xref: /linux/mm/filemap.c (revision 5e8d780d745c1619aba81fe7166c5a4b5cad2b84)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/uaccess.h>
18 #include <linux/aio.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include "filemap.h"
35 #include "internal.h"
36 
37 /*
38  * FIXME: remove all knowledge of the buffer layer from the core VM
39  */
40 #include <linux/buffer_head.h> /* for generic_osync_inode */
41 
42 #include <asm/mman.h>
43 
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 	loff_t offset, unsigned long nr_segs);
47 
48 /*
49  * Shared mappings implemented 30.11.1994. It's not fully working yet,
50  * though.
51  *
52  * Shared mappings now work. 15.8.1995  Bruno.
53  *
54  * finished 'unifying' the page and buffer cache and SMP-threaded the
55  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56  *
57  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58  */
59 
60 /*
61  * Lock ordering:
62  *
63  *  ->i_mmap_lock		(vmtruncate)
64  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
65  *      ->swap_lock		(exclusive_swap_page, others)
66  *        ->mapping->tree_lock
67  *
68  *  ->i_mutex
69  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
70  *
71  *  ->mmap_sem
72  *    ->i_mmap_lock
73  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
74  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
75  *
76  *  ->mmap_sem
77  *    ->lock_page		(access_process_vm)
78  *
79  *  ->mmap_sem
80  *    ->i_mutex			(msync)
81  *
82  *  ->i_mutex
83  *    ->i_alloc_sem             (various)
84  *
85  *  ->inode_lock
86  *    ->sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_lock
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
100  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  *  ->task->proc_lock
108  *    ->dcache_lock		(proc_pid_lookup)
109  */
110 
111 /*
112  * Remove a page from the page cache and free it. Caller has to make
113  * sure the page is locked and that nobody else uses it - or that usage
114  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
115  */
116 void __remove_from_page_cache(struct page *page)
117 {
118 	struct address_space *mapping = page->mapping;
119 
120 	radix_tree_delete(&mapping->page_tree, page->index);
121 	page->mapping = NULL;
122 	mapping->nrpages--;
123 	__dec_zone_page_state(page, NR_FILE_PAGES);
124 }
125 
126 void remove_from_page_cache(struct page *page)
127 {
128 	struct address_space *mapping = page->mapping;
129 
130 	BUG_ON(!PageLocked(page));
131 
132 	write_lock_irq(&mapping->tree_lock);
133 	__remove_from_page_cache(page);
134 	write_unlock_irq(&mapping->tree_lock);
135 }
136 
137 static int sync_page(void *word)
138 {
139 	struct address_space *mapping;
140 	struct page *page;
141 
142 	page = container_of((unsigned long *)word, struct page, flags);
143 
144 	/*
145 	 * page_mapping() is being called without PG_locked held.
146 	 * Some knowledge of the state and use of the page is used to
147 	 * reduce the requirements down to a memory barrier.
148 	 * The danger here is of a stale page_mapping() return value
149 	 * indicating a struct address_space different from the one it's
150 	 * associated with when it is associated with one.
151 	 * After smp_mb(), it's either the correct page_mapping() for
152 	 * the page, or an old page_mapping() and the page's own
153 	 * page_mapping() has gone NULL.
154 	 * The ->sync_page() address_space operation must tolerate
155 	 * page_mapping() going NULL. By an amazing coincidence,
156 	 * this comes about because none of the users of the page
157 	 * in the ->sync_page() methods make essential use of the
158 	 * page_mapping(), merely passing the page down to the backing
159 	 * device's unplug functions when it's non-NULL, which in turn
160 	 * ignore it for all cases but swap, where only page_private(page) is
161 	 * of interest. When page_mapping() does go NULL, the entire
162 	 * call stack gracefully ignores the page and returns.
163 	 * -- wli
164 	 */
165 	smp_mb();
166 	mapping = page_mapping(page);
167 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 		mapping->a_ops->sync_page(page);
169 	io_schedule();
170 	return 0;
171 }
172 
173 /**
174  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175  * @mapping:	address space structure to write
176  * @start:	offset in bytes where the range starts
177  * @end:	offset in bytes where the range ends (inclusive)
178  * @sync_mode:	enable synchronous operation
179  *
180  * Start writeback against all of a mapping's dirty pages that lie
181  * within the byte offsets <start, end> inclusive.
182  *
183  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184  * opposed to a regular memory cleansing writeback.  The difference between
185  * these two operations is that if a dirty page/buffer is encountered, it must
186  * be waited upon, and not just skipped over.
187  */
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 				loff_t end, int sync_mode)
190 {
191 	int ret;
192 	struct writeback_control wbc = {
193 		.sync_mode = sync_mode,
194 		.nr_to_write = mapping->nrpages * 2,
195 		.range_start = start,
196 		.range_end = end,
197 	};
198 
199 	if (!mapping_cap_writeback_dirty(mapping))
200 		return 0;
201 
202 	ret = do_writepages(mapping, &wbc);
203 	return ret;
204 }
205 
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207 	int sync_mode)
208 {
209 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210 }
211 
212 int filemap_fdatawrite(struct address_space *mapping)
213 {
214 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 }
216 EXPORT_SYMBOL(filemap_fdatawrite);
217 
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 				loff_t end)
220 {
221 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222 }
223 
224 /**
225  * filemap_flush - mostly a non-blocking flush
226  * @mapping:	target address_space
227  *
228  * This is a mostly non-blocking flush.  Not suitable for data-integrity
229  * purposes - I/O may not be started against all dirty pages.
230  */
231 int filemap_flush(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 }
235 EXPORT_SYMBOL(filemap_flush);
236 
237 /**
238  * wait_on_page_writeback_range - wait for writeback to complete
239  * @mapping:	target address_space
240  * @start:	beginning page index
241  * @end:	ending page index
242  *
243  * Wait for writeback to complete against pages indexed by start->end
244  * inclusive
245  */
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 				pgoff_t start, pgoff_t end)
248 {
249 	struct pagevec pvec;
250 	int nr_pages;
251 	int ret = 0;
252 	pgoff_t index;
253 
254 	if (end < start)
255 		return 0;
256 
257 	pagevec_init(&pvec, 0);
258 	index = start;
259 	while ((index <= end) &&
260 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 			PAGECACHE_TAG_WRITEBACK,
262 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 		unsigned i;
264 
265 		for (i = 0; i < nr_pages; i++) {
266 			struct page *page = pvec.pages[i];
267 
268 			/* until radix tree lookup accepts end_index */
269 			if (page->index > end)
270 				continue;
271 
272 			wait_on_page_writeback(page);
273 			if (PageError(page))
274 				ret = -EIO;
275 		}
276 		pagevec_release(&pvec);
277 		cond_resched();
278 	}
279 
280 	/* Check for outstanding write errors */
281 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 		ret = -ENOSPC;
283 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 		ret = -EIO;
285 
286 	return ret;
287 }
288 
289 /**
290  * sync_page_range - write and wait on all pages in the passed range
291  * @inode:	target inode
292  * @mapping:	target address_space
293  * @pos:	beginning offset in pages to write
294  * @count:	number of bytes to write
295  *
296  * Write and wait upon all the pages in the passed range.  This is a "data
297  * integrity" operation.  It waits upon in-flight writeout before starting and
298  * waiting upon new writeout.  If there was an IO error, return it.
299  *
300  * We need to re-take i_mutex during the generic_osync_inode list walk because
301  * it is otherwise livelockable.
302  */
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 			loff_t pos, loff_t count)
305 {
306 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 	int ret;
309 
310 	if (!mapping_cap_writeback_dirty(mapping) || !count)
311 		return 0;
312 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 	if (ret == 0) {
314 		mutex_lock(&inode->i_mutex);
315 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 		mutex_unlock(&inode->i_mutex);
317 	}
318 	if (ret == 0)
319 		ret = wait_on_page_writeback_range(mapping, start, end);
320 	return ret;
321 }
322 EXPORT_SYMBOL(sync_page_range);
323 
324 /**
325  * sync_page_range_nolock
326  * @inode:	target inode
327  * @mapping:	target address_space
328  * @pos:	beginning offset in pages to write
329  * @count:	number of bytes to write
330  *
331  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
332  * as it forces O_SYNC writers to different parts of the same file
333  * to be serialised right until io completion.
334  */
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 			   loff_t pos, loff_t count)
337 {
338 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 	int ret;
341 
342 	if (!mapping_cap_writeback_dirty(mapping) || !count)
343 		return 0;
344 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 	if (ret == 0)
346 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 	if (ret == 0)
348 		ret = wait_on_page_writeback_range(mapping, start, end);
349 	return ret;
350 }
351 EXPORT_SYMBOL(sync_page_range_nolock);
352 
353 /**
354  * filemap_fdatawait - wait for all under-writeback pages to complete
355  * @mapping: address space structure to wait for
356  *
357  * Walk the list of under-writeback pages of the given address space
358  * and wait for all of them.
359  */
360 int filemap_fdatawait(struct address_space *mapping)
361 {
362 	loff_t i_size = i_size_read(mapping->host);
363 
364 	if (i_size == 0)
365 		return 0;
366 
367 	return wait_on_page_writeback_range(mapping, 0,
368 				(i_size - 1) >> PAGE_CACHE_SHIFT);
369 }
370 EXPORT_SYMBOL(filemap_fdatawait);
371 
372 int filemap_write_and_wait(struct address_space *mapping)
373 {
374 	int err = 0;
375 
376 	if (mapping->nrpages) {
377 		err = filemap_fdatawrite(mapping);
378 		/*
379 		 * Even if the above returned error, the pages may be
380 		 * written partially (e.g. -ENOSPC), so we wait for it.
381 		 * But the -EIO is special case, it may indicate the worst
382 		 * thing (e.g. bug) happened, so we avoid waiting for it.
383 		 */
384 		if (err != -EIO) {
385 			int err2 = filemap_fdatawait(mapping);
386 			if (!err)
387 				err = err2;
388 		}
389 	}
390 	return err;
391 }
392 EXPORT_SYMBOL(filemap_write_and_wait);
393 
394 /**
395  * filemap_write_and_wait_range - write out & wait on a file range
396  * @mapping:	the address_space for the pages
397  * @lstart:	offset in bytes where the range starts
398  * @lend:	offset in bytes where the range ends (inclusive)
399  *
400  * Write out and wait upon file offsets lstart->lend, inclusive.
401  *
402  * Note that `lend' is inclusive (describes the last byte to be written) so
403  * that this function can be used to write to the very end-of-file (end = -1).
404  */
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 				 loff_t lstart, loff_t lend)
407 {
408 	int err = 0;
409 
410 	if (mapping->nrpages) {
411 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 						 WB_SYNC_ALL);
413 		/* See comment of filemap_write_and_wait() */
414 		if (err != -EIO) {
415 			int err2 = wait_on_page_writeback_range(mapping,
416 						lstart >> PAGE_CACHE_SHIFT,
417 						lend >> PAGE_CACHE_SHIFT);
418 			if (!err)
419 				err = err2;
420 		}
421 	}
422 	return err;
423 }
424 
425 /**
426  * add_to_page_cache - add newly allocated pagecache pages
427  * @page:	page to add
428  * @mapping:	the page's address_space
429  * @offset:	page index
430  * @gfp_mask:	page allocation mode
431  *
432  * This function is used to add newly allocated pagecache pages;
433  * the page is new, so we can just run SetPageLocked() against it.
434  * The other page state flags were set by rmqueue().
435  *
436  * This function does not add the page to the LRU.  The caller must do that.
437  */
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 		pgoff_t offset, gfp_t gfp_mask)
440 {
441 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442 
443 	if (error == 0) {
444 		write_lock_irq(&mapping->tree_lock);
445 		error = radix_tree_insert(&mapping->page_tree, offset, page);
446 		if (!error) {
447 			page_cache_get(page);
448 			SetPageLocked(page);
449 			page->mapping = mapping;
450 			page->index = offset;
451 			mapping->nrpages++;
452 			__inc_zone_page_state(page, NR_FILE_PAGES);
453 		}
454 		write_unlock_irq(&mapping->tree_lock);
455 		radix_tree_preload_end();
456 	}
457 	return error;
458 }
459 EXPORT_SYMBOL(add_to_page_cache);
460 
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 				pgoff_t offset, gfp_t gfp_mask)
463 {
464 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 	if (ret == 0)
466 		lru_cache_add(page);
467 	return ret;
468 }
469 
470 #ifdef CONFIG_NUMA
471 struct page *page_cache_alloc(struct address_space *x)
472 {
473 	if (cpuset_do_page_mem_spread()) {
474 		int n = cpuset_mem_spread_node();
475 		return alloc_pages_node(n, mapping_gfp_mask(x), 0);
476 	}
477 	return alloc_pages(mapping_gfp_mask(x), 0);
478 }
479 EXPORT_SYMBOL(page_cache_alloc);
480 
481 struct page *page_cache_alloc_cold(struct address_space *x)
482 {
483 	if (cpuset_do_page_mem_spread()) {
484 		int n = cpuset_mem_spread_node();
485 		return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
486 	}
487 	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
488 }
489 EXPORT_SYMBOL(page_cache_alloc_cold);
490 #endif
491 
492 /*
493  * In order to wait for pages to become available there must be
494  * waitqueues associated with pages. By using a hash table of
495  * waitqueues where the bucket discipline is to maintain all
496  * waiters on the same queue and wake all when any of the pages
497  * become available, and for the woken contexts to check to be
498  * sure the appropriate page became available, this saves space
499  * at a cost of "thundering herd" phenomena during rare hash
500  * collisions.
501  */
502 static wait_queue_head_t *page_waitqueue(struct page *page)
503 {
504 	const struct zone *zone = page_zone(page);
505 
506 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
507 }
508 
509 static inline void wake_up_page(struct page *page, int bit)
510 {
511 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
512 }
513 
514 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
515 {
516 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
517 
518 	if (test_bit(bit_nr, &page->flags))
519 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
520 							TASK_UNINTERRUPTIBLE);
521 }
522 EXPORT_SYMBOL(wait_on_page_bit);
523 
524 /**
525  * unlock_page - unlock a locked page
526  * @page: the page
527  *
528  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
529  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
530  * mechananism between PageLocked pages and PageWriteback pages is shared.
531  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
532  *
533  * The first mb is necessary to safely close the critical section opened by the
534  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
535  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
536  * parallel wait_on_page_locked()).
537  */
538 void fastcall unlock_page(struct page *page)
539 {
540 	smp_mb__before_clear_bit();
541 	if (!TestClearPageLocked(page))
542 		BUG();
543 	smp_mb__after_clear_bit();
544 	wake_up_page(page, PG_locked);
545 }
546 EXPORT_SYMBOL(unlock_page);
547 
548 /**
549  * end_page_writeback - end writeback against a page
550  * @page: the page
551  */
552 void end_page_writeback(struct page *page)
553 {
554 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
555 		if (!test_clear_page_writeback(page))
556 			BUG();
557 	}
558 	smp_mb__after_clear_bit();
559 	wake_up_page(page, PG_writeback);
560 }
561 EXPORT_SYMBOL(end_page_writeback);
562 
563 /**
564  * __lock_page - get a lock on the page, assuming we need to sleep to get it
565  * @page: the page to lock
566  *
567  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
568  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
569  * chances are that on the second loop, the block layer's plug list is empty,
570  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
571  */
572 void fastcall __lock_page(struct page *page)
573 {
574 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
575 
576 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
577 							TASK_UNINTERRUPTIBLE);
578 }
579 EXPORT_SYMBOL(__lock_page);
580 
581 /**
582  * find_get_page - find and get a page reference
583  * @mapping: the address_space to search
584  * @offset: the page index
585  *
586  * A rather lightweight function, finding and getting a reference to a
587  * hashed page atomically.
588  */
589 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
590 {
591 	struct page *page;
592 
593 	read_lock_irq(&mapping->tree_lock);
594 	page = radix_tree_lookup(&mapping->page_tree, offset);
595 	if (page)
596 		page_cache_get(page);
597 	read_unlock_irq(&mapping->tree_lock);
598 	return page;
599 }
600 EXPORT_SYMBOL(find_get_page);
601 
602 /**
603  * find_trylock_page - find and lock a page
604  * @mapping: the address_space to search
605  * @offset: the page index
606  *
607  * Same as find_get_page(), but trylock it instead of incrementing the count.
608  */
609 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
610 {
611 	struct page *page;
612 
613 	read_lock_irq(&mapping->tree_lock);
614 	page = radix_tree_lookup(&mapping->page_tree, offset);
615 	if (page && TestSetPageLocked(page))
616 		page = NULL;
617 	read_unlock_irq(&mapping->tree_lock);
618 	return page;
619 }
620 EXPORT_SYMBOL(find_trylock_page);
621 
622 /**
623  * find_lock_page - locate, pin and lock a pagecache page
624  * @mapping: the address_space to search
625  * @offset: the page index
626  *
627  * Locates the desired pagecache page, locks it, increments its reference
628  * count and returns its address.
629  *
630  * Returns zero if the page was not present. find_lock_page() may sleep.
631  */
632 struct page *find_lock_page(struct address_space *mapping,
633 				unsigned long offset)
634 {
635 	struct page *page;
636 
637 	read_lock_irq(&mapping->tree_lock);
638 repeat:
639 	page = radix_tree_lookup(&mapping->page_tree, offset);
640 	if (page) {
641 		page_cache_get(page);
642 		if (TestSetPageLocked(page)) {
643 			read_unlock_irq(&mapping->tree_lock);
644 			__lock_page(page);
645 			read_lock_irq(&mapping->tree_lock);
646 
647 			/* Has the page been truncated while we slept? */
648 			if (unlikely(page->mapping != mapping ||
649 				     page->index != offset)) {
650 				unlock_page(page);
651 				page_cache_release(page);
652 				goto repeat;
653 			}
654 		}
655 	}
656 	read_unlock_irq(&mapping->tree_lock);
657 	return page;
658 }
659 EXPORT_SYMBOL(find_lock_page);
660 
661 /**
662  * find_or_create_page - locate or add a pagecache page
663  * @mapping: the page's address_space
664  * @index: the page's index into the mapping
665  * @gfp_mask: page allocation mode
666  *
667  * Locates a page in the pagecache.  If the page is not present, a new page
668  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
669  * LRU list.  The returned page is locked and has its reference count
670  * incremented.
671  *
672  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
673  * allocation!
674  *
675  * find_or_create_page() returns the desired page's address, or zero on
676  * memory exhaustion.
677  */
678 struct page *find_or_create_page(struct address_space *mapping,
679 		unsigned long index, gfp_t gfp_mask)
680 {
681 	struct page *page, *cached_page = NULL;
682 	int err;
683 repeat:
684 	page = find_lock_page(mapping, index);
685 	if (!page) {
686 		if (!cached_page) {
687 			cached_page = alloc_page(gfp_mask);
688 			if (!cached_page)
689 				return NULL;
690 		}
691 		err = add_to_page_cache_lru(cached_page, mapping,
692 					index, gfp_mask);
693 		if (!err) {
694 			page = cached_page;
695 			cached_page = NULL;
696 		} else if (err == -EEXIST)
697 			goto repeat;
698 	}
699 	if (cached_page)
700 		page_cache_release(cached_page);
701 	return page;
702 }
703 EXPORT_SYMBOL(find_or_create_page);
704 
705 /**
706  * find_get_pages - gang pagecache lookup
707  * @mapping:	The address_space to search
708  * @start:	The starting page index
709  * @nr_pages:	The maximum number of pages
710  * @pages:	Where the resulting pages are placed
711  *
712  * find_get_pages() will search for and return a group of up to
713  * @nr_pages pages in the mapping.  The pages are placed at @pages.
714  * find_get_pages() takes a reference against the returned pages.
715  *
716  * The search returns a group of mapping-contiguous pages with ascending
717  * indexes.  There may be holes in the indices due to not-present pages.
718  *
719  * find_get_pages() returns the number of pages which were found.
720  */
721 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
722 			    unsigned int nr_pages, struct page **pages)
723 {
724 	unsigned int i;
725 	unsigned int ret;
726 
727 	read_lock_irq(&mapping->tree_lock);
728 	ret = radix_tree_gang_lookup(&mapping->page_tree,
729 				(void **)pages, start, nr_pages);
730 	for (i = 0; i < ret; i++)
731 		page_cache_get(pages[i]);
732 	read_unlock_irq(&mapping->tree_lock);
733 	return ret;
734 }
735 
736 /**
737  * find_get_pages_contig - gang contiguous pagecache lookup
738  * @mapping:	The address_space to search
739  * @index:	The starting page index
740  * @nr_pages:	The maximum number of pages
741  * @pages:	Where the resulting pages are placed
742  *
743  * find_get_pages_contig() works exactly like find_get_pages(), except
744  * that the returned number of pages are guaranteed to be contiguous.
745  *
746  * find_get_pages_contig() returns the number of pages which were found.
747  */
748 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
749 			       unsigned int nr_pages, struct page **pages)
750 {
751 	unsigned int i;
752 	unsigned int ret;
753 
754 	read_lock_irq(&mapping->tree_lock);
755 	ret = radix_tree_gang_lookup(&mapping->page_tree,
756 				(void **)pages, index, nr_pages);
757 	for (i = 0; i < ret; i++) {
758 		if (pages[i]->mapping == NULL || pages[i]->index != index)
759 			break;
760 
761 		page_cache_get(pages[i]);
762 		index++;
763 	}
764 	read_unlock_irq(&mapping->tree_lock);
765 	return i;
766 }
767 
768 /**
769  * find_get_pages_tag - find and return pages that match @tag
770  * @mapping:	the address_space to search
771  * @index:	the starting page index
772  * @tag:	the tag index
773  * @nr_pages:	the maximum number of pages
774  * @pages:	where the resulting pages are placed
775  *
776  * Like find_get_pages, except we only return pages which are tagged with
777  * @tag.   We update @index to index the next page for the traversal.
778  */
779 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
780 			int tag, unsigned int nr_pages, struct page **pages)
781 {
782 	unsigned int i;
783 	unsigned int ret;
784 
785 	read_lock_irq(&mapping->tree_lock);
786 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
787 				(void **)pages, *index, nr_pages, tag);
788 	for (i = 0; i < ret; i++)
789 		page_cache_get(pages[i]);
790 	if (ret)
791 		*index = pages[ret - 1]->index + 1;
792 	read_unlock_irq(&mapping->tree_lock);
793 	return ret;
794 }
795 
796 /**
797  * grab_cache_page_nowait - returns locked page at given index in given cache
798  * @mapping: target address_space
799  * @index: the page index
800  *
801  * Same as grab_cache_page, but do not wait if the page is unavailable.
802  * This is intended for speculative data generators, where the data can
803  * be regenerated if the page couldn't be grabbed.  This routine should
804  * be safe to call while holding the lock for another page.
805  *
806  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
807  * and deadlock against the caller's locked page.
808  */
809 struct page *
810 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
811 {
812 	struct page *page = find_get_page(mapping, index);
813 	gfp_t gfp_mask;
814 
815 	if (page) {
816 		if (!TestSetPageLocked(page))
817 			return page;
818 		page_cache_release(page);
819 		return NULL;
820 	}
821 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
822 	page = alloc_pages(gfp_mask, 0);
823 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
824 		page_cache_release(page);
825 		page = NULL;
826 	}
827 	return page;
828 }
829 EXPORT_SYMBOL(grab_cache_page_nowait);
830 
831 /*
832  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
833  * a _large_ part of the i/o request. Imagine the worst scenario:
834  *
835  *      ---R__________________________________________B__________
836  *         ^ reading here                             ^ bad block(assume 4k)
837  *
838  * read(R) => miss => readahead(R...B) => media error => frustrating retries
839  * => failing the whole request => read(R) => read(R+1) =>
840  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
841  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
842  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
843  *
844  * It is going insane. Fix it by quickly scaling down the readahead size.
845  */
846 static void shrink_readahead_size_eio(struct file *filp,
847 					struct file_ra_state *ra)
848 {
849 	if (!ra->ra_pages)
850 		return;
851 
852 	ra->ra_pages /= 4;
853 	printk(KERN_WARNING "Reducing readahead size to %luK\n",
854 			ra->ra_pages << (PAGE_CACHE_SHIFT - 10));
855 }
856 
857 /**
858  * do_generic_mapping_read - generic file read routine
859  * @mapping:	address_space to be read
860  * @_ra:	file's readahead state
861  * @filp:	the file to read
862  * @ppos:	current file position
863  * @desc:	read_descriptor
864  * @actor:	read method
865  *
866  * This is a generic file read routine, and uses the
867  * mapping->a_ops->readpage() function for the actual low-level stuff.
868  *
869  * This is really ugly. But the goto's actually try to clarify some
870  * of the logic when it comes to error handling etc.
871  *
872  * Note the struct file* is only passed for the use of readpage.
873  * It may be NULL.
874  */
875 void do_generic_mapping_read(struct address_space *mapping,
876 			     struct file_ra_state *_ra,
877 			     struct file *filp,
878 			     loff_t *ppos,
879 			     read_descriptor_t *desc,
880 			     read_actor_t actor)
881 {
882 	struct inode *inode = mapping->host;
883 	unsigned long index;
884 	unsigned long end_index;
885 	unsigned long offset;
886 	unsigned long last_index;
887 	unsigned long next_index;
888 	unsigned long prev_index;
889 	loff_t isize;
890 	struct page *cached_page;
891 	int error;
892 	struct file_ra_state ra = *_ra;
893 
894 	cached_page = NULL;
895 	index = *ppos >> PAGE_CACHE_SHIFT;
896 	next_index = index;
897 	prev_index = ra.prev_page;
898 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
899 	offset = *ppos & ~PAGE_CACHE_MASK;
900 
901 	isize = i_size_read(inode);
902 	if (!isize)
903 		goto out;
904 
905 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
906 	for (;;) {
907 		struct page *page;
908 		unsigned long nr, ret;
909 
910 		/* nr is the maximum number of bytes to copy from this page */
911 		nr = PAGE_CACHE_SIZE;
912 		if (index >= end_index) {
913 			if (index > end_index)
914 				goto out;
915 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
916 			if (nr <= offset) {
917 				goto out;
918 			}
919 		}
920 		nr = nr - offset;
921 
922 		cond_resched();
923 		if (index == next_index)
924 			next_index = page_cache_readahead(mapping, &ra, filp,
925 					index, last_index - index);
926 
927 find_page:
928 		page = find_get_page(mapping, index);
929 		if (unlikely(page == NULL)) {
930 			handle_ra_miss(mapping, &ra, index);
931 			goto no_cached_page;
932 		}
933 		if (!PageUptodate(page))
934 			goto page_not_up_to_date;
935 page_ok:
936 
937 		/* If users can be writing to this page using arbitrary
938 		 * virtual addresses, take care about potential aliasing
939 		 * before reading the page on the kernel side.
940 		 */
941 		if (mapping_writably_mapped(mapping))
942 			flush_dcache_page(page);
943 
944 		/*
945 		 * When (part of) the same page is read multiple times
946 		 * in succession, only mark it as accessed the first time.
947 		 */
948 		if (prev_index != index)
949 			mark_page_accessed(page);
950 		prev_index = index;
951 
952 		/*
953 		 * Ok, we have the page, and it's up-to-date, so
954 		 * now we can copy it to user space...
955 		 *
956 		 * The actor routine returns how many bytes were actually used..
957 		 * NOTE! This may not be the same as how much of a user buffer
958 		 * we filled up (we may be padding etc), so we can only update
959 		 * "pos" here (the actor routine has to update the user buffer
960 		 * pointers and the remaining count).
961 		 */
962 		ret = actor(desc, page, offset, nr);
963 		offset += ret;
964 		index += offset >> PAGE_CACHE_SHIFT;
965 		offset &= ~PAGE_CACHE_MASK;
966 
967 		page_cache_release(page);
968 		if (ret == nr && desc->count)
969 			continue;
970 		goto out;
971 
972 page_not_up_to_date:
973 		/* Get exclusive access to the page ... */
974 		lock_page(page);
975 
976 		/* Did it get unhashed before we got the lock? */
977 		if (!page->mapping) {
978 			unlock_page(page);
979 			page_cache_release(page);
980 			continue;
981 		}
982 
983 		/* Did somebody else fill it already? */
984 		if (PageUptodate(page)) {
985 			unlock_page(page);
986 			goto page_ok;
987 		}
988 
989 readpage:
990 		/* Start the actual read. The read will unlock the page. */
991 		error = mapping->a_ops->readpage(filp, page);
992 
993 		if (unlikely(error)) {
994 			if (error == AOP_TRUNCATED_PAGE) {
995 				page_cache_release(page);
996 				goto find_page;
997 			}
998 			goto readpage_error;
999 		}
1000 
1001 		if (!PageUptodate(page)) {
1002 			lock_page(page);
1003 			if (!PageUptodate(page)) {
1004 				if (page->mapping == NULL) {
1005 					/*
1006 					 * invalidate_inode_pages got it
1007 					 */
1008 					unlock_page(page);
1009 					page_cache_release(page);
1010 					goto find_page;
1011 				}
1012 				unlock_page(page);
1013 				error = -EIO;
1014 				shrink_readahead_size_eio(filp, &ra);
1015 				goto readpage_error;
1016 			}
1017 			unlock_page(page);
1018 		}
1019 
1020 		/*
1021 		 * i_size must be checked after we have done ->readpage.
1022 		 *
1023 		 * Checking i_size after the readpage allows us to calculate
1024 		 * the correct value for "nr", which means the zero-filled
1025 		 * part of the page is not copied back to userspace (unless
1026 		 * another truncate extends the file - this is desired though).
1027 		 */
1028 		isize = i_size_read(inode);
1029 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1030 		if (unlikely(!isize || index > end_index)) {
1031 			page_cache_release(page);
1032 			goto out;
1033 		}
1034 
1035 		/* nr is the maximum number of bytes to copy from this page */
1036 		nr = PAGE_CACHE_SIZE;
1037 		if (index == end_index) {
1038 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1039 			if (nr <= offset) {
1040 				page_cache_release(page);
1041 				goto out;
1042 			}
1043 		}
1044 		nr = nr - offset;
1045 		goto page_ok;
1046 
1047 readpage_error:
1048 		/* UHHUH! A synchronous read error occurred. Report it */
1049 		desc->error = error;
1050 		page_cache_release(page);
1051 		goto out;
1052 
1053 no_cached_page:
1054 		/*
1055 		 * Ok, it wasn't cached, so we need to create a new
1056 		 * page..
1057 		 */
1058 		if (!cached_page) {
1059 			cached_page = page_cache_alloc_cold(mapping);
1060 			if (!cached_page) {
1061 				desc->error = -ENOMEM;
1062 				goto out;
1063 			}
1064 		}
1065 		error = add_to_page_cache_lru(cached_page, mapping,
1066 						index, GFP_KERNEL);
1067 		if (error) {
1068 			if (error == -EEXIST)
1069 				goto find_page;
1070 			desc->error = error;
1071 			goto out;
1072 		}
1073 		page = cached_page;
1074 		cached_page = NULL;
1075 		goto readpage;
1076 	}
1077 
1078 out:
1079 	*_ra = ra;
1080 
1081 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1082 	if (cached_page)
1083 		page_cache_release(cached_page);
1084 	if (filp)
1085 		file_accessed(filp);
1086 }
1087 EXPORT_SYMBOL(do_generic_mapping_read);
1088 
1089 int file_read_actor(read_descriptor_t *desc, struct page *page,
1090 			unsigned long offset, unsigned long size)
1091 {
1092 	char *kaddr;
1093 	unsigned long left, count = desc->count;
1094 
1095 	if (size > count)
1096 		size = count;
1097 
1098 	/*
1099 	 * Faults on the destination of a read are common, so do it before
1100 	 * taking the kmap.
1101 	 */
1102 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1103 		kaddr = kmap_atomic(page, KM_USER0);
1104 		left = __copy_to_user_inatomic(desc->arg.buf,
1105 						kaddr + offset, size);
1106 		kunmap_atomic(kaddr, KM_USER0);
1107 		if (left == 0)
1108 			goto success;
1109 	}
1110 
1111 	/* Do it the slow way */
1112 	kaddr = kmap(page);
1113 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1114 	kunmap(page);
1115 
1116 	if (left) {
1117 		size -= left;
1118 		desc->error = -EFAULT;
1119 	}
1120 success:
1121 	desc->count = count - size;
1122 	desc->written += size;
1123 	desc->arg.buf += size;
1124 	return size;
1125 }
1126 
1127 /**
1128  * __generic_file_aio_read - generic filesystem read routine
1129  * @iocb:	kernel I/O control block
1130  * @iov:	io vector request
1131  * @nr_segs:	number of segments in the iovec
1132  * @ppos:	current file position
1133  *
1134  * This is the "read()" routine for all filesystems
1135  * that can use the page cache directly.
1136  */
1137 ssize_t
1138 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1139 		unsigned long nr_segs, loff_t *ppos)
1140 {
1141 	struct file *filp = iocb->ki_filp;
1142 	ssize_t retval;
1143 	unsigned long seg;
1144 	size_t count;
1145 
1146 	count = 0;
1147 	for (seg = 0; seg < nr_segs; seg++) {
1148 		const struct iovec *iv = &iov[seg];
1149 
1150 		/*
1151 		 * If any segment has a negative length, or the cumulative
1152 		 * length ever wraps negative then return -EINVAL.
1153 		 */
1154 		count += iv->iov_len;
1155 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1156 			return -EINVAL;
1157 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1158 			continue;
1159 		if (seg == 0)
1160 			return -EFAULT;
1161 		nr_segs = seg;
1162 		count -= iv->iov_len;	/* This segment is no good */
1163 		break;
1164 	}
1165 
1166 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1167 	if (filp->f_flags & O_DIRECT) {
1168 		loff_t pos = *ppos, size;
1169 		struct address_space *mapping;
1170 		struct inode *inode;
1171 
1172 		mapping = filp->f_mapping;
1173 		inode = mapping->host;
1174 		retval = 0;
1175 		if (!count)
1176 			goto out; /* skip atime */
1177 		size = i_size_read(inode);
1178 		if (pos < size) {
1179 			retval = generic_file_direct_IO(READ, iocb,
1180 						iov, pos, nr_segs);
1181 			if (retval > 0 && !is_sync_kiocb(iocb))
1182 				retval = -EIOCBQUEUED;
1183 			if (retval > 0)
1184 				*ppos = pos + retval;
1185 		}
1186 		file_accessed(filp);
1187 		goto out;
1188 	}
1189 
1190 	retval = 0;
1191 	if (count) {
1192 		for (seg = 0; seg < nr_segs; seg++) {
1193 			read_descriptor_t desc;
1194 
1195 			desc.written = 0;
1196 			desc.arg.buf = iov[seg].iov_base;
1197 			desc.count = iov[seg].iov_len;
1198 			if (desc.count == 0)
1199 				continue;
1200 			desc.error = 0;
1201 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1202 			retval += desc.written;
1203 			if (desc.error) {
1204 				retval = retval ?: desc.error;
1205 				break;
1206 			}
1207 		}
1208 	}
1209 out:
1210 	return retval;
1211 }
1212 EXPORT_SYMBOL(__generic_file_aio_read);
1213 
1214 ssize_t
1215 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1216 {
1217 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1218 
1219 	BUG_ON(iocb->ki_pos != pos);
1220 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1221 }
1222 EXPORT_SYMBOL(generic_file_aio_read);
1223 
1224 ssize_t
1225 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1226 {
1227 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1228 	struct kiocb kiocb;
1229 	ssize_t ret;
1230 
1231 	init_sync_kiocb(&kiocb, filp);
1232 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1233 	if (-EIOCBQUEUED == ret)
1234 		ret = wait_on_sync_kiocb(&kiocb);
1235 	return ret;
1236 }
1237 EXPORT_SYMBOL(generic_file_read);
1238 
1239 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1240 {
1241 	ssize_t written;
1242 	unsigned long count = desc->count;
1243 	struct file *file = desc->arg.data;
1244 
1245 	if (size > count)
1246 		size = count;
1247 
1248 	written = file->f_op->sendpage(file, page, offset,
1249 				       size, &file->f_pos, size<count);
1250 	if (written < 0) {
1251 		desc->error = written;
1252 		written = 0;
1253 	}
1254 	desc->count = count - written;
1255 	desc->written += written;
1256 	return written;
1257 }
1258 
1259 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1260 			 size_t count, read_actor_t actor, void *target)
1261 {
1262 	read_descriptor_t desc;
1263 
1264 	if (!count)
1265 		return 0;
1266 
1267 	desc.written = 0;
1268 	desc.count = count;
1269 	desc.arg.data = target;
1270 	desc.error = 0;
1271 
1272 	do_generic_file_read(in_file, ppos, &desc, actor);
1273 	if (desc.written)
1274 		return desc.written;
1275 	return desc.error;
1276 }
1277 EXPORT_SYMBOL(generic_file_sendfile);
1278 
1279 static ssize_t
1280 do_readahead(struct address_space *mapping, struct file *filp,
1281 	     unsigned long index, unsigned long nr)
1282 {
1283 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1284 		return -EINVAL;
1285 
1286 	force_page_cache_readahead(mapping, filp, index,
1287 					max_sane_readahead(nr));
1288 	return 0;
1289 }
1290 
1291 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1292 {
1293 	ssize_t ret;
1294 	struct file *file;
1295 
1296 	ret = -EBADF;
1297 	file = fget(fd);
1298 	if (file) {
1299 		if (file->f_mode & FMODE_READ) {
1300 			struct address_space *mapping = file->f_mapping;
1301 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1302 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1303 			unsigned long len = end - start + 1;
1304 			ret = do_readahead(mapping, file, start, len);
1305 		}
1306 		fput(file);
1307 	}
1308 	return ret;
1309 }
1310 
1311 #ifdef CONFIG_MMU
1312 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1313 /**
1314  * page_cache_read - adds requested page to the page cache if not already there
1315  * @file:	file to read
1316  * @offset:	page index
1317  *
1318  * This adds the requested page to the page cache if it isn't already there,
1319  * and schedules an I/O to read in its contents from disk.
1320  */
1321 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1322 {
1323 	struct address_space *mapping = file->f_mapping;
1324 	struct page *page;
1325 	int ret;
1326 
1327 	do {
1328 		page = page_cache_alloc_cold(mapping);
1329 		if (!page)
1330 			return -ENOMEM;
1331 
1332 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1333 		if (ret == 0)
1334 			ret = mapping->a_ops->readpage(file, page);
1335 		else if (ret == -EEXIST)
1336 			ret = 0; /* losing race to add is OK */
1337 
1338 		page_cache_release(page);
1339 
1340 	} while (ret == AOP_TRUNCATED_PAGE);
1341 
1342 	return ret;
1343 }
1344 
1345 #define MMAP_LOTSAMISS  (100)
1346 
1347 /**
1348  * filemap_nopage - read in file data for page fault handling
1349  * @area:	the applicable vm_area
1350  * @address:	target address to read in
1351  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1352  *
1353  * filemap_nopage() is invoked via the vma operations vector for a
1354  * mapped memory region to read in file data during a page fault.
1355  *
1356  * The goto's are kind of ugly, but this streamlines the normal case of having
1357  * it in the page cache, and handles the special cases reasonably without
1358  * having a lot of duplicated code.
1359  */
1360 struct page *filemap_nopage(struct vm_area_struct *area,
1361 				unsigned long address, int *type)
1362 {
1363 	int error;
1364 	struct file *file = area->vm_file;
1365 	struct address_space *mapping = file->f_mapping;
1366 	struct file_ra_state *ra = &file->f_ra;
1367 	struct inode *inode = mapping->host;
1368 	struct page *page;
1369 	unsigned long size, pgoff;
1370 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1371 
1372 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1373 
1374 retry_all:
1375 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1376 	if (pgoff >= size)
1377 		goto outside_data_content;
1378 
1379 	/* If we don't want any read-ahead, don't bother */
1380 	if (VM_RandomReadHint(area))
1381 		goto no_cached_page;
1382 
1383 	/*
1384 	 * The readahead code wants to be told about each and every page
1385 	 * so it can build and shrink its windows appropriately
1386 	 *
1387 	 * For sequential accesses, we use the generic readahead logic.
1388 	 */
1389 	if (VM_SequentialReadHint(area))
1390 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1391 
1392 	/*
1393 	 * Do we have something in the page cache already?
1394 	 */
1395 retry_find:
1396 	page = find_get_page(mapping, pgoff);
1397 	if (!page) {
1398 		unsigned long ra_pages;
1399 
1400 		if (VM_SequentialReadHint(area)) {
1401 			handle_ra_miss(mapping, ra, pgoff);
1402 			goto no_cached_page;
1403 		}
1404 		ra->mmap_miss++;
1405 
1406 		/*
1407 		 * Do we miss much more than hit in this file? If so,
1408 		 * stop bothering with read-ahead. It will only hurt.
1409 		 */
1410 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1411 			goto no_cached_page;
1412 
1413 		/*
1414 		 * To keep the pgmajfault counter straight, we need to
1415 		 * check did_readaround, as this is an inner loop.
1416 		 */
1417 		if (!did_readaround) {
1418 			majmin = VM_FAULT_MAJOR;
1419 			count_vm_event(PGMAJFAULT);
1420 		}
1421 		did_readaround = 1;
1422 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1423 		if (ra_pages) {
1424 			pgoff_t start = 0;
1425 
1426 			if (pgoff > ra_pages / 2)
1427 				start = pgoff - ra_pages / 2;
1428 			do_page_cache_readahead(mapping, file, start, ra_pages);
1429 		}
1430 		page = find_get_page(mapping, pgoff);
1431 		if (!page)
1432 			goto no_cached_page;
1433 	}
1434 
1435 	if (!did_readaround)
1436 		ra->mmap_hit++;
1437 
1438 	/*
1439 	 * Ok, found a page in the page cache, now we need to check
1440 	 * that it's up-to-date.
1441 	 */
1442 	if (!PageUptodate(page))
1443 		goto page_not_uptodate;
1444 
1445 success:
1446 	/*
1447 	 * Found the page and have a reference on it.
1448 	 */
1449 	mark_page_accessed(page);
1450 	if (type)
1451 		*type = majmin;
1452 	return page;
1453 
1454 outside_data_content:
1455 	/*
1456 	 * An external ptracer can access pages that normally aren't
1457 	 * accessible..
1458 	 */
1459 	if (area->vm_mm == current->mm)
1460 		return NULL;
1461 	/* Fall through to the non-read-ahead case */
1462 no_cached_page:
1463 	/*
1464 	 * We're only likely to ever get here if MADV_RANDOM is in
1465 	 * effect.
1466 	 */
1467 	error = page_cache_read(file, pgoff);
1468 	grab_swap_token();
1469 
1470 	/*
1471 	 * The page we want has now been added to the page cache.
1472 	 * In the unlikely event that someone removed it in the
1473 	 * meantime, we'll just come back here and read it again.
1474 	 */
1475 	if (error >= 0)
1476 		goto retry_find;
1477 
1478 	/*
1479 	 * An error return from page_cache_read can result if the
1480 	 * system is low on memory, or a problem occurs while trying
1481 	 * to schedule I/O.
1482 	 */
1483 	if (error == -ENOMEM)
1484 		return NOPAGE_OOM;
1485 	return NULL;
1486 
1487 page_not_uptodate:
1488 	if (!did_readaround) {
1489 		majmin = VM_FAULT_MAJOR;
1490 		count_vm_event(PGMAJFAULT);
1491 	}
1492 	lock_page(page);
1493 
1494 	/* Did it get unhashed while we waited for it? */
1495 	if (!page->mapping) {
1496 		unlock_page(page);
1497 		page_cache_release(page);
1498 		goto retry_all;
1499 	}
1500 
1501 	/* Did somebody else get it up-to-date? */
1502 	if (PageUptodate(page)) {
1503 		unlock_page(page);
1504 		goto success;
1505 	}
1506 
1507 	error = mapping->a_ops->readpage(file, page);
1508 	if (!error) {
1509 		wait_on_page_locked(page);
1510 		if (PageUptodate(page))
1511 			goto success;
1512 	} else if (error == AOP_TRUNCATED_PAGE) {
1513 		page_cache_release(page);
1514 		goto retry_find;
1515 	}
1516 
1517 	/*
1518 	 * Umm, take care of errors if the page isn't up-to-date.
1519 	 * Try to re-read it _once_. We do this synchronously,
1520 	 * because there really aren't any performance issues here
1521 	 * and we need to check for errors.
1522 	 */
1523 	lock_page(page);
1524 
1525 	/* Somebody truncated the page on us? */
1526 	if (!page->mapping) {
1527 		unlock_page(page);
1528 		page_cache_release(page);
1529 		goto retry_all;
1530 	}
1531 
1532 	/* Somebody else successfully read it in? */
1533 	if (PageUptodate(page)) {
1534 		unlock_page(page);
1535 		goto success;
1536 	}
1537 	ClearPageError(page);
1538 	error = mapping->a_ops->readpage(file, page);
1539 	if (!error) {
1540 		wait_on_page_locked(page);
1541 		if (PageUptodate(page))
1542 			goto success;
1543 	} else if (error == AOP_TRUNCATED_PAGE) {
1544 		page_cache_release(page);
1545 		goto retry_find;
1546 	}
1547 
1548 	/*
1549 	 * Things didn't work out. Return zero to tell the
1550 	 * mm layer so, possibly freeing the page cache page first.
1551 	 */
1552 	shrink_readahead_size_eio(file, ra);
1553 	page_cache_release(page);
1554 	return NULL;
1555 }
1556 EXPORT_SYMBOL(filemap_nopage);
1557 
1558 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1559 					int nonblock)
1560 {
1561 	struct address_space *mapping = file->f_mapping;
1562 	struct page *page;
1563 	int error;
1564 
1565 	/*
1566 	 * Do we have something in the page cache already?
1567 	 */
1568 retry_find:
1569 	page = find_get_page(mapping, pgoff);
1570 	if (!page) {
1571 		if (nonblock)
1572 			return NULL;
1573 		goto no_cached_page;
1574 	}
1575 
1576 	/*
1577 	 * Ok, found a page in the page cache, now we need to check
1578 	 * that it's up-to-date.
1579 	 */
1580 	if (!PageUptodate(page)) {
1581 		if (nonblock) {
1582 			page_cache_release(page);
1583 			return NULL;
1584 		}
1585 		goto page_not_uptodate;
1586 	}
1587 
1588 success:
1589 	/*
1590 	 * Found the page and have a reference on it.
1591 	 */
1592 	mark_page_accessed(page);
1593 	return page;
1594 
1595 no_cached_page:
1596 	error = page_cache_read(file, pgoff);
1597 
1598 	/*
1599 	 * The page we want has now been added to the page cache.
1600 	 * In the unlikely event that someone removed it in the
1601 	 * meantime, we'll just come back here and read it again.
1602 	 */
1603 	if (error >= 0)
1604 		goto retry_find;
1605 
1606 	/*
1607 	 * An error return from page_cache_read can result if the
1608 	 * system is low on memory, or a problem occurs while trying
1609 	 * to schedule I/O.
1610 	 */
1611 	return NULL;
1612 
1613 page_not_uptodate:
1614 	lock_page(page);
1615 
1616 	/* Did it get unhashed while we waited for it? */
1617 	if (!page->mapping) {
1618 		unlock_page(page);
1619 		goto err;
1620 	}
1621 
1622 	/* Did somebody else get it up-to-date? */
1623 	if (PageUptodate(page)) {
1624 		unlock_page(page);
1625 		goto success;
1626 	}
1627 
1628 	error = mapping->a_ops->readpage(file, page);
1629 	if (!error) {
1630 		wait_on_page_locked(page);
1631 		if (PageUptodate(page))
1632 			goto success;
1633 	} else if (error == AOP_TRUNCATED_PAGE) {
1634 		page_cache_release(page);
1635 		goto retry_find;
1636 	}
1637 
1638 	/*
1639 	 * Umm, take care of errors if the page isn't up-to-date.
1640 	 * Try to re-read it _once_. We do this synchronously,
1641 	 * because there really aren't any performance issues here
1642 	 * and we need to check for errors.
1643 	 */
1644 	lock_page(page);
1645 
1646 	/* Somebody truncated the page on us? */
1647 	if (!page->mapping) {
1648 		unlock_page(page);
1649 		goto err;
1650 	}
1651 	/* Somebody else successfully read it in? */
1652 	if (PageUptodate(page)) {
1653 		unlock_page(page);
1654 		goto success;
1655 	}
1656 
1657 	ClearPageError(page);
1658 	error = mapping->a_ops->readpage(file, page);
1659 	if (!error) {
1660 		wait_on_page_locked(page);
1661 		if (PageUptodate(page))
1662 			goto success;
1663 	} else if (error == AOP_TRUNCATED_PAGE) {
1664 		page_cache_release(page);
1665 		goto retry_find;
1666 	}
1667 
1668 	/*
1669 	 * Things didn't work out. Return zero to tell the
1670 	 * mm layer so, possibly freeing the page cache page first.
1671 	 */
1672 err:
1673 	page_cache_release(page);
1674 
1675 	return NULL;
1676 }
1677 
1678 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1679 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1680 		int nonblock)
1681 {
1682 	struct file *file = vma->vm_file;
1683 	struct address_space *mapping = file->f_mapping;
1684 	struct inode *inode = mapping->host;
1685 	unsigned long size;
1686 	struct mm_struct *mm = vma->vm_mm;
1687 	struct page *page;
1688 	int err;
1689 
1690 	if (!nonblock)
1691 		force_page_cache_readahead(mapping, vma->vm_file,
1692 					pgoff, len >> PAGE_CACHE_SHIFT);
1693 
1694 repeat:
1695 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1696 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1697 		return -EINVAL;
1698 
1699 	page = filemap_getpage(file, pgoff, nonblock);
1700 
1701 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1702 	 * done in shmem_populate calling shmem_getpage */
1703 	if (!page && !nonblock)
1704 		return -ENOMEM;
1705 
1706 	if (page) {
1707 		err = install_page(mm, vma, addr, page, prot);
1708 		if (err) {
1709 			page_cache_release(page);
1710 			return err;
1711 		}
1712 	} else if (vma->vm_flags & VM_NONLINEAR) {
1713 		/* No page was found just because we can't read it in now (being
1714 		 * here implies nonblock != 0), but the page may exist, so set
1715 		 * the PTE to fault it in later. */
1716 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1717 		if (err)
1718 			return err;
1719 	}
1720 
1721 	len -= PAGE_SIZE;
1722 	addr += PAGE_SIZE;
1723 	pgoff++;
1724 	if (len)
1725 		goto repeat;
1726 
1727 	return 0;
1728 }
1729 EXPORT_SYMBOL(filemap_populate);
1730 
1731 struct vm_operations_struct generic_file_vm_ops = {
1732 	.nopage		= filemap_nopage,
1733 	.populate	= filemap_populate,
1734 };
1735 
1736 /* This is used for a general mmap of a disk file */
1737 
1738 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1739 {
1740 	struct address_space *mapping = file->f_mapping;
1741 
1742 	if (!mapping->a_ops->readpage)
1743 		return -ENOEXEC;
1744 	file_accessed(file);
1745 	vma->vm_ops = &generic_file_vm_ops;
1746 	return 0;
1747 }
1748 
1749 /*
1750  * This is for filesystems which do not implement ->writepage.
1751  */
1752 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1753 {
1754 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1755 		return -EINVAL;
1756 	return generic_file_mmap(file, vma);
1757 }
1758 #else
1759 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1760 {
1761 	return -ENOSYS;
1762 }
1763 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1764 {
1765 	return -ENOSYS;
1766 }
1767 #endif /* CONFIG_MMU */
1768 
1769 EXPORT_SYMBOL(generic_file_mmap);
1770 EXPORT_SYMBOL(generic_file_readonly_mmap);
1771 
1772 static inline struct page *__read_cache_page(struct address_space *mapping,
1773 				unsigned long index,
1774 				int (*filler)(void *,struct page*),
1775 				void *data)
1776 {
1777 	struct page *page, *cached_page = NULL;
1778 	int err;
1779 repeat:
1780 	page = find_get_page(mapping, index);
1781 	if (!page) {
1782 		if (!cached_page) {
1783 			cached_page = page_cache_alloc_cold(mapping);
1784 			if (!cached_page)
1785 				return ERR_PTR(-ENOMEM);
1786 		}
1787 		err = add_to_page_cache_lru(cached_page, mapping,
1788 					index, GFP_KERNEL);
1789 		if (err == -EEXIST)
1790 			goto repeat;
1791 		if (err < 0) {
1792 			/* Presumably ENOMEM for radix tree node */
1793 			page_cache_release(cached_page);
1794 			return ERR_PTR(err);
1795 		}
1796 		page = cached_page;
1797 		cached_page = NULL;
1798 		err = filler(data, page);
1799 		if (err < 0) {
1800 			page_cache_release(page);
1801 			page = ERR_PTR(err);
1802 		}
1803 	}
1804 	if (cached_page)
1805 		page_cache_release(cached_page);
1806 	return page;
1807 }
1808 
1809 /**
1810  * read_cache_page - read into page cache, fill it if needed
1811  * @mapping:	the page's address_space
1812  * @index:	the page index
1813  * @filler:	function to perform the read
1814  * @data:	destination for read data
1815  *
1816  * Read into the page cache. If a page already exists,
1817  * and PageUptodate() is not set, try to fill the page.
1818  */
1819 struct page *read_cache_page(struct address_space *mapping,
1820 				unsigned long index,
1821 				int (*filler)(void *,struct page*),
1822 				void *data)
1823 {
1824 	struct page *page;
1825 	int err;
1826 
1827 retry:
1828 	page = __read_cache_page(mapping, index, filler, data);
1829 	if (IS_ERR(page))
1830 		goto out;
1831 	mark_page_accessed(page);
1832 	if (PageUptodate(page))
1833 		goto out;
1834 
1835 	lock_page(page);
1836 	if (!page->mapping) {
1837 		unlock_page(page);
1838 		page_cache_release(page);
1839 		goto retry;
1840 	}
1841 	if (PageUptodate(page)) {
1842 		unlock_page(page);
1843 		goto out;
1844 	}
1845 	err = filler(data, page);
1846 	if (err < 0) {
1847 		page_cache_release(page);
1848 		page = ERR_PTR(err);
1849 	}
1850  out:
1851 	return page;
1852 }
1853 EXPORT_SYMBOL(read_cache_page);
1854 
1855 /*
1856  * If the page was newly created, increment its refcount and add it to the
1857  * caller's lru-buffering pagevec.  This function is specifically for
1858  * generic_file_write().
1859  */
1860 static inline struct page *
1861 __grab_cache_page(struct address_space *mapping, unsigned long index,
1862 			struct page **cached_page, struct pagevec *lru_pvec)
1863 {
1864 	int err;
1865 	struct page *page;
1866 repeat:
1867 	page = find_lock_page(mapping, index);
1868 	if (!page) {
1869 		if (!*cached_page) {
1870 			*cached_page = page_cache_alloc(mapping);
1871 			if (!*cached_page)
1872 				return NULL;
1873 		}
1874 		err = add_to_page_cache(*cached_page, mapping,
1875 					index, GFP_KERNEL);
1876 		if (err == -EEXIST)
1877 			goto repeat;
1878 		if (err == 0) {
1879 			page = *cached_page;
1880 			page_cache_get(page);
1881 			if (!pagevec_add(lru_pvec, page))
1882 				__pagevec_lru_add(lru_pvec);
1883 			*cached_page = NULL;
1884 		}
1885 	}
1886 	return page;
1887 }
1888 
1889 /*
1890  * The logic we want is
1891  *
1892  *	if suid or (sgid and xgrp)
1893  *		remove privs
1894  */
1895 int remove_suid(struct dentry *dentry)
1896 {
1897 	mode_t mode = dentry->d_inode->i_mode;
1898 	int kill = 0;
1899 	int result = 0;
1900 
1901 	/* suid always must be killed */
1902 	if (unlikely(mode & S_ISUID))
1903 		kill = ATTR_KILL_SUID;
1904 
1905 	/*
1906 	 * sgid without any exec bits is just a mandatory locking mark; leave
1907 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1908 	 */
1909 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1910 		kill |= ATTR_KILL_SGID;
1911 
1912 	if (unlikely(kill && !capable(CAP_FSETID))) {
1913 		struct iattr newattrs;
1914 
1915 		newattrs.ia_valid = ATTR_FORCE | kill;
1916 		result = notify_change(dentry, &newattrs);
1917 	}
1918 	return result;
1919 }
1920 EXPORT_SYMBOL(remove_suid);
1921 
1922 size_t
1923 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1924 			const struct iovec *iov, size_t base, size_t bytes)
1925 {
1926 	size_t copied = 0, left = 0;
1927 
1928 	while (bytes) {
1929 		char __user *buf = iov->iov_base + base;
1930 		int copy = min(bytes, iov->iov_len - base);
1931 
1932 		base = 0;
1933 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1934 		copied += copy;
1935 		bytes -= copy;
1936 		vaddr += copy;
1937 		iov++;
1938 
1939 		if (unlikely(left))
1940 			break;
1941 	}
1942 	return copied - left;
1943 }
1944 
1945 /*
1946  * Performs necessary checks before doing a write
1947  *
1948  * Can adjust writing position or amount of bytes to write.
1949  * Returns appropriate error code that caller should return or
1950  * zero in case that write should be allowed.
1951  */
1952 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1953 {
1954 	struct inode *inode = file->f_mapping->host;
1955 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1956 
1957         if (unlikely(*pos < 0))
1958                 return -EINVAL;
1959 
1960 	if (!isblk) {
1961 		/* FIXME: this is for backwards compatibility with 2.4 */
1962 		if (file->f_flags & O_APPEND)
1963                         *pos = i_size_read(inode);
1964 
1965 		if (limit != RLIM_INFINITY) {
1966 			if (*pos >= limit) {
1967 				send_sig(SIGXFSZ, current, 0);
1968 				return -EFBIG;
1969 			}
1970 			if (*count > limit - (typeof(limit))*pos) {
1971 				*count = limit - (typeof(limit))*pos;
1972 			}
1973 		}
1974 	}
1975 
1976 	/*
1977 	 * LFS rule
1978 	 */
1979 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1980 				!(file->f_flags & O_LARGEFILE))) {
1981 		if (*pos >= MAX_NON_LFS) {
1982 			send_sig(SIGXFSZ, current, 0);
1983 			return -EFBIG;
1984 		}
1985 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1986 			*count = MAX_NON_LFS - (unsigned long)*pos;
1987 		}
1988 	}
1989 
1990 	/*
1991 	 * Are we about to exceed the fs block limit ?
1992 	 *
1993 	 * If we have written data it becomes a short write.  If we have
1994 	 * exceeded without writing data we send a signal and return EFBIG.
1995 	 * Linus frestrict idea will clean these up nicely..
1996 	 */
1997 	if (likely(!isblk)) {
1998 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1999 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2000 				send_sig(SIGXFSZ, current, 0);
2001 				return -EFBIG;
2002 			}
2003 			/* zero-length writes at ->s_maxbytes are OK */
2004 		}
2005 
2006 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2007 			*count = inode->i_sb->s_maxbytes - *pos;
2008 	} else {
2009 		loff_t isize;
2010 		if (bdev_read_only(I_BDEV(inode)))
2011 			return -EPERM;
2012 		isize = i_size_read(inode);
2013 		if (*pos >= isize) {
2014 			if (*count || *pos > isize)
2015 				return -ENOSPC;
2016 		}
2017 
2018 		if (*pos + *count > isize)
2019 			*count = isize - *pos;
2020 	}
2021 	return 0;
2022 }
2023 EXPORT_SYMBOL(generic_write_checks);
2024 
2025 ssize_t
2026 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2027 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2028 		size_t count, size_t ocount)
2029 {
2030 	struct file	*file = iocb->ki_filp;
2031 	struct address_space *mapping = file->f_mapping;
2032 	struct inode	*inode = mapping->host;
2033 	ssize_t		written;
2034 
2035 	if (count != ocount)
2036 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2037 
2038 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2039 	if (written > 0) {
2040 		loff_t end = pos + written;
2041 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2042 			i_size_write(inode,  end);
2043 			mark_inode_dirty(inode);
2044 		}
2045 		*ppos = end;
2046 	}
2047 
2048 	/*
2049 	 * Sync the fs metadata but not the minor inode changes and
2050 	 * of course not the data as we did direct DMA for the IO.
2051 	 * i_mutex is held, which protects generic_osync_inode() from
2052 	 * livelocking.
2053 	 */
2054 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2055 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2056 		if (err < 0)
2057 			written = err;
2058 	}
2059 	if (written == count && !is_sync_kiocb(iocb))
2060 		written = -EIOCBQUEUED;
2061 	return written;
2062 }
2063 EXPORT_SYMBOL(generic_file_direct_write);
2064 
2065 ssize_t
2066 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2067 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2068 		size_t count, ssize_t written)
2069 {
2070 	struct file *file = iocb->ki_filp;
2071 	struct address_space * mapping = file->f_mapping;
2072 	const struct address_space_operations *a_ops = mapping->a_ops;
2073 	struct inode 	*inode = mapping->host;
2074 	long		status = 0;
2075 	struct page	*page;
2076 	struct page	*cached_page = NULL;
2077 	size_t		bytes;
2078 	struct pagevec	lru_pvec;
2079 	const struct iovec *cur_iov = iov; /* current iovec */
2080 	size_t		iov_base = 0;	   /* offset in the current iovec */
2081 	char __user	*buf;
2082 
2083 	pagevec_init(&lru_pvec, 0);
2084 
2085 	/*
2086 	 * handle partial DIO write.  Adjust cur_iov if needed.
2087 	 */
2088 	if (likely(nr_segs == 1))
2089 		buf = iov->iov_base + written;
2090 	else {
2091 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2092 		buf = cur_iov->iov_base + iov_base;
2093 	}
2094 
2095 	do {
2096 		unsigned long index;
2097 		unsigned long offset;
2098 		size_t copied;
2099 
2100 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2101 		index = pos >> PAGE_CACHE_SHIFT;
2102 		bytes = PAGE_CACHE_SIZE - offset;
2103 
2104 		/* Limit the size of the copy to the caller's write size */
2105 		bytes = min(bytes, count);
2106 
2107 		/*
2108 		 * Limit the size of the copy to that of the current segment,
2109 		 * because fault_in_pages_readable() doesn't know how to walk
2110 		 * segments.
2111 		 */
2112 		bytes = min(bytes, cur_iov->iov_len - iov_base);
2113 
2114 		/*
2115 		 * Bring in the user page that we will copy from _first_.
2116 		 * Otherwise there's a nasty deadlock on copying from the
2117 		 * same page as we're writing to, without it being marked
2118 		 * up-to-date.
2119 		 */
2120 		fault_in_pages_readable(buf, bytes);
2121 
2122 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2123 		if (!page) {
2124 			status = -ENOMEM;
2125 			break;
2126 		}
2127 
2128 		if (unlikely(bytes == 0)) {
2129 			status = 0;
2130 			copied = 0;
2131 			goto zero_length_segment;
2132 		}
2133 
2134 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2135 		if (unlikely(status)) {
2136 			loff_t isize = i_size_read(inode);
2137 
2138 			if (status != AOP_TRUNCATED_PAGE)
2139 				unlock_page(page);
2140 			page_cache_release(page);
2141 			if (status == AOP_TRUNCATED_PAGE)
2142 				continue;
2143 			/*
2144 			 * prepare_write() may have instantiated a few blocks
2145 			 * outside i_size.  Trim these off again.
2146 			 */
2147 			if (pos + bytes > isize)
2148 				vmtruncate(inode, isize);
2149 			break;
2150 		}
2151 		if (likely(nr_segs == 1))
2152 			copied = filemap_copy_from_user(page, offset,
2153 							buf, bytes);
2154 		else
2155 			copied = filemap_copy_from_user_iovec(page, offset,
2156 						cur_iov, iov_base, bytes);
2157 		flush_dcache_page(page);
2158 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2159 		if (status == AOP_TRUNCATED_PAGE) {
2160 			page_cache_release(page);
2161 			continue;
2162 		}
2163 zero_length_segment:
2164 		if (likely(copied >= 0)) {
2165 			if (!status)
2166 				status = copied;
2167 
2168 			if (status >= 0) {
2169 				written += status;
2170 				count -= status;
2171 				pos += status;
2172 				buf += status;
2173 				if (unlikely(nr_segs > 1)) {
2174 					filemap_set_next_iovec(&cur_iov,
2175 							&iov_base, status);
2176 					if (count)
2177 						buf = cur_iov->iov_base +
2178 							iov_base;
2179 				} else {
2180 					iov_base += status;
2181 				}
2182 			}
2183 		}
2184 		if (unlikely(copied != bytes))
2185 			if (status >= 0)
2186 				status = -EFAULT;
2187 		unlock_page(page);
2188 		mark_page_accessed(page);
2189 		page_cache_release(page);
2190 		if (status < 0)
2191 			break;
2192 		balance_dirty_pages_ratelimited(mapping);
2193 		cond_resched();
2194 	} while (count);
2195 	*ppos = pos;
2196 
2197 	if (cached_page)
2198 		page_cache_release(cached_page);
2199 
2200 	/*
2201 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2202 	 */
2203 	if (likely(status >= 0)) {
2204 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2205 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2206 				status = generic_osync_inode(inode, mapping,
2207 						OSYNC_METADATA|OSYNC_DATA);
2208 		}
2209   	}
2210 
2211 	/*
2212 	 * If we get here for O_DIRECT writes then we must have fallen through
2213 	 * to buffered writes (block instantiation inside i_size).  So we sync
2214 	 * the file data here, to try to honour O_DIRECT expectations.
2215 	 */
2216 	if (unlikely(file->f_flags & O_DIRECT) && written)
2217 		status = filemap_write_and_wait(mapping);
2218 
2219 	pagevec_lru_add(&lru_pvec);
2220 	return written ? written : status;
2221 }
2222 EXPORT_SYMBOL(generic_file_buffered_write);
2223 
2224 static ssize_t
2225 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2226 				unsigned long nr_segs, loff_t *ppos)
2227 {
2228 	struct file *file = iocb->ki_filp;
2229 	const struct address_space * mapping = file->f_mapping;
2230 	size_t ocount;		/* original count */
2231 	size_t count;		/* after file limit checks */
2232 	struct inode 	*inode = mapping->host;
2233 	unsigned long	seg;
2234 	loff_t		pos;
2235 	ssize_t		written;
2236 	ssize_t		err;
2237 
2238 	ocount = 0;
2239 	for (seg = 0; seg < nr_segs; seg++) {
2240 		const struct iovec *iv = &iov[seg];
2241 
2242 		/*
2243 		 * If any segment has a negative length, or the cumulative
2244 		 * length ever wraps negative then return -EINVAL.
2245 		 */
2246 		ocount += iv->iov_len;
2247 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2248 			return -EINVAL;
2249 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2250 			continue;
2251 		if (seg == 0)
2252 			return -EFAULT;
2253 		nr_segs = seg;
2254 		ocount -= iv->iov_len;	/* This segment is no good */
2255 		break;
2256 	}
2257 
2258 	count = ocount;
2259 	pos = *ppos;
2260 
2261 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2262 
2263 	/* We can write back this queue in page reclaim */
2264 	current->backing_dev_info = mapping->backing_dev_info;
2265 	written = 0;
2266 
2267 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2268 	if (err)
2269 		goto out;
2270 
2271 	if (count == 0)
2272 		goto out;
2273 
2274 	err = remove_suid(file->f_dentry);
2275 	if (err)
2276 		goto out;
2277 
2278 	file_update_time(file);
2279 
2280 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2281 	if (unlikely(file->f_flags & O_DIRECT)) {
2282 		written = generic_file_direct_write(iocb, iov,
2283 				&nr_segs, pos, ppos, count, ocount);
2284 		if (written < 0 || written == count)
2285 			goto out;
2286 		/*
2287 		 * direct-io write to a hole: fall through to buffered I/O
2288 		 * for completing the rest of the request.
2289 		 */
2290 		pos += written;
2291 		count -= written;
2292 	}
2293 
2294 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2295 			pos, ppos, count, written);
2296 out:
2297 	current->backing_dev_info = NULL;
2298 	return written ? written : err;
2299 }
2300 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2301 
2302 ssize_t
2303 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2304 				unsigned long nr_segs, loff_t *ppos)
2305 {
2306 	struct file *file = iocb->ki_filp;
2307 	struct address_space *mapping = file->f_mapping;
2308 	struct inode *inode = mapping->host;
2309 	ssize_t ret;
2310 	loff_t pos = *ppos;
2311 
2312 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2313 
2314 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2315 		int err;
2316 
2317 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2318 		if (err < 0)
2319 			ret = err;
2320 	}
2321 	return ret;
2322 }
2323 
2324 static ssize_t
2325 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2326 				unsigned long nr_segs, loff_t *ppos)
2327 {
2328 	struct kiocb kiocb;
2329 	ssize_t ret;
2330 
2331 	init_sync_kiocb(&kiocb, file);
2332 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2333 	if (ret == -EIOCBQUEUED)
2334 		ret = wait_on_sync_kiocb(&kiocb);
2335 	return ret;
2336 }
2337 
2338 ssize_t
2339 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2340 				unsigned long nr_segs, loff_t *ppos)
2341 {
2342 	struct kiocb kiocb;
2343 	ssize_t ret;
2344 
2345 	init_sync_kiocb(&kiocb, file);
2346 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2347 	if (-EIOCBQUEUED == ret)
2348 		ret = wait_on_sync_kiocb(&kiocb);
2349 	return ret;
2350 }
2351 EXPORT_SYMBOL(generic_file_write_nolock);
2352 
2353 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2354 			       size_t count, loff_t pos)
2355 {
2356 	struct file *file = iocb->ki_filp;
2357 	struct address_space *mapping = file->f_mapping;
2358 	struct inode *inode = mapping->host;
2359 	ssize_t ret;
2360 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2361 					.iov_len = count };
2362 
2363 	BUG_ON(iocb->ki_pos != pos);
2364 
2365 	mutex_lock(&inode->i_mutex);
2366 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2367 						&iocb->ki_pos);
2368 	mutex_unlock(&inode->i_mutex);
2369 
2370 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2371 		ssize_t err;
2372 
2373 		err = sync_page_range(inode, mapping, pos, ret);
2374 		if (err < 0)
2375 			ret = err;
2376 	}
2377 	return ret;
2378 }
2379 EXPORT_SYMBOL(generic_file_aio_write);
2380 
2381 ssize_t generic_file_write(struct file *file, const char __user *buf,
2382 			   size_t count, loff_t *ppos)
2383 {
2384 	struct address_space *mapping = file->f_mapping;
2385 	struct inode *inode = mapping->host;
2386 	ssize_t	ret;
2387 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2388 					.iov_len = count };
2389 
2390 	mutex_lock(&inode->i_mutex);
2391 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2392 	mutex_unlock(&inode->i_mutex);
2393 
2394 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2395 		ssize_t err;
2396 
2397 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2398 		if (err < 0)
2399 			ret = err;
2400 	}
2401 	return ret;
2402 }
2403 EXPORT_SYMBOL(generic_file_write);
2404 
2405 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2406 			unsigned long nr_segs, loff_t *ppos)
2407 {
2408 	struct kiocb kiocb;
2409 	ssize_t ret;
2410 
2411 	init_sync_kiocb(&kiocb, filp);
2412 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2413 	if (-EIOCBQUEUED == ret)
2414 		ret = wait_on_sync_kiocb(&kiocb);
2415 	return ret;
2416 }
2417 EXPORT_SYMBOL(generic_file_readv);
2418 
2419 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2420 			unsigned long nr_segs, loff_t *ppos)
2421 {
2422 	struct address_space *mapping = file->f_mapping;
2423 	struct inode *inode = mapping->host;
2424 	ssize_t ret;
2425 
2426 	mutex_lock(&inode->i_mutex);
2427 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2428 	mutex_unlock(&inode->i_mutex);
2429 
2430 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2431 		int err;
2432 
2433 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2434 		if (err < 0)
2435 			ret = err;
2436 	}
2437 	return ret;
2438 }
2439 EXPORT_SYMBOL(generic_file_writev);
2440 
2441 /*
2442  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2443  * went wrong during pagecache shootdown.
2444  */
2445 static ssize_t
2446 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2447 	loff_t offset, unsigned long nr_segs)
2448 {
2449 	struct file *file = iocb->ki_filp;
2450 	struct address_space *mapping = file->f_mapping;
2451 	ssize_t retval;
2452 	size_t write_len = 0;
2453 
2454 	/*
2455 	 * If it's a write, unmap all mmappings of the file up-front.  This
2456 	 * will cause any pte dirty bits to be propagated into the pageframes
2457 	 * for the subsequent filemap_write_and_wait().
2458 	 */
2459 	if (rw == WRITE) {
2460 		write_len = iov_length(iov, nr_segs);
2461 	       	if (mapping_mapped(mapping))
2462 			unmap_mapping_range(mapping, offset, write_len, 0);
2463 	}
2464 
2465 	retval = filemap_write_and_wait(mapping);
2466 	if (retval == 0) {
2467 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2468 						offset, nr_segs);
2469 		if (rw == WRITE && mapping->nrpages) {
2470 			pgoff_t end = (offset + write_len - 1)
2471 						>> PAGE_CACHE_SHIFT;
2472 			int err = invalidate_inode_pages2_range(mapping,
2473 					offset >> PAGE_CACHE_SHIFT, end);
2474 			if (err)
2475 				retval = err;
2476 		}
2477 	}
2478 	return retval;
2479 }
2480