1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 } 124 125 void remove_from_page_cache(struct page *page) 126 { 127 struct address_space *mapping = page->mapping; 128 129 BUG_ON(!PageLocked(page)); 130 131 write_lock_irq(&mapping->tree_lock); 132 __remove_from_page_cache(page); 133 write_unlock_irq(&mapping->tree_lock); 134 } 135 136 static int sync_page(void *word) 137 { 138 struct address_space *mapping; 139 struct page *page; 140 141 page = container_of((unsigned long *)word, struct page, flags); 142 143 /* 144 * page_mapping() is being called without PG_locked held. 145 * Some knowledge of the state and use of the page is used to 146 * reduce the requirements down to a memory barrier. 147 * The danger here is of a stale page_mapping() return value 148 * indicating a struct address_space different from the one it's 149 * associated with when it is associated with one. 150 * After smp_mb(), it's either the correct page_mapping() for 151 * the page, or an old page_mapping() and the page's own 152 * page_mapping() has gone NULL. 153 * The ->sync_page() address_space operation must tolerate 154 * page_mapping() going NULL. By an amazing coincidence, 155 * this comes about because none of the users of the page 156 * in the ->sync_page() methods make essential use of the 157 * page_mapping(), merely passing the page down to the backing 158 * device's unplug functions when it's non-NULL, which in turn 159 * ignore it for all cases but swap, where only page_private(page) is 160 * of interest. When page_mapping() does go NULL, the entire 161 * call stack gracefully ignores the page and returns. 162 * -- wli 163 */ 164 smp_mb(); 165 mapping = page_mapping(page); 166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 167 mapping->a_ops->sync_page(page); 168 io_schedule(); 169 return 0; 170 } 171 172 /** 173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 174 * @mapping: address space structure to write 175 * @start: offset in bytes where the range starts 176 * @end: offset in bytes where the range ends (inclusive) 177 * @sync_mode: enable synchronous operation 178 * 179 * Start writeback against all of a mapping's dirty pages that lie 180 * within the byte offsets <start, end> inclusive. 181 * 182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 183 * opposed to a regular memory cleansing writeback. The difference between 184 * these two operations is that if a dirty page/buffer is encountered, it must 185 * be waited upon, and not just skipped over. 186 */ 187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 188 loff_t end, int sync_mode) 189 { 190 int ret; 191 struct writeback_control wbc = { 192 .sync_mode = sync_mode, 193 .nr_to_write = mapping->nrpages * 2, 194 .range_start = start, 195 .range_end = end, 196 }; 197 198 if (!mapping_cap_writeback_dirty(mapping)) 199 return 0; 200 201 ret = do_writepages(mapping, &wbc); 202 return ret; 203 } 204 205 static inline int __filemap_fdatawrite(struct address_space *mapping, 206 int sync_mode) 207 { 208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 209 } 210 211 int filemap_fdatawrite(struct address_space *mapping) 212 { 213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 214 } 215 EXPORT_SYMBOL(filemap_fdatawrite); 216 217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end) 219 { 220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 221 } 222 223 /** 224 * filemap_flush - mostly a non-blocking flush 225 * @mapping: target address_space 226 * 227 * This is a mostly non-blocking flush. Not suitable for data-integrity 228 * purposes - I/O may not be started against all dirty pages. 229 */ 230 int filemap_flush(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 233 } 234 EXPORT_SYMBOL(filemap_flush); 235 236 /** 237 * wait_on_page_writeback_range - wait for writeback to complete 238 * @mapping: target address_space 239 * @start: beginning page index 240 * @end: ending page index 241 * 242 * Wait for writeback to complete against pages indexed by start->end 243 * inclusive 244 */ 245 int wait_on_page_writeback_range(struct address_space *mapping, 246 pgoff_t start, pgoff_t end) 247 { 248 struct pagevec pvec; 249 int nr_pages; 250 int ret = 0; 251 pgoff_t index; 252 253 if (end < start) 254 return 0; 255 256 pagevec_init(&pvec, 0); 257 index = start; 258 while ((index <= end) && 259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 260 PAGECACHE_TAG_WRITEBACK, 261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 262 unsigned i; 263 264 for (i = 0; i < nr_pages; i++) { 265 struct page *page = pvec.pages[i]; 266 267 /* until radix tree lookup accepts end_index */ 268 if (page->index > end) 269 continue; 270 271 wait_on_page_writeback(page); 272 if (PageError(page)) 273 ret = -EIO; 274 } 275 pagevec_release(&pvec); 276 cond_resched(); 277 } 278 279 /* Check for outstanding write errors */ 280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 281 ret = -ENOSPC; 282 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 283 ret = -EIO; 284 285 return ret; 286 } 287 288 /** 289 * sync_page_range - write and wait on all pages in the passed range 290 * @inode: target inode 291 * @mapping: target address_space 292 * @pos: beginning offset in pages to write 293 * @count: number of bytes to write 294 * 295 * Write and wait upon all the pages in the passed range. This is a "data 296 * integrity" operation. It waits upon in-flight writeout before starting and 297 * waiting upon new writeout. If there was an IO error, return it. 298 * 299 * We need to re-take i_mutex during the generic_osync_inode list walk because 300 * it is otherwise livelockable. 301 */ 302 int sync_page_range(struct inode *inode, struct address_space *mapping, 303 loff_t pos, loff_t count) 304 { 305 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 307 int ret; 308 309 if (!mapping_cap_writeback_dirty(mapping) || !count) 310 return 0; 311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 312 if (ret == 0) { 313 mutex_lock(&inode->i_mutex); 314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 315 mutex_unlock(&inode->i_mutex); 316 } 317 if (ret == 0) 318 ret = wait_on_page_writeback_range(mapping, start, end); 319 return ret; 320 } 321 EXPORT_SYMBOL(sync_page_range); 322 323 /** 324 * sync_page_range_nolock 325 * @inode: target inode 326 * @mapping: target address_space 327 * @pos: beginning offset in pages to write 328 * @count: number of bytes to write 329 * 330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea 331 * as it forces O_SYNC writers to different parts of the same file 332 * to be serialised right until io completion. 333 */ 334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 335 loff_t pos, loff_t count) 336 { 337 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 339 int ret; 340 341 if (!mapping_cap_writeback_dirty(mapping) || !count) 342 return 0; 343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 344 if (ret == 0) 345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 346 if (ret == 0) 347 ret = wait_on_page_writeback_range(mapping, start, end); 348 return ret; 349 } 350 EXPORT_SYMBOL(sync_page_range_nolock); 351 352 /** 353 * filemap_fdatawait - wait for all under-writeback pages to complete 354 * @mapping: address space structure to wait for 355 * 356 * Walk the list of under-writeback pages of the given address space 357 * and wait for all of them. 358 */ 359 int filemap_fdatawait(struct address_space *mapping) 360 { 361 loff_t i_size = i_size_read(mapping->host); 362 363 if (i_size == 0) 364 return 0; 365 366 return wait_on_page_writeback_range(mapping, 0, 367 (i_size - 1) >> PAGE_CACHE_SHIFT); 368 } 369 EXPORT_SYMBOL(filemap_fdatawait); 370 371 int filemap_write_and_wait(struct address_space *mapping) 372 { 373 int err = 0; 374 375 if (mapping->nrpages) { 376 err = filemap_fdatawrite(mapping); 377 /* 378 * Even if the above returned error, the pages may be 379 * written partially (e.g. -ENOSPC), so we wait for it. 380 * But the -EIO is special case, it may indicate the worst 381 * thing (e.g. bug) happened, so we avoid waiting for it. 382 */ 383 if (err != -EIO) { 384 int err2 = filemap_fdatawait(mapping); 385 if (!err) 386 err = err2; 387 } 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait); 392 393 /** 394 * filemap_write_and_wait_range - write out & wait on a file range 395 * @mapping: the address_space for the pages 396 * @lstart: offset in bytes where the range starts 397 * @lend: offset in bytes where the range ends (inclusive) 398 * 399 * Write out and wait upon file offsets lstart->lend, inclusive. 400 * 401 * Note that `lend' is inclusive (describes the last byte to be written) so 402 * that this function can be used to write to the very end-of-file (end = -1). 403 */ 404 int filemap_write_and_wait_range(struct address_space *mapping, 405 loff_t lstart, loff_t lend) 406 { 407 int err = 0; 408 409 if (mapping->nrpages) { 410 err = __filemap_fdatawrite_range(mapping, lstart, lend, 411 WB_SYNC_ALL); 412 /* See comment of filemap_write_and_wait() */ 413 if (err != -EIO) { 414 int err2 = wait_on_page_writeback_range(mapping, 415 lstart >> PAGE_CACHE_SHIFT, 416 lend >> PAGE_CACHE_SHIFT); 417 if (!err) 418 err = err2; 419 } 420 } 421 return err; 422 } 423 424 /** 425 * add_to_page_cache - add newly allocated pagecache pages 426 * @page: page to add 427 * @mapping: the page's address_space 428 * @offset: page index 429 * @gfp_mask: page allocation mode 430 * 431 * This function is used to add newly allocated pagecache pages; 432 * the page is new, so we can just run SetPageLocked() against it. 433 * The other page state flags were set by rmqueue(). 434 * 435 * This function does not add the page to the LRU. The caller must do that. 436 */ 437 int add_to_page_cache(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 441 442 if (error == 0) { 443 write_lock_irq(&mapping->tree_lock); 444 error = radix_tree_insert(&mapping->page_tree, offset, page); 445 if (!error) { 446 page_cache_get(page); 447 SetPageLocked(page); 448 page->mapping = mapping; 449 page->index = offset; 450 mapping->nrpages++; 451 __inc_zone_page_state(page, NR_FILE_PAGES); 452 } 453 write_unlock_irq(&mapping->tree_lock); 454 radix_tree_preload_end(); 455 } 456 return error; 457 } 458 EXPORT_SYMBOL(add_to_page_cache); 459 460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 461 pgoff_t offset, gfp_t gfp_mask) 462 { 463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 464 if (ret == 0) 465 lru_cache_add(page); 466 return ret; 467 } 468 469 #ifdef CONFIG_NUMA 470 struct page *__page_cache_alloc(gfp_t gfp) 471 { 472 if (cpuset_do_page_mem_spread()) { 473 int n = cpuset_mem_spread_node(); 474 return alloc_pages_node(n, gfp, 0); 475 } 476 return alloc_pages(gfp, 0); 477 } 478 EXPORT_SYMBOL(__page_cache_alloc); 479 #endif 480 481 static int __sleep_on_page_lock(void *word) 482 { 483 io_schedule(); 484 return 0; 485 } 486 487 /* 488 * In order to wait for pages to become available there must be 489 * waitqueues associated with pages. By using a hash table of 490 * waitqueues where the bucket discipline is to maintain all 491 * waiters on the same queue and wake all when any of the pages 492 * become available, and for the woken contexts to check to be 493 * sure the appropriate page became available, this saves space 494 * at a cost of "thundering herd" phenomena during rare hash 495 * collisions. 496 */ 497 static wait_queue_head_t *page_waitqueue(struct page *page) 498 { 499 const struct zone *zone = page_zone(page); 500 501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 502 } 503 504 static inline void wake_up_page(struct page *page, int bit) 505 { 506 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 507 } 508 509 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 510 { 511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 512 513 if (test_bit(bit_nr, &page->flags)) 514 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 515 TASK_UNINTERRUPTIBLE); 516 } 517 EXPORT_SYMBOL(wait_on_page_bit); 518 519 /** 520 * unlock_page - unlock a locked page 521 * @page: the page 522 * 523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 525 * mechananism between PageLocked pages and PageWriteback pages is shared. 526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 527 * 528 * The first mb is necessary to safely close the critical section opened by the 529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 531 * parallel wait_on_page_locked()). 532 */ 533 void fastcall unlock_page(struct page *page) 534 { 535 smp_mb__before_clear_bit(); 536 if (!TestClearPageLocked(page)) 537 BUG(); 538 smp_mb__after_clear_bit(); 539 wake_up_page(page, PG_locked); 540 } 541 EXPORT_SYMBOL(unlock_page); 542 543 /** 544 * end_page_writeback - end writeback against a page 545 * @page: the page 546 */ 547 void end_page_writeback(struct page *page) 548 { 549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 550 if (!test_clear_page_writeback(page)) 551 BUG(); 552 } 553 smp_mb__after_clear_bit(); 554 wake_up_page(page, PG_writeback); 555 } 556 EXPORT_SYMBOL(end_page_writeback); 557 558 /** 559 * __lock_page - get a lock on the page, assuming we need to sleep to get it 560 * @page: the page to lock 561 * 562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 564 * chances are that on the second loop, the block layer's plug list is empty, 565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 566 */ 567 void fastcall __lock_page(struct page *page) 568 { 569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 570 571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 572 TASK_UNINTERRUPTIBLE); 573 } 574 EXPORT_SYMBOL(__lock_page); 575 576 /* 577 * Variant of lock_page that does not require the caller to hold a reference 578 * on the page's mapping. 579 */ 580 void fastcall __lock_page_nosync(struct page *page) 581 { 582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 584 TASK_UNINTERRUPTIBLE); 585 } 586 587 /** 588 * find_get_page - find and get a page reference 589 * @mapping: the address_space to search 590 * @offset: the page index 591 * 592 * Is there a pagecache struct page at the given (mapping, offset) tuple? 593 * If yes, increment its refcount and return it; if no, return NULL. 594 */ 595 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 596 { 597 struct page *page; 598 599 read_lock_irq(&mapping->tree_lock); 600 page = radix_tree_lookup(&mapping->page_tree, offset); 601 if (page) 602 page_cache_get(page); 603 read_unlock_irq(&mapping->tree_lock); 604 return page; 605 } 606 EXPORT_SYMBOL(find_get_page); 607 608 /** 609 * find_trylock_page - find and lock a page 610 * @mapping: the address_space to search 611 * @offset: the page index 612 * 613 * Same as find_get_page(), but trylock it instead of incrementing the count. 614 */ 615 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 616 { 617 struct page *page; 618 619 read_lock_irq(&mapping->tree_lock); 620 page = radix_tree_lookup(&mapping->page_tree, offset); 621 if (page && TestSetPageLocked(page)) 622 page = NULL; 623 read_unlock_irq(&mapping->tree_lock); 624 return page; 625 } 626 EXPORT_SYMBOL(find_trylock_page); 627 628 /** 629 * find_lock_page - locate, pin and lock a pagecache page 630 * @mapping: the address_space to search 631 * @offset: the page index 632 * 633 * Locates the desired pagecache page, locks it, increments its reference 634 * count and returns its address. 635 * 636 * Returns zero if the page was not present. find_lock_page() may sleep. 637 */ 638 struct page *find_lock_page(struct address_space *mapping, 639 unsigned long offset) 640 { 641 struct page *page; 642 643 read_lock_irq(&mapping->tree_lock); 644 repeat: 645 page = radix_tree_lookup(&mapping->page_tree, offset); 646 if (page) { 647 page_cache_get(page); 648 if (TestSetPageLocked(page)) { 649 read_unlock_irq(&mapping->tree_lock); 650 __lock_page(page); 651 read_lock_irq(&mapping->tree_lock); 652 653 /* Has the page been truncated while we slept? */ 654 if (unlikely(page->mapping != mapping || 655 page->index != offset)) { 656 unlock_page(page); 657 page_cache_release(page); 658 goto repeat; 659 } 660 } 661 } 662 read_unlock_irq(&mapping->tree_lock); 663 return page; 664 } 665 EXPORT_SYMBOL(find_lock_page); 666 667 /** 668 * find_or_create_page - locate or add a pagecache page 669 * @mapping: the page's address_space 670 * @index: the page's index into the mapping 671 * @gfp_mask: page allocation mode 672 * 673 * Locates a page in the pagecache. If the page is not present, a new page 674 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 675 * LRU list. The returned page is locked and has its reference count 676 * incremented. 677 * 678 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 679 * allocation! 680 * 681 * find_or_create_page() returns the desired page's address, or zero on 682 * memory exhaustion. 683 */ 684 struct page *find_or_create_page(struct address_space *mapping, 685 unsigned long index, gfp_t gfp_mask) 686 { 687 struct page *page, *cached_page = NULL; 688 int err; 689 repeat: 690 page = find_lock_page(mapping, index); 691 if (!page) { 692 if (!cached_page) { 693 cached_page = alloc_page(gfp_mask); 694 if (!cached_page) 695 return NULL; 696 } 697 err = add_to_page_cache_lru(cached_page, mapping, 698 index, gfp_mask); 699 if (!err) { 700 page = cached_page; 701 cached_page = NULL; 702 } else if (err == -EEXIST) 703 goto repeat; 704 } 705 if (cached_page) 706 page_cache_release(cached_page); 707 return page; 708 } 709 EXPORT_SYMBOL(find_or_create_page); 710 711 /** 712 * find_get_pages - gang pagecache lookup 713 * @mapping: The address_space to search 714 * @start: The starting page index 715 * @nr_pages: The maximum number of pages 716 * @pages: Where the resulting pages are placed 717 * 718 * find_get_pages() will search for and return a group of up to 719 * @nr_pages pages in the mapping. The pages are placed at @pages. 720 * find_get_pages() takes a reference against the returned pages. 721 * 722 * The search returns a group of mapping-contiguous pages with ascending 723 * indexes. There may be holes in the indices due to not-present pages. 724 * 725 * find_get_pages() returns the number of pages which were found. 726 */ 727 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 728 unsigned int nr_pages, struct page **pages) 729 { 730 unsigned int i; 731 unsigned int ret; 732 733 read_lock_irq(&mapping->tree_lock); 734 ret = radix_tree_gang_lookup(&mapping->page_tree, 735 (void **)pages, start, nr_pages); 736 for (i = 0; i < ret; i++) 737 page_cache_get(pages[i]); 738 read_unlock_irq(&mapping->tree_lock); 739 return ret; 740 } 741 742 /** 743 * find_get_pages_contig - gang contiguous pagecache lookup 744 * @mapping: The address_space to search 745 * @index: The starting page index 746 * @nr_pages: The maximum number of pages 747 * @pages: Where the resulting pages are placed 748 * 749 * find_get_pages_contig() works exactly like find_get_pages(), except 750 * that the returned number of pages are guaranteed to be contiguous. 751 * 752 * find_get_pages_contig() returns the number of pages which were found. 753 */ 754 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 755 unsigned int nr_pages, struct page **pages) 756 { 757 unsigned int i; 758 unsigned int ret; 759 760 read_lock_irq(&mapping->tree_lock); 761 ret = radix_tree_gang_lookup(&mapping->page_tree, 762 (void **)pages, index, nr_pages); 763 for (i = 0; i < ret; i++) { 764 if (pages[i]->mapping == NULL || pages[i]->index != index) 765 break; 766 767 page_cache_get(pages[i]); 768 index++; 769 } 770 read_unlock_irq(&mapping->tree_lock); 771 return i; 772 } 773 774 /** 775 * find_get_pages_tag - find and return pages that match @tag 776 * @mapping: the address_space to search 777 * @index: the starting page index 778 * @tag: the tag index 779 * @nr_pages: the maximum number of pages 780 * @pages: where the resulting pages are placed 781 * 782 * Like find_get_pages, except we only return pages which are tagged with 783 * @tag. We update @index to index the next page for the traversal. 784 */ 785 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 786 int tag, unsigned int nr_pages, struct page **pages) 787 { 788 unsigned int i; 789 unsigned int ret; 790 791 read_lock_irq(&mapping->tree_lock); 792 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 793 (void **)pages, *index, nr_pages, tag); 794 for (i = 0; i < ret; i++) 795 page_cache_get(pages[i]); 796 if (ret) 797 *index = pages[ret - 1]->index + 1; 798 read_unlock_irq(&mapping->tree_lock); 799 return ret; 800 } 801 802 /** 803 * grab_cache_page_nowait - returns locked page at given index in given cache 804 * @mapping: target address_space 805 * @index: the page index 806 * 807 * Same as grab_cache_page, but do not wait if the page is unavailable. 808 * This is intended for speculative data generators, where the data can 809 * be regenerated if the page couldn't be grabbed. This routine should 810 * be safe to call while holding the lock for another page. 811 * 812 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 813 * and deadlock against the caller's locked page. 814 */ 815 struct page * 816 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 817 { 818 struct page *page = find_get_page(mapping, index); 819 820 if (page) { 821 if (!TestSetPageLocked(page)) 822 return page; 823 page_cache_release(page); 824 return NULL; 825 } 826 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 827 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 828 page_cache_release(page); 829 page = NULL; 830 } 831 return page; 832 } 833 EXPORT_SYMBOL(grab_cache_page_nowait); 834 835 /* 836 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 837 * a _large_ part of the i/o request. Imagine the worst scenario: 838 * 839 * ---R__________________________________________B__________ 840 * ^ reading here ^ bad block(assume 4k) 841 * 842 * read(R) => miss => readahead(R...B) => media error => frustrating retries 843 * => failing the whole request => read(R) => read(R+1) => 844 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 845 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 846 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 847 * 848 * It is going insane. Fix it by quickly scaling down the readahead size. 849 */ 850 static void shrink_readahead_size_eio(struct file *filp, 851 struct file_ra_state *ra) 852 { 853 if (!ra->ra_pages) 854 return; 855 856 ra->ra_pages /= 4; 857 } 858 859 /** 860 * do_generic_mapping_read - generic file read routine 861 * @mapping: address_space to be read 862 * @_ra: file's readahead state 863 * @filp: the file to read 864 * @ppos: current file position 865 * @desc: read_descriptor 866 * @actor: read method 867 * 868 * This is a generic file read routine, and uses the 869 * mapping->a_ops->readpage() function for the actual low-level stuff. 870 * 871 * This is really ugly. But the goto's actually try to clarify some 872 * of the logic when it comes to error handling etc. 873 * 874 * Note the struct file* is only passed for the use of readpage. 875 * It may be NULL. 876 */ 877 void do_generic_mapping_read(struct address_space *mapping, 878 struct file_ra_state *_ra, 879 struct file *filp, 880 loff_t *ppos, 881 read_descriptor_t *desc, 882 read_actor_t actor) 883 { 884 struct inode *inode = mapping->host; 885 unsigned long index; 886 unsigned long end_index; 887 unsigned long offset; 888 unsigned long last_index; 889 unsigned long next_index; 890 unsigned long prev_index; 891 loff_t isize; 892 struct page *cached_page; 893 int error; 894 struct file_ra_state ra = *_ra; 895 896 cached_page = NULL; 897 index = *ppos >> PAGE_CACHE_SHIFT; 898 next_index = index; 899 prev_index = ra.prev_page; 900 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 901 offset = *ppos & ~PAGE_CACHE_MASK; 902 903 isize = i_size_read(inode); 904 if (!isize) 905 goto out; 906 907 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 908 for (;;) { 909 struct page *page; 910 unsigned long nr, ret; 911 912 /* nr is the maximum number of bytes to copy from this page */ 913 nr = PAGE_CACHE_SIZE; 914 if (index >= end_index) { 915 if (index > end_index) 916 goto out; 917 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 918 if (nr <= offset) { 919 goto out; 920 } 921 } 922 nr = nr - offset; 923 924 cond_resched(); 925 if (index == next_index) 926 next_index = page_cache_readahead(mapping, &ra, filp, 927 index, last_index - index); 928 929 find_page: 930 page = find_get_page(mapping, index); 931 if (unlikely(page == NULL)) { 932 handle_ra_miss(mapping, &ra, index); 933 goto no_cached_page; 934 } 935 if (!PageUptodate(page)) 936 goto page_not_up_to_date; 937 page_ok: 938 939 /* If users can be writing to this page using arbitrary 940 * virtual addresses, take care about potential aliasing 941 * before reading the page on the kernel side. 942 */ 943 if (mapping_writably_mapped(mapping)) 944 flush_dcache_page(page); 945 946 /* 947 * When (part of) the same page is read multiple times 948 * in succession, only mark it as accessed the first time. 949 */ 950 if (prev_index != index) 951 mark_page_accessed(page); 952 prev_index = index; 953 954 /* 955 * Ok, we have the page, and it's up-to-date, so 956 * now we can copy it to user space... 957 * 958 * The actor routine returns how many bytes were actually used.. 959 * NOTE! This may not be the same as how much of a user buffer 960 * we filled up (we may be padding etc), so we can only update 961 * "pos" here (the actor routine has to update the user buffer 962 * pointers and the remaining count). 963 */ 964 ret = actor(desc, page, offset, nr); 965 offset += ret; 966 index += offset >> PAGE_CACHE_SHIFT; 967 offset &= ~PAGE_CACHE_MASK; 968 969 page_cache_release(page); 970 if (ret == nr && desc->count) 971 continue; 972 goto out; 973 974 page_not_up_to_date: 975 /* Get exclusive access to the page ... */ 976 lock_page(page); 977 978 /* Did it get truncated before we got the lock? */ 979 if (!page->mapping) { 980 unlock_page(page); 981 page_cache_release(page); 982 continue; 983 } 984 985 /* Did somebody else fill it already? */ 986 if (PageUptodate(page)) { 987 unlock_page(page); 988 goto page_ok; 989 } 990 991 readpage: 992 /* Start the actual read. The read will unlock the page. */ 993 error = mapping->a_ops->readpage(filp, page); 994 995 if (unlikely(error)) { 996 if (error == AOP_TRUNCATED_PAGE) { 997 page_cache_release(page); 998 goto find_page; 999 } 1000 goto readpage_error; 1001 } 1002 1003 if (!PageUptodate(page)) { 1004 lock_page(page); 1005 if (!PageUptodate(page)) { 1006 if (page->mapping == NULL) { 1007 /* 1008 * invalidate_inode_pages got it 1009 */ 1010 unlock_page(page); 1011 page_cache_release(page); 1012 goto find_page; 1013 } 1014 unlock_page(page); 1015 error = -EIO; 1016 shrink_readahead_size_eio(filp, &ra); 1017 goto readpage_error; 1018 } 1019 unlock_page(page); 1020 } 1021 1022 /* 1023 * i_size must be checked after we have done ->readpage. 1024 * 1025 * Checking i_size after the readpage allows us to calculate 1026 * the correct value for "nr", which means the zero-filled 1027 * part of the page is not copied back to userspace (unless 1028 * another truncate extends the file - this is desired though). 1029 */ 1030 isize = i_size_read(inode); 1031 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1032 if (unlikely(!isize || index > end_index)) { 1033 page_cache_release(page); 1034 goto out; 1035 } 1036 1037 /* nr is the maximum number of bytes to copy from this page */ 1038 nr = PAGE_CACHE_SIZE; 1039 if (index == end_index) { 1040 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1041 if (nr <= offset) { 1042 page_cache_release(page); 1043 goto out; 1044 } 1045 } 1046 nr = nr - offset; 1047 goto page_ok; 1048 1049 readpage_error: 1050 /* UHHUH! A synchronous read error occurred. Report it */ 1051 desc->error = error; 1052 page_cache_release(page); 1053 goto out; 1054 1055 no_cached_page: 1056 /* 1057 * Ok, it wasn't cached, so we need to create a new 1058 * page.. 1059 */ 1060 if (!cached_page) { 1061 cached_page = page_cache_alloc_cold(mapping); 1062 if (!cached_page) { 1063 desc->error = -ENOMEM; 1064 goto out; 1065 } 1066 } 1067 error = add_to_page_cache_lru(cached_page, mapping, 1068 index, GFP_KERNEL); 1069 if (error) { 1070 if (error == -EEXIST) 1071 goto find_page; 1072 desc->error = error; 1073 goto out; 1074 } 1075 page = cached_page; 1076 cached_page = NULL; 1077 goto readpage; 1078 } 1079 1080 out: 1081 *_ra = ra; 1082 1083 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1084 if (cached_page) 1085 page_cache_release(cached_page); 1086 if (filp) 1087 file_accessed(filp); 1088 } 1089 EXPORT_SYMBOL(do_generic_mapping_read); 1090 1091 int file_read_actor(read_descriptor_t *desc, struct page *page, 1092 unsigned long offset, unsigned long size) 1093 { 1094 char *kaddr; 1095 unsigned long left, count = desc->count; 1096 1097 if (size > count) 1098 size = count; 1099 1100 /* 1101 * Faults on the destination of a read are common, so do it before 1102 * taking the kmap. 1103 */ 1104 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1105 kaddr = kmap_atomic(page, KM_USER0); 1106 left = __copy_to_user_inatomic(desc->arg.buf, 1107 kaddr + offset, size); 1108 kunmap_atomic(kaddr, KM_USER0); 1109 if (left == 0) 1110 goto success; 1111 } 1112 1113 /* Do it the slow way */ 1114 kaddr = kmap(page); 1115 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1116 kunmap(page); 1117 1118 if (left) { 1119 size -= left; 1120 desc->error = -EFAULT; 1121 } 1122 success: 1123 desc->count = count - size; 1124 desc->written += size; 1125 desc->arg.buf += size; 1126 return size; 1127 } 1128 1129 /** 1130 * generic_file_aio_read - generic filesystem read routine 1131 * @iocb: kernel I/O control block 1132 * @iov: io vector request 1133 * @nr_segs: number of segments in the iovec 1134 * @pos: current file position 1135 * 1136 * This is the "read()" routine for all filesystems 1137 * that can use the page cache directly. 1138 */ 1139 ssize_t 1140 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1141 unsigned long nr_segs, loff_t pos) 1142 { 1143 struct file *filp = iocb->ki_filp; 1144 ssize_t retval; 1145 unsigned long seg; 1146 size_t count; 1147 loff_t *ppos = &iocb->ki_pos; 1148 1149 count = 0; 1150 for (seg = 0; seg < nr_segs; seg++) { 1151 const struct iovec *iv = &iov[seg]; 1152 1153 /* 1154 * If any segment has a negative length, or the cumulative 1155 * length ever wraps negative then return -EINVAL. 1156 */ 1157 count += iv->iov_len; 1158 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 1159 return -EINVAL; 1160 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 1161 continue; 1162 if (seg == 0) 1163 return -EFAULT; 1164 nr_segs = seg; 1165 count -= iv->iov_len; /* This segment is no good */ 1166 break; 1167 } 1168 1169 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1170 if (filp->f_flags & O_DIRECT) { 1171 loff_t size; 1172 struct address_space *mapping; 1173 struct inode *inode; 1174 1175 mapping = filp->f_mapping; 1176 inode = mapping->host; 1177 retval = 0; 1178 if (!count) 1179 goto out; /* skip atime */ 1180 size = i_size_read(inode); 1181 if (pos < size) { 1182 retval = generic_file_direct_IO(READ, iocb, 1183 iov, pos, nr_segs); 1184 if (retval > 0 && !is_sync_kiocb(iocb)) 1185 retval = -EIOCBQUEUED; 1186 if (retval > 0) 1187 *ppos = pos + retval; 1188 } 1189 if (likely(retval != 0)) { 1190 file_accessed(filp); 1191 goto out; 1192 } 1193 } 1194 1195 retval = 0; 1196 if (count) { 1197 for (seg = 0; seg < nr_segs; seg++) { 1198 read_descriptor_t desc; 1199 1200 desc.written = 0; 1201 desc.arg.buf = iov[seg].iov_base; 1202 desc.count = iov[seg].iov_len; 1203 if (desc.count == 0) 1204 continue; 1205 desc.error = 0; 1206 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1207 retval += desc.written; 1208 if (desc.error) { 1209 retval = retval ?: desc.error; 1210 break; 1211 } 1212 } 1213 } 1214 out: 1215 return retval; 1216 } 1217 EXPORT_SYMBOL(generic_file_aio_read); 1218 1219 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1220 { 1221 ssize_t written; 1222 unsigned long count = desc->count; 1223 struct file *file = desc->arg.data; 1224 1225 if (size > count) 1226 size = count; 1227 1228 written = file->f_op->sendpage(file, page, offset, 1229 size, &file->f_pos, size<count); 1230 if (written < 0) { 1231 desc->error = written; 1232 written = 0; 1233 } 1234 desc->count = count - written; 1235 desc->written += written; 1236 return written; 1237 } 1238 1239 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1240 size_t count, read_actor_t actor, void *target) 1241 { 1242 read_descriptor_t desc; 1243 1244 if (!count) 1245 return 0; 1246 1247 desc.written = 0; 1248 desc.count = count; 1249 desc.arg.data = target; 1250 desc.error = 0; 1251 1252 do_generic_file_read(in_file, ppos, &desc, actor); 1253 if (desc.written) 1254 return desc.written; 1255 return desc.error; 1256 } 1257 EXPORT_SYMBOL(generic_file_sendfile); 1258 1259 static ssize_t 1260 do_readahead(struct address_space *mapping, struct file *filp, 1261 unsigned long index, unsigned long nr) 1262 { 1263 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1264 return -EINVAL; 1265 1266 force_page_cache_readahead(mapping, filp, index, 1267 max_sane_readahead(nr)); 1268 return 0; 1269 } 1270 1271 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1272 { 1273 ssize_t ret; 1274 struct file *file; 1275 1276 ret = -EBADF; 1277 file = fget(fd); 1278 if (file) { 1279 if (file->f_mode & FMODE_READ) { 1280 struct address_space *mapping = file->f_mapping; 1281 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1282 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1283 unsigned long len = end - start + 1; 1284 ret = do_readahead(mapping, file, start, len); 1285 } 1286 fput(file); 1287 } 1288 return ret; 1289 } 1290 1291 #ifdef CONFIG_MMU 1292 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1293 /** 1294 * page_cache_read - adds requested page to the page cache if not already there 1295 * @file: file to read 1296 * @offset: page index 1297 * 1298 * This adds the requested page to the page cache if it isn't already there, 1299 * and schedules an I/O to read in its contents from disk. 1300 */ 1301 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1302 { 1303 struct address_space *mapping = file->f_mapping; 1304 struct page *page; 1305 int ret; 1306 1307 do { 1308 page = page_cache_alloc_cold(mapping); 1309 if (!page) 1310 return -ENOMEM; 1311 1312 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1313 if (ret == 0) 1314 ret = mapping->a_ops->readpage(file, page); 1315 else if (ret == -EEXIST) 1316 ret = 0; /* losing race to add is OK */ 1317 1318 page_cache_release(page); 1319 1320 } while (ret == AOP_TRUNCATED_PAGE); 1321 1322 return ret; 1323 } 1324 1325 #define MMAP_LOTSAMISS (100) 1326 1327 /** 1328 * filemap_nopage - read in file data for page fault handling 1329 * @area: the applicable vm_area 1330 * @address: target address to read in 1331 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL 1332 * 1333 * filemap_nopage() is invoked via the vma operations vector for a 1334 * mapped memory region to read in file data during a page fault. 1335 * 1336 * The goto's are kind of ugly, but this streamlines the normal case of having 1337 * it in the page cache, and handles the special cases reasonably without 1338 * having a lot of duplicated code. 1339 */ 1340 struct page *filemap_nopage(struct vm_area_struct *area, 1341 unsigned long address, int *type) 1342 { 1343 int error; 1344 struct file *file = area->vm_file; 1345 struct address_space *mapping = file->f_mapping; 1346 struct file_ra_state *ra = &file->f_ra; 1347 struct inode *inode = mapping->host; 1348 struct page *page; 1349 unsigned long size, pgoff; 1350 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1351 1352 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1353 1354 retry_all: 1355 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1356 if (pgoff >= size) 1357 goto outside_data_content; 1358 1359 /* If we don't want any read-ahead, don't bother */ 1360 if (VM_RandomReadHint(area)) 1361 goto no_cached_page; 1362 1363 /* 1364 * The readahead code wants to be told about each and every page 1365 * so it can build and shrink its windows appropriately 1366 * 1367 * For sequential accesses, we use the generic readahead logic. 1368 */ 1369 if (VM_SequentialReadHint(area)) 1370 page_cache_readahead(mapping, ra, file, pgoff, 1); 1371 1372 /* 1373 * Do we have something in the page cache already? 1374 */ 1375 retry_find: 1376 page = find_get_page(mapping, pgoff); 1377 if (!page) { 1378 unsigned long ra_pages; 1379 1380 if (VM_SequentialReadHint(area)) { 1381 handle_ra_miss(mapping, ra, pgoff); 1382 goto no_cached_page; 1383 } 1384 ra->mmap_miss++; 1385 1386 /* 1387 * Do we miss much more than hit in this file? If so, 1388 * stop bothering with read-ahead. It will only hurt. 1389 */ 1390 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1391 goto no_cached_page; 1392 1393 /* 1394 * To keep the pgmajfault counter straight, we need to 1395 * check did_readaround, as this is an inner loop. 1396 */ 1397 if (!did_readaround) { 1398 majmin = VM_FAULT_MAJOR; 1399 count_vm_event(PGMAJFAULT); 1400 } 1401 did_readaround = 1; 1402 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1403 if (ra_pages) { 1404 pgoff_t start = 0; 1405 1406 if (pgoff > ra_pages / 2) 1407 start = pgoff - ra_pages / 2; 1408 do_page_cache_readahead(mapping, file, start, ra_pages); 1409 } 1410 page = find_get_page(mapping, pgoff); 1411 if (!page) 1412 goto no_cached_page; 1413 } 1414 1415 if (!did_readaround) 1416 ra->mmap_hit++; 1417 1418 /* 1419 * Ok, found a page in the page cache, now we need to check 1420 * that it's up-to-date. 1421 */ 1422 if (!PageUptodate(page)) 1423 goto page_not_uptodate; 1424 1425 success: 1426 /* 1427 * Found the page and have a reference on it. 1428 */ 1429 mark_page_accessed(page); 1430 if (type) 1431 *type = majmin; 1432 return page; 1433 1434 outside_data_content: 1435 /* 1436 * An external ptracer can access pages that normally aren't 1437 * accessible.. 1438 */ 1439 if (area->vm_mm == current->mm) 1440 return NOPAGE_SIGBUS; 1441 /* Fall through to the non-read-ahead case */ 1442 no_cached_page: 1443 /* 1444 * We're only likely to ever get here if MADV_RANDOM is in 1445 * effect. 1446 */ 1447 error = page_cache_read(file, pgoff); 1448 1449 /* 1450 * The page we want has now been added to the page cache. 1451 * In the unlikely event that someone removed it in the 1452 * meantime, we'll just come back here and read it again. 1453 */ 1454 if (error >= 0) 1455 goto retry_find; 1456 1457 /* 1458 * An error return from page_cache_read can result if the 1459 * system is low on memory, or a problem occurs while trying 1460 * to schedule I/O. 1461 */ 1462 if (error == -ENOMEM) 1463 return NOPAGE_OOM; 1464 return NOPAGE_SIGBUS; 1465 1466 page_not_uptodate: 1467 if (!did_readaround) { 1468 majmin = VM_FAULT_MAJOR; 1469 count_vm_event(PGMAJFAULT); 1470 } 1471 lock_page(page); 1472 1473 /* Did it get unhashed while we waited for it? */ 1474 if (!page->mapping) { 1475 unlock_page(page); 1476 page_cache_release(page); 1477 goto retry_all; 1478 } 1479 1480 /* Did somebody else get it up-to-date? */ 1481 if (PageUptodate(page)) { 1482 unlock_page(page); 1483 goto success; 1484 } 1485 1486 error = mapping->a_ops->readpage(file, page); 1487 if (!error) { 1488 wait_on_page_locked(page); 1489 if (PageUptodate(page)) 1490 goto success; 1491 } else if (error == AOP_TRUNCATED_PAGE) { 1492 page_cache_release(page); 1493 goto retry_find; 1494 } 1495 1496 /* 1497 * Umm, take care of errors if the page isn't up-to-date. 1498 * Try to re-read it _once_. We do this synchronously, 1499 * because there really aren't any performance issues here 1500 * and we need to check for errors. 1501 */ 1502 lock_page(page); 1503 1504 /* Somebody truncated the page on us? */ 1505 if (!page->mapping) { 1506 unlock_page(page); 1507 page_cache_release(page); 1508 goto retry_all; 1509 } 1510 1511 /* Somebody else successfully read it in? */ 1512 if (PageUptodate(page)) { 1513 unlock_page(page); 1514 goto success; 1515 } 1516 ClearPageError(page); 1517 error = mapping->a_ops->readpage(file, page); 1518 if (!error) { 1519 wait_on_page_locked(page); 1520 if (PageUptodate(page)) 1521 goto success; 1522 } else if (error == AOP_TRUNCATED_PAGE) { 1523 page_cache_release(page); 1524 goto retry_find; 1525 } 1526 1527 /* 1528 * Things didn't work out. Return zero to tell the 1529 * mm layer so, possibly freeing the page cache page first. 1530 */ 1531 shrink_readahead_size_eio(file, ra); 1532 page_cache_release(page); 1533 return NOPAGE_SIGBUS; 1534 } 1535 EXPORT_SYMBOL(filemap_nopage); 1536 1537 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1538 int nonblock) 1539 { 1540 struct address_space *mapping = file->f_mapping; 1541 struct page *page; 1542 int error; 1543 1544 /* 1545 * Do we have something in the page cache already? 1546 */ 1547 retry_find: 1548 page = find_get_page(mapping, pgoff); 1549 if (!page) { 1550 if (nonblock) 1551 return NULL; 1552 goto no_cached_page; 1553 } 1554 1555 /* 1556 * Ok, found a page in the page cache, now we need to check 1557 * that it's up-to-date. 1558 */ 1559 if (!PageUptodate(page)) { 1560 if (nonblock) { 1561 page_cache_release(page); 1562 return NULL; 1563 } 1564 goto page_not_uptodate; 1565 } 1566 1567 success: 1568 /* 1569 * Found the page and have a reference on it. 1570 */ 1571 mark_page_accessed(page); 1572 return page; 1573 1574 no_cached_page: 1575 error = page_cache_read(file, pgoff); 1576 1577 /* 1578 * The page we want has now been added to the page cache. 1579 * In the unlikely event that someone removed it in the 1580 * meantime, we'll just come back here and read it again. 1581 */ 1582 if (error >= 0) 1583 goto retry_find; 1584 1585 /* 1586 * An error return from page_cache_read can result if the 1587 * system is low on memory, or a problem occurs while trying 1588 * to schedule I/O. 1589 */ 1590 return NULL; 1591 1592 page_not_uptodate: 1593 lock_page(page); 1594 1595 /* Did it get truncated while we waited for it? */ 1596 if (!page->mapping) { 1597 unlock_page(page); 1598 goto err; 1599 } 1600 1601 /* Did somebody else get it up-to-date? */ 1602 if (PageUptodate(page)) { 1603 unlock_page(page); 1604 goto success; 1605 } 1606 1607 error = mapping->a_ops->readpage(file, page); 1608 if (!error) { 1609 wait_on_page_locked(page); 1610 if (PageUptodate(page)) 1611 goto success; 1612 } else if (error == AOP_TRUNCATED_PAGE) { 1613 page_cache_release(page); 1614 goto retry_find; 1615 } 1616 1617 /* 1618 * Umm, take care of errors if the page isn't up-to-date. 1619 * Try to re-read it _once_. We do this synchronously, 1620 * because there really aren't any performance issues here 1621 * and we need to check for errors. 1622 */ 1623 lock_page(page); 1624 1625 /* Somebody truncated the page on us? */ 1626 if (!page->mapping) { 1627 unlock_page(page); 1628 goto err; 1629 } 1630 /* Somebody else successfully read it in? */ 1631 if (PageUptodate(page)) { 1632 unlock_page(page); 1633 goto success; 1634 } 1635 1636 ClearPageError(page); 1637 error = mapping->a_ops->readpage(file, page); 1638 if (!error) { 1639 wait_on_page_locked(page); 1640 if (PageUptodate(page)) 1641 goto success; 1642 } else if (error == AOP_TRUNCATED_PAGE) { 1643 page_cache_release(page); 1644 goto retry_find; 1645 } 1646 1647 /* 1648 * Things didn't work out. Return zero to tell the 1649 * mm layer so, possibly freeing the page cache page first. 1650 */ 1651 err: 1652 page_cache_release(page); 1653 1654 return NULL; 1655 } 1656 1657 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1658 unsigned long len, pgprot_t prot, unsigned long pgoff, 1659 int nonblock) 1660 { 1661 struct file *file = vma->vm_file; 1662 struct address_space *mapping = file->f_mapping; 1663 struct inode *inode = mapping->host; 1664 unsigned long size; 1665 struct mm_struct *mm = vma->vm_mm; 1666 struct page *page; 1667 int err; 1668 1669 if (!nonblock) 1670 force_page_cache_readahead(mapping, vma->vm_file, 1671 pgoff, len >> PAGE_CACHE_SHIFT); 1672 1673 repeat: 1674 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1675 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1676 return -EINVAL; 1677 1678 page = filemap_getpage(file, pgoff, nonblock); 1679 1680 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1681 * done in shmem_populate calling shmem_getpage */ 1682 if (!page && !nonblock) 1683 return -ENOMEM; 1684 1685 if (page) { 1686 err = install_page(mm, vma, addr, page, prot); 1687 if (err) { 1688 page_cache_release(page); 1689 return err; 1690 } 1691 } else if (vma->vm_flags & VM_NONLINEAR) { 1692 /* No page was found just because we can't read it in now (being 1693 * here implies nonblock != 0), but the page may exist, so set 1694 * the PTE to fault it in later. */ 1695 err = install_file_pte(mm, vma, addr, pgoff, prot); 1696 if (err) 1697 return err; 1698 } 1699 1700 len -= PAGE_SIZE; 1701 addr += PAGE_SIZE; 1702 pgoff++; 1703 if (len) 1704 goto repeat; 1705 1706 return 0; 1707 } 1708 EXPORT_SYMBOL(filemap_populate); 1709 1710 struct vm_operations_struct generic_file_vm_ops = { 1711 .nopage = filemap_nopage, 1712 .populate = filemap_populate, 1713 }; 1714 1715 /* This is used for a general mmap of a disk file */ 1716 1717 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1718 { 1719 struct address_space *mapping = file->f_mapping; 1720 1721 if (!mapping->a_ops->readpage) 1722 return -ENOEXEC; 1723 file_accessed(file); 1724 vma->vm_ops = &generic_file_vm_ops; 1725 return 0; 1726 } 1727 1728 /* 1729 * This is for filesystems which do not implement ->writepage. 1730 */ 1731 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1732 { 1733 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1734 return -EINVAL; 1735 return generic_file_mmap(file, vma); 1736 } 1737 #else 1738 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1739 { 1740 return -ENOSYS; 1741 } 1742 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1743 { 1744 return -ENOSYS; 1745 } 1746 #endif /* CONFIG_MMU */ 1747 1748 EXPORT_SYMBOL(generic_file_mmap); 1749 EXPORT_SYMBOL(generic_file_readonly_mmap); 1750 1751 static inline struct page *__read_cache_page(struct address_space *mapping, 1752 unsigned long index, 1753 int (*filler)(void *,struct page*), 1754 void *data) 1755 { 1756 struct page *page, *cached_page = NULL; 1757 int err; 1758 repeat: 1759 page = find_get_page(mapping, index); 1760 if (!page) { 1761 if (!cached_page) { 1762 cached_page = page_cache_alloc_cold(mapping); 1763 if (!cached_page) 1764 return ERR_PTR(-ENOMEM); 1765 } 1766 err = add_to_page_cache_lru(cached_page, mapping, 1767 index, GFP_KERNEL); 1768 if (err == -EEXIST) 1769 goto repeat; 1770 if (err < 0) { 1771 /* Presumably ENOMEM for radix tree node */ 1772 page_cache_release(cached_page); 1773 return ERR_PTR(err); 1774 } 1775 page = cached_page; 1776 cached_page = NULL; 1777 err = filler(data, page); 1778 if (err < 0) { 1779 page_cache_release(page); 1780 page = ERR_PTR(err); 1781 } 1782 } 1783 if (cached_page) 1784 page_cache_release(cached_page); 1785 return page; 1786 } 1787 1788 /** 1789 * read_cache_page - read into page cache, fill it if needed 1790 * @mapping: the page's address_space 1791 * @index: the page index 1792 * @filler: function to perform the read 1793 * @data: destination for read data 1794 * 1795 * Read into the page cache. If a page already exists, 1796 * and PageUptodate() is not set, try to fill the page. 1797 */ 1798 struct page *read_cache_page(struct address_space *mapping, 1799 unsigned long index, 1800 int (*filler)(void *,struct page*), 1801 void *data) 1802 { 1803 struct page *page; 1804 int err; 1805 1806 retry: 1807 page = __read_cache_page(mapping, index, filler, data); 1808 if (IS_ERR(page)) 1809 goto out; 1810 mark_page_accessed(page); 1811 if (PageUptodate(page)) 1812 goto out; 1813 1814 lock_page(page); 1815 if (!page->mapping) { 1816 unlock_page(page); 1817 page_cache_release(page); 1818 goto retry; 1819 } 1820 if (PageUptodate(page)) { 1821 unlock_page(page); 1822 goto out; 1823 } 1824 err = filler(data, page); 1825 if (err < 0) { 1826 page_cache_release(page); 1827 page = ERR_PTR(err); 1828 } 1829 out: 1830 return page; 1831 } 1832 EXPORT_SYMBOL(read_cache_page); 1833 1834 /* 1835 * If the page was newly created, increment its refcount and add it to the 1836 * caller's lru-buffering pagevec. This function is specifically for 1837 * generic_file_write(). 1838 */ 1839 static inline struct page * 1840 __grab_cache_page(struct address_space *mapping, unsigned long index, 1841 struct page **cached_page, struct pagevec *lru_pvec) 1842 { 1843 int err; 1844 struct page *page; 1845 repeat: 1846 page = find_lock_page(mapping, index); 1847 if (!page) { 1848 if (!*cached_page) { 1849 *cached_page = page_cache_alloc(mapping); 1850 if (!*cached_page) 1851 return NULL; 1852 } 1853 err = add_to_page_cache(*cached_page, mapping, 1854 index, GFP_KERNEL); 1855 if (err == -EEXIST) 1856 goto repeat; 1857 if (err == 0) { 1858 page = *cached_page; 1859 page_cache_get(page); 1860 if (!pagevec_add(lru_pvec, page)) 1861 __pagevec_lru_add(lru_pvec); 1862 *cached_page = NULL; 1863 } 1864 } 1865 return page; 1866 } 1867 1868 /* 1869 * The logic we want is 1870 * 1871 * if suid or (sgid and xgrp) 1872 * remove privs 1873 */ 1874 int should_remove_suid(struct dentry *dentry) 1875 { 1876 mode_t mode = dentry->d_inode->i_mode; 1877 int kill = 0; 1878 1879 /* suid always must be killed */ 1880 if (unlikely(mode & S_ISUID)) 1881 kill = ATTR_KILL_SUID; 1882 1883 /* 1884 * sgid without any exec bits is just a mandatory locking mark; leave 1885 * it alone. If some exec bits are set, it's a real sgid; kill it. 1886 */ 1887 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1888 kill |= ATTR_KILL_SGID; 1889 1890 if (unlikely(kill && !capable(CAP_FSETID))) 1891 return kill; 1892 1893 return 0; 1894 } 1895 EXPORT_SYMBOL(should_remove_suid); 1896 1897 int __remove_suid(struct dentry *dentry, int kill) 1898 { 1899 struct iattr newattrs; 1900 1901 newattrs.ia_valid = ATTR_FORCE | kill; 1902 return notify_change(dentry, &newattrs); 1903 } 1904 1905 int remove_suid(struct dentry *dentry) 1906 { 1907 int kill = should_remove_suid(dentry); 1908 1909 if (unlikely(kill)) 1910 return __remove_suid(dentry, kill); 1911 1912 return 0; 1913 } 1914 EXPORT_SYMBOL(remove_suid); 1915 1916 size_t 1917 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1918 const struct iovec *iov, size_t base, size_t bytes) 1919 { 1920 size_t copied = 0, left = 0; 1921 1922 while (bytes) { 1923 char __user *buf = iov->iov_base + base; 1924 int copy = min(bytes, iov->iov_len - base); 1925 1926 base = 0; 1927 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1928 copied += copy; 1929 bytes -= copy; 1930 vaddr += copy; 1931 iov++; 1932 1933 if (unlikely(left)) 1934 break; 1935 } 1936 return copied - left; 1937 } 1938 1939 /* 1940 * Performs necessary checks before doing a write 1941 * 1942 * Can adjust writing position or amount of bytes to write. 1943 * Returns appropriate error code that caller should return or 1944 * zero in case that write should be allowed. 1945 */ 1946 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1947 { 1948 struct inode *inode = file->f_mapping->host; 1949 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1950 1951 if (unlikely(*pos < 0)) 1952 return -EINVAL; 1953 1954 if (!isblk) { 1955 /* FIXME: this is for backwards compatibility with 2.4 */ 1956 if (file->f_flags & O_APPEND) 1957 *pos = i_size_read(inode); 1958 1959 if (limit != RLIM_INFINITY) { 1960 if (*pos >= limit) { 1961 send_sig(SIGXFSZ, current, 0); 1962 return -EFBIG; 1963 } 1964 if (*count > limit - (typeof(limit))*pos) { 1965 *count = limit - (typeof(limit))*pos; 1966 } 1967 } 1968 } 1969 1970 /* 1971 * LFS rule 1972 */ 1973 if (unlikely(*pos + *count > MAX_NON_LFS && 1974 !(file->f_flags & O_LARGEFILE))) { 1975 if (*pos >= MAX_NON_LFS) { 1976 send_sig(SIGXFSZ, current, 0); 1977 return -EFBIG; 1978 } 1979 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1980 *count = MAX_NON_LFS - (unsigned long)*pos; 1981 } 1982 } 1983 1984 /* 1985 * Are we about to exceed the fs block limit ? 1986 * 1987 * If we have written data it becomes a short write. If we have 1988 * exceeded without writing data we send a signal and return EFBIG. 1989 * Linus frestrict idea will clean these up nicely.. 1990 */ 1991 if (likely(!isblk)) { 1992 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1993 if (*count || *pos > inode->i_sb->s_maxbytes) { 1994 send_sig(SIGXFSZ, current, 0); 1995 return -EFBIG; 1996 } 1997 /* zero-length writes at ->s_maxbytes are OK */ 1998 } 1999 2000 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2001 *count = inode->i_sb->s_maxbytes - *pos; 2002 } else { 2003 #ifdef CONFIG_BLOCK 2004 loff_t isize; 2005 if (bdev_read_only(I_BDEV(inode))) 2006 return -EPERM; 2007 isize = i_size_read(inode); 2008 if (*pos >= isize) { 2009 if (*count || *pos > isize) 2010 return -ENOSPC; 2011 } 2012 2013 if (*pos + *count > isize) 2014 *count = isize - *pos; 2015 #else 2016 return -EPERM; 2017 #endif 2018 } 2019 return 0; 2020 } 2021 EXPORT_SYMBOL(generic_write_checks); 2022 2023 ssize_t 2024 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2025 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2026 size_t count, size_t ocount) 2027 { 2028 struct file *file = iocb->ki_filp; 2029 struct address_space *mapping = file->f_mapping; 2030 struct inode *inode = mapping->host; 2031 ssize_t written; 2032 2033 if (count != ocount) 2034 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2035 2036 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2037 if (written > 0) { 2038 loff_t end = pos + written; 2039 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2040 i_size_write(inode, end); 2041 mark_inode_dirty(inode); 2042 } 2043 *ppos = end; 2044 } 2045 2046 /* 2047 * Sync the fs metadata but not the minor inode changes and 2048 * of course not the data as we did direct DMA for the IO. 2049 * i_mutex is held, which protects generic_osync_inode() from 2050 * livelocking. 2051 */ 2052 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2053 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2054 if (err < 0) 2055 written = err; 2056 } 2057 if (written == count && !is_sync_kiocb(iocb)) 2058 written = -EIOCBQUEUED; 2059 return written; 2060 } 2061 EXPORT_SYMBOL(generic_file_direct_write); 2062 2063 ssize_t 2064 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2065 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2066 size_t count, ssize_t written) 2067 { 2068 struct file *file = iocb->ki_filp; 2069 struct address_space * mapping = file->f_mapping; 2070 const struct address_space_operations *a_ops = mapping->a_ops; 2071 struct inode *inode = mapping->host; 2072 long status = 0; 2073 struct page *page; 2074 struct page *cached_page = NULL; 2075 size_t bytes; 2076 struct pagevec lru_pvec; 2077 const struct iovec *cur_iov = iov; /* current iovec */ 2078 size_t iov_base = 0; /* offset in the current iovec */ 2079 char __user *buf; 2080 2081 pagevec_init(&lru_pvec, 0); 2082 2083 /* 2084 * handle partial DIO write. Adjust cur_iov if needed. 2085 */ 2086 if (likely(nr_segs == 1)) 2087 buf = iov->iov_base + written; 2088 else { 2089 filemap_set_next_iovec(&cur_iov, &iov_base, written); 2090 buf = cur_iov->iov_base + iov_base; 2091 } 2092 2093 do { 2094 unsigned long index; 2095 unsigned long offset; 2096 size_t copied; 2097 2098 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 2099 index = pos >> PAGE_CACHE_SHIFT; 2100 bytes = PAGE_CACHE_SIZE - offset; 2101 2102 /* Limit the size of the copy to the caller's write size */ 2103 bytes = min(bytes, count); 2104 2105 /* 2106 * Limit the size of the copy to that of the current segment, 2107 * because fault_in_pages_readable() doesn't know how to walk 2108 * segments. 2109 */ 2110 bytes = min(bytes, cur_iov->iov_len - iov_base); 2111 2112 /* 2113 * Bring in the user page that we will copy from _first_. 2114 * Otherwise there's a nasty deadlock on copying from the 2115 * same page as we're writing to, without it being marked 2116 * up-to-date. 2117 */ 2118 fault_in_pages_readable(buf, bytes); 2119 2120 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 2121 if (!page) { 2122 status = -ENOMEM; 2123 break; 2124 } 2125 2126 if (unlikely(bytes == 0)) { 2127 status = 0; 2128 copied = 0; 2129 goto zero_length_segment; 2130 } 2131 2132 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2133 if (unlikely(status)) { 2134 loff_t isize = i_size_read(inode); 2135 2136 if (status != AOP_TRUNCATED_PAGE) 2137 unlock_page(page); 2138 page_cache_release(page); 2139 if (status == AOP_TRUNCATED_PAGE) 2140 continue; 2141 /* 2142 * prepare_write() may have instantiated a few blocks 2143 * outside i_size. Trim these off again. 2144 */ 2145 if (pos + bytes > isize) 2146 vmtruncate(inode, isize); 2147 break; 2148 } 2149 if (likely(nr_segs == 1)) 2150 copied = filemap_copy_from_user(page, offset, 2151 buf, bytes); 2152 else 2153 copied = filemap_copy_from_user_iovec(page, offset, 2154 cur_iov, iov_base, bytes); 2155 flush_dcache_page(page); 2156 status = a_ops->commit_write(file, page, offset, offset+bytes); 2157 if (status == AOP_TRUNCATED_PAGE) { 2158 page_cache_release(page); 2159 continue; 2160 } 2161 zero_length_segment: 2162 if (likely(copied >= 0)) { 2163 if (!status) 2164 status = copied; 2165 2166 if (status >= 0) { 2167 written += status; 2168 count -= status; 2169 pos += status; 2170 buf += status; 2171 if (unlikely(nr_segs > 1)) { 2172 filemap_set_next_iovec(&cur_iov, 2173 &iov_base, status); 2174 if (count) 2175 buf = cur_iov->iov_base + 2176 iov_base; 2177 } else { 2178 iov_base += status; 2179 } 2180 } 2181 } 2182 if (unlikely(copied != bytes)) 2183 if (status >= 0) 2184 status = -EFAULT; 2185 unlock_page(page); 2186 mark_page_accessed(page); 2187 page_cache_release(page); 2188 if (status < 0) 2189 break; 2190 balance_dirty_pages_ratelimited(mapping); 2191 cond_resched(); 2192 } while (count); 2193 *ppos = pos; 2194 2195 if (cached_page) 2196 page_cache_release(cached_page); 2197 2198 /* 2199 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2200 */ 2201 if (likely(status >= 0)) { 2202 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2203 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2204 status = generic_osync_inode(inode, mapping, 2205 OSYNC_METADATA|OSYNC_DATA); 2206 } 2207 } 2208 2209 /* 2210 * If we get here for O_DIRECT writes then we must have fallen through 2211 * to buffered writes (block instantiation inside i_size). So we sync 2212 * the file data here, to try to honour O_DIRECT expectations. 2213 */ 2214 if (unlikely(file->f_flags & O_DIRECT) && written) 2215 status = filemap_write_and_wait(mapping); 2216 2217 pagevec_lru_add(&lru_pvec); 2218 return written ? written : status; 2219 } 2220 EXPORT_SYMBOL(generic_file_buffered_write); 2221 2222 static ssize_t 2223 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2224 unsigned long nr_segs, loff_t *ppos) 2225 { 2226 struct file *file = iocb->ki_filp; 2227 struct address_space * mapping = file->f_mapping; 2228 size_t ocount; /* original count */ 2229 size_t count; /* after file limit checks */ 2230 struct inode *inode = mapping->host; 2231 unsigned long seg; 2232 loff_t pos; 2233 ssize_t written; 2234 ssize_t err; 2235 2236 ocount = 0; 2237 for (seg = 0; seg < nr_segs; seg++) { 2238 const struct iovec *iv = &iov[seg]; 2239 2240 /* 2241 * If any segment has a negative length, or the cumulative 2242 * length ever wraps negative then return -EINVAL. 2243 */ 2244 ocount += iv->iov_len; 2245 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2246 return -EINVAL; 2247 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2248 continue; 2249 if (seg == 0) 2250 return -EFAULT; 2251 nr_segs = seg; 2252 ocount -= iv->iov_len; /* This segment is no good */ 2253 break; 2254 } 2255 2256 count = ocount; 2257 pos = *ppos; 2258 2259 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2260 2261 /* We can write back this queue in page reclaim */ 2262 current->backing_dev_info = mapping->backing_dev_info; 2263 written = 0; 2264 2265 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2266 if (err) 2267 goto out; 2268 2269 if (count == 0) 2270 goto out; 2271 2272 err = remove_suid(file->f_path.dentry); 2273 if (err) 2274 goto out; 2275 2276 file_update_time(file); 2277 2278 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2279 if (unlikely(file->f_flags & O_DIRECT)) { 2280 loff_t endbyte; 2281 ssize_t written_buffered; 2282 2283 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2284 ppos, count, ocount); 2285 if (written < 0 || written == count) 2286 goto out; 2287 /* 2288 * direct-io write to a hole: fall through to buffered I/O 2289 * for completing the rest of the request. 2290 */ 2291 pos += written; 2292 count -= written; 2293 written_buffered = generic_file_buffered_write(iocb, iov, 2294 nr_segs, pos, ppos, count, 2295 written); 2296 /* 2297 * If generic_file_buffered_write() retuned a synchronous error 2298 * then we want to return the number of bytes which were 2299 * direct-written, or the error code if that was zero. Note 2300 * that this differs from normal direct-io semantics, which 2301 * will return -EFOO even if some bytes were written. 2302 */ 2303 if (written_buffered < 0) { 2304 err = written_buffered; 2305 goto out; 2306 } 2307 2308 /* 2309 * We need to ensure that the page cache pages are written to 2310 * disk and invalidated to preserve the expected O_DIRECT 2311 * semantics. 2312 */ 2313 endbyte = pos + written_buffered - written - 1; 2314 err = do_sync_file_range(file, pos, endbyte, 2315 SYNC_FILE_RANGE_WAIT_BEFORE| 2316 SYNC_FILE_RANGE_WRITE| 2317 SYNC_FILE_RANGE_WAIT_AFTER); 2318 if (err == 0) { 2319 written = written_buffered; 2320 invalidate_mapping_pages(mapping, 2321 pos >> PAGE_CACHE_SHIFT, 2322 endbyte >> PAGE_CACHE_SHIFT); 2323 } else { 2324 /* 2325 * We don't know how much we wrote, so just return 2326 * the number of bytes which were direct-written 2327 */ 2328 } 2329 } else { 2330 written = generic_file_buffered_write(iocb, iov, nr_segs, 2331 pos, ppos, count, written); 2332 } 2333 out: 2334 current->backing_dev_info = NULL; 2335 return written ? written : err; 2336 } 2337 2338 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2339 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2340 { 2341 struct file *file = iocb->ki_filp; 2342 struct address_space *mapping = file->f_mapping; 2343 struct inode *inode = mapping->host; 2344 ssize_t ret; 2345 2346 BUG_ON(iocb->ki_pos != pos); 2347 2348 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2349 &iocb->ki_pos); 2350 2351 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2352 ssize_t err; 2353 2354 err = sync_page_range_nolock(inode, mapping, pos, ret); 2355 if (err < 0) 2356 ret = err; 2357 } 2358 return ret; 2359 } 2360 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2361 2362 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2363 unsigned long nr_segs, loff_t pos) 2364 { 2365 struct file *file = iocb->ki_filp; 2366 struct address_space *mapping = file->f_mapping; 2367 struct inode *inode = mapping->host; 2368 ssize_t ret; 2369 2370 BUG_ON(iocb->ki_pos != pos); 2371 2372 mutex_lock(&inode->i_mutex); 2373 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2374 &iocb->ki_pos); 2375 mutex_unlock(&inode->i_mutex); 2376 2377 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2378 ssize_t err; 2379 2380 err = sync_page_range(inode, mapping, pos, ret); 2381 if (err < 0) 2382 ret = err; 2383 } 2384 return ret; 2385 } 2386 EXPORT_SYMBOL(generic_file_aio_write); 2387 2388 /* 2389 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2390 * went wrong during pagecache shootdown. 2391 */ 2392 static ssize_t 2393 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2394 loff_t offset, unsigned long nr_segs) 2395 { 2396 struct file *file = iocb->ki_filp; 2397 struct address_space *mapping = file->f_mapping; 2398 ssize_t retval; 2399 size_t write_len = 0; 2400 2401 /* 2402 * If it's a write, unmap all mmappings of the file up-front. This 2403 * will cause any pte dirty bits to be propagated into the pageframes 2404 * for the subsequent filemap_write_and_wait(). 2405 */ 2406 if (rw == WRITE) { 2407 write_len = iov_length(iov, nr_segs); 2408 if (mapping_mapped(mapping)) 2409 unmap_mapping_range(mapping, offset, write_len, 0); 2410 } 2411 2412 retval = filemap_write_and_wait(mapping); 2413 if (retval == 0) { 2414 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2415 offset, nr_segs); 2416 if (rw == WRITE && mapping->nrpages) { 2417 pgoff_t end = (offset + write_len - 1) 2418 >> PAGE_CACHE_SHIFT; 2419 int err = invalidate_inode_pages2_range(mapping, 2420 offset >> PAGE_CACHE_SHIFT, end); 2421 if (err) 2422 retval = err; 2423 } 2424 } 2425 return retval; 2426 } 2427 2428 /** 2429 * try_to_release_page() - release old fs-specific metadata on a page 2430 * 2431 * @page: the page which the kernel is trying to free 2432 * @gfp_mask: memory allocation flags (and I/O mode) 2433 * 2434 * The address_space is to try to release any data against the page 2435 * (presumably at page->private). If the release was successful, return `1'. 2436 * Otherwise return zero. 2437 * 2438 * The @gfp_mask argument specifies whether I/O may be performed to release 2439 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT). 2440 * 2441 * NOTE: @gfp_mask may go away, and this function may become non-blocking. 2442 */ 2443 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2444 { 2445 struct address_space * const mapping = page->mapping; 2446 2447 BUG_ON(!PageLocked(page)); 2448 if (PageWriteback(page)) 2449 return 0; 2450 2451 if (mapping && mapping->a_ops->releasepage) 2452 return mapping->a_ops->releasepage(page, gfp_mask); 2453 return try_to_free_buffers(page); 2454 } 2455 2456 EXPORT_SYMBOL(try_to_release_page); 2457