1568 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio. 1572 */ 1573 void folio_wait_private_2(struct folio *folio) 1574 { 1575 while (folio_test_private_2(folio)) 1576 folio_wait_bit(folio, PG_private_2); 1577 } 1578 EXPORT_SYMBOL(folio_wait_private_2); 1579 1580 /** 1581 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1582 * @folio: The folio to wait on. 1583 * 1584 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1585 * received by the calling task. 1586 * 1587 * Return: 1588 * - 0 if successful. 1589 * - -EINTR if a fatal signal was encountered. 1590 */ 1591 int folio_wait_private_2_killable(struct folio *folio) 1592 { 1593 int ret = 0; 1594 1595 while (folio_test_private_2(folio)) { 1596 ret = folio_wait_bit_killable(folio, PG_private_2); 1597 if (ret < 0) 1598 break; 1599 } 1600 1601 return ret; 1602 } 1603 EXPORT_SYMBOL(folio_wait_private_2_killable); 1604 1605 static void filemap_end_dropbehind(struct folio *folio) 1606 { 1607 struct address_space *mapping = folio->mapping; 1608 1609 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1610 1611 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 1612 return; 1613 if (!folio_test_clear_dropbehind(folio)) 1614 return; 1615 if (mapping) 1616 folio_unmap_invalidate(mapping, folio, 0); 1617 } 1618 1619 /* 1620 * If folio was marked as dropbehind, then pages should be dropped when writeback 1621 * completes. Do that now. If we fail, it's likely because of a big folio - 1622 * just reset dropbehind for that case and latter completions should invalidate. 1623 */ 1624 void folio_end_dropbehind(struct folio *folio) 1625 { 1626 if (!folio_test_dropbehind(folio)) 1627 return; 1628 1629 /* 1630 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1631 * but can happen if normal writeback just happens to find dirty folios 1632 * that were created as part of uncached writeback, and that writeback 1633 * would otherwise not need non-IRQ handling. Just skip the 1634 * invalidation in that case. 1635 */ 1636 if (in_task() && folio_trylock(folio)) { 1637 filemap_end_dropbehind(folio); 1638 folio_unlock(folio); 1639 } 1640 } 1641 EXPORT_SYMBOL_GPL(folio_end_dropbehind); 1642 1643 /** 1644 * folio_end_writeback_no_dropbehind - End writeback against a folio. 1645 * @folio: The folio. 1646 * 1647 * The folio must actually be under writeback. 1648 * This call is intended for filesystems that need to defer dropbehind. 1649 * 1650 * Context: May be called from process or interrupt context. 1651 */ 1652 void folio_end_writeback_no_dropbehind(struct folio *folio) 1653 { 1654 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1655 1656 /* 1657 * folio_test_clear_reclaim() could be used here but it is an 1658 * atomic operation and overkill in this particular case. Failing 1659 * to shuffle a folio marked for immediate reclaim is too mild 1660 * a gain to justify taking an atomic operation penalty at the 1661 * end of every folio writeback. 1662 */ 1663 if (folio_test_reclaim(folio)) { 1664 folio_clear_reclaim(folio); 1665 folio_rotate_reclaimable(folio); 1666 } 1667 1668 if (__folio_end_writeback(folio)) 1669 folio_wake_bit(folio, PG_writeback); 1670 1671 acct_reclaim_writeback(folio); 1672 } 1673 EXPORT_SYMBOL_GPL(folio_end_writeback_no_dropbehind); 1674 1675 /** 1676 * folio_end_writeback - End writeback against a folio. 1677 * @folio: The folio. 1678 * 1679 * The folio must actually be under writeback. 1680 * 1681 * Context: May be called from process or interrupt context. 1682 */ 1683 void folio_end_writeback(struct folio *folio) 1684 { 1685 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1686 1687 /* 1688 * Writeback does not hold a folio reference of its own, relying 1689 * on truncation to wait for the clearing of PG_writeback. 1690 * But here we must make sure that the folio is not freed and 1691 * reused before the folio_wake_bit(). 1692 */ 1693 folio_get(folio); 1694 folio_end_writeback_no_dropbehind(folio); 1695 folio_end_dropbehind(folio); 1696 folio_put(folio); 1697 } 1698 EXPORT_SYMBOL(folio_end_writeback); 1699 1700 /** 1701 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1702 * @folio: The folio to lock 1703 */ 1704 void __folio_lock(struct folio *folio) 1705 { 1706 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1707 EXCLUSIVE); 1708 } 1709 EXPORT_SYMBOL(__folio_lock); 1710 1711 int __folio_lock_killable(struct folio *folio) 1712 { 1713 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1714 EXCLUSIVE); 1715 } 1716 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1717 1718 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1719 { 1720 struct wait_queue_head *q = folio_waitqueue(folio); 1721 int ret; 1722 1723 wait->folio = folio; 1724 wait->bit_nr = PG_locked; 1725 1726 spin_lock_irq(&q->lock); 1727 __add_wait_queue_entry_tail(q, &wait->wait); 1728 folio_set_waiters(folio); 1729 ret = !folio_trylock(folio); 1730 /* 1731 * If we were successful now, we know we're still on the 1732 * waitqueue as we're still under the lock. This means it's 1733 * safe to remove and return success, we know the callback 1734 * isn't going to trigger. 1735 */ 1736 if (!ret) 1737 __remove_wait_queue(q, &wait->wait); 1738 else 1739 ret = -EIOCBQUEUED; 1740 spin_unlock_irq(&q->lock); 1741 return ret; 1742 } 1743 1744 /* 1745 * Return values: 1746 * 0 - folio is locked. 1747 * non-zero - folio is not locked. 1748 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1749 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1750 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1751 * 1752 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1753 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1754 */ 1755 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1756 { 1757 unsigned int flags = vmf->flags; 1758 1759 if (fault_flag_allow_retry_first(flags)) { 1760 /* 1761 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1762 * released even though returning VM_FAULT_RETRY. 1763 */ 1764 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1765 return VM_FAULT_RETRY; 1766 1767 release_fault_lock(vmf); 1768 if (flags & FAULT_FLAG_KILLABLE) 1769 folio_wait_locked_killable(folio); 1770 else 1771 folio_wait_locked(folio); 1772 return VM_FAULT_RETRY; 1773 } 1774 if (flags & FAULT_FLAG_KILLABLE) { 1775 bool ret; 1776 1777 ret = __folio_lock_killable(folio); 1778 if (ret) { 1779 release_fault_lock(vmf); 1780 return VM_FAULT_RETRY; 1781 } 1782 } else { 1783 __folio_lock(folio); 1784 } 1785 1786 return 0; 1787 } 1788 1789 /** 1790 * page_cache_next_miss() - Find the next gap in the page cache. 1791 * @mapping: Mapping. 1792 * @index: Index. 1793 * @max_scan: Maximum range to search. 1794 * 1795 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1796 * gap with the lowest index. 1797 * 1798 * This function may be called under the rcu_read_lock. However, this will 1799 * not atomically search a snapshot of the cache at a single point in time. 1800 * For example, if a gap is created at index 5, then subsequently a gap is 1801 * created at index 10, page_cache_next_miss covering both indices may 1802 * return 10 if called under the rcu_read_lock. 1803 * 1804 * Return: The index of the gap if found, otherwise an index outside the 1805 * range specified (in which case 'return - index >= max_scan' will be true). 1806 * In the rare case of index wrap-around, 0 will be returned. 1807 */ 1808 pgoff_t page_cache_next_miss(struct address_space *mapping, 1809 pgoff_t index, unsigned long max_scan) 1810 { 1811 XA_STATE(xas, &mapping->i_pages, index); 1812 unsigned long nr = max_scan; 1813 1814 while (nr--) { 1815 void *entry = xas_next(&xas); 1816 if (!entry || xa_is_value(entry)) 1817 return xas.xa_index; 1818 if (xas.xa_index == 0) 1819 return 0; 1820 } 1821 1822 return index + max_scan; 1823 } 1824 EXPORT_SYMBOL(page_cache_next_miss); 1825 1826 /** 1827 * page_cache_prev_miss() - Find the previous gap in the page cache. 1828 * @mapping: Mapping. 1829 * @index: Index. 1830 * @max_scan: Maximum range to search. 1831 * 1832 * Search the range [max(index - max_scan + 1, 0), index] for the 1833 * gap with the highest index. 1834 * 1835 * This function may be called under the rcu_read_lock. However, this will 1836 * not atomically search a snapshot of the cache at a single point in time. 1837 * For example, if a gap is created at index 10, then subsequently a gap is 1838 * created at index 5, page_cache_prev_miss() covering both indices may 1839 * return 5 if called under the rcu_read_lock. 1840 * 1841 * Return: The index of the gap if found, otherwise an index outside the 1842 * range specified (in which case 'index - return >= max_scan' will be true). 1843 * In the rare case of wrap-around, ULONG_MAX will be returned. 1844 */ 1845 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1846 pgoff_t index, unsigned long max_scan) 1847 { 1848 XA_STATE(xas, &mapping->i_pages, index); 1849 1850 while (max_scan--) { 1851 void *entry = xas_prev(&xas); 1852 if (!entry || xa_is_value(entry)) 1853 break; 1854 if (xas.xa_index == ULONG_MAX) 1855 break; 1856 } 1857 1858 return xas.xa_index; 1859 } 1860 EXPORT_SYMBOL(page_cache_prev_miss); 1861 1862 /* 1863 * Lockless page cache protocol: 1864 * On the lookup side: 1865 * 1. Load the folio from i_pages 1866 * 2. Increment the refcount if it's not zero 1867 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1868 * 1869 * On the removal side: 1870 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1871 * B. Remove the page from i_pages 1872 * C. Return the page to the page allocator 1873 * 1874 * This means that any page may have its reference count temporarily 1875 * increased by a speculative page cache (or GUP-fast) lookup as it can 1876 * be allocated by another user before the RCU grace period expires. 1877 * Because the refcount temporarily acquired here may end up being the 1878 * last refcount on the page, any page allocation must be freeable by 1879 * folio_put(). 1880 */ 1881 1882 /* 1883 * filemap_get_entry - Get a page cache entry. 1884 * @mapping: the address_space to search 1885 * @index: The page cache index. 1886 * 1887 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1888 * it is returned with an increased refcount. If it is a shadow entry 1889 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1890 * it is returned without further action. 1891 * 1892 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1893 */ 1894 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1895 { 1896 XA_STATE(xas, &mapping->i_pages, index); 1897 struct folio *folio; 1898 1899 rcu_read_lock(); 1900 repeat: 1901 xas_reset(&xas); 1902 folio = xas_load(&xas); 1903 if (xas_retry(&xas, folio)) 1904 goto repeat; 1905 /* 1906 * A shadow entry of a recently evicted page, or a swap entry from 1907 * shmem/tmpfs. Return it without attempting to raise page count. 1908 */ 1909 if (!folio || xa_is_value(folio)) 1910 goto out; 1911 1912 if (!folio_try_get(folio)) 1913 goto repeat; 1914 1915 if (unlikely(folio != xas_reload(&xas))) { 1916 folio_put(folio); 1917 goto repeat; 1918 } 1919 out: 1920 rcu_read_unlock(); 1921 1922 return folio; 1923 } 1924 1925 /** 1926 * __filemap_get_folio - Find and get a reference to a folio. 1927 * @mapping: The address_space to search. 1928 * @index: The page index. 1929 * @fgp_flags: %FGP flags modify how the folio is returned. 1930 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1931 * 1932 * Looks up the page cache entry at @mapping & @index. 1933 * 1934 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1935 * if the %GFP flags specified for %FGP_CREAT are atomic. 1936 * 1937 * If this function returns a folio, it is returned with an increased refcount. 1938 * 1939 * Return: The found folio or an ERR_PTR() otherwise. 1940 */ 1941 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1942 fgf_t fgp_flags, gfp_t gfp) 1943 { 1944 struct folio *folio; 1945 1946 repeat: 1947 folio = filemap_get_entry(mapping, index); 1948 if (xa_is_value(folio)) 1949 folio = NULL; 1950 if (!folio) 1951 goto no_page; 1952 1953 if (fgp_flags & FGP_LOCK) { 1954 if (fgp_flags & FGP_NOWAIT) { 1955 if (!folio_trylock(folio)) { 1956 folio_put(folio); 1957 return ERR_PTR(-EAGAIN); 1958 } 1959 } else { 1960 folio_lock(folio); 1961 } 1962 1963 /* Has the page been truncated? */ 1964 if (unlikely(folio->mapping != mapping)) { 1965 folio_unlock(folio); 1966 folio_put(folio); 1967 goto repeat; 1968 } 1969 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1970 } 1971 1972 if (fgp_flags & FGP_ACCESSED) 1973 folio_mark_accessed(folio); 1974 else if (fgp_flags & FGP_WRITE) { 1975 /* Clear idle flag for buffer write */ 1976 if (folio_test_idle(folio)) 1977 folio_clear_idle(folio); 1978 } 1979 1980 if (fgp_flags & FGP_STABLE) 1981 folio_wait_stable(folio); 1982 no_page: 1983 if (!folio && (fgp_flags & FGP_CREAT)) { 1984 unsigned int min_order = mapping_min_folio_order(mapping); 1985 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1986 int err; 1987 index = mapping_align_index(mapping, index); 1988 1989 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1990 gfp |= __GFP_WRITE; 1991 if (fgp_flags & FGP_NOFS) 1992 gfp &= ~__GFP_FS; 1993 if (fgp_flags & FGP_NOWAIT) { 1994 gfp &= ~GFP_KERNEL; 1995 gfp |= GFP_NOWAIT; 1996 } 1997 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1998 fgp_flags |= FGP_LOCK; 1999 2000 if (order > mapping_max_folio_order(mapping)) 2001 order = mapping_max_folio_order(mapping); 2002 /* If we're not aligned, allocate a smaller folio */ 2003 if (index & ((1UL << order) - 1)) 2004 order = __ffs(index); 2005 2006 do { 2007 gfp_t alloc_gfp = gfp; 2008 2009 err = -ENOMEM; 2010 if (order > min_order) 2011 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 2012 folio = filemap_alloc_folio(alloc_gfp, order); 2013 if (!folio) 2014 continue; 2015 2016 /* Init accessed so avoid atomic mark_page_accessed later */ 2017 if (fgp_flags & FGP_ACCESSED) 2018 __folio_set_referenced(folio); 2019 if (fgp_flags & FGP_DONTCACHE) 2020 __folio_set_dropbehind(folio); 2021 2022 err = filemap_add_folio(mapping, folio, index, gfp); 2023 if (!err) 2024 break; 2025 folio_put(folio); 2026 folio = NULL; 2027 } while (order-- > min_order); 2028 2029 if (err == -EEXIST) 2030 goto repeat; 2031 if (err) { 2032 /* 2033 * When NOWAIT I/O fails to allocate folios this could 2034 * be due to a nonblocking memory allocation and not 2035 * because the system actually is out of memory. 2036 * Return -EAGAIN so that there caller retries in a 2037 * blocking fashion instead of propagating -ENOMEM 2038 * to the application. 2039 */ 2040 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2041 err = -EAGAIN; 2042 return ERR_PTR(err); 2043 } 2044 /* 2045 * filemap_add_folio locks the page, and for mmap 2046 * we expect an unlocked page. 2047 */ 2048 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2049 folio_unlock(folio); 2050 } 2051 2052 if (!folio) 2053 return ERR_PTR(-ENOENT); 2054 /* not an uncached lookup, clear uncached if set */ 2055 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2056 folio_clear_dropbehind(folio); 2057 return folio; 2058 } 2059 EXPORT_SYMBOL(__filemap_get_folio); 2060 2061 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2062 xa_mark_t mark) 2063 { 2064 struct folio *folio; 2065 2066 retry: 2067 if (mark == XA_PRESENT) 2068 folio = xas_find(xas, max); 2069 else 2070 folio = xas_find_marked(xas, max, mark); 2071 2072 if (xas_retry(xas, folio)) 2073 goto retry; 2074 /* 2075 * A shadow entry of a recently evicted page, a swap 2076 * entry from shmem/tmpfs or a DAX entry. Return it 2077 * without attempting to raise page count. 2078 */ 2079 if (!folio || xa_is_value(folio)) 2080 return folio; 2081 2082 if (!folio_try_get(folio)) 2083 goto reset; 2084 2085 if (unlikely(folio != xas_reload(xas))) { 2086 folio_put(folio); 2087 goto reset; 2088 } 2089 2090 return folio; 2091 reset: 2092 xas_reset(xas); 2093 goto retry; 2094 } 2095 2096 /** 2097 * find_get_entries - gang pagecache lookup 2098 * @mapping: The address_space to search 2099 * @start: The starting page cache index 2100 * @end: The final page index (inclusive). 2101 * @fbatch: Where the resulting entries are placed. 2102 * @indices: The cache indices corresponding to the entries in @entries 2103 * 2104 * find_get_entries() will search for and return a batch of entries in 2105 * the mapping. The entries are placed in @fbatch. find_get_entries() 2106 * takes a reference on any actual folios it returns. 2107 * 2108 * The entries have ascending indexes. The indices may not be consecutive 2109 * due to not-present entries or large folios. 2110 * 2111 * Any shadow entries of evicted folios, or swap entries from 2112 * shmem/tmpfs, are included in the returned array. 2113 * 2114 * Return: The number of entries which were found. 2115 */ 2116 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2117 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2118 { 2119 XA_STATE(xas, &mapping->i_pages, *start); 2120 struct folio *folio; 2121 2122 rcu_read_lock(); 2123 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2124 indices[fbatch->nr] = xas.xa_index; 2125 if (!folio_batch_add(fbatch, folio)) 2126 break; 2127 } 2128 2129 if (folio_batch_count(fbatch)) { 2130 unsigned long nr; 2131 int idx = folio_batch_count(fbatch) - 1; 2132 2133 folio = fbatch->folios[idx]; 2134 if (!xa_is_value(folio)) 2135 nr = folio_nr_pages(folio); 2136 else 2137 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2138 *start = round_down(indices[idx] + nr, nr); 2139 } 2140 rcu_read_unlock(); 2141 2142 return folio_batch_count(fbatch); 2143 } 2144 2145 /** 2146 * find_lock_entries - Find a batch of pagecache entries. 2147 * @mapping: The address_space to search. 2148 * @start: The starting page cache index. 2149 * @end: The final page index (inclusive). 2150 * @fbatch: Where the resulting entries are placed. 2151 * @indices: The cache indices of the entries in @fbatch. 2152 * 2153 * find_lock_entries() will return a batch of entries from @mapping. 2154 * Swap, shadow and DAX entries are included. Folios are returned 2155 * locked and with an incremented refcount. Folios which are locked 2156 * by somebody else or under writeback are skipped. Folios which are 2157 * partially outside the range are not returned. 2158 * 2159 * The entries have ascending indexes. The indices may not be consecutive 2160 * due to not-present entries, large folios, folios which could not be 2161 * locked or folios under writeback. 2162 * 2163 * Return: The number of entries which were found. 2164 */ 2165 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2166 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2167 { 2168 XA_STATE(xas, &mapping->i_pages, *start); 2169 struct folio *folio; 2170 2171 rcu_read_lock(); 2172 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2173 unsigned long base; 2174 unsigned long nr; 2175 2176 if (!xa_is_value(folio)) { 2177 nr = folio_nr_pages(folio); 2178 base = folio->index; 2179 /* Omit large folio which begins before the start */ 2180 if (base < *start) 2181 goto put; 2182 /* Omit large folio which extends beyond the end */ 2183 if (base + nr - 1 > end) 2184 goto put; 2185 if (!folio_trylock(folio)) 2186 goto put; 2187 if (folio->mapping != mapping || 2188 folio_test_writeback(folio)) 2189 goto unlock; 2190 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2191 folio); 2192 } else { 2193 nr = 1 << xas_get_order(&xas); 2194 base = xas.xa_index & ~(nr - 1); 2195 /* Omit order>0 value which begins before the start */ 2196 if (base < *start) 2197 continue; 2198 /* Omit order>0 value which extends beyond the end */ 2199 if (base + nr - 1 > end) 2200 break; 2201 } 2202 2203 /* Update start now so that last update is correct on return */ 2204 *start = base + nr; 2205 indices[fbatch->nr] = xas.xa_index; 2206 if (!folio_batch_add(fbatch, folio)) 2207 break; 2208 continue; 2209 unlock: 2210 folio_unlock(folio); 2211 put: 2212 folio_put(folio); 2213 } 2214 rcu_read_unlock(); 2215 2216 return folio_batch_count(fbatch); 2217 } 2218 2219 /** 2220 * filemap_get_folios - Get a batch of folios 2221 * @mapping: The address_space to search 2222 * @start: The starting page index 2223 * @end: The final page index (inclusive) 2224 * @fbatch: The batch to fill. 2225 * 2226 * Search for and return a batch of folios in the mapping starting at 2227 * index @start and up to index @end (inclusive). The folios are returned 2228 * in @fbatch with an elevated reference count. 2229 * 2230 * Return: The number of folios which were found. 2231 * We also update @start to index the next folio for the traversal. 2232 */ 2233 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2234 pgoff_t end, struct folio_batch *fbatch) 2235 { 2236 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2237 } 2238 EXPORT_SYMBOL(filemap_get_folios); 2239 2240 /** 2241 * filemap_get_folios_contig - Get a batch of contiguous folios 2242 * @mapping: The address_space to search 2243 * @start: The starting page index 2244 * @end: The final page index (inclusive) 2245 * @fbatch: The batch to fill 2246 * 2247 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2248 * except the returned folios are guaranteed to be contiguous. This may 2249 * not return all contiguous folios if the batch gets filled up. 2250 * 2251 * Return: The number of folios found. 2252 * Also update @start to be positioned for traversal of the next folio. 2253 */ 2254 2255 unsigned filemap_get_folios_contig(struct address_space *mapping, 2256 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2257 { 2258 XA_STATE(xas, &mapping->i_pages, *start); 2259 unsigned long nr; 2260 struct folio *folio; 2261 2262 rcu_read_lock(); 2263 2264 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2265 folio = xas_next(&xas)) { 2266 if (xas_retry(&xas, folio)) 2267 continue; 2268 /* 2269 * If the entry has been swapped out, we can stop looking. 2270 * No current caller is looking for DAX entries. 2271 */ 2272 if (xa_is_value(folio)) 2273 goto update_start; 2274 2275 /* If we landed in the middle of a THP, continue at its end. */ 2276 if (xa_is_sibling(folio)) 2277 goto update_start; 2278 2279 if (!folio_try_get(folio)) 2280 goto retry; 2281 2282 if (unlikely(folio != xas_reload(&xas))) 2283 goto put_folio; 2284 2285 if (!folio_batch_add(fbatch, folio)) { 2286 nr = folio_nr_pages(folio); 2287 *start = folio->index + nr; 2288 goto out; 2289 } 2290 xas_advance(&xas, folio_next_index(folio) - 1); 2291 continue; 2292 put_folio: 2293 folio_put(folio); 2294 2295 retry: 2296 xas_reset(&xas); 2297 } 2298 2299 update_start: 2300 nr = folio_batch_count(fbatch); 2301 2302 if (nr) { 2303 folio = fbatch->folios[nr - 1]; 2304 *start = folio_next_index(folio); 2305 } 2306 out: 2307 rcu_read_unlock(); 2308 return folio_batch_count(fbatch); 2309 } 2310 EXPORT_SYMBOL(filemap_get_folios_contig); 2311 2312 /** 2313 * filemap_get_folios_tag - Get a batch of folios matching @tag 2314 * @mapping: The address_space to search 2315 * @start: The starting page index 2316 * @end: The final page index (inclusive) 2317 * @tag: The tag index 2318 * @fbatch: The batch to fill 2319 * 2320 * The first folio may start before @start; if it does, it will contain 2321 * @start. The final folio may extend beyond @end; if it does, it will 2322 * contain @end. The folios have ascending indices. There may be gaps 2323 * between the folios if there are indices which have no folio in the 2324 * page cache. If folios are added to or removed from the page cache 2325 * while this is running, they may or may not be found by this call. 2326 * Only returns folios that are tagged with @tag. 2327 * 2328 * Return: The number of folios found. 2329 * Also update @start to index the next folio for traversal. 2330 */ 2331 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2332 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2333 { 2334 XA_STATE(xas, &mapping->i_pages, *start); 2335 struct folio *folio; 2336 2337 rcu_read_lock(); 2338 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2339 /* 2340 * Shadow entries should never be tagged, but this iteration 2341 * is lockless so there is a window for page reclaim to evict 2342 * a page we saw tagged. Skip over it. 2343 */ 2344 if (xa_is_value(folio)) 2345 continue; 2346 if (!folio_batch_add(fbatch, folio)) { 2347 unsigned long nr = folio_nr_pages(folio); 2348 *start = folio->index + nr; 2349 goto out; 2350 } 2351 } 2352 /* 2353 * We come here when there is no page beyond @end. We take care to not 2354 * overflow the index @start as it confuses some of the callers. This 2355 * breaks the iteration when there is a page at index -1 but that is 2356 * already broke anyway. 2357 */ 2358 if (end == (pgoff_t)-1) 2359 *start = (pgoff_t)-1; 2360 else 2361 *start = end + 1; 2362 out: 2363 rcu_read_unlock(); 2364 2365 return folio_batch_count(fbatch); 2366 } 2367 EXPORT_SYMBOL(filemap_get_folios_tag); 2368 2369 /* 2370 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2371 * a _large_ part of the i/o request. Imagine the worst scenario: 2372 * 2373 * ---R__________________________________________B__________ 2374 * ^ reading here ^ bad block(assume 4k) 2375 * 2376 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2377 * => failing the whole request => read(R) => read(R+1) => 2378 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2379 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2380 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2381 * 2382 * It is going insane. Fix it by quickly scaling down the readahead size. 2383 */ 2384 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2385 { 2386 ra->ra_pages /= 4; 2387 } 2388 2389 /* 2390 * filemap_get_read_batch - Get a batch of folios for read 2391 * 2392 * Get a batch of folios which represent a contiguous range of bytes in 2393 * the file. No exceptional entries will be returned. If @index is in 2394 * the middle of a folio, the entire folio will be returned. The last 2395 * folio in the batch may have the readahead flag set or the uptodate flag 2396 * clear so that the caller can take the appropriate action. 2397 */ 2398 static void filemap_get_read_batch(struct address_space *mapping, 2399 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2400 { 2401 XA_STATE(xas, &mapping->i_pages, index); 2402 struct folio *folio; 2403 2404 rcu_read_lock(); 2405 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2406 if (xas_retry(&xas, folio)) 2407 continue; 2408 if (xas.xa_index > max || xa_is_value(folio)) 2409 break; 2410 if (xa_is_sibling(folio)) 2411 break; 2412 if (!folio_try_get(folio)) 2413 goto retry; 2414 2415 if (unlikely(folio != xas_reload(&xas))) 2416 goto put_folio; 2417 2418 if (!folio_batch_add(fbatch, folio)) 2419 break; 2420 if (!folio_test_uptodate(folio)) 2421 break; 2422 if (folio_test_readahead(folio)) 2423 break; 2424 xas_advance(&xas, folio_next_index(folio) - 1); 2425 continue; 2426 put_folio: 2427 folio_put(folio); 2428 retry: 2429 xas_reset(&xas); 2430 } 2431 rcu_read_unlock(); 2432 } 2433 2434 static int filemap_read_folio(struct file *file, filler_t filler, 2435 struct folio *folio) 2436 { 2437 bool workingset = folio_test_workingset(folio); 2438 unsigned long pflags; 2439 int error; 2440 2441 /* Start the actual read. The read will unlock the page. */ 2442 if (unlikely(workingset)) 2443 psi_memstall_enter(&pflags); 2444 error = filler(file, folio); 2445 if (unlikely(workingset)) 2446 psi_memstall_leave(&pflags); 2447 if (error) 2448 return error; 2449 2450 error = folio_wait_locked_killable(folio); 2451 if (error) 2452 return error; 2453 if (folio_test_uptodate(folio)) 2454 return 0; 2455 if (file) 2456 shrink_readahead_size_eio(&file->f_ra); 2457 return -EIO; 2458 } 2459 2460 static bool filemap_range_uptodate(struct address_space *mapping, 2461 loff_t pos, size_t count, struct folio *folio, 2462 bool need_uptodate) 2463 { 2464 if (folio_test_uptodate(folio)) 2465 return true; 2466 /* pipes can't handle partially uptodate pages */ 2467 if (need_uptodate) 2468 return false; 2469 if (!mapping->a_ops->is_partially_uptodate) 2470 return false; 2471 if (mapping->host->i_blkbits >= folio_shift(folio)) 2472 return false; 2473 2474 if (folio_pos(folio) > pos) { 2475 count -= folio_pos(folio) - pos; 2476 pos = 0; 2477 } else { 2478 pos -= folio_pos(folio); 2479 } 2480 2481 if (pos == 0 && count >= folio_size(folio)) 2482 return false; 2483 2484 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2485 } 2486 2487 static int filemap_update_page(struct kiocb *iocb, 2488 struct address_space *mapping, size_t count, 2489 struct folio *folio, bool need_uptodate) 2490 { 2491 int error; 2492 2493 if (iocb->ki_flags & IOCB_NOWAIT) { 2494 if (!filemap_invalidate_trylock_shared(mapping)) 2495 return -EAGAIN; 2496 } else { 2497 filemap_invalidate_lock_shared(mapping); 2498 } 2499 2500 if (!folio_trylock(folio)) { 2501 error = -EAGAIN; 2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2503 goto unlock_mapping; 2504 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2505 filemap_invalidate_unlock_shared(mapping); 2506 /* 2507 * This is where we usually end up waiting for a 2508 * previously submitted readahead to finish. 2509 */ 2510 folio_put_wait_locked(folio, TASK_KILLABLE); 2511 return AOP_TRUNCATED_PAGE; 2512 } 2513 error = __folio_lock_async(folio, iocb->ki_waitq); 2514 if (error) 2515 goto unlock_mapping; 2516 } 2517 2518 error = AOP_TRUNCATED_PAGE; 2519 if (!folio->mapping) 2520 goto unlock; 2521 2522 error = 0; 2523 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2524 need_uptodate)) 2525 goto unlock; 2526 2527 error = -EAGAIN; 2528 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2529 goto unlock; 2530 2531 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2532 folio); 2533 goto unlock_mapping; 2534 unlock: 2535 folio_unlock(folio); 2536 unlock_mapping: 2537 filemap_invalidate_unlock_shared(mapping); 2538 if (error == AOP_TRUNCATED_PAGE) 2539 folio_put(folio); 2540 return error; 2541 } 2542 2543 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2544 { 2545 struct address_space *mapping = iocb->ki_filp->f_mapping; 2546 struct folio *folio; 2547 int error; 2548 unsigned int min_order = mapping_min_folio_order(mapping); 2549 pgoff_t index; 2550 2551 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2552 return -EAGAIN; 2553 2554 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2555 if (!folio) 2556 return -ENOMEM; 2557 if (iocb->ki_flags & IOCB_DONTCACHE) 2558 __folio_set_dropbehind(folio); 2559 2560 /* 2561 * Protect against truncate / hole punch. Grabbing invalidate_lock 2562 * here assures we cannot instantiate and bring uptodate new 2563 * pagecache folios after evicting page cache during truncate 2564 * and before actually freeing blocks. Note that we could 2565 * release invalidate_lock after inserting the folio into 2566 * the page cache as the locked folio would then be enough to 2567 * synchronize with hole punching. But there are code paths 2568 * such as filemap_update_page() filling in partially uptodate 2569 * pages or ->readahead() that need to hold invalidate_lock 2570 * while mapping blocks for IO so let's hold the lock here as 2571 * well to keep locking rules simple. 2572 */ 2573 filemap_invalidate_lock_shared(mapping); 2574 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2575 error = filemap_add_folio(mapping, folio, index, 2576 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2577 if (error == -EEXIST) 2578 error = AOP_TRUNCATED_PAGE; 2579 if (error) 2580 goto error; 2581 2582 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2583 folio); 2584 if (error) 2585 goto error; 2586 2587 filemap_invalidate_unlock_shared(mapping); 2588 folio_batch_add(fbatch, folio); 2589 return 0; 2590 error: 2591 filemap_invalidate_unlock_shared(mapping); 2592 folio_put(folio); 2593 return error; 2594 } 2595 2596 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2597 struct address_space *mapping, struct folio *folio, 2598 pgoff_t last_index) 2599 { 2600 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2601 2602 if (iocb->ki_flags & IOCB_NOIO) 2603 return -EAGAIN; 2604 if (iocb->ki_flags & IOCB_DONTCACHE) 2605 ractl.dropbehind = 1; 2606 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2607 return 0; 2608 } 2609 2610 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2611 struct folio_batch *fbatch, bool need_uptodate) 2612 { 2613 struct file *filp = iocb->ki_filp; 2614 struct address_space *mapping = filp->f_mapping; 2615 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2616 pgoff_t last_index; 2617 struct folio *folio; 2618 unsigned int flags; 2619 int err = 0; 2620 2621 /* "last_index" is the index of the folio beyond the end of the read */ 2622 last_index = round_up(iocb->ki_pos + count, 2623 mapping_min_folio_nrbytes(mapping)) >> PAGE_SHIFT; 2624 retry: 2625 if (fatal_signal_pending(current)) 2626 return -EINTR; 2627 2628 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2629 if (!folio_batch_count(fbatch)) { 2630 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2631 2632 if (iocb->ki_flags & IOCB_NOIO) 2633 return -EAGAIN; 2634 if (iocb->ki_flags & IOCB_NOWAIT) 2635 flags = memalloc_noio_save(); 2636 if (iocb->ki_flags & IOCB_DONTCACHE) 2637 ractl.dropbehind = 1; 2638 page_cache_sync_ra(&ractl, last_index - index); 2639 if (iocb->ki_flags & IOCB_NOWAIT) 2640 memalloc_noio_restore(flags); 2641 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2642 } 2643 if (!folio_batch_count(fbatch)) { 2644 err = filemap_create_folio(iocb, fbatch); 2645 if (err == AOP_TRUNCATED_PAGE) 2646 goto retry; 2647 return err; 2648 } 2649 2650 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2651 if (folio_test_readahead(folio)) { 2652 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2653 if (err) 2654 goto err; 2655 } 2656 if (!folio_test_uptodate(folio)) { 2657 if (folio_batch_count(fbatch) > 1) { 2658 err = -EAGAIN; 2659 goto err; 2660 } 2661 err = filemap_update_page(iocb, mapping, count, folio, 2662 need_uptodate); 2663 if (err) 2664 goto err; 2665 } 2666 2667 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2668 return 0; 2669 err: 2670 if (err < 0) 2671 folio_put(folio); 2672 if (likely(--fbatch->nr)) 2673 return 0; 2674 if (err == AOP_TRUNCATED_PAGE) 2675 goto retry; 2676 return err; 2677 } 2678 2679 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2680 { 2681 unsigned int shift = folio_shift(folio); 2682 2683 return (pos1 >> shift == pos2 >> shift); 2684 } 2685 2686 static void filemap_end_dropbehind_read(struct folio *folio) 2687 { 2688 if (!folio_test_dropbehind(folio)) 2689 return; 2690 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2691 return; 2692 if (folio_trylock(folio)) { 2693 filemap_end_dropbehind(folio); 2694 folio_unlock(folio); 2695 } 2696 } 2697 2698 /** 2699 * filemap_read - Read data from the page cache. 2700 * @iocb: The iocb to read. 2701 * @iter: Destination for the data. 2702 * @already_read: Number of bytes already read by the caller. 2703 * 2704 * Copies data from the page cache. If the data is not currently present, 2705 * uses the readahead and read_folio address_space operations to fetch it. 2706 * 2707 * Return: Total number of bytes copied, including those already read by 2708 * the caller. If an error happens before any bytes are copied, returns 2709 * a negative error number. 2710 */ 2711 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2712 ssize_t already_read) 2713 { 2714 struct file *filp = iocb->ki_filp; 2715 struct file_ra_state *ra = &filp->f_ra; 2716 struct address_space *mapping = filp->f_mapping; 2717 struct inode *inode = mapping->host; 2718 struct folio_batch fbatch; 2719 int i, error = 0; 2720 bool writably_mapped; 2721 loff_t isize, end_offset; 2722 loff_t last_pos = ra->prev_pos; 2723 2724 if (unlikely(iocb->ki_pos < 0)) 2725 return -EINVAL; 2726 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2727 return 0; 2728 if (unlikely(!iov_iter_count(iter))) 2729 return 0; 2730 2731 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2732 folio_batch_init(&fbatch); 2733 2734 do { 2735 cond_resched(); 2736 2737 /* 2738 * If we've already successfully copied some data, then we 2739 * can no longer safely return -EIOCBQUEUED. Hence mark 2740 * an async read NOWAIT at that point. 2741 */ 2742 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2743 iocb->ki_flags |= IOCB_NOWAIT; 2744 2745 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2746 break; 2747 2748 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2749 if (error < 0) 2750 break; 2751 2752 /* 2753 * i_size must be checked after we know the pages are Uptodate. 2754 * 2755 * Checking i_size after the check allows us to calculate 2756 * the correct value for "nr", which means the zero-filled 2757 * part of the page is not copied back to userspace (unless 2758 * another truncate extends the file - this is desired though). 2759 */ 2760 isize = i_size_read(inode); 2761 if (unlikely(iocb->ki_pos >= isize)) 2762 goto put_folios; 2763 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2764 2765 /* 2766 * Once we start copying data, we don't want to be touching any 2767 * cachelines that might be contended: 2768 */ 2769 writably_mapped = mapping_writably_mapped(mapping); 2770 2771 /* 2772 * When a read accesses the same folio several times, only 2773 * mark it as accessed the first time. 2774 */ 2775 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2776 fbatch.folios[0])) 2777 folio_mark_accessed(fbatch.folios[0]); 2778 2779 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2780 struct folio *folio = fbatch.folios[i]; 2781 size_t fsize = folio_size(folio); 2782 size_t offset = iocb->ki_pos & (fsize - 1); 2783 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2784 fsize - offset); 2785 size_t copied; 2786 2787 if (end_offset < folio_pos(folio)) 2788 break; 2789 if (i > 0) 2790 folio_mark_accessed(folio); 2791 /* 2792 * If users can be writing to this folio using arbitrary 2793 * virtual addresses, take care of potential aliasing 2794 * before reading the folio on the kernel side. 2795 */ 2796 if (writably_mapped) 2797 flush_dcache_folio(folio); 2798 2799 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2800 2801 already_read += copied; 2802 iocb->ki_pos += copied; 2803 last_pos = iocb->ki_pos; 2804 2805 if (copied < bytes) { 2806 error = -EFAULT; 2807 break; 2808 } 2809 } 2810 put_folios: 2811 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2812 struct folio *folio = fbatch.folios[i]; 2813 2814 filemap_end_dropbehind_read(folio); 2815 folio_put(folio); 2816 } 2817 folio_batch_init(&fbatch); 2818 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2819 2820 file_accessed(filp); 2821 ra->prev_pos = last_pos; 2822 return already_read ? already_read : error; 2823 } 2824 EXPORT_SYMBOL_GPL(filemap_read); 2825 2826 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2827 { 2828 struct address_space *mapping = iocb->ki_filp->f_mapping; 2829 loff_t pos = iocb->ki_pos; 2830 loff_t end = pos + count - 1; 2831 2832 if (iocb->ki_flags & IOCB_NOWAIT) { 2833 if (filemap_range_needs_writeback(mapping, pos, end)) 2834 return -EAGAIN; 2835 return 0; 2836 } 2837 2838 return filemap_write_and_wait_range(mapping, pos, end); 2839 } 2840 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2841 2842 int filemap_invalidate_pages(struct address_space *mapping, 2843 loff_t pos, loff_t end, bool nowait) 2844 { 2845 int ret; 2846 2847 if (nowait) { 2848 /* we could block if there are any pages in the range */ 2849 if (filemap_range_has_page(mapping, pos, end)) 2850 return -EAGAIN; 2851 } else { 2852 ret = filemap_write_and_wait_range(mapping, pos, end); 2853 if (ret) 2854 return ret; 2855 } 2856 2857 /* 2858 * After a write we want buffered reads to be sure to go to disk to get 2859 * the new data. We invalidate clean cached page from the region we're 2860 * about to write. We do this *before* the write so that we can return 2861 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2862 */ 2863 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2864 end >> PAGE_SHIFT); 2865 } 2866 2867 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2868 { 2869 struct address_space *mapping = iocb->ki_filp->f_mapping; 2870 2871 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2872 iocb->ki_pos + count - 1, 2873 iocb->ki_flags & IOCB_NOWAIT); 2874 } 2875 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2876 2877 /** 2878 * generic_file_read_iter - generic filesystem read routine 2879 * @iocb: kernel I/O control block 2880 * @iter: destination for the data read 2881 * 2882 * This is the "read_iter()" routine for all filesystems 2883 * that can use the page cache directly. 2884 * 2885 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2886 * be returned when no data can be read without waiting for I/O requests 2887 * to complete; it doesn't prevent readahead. 2888 * 2889 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2890 * requests shall be made for the read or for readahead. When no data 2891 * can be read, -EAGAIN shall be returned. When readahead would be 2892 * triggered, a partial, possibly empty read shall be returned. 2893 * 2894 * Return: 2895 * * number of bytes copied, even for partial reads 2896 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2897 */ 2898 ssize_t 2899 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2900 { 2901 size_t count = iov_iter_count(iter); 2902 ssize_t retval = 0; 2903 2904 if (!count) 2905 return 0; /* skip atime */ 2906 2907 if (iocb->ki_flags & IOCB_DIRECT) { 2908 struct file *file = iocb->ki_filp; 2909 struct address_space *mapping = file->f_mapping; 2910 struct inode *inode = mapping->host; 2911 2912 retval = kiocb_write_and_wait(iocb, count); 2913 if (retval < 0) 2914 return retval; 2915 file_accessed(file); 2916 2917 retval = mapping->a_ops->direct_IO(iocb, iter); 2918 if (retval >= 0) { 2919 iocb->ki_pos += retval; 2920 count -= retval; 2921 } 2922 if (retval != -EIOCBQUEUED) 2923 iov_iter_revert(iter, count - iov_iter_count(iter)); 2924 2925 /* 2926 * Btrfs can have a short DIO read if we encounter 2927 * compressed extents, so if there was an error, or if 2928 * we've already read everything we wanted to, or if 2929 * there was a short read because we hit EOF, go ahead 2930 * and return. Otherwise fallthrough to buffered io for 2931 * the rest of the read. Buffered reads will not work for 2932 * DAX files, so don't bother trying. 2933 */ 2934 if (retval < 0 || !count || IS_DAX(inode)) 2935 return retval; 2936 if (iocb->ki_pos >= i_size_read(inode)) 2937 return retval; 2938 } 2939 2940 return filemap_read(iocb, iter, retval); 2941 } 2942 EXPORT_SYMBOL(generic_file_read_iter); 2943 2944 /* 2945 * Splice subpages from a folio into a pipe. 2946 */ 2947 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2948 struct folio *folio, loff_t fpos, size_t size) 2949 { 2950 struct page *page; 2951 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2952 2953 page = folio_page(folio, offset / PAGE_SIZE); 2954 size = min(size, folio_size(folio) - offset); 2955 offset %= PAGE_SIZE; 2956 2957 while (spliced < size && !pipe_is_full(pipe)) { 2958 struct pipe_buffer *buf = pipe_head_buf(pipe); 2959 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2960 2961 *buf = (struct pipe_buffer) { 2962 .ops = &page_cache_pipe_buf_ops, 2963 .page = page, 2964 .offset = offset, 2965 .len = part, 2966 }; 2967 folio_get(folio); 2968 pipe->head++; 2969 page++; 2970 spliced += part; 2971 offset = 0; 2972 } 2973 2974 return spliced; 2975 } 2976 2977 /** 2978 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2979 * @in: The file to read from 2980 * @ppos: Pointer to the file position to read from 2981 * @pipe: The pipe to splice into 2982 * @len: The amount to splice 2983 * @flags: The SPLICE_F_* flags 2984 * 2985 * This function gets folios from a file's pagecache and splices them into the 2986 * pipe. Readahead will be called as necessary to fill more folios. This may 2987 * be used for blockdevs also. 2988 * 2989 * Return: On success, the number of bytes read will be returned and *@ppos 2990 * will be updated if appropriate; 0 will be returned if there is no more data 2991 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2992 * other negative error code will be returned on error. A short read may occur 2993 * if the pipe has insufficient space, we reach the end of the data or we hit a 2994 * hole. 2995 */ 2996 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2997 struct pipe_inode_info *pipe, 2998 size_t len, unsigned int flags) 2999 { 3000 struct folio_batch fbatch; 3001 struct kiocb iocb; 3002 size_t total_spliced = 0, used, npages; 3003 loff_t isize, end_offset; 3004 bool writably_mapped; 3005 int i, error = 0; 3006 3007 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 3008 return 0; 3009 3010 init_sync_kiocb(&iocb, in); 3011 iocb.ki_pos = *ppos; 3012 3013 /* Work out how much data we can actually add into the pipe */ 3014 used = pipe_buf_usage(pipe); 3015 npages = max_t(ssize_t, pipe->max_usage - used, 0); 3016 len = min_t(size_t, len, npages * PAGE_SIZE); 3017 3018 folio_batch_init(&fbatch); 3019 3020 do { 3021 cond_resched(); 3022 3023 if (*ppos >= i_size_read(in->f_mapping->host)) 3024 break; 3025 3026 iocb.ki_pos = *ppos; 3027 error = filemap_get_pages(&iocb, len, &fbatch, true); 3028 if (error < 0) 3029 break; 3030 3031 /* 3032 * i_size must be checked after we know the pages are Uptodate. 3033 * 3034 * Checking i_size after the check allows us to calculate 3035 * the correct value for "nr", which means the zero-filled 3036 * part of the page is not copied back to userspace (unless 3037 * another truncate extends the file - this is desired though). 3038 */ 3039 isize = i_size_read(in->f_mapping->host); 3040 if (unlikely(*ppos >= isize)) 3041 break; 3042 end_offset = min_t(loff_t, isize, *ppos + len); 3043 3044 /* 3045 * Once we start copying data, we don't want to be touching any 3046 * cachelines that might be contended: 3047 */ 3048 writably_mapped = mapping_writably_mapped(in->f_mapping); 3049 3050 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3051 struct folio *folio = fbatch.folios[i]; 3052 size_t n; 3053 3054 if (folio_pos(folio) >= end_offset) 3055 goto out; 3056 folio_mark_accessed(folio); 3057 3058 /* 3059 * If users can be writing to this folio using arbitrary 3060 * virtual addresses, take care of potential aliasing 3061 * before reading the folio on the kernel side. 3062 */ 3063 if (writably_mapped) 3064 flush_dcache_folio(folio); 3065 3066 n = min_t(loff_t, len, isize - *ppos); 3067 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3068 if (!n) 3069 goto out; 3070 len -= n; 3071 total_spliced += n; 3072 *ppos += n; 3073 in->f_ra.prev_pos = *ppos; 3074 if (pipe_is_full(pipe)) 3075 goto out; 3076 } 3077 3078 folio_batch_release(&fbatch); 3079 } while (len); 3080 3081 out: 3082 folio_batch_release(&fbatch); 3083 file_accessed(in); 3084 3085 return total_spliced ? total_spliced : error; 3086 } 3087 EXPORT_SYMBOL(filemap_splice_read); 3088 3089 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3090 struct address_space *mapping, struct folio *folio, 3091 loff_t start, loff_t end, bool seek_data) 3092 { 3093 const struct address_space_operations *ops = mapping->a_ops; 3094 size_t offset, bsz = i_blocksize(mapping->host); 3095 3096 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3097 return seek_data ? start : end; 3098 if (!ops->is_partially_uptodate) 3099 return seek_data ? end : start; 3100 3101 xas_pause(xas); 3102 rcu_read_unlock(); 3103 folio_lock(folio); 3104 if (unlikely(folio->mapping != mapping)) 3105 goto unlock; 3106 3107 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3108 3109 do { 3110 if (ops->is_partially_uptodate(folio, offset, bsz) == 3111 seek_data) 3112 break; 3113 start = (start + bsz) & ~((u64)bsz - 1); 3114 offset += bsz; 3115 } while (offset < folio_size(folio)); 3116 unlock: 3117 folio_unlock(folio); 3118 rcu_read_lock(); 3119 return start; 3120 } 3121 3122 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3123 { 3124 if (xa_is_value(folio)) 3125 return PAGE_SIZE << xas_get_order(xas); 3126 return folio_size(folio); 3127 } 3128 3129 /** 3130 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3131 * @mapping: Address space to search. 3132 * @start: First byte to consider. 3133 * @end: Limit of search (exclusive). 3134 * @whence: Either SEEK_HOLE or SEEK_DATA. 3135 * 3136 * If the page cache knows which blocks contain holes and which blocks 3137 * contain data, your filesystem can use this function to implement 3138 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3139 * entirely memory-based such as tmpfs, and filesystems which support 3140 * unwritten extents. 3141 * 3142 * Return: The requested offset on success, or -ENXIO if @whence specifies 3143 * SEEK_DATA and there is no data after @start. There is an implicit hole 3144 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3145 * and @end contain data. 3146 */ 3147 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3148 loff_t end, int whence) 3149 { 3150 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3151 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3152 bool seek_data = (whence == SEEK_DATA); 3153 struct folio *folio; 3154 3155 if (end <= start) 3156 return -ENXIO; 3157 3158 rcu_read_lock(); 3159 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3160 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3161 size_t seek_size; 3162 3163 if (start < pos) { 3164 if (!seek_data) 3165 goto unlock; 3166 start = pos; 3167 } 3168 3169 seek_size = seek_folio_size(&xas, folio); 3170 pos = round_up((u64)pos + 1, seek_size); 3171 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3172 seek_data); 3173 if (start < pos) 3174 goto unlock; 3175 if (start >= end) 3176 break; 3177 if (seek_size > PAGE_SIZE) 3178 xas_set(&xas, pos >> PAGE_SHIFT); 3179 if (!xa_is_value(folio)) 3180 folio_put(folio); 3181 } 3182 if (seek_data) 3183 start = -ENXIO; 3184 unlock: 3185 rcu_read_unlock(); 3186 if (folio && !xa_is_value(folio)) 3187 folio_put(folio); 3188 if (start > end) 3189 return end; 3190 return start; 3191 } 3192 3193 #ifdef CONFIG_MMU 3194 #define MMAP_LOTSAMISS (100) 3195 /* 3196 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3197 * @vmf - the vm_fault for this fault. 3198 * @folio - the folio to lock. 3199 * @fpin - the pointer to the file we may pin (or is already pinned). 3200 * 3201 * This works similar to lock_folio_or_retry in that it can drop the 3202 * mmap_lock. It differs in that it actually returns the folio locked 3203 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3204 * to drop the mmap_lock then fpin will point to the pinned file and 3205 * needs to be fput()'ed at a later point. 3206 */ 3207 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3208 struct file **fpin) 3209 { 3210 if (folio_trylock(folio)) 3211 return 1; 3212 3213 /* 3214 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3215 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3216 * is supposed to work. We have way too many special cases.. 3217 */ 3218 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3219 return 0; 3220 3221 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3222 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3223 if (__folio_lock_killable(folio)) { 3224 /* 3225 * We didn't have the right flags to drop the 3226 * fault lock, but all fault_handlers only check 3227 * for fatal signals if we return VM_FAULT_RETRY, 3228 * so we need to drop the fault lock here and 3229 * return 0 if we don't have a fpin. 3230 */ 3231 if (*fpin == NULL) 3232 release_fault_lock(vmf); 3233 return 0; 3234 } 3235 } else 3236 __folio_lock(folio); 3237 3238 return 1; 3239 } 3240 3241 /* 3242 * Synchronous readahead happens when we don't even find a page in the page 3243 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3244 * to drop the mmap sem we return the file that was pinned in order for us to do 3245 * that. If we didn't pin a file then we return NULL. The file that is 3246 * returned needs to be fput()'ed when we're done with it. 3247 */ 3248 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3249 { 3250 struct file *file = vmf->vma->vm_file; 3251 struct file_ra_state *ra = &file->f_ra; 3252 struct address_space *mapping = file->f_mapping; 3253 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3254 struct file *fpin = NULL; 3255 vm_flags_t vm_flags = vmf->vma->vm_flags; 3256 unsigned short mmap_miss; 3257 3258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3259 /* Use the readahead code, even if readahead is disabled */ 3260 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3261 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3262 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3263 ra->size = HPAGE_PMD_NR; 3264 /* 3265 * Fetch two PMD folios, so we get the chance to actually 3266 * readahead, unless we've been told not to. 3267 */ 3268 if (!(vm_flags & VM_RAND_READ)) 3269 ra->size *= 2; 3270 ra->async_size = HPAGE_PMD_NR; 3271 ra->order = HPAGE_PMD_ORDER; 3272 page_cache_ra_order(&ractl, ra); 3273 return fpin; 3274 } 3275 #endif 3276 3277 /* 3278 * If we don't want any read-ahead, don't bother. VM_EXEC case below is 3279 * already intended for random access. 3280 */ 3281 if ((vm_flags & (VM_RAND_READ | VM_EXEC)) == VM_RAND_READ) 3282 return fpin; 3283 if (!ra->ra_pages) 3284 return fpin; 3285 3286 if (vm_flags & VM_SEQ_READ) { 3287 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3288 page_cache_sync_ra(&ractl, ra->ra_pages); 3289 return fpin; 3290 } 3291 3292 /* Avoid banging the cache line if not needed */ 3293 mmap_miss = READ_ONCE(ra->mmap_miss); 3294 if (mmap_miss < MMAP_LOTSAMISS * 10) 3295 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3296 3297 /* 3298 * Do we miss much more than hit in this file? If so, 3299 * stop bothering with read-ahead. It will only hurt. 3300 */ 3301 if (mmap_miss > MMAP_LOTSAMISS) 3302 return fpin; 3303 3304 if (vm_flags & VM_EXEC) { 3305 /* 3306 * Allow arch to request a preferred minimum folio order for 3307 * executable memory. This can often be beneficial to 3308 * performance if (e.g.) arm64 can contpte-map the folio. 3309 * Executable memory rarely benefits from readahead, due to its 3310 * random access nature, so set async_size to 0. 3311 * 3312 * Limit to the boundaries of the VMA to avoid reading in any 3313 * pad that might exist between sections, which would be a waste 3314 * of memory. 3315 */ 3316 struct vm_area_struct *vma = vmf->vma; 3317 unsigned long start = vma->vm_pgoff; 3318 unsigned long end = start + vma_pages(vma); 3319 unsigned long ra_end; 3320 3321 ra->order = exec_folio_order(); 3322 ra->start = round_down(vmf->pgoff, 1UL << ra->order); 3323 ra->start = max(ra->start, start); 3324 ra_end = round_up(ra->start + ra->ra_pages, 1UL << ra->order); 3325 ra_end = min(ra_end, end); 3326 ra->size = ra_end - ra->start; 3327 ra->async_size = 0; 3328 } else { 3329 /* 3330 * mmap read-around 3331 */ 3332 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3333 ra->size = ra->ra_pages; 3334 ra->async_size = ra->ra_pages / 4; 3335 ra->order = 0; 3336 } 3337 3338 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3339 ractl._index = ra->start; 3340 page_cache_ra_order(&ractl, ra); 3341 return fpin; 3342 } 3343 3344 /* 3345 * Asynchronous readahead happens when we find the page and PG_readahead, 3346 * so we want to possibly extend the readahead further. We return the file that 3347 * was pinned if we have to drop the mmap_lock in order to do IO. 3348 */ 3349 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3350 struct folio *folio) 3351 { 3352 struct file *file = vmf->vma->vm_file; 3353 struct file_ra_state *ra = &file->f_ra; 3354 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3355 struct file *fpin = NULL; 3356 unsigned short mmap_miss; 3357 3358 /* If we don't want any read-ahead, don't bother */ 3359 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3360 return fpin; 3361 3362 /* 3363 * If the folio is locked, we're likely racing against another fault. 3364 * Don't touch the mmap_miss counter to avoid decreasing it multiple 3365 * times for a single folio and break the balance with mmap_miss 3366 * increase in do_sync_mmap_readahead(). 3367 */ 3368 if (likely(!folio_test_locked(folio))) { 3369 mmap_miss = READ_ONCE(ra->mmap_miss); 3370 if (mmap_miss) 3371 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3372 } 3373 3374 if (folio_test_readahead(folio)) { 3375 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3376 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3377 } 3378 return fpin; 3379 } 3380 3381 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3382 { 3383 struct vm_area_struct *vma = vmf->vma; 3384 vm_fault_t ret = 0; 3385 pte_t *ptep; 3386 3387 /* 3388 * We might have COW'ed a pagecache folio and might now have an mlocked 3389 * anon folio mapped. The original pagecache folio is not mlocked and 3390 * might have been evicted. During a read+clear/modify/write update of 3391 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3392 * temporarily clear the PTE under PT lock and might detect it here as 3393 * "none" when not holding the PT lock. 3394 * 3395 * Not rechecking the PTE under PT lock could result in an unexpected 3396 * major fault in an mlock'ed region. Recheck only for this special 3397 * scenario while holding the PT lock, to not degrade non-mlocked 3398 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3399 * the number of times we hold PT lock. 3400 */ 3401 if (!(vma->vm_flags & VM_LOCKED)) 3402 return 0; 3403 3404 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3405 return 0; 3406 3407 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3408 &vmf->ptl); 3409 if (unlikely(!ptep)) 3410 return VM_FAULT_NOPAGE; 3411 3412 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3413 ret = VM_FAULT_NOPAGE; 3414 } else { 3415 spin_lock(vmf->ptl); 3416 if (unlikely(!pte_none(ptep_get(ptep)))) 3417 ret = VM_FAULT_NOPAGE; 3418 spin_unlock(vmf->ptl); 3419 } 3420 pte_unmap(ptep); 3421 return ret; 3422 } 3423 3424 /** 3425 * filemap_fault - read in file data for page fault handling 3426 * @vmf: struct vm_fault containing details of the fault 3427 * 3428 * filemap_fault() is invoked via the vma operations vector for a 3429 * mapped memory region to read in file data during a page fault. 3430 * 3431 * The goto's are kind of ugly, but this streamlines the normal case of having 3432 * it in the page cache, and handles the special cases reasonably without 3433 * having a lot of duplicated code. 3434 * 3435 * vma->vm_mm->mmap_lock must be held on entry. 3436 * 3437 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3438 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3439 * 3440 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3441 * has not been released. 3442 * 3443 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3444 * 3445 * Return: bitwise-OR of %VM_FAULT_ codes. 3446 */ 3447 vm_fault_t filemap_fault(struct vm_fault *vmf) 3448 { 3449 int error; 3450 struct file *file = vmf->vma->vm_file; 3451 struct file *fpin = NULL; 3452 struct address_space *mapping = file->f_mapping; 3453 struct inode *inode = mapping->host; 3454 pgoff_t max_idx, index = vmf->pgoff; 3455 struct folio *folio; 3456 vm_fault_t ret = 0; 3457 bool mapping_locked = false; 3458 3459 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3460 if (unlikely(index >= max_idx)) 3461 return VM_FAULT_SIGBUS; 3462 3463 trace_mm_filemap_fault(mapping, index); 3464 3465 /* 3466 * Do we have something in the page cache already? 3467 */ 3468 folio = filemap_get_folio(mapping, index); 3469 if (likely(!IS_ERR(folio))) { 3470 /* 3471 * We found the page, so try async readahead before waiting for 3472 * the lock. 3473 */ 3474 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3475 fpin = do_async_mmap_readahead(vmf, folio); 3476 if (unlikely(!folio_test_uptodate(folio))) { 3477 filemap_invalidate_lock_shared(mapping); 3478 mapping_locked = true; 3479 } 3480 } else { 3481 ret = filemap_fault_recheck_pte_none(vmf); 3482 if (unlikely(ret)) 3483 return ret; 3484 3485 /* No page in the page cache at all */ 3486 count_vm_event(PGMAJFAULT); 3487 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3488 ret = VM_FAULT_MAJOR; 3489 fpin = do_sync_mmap_readahead(vmf); 3490 retry_find: 3491 /* 3492 * See comment in filemap_create_folio() why we need 3493 * invalidate_lock 3494 */ 3495 if (!mapping_locked) { 3496 filemap_invalidate_lock_shared(mapping); 3497 mapping_locked = true; 3498 } 3499 folio = __filemap_get_folio(mapping, index, 3500 FGP_CREAT|FGP_FOR_MMAP, 3501 vmf->gfp_mask); 3502 if (IS_ERR(folio)) { 3503 if (fpin) 3504 goto out_retry; 3505 filemap_invalidate_unlock_shared(mapping); 3506 return VM_FAULT_OOM; 3507 } 3508 } 3509 3510 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3511 goto out_retry; 3512 3513 /* Did it get truncated? */ 3514 if (unlikely(folio->mapping != mapping)) { 3515 folio_unlock(folio); 3516 folio_put(folio); 3517 goto retry_find; 3518 } 3519 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3520 3521 /* 3522 * We have a locked folio in the page cache, now we need to check 3523 * that it's up-to-date. If not, it is going to be due to an error, 3524 * or because readahead was otherwise unable to retrieve it. 3525 */ 3526 if (unlikely(!folio_test_uptodate(folio))) { 3527 /* 3528 * If the invalidate lock is not held, the folio was in cache 3529 * and uptodate and now it is not. Strange but possible since we 3530 * didn't hold the page lock all the time. Let's drop 3531 * everything, get the invalidate lock and try again. 3532 */ 3533 if (!mapping_locked) { 3534 folio_unlock(folio); 3535 folio_put(folio); 3536 goto retry_find; 3537 } 3538 3539 /* 3540 * OK, the folio is really not uptodate. This can be because the 3541 * VMA has the VM_RAND_READ flag set, or because an error 3542 * arose. Let's read it in directly. 3543 */ 3544 goto page_not_uptodate; 3545 } 3546 3547 /* 3548 * We've made it this far and we had to drop our mmap_lock, now is the 3549 * time to return to the upper layer and have it re-find the vma and 3550 * redo the fault. 3551 */ 3552 if (fpin) { 3553 folio_unlock(folio); 3554 goto out_retry; 3555 } 3556 if (mapping_locked) 3557 filemap_invalidate_unlock_shared(mapping); 3558 3559 /* 3560 * Found the page and have a reference on it. 3561 * We must recheck i_size under page lock. 3562 */ 3563 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3564 if (unlikely(index >= max_idx)) { 3565 folio_unlock(folio); 3566 folio_put(folio); 3567 return VM_FAULT_SIGBUS; 3568 } 3569 3570 vmf->page = folio_file_page(folio, index); 3571 return ret | VM_FAULT_LOCKED; 3572 3573 page_not_uptodate: 3574 /* 3575 * Umm, take care of errors if the page isn't up-to-date. 3576 * Try to re-read it _once_. We do this synchronously, 3577 * because there really aren't any performance issues here 3578 * and we need to check for errors. 3579 */ 3580 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3581 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3582 if (fpin) 3583 goto out_retry; 3584 folio_put(folio); 3585 3586 if (!error || error == AOP_TRUNCATED_PAGE) 3587 goto retry_find; 3588 filemap_invalidate_unlock_shared(mapping); 3589 3590 return VM_FAULT_SIGBUS; 3591 3592 out_retry: 3593 /* 3594 * We dropped the mmap_lock, we need to return to the fault handler to 3595 * re-find the vma and come back and find our hopefully still populated 3596 * page. 3597 */ 3598 if (!IS_ERR(folio)) 3599 folio_put(folio); 3600 if (mapping_locked) 3601 filemap_invalidate_unlock_shared(mapping); 3602 if (fpin) 3603 fput(fpin); 3604 return ret | VM_FAULT_RETRY; 3605 } 3606 EXPORT_SYMBOL(filemap_fault); 3607 3608 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3609 pgoff_t start) 3610 { 3611 struct mm_struct *mm = vmf->vma->vm_mm; 3612 3613 /* Huge page is mapped? No need to proceed. */ 3614 if (pmd_trans_huge(*vmf->pmd)) { 3615 folio_unlock(folio); 3616 folio_put(folio); 3617 return true; 3618 } 3619 3620 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3621 struct page *page = folio_file_page(folio, start); 3622 vm_fault_t ret = do_set_pmd(vmf, folio, page); 3623 if (!ret) { 3624 /* The page is mapped successfully, reference consumed. */ 3625 folio_unlock(folio); 3626 return true; 3627 } 3628 } 3629 3630 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3631 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3632 3633 return false; 3634 } 3635 3636 static struct folio *next_uptodate_folio(struct xa_state *xas, 3637 struct address_space *mapping, pgoff_t end_pgoff) 3638 { 3639 struct folio *folio = xas_next_entry(xas, end_pgoff); 3640 unsigned long max_idx; 3641 3642 do { 3643 if (!folio) 3644 return NULL; 3645 if (xas_retry(xas, folio)) 3646 continue; 3647 if (xa_is_value(folio)) 3648 continue; 3649 if (!folio_try_get(folio)) 3650 continue; 3651 if (folio_test_locked(folio)) 3652 goto skip; 3653 /* Has the page moved or been split? */ 3654 if (unlikely(folio != xas_reload(xas))) 3655 goto skip; 3656 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3657 goto skip; 3658 if (!folio_trylock(folio)) 3659 goto skip; 3660 if (folio->mapping != mapping) 3661 goto unlock; 3662 if (!folio_test_uptodate(folio)) 3663 goto unlock; 3664 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3665 if (xas->xa_index >= max_idx) 3666 goto unlock; 3667 return folio; 3668 unlock: 3669 folio_unlock(folio); 3670 skip: 3671 folio_put(folio); 3672 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3673 3674 return NULL; 3675 } 3676 3677 /* 3678 * Map page range [start_page, start_page + nr_pages) of folio. 3679 * start_page is gotten from start by folio_page(folio, start) 3680 */ 3681 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3682 struct folio *folio, unsigned long start, 3683 unsigned long addr, unsigned int nr_pages, 3684 unsigned long *rss, unsigned short *mmap_miss) 3685 { 3686 unsigned int ref_from_caller = 1; 3687 vm_fault_t ret = 0; 3688 struct page *page = folio_page(folio, start); 3689 unsigned int count = 0; 3690 pte_t *old_ptep = vmf->pte; 3691 unsigned long addr0; 3692 3693 /* 3694 * Map the large folio fully where possible. 3695 * 3696 * The folio must not cross VMA or page table boundary. 3697 */ 3698 addr0 = addr - start * PAGE_SIZE; 3699 if (folio_within_vma(folio, vmf->vma) && 3700 (addr0 & PMD_MASK) == ((addr0 + folio_size(folio) - 1) & PMD_MASK)) { 3701 vmf->pte -= start; 3702 page -= start; 3703 addr = addr0; 3704 nr_pages = folio_nr_pages(folio); 3705 } 3706 3707 do { 3708 if (PageHWPoison(page + count)) 3709 goto skip; 3710 3711 /* 3712 * If there are too many folios that are recently evicted 3713 * in a file, they will probably continue to be evicted. 3714 * In such situation, read-ahead is only a waste of IO. 3715 * Don't decrease mmap_miss in this scenario to make sure 3716 * we can stop read-ahead. 3717 */ 3718 if (!folio_test_workingset(folio)) 3719 (*mmap_miss)++; 3720 3721 /* 3722 * NOTE: If there're PTE markers, we'll leave them to be 3723 * handled in the specific fault path, and it'll prohibit the 3724 * fault-around logic. 3725 */ 3726 if (!pte_none(ptep_get(&vmf->pte[count]))) 3727 goto skip; 3728 3729 count++; 3730 continue; 3731 skip: 3732 if (count) { 3733 set_pte_range(vmf, folio, page, count, addr); 3734 *rss += count; 3735 folio_ref_add(folio, count - ref_from_caller); 3736 ref_from_caller = 0; 3737 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3738 ret = VM_FAULT_NOPAGE; 3739 } 3740 3741 count++; 3742 page += count; 3743 vmf->pte += count; 3744 addr += count * PAGE_SIZE; 3745 count = 0; 3746 } while (--nr_pages > 0); 3747 3748 if (count) { 3749 set_pte_range(vmf, folio, page, count, addr); 3750 *rss += count; 3751 folio_ref_add(folio, count - ref_from_caller); 3752 ref_from_caller = 0; 3753 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3754 ret = VM_FAULT_NOPAGE; 3755 } 3756 3757 vmf->pte = old_ptep; 3758 if (ref_from_caller) 3759 /* Locked folios cannot get truncated. */ 3760 folio_ref_dec(folio); 3761 3762 return ret; 3763 } 3764 3765 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3766 struct folio *folio, unsigned long addr, 3767 unsigned long *rss, unsigned short *mmap_miss) 3768 { 3769 vm_fault_t ret = 0; 3770 struct page *page = &folio->page; 3771 3772 if (PageHWPoison(page)) 3773 goto out; 3774 3775 /* See comment of filemap_map_folio_range() */ 3776 if (!folio_test_workingset(folio)) 3777 (*mmap_miss)++; 3778 3779 /* 3780 * NOTE: If there're PTE markers, we'll leave them to be 3781 * handled in the specific fault path, and it'll prohibit 3782 * the fault-around logic. 3783 */ 3784 if (!pte_none(ptep_get(vmf->pte))) 3785 goto out; 3786 3787 if (vmf->address == addr) 3788 ret = VM_FAULT_NOPAGE; 3789 3790 set_pte_range(vmf, folio, page, 1, addr); 3791 (*rss)++; 3792 return ret; 3793 3794 out: 3795 /* Locked folios cannot get truncated. */ 3796 folio_ref_dec(folio); 3797 return ret; 3798 } 3799 3800 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3801 pgoff_t start_pgoff, pgoff_t end_pgoff) 3802 { 3803 struct vm_area_struct *vma = vmf->vma; 3804 struct file *file = vma->vm_file; 3805 struct address_space *mapping = file->f_mapping; 3806 pgoff_t file_end, last_pgoff = start_pgoff; 3807 unsigned long addr; 3808 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3809 struct folio *folio; 3810 vm_fault_t ret = 0; 3811 unsigned long rss = 0; 3812 unsigned int nr_pages = 0, folio_type; 3813 unsigned short mmap_miss = 0, mmap_miss_saved; 3814 3815 rcu_read_lock(); 3816 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3817 if (!folio) 3818 goto out; 3819 3820 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3821 ret = VM_FAULT_NOPAGE; 3822 goto out; 3823 } 3824 3825 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3826 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3827 if (!vmf->pte) { 3828 folio_unlock(folio); 3829 folio_put(folio); 3830 goto out; 3831 } 3832 3833 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3834 if (end_pgoff > file_end) 3835 end_pgoff = file_end; 3836 3837 folio_type = mm_counter_file(folio); 3838 do { 3839 unsigned long end; 3840 3841 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3842 vmf->pte += xas.xa_index - last_pgoff; 3843 last_pgoff = xas.xa_index; 3844 end = folio_next_index(folio) - 1; 3845 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3846 3847 if (!folio_test_large(folio)) 3848 ret |= filemap_map_order0_folio(vmf, 3849 folio, addr, &rss, &mmap_miss); 3850 else 3851 ret |= filemap_map_folio_range(vmf, folio, 3852 xas.xa_index - folio->index, addr, 3853 nr_pages, &rss, &mmap_miss); 3854 3855 folio_unlock(folio); 3856 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3857 add_mm_counter(vma->vm_mm, folio_type, rss); 3858 pte_unmap_unlock(vmf->pte, vmf->ptl); 3859 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3860 out: 3861 rcu_read_unlock(); 3862 3863 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3864 if (mmap_miss >= mmap_miss_saved) 3865 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3866 else 3867 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3868 3869 return ret; 3870 } 3871 EXPORT_SYMBOL(filemap_map_pages); 3872 3873 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3874 { 3875 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3876 struct folio *folio = page_folio(vmf->page); 3877 vm_fault_t ret = VM_FAULT_LOCKED; 3878 3879 sb_start_pagefault(mapping->host->i_sb); 3880 file_update_time(vmf->vma->vm_file); 3881 folio_lock(folio); 3882 if (folio->mapping != mapping) { 3883 folio_unlock(folio); 3884 ret = VM_FAULT_NOPAGE; 3885 goto out; 3886 } 3887 /* 3888 * We mark the folio dirty already here so that when freeze is in 3889 * progress, we are guaranteed that writeback during freezing will 3890 * see the dirty folio and writeprotect it again. 3891 */ 3892 folio_mark_dirty(folio); 3893 folio_wait_stable(folio); 3894 out: 3895 sb_end_pagefault(mapping->host->i_sb); 3896 return ret; 3897 } 3898 3899 const struct vm_operations_struct generic_file_vm_ops = { 3900 .fault = filemap_fault, 3901 .map_pages = filemap_map_pages, 3902 .page_mkwrite = filemap_page_mkwrite, 3903 }; 3904 3905 /* This is used for a general mmap of a disk file */ 3906 3907 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3908 { 3909 struct address_space *mapping = file->f_mapping; 3910 3911 if (!mapping->a_ops->read_folio) 3912 return -ENOEXEC; 3913 file_accessed(file); 3914 vma->vm_ops = &generic_file_vm_ops; 3915 return 0; 3916 } 3917 3918 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3919 { 3920 struct file *file = desc->file; 3921 struct address_space *mapping = file->f_mapping; 3922 3923 if (!mapping->a_ops->read_folio) 3924 return -ENOEXEC; 3925 file_accessed(file); 3926 desc->vm_ops = &generic_file_vm_ops; 3927 return 0; 3928 } 3929 3930 /* 3931 * This is for filesystems which do not implement ->writepage. 3932 */ 3933 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3934 { 3935 if (vma_is_shared_maywrite(vma)) 3936 return -EINVAL; 3937 return generic_file_mmap(file, vma); 3938 } 3939 3940 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 3941 { 3942 if (is_shared_maywrite(desc->vm_flags)) 3943 return -EINVAL; 3944 return generic_file_mmap_prepare(desc); 3945 } 3946 #else 3947 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3948 { 3949 return VM_FAULT_SIGBUS; 3950 } 3951 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3952 { 3953 return -ENOSYS; 3954 } 3955 int generic_file_mmap_prepare(struct vm_area_desc *desc) 3956 { 3957 return -ENOSYS; 3958 } 3959 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3960 { 3961 return -ENOSYS; 3962 } 3963 int generic_file_readonly_mmap_prepare(struct vm_area_desc *desc) 3964 { 3965 return -ENOSYS; 3966 } 3967 #endif /* CONFIG_MMU */ 3968 3969 EXPORT_SYMBOL(filemap_page_mkwrite); 3970 EXPORT_SYMBOL(generic_file_mmap); 3971 EXPORT_SYMBOL(generic_file_mmap_prepare); 3972 EXPORT_SYMBOL(generic_file_readonly_mmap); 3973 EXPORT_SYMBOL(generic_file_readonly_mmap_prepare); 3974 3975 static struct folio *do_read_cache_folio(struct address_space *mapping, 3976 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3977 { 3978 struct folio *folio; 3979 int err; 3980 3981 if (!filler) 3982 filler = mapping->a_ops->read_folio; 3983 repeat: 3984 folio = filemap_get_folio(mapping, index); 3985 if (IS_ERR(folio)) { 3986 folio = filemap_alloc_folio(gfp, 3987 mapping_min_folio_order(mapping)); 3988 if (!folio) 3989 return ERR_PTR(-ENOMEM); 3990 index = mapping_align_index(mapping, index); 3991 err = filemap_add_folio(mapping, folio, index, gfp); 3992 if (unlikely(err)) { 3993 folio_put(folio); 3994 if (err == -EEXIST) 3995 goto repeat; 3996 /* Presumably ENOMEM for xarray node */ 3997 return ERR_PTR(err); 3998 } 3999 4000 goto filler; 4001 } 4002 if (folio_test_uptodate(folio)) 4003 goto out; 4004 4005 if (!folio_trylock(folio)) { 4006 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 4007 goto repeat; 4008 } 4009 4010 /* Folio was truncated from mapping */ 4011 if (!folio->mapping) { 4012 folio_unlock(folio); 4013 folio_put(folio); 4014 goto repeat; 4015 } 4016 4017 /* Someone else locked and filled the page in a very small window */ 4018 if (folio_test_uptodate(folio)) { 4019 folio_unlock(folio); 4020 goto out; 4021 } 4022 4023 filler: 4024 err = filemap_read_folio(file, filler, folio); 4025 if (err) { 4026 folio_put(folio); 4027 if (err == AOP_TRUNCATED_PAGE) 4028 goto repeat; 4029 return ERR_PTR(err); 4030 } 4031 4032 out: 4033 folio_mark_accessed(folio); 4034 return folio; 4035 } 4036 4037 /** 4038 * read_cache_folio - Read into page cache, fill it if needed. 4039 * @mapping: The address_space to read from. 4040 * @index: The index to read. 4041 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 4042 * @file: Passed to filler function, may be NULL if not required. 4043 * 4044 * Read one page into the page cache. If it succeeds, the folio returned 4045 * will contain @index, but it may not be the first page of the folio. 4046 * 4047 * If the filler function returns an error, it will be returned to the 4048 * caller. 4049 * 4050 * Context: May sleep. Expects mapping->invalidate_lock to be held. 4051 * Return: An uptodate folio on success, ERR_PTR() on failure. 4052 */ 4053 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 4054 filler_t filler, struct file *file) 4055 { 4056 return do_read_cache_folio(mapping, index, filler, file, 4057 mapping_gfp_mask(mapping)); 4058 } 4059 EXPORT_SYMBOL(read_cache_folio); 4060 4061 /** 4062 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 4063 * @mapping: The address_space for the folio. 4064 * @index: The index that the allocated folio will contain. 4065 * @gfp: The page allocator flags to use if allocating. 4066 * 4067 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 4068 * any new memory allocations done using the specified allocation flags. 4069 * 4070 * The most likely error from this function is EIO, but ENOMEM is 4071 * possible and so is EINTR. If ->read_folio returns another error, 4072 * that will be returned to the caller. 4073 * 4074 * The function expects mapping->invalidate_lock to be already held. 4075 * 4076 * Return: Uptodate folio on success, ERR_PTR() on failure. 4077 */ 4078 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 4079 pgoff_t index, gfp_t gfp) 4080 { 4081 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 4082 } 4083 EXPORT_SYMBOL(mapping_read_folio_gfp); 4084 4085 static struct page *do_read_cache_page(struct address_space *mapping, 4086 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 4087 { 4088 struct folio *folio; 4089 4090 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 4091 if (IS_ERR(folio)) 4092 return &folio->page; 4093 return folio_file_page(folio, index); 4094 } 4095 4096 struct page *read_cache_page(struct address_space *mapping, 4097 pgoff_t index, filler_t *filler, struct file *file) 4098 { 4099 return do_read_cache_page(mapping, index, filler, file, 4100 mapping_gfp_mask(mapping)); 4101 } 4102 EXPORT_SYMBOL(read_cache_page); 4103 4104 /** 4105 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 4106 * @mapping: the page's address_space 4107 * @index: the page index 4108 * @gfp: the page allocator flags to use if allocating 4109 * 4110 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 4111 * any new page allocations done using the specified allocation flags. 4112 * 4113 * If the page does not get brought uptodate, return -EIO. 4114 * 4115 * The function expects mapping->invalidate_lock to be already held. 4116 * 4117 * Return: up to date page on success, ERR_PTR() on failure. 4118 */ 4119 struct page *read_cache_page_gfp(struct address_space *mapping, 4120 pgoff_t index, 4121 gfp_t gfp) 4122 { 4123 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 4124 } 4125 EXPORT_SYMBOL(read_cache_page_gfp); 4126 4127 /* 4128 * Warn about a page cache invalidation failure during a direct I/O write. 4129 */ 4130 static void dio_warn_stale_pagecache(struct file *filp) 4131 { 4132 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4133 char pathname[128]; 4134 char *path; 4135 4136 errseq_set(&filp->f_mapping->wb_err, -EIO); 4137 if (__ratelimit(&_rs)) { 4138 path = file_path(filp, pathname, sizeof(pathname)); 4139 if (IS_ERR(path)) 4140 path = "(unknown)"; 4141 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4142 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4143 current->comm); 4144 } 4145 } 4146 4147 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4148 { 4149 struct address_space *mapping = iocb->ki_filp->f_mapping; 4150 4151 if (mapping->nrpages && 4152 invalidate_inode_pages2_range(mapping, 4153 iocb->ki_pos >> PAGE_SHIFT, 4154 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4155 dio_warn_stale_pagecache(iocb->ki_filp); 4156 } 4157 4158 ssize_t 4159 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4160 { 4161 struct address_space *mapping = iocb->ki_filp->f_mapping; 4162 size_t write_len = iov_iter_count(from); 4163 ssize_t written; 4164 4165 /* 4166 * If a page can not be invalidated, return 0 to fall back 4167 * to buffered write. 4168 */ 4169 written = kiocb_invalidate_pages(iocb, write_len); 4170 if (written) { 4171 if (written == -EBUSY) 4172 return 0; 4173 return written; 4174 } 4175 4176 written = mapping->a_ops->direct_IO(iocb, from); 4177 4178 /* 4179 * Finally, try again to invalidate clean pages which might have been 4180 * cached by non-direct readahead, or faulted in by get_user_pages() 4181 * if the source of the write was an mmap'ed region of the file 4182 * we're writing. Either one is a pretty crazy thing to do, 4183 * so we don't support it 100%. If this invalidation 4184 * fails, tough, the write still worked... 4185 * 4186 * Most of the time we do not need this since dio_complete() will do 4187 * the invalidation for us. However there are some file systems that 4188 * do not end up with dio_complete() being called, so let's not break 4189 * them by removing it completely. 4190 * 4191 * Noticeable example is a blkdev_direct_IO(). 4192 * 4193 * Skip invalidation for async writes or if mapping has no pages. 4194 */ 4195 if (written > 0) { 4196 struct inode *inode = mapping->host; 4197 loff_t pos = iocb->ki_pos; 4198 4199 kiocb_invalidate_post_direct_write(iocb, written); 4200 pos += written; 4201 write_len -= written; 4202 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4203 i_size_write(inode, pos); 4204 mark_inode_dirty(inode); 4205 } 4206 iocb->ki_pos = pos; 4207 } 4208 if (written != -EIOCBQUEUED) 4209 iov_iter_revert(from, write_len - iov_iter_count(from)); 4210 return written; 4211 } 4212 EXPORT_SYMBOL(generic_file_direct_write); 4213 4214 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4215 { 4216 struct file *file = iocb->ki_filp; 4217 loff_t pos = iocb->ki_pos; 4218 struct address_space *mapping = file->f_mapping; 4219 const struct address_space_operations *a_ops = mapping->a_ops; 4220 size_t chunk = mapping_max_folio_size(mapping); 4221 long status = 0; 4222 ssize_t written = 0; 4223 4224 do { 4225 struct folio *folio; 4226 size_t offset; /* Offset into folio */ 4227 size_t bytes; /* Bytes to write to folio */ 4228 size_t copied; /* Bytes copied from user */ 4229 void *fsdata = NULL; 4230 4231 bytes = iov_iter_count(i); 4232 retry: 4233 offset = pos & (chunk - 1); 4234 bytes = min(chunk - offset, bytes); 4235 balance_dirty_pages_ratelimited(mapping); 4236 4237 if (fatal_signal_pending(current)) { 4238 status = -EINTR; 4239 break; 4240 } 4241 4242 status = a_ops->write_begin(iocb, mapping, pos, bytes, 4243 &folio, &fsdata); 4244 if (unlikely(status < 0)) 4245 break; 4246 4247 offset = offset_in_folio(folio, pos); 4248 if (bytes > folio_size(folio) - offset) 4249 bytes = folio_size(folio) - offset; 4250 4251 if (mapping_writably_mapped(mapping)) 4252 flush_dcache_folio(folio); 4253 4254 /* 4255 * Faults here on mmap()s can recurse into arbitrary 4256 * filesystem code. Lots of locks are held that can 4257 * deadlock. Use an atomic copy to avoid deadlocking 4258 * in page fault handling. 4259 */ 4260 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4261 flush_dcache_folio(folio); 4262 4263 status = a_ops->write_end(iocb, mapping, pos, bytes, copied, 4264 folio, fsdata); 4265 if (unlikely(status != copied)) { 4266 iov_iter_revert(i, copied - max(status, 0L)); 4267 if (unlikely(status < 0)) 4268 break; 4269 } 4270 cond_resched(); 4271 4272 if (unlikely(status == 0)) { 4273 /* 4274 * A short copy made ->write_end() reject the 4275 * thing entirely. Might be memory poisoning 4276 * halfway through, might be a race with munmap, 4277 * might be severe memory pressure. 4278 */ 4279 if (chunk > PAGE_SIZE) 4280 chunk /= 2; 4281 if (copied) { 4282 bytes = copied; 4283 goto retry; 4284 } 4285 4286 /* 4287 * 'folio' is now unlocked and faults on it can be 4288 * handled. Ensure forward progress by trying to 4289 * fault it in now. 4290 */ 4291 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4292 status = -EFAULT; 4293 break; 4294 } 4295 } else { 4296 pos += status; 4297 written += status; 4298 } 4299 } while (iov_iter_count(i)); 4300 4301 if (!written) 4302 return status; 4303 iocb->ki_pos += written; 4304 return written; 4305 } 4306 EXPORT_SYMBOL(generic_perform_write); 4307 4308 /** 4309 * __generic_file_write_iter - write data to a file 4310 * @iocb: IO state structure (file, offset, etc.) 4311 * @from: iov_iter with data to write 4312 * 4313 * This function does all the work needed for actually writing data to a 4314 * file. It does all basic checks, removes SUID from the file, updates 4315 * modification times and calls proper subroutines depending on whether we 4316 * do direct IO or a standard buffered write. 4317 * 4318 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4319 * object which does not need locking at all. 4320 * 4321 * This function does *not* take care of syncing data in case of O_SYNC write. 4322 * A caller has to handle it. This is mainly due to the fact that we want to 4323 * avoid syncing under i_rwsem. 4324 * 4325 * Return: 4326 * * number of bytes written, even for truncated writes 4327 * * negative error code if no data has been written at all 4328 */ 4329 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4330 { 4331 struct file *file = iocb->ki_filp; 4332 struct address_space *mapping = file->f_mapping; 4333 struct inode *inode = mapping->host; 4334 ssize_t ret; 4335 4336 ret = file_remove_privs(file); 4337 if (ret) 4338 return ret; 4339 4340 ret = file_update_time(file); 4341 if (ret) 4342 return ret; 4343 4344 if (iocb->ki_flags & IOCB_DIRECT) { 4345 ret = generic_file_direct_write(iocb, from); 4346 /* 4347 * If the write stopped short of completing, fall back to 4348 * buffered writes. Some filesystems do this for writes to 4349 * holes, for example. For DAX files, a buffered write will 4350 * not succeed (even if it did, DAX does not handle dirty 4351 * page-cache pages correctly). 4352 */ 4353 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4354 return ret; 4355 return direct_write_fallback(iocb, from, ret, 4356 generic_perform_write(iocb, from)); 4357 } 4358 4359 return generic_perform_write(iocb, from); 4360 } 4361 EXPORT_SYMBOL(__generic_file_write_iter); 4362 4363 /** 4364 * generic_file_write_iter - write data to a file 4365 * @iocb: IO state structure 4366 * @from: iov_iter with data to write 4367 * 4368 * This is a wrapper around __generic_file_write_iter() to be used by most 4369 * filesystems. It takes care of syncing the file in case of O_SYNC file 4370 * and acquires i_rwsem as needed. 4371 * Return: 4372 * * negative error code if no data has been written at all of 4373 * vfs_fsync_range() failed for a synchronous write 4374 * * number of bytes written, even for truncated writes 4375 */ 4376 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4377 { 4378 struct file *file = iocb->ki_filp; 4379 struct inode *inode = file->f_mapping->host; 4380 ssize_t ret; 4381 4382 inode_lock(inode); 4383 ret = generic_write_checks(iocb, from); 4384 if (ret > 0) 4385 ret = __generic_file_write_iter(iocb, from); 4386 inode_unlock(inode); 4387 4388 if (ret > 0) 4389 ret = generic_write_sync(iocb, ret); 4390 return ret; 4391 } 4392 EXPORT_SYMBOL(generic_file_write_iter); 4393 4394 /** 4395 * filemap_release_folio() - Release fs-specific metadata on a folio. 4396 * @folio: The folio which the kernel is trying to free. 4397 * @gfp: Memory allocation flags (and I/O mode). 4398 * 4399 * The address_space is trying to release any data attached to a folio 4400 * (presumably at folio->private). 4401 * 4402 * This will also be called if the private_2 flag is set on a page, 4403 * indicating that the folio has other metadata associated with it. 4404 * 4405 * The @gfp argument specifies whether I/O may be performed to release 4406 * this page (__GFP_IO), and whether the call may block 4407 * (__GFP_RECLAIM & __GFP_FS). 4408 * 4409 * Return: %true if the release was successful, otherwise %false. 4410 */ 4411 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4412 { 4413 struct address_space * const mapping = folio->mapping; 4414 4415 BUG_ON(!folio_test_locked(folio)); 4416 if (!folio_needs_release(folio)) 4417 return true; 4418 if (folio_test_writeback(folio)) 4419 return false; 4420 4421 if (mapping && mapping->a_ops->release_folio) 4422 return mapping->a_ops->release_folio(folio, gfp); 4423 return try_to_free_buffers(folio); 4424 } 4425 EXPORT_SYMBOL(filemap_release_folio); 4426 4427 /** 4428 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4429 * @inode: The inode to flush 4430 * @flush: Set to write back rather than simply invalidate. 4431 * @start: First byte to in range. 4432 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4433 * onwards. 4434 * 4435 * Invalidate all the folios on an inode that contribute to the specified 4436 * range, possibly writing them back first. Whilst the operation is 4437 * undertaken, the invalidate lock is held to prevent new folios from being 4438 * installed. 4439 */ 4440 int filemap_invalidate_inode(struct inode *inode, bool flush, 4441 loff_t start, loff_t end) 4442 { 4443 struct address_space *mapping = inode->i_mapping; 4444 pgoff_t first = start >> PAGE_SHIFT; 4445 pgoff_t last = end >> PAGE_SHIFT; 4446 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4447 4448 if (!mapping || !mapping->nrpages || end < start) 4449 goto out; 4450 4451 /* Prevent new folios from being added to the inode. */ 4452 filemap_invalidate_lock(mapping); 4453 4454 if (!mapping->nrpages) 4455 goto unlock; 4456 4457 unmap_mapping_pages(mapping, first, nr, false); 4458 4459 /* Write back the data if we're asked to. */ 4460 if (flush) { 4461 struct writeback_control wbc = { 4462 .sync_mode = WB_SYNC_ALL, 4463 .nr_to_write = LONG_MAX, 4464 .range_start = start, 4465 .range_end = end, 4466 }; 4467 4468 filemap_fdatawrite_wbc(mapping, &wbc); 4469 } 4470 4471 /* Wait for writeback to complete on all folios and discard. */ 4472 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4473 4474 unlock: 4475 filemap_invalidate_unlock(mapping); 4476 out: 4477 return filemap_check_errors(mapping); 4478 } 4479 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4480 4481 #ifdef CONFIG_CACHESTAT_SYSCALL 4482 /** 4483 * filemap_cachestat() - compute the page cache statistics of a mapping 4484 * @mapping: The mapping to compute the statistics for. 4485 * @first_index: The starting page cache index. 4486 * @last_index: The final page index (inclusive). 4487 * @cs: the cachestat struct to write the result to. 4488 * 4489 * This will query the page cache statistics of a mapping in the 4490 * page range of [first_index, last_index] (inclusive). The statistics 4491 * queried include: number of dirty pages, number of pages marked for 4492 * writeback, and the number of (recently) evicted pages. 4493 */ 4494 static void filemap_cachestat(struct address_space *mapping, 4495 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4496 { 4497 XA_STATE(xas, &mapping->i_pages, first_index); 4498 struct folio *folio; 4499 4500 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4501 mem_cgroup_flush_stats_ratelimited(NULL); 4502 4503 rcu_read_lock(); 4504 xas_for_each(&xas, folio, last_index) { 4505 int order; 4506 unsigned long nr_pages; 4507 pgoff_t folio_first_index, folio_last_index; 4508 4509 /* 4510 * Don't deref the folio. It is not pinned, and might 4511 * get freed (and reused) underneath us. 4512 * 4513 * We *could* pin it, but that would be expensive for 4514 * what should be a fast and lightweight syscall. 4515 * 4516 * Instead, derive all information of interest from 4517 * the rcu-protected xarray. 4518 */ 4519 4520 if (xas_retry(&xas, folio)) 4521 continue; 4522 4523 order = xas_get_order(&xas); 4524 nr_pages = 1 << order; 4525 folio_first_index = round_down(xas.xa_index, 1 << order); 4526 folio_last_index = folio_first_index + nr_pages - 1; 4527 4528 /* Folios might straddle the range boundaries, only count covered pages */ 4529 if (folio_first_index < first_index) 4530 nr_pages -= first_index - folio_first_index; 4531 4532 if (folio_last_index > last_index) 4533 nr_pages -= folio_last_index - last_index; 4534 4535 if (xa_is_value(folio)) { 4536 /* page is evicted */ 4537 void *shadow = (void *)folio; 4538 bool workingset; /* not used */ 4539 4540 cs->nr_evicted += nr_pages; 4541 4542 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4543 if (shmem_mapping(mapping)) { 4544 /* shmem file - in swap cache */ 4545 swp_entry_t swp = radix_to_swp_entry(folio); 4546 4547 /* swapin error results in poisoned entry */ 4548 if (non_swap_entry(swp)) 4549 goto resched; 4550 4551 /* 4552 * Getting a swap entry from the shmem 4553 * inode means we beat 4554 * shmem_unuse(). rcu_read_lock() 4555 * ensures swapoff waits for us before 4556 * freeing the swapper space. However, 4557 * we can race with swapping and 4558 * invalidation, so there might not be 4559 * a shadow in the swapcache (yet). 4560 */ 4561 shadow = swap_cache_get_shadow(swp); 4562 if (!shadow) 4563 goto resched; 4564 } 4565 #endif 4566 if (workingset_test_recent(shadow, true, &workingset, false)) 4567 cs->nr_recently_evicted += nr_pages; 4568 4569 goto resched; 4570 } 4571 4572 /* page is in cache */ 4573 cs->nr_cache += nr_pages; 4574 4575 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4576 cs->nr_dirty += nr_pages; 4577 4578 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4579 cs->nr_writeback += nr_pages; 4580 4581 resched: 4582 if (need_resched()) { 4583 xas_pause(&xas); 4584 cond_resched_rcu(); 4585 } 4586 } 4587 rcu_read_unlock(); 4588 } 4589 4590 /* 4591 * See mincore: reveal pagecache information only for files 4592 * that the calling process has write access to, or could (if 4593 * tried) open for writing. 4594 */ 4595 static inline bool can_do_cachestat(struct file *f) 4596 { 4597 if (f->f_mode & FMODE_WRITE) 4598 return true; 4599 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4600 return true; 4601 return file_permission(f, MAY_WRITE) == 0; 4602 } 4603 4604 /* 4605 * The cachestat(2) system call. 4606 * 4607 * cachestat() returns the page cache statistics of a file in the 4608 * bytes range specified by `off` and `len`: number of cached pages, 4609 * number of dirty pages, number of pages marked for writeback, 4610 * number of evicted pages, and number of recently evicted pages. 4611 * 4612 * An evicted page is a page that is previously in the page cache 4613 * but has been evicted since. A page is recently evicted if its last 4614 * eviction was recent enough that its reentry to the cache would 4615 * indicate that it is actively being used by the system, and that 4616 * there is memory pressure on the system. 4617 * 4618 * `off` and `len` must be non-negative integers. If `len` > 0, 4619 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4620 * we will query in the range from `off` to the end of the file. 4621 * 4622 * The `flags` argument is unused for now, but is included for future 4623 * extensibility. User should pass 0 (i.e no flag specified). 4624 * 4625 * Currently, hugetlbfs is not supported. 4626 * 4627 * Because the status of a page can change after cachestat() checks it 4628 * but before it returns to the application, the returned values may 4629 * contain stale information. 4630 * 4631 * return values: 4632 * zero - success 4633 * -EFAULT - cstat or cstat_range points to an illegal address 4634 * -EINVAL - invalid flags 4635 * -EBADF - invalid file descriptor 4636 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4637 */ 4638 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4639 struct cachestat_range __user *, cstat_range, 4640 struct cachestat __user *, cstat, unsigned int, flags) 4641 { 4642 CLASS(fd, f)(fd); 4643 struct address_space *mapping; 4644 struct cachestat_range csr; 4645 struct cachestat cs; 4646 pgoff_t first_index, last_index; 4647 4648 if (fd_empty(f)) 4649 return -EBADF; 4650 4651 if (copy_from_user(&csr, cstat_range, 4652 sizeof(struct cachestat_range))) 4653 return -EFAULT; 4654 4655 /* hugetlbfs is not supported */ 4656 if (is_file_hugepages(fd_file(f))) 4657 return -EOPNOTSUPP; 4658 4659 if (!can_do_cachestat(fd_file(f))) 4660 return -EPERM; 4661 4662 if (flags != 0) 4663 return -EINVAL; 4664 4665 first_index = csr.off >> PAGE_SHIFT; 4666 last_index = 4667 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4668 memset(&cs, 0, sizeof(struct cachestat)); 4669 mapping = fd_file(f)->f_mapping; 4670 filemap_cachestat(mapping, first_index, last_index, &cs); 4671 4672 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4673 return -EFAULT; 4674 4675 return 0; 4676 } 4677 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4678