xref: /linux/mm/filemap.c (revision 5bdef865eb358b6f3760e25e591ae115e9eeddef)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for generic_osync_inode */
43 
44 #include <asm/mman.h>
45 
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->i_mutex			(generic_file_buffered_write)
79  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 
125 	/*
126 	 * Some filesystems seem to re-dirty the page even after
127 	 * the VM has canceled the dirty bit (eg ext3 journaling).
128 	 *
129 	 * Fix it up by doing a final dirty accounting check after
130 	 * having removed the page entirely.
131 	 */
132 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 		dec_zone_page_state(page, NR_FILE_DIRTY);
134 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 	}
136 }
137 
138 void remove_from_page_cache(struct page *page)
139 {
140 	struct address_space *mapping = page->mapping;
141 
142 	BUG_ON(!PageLocked(page));
143 
144 	spin_lock_irq(&mapping->tree_lock);
145 	__remove_from_page_cache(page);
146 	spin_unlock_irq(&mapping->tree_lock);
147 	mem_cgroup_uncharge_cache_page(page);
148 }
149 
150 static int sync_page(void *word)
151 {
152 	struct address_space *mapping;
153 	struct page *page;
154 
155 	page = container_of((unsigned long *)word, struct page, flags);
156 
157 	/*
158 	 * page_mapping() is being called without PG_locked held.
159 	 * Some knowledge of the state and use of the page is used to
160 	 * reduce the requirements down to a memory barrier.
161 	 * The danger here is of a stale page_mapping() return value
162 	 * indicating a struct address_space different from the one it's
163 	 * associated with when it is associated with one.
164 	 * After smp_mb(), it's either the correct page_mapping() for
165 	 * the page, or an old page_mapping() and the page's own
166 	 * page_mapping() has gone NULL.
167 	 * The ->sync_page() address_space operation must tolerate
168 	 * page_mapping() going NULL. By an amazing coincidence,
169 	 * this comes about because none of the users of the page
170 	 * in the ->sync_page() methods make essential use of the
171 	 * page_mapping(), merely passing the page down to the backing
172 	 * device's unplug functions when it's non-NULL, which in turn
173 	 * ignore it for all cases but swap, where only page_private(page) is
174 	 * of interest. When page_mapping() does go NULL, the entire
175 	 * call stack gracefully ignores the page and returns.
176 	 * -- wli
177 	 */
178 	smp_mb();
179 	mapping = page_mapping(page);
180 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
181 		mapping->a_ops->sync_page(page);
182 	io_schedule();
183 	return 0;
184 }
185 
186 static int sync_page_killable(void *word)
187 {
188 	sync_page(word);
189 	return fatal_signal_pending(current) ? -EINTR : 0;
190 }
191 
192 /**
193  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
194  * @mapping:	address space structure to write
195  * @start:	offset in bytes where the range starts
196  * @end:	offset in bytes where the range ends (inclusive)
197  * @sync_mode:	enable synchronous operation
198  *
199  * Start writeback against all of a mapping's dirty pages that lie
200  * within the byte offsets <start, end> inclusive.
201  *
202  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
203  * opposed to a regular memory cleansing writeback.  The difference between
204  * these two operations is that if a dirty page/buffer is encountered, it must
205  * be waited upon, and not just skipped over.
206  */
207 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
208 				loff_t end, int sync_mode)
209 {
210 	int ret;
211 	struct writeback_control wbc = {
212 		.sync_mode = sync_mode,
213 		.nr_to_write = LONG_MAX,
214 		.range_start = start,
215 		.range_end = end,
216 	};
217 
218 	if (!mapping_cap_writeback_dirty(mapping))
219 		return 0;
220 
221 	ret = do_writepages(mapping, &wbc);
222 	return ret;
223 }
224 
225 static inline int __filemap_fdatawrite(struct address_space *mapping,
226 	int sync_mode)
227 {
228 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
229 }
230 
231 int filemap_fdatawrite(struct address_space *mapping)
232 {
233 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
234 }
235 EXPORT_SYMBOL(filemap_fdatawrite);
236 
237 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
238 				loff_t end)
239 {
240 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
241 }
242 EXPORT_SYMBOL(filemap_fdatawrite_range);
243 
244 /**
245  * filemap_flush - mostly a non-blocking flush
246  * @mapping:	target address_space
247  *
248  * This is a mostly non-blocking flush.  Not suitable for data-integrity
249  * purposes - I/O may not be started against all dirty pages.
250  */
251 int filemap_flush(struct address_space *mapping)
252 {
253 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
254 }
255 EXPORT_SYMBOL(filemap_flush);
256 
257 /**
258  * wait_on_page_writeback_range - wait for writeback to complete
259  * @mapping:	target address_space
260  * @start:	beginning page index
261  * @end:	ending page index
262  *
263  * Wait for writeback to complete against pages indexed by start->end
264  * inclusive
265  */
266 int wait_on_page_writeback_range(struct address_space *mapping,
267 				pgoff_t start, pgoff_t end)
268 {
269 	struct pagevec pvec;
270 	int nr_pages;
271 	int ret = 0;
272 	pgoff_t index;
273 
274 	if (end < start)
275 		return 0;
276 
277 	pagevec_init(&pvec, 0);
278 	index = start;
279 	while ((index <= end) &&
280 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
281 			PAGECACHE_TAG_WRITEBACK,
282 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
283 		unsigned i;
284 
285 		for (i = 0; i < nr_pages; i++) {
286 			struct page *page = pvec.pages[i];
287 
288 			/* until radix tree lookup accepts end_index */
289 			if (page->index > end)
290 				continue;
291 
292 			wait_on_page_writeback(page);
293 			if (PageError(page))
294 				ret = -EIO;
295 		}
296 		pagevec_release(&pvec);
297 		cond_resched();
298 	}
299 
300 	/* Check for outstanding write errors */
301 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
302 		ret = -ENOSPC;
303 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
304 		ret = -EIO;
305 
306 	return ret;
307 }
308 
309 /**
310  * sync_page_range - write and wait on all pages in the passed range
311  * @inode:	target inode
312  * @mapping:	target address_space
313  * @pos:	beginning offset in pages to write
314  * @count:	number of bytes to write
315  *
316  * Write and wait upon all the pages in the passed range.  This is a "data
317  * integrity" operation.  It waits upon in-flight writeout before starting and
318  * waiting upon new writeout.  If there was an IO error, return it.
319  *
320  * We need to re-take i_mutex during the generic_osync_inode list walk because
321  * it is otherwise livelockable.
322  */
323 int sync_page_range(struct inode *inode, struct address_space *mapping,
324 			loff_t pos, loff_t count)
325 {
326 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
327 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
328 	int ret;
329 
330 	if (!mapping_cap_writeback_dirty(mapping) || !count)
331 		return 0;
332 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
333 	if (ret == 0) {
334 		mutex_lock(&inode->i_mutex);
335 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
336 		mutex_unlock(&inode->i_mutex);
337 	}
338 	if (ret == 0)
339 		ret = wait_on_page_writeback_range(mapping, start, end);
340 	return ret;
341 }
342 EXPORT_SYMBOL(sync_page_range);
343 
344 /**
345  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
346  * @inode:	target inode
347  * @mapping:	target address_space
348  * @pos:	beginning offset in pages to write
349  * @count:	number of bytes to write
350  *
351  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
352  * as it forces O_SYNC writers to different parts of the same file
353  * to be serialised right until io completion.
354  */
355 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
356 			   loff_t pos, loff_t count)
357 {
358 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
359 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
360 	int ret;
361 
362 	if (!mapping_cap_writeback_dirty(mapping) || !count)
363 		return 0;
364 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
365 	if (ret == 0)
366 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
367 	if (ret == 0)
368 		ret = wait_on_page_writeback_range(mapping, start, end);
369 	return ret;
370 }
371 EXPORT_SYMBOL(sync_page_range_nolock);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return wait_on_page_writeback_range(mapping, 0,
388 				(i_size - 1) >> PAGE_CACHE_SHIFT);
389 }
390 EXPORT_SYMBOL(filemap_fdatawait);
391 
392 int filemap_write_and_wait(struct address_space *mapping)
393 {
394 	int err = 0;
395 
396 	if (mapping->nrpages) {
397 		err = filemap_fdatawrite(mapping);
398 		/*
399 		 * Even if the above returned error, the pages may be
400 		 * written partially (e.g. -ENOSPC), so we wait for it.
401 		 * But the -EIO is special case, it may indicate the worst
402 		 * thing (e.g. bug) happened, so we avoid waiting for it.
403 		 */
404 		if (err != -EIO) {
405 			int err2 = filemap_fdatawait(mapping);
406 			if (!err)
407 				err = err2;
408 		}
409 	}
410 	return err;
411 }
412 EXPORT_SYMBOL(filemap_write_and_wait);
413 
414 /**
415  * filemap_write_and_wait_range - write out & wait on a file range
416  * @mapping:	the address_space for the pages
417  * @lstart:	offset in bytes where the range starts
418  * @lend:	offset in bytes where the range ends (inclusive)
419  *
420  * Write out and wait upon file offsets lstart->lend, inclusive.
421  *
422  * Note that `lend' is inclusive (describes the last byte to be written) so
423  * that this function can be used to write to the very end-of-file (end = -1).
424  */
425 int filemap_write_and_wait_range(struct address_space *mapping,
426 				 loff_t lstart, loff_t lend)
427 {
428 	int err = 0;
429 
430 	if (mapping->nrpages) {
431 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
432 						 WB_SYNC_ALL);
433 		/* See comment of filemap_write_and_wait() */
434 		if (err != -EIO) {
435 			int err2 = wait_on_page_writeback_range(mapping,
436 						lstart >> PAGE_CACHE_SHIFT,
437 						lend >> PAGE_CACHE_SHIFT);
438 			if (!err)
439 				err = err2;
440 		}
441 	}
442 	return err;
443 }
444 EXPORT_SYMBOL(filemap_write_and_wait_range);
445 
446 /**
447  * add_to_page_cache_locked - add a locked page to the pagecache
448  * @page:	page to add
449  * @mapping:	the page's address_space
450  * @offset:	page index
451  * @gfp_mask:	page allocation mode
452  *
453  * This function is used to add a page to the pagecache. It must be locked.
454  * This function does not add the page to the LRU.  The caller must do that.
455  */
456 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
457 		pgoff_t offset, gfp_t gfp_mask)
458 {
459 	int error;
460 
461 	VM_BUG_ON(!PageLocked(page));
462 
463 	error = mem_cgroup_cache_charge(page, current->mm,
464 					gfp_mask & GFP_RECLAIM_MASK);
465 	if (error)
466 		goto out;
467 
468 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469 	if (error == 0) {
470 		page_cache_get(page);
471 		page->mapping = mapping;
472 		page->index = offset;
473 
474 		spin_lock_irq(&mapping->tree_lock);
475 		error = radix_tree_insert(&mapping->page_tree, offset, page);
476 		if (likely(!error)) {
477 			mapping->nrpages++;
478 			__inc_zone_page_state(page, NR_FILE_PAGES);
479 			spin_unlock_irq(&mapping->tree_lock);
480 		} else {
481 			page->mapping = NULL;
482 			spin_unlock_irq(&mapping->tree_lock);
483 			mem_cgroup_uncharge_cache_page(page);
484 			page_cache_release(page);
485 		}
486 		radix_tree_preload_end();
487 	} else
488 		mem_cgroup_uncharge_cache_page(page);
489 out:
490 	return error;
491 }
492 EXPORT_SYMBOL(add_to_page_cache_locked);
493 
494 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
495 				pgoff_t offset, gfp_t gfp_mask)
496 {
497 	int ret;
498 
499 	/*
500 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
501 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
502 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
503 	 * (called in add_to_page_cache) needs to know where they're going too.
504 	 */
505 	if (mapping_cap_swap_backed(mapping))
506 		SetPageSwapBacked(page);
507 
508 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
509 	if (ret == 0) {
510 		if (page_is_file_cache(page))
511 			lru_cache_add_file(page);
512 		else
513 			lru_cache_add_active_anon(page);
514 	}
515 	return ret;
516 }
517 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
518 
519 #ifdef CONFIG_NUMA
520 struct page *__page_cache_alloc(gfp_t gfp)
521 {
522 	if (cpuset_do_page_mem_spread()) {
523 		int n = cpuset_mem_spread_node();
524 		return alloc_pages_exact_node(n, gfp, 0);
525 	}
526 	return alloc_pages(gfp, 0);
527 }
528 EXPORT_SYMBOL(__page_cache_alloc);
529 #endif
530 
531 static int __sleep_on_page_lock(void *word)
532 {
533 	io_schedule();
534 	return 0;
535 }
536 
537 /*
538  * In order to wait for pages to become available there must be
539  * waitqueues associated with pages. By using a hash table of
540  * waitqueues where the bucket discipline is to maintain all
541  * waiters on the same queue and wake all when any of the pages
542  * become available, and for the woken contexts to check to be
543  * sure the appropriate page became available, this saves space
544  * at a cost of "thundering herd" phenomena during rare hash
545  * collisions.
546  */
547 static wait_queue_head_t *page_waitqueue(struct page *page)
548 {
549 	const struct zone *zone = page_zone(page);
550 
551 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
552 }
553 
554 static inline void wake_up_page(struct page *page, int bit)
555 {
556 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
557 }
558 
559 void wait_on_page_bit(struct page *page, int bit_nr)
560 {
561 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
562 
563 	if (test_bit(bit_nr, &page->flags))
564 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
565 							TASK_UNINTERRUPTIBLE);
566 }
567 EXPORT_SYMBOL(wait_on_page_bit);
568 
569 /**
570  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
571  * @page: Page defining the wait queue of interest
572  * @waiter: Waiter to add to the queue
573  *
574  * Add an arbitrary @waiter to the wait queue for the nominated @page.
575  */
576 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
577 {
578 	wait_queue_head_t *q = page_waitqueue(page);
579 	unsigned long flags;
580 
581 	spin_lock_irqsave(&q->lock, flags);
582 	__add_wait_queue(q, waiter);
583 	spin_unlock_irqrestore(&q->lock, flags);
584 }
585 EXPORT_SYMBOL_GPL(add_page_wait_queue);
586 
587 /**
588  * unlock_page - unlock a locked page
589  * @page: the page
590  *
591  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
592  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
593  * mechananism between PageLocked pages and PageWriteback pages is shared.
594  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
595  *
596  * The mb is necessary to enforce ordering between the clear_bit and the read
597  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
598  */
599 void unlock_page(struct page *page)
600 {
601 	VM_BUG_ON(!PageLocked(page));
602 	clear_bit_unlock(PG_locked, &page->flags);
603 	smp_mb__after_clear_bit();
604 	wake_up_page(page, PG_locked);
605 }
606 EXPORT_SYMBOL(unlock_page);
607 
608 /**
609  * end_page_writeback - end writeback against a page
610  * @page: the page
611  */
612 void end_page_writeback(struct page *page)
613 {
614 	if (TestClearPageReclaim(page))
615 		rotate_reclaimable_page(page);
616 
617 	if (!test_clear_page_writeback(page))
618 		BUG();
619 
620 	smp_mb__after_clear_bit();
621 	wake_up_page(page, PG_writeback);
622 }
623 EXPORT_SYMBOL(end_page_writeback);
624 
625 /**
626  * __lock_page - get a lock on the page, assuming we need to sleep to get it
627  * @page: the page to lock
628  *
629  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
630  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
631  * chances are that on the second loop, the block layer's plug list is empty,
632  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
633  */
634 void __lock_page(struct page *page)
635 {
636 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
637 
638 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
639 							TASK_UNINTERRUPTIBLE);
640 }
641 EXPORT_SYMBOL(__lock_page);
642 
643 int __lock_page_killable(struct page *page)
644 {
645 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
646 
647 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
648 					sync_page_killable, TASK_KILLABLE);
649 }
650 EXPORT_SYMBOL_GPL(__lock_page_killable);
651 
652 /**
653  * __lock_page_nosync - get a lock on the page, without calling sync_page()
654  * @page: the page to lock
655  *
656  * Variant of lock_page that does not require the caller to hold a reference
657  * on the page's mapping.
658  */
659 void __lock_page_nosync(struct page *page)
660 {
661 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
662 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
663 							TASK_UNINTERRUPTIBLE);
664 }
665 
666 /**
667  * find_get_page - find and get a page reference
668  * @mapping: the address_space to search
669  * @offset: the page index
670  *
671  * Is there a pagecache struct page at the given (mapping, offset) tuple?
672  * If yes, increment its refcount and return it; if no, return NULL.
673  */
674 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
675 {
676 	void **pagep;
677 	struct page *page;
678 
679 	rcu_read_lock();
680 repeat:
681 	page = NULL;
682 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
683 	if (pagep) {
684 		page = radix_tree_deref_slot(pagep);
685 		if (unlikely(!page || page == RADIX_TREE_RETRY))
686 			goto repeat;
687 
688 		if (!page_cache_get_speculative(page))
689 			goto repeat;
690 
691 		/*
692 		 * Has the page moved?
693 		 * This is part of the lockless pagecache protocol. See
694 		 * include/linux/pagemap.h for details.
695 		 */
696 		if (unlikely(page != *pagep)) {
697 			page_cache_release(page);
698 			goto repeat;
699 		}
700 	}
701 	rcu_read_unlock();
702 
703 	return page;
704 }
705 EXPORT_SYMBOL(find_get_page);
706 
707 /**
708  * find_lock_page - locate, pin and lock a pagecache page
709  * @mapping: the address_space to search
710  * @offset: the page index
711  *
712  * Locates the desired pagecache page, locks it, increments its reference
713  * count and returns its address.
714  *
715  * Returns zero if the page was not present. find_lock_page() may sleep.
716  */
717 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
718 {
719 	struct page *page;
720 
721 repeat:
722 	page = find_get_page(mapping, offset);
723 	if (page) {
724 		lock_page(page);
725 		/* Has the page been truncated? */
726 		if (unlikely(page->mapping != mapping)) {
727 			unlock_page(page);
728 			page_cache_release(page);
729 			goto repeat;
730 		}
731 		VM_BUG_ON(page->index != offset);
732 	}
733 	return page;
734 }
735 EXPORT_SYMBOL(find_lock_page);
736 
737 /**
738  * find_or_create_page - locate or add a pagecache page
739  * @mapping: the page's address_space
740  * @index: the page's index into the mapping
741  * @gfp_mask: page allocation mode
742  *
743  * Locates a page in the pagecache.  If the page is not present, a new page
744  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
745  * LRU list.  The returned page is locked and has its reference count
746  * incremented.
747  *
748  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
749  * allocation!
750  *
751  * find_or_create_page() returns the desired page's address, or zero on
752  * memory exhaustion.
753  */
754 struct page *find_or_create_page(struct address_space *mapping,
755 		pgoff_t index, gfp_t gfp_mask)
756 {
757 	struct page *page;
758 	int err;
759 repeat:
760 	page = find_lock_page(mapping, index);
761 	if (!page) {
762 		page = __page_cache_alloc(gfp_mask);
763 		if (!page)
764 			return NULL;
765 		/*
766 		 * We want a regular kernel memory (not highmem or DMA etc)
767 		 * allocation for the radix tree nodes, but we need to honour
768 		 * the context-specific requirements the caller has asked for.
769 		 * GFP_RECLAIM_MASK collects those requirements.
770 		 */
771 		err = add_to_page_cache_lru(page, mapping, index,
772 			(gfp_mask & GFP_RECLAIM_MASK));
773 		if (unlikely(err)) {
774 			page_cache_release(page);
775 			page = NULL;
776 			if (err == -EEXIST)
777 				goto repeat;
778 		}
779 	}
780 	return page;
781 }
782 EXPORT_SYMBOL(find_or_create_page);
783 
784 /**
785  * find_get_pages - gang pagecache lookup
786  * @mapping:	The address_space to search
787  * @start:	The starting page index
788  * @nr_pages:	The maximum number of pages
789  * @pages:	Where the resulting pages are placed
790  *
791  * find_get_pages() will search for and return a group of up to
792  * @nr_pages pages in the mapping.  The pages are placed at @pages.
793  * find_get_pages() takes a reference against the returned pages.
794  *
795  * The search returns a group of mapping-contiguous pages with ascending
796  * indexes.  There may be holes in the indices due to not-present pages.
797  *
798  * find_get_pages() returns the number of pages which were found.
799  */
800 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
801 			    unsigned int nr_pages, struct page **pages)
802 {
803 	unsigned int i;
804 	unsigned int ret;
805 	unsigned int nr_found;
806 
807 	rcu_read_lock();
808 restart:
809 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
810 				(void ***)pages, start, nr_pages);
811 	ret = 0;
812 	for (i = 0; i < nr_found; i++) {
813 		struct page *page;
814 repeat:
815 		page = radix_tree_deref_slot((void **)pages[i]);
816 		if (unlikely(!page))
817 			continue;
818 		/*
819 		 * this can only trigger if nr_found == 1, making livelock
820 		 * a non issue.
821 		 */
822 		if (unlikely(page == RADIX_TREE_RETRY))
823 			goto restart;
824 
825 		if (!page_cache_get_speculative(page))
826 			goto repeat;
827 
828 		/* Has the page moved? */
829 		if (unlikely(page != *((void **)pages[i]))) {
830 			page_cache_release(page);
831 			goto repeat;
832 		}
833 
834 		pages[ret] = page;
835 		ret++;
836 	}
837 	rcu_read_unlock();
838 	return ret;
839 }
840 
841 /**
842  * find_get_pages_contig - gang contiguous pagecache lookup
843  * @mapping:	The address_space to search
844  * @index:	The starting page index
845  * @nr_pages:	The maximum number of pages
846  * @pages:	Where the resulting pages are placed
847  *
848  * find_get_pages_contig() works exactly like find_get_pages(), except
849  * that the returned number of pages are guaranteed to be contiguous.
850  *
851  * find_get_pages_contig() returns the number of pages which were found.
852  */
853 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
854 			       unsigned int nr_pages, struct page **pages)
855 {
856 	unsigned int i;
857 	unsigned int ret;
858 	unsigned int nr_found;
859 
860 	rcu_read_lock();
861 restart:
862 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
863 				(void ***)pages, index, nr_pages);
864 	ret = 0;
865 	for (i = 0; i < nr_found; i++) {
866 		struct page *page;
867 repeat:
868 		page = radix_tree_deref_slot((void **)pages[i]);
869 		if (unlikely(!page))
870 			continue;
871 		/*
872 		 * this can only trigger if nr_found == 1, making livelock
873 		 * a non issue.
874 		 */
875 		if (unlikely(page == RADIX_TREE_RETRY))
876 			goto restart;
877 
878 		if (page->mapping == NULL || page->index != index)
879 			break;
880 
881 		if (!page_cache_get_speculative(page))
882 			goto repeat;
883 
884 		/* Has the page moved? */
885 		if (unlikely(page != *((void **)pages[i]))) {
886 			page_cache_release(page);
887 			goto repeat;
888 		}
889 
890 		pages[ret] = page;
891 		ret++;
892 		index++;
893 	}
894 	rcu_read_unlock();
895 	return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_contig);
898 
899 /**
900  * find_get_pages_tag - find and return pages that match @tag
901  * @mapping:	the address_space to search
902  * @index:	the starting page index
903  * @tag:	the tag index
904  * @nr_pages:	the maximum number of pages
905  * @pages:	where the resulting pages are placed
906  *
907  * Like find_get_pages, except we only return pages which are tagged with
908  * @tag.   We update @index to index the next page for the traversal.
909  */
910 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
911 			int tag, unsigned int nr_pages, struct page **pages)
912 {
913 	unsigned int i;
914 	unsigned int ret;
915 	unsigned int nr_found;
916 
917 	rcu_read_lock();
918 restart:
919 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
920 				(void ***)pages, *index, nr_pages, tag);
921 	ret = 0;
922 	for (i = 0; i < nr_found; i++) {
923 		struct page *page;
924 repeat:
925 		page = radix_tree_deref_slot((void **)pages[i]);
926 		if (unlikely(!page))
927 			continue;
928 		/*
929 		 * this can only trigger if nr_found == 1, making livelock
930 		 * a non issue.
931 		 */
932 		if (unlikely(page == RADIX_TREE_RETRY))
933 			goto restart;
934 
935 		if (!page_cache_get_speculative(page))
936 			goto repeat;
937 
938 		/* Has the page moved? */
939 		if (unlikely(page != *((void **)pages[i]))) {
940 			page_cache_release(page);
941 			goto repeat;
942 		}
943 
944 		pages[ret] = page;
945 		ret++;
946 	}
947 	rcu_read_unlock();
948 
949 	if (ret)
950 		*index = pages[ret - 1]->index + 1;
951 
952 	return ret;
953 }
954 EXPORT_SYMBOL(find_get_pages_tag);
955 
956 /**
957  * grab_cache_page_nowait - returns locked page at given index in given cache
958  * @mapping: target address_space
959  * @index: the page index
960  *
961  * Same as grab_cache_page(), but do not wait if the page is unavailable.
962  * This is intended for speculative data generators, where the data can
963  * be regenerated if the page couldn't be grabbed.  This routine should
964  * be safe to call while holding the lock for another page.
965  *
966  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
967  * and deadlock against the caller's locked page.
968  */
969 struct page *
970 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
971 {
972 	struct page *page = find_get_page(mapping, index);
973 
974 	if (page) {
975 		if (trylock_page(page))
976 			return page;
977 		page_cache_release(page);
978 		return NULL;
979 	}
980 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
981 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
982 		page_cache_release(page);
983 		page = NULL;
984 	}
985 	return page;
986 }
987 EXPORT_SYMBOL(grab_cache_page_nowait);
988 
989 /*
990  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
991  * a _large_ part of the i/o request. Imagine the worst scenario:
992  *
993  *      ---R__________________________________________B__________
994  *         ^ reading here                             ^ bad block(assume 4k)
995  *
996  * read(R) => miss => readahead(R...B) => media error => frustrating retries
997  * => failing the whole request => read(R) => read(R+1) =>
998  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
999  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1000  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1001  *
1002  * It is going insane. Fix it by quickly scaling down the readahead size.
1003  */
1004 static void shrink_readahead_size_eio(struct file *filp,
1005 					struct file_ra_state *ra)
1006 {
1007 	ra->ra_pages /= 4;
1008 }
1009 
1010 /**
1011  * do_generic_file_read - generic file read routine
1012  * @filp:	the file to read
1013  * @ppos:	current file position
1014  * @desc:	read_descriptor
1015  * @actor:	read method
1016  *
1017  * This is a generic file read routine, and uses the
1018  * mapping->a_ops->readpage() function for the actual low-level stuff.
1019  *
1020  * This is really ugly. But the goto's actually try to clarify some
1021  * of the logic when it comes to error handling etc.
1022  */
1023 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1024 		read_descriptor_t *desc, read_actor_t actor)
1025 {
1026 	struct address_space *mapping = filp->f_mapping;
1027 	struct inode *inode = mapping->host;
1028 	struct file_ra_state *ra = &filp->f_ra;
1029 	pgoff_t index;
1030 	pgoff_t last_index;
1031 	pgoff_t prev_index;
1032 	unsigned long offset;      /* offset into pagecache page */
1033 	unsigned int prev_offset;
1034 	int error;
1035 
1036 	index = *ppos >> PAGE_CACHE_SHIFT;
1037 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1038 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1039 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1040 	offset = *ppos & ~PAGE_CACHE_MASK;
1041 
1042 	for (;;) {
1043 		struct page *page;
1044 		pgoff_t end_index;
1045 		loff_t isize;
1046 		unsigned long nr, ret;
1047 
1048 		cond_resched();
1049 find_page:
1050 		page = find_get_page(mapping, index);
1051 		if (!page) {
1052 			page_cache_sync_readahead(mapping,
1053 					ra, filp,
1054 					index, last_index - index);
1055 			page = find_get_page(mapping, index);
1056 			if (unlikely(page == NULL))
1057 				goto no_cached_page;
1058 		}
1059 		if (PageReadahead(page)) {
1060 			page_cache_async_readahead(mapping,
1061 					ra, filp, page,
1062 					index, last_index - index);
1063 		}
1064 		if (!PageUptodate(page)) {
1065 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1066 					!mapping->a_ops->is_partially_uptodate)
1067 				goto page_not_up_to_date;
1068 			if (!trylock_page(page))
1069 				goto page_not_up_to_date;
1070 			if (!mapping->a_ops->is_partially_uptodate(page,
1071 								desc, offset))
1072 				goto page_not_up_to_date_locked;
1073 			unlock_page(page);
1074 		}
1075 page_ok:
1076 		/*
1077 		 * i_size must be checked after we know the page is Uptodate.
1078 		 *
1079 		 * Checking i_size after the check allows us to calculate
1080 		 * the correct value for "nr", which means the zero-filled
1081 		 * part of the page is not copied back to userspace (unless
1082 		 * another truncate extends the file - this is desired though).
1083 		 */
1084 
1085 		isize = i_size_read(inode);
1086 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1087 		if (unlikely(!isize || index > end_index)) {
1088 			page_cache_release(page);
1089 			goto out;
1090 		}
1091 
1092 		/* nr is the maximum number of bytes to copy from this page */
1093 		nr = PAGE_CACHE_SIZE;
1094 		if (index == end_index) {
1095 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1096 			if (nr <= offset) {
1097 				page_cache_release(page);
1098 				goto out;
1099 			}
1100 		}
1101 		nr = nr - offset;
1102 
1103 		/* If users can be writing to this page using arbitrary
1104 		 * virtual addresses, take care about potential aliasing
1105 		 * before reading the page on the kernel side.
1106 		 */
1107 		if (mapping_writably_mapped(mapping))
1108 			flush_dcache_page(page);
1109 
1110 		/*
1111 		 * When a sequential read accesses a page several times,
1112 		 * only mark it as accessed the first time.
1113 		 */
1114 		if (prev_index != index || offset != prev_offset)
1115 			mark_page_accessed(page);
1116 		prev_index = index;
1117 
1118 		/*
1119 		 * Ok, we have the page, and it's up-to-date, so
1120 		 * now we can copy it to user space...
1121 		 *
1122 		 * The actor routine returns how many bytes were actually used..
1123 		 * NOTE! This may not be the same as how much of a user buffer
1124 		 * we filled up (we may be padding etc), so we can only update
1125 		 * "pos" here (the actor routine has to update the user buffer
1126 		 * pointers and the remaining count).
1127 		 */
1128 		ret = actor(desc, page, offset, nr);
1129 		offset += ret;
1130 		index += offset >> PAGE_CACHE_SHIFT;
1131 		offset &= ~PAGE_CACHE_MASK;
1132 		prev_offset = offset;
1133 
1134 		page_cache_release(page);
1135 		if (ret == nr && desc->count)
1136 			continue;
1137 		goto out;
1138 
1139 page_not_up_to_date:
1140 		/* Get exclusive access to the page ... */
1141 		error = lock_page_killable(page);
1142 		if (unlikely(error))
1143 			goto readpage_error;
1144 
1145 page_not_up_to_date_locked:
1146 		/* Did it get truncated before we got the lock? */
1147 		if (!page->mapping) {
1148 			unlock_page(page);
1149 			page_cache_release(page);
1150 			continue;
1151 		}
1152 
1153 		/* Did somebody else fill it already? */
1154 		if (PageUptodate(page)) {
1155 			unlock_page(page);
1156 			goto page_ok;
1157 		}
1158 
1159 readpage:
1160 		/* Start the actual read. The read will unlock the page. */
1161 		error = mapping->a_ops->readpage(filp, page);
1162 
1163 		if (unlikely(error)) {
1164 			if (error == AOP_TRUNCATED_PAGE) {
1165 				page_cache_release(page);
1166 				goto find_page;
1167 			}
1168 			goto readpage_error;
1169 		}
1170 
1171 		if (!PageUptodate(page)) {
1172 			error = lock_page_killable(page);
1173 			if (unlikely(error))
1174 				goto readpage_error;
1175 			if (!PageUptodate(page)) {
1176 				if (page->mapping == NULL) {
1177 					/*
1178 					 * invalidate_inode_pages got it
1179 					 */
1180 					unlock_page(page);
1181 					page_cache_release(page);
1182 					goto find_page;
1183 				}
1184 				unlock_page(page);
1185 				shrink_readahead_size_eio(filp, ra);
1186 				error = -EIO;
1187 				goto readpage_error;
1188 			}
1189 			unlock_page(page);
1190 		}
1191 
1192 		goto page_ok;
1193 
1194 readpage_error:
1195 		/* UHHUH! A synchronous read error occurred. Report it */
1196 		desc->error = error;
1197 		page_cache_release(page);
1198 		goto out;
1199 
1200 no_cached_page:
1201 		/*
1202 		 * Ok, it wasn't cached, so we need to create a new
1203 		 * page..
1204 		 */
1205 		page = page_cache_alloc_cold(mapping);
1206 		if (!page) {
1207 			desc->error = -ENOMEM;
1208 			goto out;
1209 		}
1210 		error = add_to_page_cache_lru(page, mapping,
1211 						index, GFP_KERNEL);
1212 		if (error) {
1213 			page_cache_release(page);
1214 			if (error == -EEXIST)
1215 				goto find_page;
1216 			desc->error = error;
1217 			goto out;
1218 		}
1219 		goto readpage;
1220 	}
1221 
1222 out:
1223 	ra->prev_pos = prev_index;
1224 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1225 	ra->prev_pos |= prev_offset;
1226 
1227 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1228 	file_accessed(filp);
1229 }
1230 
1231 int file_read_actor(read_descriptor_t *desc, struct page *page,
1232 			unsigned long offset, unsigned long size)
1233 {
1234 	char *kaddr;
1235 	unsigned long left, count = desc->count;
1236 
1237 	if (size > count)
1238 		size = count;
1239 
1240 	/*
1241 	 * Faults on the destination of a read are common, so do it before
1242 	 * taking the kmap.
1243 	 */
1244 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1245 		kaddr = kmap_atomic(page, KM_USER0);
1246 		left = __copy_to_user_inatomic(desc->arg.buf,
1247 						kaddr + offset, size);
1248 		kunmap_atomic(kaddr, KM_USER0);
1249 		if (left == 0)
1250 			goto success;
1251 	}
1252 
1253 	/* Do it the slow way */
1254 	kaddr = kmap(page);
1255 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1256 	kunmap(page);
1257 
1258 	if (left) {
1259 		size -= left;
1260 		desc->error = -EFAULT;
1261 	}
1262 success:
1263 	desc->count = count - size;
1264 	desc->written += size;
1265 	desc->arg.buf += size;
1266 	return size;
1267 }
1268 
1269 /*
1270  * Performs necessary checks before doing a write
1271  * @iov:	io vector request
1272  * @nr_segs:	number of segments in the iovec
1273  * @count:	number of bytes to write
1274  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1275  *
1276  * Adjust number of segments and amount of bytes to write (nr_segs should be
1277  * properly initialized first). Returns appropriate error code that caller
1278  * should return or zero in case that write should be allowed.
1279  */
1280 int generic_segment_checks(const struct iovec *iov,
1281 			unsigned long *nr_segs, size_t *count, int access_flags)
1282 {
1283 	unsigned long   seg;
1284 	size_t cnt = 0;
1285 	for (seg = 0; seg < *nr_segs; seg++) {
1286 		const struct iovec *iv = &iov[seg];
1287 
1288 		/*
1289 		 * If any segment has a negative length, or the cumulative
1290 		 * length ever wraps negative then return -EINVAL.
1291 		 */
1292 		cnt += iv->iov_len;
1293 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1294 			return -EINVAL;
1295 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1296 			continue;
1297 		if (seg == 0)
1298 			return -EFAULT;
1299 		*nr_segs = seg;
1300 		cnt -= iv->iov_len;	/* This segment is no good */
1301 		break;
1302 	}
1303 	*count = cnt;
1304 	return 0;
1305 }
1306 EXPORT_SYMBOL(generic_segment_checks);
1307 
1308 /**
1309  * generic_file_aio_read - generic filesystem read routine
1310  * @iocb:	kernel I/O control block
1311  * @iov:	io vector request
1312  * @nr_segs:	number of segments in the iovec
1313  * @pos:	current file position
1314  *
1315  * This is the "read()" routine for all filesystems
1316  * that can use the page cache directly.
1317  */
1318 ssize_t
1319 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1320 		unsigned long nr_segs, loff_t pos)
1321 {
1322 	struct file *filp = iocb->ki_filp;
1323 	ssize_t retval;
1324 	unsigned long seg;
1325 	size_t count;
1326 	loff_t *ppos = &iocb->ki_pos;
1327 
1328 	count = 0;
1329 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1330 	if (retval)
1331 		return retval;
1332 
1333 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1334 	if (filp->f_flags & O_DIRECT) {
1335 		loff_t size;
1336 		struct address_space *mapping;
1337 		struct inode *inode;
1338 
1339 		mapping = filp->f_mapping;
1340 		inode = mapping->host;
1341 		if (!count)
1342 			goto out; /* skip atime */
1343 		size = i_size_read(inode);
1344 		if (pos < size) {
1345 			retval = filemap_write_and_wait_range(mapping, pos,
1346 					pos + iov_length(iov, nr_segs) - 1);
1347 			if (!retval) {
1348 				retval = mapping->a_ops->direct_IO(READ, iocb,
1349 							iov, pos, nr_segs);
1350 			}
1351 			if (retval > 0)
1352 				*ppos = pos + retval;
1353 			if (retval) {
1354 				file_accessed(filp);
1355 				goto out;
1356 			}
1357 		}
1358 	}
1359 
1360 	for (seg = 0; seg < nr_segs; seg++) {
1361 		read_descriptor_t desc;
1362 
1363 		desc.written = 0;
1364 		desc.arg.buf = iov[seg].iov_base;
1365 		desc.count = iov[seg].iov_len;
1366 		if (desc.count == 0)
1367 			continue;
1368 		desc.error = 0;
1369 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1370 		retval += desc.written;
1371 		if (desc.error) {
1372 			retval = retval ?: desc.error;
1373 			break;
1374 		}
1375 		if (desc.count > 0)
1376 			break;
1377 	}
1378 out:
1379 	return retval;
1380 }
1381 EXPORT_SYMBOL(generic_file_aio_read);
1382 
1383 static ssize_t
1384 do_readahead(struct address_space *mapping, struct file *filp,
1385 	     pgoff_t index, unsigned long nr)
1386 {
1387 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1388 		return -EINVAL;
1389 
1390 	force_page_cache_readahead(mapping, filp, index, nr);
1391 	return 0;
1392 }
1393 
1394 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1395 {
1396 	ssize_t ret;
1397 	struct file *file;
1398 
1399 	ret = -EBADF;
1400 	file = fget(fd);
1401 	if (file) {
1402 		if (file->f_mode & FMODE_READ) {
1403 			struct address_space *mapping = file->f_mapping;
1404 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1405 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1406 			unsigned long len = end - start + 1;
1407 			ret = do_readahead(mapping, file, start, len);
1408 		}
1409 		fput(file);
1410 	}
1411 	return ret;
1412 }
1413 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1414 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1415 {
1416 	return SYSC_readahead((int) fd, offset, (size_t) count);
1417 }
1418 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1419 #endif
1420 
1421 #ifdef CONFIG_MMU
1422 /**
1423  * page_cache_read - adds requested page to the page cache if not already there
1424  * @file:	file to read
1425  * @offset:	page index
1426  *
1427  * This adds the requested page to the page cache if it isn't already there,
1428  * and schedules an I/O to read in its contents from disk.
1429  */
1430 static int page_cache_read(struct file *file, pgoff_t offset)
1431 {
1432 	struct address_space *mapping = file->f_mapping;
1433 	struct page *page;
1434 	int ret;
1435 
1436 	do {
1437 		page = page_cache_alloc_cold(mapping);
1438 		if (!page)
1439 			return -ENOMEM;
1440 
1441 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1442 		if (ret == 0)
1443 			ret = mapping->a_ops->readpage(file, page);
1444 		else if (ret == -EEXIST)
1445 			ret = 0; /* losing race to add is OK */
1446 
1447 		page_cache_release(page);
1448 
1449 	} while (ret == AOP_TRUNCATED_PAGE);
1450 
1451 	return ret;
1452 }
1453 
1454 #define MMAP_LOTSAMISS  (100)
1455 
1456 /*
1457  * Synchronous readahead happens when we don't even find
1458  * a page in the page cache at all.
1459  */
1460 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1461 				   struct file_ra_state *ra,
1462 				   struct file *file,
1463 				   pgoff_t offset)
1464 {
1465 	unsigned long ra_pages;
1466 	struct address_space *mapping = file->f_mapping;
1467 
1468 	/* If we don't want any read-ahead, don't bother */
1469 	if (VM_RandomReadHint(vma))
1470 		return;
1471 
1472 	if (VM_SequentialReadHint(vma) ||
1473 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1474 		page_cache_sync_readahead(mapping, ra, file, offset,
1475 					  ra->ra_pages);
1476 		return;
1477 	}
1478 
1479 	if (ra->mmap_miss < INT_MAX)
1480 		ra->mmap_miss++;
1481 
1482 	/*
1483 	 * Do we miss much more than hit in this file? If so,
1484 	 * stop bothering with read-ahead. It will only hurt.
1485 	 */
1486 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1487 		return;
1488 
1489 	/*
1490 	 * mmap read-around
1491 	 */
1492 	ra_pages = max_sane_readahead(ra->ra_pages);
1493 	if (ra_pages) {
1494 		ra->start = max_t(long, 0, offset - ra_pages/2);
1495 		ra->size = ra_pages;
1496 		ra->async_size = 0;
1497 		ra_submit(ra, mapping, file);
1498 	}
1499 }
1500 
1501 /*
1502  * Asynchronous readahead happens when we find the page and PG_readahead,
1503  * so we want to possibly extend the readahead further..
1504  */
1505 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1506 				    struct file_ra_state *ra,
1507 				    struct file *file,
1508 				    struct page *page,
1509 				    pgoff_t offset)
1510 {
1511 	struct address_space *mapping = file->f_mapping;
1512 
1513 	/* If we don't want any read-ahead, don't bother */
1514 	if (VM_RandomReadHint(vma))
1515 		return;
1516 	if (ra->mmap_miss > 0)
1517 		ra->mmap_miss--;
1518 	if (PageReadahead(page))
1519 		page_cache_async_readahead(mapping, ra, file,
1520 					   page, offset, ra->ra_pages);
1521 }
1522 
1523 /**
1524  * filemap_fault - read in file data for page fault handling
1525  * @vma:	vma in which the fault was taken
1526  * @vmf:	struct vm_fault containing details of the fault
1527  *
1528  * filemap_fault() is invoked via the vma operations vector for a
1529  * mapped memory region to read in file data during a page fault.
1530  *
1531  * The goto's are kind of ugly, but this streamlines the normal case of having
1532  * it in the page cache, and handles the special cases reasonably without
1533  * having a lot of duplicated code.
1534  */
1535 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1536 {
1537 	int error;
1538 	struct file *file = vma->vm_file;
1539 	struct address_space *mapping = file->f_mapping;
1540 	struct file_ra_state *ra = &file->f_ra;
1541 	struct inode *inode = mapping->host;
1542 	pgoff_t offset = vmf->pgoff;
1543 	struct page *page;
1544 	pgoff_t size;
1545 	int ret = 0;
1546 
1547 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1548 	if (offset >= size)
1549 		return VM_FAULT_SIGBUS;
1550 
1551 	/*
1552 	 * Do we have something in the page cache already?
1553 	 */
1554 	page = find_get_page(mapping, offset);
1555 	if (likely(page)) {
1556 		/*
1557 		 * We found the page, so try async readahead before
1558 		 * waiting for the lock.
1559 		 */
1560 		do_async_mmap_readahead(vma, ra, file, page, offset);
1561 		lock_page(page);
1562 
1563 		/* Did it get truncated? */
1564 		if (unlikely(page->mapping != mapping)) {
1565 			unlock_page(page);
1566 			put_page(page);
1567 			goto no_cached_page;
1568 		}
1569 	} else {
1570 		/* No page in the page cache at all */
1571 		do_sync_mmap_readahead(vma, ra, file, offset);
1572 		count_vm_event(PGMAJFAULT);
1573 		ret = VM_FAULT_MAJOR;
1574 retry_find:
1575 		page = find_lock_page(mapping, offset);
1576 		if (!page)
1577 			goto no_cached_page;
1578 	}
1579 
1580 	/*
1581 	 * We have a locked page in the page cache, now we need to check
1582 	 * that it's up-to-date. If not, it is going to be due to an error.
1583 	 */
1584 	if (unlikely(!PageUptodate(page)))
1585 		goto page_not_uptodate;
1586 
1587 	/*
1588 	 * Found the page and have a reference on it.
1589 	 * We must recheck i_size under page lock.
1590 	 */
1591 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1592 	if (unlikely(offset >= size)) {
1593 		unlock_page(page);
1594 		page_cache_release(page);
1595 		return VM_FAULT_SIGBUS;
1596 	}
1597 
1598 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1599 	vmf->page = page;
1600 	return ret | VM_FAULT_LOCKED;
1601 
1602 no_cached_page:
1603 	/*
1604 	 * We're only likely to ever get here if MADV_RANDOM is in
1605 	 * effect.
1606 	 */
1607 	error = page_cache_read(file, offset);
1608 
1609 	/*
1610 	 * The page we want has now been added to the page cache.
1611 	 * In the unlikely event that someone removed it in the
1612 	 * meantime, we'll just come back here and read it again.
1613 	 */
1614 	if (error >= 0)
1615 		goto retry_find;
1616 
1617 	/*
1618 	 * An error return from page_cache_read can result if the
1619 	 * system is low on memory, or a problem occurs while trying
1620 	 * to schedule I/O.
1621 	 */
1622 	if (error == -ENOMEM)
1623 		return VM_FAULT_OOM;
1624 	return VM_FAULT_SIGBUS;
1625 
1626 page_not_uptodate:
1627 	/*
1628 	 * Umm, take care of errors if the page isn't up-to-date.
1629 	 * Try to re-read it _once_. We do this synchronously,
1630 	 * because there really aren't any performance issues here
1631 	 * and we need to check for errors.
1632 	 */
1633 	ClearPageError(page);
1634 	error = mapping->a_ops->readpage(file, page);
1635 	if (!error) {
1636 		wait_on_page_locked(page);
1637 		if (!PageUptodate(page))
1638 			error = -EIO;
1639 	}
1640 	page_cache_release(page);
1641 
1642 	if (!error || error == AOP_TRUNCATED_PAGE)
1643 		goto retry_find;
1644 
1645 	/* Things didn't work out. Return zero to tell the mm layer so. */
1646 	shrink_readahead_size_eio(file, ra);
1647 	return VM_FAULT_SIGBUS;
1648 }
1649 EXPORT_SYMBOL(filemap_fault);
1650 
1651 struct vm_operations_struct generic_file_vm_ops = {
1652 	.fault		= filemap_fault,
1653 };
1654 
1655 /* This is used for a general mmap of a disk file */
1656 
1657 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1658 {
1659 	struct address_space *mapping = file->f_mapping;
1660 
1661 	if (!mapping->a_ops->readpage)
1662 		return -ENOEXEC;
1663 	file_accessed(file);
1664 	vma->vm_ops = &generic_file_vm_ops;
1665 	vma->vm_flags |= VM_CAN_NONLINEAR;
1666 	return 0;
1667 }
1668 
1669 /*
1670  * This is for filesystems which do not implement ->writepage.
1671  */
1672 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1673 {
1674 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1675 		return -EINVAL;
1676 	return generic_file_mmap(file, vma);
1677 }
1678 #else
1679 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1680 {
1681 	return -ENOSYS;
1682 }
1683 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1684 {
1685 	return -ENOSYS;
1686 }
1687 #endif /* CONFIG_MMU */
1688 
1689 EXPORT_SYMBOL(generic_file_mmap);
1690 EXPORT_SYMBOL(generic_file_readonly_mmap);
1691 
1692 static struct page *__read_cache_page(struct address_space *mapping,
1693 				pgoff_t index,
1694 				int (*filler)(void *,struct page*),
1695 				void *data)
1696 {
1697 	struct page *page;
1698 	int err;
1699 repeat:
1700 	page = find_get_page(mapping, index);
1701 	if (!page) {
1702 		page = page_cache_alloc_cold(mapping);
1703 		if (!page)
1704 			return ERR_PTR(-ENOMEM);
1705 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1706 		if (unlikely(err)) {
1707 			page_cache_release(page);
1708 			if (err == -EEXIST)
1709 				goto repeat;
1710 			/* Presumably ENOMEM for radix tree node */
1711 			return ERR_PTR(err);
1712 		}
1713 		err = filler(data, page);
1714 		if (err < 0) {
1715 			page_cache_release(page);
1716 			page = ERR_PTR(err);
1717 		}
1718 	}
1719 	return page;
1720 }
1721 
1722 /**
1723  * read_cache_page_async - read into page cache, fill it if needed
1724  * @mapping:	the page's address_space
1725  * @index:	the page index
1726  * @filler:	function to perform the read
1727  * @data:	destination for read data
1728  *
1729  * Same as read_cache_page, but don't wait for page to become unlocked
1730  * after submitting it to the filler.
1731  *
1732  * Read into the page cache. If a page already exists, and PageUptodate() is
1733  * not set, try to fill the page but don't wait for it to become unlocked.
1734  *
1735  * If the page does not get brought uptodate, return -EIO.
1736  */
1737 struct page *read_cache_page_async(struct address_space *mapping,
1738 				pgoff_t index,
1739 				int (*filler)(void *,struct page*),
1740 				void *data)
1741 {
1742 	struct page *page;
1743 	int err;
1744 
1745 retry:
1746 	page = __read_cache_page(mapping, index, filler, data);
1747 	if (IS_ERR(page))
1748 		return page;
1749 	if (PageUptodate(page))
1750 		goto out;
1751 
1752 	lock_page(page);
1753 	if (!page->mapping) {
1754 		unlock_page(page);
1755 		page_cache_release(page);
1756 		goto retry;
1757 	}
1758 	if (PageUptodate(page)) {
1759 		unlock_page(page);
1760 		goto out;
1761 	}
1762 	err = filler(data, page);
1763 	if (err < 0) {
1764 		page_cache_release(page);
1765 		return ERR_PTR(err);
1766 	}
1767 out:
1768 	mark_page_accessed(page);
1769 	return page;
1770 }
1771 EXPORT_SYMBOL(read_cache_page_async);
1772 
1773 /**
1774  * read_cache_page - read into page cache, fill it if needed
1775  * @mapping:	the page's address_space
1776  * @index:	the page index
1777  * @filler:	function to perform the read
1778  * @data:	destination for read data
1779  *
1780  * Read into the page cache. If a page already exists, and PageUptodate() is
1781  * not set, try to fill the page then wait for it to become unlocked.
1782  *
1783  * If the page does not get brought uptodate, return -EIO.
1784  */
1785 struct page *read_cache_page(struct address_space *mapping,
1786 				pgoff_t index,
1787 				int (*filler)(void *,struct page*),
1788 				void *data)
1789 {
1790 	struct page *page;
1791 
1792 	page = read_cache_page_async(mapping, index, filler, data);
1793 	if (IS_ERR(page))
1794 		goto out;
1795 	wait_on_page_locked(page);
1796 	if (!PageUptodate(page)) {
1797 		page_cache_release(page);
1798 		page = ERR_PTR(-EIO);
1799 	}
1800  out:
1801 	return page;
1802 }
1803 EXPORT_SYMBOL(read_cache_page);
1804 
1805 /*
1806  * The logic we want is
1807  *
1808  *	if suid or (sgid and xgrp)
1809  *		remove privs
1810  */
1811 int should_remove_suid(struct dentry *dentry)
1812 {
1813 	mode_t mode = dentry->d_inode->i_mode;
1814 	int kill = 0;
1815 
1816 	/* suid always must be killed */
1817 	if (unlikely(mode & S_ISUID))
1818 		kill = ATTR_KILL_SUID;
1819 
1820 	/*
1821 	 * sgid without any exec bits is just a mandatory locking mark; leave
1822 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1823 	 */
1824 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1825 		kill |= ATTR_KILL_SGID;
1826 
1827 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1828 		return kill;
1829 
1830 	return 0;
1831 }
1832 EXPORT_SYMBOL(should_remove_suid);
1833 
1834 static int __remove_suid(struct dentry *dentry, int kill)
1835 {
1836 	struct iattr newattrs;
1837 
1838 	newattrs.ia_valid = ATTR_FORCE | kill;
1839 	return notify_change(dentry, &newattrs);
1840 }
1841 
1842 int file_remove_suid(struct file *file)
1843 {
1844 	struct dentry *dentry = file->f_path.dentry;
1845 	int killsuid = should_remove_suid(dentry);
1846 	int killpriv = security_inode_need_killpriv(dentry);
1847 	int error = 0;
1848 
1849 	if (killpriv < 0)
1850 		return killpriv;
1851 	if (killpriv)
1852 		error = security_inode_killpriv(dentry);
1853 	if (!error && killsuid)
1854 		error = __remove_suid(dentry, killsuid);
1855 
1856 	return error;
1857 }
1858 EXPORT_SYMBOL(file_remove_suid);
1859 
1860 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1861 			const struct iovec *iov, size_t base, size_t bytes)
1862 {
1863 	size_t copied = 0, left = 0;
1864 
1865 	while (bytes) {
1866 		char __user *buf = iov->iov_base + base;
1867 		int copy = min(bytes, iov->iov_len - base);
1868 
1869 		base = 0;
1870 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1871 		copied += copy;
1872 		bytes -= copy;
1873 		vaddr += copy;
1874 		iov++;
1875 
1876 		if (unlikely(left))
1877 			break;
1878 	}
1879 	return copied - left;
1880 }
1881 
1882 /*
1883  * Copy as much as we can into the page and return the number of bytes which
1884  * were sucessfully copied.  If a fault is encountered then return the number of
1885  * bytes which were copied.
1886  */
1887 size_t iov_iter_copy_from_user_atomic(struct page *page,
1888 		struct iov_iter *i, unsigned long offset, size_t bytes)
1889 {
1890 	char *kaddr;
1891 	size_t copied;
1892 
1893 	BUG_ON(!in_atomic());
1894 	kaddr = kmap_atomic(page, KM_USER0);
1895 	if (likely(i->nr_segs == 1)) {
1896 		int left;
1897 		char __user *buf = i->iov->iov_base + i->iov_offset;
1898 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1899 		copied = bytes - left;
1900 	} else {
1901 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1902 						i->iov, i->iov_offset, bytes);
1903 	}
1904 	kunmap_atomic(kaddr, KM_USER0);
1905 
1906 	return copied;
1907 }
1908 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1909 
1910 /*
1911  * This has the same sideeffects and return value as
1912  * iov_iter_copy_from_user_atomic().
1913  * The difference is that it attempts to resolve faults.
1914  * Page must not be locked.
1915  */
1916 size_t iov_iter_copy_from_user(struct page *page,
1917 		struct iov_iter *i, unsigned long offset, size_t bytes)
1918 {
1919 	char *kaddr;
1920 	size_t copied;
1921 
1922 	kaddr = kmap(page);
1923 	if (likely(i->nr_segs == 1)) {
1924 		int left;
1925 		char __user *buf = i->iov->iov_base + i->iov_offset;
1926 		left = __copy_from_user(kaddr + offset, buf, bytes);
1927 		copied = bytes - left;
1928 	} else {
1929 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1930 						i->iov, i->iov_offset, bytes);
1931 	}
1932 	kunmap(page);
1933 	return copied;
1934 }
1935 EXPORT_SYMBOL(iov_iter_copy_from_user);
1936 
1937 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1938 {
1939 	BUG_ON(i->count < bytes);
1940 
1941 	if (likely(i->nr_segs == 1)) {
1942 		i->iov_offset += bytes;
1943 		i->count -= bytes;
1944 	} else {
1945 		const struct iovec *iov = i->iov;
1946 		size_t base = i->iov_offset;
1947 
1948 		/*
1949 		 * The !iov->iov_len check ensures we skip over unlikely
1950 		 * zero-length segments (without overruning the iovec).
1951 		 */
1952 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1953 			int copy;
1954 
1955 			copy = min(bytes, iov->iov_len - base);
1956 			BUG_ON(!i->count || i->count < copy);
1957 			i->count -= copy;
1958 			bytes -= copy;
1959 			base += copy;
1960 			if (iov->iov_len == base) {
1961 				iov++;
1962 				base = 0;
1963 			}
1964 		}
1965 		i->iov = iov;
1966 		i->iov_offset = base;
1967 	}
1968 }
1969 EXPORT_SYMBOL(iov_iter_advance);
1970 
1971 /*
1972  * Fault in the first iovec of the given iov_iter, to a maximum length
1973  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1974  * accessed (ie. because it is an invalid address).
1975  *
1976  * writev-intensive code may want this to prefault several iovecs -- that
1977  * would be possible (callers must not rely on the fact that _only_ the
1978  * first iovec will be faulted with the current implementation).
1979  */
1980 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1981 {
1982 	char __user *buf = i->iov->iov_base + i->iov_offset;
1983 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1984 	return fault_in_pages_readable(buf, bytes);
1985 }
1986 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1987 
1988 /*
1989  * Return the count of just the current iov_iter segment.
1990  */
1991 size_t iov_iter_single_seg_count(struct iov_iter *i)
1992 {
1993 	const struct iovec *iov = i->iov;
1994 	if (i->nr_segs == 1)
1995 		return i->count;
1996 	else
1997 		return min(i->count, iov->iov_len - i->iov_offset);
1998 }
1999 EXPORT_SYMBOL(iov_iter_single_seg_count);
2000 
2001 /*
2002  * Performs necessary checks before doing a write
2003  *
2004  * Can adjust writing position or amount of bytes to write.
2005  * Returns appropriate error code that caller should return or
2006  * zero in case that write should be allowed.
2007  */
2008 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2009 {
2010 	struct inode *inode = file->f_mapping->host;
2011 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2012 
2013         if (unlikely(*pos < 0))
2014                 return -EINVAL;
2015 
2016 	if (!isblk) {
2017 		/* FIXME: this is for backwards compatibility with 2.4 */
2018 		if (file->f_flags & O_APPEND)
2019                         *pos = i_size_read(inode);
2020 
2021 		if (limit != RLIM_INFINITY) {
2022 			if (*pos >= limit) {
2023 				send_sig(SIGXFSZ, current, 0);
2024 				return -EFBIG;
2025 			}
2026 			if (*count > limit - (typeof(limit))*pos) {
2027 				*count = limit - (typeof(limit))*pos;
2028 			}
2029 		}
2030 	}
2031 
2032 	/*
2033 	 * LFS rule
2034 	 */
2035 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2036 				!(file->f_flags & O_LARGEFILE))) {
2037 		if (*pos >= MAX_NON_LFS) {
2038 			return -EFBIG;
2039 		}
2040 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2041 			*count = MAX_NON_LFS - (unsigned long)*pos;
2042 		}
2043 	}
2044 
2045 	/*
2046 	 * Are we about to exceed the fs block limit ?
2047 	 *
2048 	 * If we have written data it becomes a short write.  If we have
2049 	 * exceeded without writing data we send a signal and return EFBIG.
2050 	 * Linus frestrict idea will clean these up nicely..
2051 	 */
2052 	if (likely(!isblk)) {
2053 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2054 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2055 				return -EFBIG;
2056 			}
2057 			/* zero-length writes at ->s_maxbytes are OK */
2058 		}
2059 
2060 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2061 			*count = inode->i_sb->s_maxbytes - *pos;
2062 	} else {
2063 #ifdef CONFIG_BLOCK
2064 		loff_t isize;
2065 		if (bdev_read_only(I_BDEV(inode)))
2066 			return -EPERM;
2067 		isize = i_size_read(inode);
2068 		if (*pos >= isize) {
2069 			if (*count || *pos > isize)
2070 				return -ENOSPC;
2071 		}
2072 
2073 		if (*pos + *count > isize)
2074 			*count = isize - *pos;
2075 #else
2076 		return -EPERM;
2077 #endif
2078 	}
2079 	return 0;
2080 }
2081 EXPORT_SYMBOL(generic_write_checks);
2082 
2083 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2084 				loff_t pos, unsigned len, unsigned flags,
2085 				struct page **pagep, void **fsdata)
2086 {
2087 	const struct address_space_operations *aops = mapping->a_ops;
2088 
2089 	return aops->write_begin(file, mapping, pos, len, flags,
2090 							pagep, fsdata);
2091 }
2092 EXPORT_SYMBOL(pagecache_write_begin);
2093 
2094 int pagecache_write_end(struct file *file, struct address_space *mapping,
2095 				loff_t pos, unsigned len, unsigned copied,
2096 				struct page *page, void *fsdata)
2097 {
2098 	const struct address_space_operations *aops = mapping->a_ops;
2099 
2100 	mark_page_accessed(page);
2101 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2102 }
2103 EXPORT_SYMBOL(pagecache_write_end);
2104 
2105 ssize_t
2106 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2107 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2108 		size_t count, size_t ocount)
2109 {
2110 	struct file	*file = iocb->ki_filp;
2111 	struct address_space *mapping = file->f_mapping;
2112 	struct inode	*inode = mapping->host;
2113 	ssize_t		written;
2114 	size_t		write_len;
2115 	pgoff_t		end;
2116 
2117 	if (count != ocount)
2118 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2119 
2120 	write_len = iov_length(iov, *nr_segs);
2121 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2122 
2123 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2124 	if (written)
2125 		goto out;
2126 
2127 	/*
2128 	 * After a write we want buffered reads to be sure to go to disk to get
2129 	 * the new data.  We invalidate clean cached page from the region we're
2130 	 * about to write.  We do this *before* the write so that we can return
2131 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2132 	 */
2133 	if (mapping->nrpages) {
2134 		written = invalidate_inode_pages2_range(mapping,
2135 					pos >> PAGE_CACHE_SHIFT, end);
2136 		/*
2137 		 * If a page can not be invalidated, return 0 to fall back
2138 		 * to buffered write.
2139 		 */
2140 		if (written) {
2141 			if (written == -EBUSY)
2142 				return 0;
2143 			goto out;
2144 		}
2145 	}
2146 
2147 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2148 
2149 	/*
2150 	 * Finally, try again to invalidate clean pages which might have been
2151 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2152 	 * if the source of the write was an mmap'ed region of the file
2153 	 * we're writing.  Either one is a pretty crazy thing to do,
2154 	 * so we don't support it 100%.  If this invalidation
2155 	 * fails, tough, the write still worked...
2156 	 */
2157 	if (mapping->nrpages) {
2158 		invalidate_inode_pages2_range(mapping,
2159 					      pos >> PAGE_CACHE_SHIFT, end);
2160 	}
2161 
2162 	if (written > 0) {
2163 		loff_t end = pos + written;
2164 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2165 			i_size_write(inode,  end);
2166 			mark_inode_dirty(inode);
2167 		}
2168 		*ppos = end;
2169 	}
2170 
2171 	/*
2172 	 * Sync the fs metadata but not the minor inode changes and
2173 	 * of course not the data as we did direct DMA for the IO.
2174 	 * i_mutex is held, which protects generic_osync_inode() from
2175 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2176 	 */
2177 out:
2178 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2179 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2180 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2181 		if (err < 0)
2182 			written = err;
2183 	}
2184 	return written;
2185 }
2186 EXPORT_SYMBOL(generic_file_direct_write);
2187 
2188 /*
2189  * Find or create a page at the given pagecache position. Return the locked
2190  * page. This function is specifically for buffered writes.
2191  */
2192 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2193 					pgoff_t index, unsigned flags)
2194 {
2195 	int status;
2196 	struct page *page;
2197 	gfp_t gfp_notmask = 0;
2198 	if (flags & AOP_FLAG_NOFS)
2199 		gfp_notmask = __GFP_FS;
2200 repeat:
2201 	page = find_lock_page(mapping, index);
2202 	if (likely(page))
2203 		return page;
2204 
2205 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2206 	if (!page)
2207 		return NULL;
2208 	status = add_to_page_cache_lru(page, mapping, index,
2209 						GFP_KERNEL & ~gfp_notmask);
2210 	if (unlikely(status)) {
2211 		page_cache_release(page);
2212 		if (status == -EEXIST)
2213 			goto repeat;
2214 		return NULL;
2215 	}
2216 	return page;
2217 }
2218 EXPORT_SYMBOL(grab_cache_page_write_begin);
2219 
2220 static ssize_t generic_perform_write(struct file *file,
2221 				struct iov_iter *i, loff_t pos)
2222 {
2223 	struct address_space *mapping = file->f_mapping;
2224 	const struct address_space_operations *a_ops = mapping->a_ops;
2225 	long status = 0;
2226 	ssize_t written = 0;
2227 	unsigned int flags = 0;
2228 
2229 	/*
2230 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2231 	 */
2232 	if (segment_eq(get_fs(), KERNEL_DS))
2233 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2234 
2235 	do {
2236 		struct page *page;
2237 		pgoff_t index;		/* Pagecache index for current page */
2238 		unsigned long offset;	/* Offset into pagecache page */
2239 		unsigned long bytes;	/* Bytes to write to page */
2240 		size_t copied;		/* Bytes copied from user */
2241 		void *fsdata;
2242 
2243 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2244 		index = pos >> PAGE_CACHE_SHIFT;
2245 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2246 						iov_iter_count(i));
2247 
2248 again:
2249 
2250 		/*
2251 		 * Bring in the user page that we will copy from _first_.
2252 		 * Otherwise there's a nasty deadlock on copying from the
2253 		 * same page as we're writing to, without it being marked
2254 		 * up-to-date.
2255 		 *
2256 		 * Not only is this an optimisation, but it is also required
2257 		 * to check that the address is actually valid, when atomic
2258 		 * usercopies are used, below.
2259 		 */
2260 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2261 			status = -EFAULT;
2262 			break;
2263 		}
2264 
2265 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2266 						&page, &fsdata);
2267 		if (unlikely(status))
2268 			break;
2269 
2270 		pagefault_disable();
2271 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2272 		pagefault_enable();
2273 		flush_dcache_page(page);
2274 
2275 		mark_page_accessed(page);
2276 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2277 						page, fsdata);
2278 		if (unlikely(status < 0))
2279 			break;
2280 		copied = status;
2281 
2282 		cond_resched();
2283 
2284 		iov_iter_advance(i, copied);
2285 		if (unlikely(copied == 0)) {
2286 			/*
2287 			 * If we were unable to copy any data at all, we must
2288 			 * fall back to a single segment length write.
2289 			 *
2290 			 * If we didn't fallback here, we could livelock
2291 			 * because not all segments in the iov can be copied at
2292 			 * once without a pagefault.
2293 			 */
2294 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2295 						iov_iter_single_seg_count(i));
2296 			goto again;
2297 		}
2298 		pos += copied;
2299 		written += copied;
2300 
2301 		balance_dirty_pages_ratelimited(mapping);
2302 
2303 	} while (iov_iter_count(i));
2304 
2305 	return written ? written : status;
2306 }
2307 
2308 ssize_t
2309 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2310 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2311 		size_t count, ssize_t written)
2312 {
2313 	struct file *file = iocb->ki_filp;
2314 	struct address_space *mapping = file->f_mapping;
2315 	const struct address_space_operations *a_ops = mapping->a_ops;
2316 	struct inode *inode = mapping->host;
2317 	ssize_t status;
2318 	struct iov_iter i;
2319 
2320 	iov_iter_init(&i, iov, nr_segs, count, written);
2321 	status = generic_perform_write(file, &i, pos);
2322 
2323 	if (likely(status >= 0)) {
2324 		written += status;
2325 		*ppos = pos + status;
2326 
2327 		/*
2328 		 * For now, when the user asks for O_SYNC, we'll actually give
2329 		 * O_DSYNC
2330 		 */
2331 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2332 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2333 				status = generic_osync_inode(inode, mapping,
2334 						OSYNC_METADATA|OSYNC_DATA);
2335 		}
2336   	}
2337 
2338 	/*
2339 	 * If we get here for O_DIRECT writes then we must have fallen through
2340 	 * to buffered writes (block instantiation inside i_size).  So we sync
2341 	 * the file data here, to try to honour O_DIRECT expectations.
2342 	 */
2343 	if (unlikely(file->f_flags & O_DIRECT) && written)
2344 		status = filemap_write_and_wait_range(mapping,
2345 					pos, pos + written - 1);
2346 
2347 	return written ? written : status;
2348 }
2349 EXPORT_SYMBOL(generic_file_buffered_write);
2350 
2351 static ssize_t
2352 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2353 				unsigned long nr_segs, loff_t *ppos)
2354 {
2355 	struct file *file = iocb->ki_filp;
2356 	struct address_space * mapping = file->f_mapping;
2357 	size_t ocount;		/* original count */
2358 	size_t count;		/* after file limit checks */
2359 	struct inode 	*inode = mapping->host;
2360 	loff_t		pos;
2361 	ssize_t		written;
2362 	ssize_t		err;
2363 
2364 	ocount = 0;
2365 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2366 	if (err)
2367 		return err;
2368 
2369 	count = ocount;
2370 	pos = *ppos;
2371 
2372 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2373 
2374 	/* We can write back this queue in page reclaim */
2375 	current->backing_dev_info = mapping->backing_dev_info;
2376 	written = 0;
2377 
2378 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2379 	if (err)
2380 		goto out;
2381 
2382 	if (count == 0)
2383 		goto out;
2384 
2385 	err = file_remove_suid(file);
2386 	if (err)
2387 		goto out;
2388 
2389 	file_update_time(file);
2390 
2391 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2392 	if (unlikely(file->f_flags & O_DIRECT)) {
2393 		loff_t endbyte;
2394 		ssize_t written_buffered;
2395 
2396 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2397 							ppos, count, ocount);
2398 		if (written < 0 || written == count)
2399 			goto out;
2400 		/*
2401 		 * direct-io write to a hole: fall through to buffered I/O
2402 		 * for completing the rest of the request.
2403 		 */
2404 		pos += written;
2405 		count -= written;
2406 		written_buffered = generic_file_buffered_write(iocb, iov,
2407 						nr_segs, pos, ppos, count,
2408 						written);
2409 		/*
2410 		 * If generic_file_buffered_write() retuned a synchronous error
2411 		 * then we want to return the number of bytes which were
2412 		 * direct-written, or the error code if that was zero.  Note
2413 		 * that this differs from normal direct-io semantics, which
2414 		 * will return -EFOO even if some bytes were written.
2415 		 */
2416 		if (written_buffered < 0) {
2417 			err = written_buffered;
2418 			goto out;
2419 		}
2420 
2421 		/*
2422 		 * We need to ensure that the page cache pages are written to
2423 		 * disk and invalidated to preserve the expected O_DIRECT
2424 		 * semantics.
2425 		 */
2426 		endbyte = pos + written_buffered - written - 1;
2427 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2428 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2429 					    SYNC_FILE_RANGE_WRITE|
2430 					    SYNC_FILE_RANGE_WAIT_AFTER);
2431 		if (err == 0) {
2432 			written = written_buffered;
2433 			invalidate_mapping_pages(mapping,
2434 						 pos >> PAGE_CACHE_SHIFT,
2435 						 endbyte >> PAGE_CACHE_SHIFT);
2436 		} else {
2437 			/*
2438 			 * We don't know how much we wrote, so just return
2439 			 * the number of bytes which were direct-written
2440 			 */
2441 		}
2442 	} else {
2443 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2444 				pos, ppos, count, written);
2445 	}
2446 out:
2447 	current->backing_dev_info = NULL;
2448 	return written ? written : err;
2449 }
2450 
2451 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2452 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2453 {
2454 	struct file *file = iocb->ki_filp;
2455 	struct address_space *mapping = file->f_mapping;
2456 	struct inode *inode = mapping->host;
2457 	ssize_t ret;
2458 
2459 	BUG_ON(iocb->ki_pos != pos);
2460 
2461 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2462 			&iocb->ki_pos);
2463 
2464 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2465 		ssize_t err;
2466 
2467 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2468 		if (err < 0)
2469 			ret = err;
2470 	}
2471 	return ret;
2472 }
2473 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2474 
2475 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2476 		unsigned long nr_segs, loff_t pos)
2477 {
2478 	struct file *file = iocb->ki_filp;
2479 	struct address_space *mapping = file->f_mapping;
2480 	struct inode *inode = mapping->host;
2481 	ssize_t ret;
2482 
2483 	BUG_ON(iocb->ki_pos != pos);
2484 
2485 	mutex_lock(&inode->i_mutex);
2486 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2487 			&iocb->ki_pos);
2488 	mutex_unlock(&inode->i_mutex);
2489 
2490 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2491 		ssize_t err;
2492 
2493 		err = sync_page_range(inode, mapping, pos, ret);
2494 		if (err < 0)
2495 			ret = err;
2496 	}
2497 	return ret;
2498 }
2499 EXPORT_SYMBOL(generic_file_aio_write);
2500 
2501 /**
2502  * try_to_release_page() - release old fs-specific metadata on a page
2503  *
2504  * @page: the page which the kernel is trying to free
2505  * @gfp_mask: memory allocation flags (and I/O mode)
2506  *
2507  * The address_space is to try to release any data against the page
2508  * (presumably at page->private).  If the release was successful, return `1'.
2509  * Otherwise return zero.
2510  *
2511  * This may also be called if PG_fscache is set on a page, indicating that the
2512  * page is known to the local caching routines.
2513  *
2514  * The @gfp_mask argument specifies whether I/O may be performed to release
2515  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2516  *
2517  */
2518 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2519 {
2520 	struct address_space * const mapping = page->mapping;
2521 
2522 	BUG_ON(!PageLocked(page));
2523 	if (PageWriteback(page))
2524 		return 0;
2525 
2526 	if (mapping && mapping->a_ops->releasepage)
2527 		return mapping->a_ops->releasepage(page, gfp_mask);
2528 	return try_to_free_buffers(page);
2529 }
2530 
2531 EXPORT_SYMBOL(try_to_release_page);
2532