1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for generic_osync_inode */ 43 44 #include <asm/mman.h> 45 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->i_mutex (generic_file_buffered_write) 79 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 125 /* 126 * Some filesystems seem to re-dirty the page even after 127 * the VM has canceled the dirty bit (eg ext3 journaling). 128 * 129 * Fix it up by doing a final dirty accounting check after 130 * having removed the page entirely. 131 */ 132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 133 dec_zone_page_state(page, NR_FILE_DIRTY); 134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 135 } 136 } 137 138 void remove_from_page_cache(struct page *page) 139 { 140 struct address_space *mapping = page->mapping; 141 142 BUG_ON(!PageLocked(page)); 143 144 spin_lock_irq(&mapping->tree_lock); 145 __remove_from_page_cache(page); 146 spin_unlock_irq(&mapping->tree_lock); 147 mem_cgroup_uncharge_cache_page(page); 148 } 149 150 static int sync_page(void *word) 151 { 152 struct address_space *mapping; 153 struct page *page; 154 155 page = container_of((unsigned long *)word, struct page, flags); 156 157 /* 158 * page_mapping() is being called without PG_locked held. 159 * Some knowledge of the state and use of the page is used to 160 * reduce the requirements down to a memory barrier. 161 * The danger here is of a stale page_mapping() return value 162 * indicating a struct address_space different from the one it's 163 * associated with when it is associated with one. 164 * After smp_mb(), it's either the correct page_mapping() for 165 * the page, or an old page_mapping() and the page's own 166 * page_mapping() has gone NULL. 167 * The ->sync_page() address_space operation must tolerate 168 * page_mapping() going NULL. By an amazing coincidence, 169 * this comes about because none of the users of the page 170 * in the ->sync_page() methods make essential use of the 171 * page_mapping(), merely passing the page down to the backing 172 * device's unplug functions when it's non-NULL, which in turn 173 * ignore it for all cases but swap, where only page_private(page) is 174 * of interest. When page_mapping() does go NULL, the entire 175 * call stack gracefully ignores the page and returns. 176 * -- wli 177 */ 178 smp_mb(); 179 mapping = page_mapping(page); 180 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 181 mapping->a_ops->sync_page(page); 182 io_schedule(); 183 return 0; 184 } 185 186 static int sync_page_killable(void *word) 187 { 188 sync_page(word); 189 return fatal_signal_pending(current) ? -EINTR : 0; 190 } 191 192 /** 193 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 194 * @mapping: address space structure to write 195 * @start: offset in bytes where the range starts 196 * @end: offset in bytes where the range ends (inclusive) 197 * @sync_mode: enable synchronous operation 198 * 199 * Start writeback against all of a mapping's dirty pages that lie 200 * within the byte offsets <start, end> inclusive. 201 * 202 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 203 * opposed to a regular memory cleansing writeback. The difference between 204 * these two operations is that if a dirty page/buffer is encountered, it must 205 * be waited upon, and not just skipped over. 206 */ 207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 208 loff_t end, int sync_mode) 209 { 210 int ret; 211 struct writeback_control wbc = { 212 .sync_mode = sync_mode, 213 .nr_to_write = LONG_MAX, 214 .range_start = start, 215 .range_end = end, 216 }; 217 218 if (!mapping_cap_writeback_dirty(mapping)) 219 return 0; 220 221 ret = do_writepages(mapping, &wbc); 222 return ret; 223 } 224 225 static inline int __filemap_fdatawrite(struct address_space *mapping, 226 int sync_mode) 227 { 228 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 229 } 230 231 int filemap_fdatawrite(struct address_space *mapping) 232 { 233 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 234 } 235 EXPORT_SYMBOL(filemap_fdatawrite); 236 237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 238 loff_t end) 239 { 240 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 241 } 242 EXPORT_SYMBOL(filemap_fdatawrite_range); 243 244 /** 245 * filemap_flush - mostly a non-blocking flush 246 * @mapping: target address_space 247 * 248 * This is a mostly non-blocking flush. Not suitable for data-integrity 249 * purposes - I/O may not be started against all dirty pages. 250 */ 251 int filemap_flush(struct address_space *mapping) 252 { 253 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 254 } 255 EXPORT_SYMBOL(filemap_flush); 256 257 /** 258 * wait_on_page_writeback_range - wait for writeback to complete 259 * @mapping: target address_space 260 * @start: beginning page index 261 * @end: ending page index 262 * 263 * Wait for writeback to complete against pages indexed by start->end 264 * inclusive 265 */ 266 int wait_on_page_writeback_range(struct address_space *mapping, 267 pgoff_t start, pgoff_t end) 268 { 269 struct pagevec pvec; 270 int nr_pages; 271 int ret = 0; 272 pgoff_t index; 273 274 if (end < start) 275 return 0; 276 277 pagevec_init(&pvec, 0); 278 index = start; 279 while ((index <= end) && 280 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 281 PAGECACHE_TAG_WRITEBACK, 282 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 283 unsigned i; 284 285 for (i = 0; i < nr_pages; i++) { 286 struct page *page = pvec.pages[i]; 287 288 /* until radix tree lookup accepts end_index */ 289 if (page->index > end) 290 continue; 291 292 wait_on_page_writeback(page); 293 if (PageError(page)) 294 ret = -EIO; 295 } 296 pagevec_release(&pvec); 297 cond_resched(); 298 } 299 300 /* Check for outstanding write errors */ 301 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 302 ret = -ENOSPC; 303 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 304 ret = -EIO; 305 306 return ret; 307 } 308 309 /** 310 * sync_page_range - write and wait on all pages in the passed range 311 * @inode: target inode 312 * @mapping: target address_space 313 * @pos: beginning offset in pages to write 314 * @count: number of bytes to write 315 * 316 * Write and wait upon all the pages in the passed range. This is a "data 317 * integrity" operation. It waits upon in-flight writeout before starting and 318 * waiting upon new writeout. If there was an IO error, return it. 319 * 320 * We need to re-take i_mutex during the generic_osync_inode list walk because 321 * it is otherwise livelockable. 322 */ 323 int sync_page_range(struct inode *inode, struct address_space *mapping, 324 loff_t pos, loff_t count) 325 { 326 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 327 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 328 int ret; 329 330 if (!mapping_cap_writeback_dirty(mapping) || !count) 331 return 0; 332 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 333 if (ret == 0) { 334 mutex_lock(&inode->i_mutex); 335 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 336 mutex_unlock(&inode->i_mutex); 337 } 338 if (ret == 0) 339 ret = wait_on_page_writeback_range(mapping, start, end); 340 return ret; 341 } 342 EXPORT_SYMBOL(sync_page_range); 343 344 /** 345 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 346 * @inode: target inode 347 * @mapping: target address_space 348 * @pos: beginning offset in pages to write 349 * @count: number of bytes to write 350 * 351 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 352 * as it forces O_SYNC writers to different parts of the same file 353 * to be serialised right until io completion. 354 */ 355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 356 loff_t pos, loff_t count) 357 { 358 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 359 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 360 int ret; 361 362 if (!mapping_cap_writeback_dirty(mapping) || !count) 363 return 0; 364 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 365 if (ret == 0) 366 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 367 if (ret == 0) 368 ret = wait_on_page_writeback_range(mapping, start, end); 369 return ret; 370 } 371 EXPORT_SYMBOL(sync_page_range_nolock); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return wait_on_page_writeback_range(mapping, 0, 388 (i_size - 1) >> PAGE_CACHE_SHIFT); 389 } 390 EXPORT_SYMBOL(filemap_fdatawait); 391 392 int filemap_write_and_wait(struct address_space *mapping) 393 { 394 int err = 0; 395 396 if (mapping->nrpages) { 397 err = filemap_fdatawrite(mapping); 398 /* 399 * Even if the above returned error, the pages may be 400 * written partially (e.g. -ENOSPC), so we wait for it. 401 * But the -EIO is special case, it may indicate the worst 402 * thing (e.g. bug) happened, so we avoid waiting for it. 403 */ 404 if (err != -EIO) { 405 int err2 = filemap_fdatawait(mapping); 406 if (!err) 407 err = err2; 408 } 409 } 410 return err; 411 } 412 EXPORT_SYMBOL(filemap_write_and_wait); 413 414 /** 415 * filemap_write_and_wait_range - write out & wait on a file range 416 * @mapping: the address_space for the pages 417 * @lstart: offset in bytes where the range starts 418 * @lend: offset in bytes where the range ends (inclusive) 419 * 420 * Write out and wait upon file offsets lstart->lend, inclusive. 421 * 422 * Note that `lend' is inclusive (describes the last byte to be written) so 423 * that this function can be used to write to the very end-of-file (end = -1). 424 */ 425 int filemap_write_and_wait_range(struct address_space *mapping, 426 loff_t lstart, loff_t lend) 427 { 428 int err = 0; 429 430 if (mapping->nrpages) { 431 err = __filemap_fdatawrite_range(mapping, lstart, lend, 432 WB_SYNC_ALL); 433 /* See comment of filemap_write_and_wait() */ 434 if (err != -EIO) { 435 int err2 = wait_on_page_writeback_range(mapping, 436 lstart >> PAGE_CACHE_SHIFT, 437 lend >> PAGE_CACHE_SHIFT); 438 if (!err) 439 err = err2; 440 } 441 } 442 return err; 443 } 444 EXPORT_SYMBOL(filemap_write_and_wait_range); 445 446 /** 447 * add_to_page_cache_locked - add a locked page to the pagecache 448 * @page: page to add 449 * @mapping: the page's address_space 450 * @offset: page index 451 * @gfp_mask: page allocation mode 452 * 453 * This function is used to add a page to the pagecache. It must be locked. 454 * This function does not add the page to the LRU. The caller must do that. 455 */ 456 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 457 pgoff_t offset, gfp_t gfp_mask) 458 { 459 int error; 460 461 VM_BUG_ON(!PageLocked(page)); 462 463 error = mem_cgroup_cache_charge(page, current->mm, 464 gfp_mask & GFP_RECLAIM_MASK); 465 if (error) 466 goto out; 467 468 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 469 if (error == 0) { 470 page_cache_get(page); 471 page->mapping = mapping; 472 page->index = offset; 473 474 spin_lock_irq(&mapping->tree_lock); 475 error = radix_tree_insert(&mapping->page_tree, offset, page); 476 if (likely(!error)) { 477 mapping->nrpages++; 478 __inc_zone_page_state(page, NR_FILE_PAGES); 479 spin_unlock_irq(&mapping->tree_lock); 480 } else { 481 page->mapping = NULL; 482 spin_unlock_irq(&mapping->tree_lock); 483 mem_cgroup_uncharge_cache_page(page); 484 page_cache_release(page); 485 } 486 radix_tree_preload_end(); 487 } else 488 mem_cgroup_uncharge_cache_page(page); 489 out: 490 return error; 491 } 492 EXPORT_SYMBOL(add_to_page_cache_locked); 493 494 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 495 pgoff_t offset, gfp_t gfp_mask) 496 { 497 int ret; 498 499 /* 500 * Splice_read and readahead add shmem/tmpfs pages into the page cache 501 * before shmem_readpage has a chance to mark them as SwapBacked: they 502 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 503 * (called in add_to_page_cache) needs to know where they're going too. 504 */ 505 if (mapping_cap_swap_backed(mapping)) 506 SetPageSwapBacked(page); 507 508 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 509 if (ret == 0) { 510 if (page_is_file_cache(page)) 511 lru_cache_add_file(page); 512 else 513 lru_cache_add_active_anon(page); 514 } 515 return ret; 516 } 517 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 518 519 #ifdef CONFIG_NUMA 520 struct page *__page_cache_alloc(gfp_t gfp) 521 { 522 if (cpuset_do_page_mem_spread()) { 523 int n = cpuset_mem_spread_node(); 524 return alloc_pages_exact_node(n, gfp, 0); 525 } 526 return alloc_pages(gfp, 0); 527 } 528 EXPORT_SYMBOL(__page_cache_alloc); 529 #endif 530 531 static int __sleep_on_page_lock(void *word) 532 { 533 io_schedule(); 534 return 0; 535 } 536 537 /* 538 * In order to wait for pages to become available there must be 539 * waitqueues associated with pages. By using a hash table of 540 * waitqueues where the bucket discipline is to maintain all 541 * waiters on the same queue and wake all when any of the pages 542 * become available, and for the woken contexts to check to be 543 * sure the appropriate page became available, this saves space 544 * at a cost of "thundering herd" phenomena during rare hash 545 * collisions. 546 */ 547 static wait_queue_head_t *page_waitqueue(struct page *page) 548 { 549 const struct zone *zone = page_zone(page); 550 551 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 552 } 553 554 static inline void wake_up_page(struct page *page, int bit) 555 { 556 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 557 } 558 559 void wait_on_page_bit(struct page *page, int bit_nr) 560 { 561 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 562 563 if (test_bit(bit_nr, &page->flags)) 564 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 565 TASK_UNINTERRUPTIBLE); 566 } 567 EXPORT_SYMBOL(wait_on_page_bit); 568 569 /** 570 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 571 * @page: Page defining the wait queue of interest 572 * @waiter: Waiter to add to the queue 573 * 574 * Add an arbitrary @waiter to the wait queue for the nominated @page. 575 */ 576 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 577 { 578 wait_queue_head_t *q = page_waitqueue(page); 579 unsigned long flags; 580 581 spin_lock_irqsave(&q->lock, flags); 582 __add_wait_queue(q, waiter); 583 spin_unlock_irqrestore(&q->lock, flags); 584 } 585 EXPORT_SYMBOL_GPL(add_page_wait_queue); 586 587 /** 588 * unlock_page - unlock a locked page 589 * @page: the page 590 * 591 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 592 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 593 * mechananism between PageLocked pages and PageWriteback pages is shared. 594 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 595 * 596 * The mb is necessary to enforce ordering between the clear_bit and the read 597 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 598 */ 599 void unlock_page(struct page *page) 600 { 601 VM_BUG_ON(!PageLocked(page)); 602 clear_bit_unlock(PG_locked, &page->flags); 603 smp_mb__after_clear_bit(); 604 wake_up_page(page, PG_locked); 605 } 606 EXPORT_SYMBOL(unlock_page); 607 608 /** 609 * end_page_writeback - end writeback against a page 610 * @page: the page 611 */ 612 void end_page_writeback(struct page *page) 613 { 614 if (TestClearPageReclaim(page)) 615 rotate_reclaimable_page(page); 616 617 if (!test_clear_page_writeback(page)) 618 BUG(); 619 620 smp_mb__after_clear_bit(); 621 wake_up_page(page, PG_writeback); 622 } 623 EXPORT_SYMBOL(end_page_writeback); 624 625 /** 626 * __lock_page - get a lock on the page, assuming we need to sleep to get it 627 * @page: the page to lock 628 * 629 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 630 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 631 * chances are that on the second loop, the block layer's plug list is empty, 632 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 633 */ 634 void __lock_page(struct page *page) 635 { 636 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 637 638 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 639 TASK_UNINTERRUPTIBLE); 640 } 641 EXPORT_SYMBOL(__lock_page); 642 643 int __lock_page_killable(struct page *page) 644 { 645 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 646 647 return __wait_on_bit_lock(page_waitqueue(page), &wait, 648 sync_page_killable, TASK_KILLABLE); 649 } 650 EXPORT_SYMBOL_GPL(__lock_page_killable); 651 652 /** 653 * __lock_page_nosync - get a lock on the page, without calling sync_page() 654 * @page: the page to lock 655 * 656 * Variant of lock_page that does not require the caller to hold a reference 657 * on the page's mapping. 658 */ 659 void __lock_page_nosync(struct page *page) 660 { 661 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 662 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 663 TASK_UNINTERRUPTIBLE); 664 } 665 666 /** 667 * find_get_page - find and get a page reference 668 * @mapping: the address_space to search 669 * @offset: the page index 670 * 671 * Is there a pagecache struct page at the given (mapping, offset) tuple? 672 * If yes, increment its refcount and return it; if no, return NULL. 673 */ 674 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 675 { 676 void **pagep; 677 struct page *page; 678 679 rcu_read_lock(); 680 repeat: 681 page = NULL; 682 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 683 if (pagep) { 684 page = radix_tree_deref_slot(pagep); 685 if (unlikely(!page || page == RADIX_TREE_RETRY)) 686 goto repeat; 687 688 if (!page_cache_get_speculative(page)) 689 goto repeat; 690 691 /* 692 * Has the page moved? 693 * This is part of the lockless pagecache protocol. See 694 * include/linux/pagemap.h for details. 695 */ 696 if (unlikely(page != *pagep)) { 697 page_cache_release(page); 698 goto repeat; 699 } 700 } 701 rcu_read_unlock(); 702 703 return page; 704 } 705 EXPORT_SYMBOL(find_get_page); 706 707 /** 708 * find_lock_page - locate, pin and lock a pagecache page 709 * @mapping: the address_space to search 710 * @offset: the page index 711 * 712 * Locates the desired pagecache page, locks it, increments its reference 713 * count and returns its address. 714 * 715 * Returns zero if the page was not present. find_lock_page() may sleep. 716 */ 717 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 718 { 719 struct page *page; 720 721 repeat: 722 page = find_get_page(mapping, offset); 723 if (page) { 724 lock_page(page); 725 /* Has the page been truncated? */ 726 if (unlikely(page->mapping != mapping)) { 727 unlock_page(page); 728 page_cache_release(page); 729 goto repeat; 730 } 731 VM_BUG_ON(page->index != offset); 732 } 733 return page; 734 } 735 EXPORT_SYMBOL(find_lock_page); 736 737 /** 738 * find_or_create_page - locate or add a pagecache page 739 * @mapping: the page's address_space 740 * @index: the page's index into the mapping 741 * @gfp_mask: page allocation mode 742 * 743 * Locates a page in the pagecache. If the page is not present, a new page 744 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 745 * LRU list. The returned page is locked and has its reference count 746 * incremented. 747 * 748 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 749 * allocation! 750 * 751 * find_or_create_page() returns the desired page's address, or zero on 752 * memory exhaustion. 753 */ 754 struct page *find_or_create_page(struct address_space *mapping, 755 pgoff_t index, gfp_t gfp_mask) 756 { 757 struct page *page; 758 int err; 759 repeat: 760 page = find_lock_page(mapping, index); 761 if (!page) { 762 page = __page_cache_alloc(gfp_mask); 763 if (!page) 764 return NULL; 765 /* 766 * We want a regular kernel memory (not highmem or DMA etc) 767 * allocation for the radix tree nodes, but we need to honour 768 * the context-specific requirements the caller has asked for. 769 * GFP_RECLAIM_MASK collects those requirements. 770 */ 771 err = add_to_page_cache_lru(page, mapping, index, 772 (gfp_mask & GFP_RECLAIM_MASK)); 773 if (unlikely(err)) { 774 page_cache_release(page); 775 page = NULL; 776 if (err == -EEXIST) 777 goto repeat; 778 } 779 } 780 return page; 781 } 782 EXPORT_SYMBOL(find_or_create_page); 783 784 /** 785 * find_get_pages - gang pagecache lookup 786 * @mapping: The address_space to search 787 * @start: The starting page index 788 * @nr_pages: The maximum number of pages 789 * @pages: Where the resulting pages are placed 790 * 791 * find_get_pages() will search for and return a group of up to 792 * @nr_pages pages in the mapping. The pages are placed at @pages. 793 * find_get_pages() takes a reference against the returned pages. 794 * 795 * The search returns a group of mapping-contiguous pages with ascending 796 * indexes. There may be holes in the indices due to not-present pages. 797 * 798 * find_get_pages() returns the number of pages which were found. 799 */ 800 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 801 unsigned int nr_pages, struct page **pages) 802 { 803 unsigned int i; 804 unsigned int ret; 805 unsigned int nr_found; 806 807 rcu_read_lock(); 808 restart: 809 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 810 (void ***)pages, start, nr_pages); 811 ret = 0; 812 for (i = 0; i < nr_found; i++) { 813 struct page *page; 814 repeat: 815 page = radix_tree_deref_slot((void **)pages[i]); 816 if (unlikely(!page)) 817 continue; 818 /* 819 * this can only trigger if nr_found == 1, making livelock 820 * a non issue. 821 */ 822 if (unlikely(page == RADIX_TREE_RETRY)) 823 goto restart; 824 825 if (!page_cache_get_speculative(page)) 826 goto repeat; 827 828 /* Has the page moved? */ 829 if (unlikely(page != *((void **)pages[i]))) { 830 page_cache_release(page); 831 goto repeat; 832 } 833 834 pages[ret] = page; 835 ret++; 836 } 837 rcu_read_unlock(); 838 return ret; 839 } 840 841 /** 842 * find_get_pages_contig - gang contiguous pagecache lookup 843 * @mapping: The address_space to search 844 * @index: The starting page index 845 * @nr_pages: The maximum number of pages 846 * @pages: Where the resulting pages are placed 847 * 848 * find_get_pages_contig() works exactly like find_get_pages(), except 849 * that the returned number of pages are guaranteed to be contiguous. 850 * 851 * find_get_pages_contig() returns the number of pages which were found. 852 */ 853 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 854 unsigned int nr_pages, struct page **pages) 855 { 856 unsigned int i; 857 unsigned int ret; 858 unsigned int nr_found; 859 860 rcu_read_lock(); 861 restart: 862 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 863 (void ***)pages, index, nr_pages); 864 ret = 0; 865 for (i = 0; i < nr_found; i++) { 866 struct page *page; 867 repeat: 868 page = radix_tree_deref_slot((void **)pages[i]); 869 if (unlikely(!page)) 870 continue; 871 /* 872 * this can only trigger if nr_found == 1, making livelock 873 * a non issue. 874 */ 875 if (unlikely(page == RADIX_TREE_RETRY)) 876 goto restart; 877 878 if (page->mapping == NULL || page->index != index) 879 break; 880 881 if (!page_cache_get_speculative(page)) 882 goto repeat; 883 884 /* Has the page moved? */ 885 if (unlikely(page != *((void **)pages[i]))) { 886 page_cache_release(page); 887 goto repeat; 888 } 889 890 pages[ret] = page; 891 ret++; 892 index++; 893 } 894 rcu_read_unlock(); 895 return ret; 896 } 897 EXPORT_SYMBOL(find_get_pages_contig); 898 899 /** 900 * find_get_pages_tag - find and return pages that match @tag 901 * @mapping: the address_space to search 902 * @index: the starting page index 903 * @tag: the tag index 904 * @nr_pages: the maximum number of pages 905 * @pages: where the resulting pages are placed 906 * 907 * Like find_get_pages, except we only return pages which are tagged with 908 * @tag. We update @index to index the next page for the traversal. 909 */ 910 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 911 int tag, unsigned int nr_pages, struct page **pages) 912 { 913 unsigned int i; 914 unsigned int ret; 915 unsigned int nr_found; 916 917 rcu_read_lock(); 918 restart: 919 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 920 (void ***)pages, *index, nr_pages, tag); 921 ret = 0; 922 for (i = 0; i < nr_found; i++) { 923 struct page *page; 924 repeat: 925 page = radix_tree_deref_slot((void **)pages[i]); 926 if (unlikely(!page)) 927 continue; 928 /* 929 * this can only trigger if nr_found == 1, making livelock 930 * a non issue. 931 */ 932 if (unlikely(page == RADIX_TREE_RETRY)) 933 goto restart; 934 935 if (!page_cache_get_speculative(page)) 936 goto repeat; 937 938 /* Has the page moved? */ 939 if (unlikely(page != *((void **)pages[i]))) { 940 page_cache_release(page); 941 goto repeat; 942 } 943 944 pages[ret] = page; 945 ret++; 946 } 947 rcu_read_unlock(); 948 949 if (ret) 950 *index = pages[ret - 1]->index + 1; 951 952 return ret; 953 } 954 EXPORT_SYMBOL(find_get_pages_tag); 955 956 /** 957 * grab_cache_page_nowait - returns locked page at given index in given cache 958 * @mapping: target address_space 959 * @index: the page index 960 * 961 * Same as grab_cache_page(), but do not wait if the page is unavailable. 962 * This is intended for speculative data generators, where the data can 963 * be regenerated if the page couldn't be grabbed. This routine should 964 * be safe to call while holding the lock for another page. 965 * 966 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 967 * and deadlock against the caller's locked page. 968 */ 969 struct page * 970 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 971 { 972 struct page *page = find_get_page(mapping, index); 973 974 if (page) { 975 if (trylock_page(page)) 976 return page; 977 page_cache_release(page); 978 return NULL; 979 } 980 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 981 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 982 page_cache_release(page); 983 page = NULL; 984 } 985 return page; 986 } 987 EXPORT_SYMBOL(grab_cache_page_nowait); 988 989 /* 990 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 991 * a _large_ part of the i/o request. Imagine the worst scenario: 992 * 993 * ---R__________________________________________B__________ 994 * ^ reading here ^ bad block(assume 4k) 995 * 996 * read(R) => miss => readahead(R...B) => media error => frustrating retries 997 * => failing the whole request => read(R) => read(R+1) => 998 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 999 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1000 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1001 * 1002 * It is going insane. Fix it by quickly scaling down the readahead size. 1003 */ 1004 static void shrink_readahead_size_eio(struct file *filp, 1005 struct file_ra_state *ra) 1006 { 1007 ra->ra_pages /= 4; 1008 } 1009 1010 /** 1011 * do_generic_file_read - generic file read routine 1012 * @filp: the file to read 1013 * @ppos: current file position 1014 * @desc: read_descriptor 1015 * @actor: read method 1016 * 1017 * This is a generic file read routine, and uses the 1018 * mapping->a_ops->readpage() function for the actual low-level stuff. 1019 * 1020 * This is really ugly. But the goto's actually try to clarify some 1021 * of the logic when it comes to error handling etc. 1022 */ 1023 static void do_generic_file_read(struct file *filp, loff_t *ppos, 1024 read_descriptor_t *desc, read_actor_t actor) 1025 { 1026 struct address_space *mapping = filp->f_mapping; 1027 struct inode *inode = mapping->host; 1028 struct file_ra_state *ra = &filp->f_ra; 1029 pgoff_t index; 1030 pgoff_t last_index; 1031 pgoff_t prev_index; 1032 unsigned long offset; /* offset into pagecache page */ 1033 unsigned int prev_offset; 1034 int error; 1035 1036 index = *ppos >> PAGE_CACHE_SHIFT; 1037 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1038 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1039 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1040 offset = *ppos & ~PAGE_CACHE_MASK; 1041 1042 for (;;) { 1043 struct page *page; 1044 pgoff_t end_index; 1045 loff_t isize; 1046 unsigned long nr, ret; 1047 1048 cond_resched(); 1049 find_page: 1050 page = find_get_page(mapping, index); 1051 if (!page) { 1052 page_cache_sync_readahead(mapping, 1053 ra, filp, 1054 index, last_index - index); 1055 page = find_get_page(mapping, index); 1056 if (unlikely(page == NULL)) 1057 goto no_cached_page; 1058 } 1059 if (PageReadahead(page)) { 1060 page_cache_async_readahead(mapping, 1061 ra, filp, page, 1062 index, last_index - index); 1063 } 1064 if (!PageUptodate(page)) { 1065 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1066 !mapping->a_ops->is_partially_uptodate) 1067 goto page_not_up_to_date; 1068 if (!trylock_page(page)) 1069 goto page_not_up_to_date; 1070 if (!mapping->a_ops->is_partially_uptodate(page, 1071 desc, offset)) 1072 goto page_not_up_to_date_locked; 1073 unlock_page(page); 1074 } 1075 page_ok: 1076 /* 1077 * i_size must be checked after we know the page is Uptodate. 1078 * 1079 * Checking i_size after the check allows us to calculate 1080 * the correct value for "nr", which means the zero-filled 1081 * part of the page is not copied back to userspace (unless 1082 * another truncate extends the file - this is desired though). 1083 */ 1084 1085 isize = i_size_read(inode); 1086 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1087 if (unlikely(!isize || index > end_index)) { 1088 page_cache_release(page); 1089 goto out; 1090 } 1091 1092 /* nr is the maximum number of bytes to copy from this page */ 1093 nr = PAGE_CACHE_SIZE; 1094 if (index == end_index) { 1095 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1096 if (nr <= offset) { 1097 page_cache_release(page); 1098 goto out; 1099 } 1100 } 1101 nr = nr - offset; 1102 1103 /* If users can be writing to this page using arbitrary 1104 * virtual addresses, take care about potential aliasing 1105 * before reading the page on the kernel side. 1106 */ 1107 if (mapping_writably_mapped(mapping)) 1108 flush_dcache_page(page); 1109 1110 /* 1111 * When a sequential read accesses a page several times, 1112 * only mark it as accessed the first time. 1113 */ 1114 if (prev_index != index || offset != prev_offset) 1115 mark_page_accessed(page); 1116 prev_index = index; 1117 1118 /* 1119 * Ok, we have the page, and it's up-to-date, so 1120 * now we can copy it to user space... 1121 * 1122 * The actor routine returns how many bytes were actually used.. 1123 * NOTE! This may not be the same as how much of a user buffer 1124 * we filled up (we may be padding etc), so we can only update 1125 * "pos" here (the actor routine has to update the user buffer 1126 * pointers and the remaining count). 1127 */ 1128 ret = actor(desc, page, offset, nr); 1129 offset += ret; 1130 index += offset >> PAGE_CACHE_SHIFT; 1131 offset &= ~PAGE_CACHE_MASK; 1132 prev_offset = offset; 1133 1134 page_cache_release(page); 1135 if (ret == nr && desc->count) 1136 continue; 1137 goto out; 1138 1139 page_not_up_to_date: 1140 /* Get exclusive access to the page ... */ 1141 error = lock_page_killable(page); 1142 if (unlikely(error)) 1143 goto readpage_error; 1144 1145 page_not_up_to_date_locked: 1146 /* Did it get truncated before we got the lock? */ 1147 if (!page->mapping) { 1148 unlock_page(page); 1149 page_cache_release(page); 1150 continue; 1151 } 1152 1153 /* Did somebody else fill it already? */ 1154 if (PageUptodate(page)) { 1155 unlock_page(page); 1156 goto page_ok; 1157 } 1158 1159 readpage: 1160 /* Start the actual read. The read will unlock the page. */ 1161 error = mapping->a_ops->readpage(filp, page); 1162 1163 if (unlikely(error)) { 1164 if (error == AOP_TRUNCATED_PAGE) { 1165 page_cache_release(page); 1166 goto find_page; 1167 } 1168 goto readpage_error; 1169 } 1170 1171 if (!PageUptodate(page)) { 1172 error = lock_page_killable(page); 1173 if (unlikely(error)) 1174 goto readpage_error; 1175 if (!PageUptodate(page)) { 1176 if (page->mapping == NULL) { 1177 /* 1178 * invalidate_inode_pages got it 1179 */ 1180 unlock_page(page); 1181 page_cache_release(page); 1182 goto find_page; 1183 } 1184 unlock_page(page); 1185 shrink_readahead_size_eio(filp, ra); 1186 error = -EIO; 1187 goto readpage_error; 1188 } 1189 unlock_page(page); 1190 } 1191 1192 goto page_ok; 1193 1194 readpage_error: 1195 /* UHHUH! A synchronous read error occurred. Report it */ 1196 desc->error = error; 1197 page_cache_release(page); 1198 goto out; 1199 1200 no_cached_page: 1201 /* 1202 * Ok, it wasn't cached, so we need to create a new 1203 * page.. 1204 */ 1205 page = page_cache_alloc_cold(mapping); 1206 if (!page) { 1207 desc->error = -ENOMEM; 1208 goto out; 1209 } 1210 error = add_to_page_cache_lru(page, mapping, 1211 index, GFP_KERNEL); 1212 if (error) { 1213 page_cache_release(page); 1214 if (error == -EEXIST) 1215 goto find_page; 1216 desc->error = error; 1217 goto out; 1218 } 1219 goto readpage; 1220 } 1221 1222 out: 1223 ra->prev_pos = prev_index; 1224 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1225 ra->prev_pos |= prev_offset; 1226 1227 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1228 file_accessed(filp); 1229 } 1230 1231 int file_read_actor(read_descriptor_t *desc, struct page *page, 1232 unsigned long offset, unsigned long size) 1233 { 1234 char *kaddr; 1235 unsigned long left, count = desc->count; 1236 1237 if (size > count) 1238 size = count; 1239 1240 /* 1241 * Faults on the destination of a read are common, so do it before 1242 * taking the kmap. 1243 */ 1244 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1245 kaddr = kmap_atomic(page, KM_USER0); 1246 left = __copy_to_user_inatomic(desc->arg.buf, 1247 kaddr + offset, size); 1248 kunmap_atomic(kaddr, KM_USER0); 1249 if (left == 0) 1250 goto success; 1251 } 1252 1253 /* Do it the slow way */ 1254 kaddr = kmap(page); 1255 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1256 kunmap(page); 1257 1258 if (left) { 1259 size -= left; 1260 desc->error = -EFAULT; 1261 } 1262 success: 1263 desc->count = count - size; 1264 desc->written += size; 1265 desc->arg.buf += size; 1266 return size; 1267 } 1268 1269 /* 1270 * Performs necessary checks before doing a write 1271 * @iov: io vector request 1272 * @nr_segs: number of segments in the iovec 1273 * @count: number of bytes to write 1274 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1275 * 1276 * Adjust number of segments and amount of bytes to write (nr_segs should be 1277 * properly initialized first). Returns appropriate error code that caller 1278 * should return or zero in case that write should be allowed. 1279 */ 1280 int generic_segment_checks(const struct iovec *iov, 1281 unsigned long *nr_segs, size_t *count, int access_flags) 1282 { 1283 unsigned long seg; 1284 size_t cnt = 0; 1285 for (seg = 0; seg < *nr_segs; seg++) { 1286 const struct iovec *iv = &iov[seg]; 1287 1288 /* 1289 * If any segment has a negative length, or the cumulative 1290 * length ever wraps negative then return -EINVAL. 1291 */ 1292 cnt += iv->iov_len; 1293 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1294 return -EINVAL; 1295 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1296 continue; 1297 if (seg == 0) 1298 return -EFAULT; 1299 *nr_segs = seg; 1300 cnt -= iv->iov_len; /* This segment is no good */ 1301 break; 1302 } 1303 *count = cnt; 1304 return 0; 1305 } 1306 EXPORT_SYMBOL(generic_segment_checks); 1307 1308 /** 1309 * generic_file_aio_read - generic filesystem read routine 1310 * @iocb: kernel I/O control block 1311 * @iov: io vector request 1312 * @nr_segs: number of segments in the iovec 1313 * @pos: current file position 1314 * 1315 * This is the "read()" routine for all filesystems 1316 * that can use the page cache directly. 1317 */ 1318 ssize_t 1319 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1320 unsigned long nr_segs, loff_t pos) 1321 { 1322 struct file *filp = iocb->ki_filp; 1323 ssize_t retval; 1324 unsigned long seg; 1325 size_t count; 1326 loff_t *ppos = &iocb->ki_pos; 1327 1328 count = 0; 1329 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1330 if (retval) 1331 return retval; 1332 1333 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1334 if (filp->f_flags & O_DIRECT) { 1335 loff_t size; 1336 struct address_space *mapping; 1337 struct inode *inode; 1338 1339 mapping = filp->f_mapping; 1340 inode = mapping->host; 1341 if (!count) 1342 goto out; /* skip atime */ 1343 size = i_size_read(inode); 1344 if (pos < size) { 1345 retval = filemap_write_and_wait_range(mapping, pos, 1346 pos + iov_length(iov, nr_segs) - 1); 1347 if (!retval) { 1348 retval = mapping->a_ops->direct_IO(READ, iocb, 1349 iov, pos, nr_segs); 1350 } 1351 if (retval > 0) 1352 *ppos = pos + retval; 1353 if (retval) { 1354 file_accessed(filp); 1355 goto out; 1356 } 1357 } 1358 } 1359 1360 for (seg = 0; seg < nr_segs; seg++) { 1361 read_descriptor_t desc; 1362 1363 desc.written = 0; 1364 desc.arg.buf = iov[seg].iov_base; 1365 desc.count = iov[seg].iov_len; 1366 if (desc.count == 0) 1367 continue; 1368 desc.error = 0; 1369 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1370 retval += desc.written; 1371 if (desc.error) { 1372 retval = retval ?: desc.error; 1373 break; 1374 } 1375 if (desc.count > 0) 1376 break; 1377 } 1378 out: 1379 return retval; 1380 } 1381 EXPORT_SYMBOL(generic_file_aio_read); 1382 1383 static ssize_t 1384 do_readahead(struct address_space *mapping, struct file *filp, 1385 pgoff_t index, unsigned long nr) 1386 { 1387 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1388 return -EINVAL; 1389 1390 force_page_cache_readahead(mapping, filp, index, nr); 1391 return 0; 1392 } 1393 1394 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1395 { 1396 ssize_t ret; 1397 struct file *file; 1398 1399 ret = -EBADF; 1400 file = fget(fd); 1401 if (file) { 1402 if (file->f_mode & FMODE_READ) { 1403 struct address_space *mapping = file->f_mapping; 1404 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1405 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1406 unsigned long len = end - start + 1; 1407 ret = do_readahead(mapping, file, start, len); 1408 } 1409 fput(file); 1410 } 1411 return ret; 1412 } 1413 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1414 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1415 { 1416 return SYSC_readahead((int) fd, offset, (size_t) count); 1417 } 1418 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1419 #endif 1420 1421 #ifdef CONFIG_MMU 1422 /** 1423 * page_cache_read - adds requested page to the page cache if not already there 1424 * @file: file to read 1425 * @offset: page index 1426 * 1427 * This adds the requested page to the page cache if it isn't already there, 1428 * and schedules an I/O to read in its contents from disk. 1429 */ 1430 static int page_cache_read(struct file *file, pgoff_t offset) 1431 { 1432 struct address_space *mapping = file->f_mapping; 1433 struct page *page; 1434 int ret; 1435 1436 do { 1437 page = page_cache_alloc_cold(mapping); 1438 if (!page) 1439 return -ENOMEM; 1440 1441 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1442 if (ret == 0) 1443 ret = mapping->a_ops->readpage(file, page); 1444 else if (ret == -EEXIST) 1445 ret = 0; /* losing race to add is OK */ 1446 1447 page_cache_release(page); 1448 1449 } while (ret == AOP_TRUNCATED_PAGE); 1450 1451 return ret; 1452 } 1453 1454 #define MMAP_LOTSAMISS (100) 1455 1456 /* 1457 * Synchronous readahead happens when we don't even find 1458 * a page in the page cache at all. 1459 */ 1460 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1461 struct file_ra_state *ra, 1462 struct file *file, 1463 pgoff_t offset) 1464 { 1465 unsigned long ra_pages; 1466 struct address_space *mapping = file->f_mapping; 1467 1468 /* If we don't want any read-ahead, don't bother */ 1469 if (VM_RandomReadHint(vma)) 1470 return; 1471 1472 if (VM_SequentialReadHint(vma) || 1473 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1474 page_cache_sync_readahead(mapping, ra, file, offset, 1475 ra->ra_pages); 1476 return; 1477 } 1478 1479 if (ra->mmap_miss < INT_MAX) 1480 ra->mmap_miss++; 1481 1482 /* 1483 * Do we miss much more than hit in this file? If so, 1484 * stop bothering with read-ahead. It will only hurt. 1485 */ 1486 if (ra->mmap_miss > MMAP_LOTSAMISS) 1487 return; 1488 1489 /* 1490 * mmap read-around 1491 */ 1492 ra_pages = max_sane_readahead(ra->ra_pages); 1493 if (ra_pages) { 1494 ra->start = max_t(long, 0, offset - ra_pages/2); 1495 ra->size = ra_pages; 1496 ra->async_size = 0; 1497 ra_submit(ra, mapping, file); 1498 } 1499 } 1500 1501 /* 1502 * Asynchronous readahead happens when we find the page and PG_readahead, 1503 * so we want to possibly extend the readahead further.. 1504 */ 1505 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1506 struct file_ra_state *ra, 1507 struct file *file, 1508 struct page *page, 1509 pgoff_t offset) 1510 { 1511 struct address_space *mapping = file->f_mapping; 1512 1513 /* If we don't want any read-ahead, don't bother */ 1514 if (VM_RandomReadHint(vma)) 1515 return; 1516 if (ra->mmap_miss > 0) 1517 ra->mmap_miss--; 1518 if (PageReadahead(page)) 1519 page_cache_async_readahead(mapping, ra, file, 1520 page, offset, ra->ra_pages); 1521 } 1522 1523 /** 1524 * filemap_fault - read in file data for page fault handling 1525 * @vma: vma in which the fault was taken 1526 * @vmf: struct vm_fault containing details of the fault 1527 * 1528 * filemap_fault() is invoked via the vma operations vector for a 1529 * mapped memory region to read in file data during a page fault. 1530 * 1531 * The goto's are kind of ugly, but this streamlines the normal case of having 1532 * it in the page cache, and handles the special cases reasonably without 1533 * having a lot of duplicated code. 1534 */ 1535 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1536 { 1537 int error; 1538 struct file *file = vma->vm_file; 1539 struct address_space *mapping = file->f_mapping; 1540 struct file_ra_state *ra = &file->f_ra; 1541 struct inode *inode = mapping->host; 1542 pgoff_t offset = vmf->pgoff; 1543 struct page *page; 1544 pgoff_t size; 1545 int ret = 0; 1546 1547 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1548 if (offset >= size) 1549 return VM_FAULT_SIGBUS; 1550 1551 /* 1552 * Do we have something in the page cache already? 1553 */ 1554 page = find_get_page(mapping, offset); 1555 if (likely(page)) { 1556 /* 1557 * We found the page, so try async readahead before 1558 * waiting for the lock. 1559 */ 1560 do_async_mmap_readahead(vma, ra, file, page, offset); 1561 lock_page(page); 1562 1563 /* Did it get truncated? */ 1564 if (unlikely(page->mapping != mapping)) { 1565 unlock_page(page); 1566 put_page(page); 1567 goto no_cached_page; 1568 } 1569 } else { 1570 /* No page in the page cache at all */ 1571 do_sync_mmap_readahead(vma, ra, file, offset); 1572 count_vm_event(PGMAJFAULT); 1573 ret = VM_FAULT_MAJOR; 1574 retry_find: 1575 page = find_lock_page(mapping, offset); 1576 if (!page) 1577 goto no_cached_page; 1578 } 1579 1580 /* 1581 * We have a locked page in the page cache, now we need to check 1582 * that it's up-to-date. If not, it is going to be due to an error. 1583 */ 1584 if (unlikely(!PageUptodate(page))) 1585 goto page_not_uptodate; 1586 1587 /* 1588 * Found the page and have a reference on it. 1589 * We must recheck i_size under page lock. 1590 */ 1591 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1592 if (unlikely(offset >= size)) { 1593 unlock_page(page); 1594 page_cache_release(page); 1595 return VM_FAULT_SIGBUS; 1596 } 1597 1598 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1599 vmf->page = page; 1600 return ret | VM_FAULT_LOCKED; 1601 1602 no_cached_page: 1603 /* 1604 * We're only likely to ever get here if MADV_RANDOM is in 1605 * effect. 1606 */ 1607 error = page_cache_read(file, offset); 1608 1609 /* 1610 * The page we want has now been added to the page cache. 1611 * In the unlikely event that someone removed it in the 1612 * meantime, we'll just come back here and read it again. 1613 */ 1614 if (error >= 0) 1615 goto retry_find; 1616 1617 /* 1618 * An error return from page_cache_read can result if the 1619 * system is low on memory, or a problem occurs while trying 1620 * to schedule I/O. 1621 */ 1622 if (error == -ENOMEM) 1623 return VM_FAULT_OOM; 1624 return VM_FAULT_SIGBUS; 1625 1626 page_not_uptodate: 1627 /* 1628 * Umm, take care of errors if the page isn't up-to-date. 1629 * Try to re-read it _once_. We do this synchronously, 1630 * because there really aren't any performance issues here 1631 * and we need to check for errors. 1632 */ 1633 ClearPageError(page); 1634 error = mapping->a_ops->readpage(file, page); 1635 if (!error) { 1636 wait_on_page_locked(page); 1637 if (!PageUptodate(page)) 1638 error = -EIO; 1639 } 1640 page_cache_release(page); 1641 1642 if (!error || error == AOP_TRUNCATED_PAGE) 1643 goto retry_find; 1644 1645 /* Things didn't work out. Return zero to tell the mm layer so. */ 1646 shrink_readahead_size_eio(file, ra); 1647 return VM_FAULT_SIGBUS; 1648 } 1649 EXPORT_SYMBOL(filemap_fault); 1650 1651 struct vm_operations_struct generic_file_vm_ops = { 1652 .fault = filemap_fault, 1653 }; 1654 1655 /* This is used for a general mmap of a disk file */ 1656 1657 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1658 { 1659 struct address_space *mapping = file->f_mapping; 1660 1661 if (!mapping->a_ops->readpage) 1662 return -ENOEXEC; 1663 file_accessed(file); 1664 vma->vm_ops = &generic_file_vm_ops; 1665 vma->vm_flags |= VM_CAN_NONLINEAR; 1666 return 0; 1667 } 1668 1669 /* 1670 * This is for filesystems which do not implement ->writepage. 1671 */ 1672 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1673 { 1674 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1675 return -EINVAL; 1676 return generic_file_mmap(file, vma); 1677 } 1678 #else 1679 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1680 { 1681 return -ENOSYS; 1682 } 1683 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1684 { 1685 return -ENOSYS; 1686 } 1687 #endif /* CONFIG_MMU */ 1688 1689 EXPORT_SYMBOL(generic_file_mmap); 1690 EXPORT_SYMBOL(generic_file_readonly_mmap); 1691 1692 static struct page *__read_cache_page(struct address_space *mapping, 1693 pgoff_t index, 1694 int (*filler)(void *,struct page*), 1695 void *data) 1696 { 1697 struct page *page; 1698 int err; 1699 repeat: 1700 page = find_get_page(mapping, index); 1701 if (!page) { 1702 page = page_cache_alloc_cold(mapping); 1703 if (!page) 1704 return ERR_PTR(-ENOMEM); 1705 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1706 if (unlikely(err)) { 1707 page_cache_release(page); 1708 if (err == -EEXIST) 1709 goto repeat; 1710 /* Presumably ENOMEM for radix tree node */ 1711 return ERR_PTR(err); 1712 } 1713 err = filler(data, page); 1714 if (err < 0) { 1715 page_cache_release(page); 1716 page = ERR_PTR(err); 1717 } 1718 } 1719 return page; 1720 } 1721 1722 /** 1723 * read_cache_page_async - read into page cache, fill it if needed 1724 * @mapping: the page's address_space 1725 * @index: the page index 1726 * @filler: function to perform the read 1727 * @data: destination for read data 1728 * 1729 * Same as read_cache_page, but don't wait for page to become unlocked 1730 * after submitting it to the filler. 1731 * 1732 * Read into the page cache. If a page already exists, and PageUptodate() is 1733 * not set, try to fill the page but don't wait for it to become unlocked. 1734 * 1735 * If the page does not get brought uptodate, return -EIO. 1736 */ 1737 struct page *read_cache_page_async(struct address_space *mapping, 1738 pgoff_t index, 1739 int (*filler)(void *,struct page*), 1740 void *data) 1741 { 1742 struct page *page; 1743 int err; 1744 1745 retry: 1746 page = __read_cache_page(mapping, index, filler, data); 1747 if (IS_ERR(page)) 1748 return page; 1749 if (PageUptodate(page)) 1750 goto out; 1751 1752 lock_page(page); 1753 if (!page->mapping) { 1754 unlock_page(page); 1755 page_cache_release(page); 1756 goto retry; 1757 } 1758 if (PageUptodate(page)) { 1759 unlock_page(page); 1760 goto out; 1761 } 1762 err = filler(data, page); 1763 if (err < 0) { 1764 page_cache_release(page); 1765 return ERR_PTR(err); 1766 } 1767 out: 1768 mark_page_accessed(page); 1769 return page; 1770 } 1771 EXPORT_SYMBOL(read_cache_page_async); 1772 1773 /** 1774 * read_cache_page - read into page cache, fill it if needed 1775 * @mapping: the page's address_space 1776 * @index: the page index 1777 * @filler: function to perform the read 1778 * @data: destination for read data 1779 * 1780 * Read into the page cache. If a page already exists, and PageUptodate() is 1781 * not set, try to fill the page then wait for it to become unlocked. 1782 * 1783 * If the page does not get brought uptodate, return -EIO. 1784 */ 1785 struct page *read_cache_page(struct address_space *mapping, 1786 pgoff_t index, 1787 int (*filler)(void *,struct page*), 1788 void *data) 1789 { 1790 struct page *page; 1791 1792 page = read_cache_page_async(mapping, index, filler, data); 1793 if (IS_ERR(page)) 1794 goto out; 1795 wait_on_page_locked(page); 1796 if (!PageUptodate(page)) { 1797 page_cache_release(page); 1798 page = ERR_PTR(-EIO); 1799 } 1800 out: 1801 return page; 1802 } 1803 EXPORT_SYMBOL(read_cache_page); 1804 1805 /* 1806 * The logic we want is 1807 * 1808 * if suid or (sgid and xgrp) 1809 * remove privs 1810 */ 1811 int should_remove_suid(struct dentry *dentry) 1812 { 1813 mode_t mode = dentry->d_inode->i_mode; 1814 int kill = 0; 1815 1816 /* suid always must be killed */ 1817 if (unlikely(mode & S_ISUID)) 1818 kill = ATTR_KILL_SUID; 1819 1820 /* 1821 * sgid without any exec bits is just a mandatory locking mark; leave 1822 * it alone. If some exec bits are set, it's a real sgid; kill it. 1823 */ 1824 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1825 kill |= ATTR_KILL_SGID; 1826 1827 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1828 return kill; 1829 1830 return 0; 1831 } 1832 EXPORT_SYMBOL(should_remove_suid); 1833 1834 static int __remove_suid(struct dentry *dentry, int kill) 1835 { 1836 struct iattr newattrs; 1837 1838 newattrs.ia_valid = ATTR_FORCE | kill; 1839 return notify_change(dentry, &newattrs); 1840 } 1841 1842 int file_remove_suid(struct file *file) 1843 { 1844 struct dentry *dentry = file->f_path.dentry; 1845 int killsuid = should_remove_suid(dentry); 1846 int killpriv = security_inode_need_killpriv(dentry); 1847 int error = 0; 1848 1849 if (killpriv < 0) 1850 return killpriv; 1851 if (killpriv) 1852 error = security_inode_killpriv(dentry); 1853 if (!error && killsuid) 1854 error = __remove_suid(dentry, killsuid); 1855 1856 return error; 1857 } 1858 EXPORT_SYMBOL(file_remove_suid); 1859 1860 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1861 const struct iovec *iov, size_t base, size_t bytes) 1862 { 1863 size_t copied = 0, left = 0; 1864 1865 while (bytes) { 1866 char __user *buf = iov->iov_base + base; 1867 int copy = min(bytes, iov->iov_len - base); 1868 1869 base = 0; 1870 left = __copy_from_user_inatomic(vaddr, buf, copy); 1871 copied += copy; 1872 bytes -= copy; 1873 vaddr += copy; 1874 iov++; 1875 1876 if (unlikely(left)) 1877 break; 1878 } 1879 return copied - left; 1880 } 1881 1882 /* 1883 * Copy as much as we can into the page and return the number of bytes which 1884 * were sucessfully copied. If a fault is encountered then return the number of 1885 * bytes which were copied. 1886 */ 1887 size_t iov_iter_copy_from_user_atomic(struct page *page, 1888 struct iov_iter *i, unsigned long offset, size_t bytes) 1889 { 1890 char *kaddr; 1891 size_t copied; 1892 1893 BUG_ON(!in_atomic()); 1894 kaddr = kmap_atomic(page, KM_USER0); 1895 if (likely(i->nr_segs == 1)) { 1896 int left; 1897 char __user *buf = i->iov->iov_base + i->iov_offset; 1898 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1899 copied = bytes - left; 1900 } else { 1901 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1902 i->iov, i->iov_offset, bytes); 1903 } 1904 kunmap_atomic(kaddr, KM_USER0); 1905 1906 return copied; 1907 } 1908 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1909 1910 /* 1911 * This has the same sideeffects and return value as 1912 * iov_iter_copy_from_user_atomic(). 1913 * The difference is that it attempts to resolve faults. 1914 * Page must not be locked. 1915 */ 1916 size_t iov_iter_copy_from_user(struct page *page, 1917 struct iov_iter *i, unsigned long offset, size_t bytes) 1918 { 1919 char *kaddr; 1920 size_t copied; 1921 1922 kaddr = kmap(page); 1923 if (likely(i->nr_segs == 1)) { 1924 int left; 1925 char __user *buf = i->iov->iov_base + i->iov_offset; 1926 left = __copy_from_user(kaddr + offset, buf, bytes); 1927 copied = bytes - left; 1928 } else { 1929 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1930 i->iov, i->iov_offset, bytes); 1931 } 1932 kunmap(page); 1933 return copied; 1934 } 1935 EXPORT_SYMBOL(iov_iter_copy_from_user); 1936 1937 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1938 { 1939 BUG_ON(i->count < bytes); 1940 1941 if (likely(i->nr_segs == 1)) { 1942 i->iov_offset += bytes; 1943 i->count -= bytes; 1944 } else { 1945 const struct iovec *iov = i->iov; 1946 size_t base = i->iov_offset; 1947 1948 /* 1949 * The !iov->iov_len check ensures we skip over unlikely 1950 * zero-length segments (without overruning the iovec). 1951 */ 1952 while (bytes || unlikely(i->count && !iov->iov_len)) { 1953 int copy; 1954 1955 copy = min(bytes, iov->iov_len - base); 1956 BUG_ON(!i->count || i->count < copy); 1957 i->count -= copy; 1958 bytes -= copy; 1959 base += copy; 1960 if (iov->iov_len == base) { 1961 iov++; 1962 base = 0; 1963 } 1964 } 1965 i->iov = iov; 1966 i->iov_offset = base; 1967 } 1968 } 1969 EXPORT_SYMBOL(iov_iter_advance); 1970 1971 /* 1972 * Fault in the first iovec of the given iov_iter, to a maximum length 1973 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1974 * accessed (ie. because it is an invalid address). 1975 * 1976 * writev-intensive code may want this to prefault several iovecs -- that 1977 * would be possible (callers must not rely on the fact that _only_ the 1978 * first iovec will be faulted with the current implementation). 1979 */ 1980 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1981 { 1982 char __user *buf = i->iov->iov_base + i->iov_offset; 1983 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1984 return fault_in_pages_readable(buf, bytes); 1985 } 1986 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1987 1988 /* 1989 * Return the count of just the current iov_iter segment. 1990 */ 1991 size_t iov_iter_single_seg_count(struct iov_iter *i) 1992 { 1993 const struct iovec *iov = i->iov; 1994 if (i->nr_segs == 1) 1995 return i->count; 1996 else 1997 return min(i->count, iov->iov_len - i->iov_offset); 1998 } 1999 EXPORT_SYMBOL(iov_iter_single_seg_count); 2000 2001 /* 2002 * Performs necessary checks before doing a write 2003 * 2004 * Can adjust writing position or amount of bytes to write. 2005 * Returns appropriate error code that caller should return or 2006 * zero in case that write should be allowed. 2007 */ 2008 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2009 { 2010 struct inode *inode = file->f_mapping->host; 2011 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 2012 2013 if (unlikely(*pos < 0)) 2014 return -EINVAL; 2015 2016 if (!isblk) { 2017 /* FIXME: this is for backwards compatibility with 2.4 */ 2018 if (file->f_flags & O_APPEND) 2019 *pos = i_size_read(inode); 2020 2021 if (limit != RLIM_INFINITY) { 2022 if (*pos >= limit) { 2023 send_sig(SIGXFSZ, current, 0); 2024 return -EFBIG; 2025 } 2026 if (*count > limit - (typeof(limit))*pos) { 2027 *count = limit - (typeof(limit))*pos; 2028 } 2029 } 2030 } 2031 2032 /* 2033 * LFS rule 2034 */ 2035 if (unlikely(*pos + *count > MAX_NON_LFS && 2036 !(file->f_flags & O_LARGEFILE))) { 2037 if (*pos >= MAX_NON_LFS) { 2038 return -EFBIG; 2039 } 2040 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2041 *count = MAX_NON_LFS - (unsigned long)*pos; 2042 } 2043 } 2044 2045 /* 2046 * Are we about to exceed the fs block limit ? 2047 * 2048 * If we have written data it becomes a short write. If we have 2049 * exceeded without writing data we send a signal and return EFBIG. 2050 * Linus frestrict idea will clean these up nicely.. 2051 */ 2052 if (likely(!isblk)) { 2053 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2054 if (*count || *pos > inode->i_sb->s_maxbytes) { 2055 return -EFBIG; 2056 } 2057 /* zero-length writes at ->s_maxbytes are OK */ 2058 } 2059 2060 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2061 *count = inode->i_sb->s_maxbytes - *pos; 2062 } else { 2063 #ifdef CONFIG_BLOCK 2064 loff_t isize; 2065 if (bdev_read_only(I_BDEV(inode))) 2066 return -EPERM; 2067 isize = i_size_read(inode); 2068 if (*pos >= isize) { 2069 if (*count || *pos > isize) 2070 return -ENOSPC; 2071 } 2072 2073 if (*pos + *count > isize) 2074 *count = isize - *pos; 2075 #else 2076 return -EPERM; 2077 #endif 2078 } 2079 return 0; 2080 } 2081 EXPORT_SYMBOL(generic_write_checks); 2082 2083 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2084 loff_t pos, unsigned len, unsigned flags, 2085 struct page **pagep, void **fsdata) 2086 { 2087 const struct address_space_operations *aops = mapping->a_ops; 2088 2089 return aops->write_begin(file, mapping, pos, len, flags, 2090 pagep, fsdata); 2091 } 2092 EXPORT_SYMBOL(pagecache_write_begin); 2093 2094 int pagecache_write_end(struct file *file, struct address_space *mapping, 2095 loff_t pos, unsigned len, unsigned copied, 2096 struct page *page, void *fsdata) 2097 { 2098 const struct address_space_operations *aops = mapping->a_ops; 2099 2100 mark_page_accessed(page); 2101 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2102 } 2103 EXPORT_SYMBOL(pagecache_write_end); 2104 2105 ssize_t 2106 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2107 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2108 size_t count, size_t ocount) 2109 { 2110 struct file *file = iocb->ki_filp; 2111 struct address_space *mapping = file->f_mapping; 2112 struct inode *inode = mapping->host; 2113 ssize_t written; 2114 size_t write_len; 2115 pgoff_t end; 2116 2117 if (count != ocount) 2118 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2119 2120 write_len = iov_length(iov, *nr_segs); 2121 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2122 2123 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2124 if (written) 2125 goto out; 2126 2127 /* 2128 * After a write we want buffered reads to be sure to go to disk to get 2129 * the new data. We invalidate clean cached page from the region we're 2130 * about to write. We do this *before* the write so that we can return 2131 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2132 */ 2133 if (mapping->nrpages) { 2134 written = invalidate_inode_pages2_range(mapping, 2135 pos >> PAGE_CACHE_SHIFT, end); 2136 /* 2137 * If a page can not be invalidated, return 0 to fall back 2138 * to buffered write. 2139 */ 2140 if (written) { 2141 if (written == -EBUSY) 2142 return 0; 2143 goto out; 2144 } 2145 } 2146 2147 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2148 2149 /* 2150 * Finally, try again to invalidate clean pages which might have been 2151 * cached by non-direct readahead, or faulted in by get_user_pages() 2152 * if the source of the write was an mmap'ed region of the file 2153 * we're writing. Either one is a pretty crazy thing to do, 2154 * so we don't support it 100%. If this invalidation 2155 * fails, tough, the write still worked... 2156 */ 2157 if (mapping->nrpages) { 2158 invalidate_inode_pages2_range(mapping, 2159 pos >> PAGE_CACHE_SHIFT, end); 2160 } 2161 2162 if (written > 0) { 2163 loff_t end = pos + written; 2164 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2165 i_size_write(inode, end); 2166 mark_inode_dirty(inode); 2167 } 2168 *ppos = end; 2169 } 2170 2171 /* 2172 * Sync the fs metadata but not the minor inode changes and 2173 * of course not the data as we did direct DMA for the IO. 2174 * i_mutex is held, which protects generic_osync_inode() from 2175 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2176 */ 2177 out: 2178 if ((written >= 0 || written == -EIOCBQUEUED) && 2179 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2180 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2181 if (err < 0) 2182 written = err; 2183 } 2184 return written; 2185 } 2186 EXPORT_SYMBOL(generic_file_direct_write); 2187 2188 /* 2189 * Find or create a page at the given pagecache position. Return the locked 2190 * page. This function is specifically for buffered writes. 2191 */ 2192 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2193 pgoff_t index, unsigned flags) 2194 { 2195 int status; 2196 struct page *page; 2197 gfp_t gfp_notmask = 0; 2198 if (flags & AOP_FLAG_NOFS) 2199 gfp_notmask = __GFP_FS; 2200 repeat: 2201 page = find_lock_page(mapping, index); 2202 if (likely(page)) 2203 return page; 2204 2205 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2206 if (!page) 2207 return NULL; 2208 status = add_to_page_cache_lru(page, mapping, index, 2209 GFP_KERNEL & ~gfp_notmask); 2210 if (unlikely(status)) { 2211 page_cache_release(page); 2212 if (status == -EEXIST) 2213 goto repeat; 2214 return NULL; 2215 } 2216 return page; 2217 } 2218 EXPORT_SYMBOL(grab_cache_page_write_begin); 2219 2220 static ssize_t generic_perform_write(struct file *file, 2221 struct iov_iter *i, loff_t pos) 2222 { 2223 struct address_space *mapping = file->f_mapping; 2224 const struct address_space_operations *a_ops = mapping->a_ops; 2225 long status = 0; 2226 ssize_t written = 0; 2227 unsigned int flags = 0; 2228 2229 /* 2230 * Copies from kernel address space cannot fail (NFSD is a big user). 2231 */ 2232 if (segment_eq(get_fs(), KERNEL_DS)) 2233 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2234 2235 do { 2236 struct page *page; 2237 pgoff_t index; /* Pagecache index for current page */ 2238 unsigned long offset; /* Offset into pagecache page */ 2239 unsigned long bytes; /* Bytes to write to page */ 2240 size_t copied; /* Bytes copied from user */ 2241 void *fsdata; 2242 2243 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2244 index = pos >> PAGE_CACHE_SHIFT; 2245 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2246 iov_iter_count(i)); 2247 2248 again: 2249 2250 /* 2251 * Bring in the user page that we will copy from _first_. 2252 * Otherwise there's a nasty deadlock on copying from the 2253 * same page as we're writing to, without it being marked 2254 * up-to-date. 2255 * 2256 * Not only is this an optimisation, but it is also required 2257 * to check that the address is actually valid, when atomic 2258 * usercopies are used, below. 2259 */ 2260 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2261 status = -EFAULT; 2262 break; 2263 } 2264 2265 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2266 &page, &fsdata); 2267 if (unlikely(status)) 2268 break; 2269 2270 pagefault_disable(); 2271 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2272 pagefault_enable(); 2273 flush_dcache_page(page); 2274 2275 mark_page_accessed(page); 2276 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2277 page, fsdata); 2278 if (unlikely(status < 0)) 2279 break; 2280 copied = status; 2281 2282 cond_resched(); 2283 2284 iov_iter_advance(i, copied); 2285 if (unlikely(copied == 0)) { 2286 /* 2287 * If we were unable to copy any data at all, we must 2288 * fall back to a single segment length write. 2289 * 2290 * If we didn't fallback here, we could livelock 2291 * because not all segments in the iov can be copied at 2292 * once without a pagefault. 2293 */ 2294 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2295 iov_iter_single_seg_count(i)); 2296 goto again; 2297 } 2298 pos += copied; 2299 written += copied; 2300 2301 balance_dirty_pages_ratelimited(mapping); 2302 2303 } while (iov_iter_count(i)); 2304 2305 return written ? written : status; 2306 } 2307 2308 ssize_t 2309 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2310 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2311 size_t count, ssize_t written) 2312 { 2313 struct file *file = iocb->ki_filp; 2314 struct address_space *mapping = file->f_mapping; 2315 const struct address_space_operations *a_ops = mapping->a_ops; 2316 struct inode *inode = mapping->host; 2317 ssize_t status; 2318 struct iov_iter i; 2319 2320 iov_iter_init(&i, iov, nr_segs, count, written); 2321 status = generic_perform_write(file, &i, pos); 2322 2323 if (likely(status >= 0)) { 2324 written += status; 2325 *ppos = pos + status; 2326 2327 /* 2328 * For now, when the user asks for O_SYNC, we'll actually give 2329 * O_DSYNC 2330 */ 2331 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2332 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2333 status = generic_osync_inode(inode, mapping, 2334 OSYNC_METADATA|OSYNC_DATA); 2335 } 2336 } 2337 2338 /* 2339 * If we get here for O_DIRECT writes then we must have fallen through 2340 * to buffered writes (block instantiation inside i_size). So we sync 2341 * the file data here, to try to honour O_DIRECT expectations. 2342 */ 2343 if (unlikely(file->f_flags & O_DIRECT) && written) 2344 status = filemap_write_and_wait_range(mapping, 2345 pos, pos + written - 1); 2346 2347 return written ? written : status; 2348 } 2349 EXPORT_SYMBOL(generic_file_buffered_write); 2350 2351 static ssize_t 2352 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2353 unsigned long nr_segs, loff_t *ppos) 2354 { 2355 struct file *file = iocb->ki_filp; 2356 struct address_space * mapping = file->f_mapping; 2357 size_t ocount; /* original count */ 2358 size_t count; /* after file limit checks */ 2359 struct inode *inode = mapping->host; 2360 loff_t pos; 2361 ssize_t written; 2362 ssize_t err; 2363 2364 ocount = 0; 2365 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2366 if (err) 2367 return err; 2368 2369 count = ocount; 2370 pos = *ppos; 2371 2372 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2373 2374 /* We can write back this queue in page reclaim */ 2375 current->backing_dev_info = mapping->backing_dev_info; 2376 written = 0; 2377 2378 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2379 if (err) 2380 goto out; 2381 2382 if (count == 0) 2383 goto out; 2384 2385 err = file_remove_suid(file); 2386 if (err) 2387 goto out; 2388 2389 file_update_time(file); 2390 2391 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2392 if (unlikely(file->f_flags & O_DIRECT)) { 2393 loff_t endbyte; 2394 ssize_t written_buffered; 2395 2396 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2397 ppos, count, ocount); 2398 if (written < 0 || written == count) 2399 goto out; 2400 /* 2401 * direct-io write to a hole: fall through to buffered I/O 2402 * for completing the rest of the request. 2403 */ 2404 pos += written; 2405 count -= written; 2406 written_buffered = generic_file_buffered_write(iocb, iov, 2407 nr_segs, pos, ppos, count, 2408 written); 2409 /* 2410 * If generic_file_buffered_write() retuned a synchronous error 2411 * then we want to return the number of bytes which were 2412 * direct-written, or the error code if that was zero. Note 2413 * that this differs from normal direct-io semantics, which 2414 * will return -EFOO even if some bytes were written. 2415 */ 2416 if (written_buffered < 0) { 2417 err = written_buffered; 2418 goto out; 2419 } 2420 2421 /* 2422 * We need to ensure that the page cache pages are written to 2423 * disk and invalidated to preserve the expected O_DIRECT 2424 * semantics. 2425 */ 2426 endbyte = pos + written_buffered - written - 1; 2427 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2428 SYNC_FILE_RANGE_WAIT_BEFORE| 2429 SYNC_FILE_RANGE_WRITE| 2430 SYNC_FILE_RANGE_WAIT_AFTER); 2431 if (err == 0) { 2432 written = written_buffered; 2433 invalidate_mapping_pages(mapping, 2434 pos >> PAGE_CACHE_SHIFT, 2435 endbyte >> PAGE_CACHE_SHIFT); 2436 } else { 2437 /* 2438 * We don't know how much we wrote, so just return 2439 * the number of bytes which were direct-written 2440 */ 2441 } 2442 } else { 2443 written = generic_file_buffered_write(iocb, iov, nr_segs, 2444 pos, ppos, count, written); 2445 } 2446 out: 2447 current->backing_dev_info = NULL; 2448 return written ? written : err; 2449 } 2450 2451 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2452 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2453 { 2454 struct file *file = iocb->ki_filp; 2455 struct address_space *mapping = file->f_mapping; 2456 struct inode *inode = mapping->host; 2457 ssize_t ret; 2458 2459 BUG_ON(iocb->ki_pos != pos); 2460 2461 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2462 &iocb->ki_pos); 2463 2464 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2465 ssize_t err; 2466 2467 err = sync_page_range_nolock(inode, mapping, pos, ret); 2468 if (err < 0) 2469 ret = err; 2470 } 2471 return ret; 2472 } 2473 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2474 2475 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2476 unsigned long nr_segs, loff_t pos) 2477 { 2478 struct file *file = iocb->ki_filp; 2479 struct address_space *mapping = file->f_mapping; 2480 struct inode *inode = mapping->host; 2481 ssize_t ret; 2482 2483 BUG_ON(iocb->ki_pos != pos); 2484 2485 mutex_lock(&inode->i_mutex); 2486 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2487 &iocb->ki_pos); 2488 mutex_unlock(&inode->i_mutex); 2489 2490 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2491 ssize_t err; 2492 2493 err = sync_page_range(inode, mapping, pos, ret); 2494 if (err < 0) 2495 ret = err; 2496 } 2497 return ret; 2498 } 2499 EXPORT_SYMBOL(generic_file_aio_write); 2500 2501 /** 2502 * try_to_release_page() - release old fs-specific metadata on a page 2503 * 2504 * @page: the page which the kernel is trying to free 2505 * @gfp_mask: memory allocation flags (and I/O mode) 2506 * 2507 * The address_space is to try to release any data against the page 2508 * (presumably at page->private). If the release was successful, return `1'. 2509 * Otherwise return zero. 2510 * 2511 * This may also be called if PG_fscache is set on a page, indicating that the 2512 * page is known to the local caching routines. 2513 * 2514 * The @gfp_mask argument specifies whether I/O may be performed to release 2515 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2516 * 2517 */ 2518 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2519 { 2520 struct address_space * const mapping = page->mapping; 2521 2522 BUG_ON(!PageLocked(page)); 2523 if (PageWriteback(page)) 2524 return 0; 2525 2526 if (mapping && mapping->a_ops->releasepage) 2527 return mapping->a_ops->releasepage(page, gfp_mask); 2528 return try_to_free_buffers(page); 2529 } 2530 2531 EXPORT_SYMBOL(try_to_release_page); 2532