xref: /linux/mm/filemap.c (revision 5bb6ba448fe3598a7668838942db1f008beb581b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56 
57 /*
58  * FIXME: remove all knowledge of the buffer layer from the core VM
59  */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61 
62 #include <asm/mman.h>
63 
64 #include "swap.h"
65 
66 /*
67  * Shared mappings implemented 30.11.1994. It's not fully working yet,
68  * though.
69  *
70  * Shared mappings now work. 15.8.1995  Bruno.
71  *
72  * finished 'unifying' the page and buffer cache and SMP-threaded the
73  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74  *
75  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76  */
77 
78 /*
79  * Lock ordering:
80  *
81  *  ->i_mmap_rwsem		(truncate_pagecache)
82  *    ->private_lock		(__free_pte->block_dirty_folio)
83  *      ->swap_lock		(exclusive_swap_page, others)
84  *        ->i_pages lock
85  *
86  *  ->i_rwsem
87  *    ->invalidate_lock		(acquired by fs in truncate path)
88  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
89  *
90  *  ->mmap_lock
91  *    ->i_mmap_rwsem
92  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
93  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
94  *
95  *  ->mmap_lock
96  *    ->invalidate_lock		(filemap_fault)
97  *      ->lock_page		(filemap_fault, access_process_vm)
98  *
99  *  ->i_rwsem			(generic_perform_write)
100  *    ->mmap_lock		(fault_in_readable->do_page_fault)
101  *
102  *  bdi->wb.list_lock
103  *    sb_lock			(fs/fs-writeback.c)
104  *    ->i_pages lock		(__sync_single_inode)
105  *
106  *  ->i_mmap_rwsem
107  *    ->anon_vma.lock		(vma_merge)
108  *
109  *  ->anon_vma.lock
110  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
111  *
112  *  ->page_table_lock or pte_lock
113  *    ->swap_lock		(try_to_unmap_one)
114  *    ->private_lock		(try_to_unmap_one)
115  *    ->i_pages lock		(try_to_unmap_one)
116  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
117  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
118  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
123  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
124  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
125  *    ->private_lock		(zap_pte_range->block_dirty_folio)
126  */
127 
128 static void mapping_set_update(struct xa_state *xas,
129 		struct address_space *mapping)
130 {
131 	if (dax_mapping(mapping) || shmem_mapping(mapping))
132 		return;
133 	xas_set_update(xas, workingset_update_node);
134 	xas_set_lru(xas, &shadow_nodes);
135 }
136 
137 static void page_cache_delete(struct address_space *mapping,
138 				   struct folio *folio, void *shadow)
139 {
140 	XA_STATE(xas, &mapping->i_pages, folio->index);
141 	long nr = 1;
142 
143 	mapping_set_update(&xas, mapping);
144 
145 	xas_set_order(&xas, folio->index, folio_order(folio));
146 	nr = folio_nr_pages(folio);
147 
148 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149 
150 	xas_store(&xas, shadow);
151 	xas_init_marks(&xas);
152 
153 	folio->mapping = NULL;
154 	/* Leave page->index set: truncation lookup relies upon it */
155 	mapping->nrpages -= nr;
156 }
157 
158 static void filemap_unaccount_folio(struct address_space *mapping,
159 		struct folio *folio)
160 {
161 	long nr;
162 
163 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
164 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
165 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
166 			 current->comm, folio_pfn(folio));
167 		dump_page(&folio->page, "still mapped when deleted");
168 		dump_stack();
169 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
170 
171 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
172 			int mapcount = folio_mapcount(folio);
173 
174 			if (folio_ref_count(folio) >= mapcount + 2) {
175 				/*
176 				 * All vmas have already been torn down, so it's
177 				 * a good bet that actually the page is unmapped
178 				 * and we'd rather not leak it: if we're wrong,
179 				 * another bad page check should catch it later.
180 				 */
181 				atomic_set(&folio->_mapcount, -1);
182 				folio_ref_sub(folio, mapcount);
183 			}
184 		}
185 	}
186 
187 	/* hugetlb folios do not participate in page cache accounting. */
188 	if (folio_test_hugetlb(folio))
189 		return;
190 
191 	nr = folio_nr_pages(folio);
192 
193 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
194 	if (folio_test_swapbacked(folio)) {
195 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
196 		if (folio_test_pmd_mappable(folio))
197 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
198 	} else if (folio_test_pmd_mappable(folio)) {
199 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
200 		filemap_nr_thps_dec(mapping);
201 	}
202 
203 	/*
204 	 * At this point folio must be either written or cleaned by
205 	 * truncate.  Dirty folio here signals a bug and loss of
206 	 * unwritten data - on ordinary filesystems.
207 	 *
208 	 * But it's harmless on in-memory filesystems like tmpfs; and can
209 	 * occur when a driver which did get_user_pages() sets page dirty
210 	 * before putting it, while the inode is being finally evicted.
211 	 *
212 	 * Below fixes dirty accounting after removing the folio entirely
213 	 * but leaves the dirty flag set: it has no effect for truncated
214 	 * folio and anyway will be cleared before returning folio to
215 	 * buddy allocator.
216 	 */
217 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
218 			 mapping_can_writeback(mapping)))
219 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
220 }
221 
222 /*
223  * Delete a page from the page cache and free it. Caller has to make
224  * sure the page is locked and that nobody else uses it - or that usage
225  * is safe.  The caller must hold the i_pages lock.
226  */
227 void __filemap_remove_folio(struct folio *folio, void *shadow)
228 {
229 	struct address_space *mapping = folio->mapping;
230 
231 	trace_mm_filemap_delete_from_page_cache(folio);
232 	filemap_unaccount_folio(mapping, folio);
233 	page_cache_delete(mapping, folio, shadow);
234 }
235 
236 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
237 {
238 	void (*free_folio)(struct folio *);
239 	int refs = 1;
240 
241 	free_folio = mapping->a_ops->free_folio;
242 	if (free_folio)
243 		free_folio(folio);
244 
245 	if (folio_test_large(folio))
246 		refs = folio_nr_pages(folio);
247 	folio_put_refs(folio, refs);
248 }
249 
250 /**
251  * filemap_remove_folio - Remove folio from page cache.
252  * @folio: The folio.
253  *
254  * This must be called only on folios that are locked and have been
255  * verified to be in the page cache.  It will never put the folio into
256  * the free list because the caller has a reference on the page.
257  */
258 void filemap_remove_folio(struct folio *folio)
259 {
260 	struct address_space *mapping = folio->mapping;
261 
262 	BUG_ON(!folio_test_locked(folio));
263 	spin_lock(&mapping->host->i_lock);
264 	xa_lock_irq(&mapping->i_pages);
265 	__filemap_remove_folio(folio, NULL);
266 	xa_unlock_irq(&mapping->i_pages);
267 	if (mapping_shrinkable(mapping))
268 		inode_add_lru(mapping->host);
269 	spin_unlock(&mapping->host->i_lock);
270 
271 	filemap_free_folio(mapping, folio);
272 }
273 
274 /*
275  * page_cache_delete_batch - delete several folios from page cache
276  * @mapping: the mapping to which folios belong
277  * @fbatch: batch of folios to delete
278  *
279  * The function walks over mapping->i_pages and removes folios passed in
280  * @fbatch from the mapping. The function expects @fbatch to be sorted
281  * by page index and is optimised for it to be dense.
282  * It tolerates holes in @fbatch (mapping entries at those indices are not
283  * modified).
284  *
285  * The function expects the i_pages lock to be held.
286  */
287 static void page_cache_delete_batch(struct address_space *mapping,
288 			     struct folio_batch *fbatch)
289 {
290 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
291 	long total_pages = 0;
292 	int i = 0;
293 	struct folio *folio;
294 
295 	mapping_set_update(&xas, mapping);
296 	xas_for_each(&xas, folio, ULONG_MAX) {
297 		if (i >= folio_batch_count(fbatch))
298 			break;
299 
300 		/* A swap/dax/shadow entry got inserted? Skip it. */
301 		if (xa_is_value(folio))
302 			continue;
303 		/*
304 		 * A page got inserted in our range? Skip it. We have our
305 		 * pages locked so they are protected from being removed.
306 		 * If we see a page whose index is higher than ours, it
307 		 * means our page has been removed, which shouldn't be
308 		 * possible because we're holding the PageLock.
309 		 */
310 		if (folio != fbatch->folios[i]) {
311 			VM_BUG_ON_FOLIO(folio->index >
312 					fbatch->folios[i]->index, folio);
313 			continue;
314 		}
315 
316 		WARN_ON_ONCE(!folio_test_locked(folio));
317 
318 		folio->mapping = NULL;
319 		/* Leave folio->index set: truncation lookup relies on it */
320 
321 		i++;
322 		xas_store(&xas, NULL);
323 		total_pages += folio_nr_pages(folio);
324 	}
325 	mapping->nrpages -= total_pages;
326 }
327 
328 void delete_from_page_cache_batch(struct address_space *mapping,
329 				  struct folio_batch *fbatch)
330 {
331 	int i;
332 
333 	if (!folio_batch_count(fbatch))
334 		return;
335 
336 	spin_lock(&mapping->host->i_lock);
337 	xa_lock_irq(&mapping->i_pages);
338 	for (i = 0; i < folio_batch_count(fbatch); i++) {
339 		struct folio *folio = fbatch->folios[i];
340 
341 		trace_mm_filemap_delete_from_page_cache(folio);
342 		filemap_unaccount_folio(mapping, folio);
343 	}
344 	page_cache_delete_batch(mapping, fbatch);
345 	xa_unlock_irq(&mapping->i_pages);
346 	if (mapping_shrinkable(mapping))
347 		inode_add_lru(mapping->host);
348 	spin_unlock(&mapping->host->i_lock);
349 
350 	for (i = 0; i < folio_batch_count(fbatch); i++)
351 		filemap_free_folio(mapping, fbatch->folios[i]);
352 }
353 
354 int filemap_check_errors(struct address_space *mapping)
355 {
356 	int ret = 0;
357 	/* Check for outstanding write errors */
358 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
359 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
360 		ret = -ENOSPC;
361 	if (test_bit(AS_EIO, &mapping->flags) &&
362 	    test_and_clear_bit(AS_EIO, &mapping->flags))
363 		ret = -EIO;
364 	return ret;
365 }
366 EXPORT_SYMBOL(filemap_check_errors);
367 
368 static int filemap_check_and_keep_errors(struct address_space *mapping)
369 {
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_EIO, &mapping->flags))
372 		return -EIO;
373 	if (test_bit(AS_ENOSPC, &mapping->flags))
374 		return -ENOSPC;
375 	return 0;
376 }
377 
378 /**
379  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
380  * @mapping:	address space structure to write
381  * @wbc:	the writeback_control controlling the writeout
382  *
383  * Call writepages on the mapping using the provided wbc to control the
384  * writeout.
385  *
386  * Return: %0 on success, negative error code otherwise.
387  */
388 int filemap_fdatawrite_wbc(struct address_space *mapping,
389 			   struct writeback_control *wbc)
390 {
391 	int ret;
392 
393 	if (!mapping_can_writeback(mapping) ||
394 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
395 		return 0;
396 
397 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
398 	ret = do_writepages(mapping, wbc);
399 	wbc_detach_inode(wbc);
400 	return ret;
401 }
402 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
403 
404 /**
405  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
406  * @mapping:	address space structure to write
407  * @start:	offset in bytes where the range starts
408  * @end:	offset in bytes where the range ends (inclusive)
409  * @sync_mode:	enable synchronous operation
410  *
411  * Start writeback against all of a mapping's dirty pages that lie
412  * within the byte offsets <start, end> inclusive.
413  *
414  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
415  * opposed to a regular memory cleansing writeback.  The difference between
416  * these two operations is that if a dirty page/buffer is encountered, it must
417  * be waited upon, and not just skipped over.
418  *
419  * Return: %0 on success, negative error code otherwise.
420  */
421 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
422 				loff_t end, int sync_mode)
423 {
424 	struct writeback_control wbc = {
425 		.sync_mode = sync_mode,
426 		.nr_to_write = LONG_MAX,
427 		.range_start = start,
428 		.range_end = end,
429 	};
430 
431 	return filemap_fdatawrite_wbc(mapping, &wbc);
432 }
433 
434 static inline int __filemap_fdatawrite(struct address_space *mapping,
435 	int sync_mode)
436 {
437 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
438 }
439 
440 int filemap_fdatawrite(struct address_space *mapping)
441 {
442 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite);
445 
446 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
447 				loff_t end)
448 {
449 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
450 }
451 EXPORT_SYMBOL(filemap_fdatawrite_range);
452 
453 /**
454  * filemap_flush - mostly a non-blocking flush
455  * @mapping:	target address_space
456  *
457  * This is a mostly non-blocking flush.  Not suitable for data-integrity
458  * purposes - I/O may not be started against all dirty pages.
459  *
460  * Return: %0 on success, negative error code otherwise.
461  */
462 int filemap_flush(struct address_space *mapping)
463 {
464 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
465 }
466 EXPORT_SYMBOL(filemap_flush);
467 
468 /**
469  * filemap_range_has_page - check if a page exists in range.
470  * @mapping:           address space within which to check
471  * @start_byte:        offset in bytes where the range starts
472  * @end_byte:          offset in bytes where the range ends (inclusive)
473  *
474  * Find at least one page in the range supplied, usually used to check if
475  * direct writing in this range will trigger a writeback.
476  *
477  * Return: %true if at least one page exists in the specified range,
478  * %false otherwise.
479  */
480 bool filemap_range_has_page(struct address_space *mapping,
481 			   loff_t start_byte, loff_t end_byte)
482 {
483 	struct folio *folio;
484 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
485 	pgoff_t max = end_byte >> PAGE_SHIFT;
486 
487 	if (end_byte < start_byte)
488 		return false;
489 
490 	rcu_read_lock();
491 	for (;;) {
492 		folio = xas_find(&xas, max);
493 		if (xas_retry(&xas, folio))
494 			continue;
495 		/* Shadow entries don't count */
496 		if (xa_is_value(folio))
497 			continue;
498 		/*
499 		 * We don't need to try to pin this page; we're about to
500 		 * release the RCU lock anyway.  It is enough to know that
501 		 * there was a page here recently.
502 		 */
503 		break;
504 	}
505 	rcu_read_unlock();
506 
507 	return folio != NULL;
508 }
509 EXPORT_SYMBOL(filemap_range_has_page);
510 
511 static void __filemap_fdatawait_range(struct address_space *mapping,
512 				     loff_t start_byte, loff_t end_byte)
513 {
514 	pgoff_t index = start_byte >> PAGE_SHIFT;
515 	pgoff_t end = end_byte >> PAGE_SHIFT;
516 	struct folio_batch fbatch;
517 	unsigned nr_folios;
518 
519 	folio_batch_init(&fbatch);
520 
521 	while (index <= end) {
522 		unsigned i;
523 
524 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
525 				PAGECACHE_TAG_WRITEBACK, &fbatch);
526 
527 		if (!nr_folios)
528 			break;
529 
530 		for (i = 0; i < nr_folios; i++) {
531 			struct folio *folio = fbatch.folios[i];
532 
533 			folio_wait_writeback(folio);
534 		}
535 		folio_batch_release(&fbatch);
536 		cond_resched();
537 	}
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:		address space structure to wait for
543  * @start_byte:		offset in bytes where the range starts
544  * @end_byte:		offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 			    loff_t end_byte)
558 {
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:		address space structure to wait for
567  * @start_byte:		offset in bytes where the range starts
568  * @end_byte:		offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 		loff_t start_byte, loff_t end_byte)
580 {
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:		file pointing to address space structure to wait for
589  * @start_byte:		offset in bytes where the range starts
590  * @end_byte:		offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 	struct address_space *mapping = file->f_mapping;
605 
606 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607 	return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 	return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 	return mapping->nrpages;
636 }
637 
638 bool filemap_range_has_writeback(struct address_space *mapping,
639 				 loff_t start_byte, loff_t end_byte)
640 {
641 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 	pgoff_t max = end_byte >> PAGE_SHIFT;
643 	struct folio *folio;
644 
645 	if (end_byte < start_byte)
646 		return false;
647 
648 	rcu_read_lock();
649 	xas_for_each(&xas, folio, max) {
650 		if (xas_retry(&xas, folio))
651 			continue;
652 		if (xa_is_value(folio))
653 			continue;
654 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 				folio_test_writeback(folio))
656 			break;
657 	}
658 	rcu_read_unlock();
659 	return folio != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:	the address_space for the pages
666  * @lstart:	offset in bytes where the range starts
667  * @lend:	offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677 				 loff_t lstart, loff_t lend)
678 {
679 	int err = 0, err2;
680 
681 	if (lend < lstart)
682 		return 0;
683 
684 	if (mapping_needs_writeback(mapping)) {
685 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 						 WB_SYNC_ALL);
687 		/*
688 		 * Even if the above returned error, the pages may be
689 		 * written partially (e.g. -ENOSPC), so we wait for it.
690 		 * But the -EIO is special case, it may indicate the worst
691 		 * thing (e.g. bug) happened, so we avoid waiting for it.
692 		 */
693 		if (err != -EIO)
694 			__filemap_fdatawait_range(mapping, lstart, lend);
695 	}
696 	err2 = filemap_check_errors(mapping);
697 	if (!err)
698 		err = err2;
699 	return err;
700 }
701 EXPORT_SYMBOL(filemap_write_and_wait_range);
702 
703 void __filemap_set_wb_err(struct address_space *mapping, int err)
704 {
705 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
706 
707 	trace_filemap_set_wb_err(mapping, eseq);
708 }
709 EXPORT_SYMBOL(__filemap_set_wb_err);
710 
711 /**
712  * file_check_and_advance_wb_err - report wb error (if any) that was previously
713  * 				   and advance wb_err to current one
714  * @file: struct file on which the error is being reported
715  *
716  * When userland calls fsync (or something like nfsd does the equivalent), we
717  * want to report any writeback errors that occurred since the last fsync (or
718  * since the file was opened if there haven't been any).
719  *
720  * Grab the wb_err from the mapping. If it matches what we have in the file,
721  * then just quickly return 0. The file is all caught up.
722  *
723  * If it doesn't match, then take the mapping value, set the "seen" flag in
724  * it and try to swap it into place. If it works, or another task beat us
725  * to it with the new value, then update the f_wb_err and return the error
726  * portion. The error at this point must be reported via proper channels
727  * (a'la fsync, or NFS COMMIT operation, etc.).
728  *
729  * While we handle mapping->wb_err with atomic operations, the f_wb_err
730  * value is protected by the f_lock since we must ensure that it reflects
731  * the latest value swapped in for this file descriptor.
732  *
733  * Return: %0 on success, negative error code otherwise.
734  */
735 int file_check_and_advance_wb_err(struct file *file)
736 {
737 	int err = 0;
738 	errseq_t old = READ_ONCE(file->f_wb_err);
739 	struct address_space *mapping = file->f_mapping;
740 
741 	/* Locklessly handle the common case where nothing has changed */
742 	if (errseq_check(&mapping->wb_err, old)) {
743 		/* Something changed, must use slow path */
744 		spin_lock(&file->f_lock);
745 		old = file->f_wb_err;
746 		err = errseq_check_and_advance(&mapping->wb_err,
747 						&file->f_wb_err);
748 		trace_file_check_and_advance_wb_err(file, old);
749 		spin_unlock(&file->f_lock);
750 	}
751 
752 	/*
753 	 * We're mostly using this function as a drop in replacement for
754 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 	 * that the legacy code would have had on these flags.
756 	 */
757 	clear_bit(AS_EIO, &mapping->flags);
758 	clear_bit(AS_ENOSPC, &mapping->flags);
759 	return err;
760 }
761 EXPORT_SYMBOL(file_check_and_advance_wb_err);
762 
763 /**
764  * file_write_and_wait_range - write out & wait on a file range
765  * @file:	file pointing to address_space with pages
766  * @lstart:	offset in bytes where the range starts
767  * @lend:	offset in bytes where the range ends (inclusive)
768  *
769  * Write out and wait upon file offsets lstart->lend, inclusive.
770  *
771  * Note that @lend is inclusive (describes the last byte to be written) so
772  * that this function can be used to write to the very end-of-file (end = -1).
773  *
774  * After writing out and waiting on the data, we check and advance the
775  * f_wb_err cursor to the latest value, and return any errors detected there.
776  *
777  * Return: %0 on success, negative error code otherwise.
778  */
779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780 {
781 	int err = 0, err2;
782 	struct address_space *mapping = file->f_mapping;
783 
784 	if (lend < lstart)
785 		return 0;
786 
787 	if (mapping_needs_writeback(mapping)) {
788 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 						 WB_SYNC_ALL);
790 		/* See comment of filemap_write_and_wait() */
791 		if (err != -EIO)
792 			__filemap_fdatawait_range(mapping, lstart, lend);
793 	}
794 	err2 = file_check_and_advance_wb_err(file);
795 	if (!err)
796 		err = err2;
797 	return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_folio - replace a pagecache folio with a new one
803  * @old:	folio to be replaced
804  * @new:	folio to replace with
805  *
806  * This function replaces a folio in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new folio and
808  * drops it for the old folio.  Both the old and new folios must be
809  * locked.  This function does not add the new folio to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_folio(struct folio *old, struct folio *new)
815 {
816 	struct address_space *mapping = old->mapping;
817 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 	pgoff_t offset = old->index;
819 	XA_STATE(xas, &mapping->i_pages, offset);
820 
821 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 	VM_BUG_ON_FOLIO(new->mapping, new);
824 
825 	folio_get(new);
826 	new->mapping = mapping;
827 	new->index = offset;
828 
829 	mem_cgroup_replace_folio(old, new);
830 
831 	xas_lock_irq(&xas);
832 	xas_store(&xas, new);
833 
834 	old->mapping = NULL;
835 	/* hugetlb pages do not participate in page cache accounting. */
836 	if (!folio_test_hugetlb(old))
837 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 	if (!folio_test_hugetlb(new))
839 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 	if (folio_test_swapbacked(old))
841 		__lruvec_stat_sub_folio(old, NR_SHMEM);
842 	if (folio_test_swapbacked(new))
843 		__lruvec_stat_add_folio(new, NR_SHMEM);
844 	xas_unlock_irq(&xas);
845 	if (free_folio)
846 		free_folio(old);
847 	folio_put(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, index);
855 	void *alloced_shadow = NULL;
856 	int alloced_order = 0;
857 	bool huge;
858 	long nr;
859 
860 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
863 			folio);
864 	mapping_set_update(&xas, mapping);
865 
866 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
867 	xas_set_order(&xas, index, folio_order(folio));
868 	huge = folio_test_hugetlb(folio);
869 	nr = folio_nr_pages(folio);
870 
871 	gfp &= GFP_RECLAIM_MASK;
872 	folio_ref_add(folio, nr);
873 	folio->mapping = mapping;
874 	folio->index = xas.xa_index;
875 
876 	for (;;) {
877 		int order = -1, split_order = 0;
878 		void *entry, *old = NULL;
879 
880 		xas_lock_irq(&xas);
881 		xas_for_each_conflict(&xas, entry) {
882 			old = entry;
883 			if (!xa_is_value(entry)) {
884 				xas_set_err(&xas, -EEXIST);
885 				goto unlock;
886 			}
887 			/*
888 			 * If a larger entry exists,
889 			 * it will be the first and only entry iterated.
890 			 */
891 			if (order == -1)
892 				order = xas_get_order(&xas);
893 		}
894 
895 		/* entry may have changed before we re-acquire the lock */
896 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
897 			xas_destroy(&xas);
898 			alloced_order = 0;
899 		}
900 
901 		if (old) {
902 			if (order > 0 && order > folio_order(folio)) {
903 				/* How to handle large swap entries? */
904 				BUG_ON(shmem_mapping(mapping));
905 				if (!alloced_order) {
906 					split_order = order;
907 					goto unlock;
908 				}
909 				xas_split(&xas, old, order);
910 				xas_reset(&xas);
911 			}
912 			if (shadowp)
913 				*shadowp = old;
914 		}
915 
916 		xas_store(&xas, folio);
917 		if (xas_error(&xas))
918 			goto unlock;
919 
920 		mapping->nrpages += nr;
921 
922 		/* hugetlb pages do not participate in page cache accounting */
923 		if (!huge) {
924 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
925 			if (folio_test_pmd_mappable(folio))
926 				__lruvec_stat_mod_folio(folio,
927 						NR_FILE_THPS, nr);
928 		}
929 
930 unlock:
931 		xas_unlock_irq(&xas);
932 
933 		/* split needed, alloc here and retry. */
934 		if (split_order) {
935 			xas_split_alloc(&xas, old, split_order, gfp);
936 			if (xas_error(&xas))
937 				goto error;
938 			alloced_shadow = old;
939 			alloced_order = split_order;
940 			xas_reset(&xas);
941 			continue;
942 		}
943 
944 		if (!xas_nomem(&xas, gfp))
945 			break;
946 	}
947 
948 	if (xas_error(&xas))
949 		goto error;
950 
951 	trace_mm_filemap_add_to_page_cache(folio);
952 	return 0;
953 error:
954 	folio->mapping = NULL;
955 	/* Leave page->index set: truncation relies upon it */
956 	folio_put_refs(folio, nr);
957 	return xas_error(&xas);
958 }
959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960 
961 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962 				pgoff_t index, gfp_t gfp)
963 {
964 	void *shadow = NULL;
965 	int ret;
966 
967 	ret = mem_cgroup_charge(folio, NULL, gfp);
968 	if (ret)
969 		return ret;
970 
971 	__folio_set_locked(folio);
972 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
973 	if (unlikely(ret)) {
974 		mem_cgroup_uncharge(folio);
975 		__folio_clear_locked(folio);
976 	} else {
977 		/*
978 		 * The folio might have been evicted from cache only
979 		 * recently, in which case it should be activated like
980 		 * any other repeatedly accessed folio.
981 		 * The exception is folios getting rewritten; evicting other
982 		 * data from the working set, only to cache data that will
983 		 * get overwritten with something else, is a waste of memory.
984 		 */
985 		WARN_ON_ONCE(folio_test_active(folio));
986 		if (!(gfp & __GFP_WRITE) && shadow)
987 			workingset_refault(folio, shadow);
988 		folio_add_lru(folio);
989 	}
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(filemap_add_folio);
993 
994 #ifdef CONFIG_NUMA
995 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
996 {
997 	int n;
998 	struct folio *folio;
999 
1000 	if (cpuset_do_page_mem_spread()) {
1001 		unsigned int cpuset_mems_cookie;
1002 		do {
1003 			cpuset_mems_cookie = read_mems_allowed_begin();
1004 			n = cpuset_mem_spread_node();
1005 			folio = __folio_alloc_node_noprof(gfp, order, n);
1006 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1007 
1008 		return folio;
1009 	}
1010 	return folio_alloc_noprof(gfp, order);
1011 }
1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1013 #endif
1014 
1015 /*
1016  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1017  *
1018  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1019  *
1020  * @mapping1: the first mapping to lock
1021  * @mapping2: the second mapping to lock
1022  */
1023 void filemap_invalidate_lock_two(struct address_space *mapping1,
1024 				 struct address_space *mapping2)
1025 {
1026 	if (mapping1 > mapping2)
1027 		swap(mapping1, mapping2);
1028 	if (mapping1)
1029 		down_write(&mapping1->invalidate_lock);
1030 	if (mapping2 && mapping1 != mapping2)
1031 		down_write_nested(&mapping2->invalidate_lock, 1);
1032 }
1033 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1034 
1035 /*
1036  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1037  *
1038  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1039  *
1040  * @mapping1: the first mapping to unlock
1041  * @mapping2: the second mapping to unlock
1042  */
1043 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1044 				   struct address_space *mapping2)
1045 {
1046 	if (mapping1)
1047 		up_write(&mapping1->invalidate_lock);
1048 	if (mapping2 && mapping1 != mapping2)
1049 		up_write(&mapping2->invalidate_lock);
1050 }
1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1052 
1053 /*
1054  * In order to wait for pages to become available there must be
1055  * waitqueues associated with pages. By using a hash table of
1056  * waitqueues where the bucket discipline is to maintain all
1057  * waiters on the same queue and wake all when any of the pages
1058  * become available, and for the woken contexts to check to be
1059  * sure the appropriate page became available, this saves space
1060  * at a cost of "thundering herd" phenomena during rare hash
1061  * collisions.
1062  */
1063 #define PAGE_WAIT_TABLE_BITS 8
1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1065 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1066 
1067 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1068 {
1069 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1070 }
1071 
1072 void __init pagecache_init(void)
1073 {
1074 	int i;
1075 
1076 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1077 		init_waitqueue_head(&folio_wait_table[i]);
1078 
1079 	page_writeback_init();
1080 }
1081 
1082 /*
1083  * The page wait code treats the "wait->flags" somewhat unusually, because
1084  * we have multiple different kinds of waits, not just the usual "exclusive"
1085  * one.
1086  *
1087  * We have:
1088  *
1089  *  (a) no special bits set:
1090  *
1091  *	We're just waiting for the bit to be released, and when a waker
1092  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1093  *	and remove it from the wait queue.
1094  *
1095  *	Simple and straightforward.
1096  *
1097  *  (b) WQ_FLAG_EXCLUSIVE:
1098  *
1099  *	The waiter is waiting to get the lock, and only one waiter should
1100  *	be woken up to avoid any thundering herd behavior. We'll set the
1101  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1102  *
1103  *	This is the traditional exclusive wait.
1104  *
1105  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1106  *
1107  *	The waiter is waiting to get the bit, and additionally wants the
1108  *	lock to be transferred to it for fair lock behavior. If the lock
1109  *	cannot be taken, we stop walking the wait queue without waking
1110  *	the waiter.
1111  *
1112  *	This is the "fair lock handoff" case, and in addition to setting
1113  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1114  *	that it now has the lock.
1115  */
1116 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1117 {
1118 	unsigned int flags;
1119 	struct wait_page_key *key = arg;
1120 	struct wait_page_queue *wait_page
1121 		= container_of(wait, struct wait_page_queue, wait);
1122 
1123 	if (!wake_page_match(wait_page, key))
1124 		return 0;
1125 
1126 	/*
1127 	 * If it's a lock handoff wait, we get the bit for it, and
1128 	 * stop walking (and do not wake it up) if we can't.
1129 	 */
1130 	flags = wait->flags;
1131 	if (flags & WQ_FLAG_EXCLUSIVE) {
1132 		if (test_bit(key->bit_nr, &key->folio->flags))
1133 			return -1;
1134 		if (flags & WQ_FLAG_CUSTOM) {
1135 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1136 				return -1;
1137 			flags |= WQ_FLAG_DONE;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * We are holding the wait-queue lock, but the waiter that
1143 	 * is waiting for this will be checking the flags without
1144 	 * any locking.
1145 	 *
1146 	 * So update the flags atomically, and wake up the waiter
1147 	 * afterwards to avoid any races. This store-release pairs
1148 	 * with the load-acquire in folio_wait_bit_common().
1149 	 */
1150 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1151 	wake_up_state(wait->private, mode);
1152 
1153 	/*
1154 	 * Ok, we have successfully done what we're waiting for,
1155 	 * and we can unconditionally remove the wait entry.
1156 	 *
1157 	 * Note that this pairs with the "finish_wait()" in the
1158 	 * waiter, and has to be the absolute last thing we do.
1159 	 * After this list_del_init(&wait->entry) the wait entry
1160 	 * might be de-allocated and the process might even have
1161 	 * exited.
1162 	 */
1163 	list_del_init_careful(&wait->entry);
1164 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1165 }
1166 
1167 static void folio_wake_bit(struct folio *folio, int bit_nr)
1168 {
1169 	wait_queue_head_t *q = folio_waitqueue(folio);
1170 	struct wait_page_key key;
1171 	unsigned long flags;
1172 
1173 	key.folio = folio;
1174 	key.bit_nr = bit_nr;
1175 	key.page_match = 0;
1176 
1177 	spin_lock_irqsave(&q->lock, flags);
1178 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1179 
1180 	/*
1181 	 * It's possible to miss clearing waiters here, when we woke our page
1182 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1183 	 * That's okay, it's a rare case. The next waker will clear it.
1184 	 *
1185 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1186 	 * other), the flag may be cleared in the course of freeing the page;
1187 	 * but that is not required for correctness.
1188 	 */
1189 	if (!waitqueue_active(q) || !key.page_match)
1190 		folio_clear_waiters(folio);
1191 
1192 	spin_unlock_irqrestore(&q->lock, flags);
1193 }
1194 
1195 /*
1196  * A choice of three behaviors for folio_wait_bit_common():
1197  */
1198 enum behavior {
1199 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1200 			 * __folio_lock() waiting on then setting PG_locked.
1201 			 */
1202 	SHARED,		/* Hold ref to page and check the bit when woken, like
1203 			 * folio_wait_writeback() waiting on PG_writeback.
1204 			 */
1205 	DROP,		/* Drop ref to page before wait, no check when woken,
1206 			 * like folio_put_wait_locked() on PG_locked.
1207 			 */
1208 };
1209 
1210 /*
1211  * Attempt to check (or get) the folio flag, and mark us done
1212  * if successful.
1213  */
1214 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1215 					struct wait_queue_entry *wait)
1216 {
1217 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1218 		if (test_and_set_bit(bit_nr, &folio->flags))
1219 			return false;
1220 	} else if (test_bit(bit_nr, &folio->flags))
1221 		return false;
1222 
1223 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1224 	return true;
1225 }
1226 
1227 /* How many times do we accept lock stealing from under a waiter? */
1228 int sysctl_page_lock_unfairness = 5;
1229 
1230 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1231 		int state, enum behavior behavior)
1232 {
1233 	wait_queue_head_t *q = folio_waitqueue(folio);
1234 	int unfairness = sysctl_page_lock_unfairness;
1235 	struct wait_page_queue wait_page;
1236 	wait_queue_entry_t *wait = &wait_page.wait;
1237 	bool thrashing = false;
1238 	unsigned long pflags;
1239 	bool in_thrashing;
1240 
1241 	if (bit_nr == PG_locked &&
1242 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1243 		delayacct_thrashing_start(&in_thrashing);
1244 		psi_memstall_enter(&pflags);
1245 		thrashing = true;
1246 	}
1247 
1248 	init_wait(wait);
1249 	wait->func = wake_page_function;
1250 	wait_page.folio = folio;
1251 	wait_page.bit_nr = bit_nr;
1252 
1253 repeat:
1254 	wait->flags = 0;
1255 	if (behavior == EXCLUSIVE) {
1256 		wait->flags = WQ_FLAG_EXCLUSIVE;
1257 		if (--unfairness < 0)
1258 			wait->flags |= WQ_FLAG_CUSTOM;
1259 	}
1260 
1261 	/*
1262 	 * Do one last check whether we can get the
1263 	 * page bit synchronously.
1264 	 *
1265 	 * Do the folio_set_waiters() marking before that
1266 	 * to let any waker we _just_ missed know they
1267 	 * need to wake us up (otherwise they'll never
1268 	 * even go to the slow case that looks at the
1269 	 * page queue), and add ourselves to the wait
1270 	 * queue if we need to sleep.
1271 	 *
1272 	 * This part needs to be done under the queue
1273 	 * lock to avoid races.
1274 	 */
1275 	spin_lock_irq(&q->lock);
1276 	folio_set_waiters(folio);
1277 	if (!folio_trylock_flag(folio, bit_nr, wait))
1278 		__add_wait_queue_entry_tail(q, wait);
1279 	spin_unlock_irq(&q->lock);
1280 
1281 	/*
1282 	 * From now on, all the logic will be based on
1283 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1284 	 * see whether the page bit testing has already
1285 	 * been done by the wake function.
1286 	 *
1287 	 * We can drop our reference to the folio.
1288 	 */
1289 	if (behavior == DROP)
1290 		folio_put(folio);
1291 
1292 	/*
1293 	 * Note that until the "finish_wait()", or until
1294 	 * we see the WQ_FLAG_WOKEN flag, we need to
1295 	 * be very careful with the 'wait->flags', because
1296 	 * we may race with a waker that sets them.
1297 	 */
1298 	for (;;) {
1299 		unsigned int flags;
1300 
1301 		set_current_state(state);
1302 
1303 		/* Loop until we've been woken or interrupted */
1304 		flags = smp_load_acquire(&wait->flags);
1305 		if (!(flags & WQ_FLAG_WOKEN)) {
1306 			if (signal_pending_state(state, current))
1307 				break;
1308 
1309 			io_schedule();
1310 			continue;
1311 		}
1312 
1313 		/* If we were non-exclusive, we're done */
1314 		if (behavior != EXCLUSIVE)
1315 			break;
1316 
1317 		/* If the waker got the lock for us, we're done */
1318 		if (flags & WQ_FLAG_DONE)
1319 			break;
1320 
1321 		/*
1322 		 * Otherwise, if we're getting the lock, we need to
1323 		 * try to get it ourselves.
1324 		 *
1325 		 * And if that fails, we'll have to retry this all.
1326 		 */
1327 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1328 			goto repeat;
1329 
1330 		wait->flags |= WQ_FLAG_DONE;
1331 		break;
1332 	}
1333 
1334 	/*
1335 	 * If a signal happened, this 'finish_wait()' may remove the last
1336 	 * waiter from the wait-queues, but the folio waiters bit will remain
1337 	 * set. That's ok. The next wakeup will take care of it, and trying
1338 	 * to do it here would be difficult and prone to races.
1339 	 */
1340 	finish_wait(q, wait);
1341 
1342 	if (thrashing) {
1343 		delayacct_thrashing_end(&in_thrashing);
1344 		psi_memstall_leave(&pflags);
1345 	}
1346 
1347 	/*
1348 	 * NOTE! The wait->flags weren't stable until we've done the
1349 	 * 'finish_wait()', and we could have exited the loop above due
1350 	 * to a signal, and had a wakeup event happen after the signal
1351 	 * test but before the 'finish_wait()'.
1352 	 *
1353 	 * So only after the finish_wait() can we reliably determine
1354 	 * if we got woken up or not, so we can now figure out the final
1355 	 * return value based on that state without races.
1356 	 *
1357 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1358 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1359 	 */
1360 	if (behavior == EXCLUSIVE)
1361 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1362 
1363 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1364 }
1365 
1366 #ifdef CONFIG_MIGRATION
1367 /**
1368  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1369  * @entry: migration swap entry.
1370  * @ptl: already locked ptl. This function will drop the lock.
1371  *
1372  * Wait for a migration entry referencing the given page to be removed. This is
1373  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1374  * this can be called without taking a reference on the page. Instead this
1375  * should be called while holding the ptl for the migration entry referencing
1376  * the page.
1377  *
1378  * Returns after unlocking the ptl.
1379  *
1380  * This follows the same logic as folio_wait_bit_common() so see the comments
1381  * there.
1382  */
1383 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1384 	__releases(ptl)
1385 {
1386 	struct wait_page_queue wait_page;
1387 	wait_queue_entry_t *wait = &wait_page.wait;
1388 	bool thrashing = false;
1389 	unsigned long pflags;
1390 	bool in_thrashing;
1391 	wait_queue_head_t *q;
1392 	struct folio *folio = pfn_swap_entry_folio(entry);
1393 
1394 	q = folio_waitqueue(folio);
1395 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1396 		delayacct_thrashing_start(&in_thrashing);
1397 		psi_memstall_enter(&pflags);
1398 		thrashing = true;
1399 	}
1400 
1401 	init_wait(wait);
1402 	wait->func = wake_page_function;
1403 	wait_page.folio = folio;
1404 	wait_page.bit_nr = PG_locked;
1405 	wait->flags = 0;
1406 
1407 	spin_lock_irq(&q->lock);
1408 	folio_set_waiters(folio);
1409 	if (!folio_trylock_flag(folio, PG_locked, wait))
1410 		__add_wait_queue_entry_tail(q, wait);
1411 	spin_unlock_irq(&q->lock);
1412 
1413 	/*
1414 	 * If a migration entry exists for the page the migration path must hold
1415 	 * a valid reference to the page, and it must take the ptl to remove the
1416 	 * migration entry. So the page is valid until the ptl is dropped.
1417 	 */
1418 	spin_unlock(ptl);
1419 
1420 	for (;;) {
1421 		unsigned int flags;
1422 
1423 		set_current_state(TASK_UNINTERRUPTIBLE);
1424 
1425 		/* Loop until we've been woken or interrupted */
1426 		flags = smp_load_acquire(&wait->flags);
1427 		if (!(flags & WQ_FLAG_WOKEN)) {
1428 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429 				break;
1430 
1431 			io_schedule();
1432 			continue;
1433 		}
1434 		break;
1435 	}
1436 
1437 	finish_wait(q, wait);
1438 
1439 	if (thrashing) {
1440 		delayacct_thrashing_end(&in_thrashing);
1441 		psi_memstall_leave(&pflags);
1442 	}
1443 }
1444 #endif
1445 
1446 void folio_wait_bit(struct folio *folio, int bit_nr)
1447 {
1448 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1449 }
1450 EXPORT_SYMBOL(folio_wait_bit);
1451 
1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1453 {
1454 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1455 }
1456 EXPORT_SYMBOL(folio_wait_bit_killable);
1457 
1458 /**
1459  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1460  * @folio: The folio to wait for.
1461  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1462  *
1463  * The caller should hold a reference on @folio.  They expect the page to
1464  * become unlocked relatively soon, but do not wish to hold up migration
1465  * (for example) by holding the reference while waiting for the folio to
1466  * come unlocked.  After this function returns, the caller should not
1467  * dereference @folio.
1468  *
1469  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1470  */
1471 static int folio_put_wait_locked(struct folio *folio, int state)
1472 {
1473 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1474 }
1475 
1476 /**
1477  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1478  * @folio: Folio defining the wait queue of interest
1479  * @waiter: Waiter to add to the queue
1480  *
1481  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1482  */
1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1484 {
1485 	wait_queue_head_t *q = folio_waitqueue(folio);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&q->lock, flags);
1489 	__add_wait_queue_entry_tail(q, waiter);
1490 	folio_set_waiters(folio);
1491 	spin_unlock_irqrestore(&q->lock, flags);
1492 }
1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1494 
1495 /**
1496  * folio_unlock - Unlock a locked folio.
1497  * @folio: The folio.
1498  *
1499  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1500  *
1501  * Context: May be called from interrupt or process context.  May not be
1502  * called from NMI context.
1503  */
1504 void folio_unlock(struct folio *folio)
1505 {
1506 	/* Bit 7 allows x86 to check the byte's sign bit */
1507 	BUILD_BUG_ON(PG_waiters != 7);
1508 	BUILD_BUG_ON(PG_locked > 7);
1509 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1511 		folio_wake_bit(folio, PG_locked);
1512 }
1513 EXPORT_SYMBOL(folio_unlock);
1514 
1515 /**
1516  * folio_end_read - End read on a folio.
1517  * @folio: The folio.
1518  * @success: True if all reads completed successfully.
1519  *
1520  * When all reads against a folio have completed, filesystems should
1521  * call this function to let the pagecache know that no more reads
1522  * are outstanding.  This will unlock the folio and wake up any thread
1523  * sleeping on the lock.  The folio will also be marked uptodate if all
1524  * reads succeeded.
1525  *
1526  * Context: May be called from interrupt or process context.  May not be
1527  * called from NMI context.
1528  */
1529 void folio_end_read(struct folio *folio, bool success)
1530 {
1531 	unsigned long mask = 1 << PG_locked;
1532 
1533 	/* Must be in bottom byte for x86 to work */
1534 	BUILD_BUG_ON(PG_uptodate > 7);
1535 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1536 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1537 
1538 	if (likely(success))
1539 		mask |= 1 << PG_uptodate;
1540 	if (folio_xor_flags_has_waiters(folio, mask))
1541 		folio_wake_bit(folio, PG_locked);
1542 }
1543 EXPORT_SYMBOL(folio_end_read);
1544 
1545 /**
1546  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1547  * @folio: The folio.
1548  *
1549  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1550  * it.  The folio reference held for PG_private_2 being set is released.
1551  *
1552  * This is, for example, used when a netfs folio is being written to a local
1553  * disk cache, thereby allowing writes to the cache for the same folio to be
1554  * serialised.
1555  */
1556 void folio_end_private_2(struct folio *folio)
1557 {
1558 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1559 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1560 	folio_wake_bit(folio, PG_private_2);
1561 	folio_put(folio);
1562 }
1563 EXPORT_SYMBOL(folio_end_private_2);
1564 
1565 /**
1566  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1567  * @folio: The folio to wait on.
1568  *
1569  * Wait for PG_private_2 to be cleared on a folio.
1570  */
1571 void folio_wait_private_2(struct folio *folio)
1572 {
1573 	while (folio_test_private_2(folio))
1574 		folio_wait_bit(folio, PG_private_2);
1575 }
1576 EXPORT_SYMBOL(folio_wait_private_2);
1577 
1578 /**
1579  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1580  * @folio: The folio to wait on.
1581  *
1582  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1583  * received by the calling task.
1584  *
1585  * Return:
1586  * - 0 if successful.
1587  * - -EINTR if a fatal signal was encountered.
1588  */
1589 int folio_wait_private_2_killable(struct folio *folio)
1590 {
1591 	int ret = 0;
1592 
1593 	while (folio_test_private_2(folio)) {
1594 		ret = folio_wait_bit_killable(folio, PG_private_2);
1595 		if (ret < 0)
1596 			break;
1597 	}
1598 
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL(folio_wait_private_2_killable);
1602 
1603 /**
1604  * folio_end_writeback - End writeback against a folio.
1605  * @folio: The folio.
1606  *
1607  * The folio must actually be under writeback.
1608  *
1609  * Context: May be called from process or interrupt context.
1610  */
1611 void folio_end_writeback(struct folio *folio)
1612 {
1613 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1614 
1615 	/*
1616 	 * folio_test_clear_reclaim() could be used here but it is an
1617 	 * atomic operation and overkill in this particular case. Failing
1618 	 * to shuffle a folio marked for immediate reclaim is too mild
1619 	 * a gain to justify taking an atomic operation penalty at the
1620 	 * end of every folio writeback.
1621 	 */
1622 	if (folio_test_reclaim(folio)) {
1623 		folio_clear_reclaim(folio);
1624 		folio_rotate_reclaimable(folio);
1625 	}
1626 
1627 	/*
1628 	 * Writeback does not hold a folio reference of its own, relying
1629 	 * on truncation to wait for the clearing of PG_writeback.
1630 	 * But here we must make sure that the folio is not freed and
1631 	 * reused before the folio_wake_bit().
1632 	 */
1633 	folio_get(folio);
1634 	if (__folio_end_writeback(folio))
1635 		folio_wake_bit(folio, PG_writeback);
1636 	acct_reclaim_writeback(folio);
1637 	folio_put(folio);
1638 }
1639 EXPORT_SYMBOL(folio_end_writeback);
1640 
1641 /**
1642  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1643  * @folio: The folio to lock
1644  */
1645 void __folio_lock(struct folio *folio)
1646 {
1647 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1648 				EXCLUSIVE);
1649 }
1650 EXPORT_SYMBOL(__folio_lock);
1651 
1652 int __folio_lock_killable(struct folio *folio)
1653 {
1654 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1655 					EXCLUSIVE);
1656 }
1657 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1658 
1659 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1660 {
1661 	struct wait_queue_head *q = folio_waitqueue(folio);
1662 	int ret;
1663 
1664 	wait->folio = folio;
1665 	wait->bit_nr = PG_locked;
1666 
1667 	spin_lock_irq(&q->lock);
1668 	__add_wait_queue_entry_tail(q, &wait->wait);
1669 	folio_set_waiters(folio);
1670 	ret = !folio_trylock(folio);
1671 	/*
1672 	 * If we were successful now, we know we're still on the
1673 	 * waitqueue as we're still under the lock. This means it's
1674 	 * safe to remove and return success, we know the callback
1675 	 * isn't going to trigger.
1676 	 */
1677 	if (!ret)
1678 		__remove_wait_queue(q, &wait->wait);
1679 	else
1680 		ret = -EIOCBQUEUED;
1681 	spin_unlock_irq(&q->lock);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Return values:
1687  * 0 - folio is locked.
1688  * non-zero - folio is not locked.
1689  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1690  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1691  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1692  *
1693  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1694  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1695  */
1696 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1697 {
1698 	unsigned int flags = vmf->flags;
1699 
1700 	if (fault_flag_allow_retry_first(flags)) {
1701 		/*
1702 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1703 		 * released even though returning VM_FAULT_RETRY.
1704 		 */
1705 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1706 			return VM_FAULT_RETRY;
1707 
1708 		release_fault_lock(vmf);
1709 		if (flags & FAULT_FLAG_KILLABLE)
1710 			folio_wait_locked_killable(folio);
1711 		else
1712 			folio_wait_locked(folio);
1713 		return VM_FAULT_RETRY;
1714 	}
1715 	if (flags & FAULT_FLAG_KILLABLE) {
1716 		bool ret;
1717 
1718 		ret = __folio_lock_killable(folio);
1719 		if (ret) {
1720 			release_fault_lock(vmf);
1721 			return VM_FAULT_RETRY;
1722 		}
1723 	} else {
1724 		__folio_lock(folio);
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * page_cache_next_miss() - Find the next gap in the page cache.
1732  * @mapping: Mapping.
1733  * @index: Index.
1734  * @max_scan: Maximum range to search.
1735  *
1736  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1737  * gap with the lowest index.
1738  *
1739  * This function may be called under the rcu_read_lock.  However, this will
1740  * not atomically search a snapshot of the cache at a single point in time.
1741  * For example, if a gap is created at index 5, then subsequently a gap is
1742  * created at index 10, page_cache_next_miss covering both indices may
1743  * return 10 if called under the rcu_read_lock.
1744  *
1745  * Return: The index of the gap if found, otherwise an index outside the
1746  * range specified (in which case 'return - index >= max_scan' will be true).
1747  * In the rare case of index wrap-around, 0 will be returned.
1748  */
1749 pgoff_t page_cache_next_miss(struct address_space *mapping,
1750 			     pgoff_t index, unsigned long max_scan)
1751 {
1752 	XA_STATE(xas, &mapping->i_pages, index);
1753 
1754 	while (max_scan--) {
1755 		void *entry = xas_next(&xas);
1756 		if (!entry || xa_is_value(entry))
1757 			return xas.xa_index;
1758 		if (xas.xa_index == 0)
1759 			return 0;
1760 	}
1761 
1762 	return index + max_scan;
1763 }
1764 EXPORT_SYMBOL(page_cache_next_miss);
1765 
1766 /**
1767  * page_cache_prev_miss() - Find the previous gap in the page cache.
1768  * @mapping: Mapping.
1769  * @index: Index.
1770  * @max_scan: Maximum range to search.
1771  *
1772  * Search the range [max(index - max_scan + 1, 0), index] for the
1773  * gap with the highest index.
1774  *
1775  * This function may be called under the rcu_read_lock.  However, this will
1776  * not atomically search a snapshot of the cache at a single point in time.
1777  * For example, if a gap is created at index 10, then subsequently a gap is
1778  * created at index 5, page_cache_prev_miss() covering both indices may
1779  * return 5 if called under the rcu_read_lock.
1780  *
1781  * Return: The index of the gap if found, otherwise an index outside the
1782  * range specified (in which case 'index - return >= max_scan' will be true).
1783  * In the rare case of wrap-around, ULONG_MAX will be returned.
1784  */
1785 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1786 			     pgoff_t index, unsigned long max_scan)
1787 {
1788 	XA_STATE(xas, &mapping->i_pages, index);
1789 
1790 	while (max_scan--) {
1791 		void *entry = xas_prev(&xas);
1792 		if (!entry || xa_is_value(entry))
1793 			break;
1794 		if (xas.xa_index == ULONG_MAX)
1795 			break;
1796 	}
1797 
1798 	return xas.xa_index;
1799 }
1800 EXPORT_SYMBOL(page_cache_prev_miss);
1801 
1802 /*
1803  * Lockless page cache protocol:
1804  * On the lookup side:
1805  * 1. Load the folio from i_pages
1806  * 2. Increment the refcount if it's not zero
1807  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1808  *
1809  * On the removal side:
1810  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1811  * B. Remove the page from i_pages
1812  * C. Return the page to the page allocator
1813  *
1814  * This means that any page may have its reference count temporarily
1815  * increased by a speculative page cache (or GUP-fast) lookup as it can
1816  * be allocated by another user before the RCU grace period expires.
1817  * Because the refcount temporarily acquired here may end up being the
1818  * last refcount on the page, any page allocation must be freeable by
1819  * folio_put().
1820  */
1821 
1822 /*
1823  * filemap_get_entry - Get a page cache entry.
1824  * @mapping: the address_space to search
1825  * @index: The page cache index.
1826  *
1827  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1828  * it is returned with an increased refcount.  If it is a shadow entry
1829  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1830  * it is returned without further action.
1831  *
1832  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1833  */
1834 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1835 {
1836 	XA_STATE(xas, &mapping->i_pages, index);
1837 	struct folio *folio;
1838 
1839 	rcu_read_lock();
1840 repeat:
1841 	xas_reset(&xas);
1842 	folio = xas_load(&xas);
1843 	if (xas_retry(&xas, folio))
1844 		goto repeat;
1845 	/*
1846 	 * A shadow entry of a recently evicted page, or a swap entry from
1847 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1848 	 */
1849 	if (!folio || xa_is_value(folio))
1850 		goto out;
1851 
1852 	if (!folio_try_get(folio))
1853 		goto repeat;
1854 
1855 	if (unlikely(folio != xas_reload(&xas))) {
1856 		folio_put(folio);
1857 		goto repeat;
1858 	}
1859 out:
1860 	rcu_read_unlock();
1861 
1862 	return folio;
1863 }
1864 
1865 /**
1866  * __filemap_get_folio - Find and get a reference to a folio.
1867  * @mapping: The address_space to search.
1868  * @index: The page index.
1869  * @fgp_flags: %FGP flags modify how the folio is returned.
1870  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1871  *
1872  * Looks up the page cache entry at @mapping & @index.
1873  *
1874  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1875  * if the %GFP flags specified for %FGP_CREAT are atomic.
1876  *
1877  * If this function returns a folio, it is returned with an increased refcount.
1878  *
1879  * Return: The found folio or an ERR_PTR() otherwise.
1880  */
1881 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1882 		fgf_t fgp_flags, gfp_t gfp)
1883 {
1884 	struct folio *folio;
1885 
1886 repeat:
1887 	folio = filemap_get_entry(mapping, index);
1888 	if (xa_is_value(folio))
1889 		folio = NULL;
1890 	if (!folio)
1891 		goto no_page;
1892 
1893 	if (fgp_flags & FGP_LOCK) {
1894 		if (fgp_flags & FGP_NOWAIT) {
1895 			if (!folio_trylock(folio)) {
1896 				folio_put(folio);
1897 				return ERR_PTR(-EAGAIN);
1898 			}
1899 		} else {
1900 			folio_lock(folio);
1901 		}
1902 
1903 		/* Has the page been truncated? */
1904 		if (unlikely(folio->mapping != mapping)) {
1905 			folio_unlock(folio);
1906 			folio_put(folio);
1907 			goto repeat;
1908 		}
1909 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1910 	}
1911 
1912 	if (fgp_flags & FGP_ACCESSED)
1913 		folio_mark_accessed(folio);
1914 	else if (fgp_flags & FGP_WRITE) {
1915 		/* Clear idle flag for buffer write */
1916 		if (folio_test_idle(folio))
1917 			folio_clear_idle(folio);
1918 	}
1919 
1920 	if (fgp_flags & FGP_STABLE)
1921 		folio_wait_stable(folio);
1922 no_page:
1923 	if (!folio && (fgp_flags & FGP_CREAT)) {
1924 		unsigned int min_order = mapping_min_folio_order(mapping);
1925 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1926 		int err;
1927 		index = mapping_align_index(mapping, index);
1928 
1929 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1930 			gfp |= __GFP_WRITE;
1931 		if (fgp_flags & FGP_NOFS)
1932 			gfp &= ~__GFP_FS;
1933 		if (fgp_flags & FGP_NOWAIT) {
1934 			gfp &= ~GFP_KERNEL;
1935 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1936 		}
1937 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1938 			fgp_flags |= FGP_LOCK;
1939 
1940 		if (order > mapping_max_folio_order(mapping))
1941 			order = mapping_max_folio_order(mapping);
1942 		/* If we're not aligned, allocate a smaller folio */
1943 		if (index & ((1UL << order) - 1))
1944 			order = __ffs(index);
1945 
1946 		do {
1947 			gfp_t alloc_gfp = gfp;
1948 
1949 			err = -ENOMEM;
1950 			if (order > min_order)
1951 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1952 			folio = filemap_alloc_folio(alloc_gfp, order);
1953 			if (!folio)
1954 				continue;
1955 
1956 			/* Init accessed so avoid atomic mark_page_accessed later */
1957 			if (fgp_flags & FGP_ACCESSED)
1958 				__folio_set_referenced(folio);
1959 
1960 			err = filemap_add_folio(mapping, folio, index, gfp);
1961 			if (!err)
1962 				break;
1963 			folio_put(folio);
1964 			folio = NULL;
1965 		} while (order-- > min_order);
1966 
1967 		if (err == -EEXIST)
1968 			goto repeat;
1969 		if (err)
1970 			return ERR_PTR(err);
1971 		/*
1972 		 * filemap_add_folio locks the page, and for mmap
1973 		 * we expect an unlocked page.
1974 		 */
1975 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1976 			folio_unlock(folio);
1977 	}
1978 
1979 	if (!folio)
1980 		return ERR_PTR(-ENOENT);
1981 	return folio;
1982 }
1983 EXPORT_SYMBOL(__filemap_get_folio);
1984 
1985 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1986 		xa_mark_t mark)
1987 {
1988 	struct folio *folio;
1989 
1990 retry:
1991 	if (mark == XA_PRESENT)
1992 		folio = xas_find(xas, max);
1993 	else
1994 		folio = xas_find_marked(xas, max, mark);
1995 
1996 	if (xas_retry(xas, folio))
1997 		goto retry;
1998 	/*
1999 	 * A shadow entry of a recently evicted page, a swap
2000 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2001 	 * without attempting to raise page count.
2002 	 */
2003 	if (!folio || xa_is_value(folio))
2004 		return folio;
2005 
2006 	if (!folio_try_get(folio))
2007 		goto reset;
2008 
2009 	if (unlikely(folio != xas_reload(xas))) {
2010 		folio_put(folio);
2011 		goto reset;
2012 	}
2013 
2014 	return folio;
2015 reset:
2016 	xas_reset(xas);
2017 	goto retry;
2018 }
2019 
2020 /**
2021  * find_get_entries - gang pagecache lookup
2022  * @mapping:	The address_space to search
2023  * @start:	The starting page cache index
2024  * @end:	The final page index (inclusive).
2025  * @fbatch:	Where the resulting entries are placed.
2026  * @indices:	The cache indices corresponding to the entries in @entries
2027  *
2028  * find_get_entries() will search for and return a batch of entries in
2029  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2030  * takes a reference on any actual folios it returns.
2031  *
2032  * The entries have ascending indexes.  The indices may not be consecutive
2033  * due to not-present entries or large folios.
2034  *
2035  * Any shadow entries of evicted folios, or swap entries from
2036  * shmem/tmpfs, are included in the returned array.
2037  *
2038  * Return: The number of entries which were found.
2039  */
2040 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2041 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2042 {
2043 	XA_STATE(xas, &mapping->i_pages, *start);
2044 	struct folio *folio;
2045 
2046 	rcu_read_lock();
2047 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2048 		indices[fbatch->nr] = xas.xa_index;
2049 		if (!folio_batch_add(fbatch, folio))
2050 			break;
2051 	}
2052 
2053 	if (folio_batch_count(fbatch)) {
2054 		unsigned long nr;
2055 		int idx = folio_batch_count(fbatch) - 1;
2056 
2057 		folio = fbatch->folios[idx];
2058 		if (!xa_is_value(folio))
2059 			nr = folio_nr_pages(folio);
2060 		else
2061 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2062 		*start = round_down(indices[idx] + nr, nr);
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	return folio_batch_count(fbatch);
2067 }
2068 
2069 /**
2070  * find_lock_entries - Find a batch of pagecache entries.
2071  * @mapping:	The address_space to search.
2072  * @start:	The starting page cache index.
2073  * @end:	The final page index (inclusive).
2074  * @fbatch:	Where the resulting entries are placed.
2075  * @indices:	The cache indices of the entries in @fbatch.
2076  *
2077  * find_lock_entries() will return a batch of entries from @mapping.
2078  * Swap, shadow and DAX entries are included.  Folios are returned
2079  * locked and with an incremented refcount.  Folios which are locked
2080  * by somebody else or under writeback are skipped.  Folios which are
2081  * partially outside the range are not returned.
2082  *
2083  * The entries have ascending indexes.  The indices may not be consecutive
2084  * due to not-present entries, large folios, folios which could not be
2085  * locked or folios under writeback.
2086  *
2087  * Return: The number of entries which were found.
2088  */
2089 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2090 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2091 {
2092 	XA_STATE(xas, &mapping->i_pages, *start);
2093 	struct folio *folio;
2094 
2095 	rcu_read_lock();
2096 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2097 		unsigned long base;
2098 		unsigned long nr;
2099 
2100 		if (!xa_is_value(folio)) {
2101 			nr = folio_nr_pages(folio);
2102 			base = folio->index;
2103 			/* Omit large folio which begins before the start */
2104 			if (base < *start)
2105 				goto put;
2106 			/* Omit large folio which extends beyond the end */
2107 			if (base + nr - 1 > end)
2108 				goto put;
2109 			if (!folio_trylock(folio))
2110 				goto put;
2111 			if (folio->mapping != mapping ||
2112 			    folio_test_writeback(folio))
2113 				goto unlock;
2114 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2115 					folio);
2116 		} else {
2117 			nr = 1 << xas_get_order(&xas);
2118 			base = xas.xa_index & ~(nr - 1);
2119 			/* Omit order>0 value which begins before the start */
2120 			if (base < *start)
2121 				continue;
2122 			/* Omit order>0 value which extends beyond the end */
2123 			if (base + nr - 1 > end)
2124 				break;
2125 		}
2126 
2127 		/* Update start now so that last update is correct on return */
2128 		*start = base + nr;
2129 		indices[fbatch->nr] = xas.xa_index;
2130 		if (!folio_batch_add(fbatch, folio))
2131 			break;
2132 		continue;
2133 unlock:
2134 		folio_unlock(folio);
2135 put:
2136 		folio_put(folio);
2137 	}
2138 	rcu_read_unlock();
2139 
2140 	return folio_batch_count(fbatch);
2141 }
2142 
2143 /**
2144  * filemap_get_folios - Get a batch of folios
2145  * @mapping:	The address_space to search
2146  * @start:	The starting page index
2147  * @end:	The final page index (inclusive)
2148  * @fbatch:	The batch to fill.
2149  *
2150  * Search for and return a batch of folios in the mapping starting at
2151  * index @start and up to index @end (inclusive).  The folios are returned
2152  * in @fbatch with an elevated reference count.
2153  *
2154  * Return: The number of folios which were found.
2155  * We also update @start to index the next folio for the traversal.
2156  */
2157 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2158 		pgoff_t end, struct folio_batch *fbatch)
2159 {
2160 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2161 }
2162 EXPORT_SYMBOL(filemap_get_folios);
2163 
2164 /**
2165  * filemap_get_folios_contig - Get a batch of contiguous folios
2166  * @mapping:	The address_space to search
2167  * @start:	The starting page index
2168  * @end:	The final page index (inclusive)
2169  * @fbatch:	The batch to fill
2170  *
2171  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2172  * except the returned folios are guaranteed to be contiguous. This may
2173  * not return all contiguous folios if the batch gets filled up.
2174  *
2175  * Return: The number of folios found.
2176  * Also update @start to be positioned for traversal of the next folio.
2177  */
2178 
2179 unsigned filemap_get_folios_contig(struct address_space *mapping,
2180 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2181 {
2182 	XA_STATE(xas, &mapping->i_pages, *start);
2183 	unsigned long nr;
2184 	struct folio *folio;
2185 
2186 	rcu_read_lock();
2187 
2188 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2189 			folio = xas_next(&xas)) {
2190 		if (xas_retry(&xas, folio))
2191 			continue;
2192 		/*
2193 		 * If the entry has been swapped out, we can stop looking.
2194 		 * No current caller is looking for DAX entries.
2195 		 */
2196 		if (xa_is_value(folio))
2197 			goto update_start;
2198 
2199 		/* If we landed in the middle of a THP, continue at its end. */
2200 		if (xa_is_sibling(folio))
2201 			goto update_start;
2202 
2203 		if (!folio_try_get(folio))
2204 			goto retry;
2205 
2206 		if (unlikely(folio != xas_reload(&xas)))
2207 			goto put_folio;
2208 
2209 		if (!folio_batch_add(fbatch, folio)) {
2210 			nr = folio_nr_pages(folio);
2211 			*start = folio->index + nr;
2212 			goto out;
2213 		}
2214 		continue;
2215 put_folio:
2216 		folio_put(folio);
2217 
2218 retry:
2219 		xas_reset(&xas);
2220 	}
2221 
2222 update_start:
2223 	nr = folio_batch_count(fbatch);
2224 
2225 	if (nr) {
2226 		folio = fbatch->folios[nr - 1];
2227 		*start = folio_next_index(folio);
2228 	}
2229 out:
2230 	rcu_read_unlock();
2231 	return folio_batch_count(fbatch);
2232 }
2233 EXPORT_SYMBOL(filemap_get_folios_contig);
2234 
2235 /**
2236  * filemap_get_folios_tag - Get a batch of folios matching @tag
2237  * @mapping:    The address_space to search
2238  * @start:      The starting page index
2239  * @end:        The final page index (inclusive)
2240  * @tag:        The tag index
2241  * @fbatch:     The batch to fill
2242  *
2243  * The first folio may start before @start; if it does, it will contain
2244  * @start.  The final folio may extend beyond @end; if it does, it will
2245  * contain @end.  The folios have ascending indices.  There may be gaps
2246  * between the folios if there are indices which have no folio in the
2247  * page cache.  If folios are added to or removed from the page cache
2248  * while this is running, they may or may not be found by this call.
2249  * Only returns folios that are tagged with @tag.
2250  *
2251  * Return: The number of folios found.
2252  * Also update @start to index the next folio for traversal.
2253  */
2254 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2255 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2256 {
2257 	XA_STATE(xas, &mapping->i_pages, *start);
2258 	struct folio *folio;
2259 
2260 	rcu_read_lock();
2261 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2262 		/*
2263 		 * Shadow entries should never be tagged, but this iteration
2264 		 * is lockless so there is a window for page reclaim to evict
2265 		 * a page we saw tagged. Skip over it.
2266 		 */
2267 		if (xa_is_value(folio))
2268 			continue;
2269 		if (!folio_batch_add(fbatch, folio)) {
2270 			unsigned long nr = folio_nr_pages(folio);
2271 			*start = folio->index + nr;
2272 			goto out;
2273 		}
2274 	}
2275 	/*
2276 	 * We come here when there is no page beyond @end. We take care to not
2277 	 * overflow the index @start as it confuses some of the callers. This
2278 	 * breaks the iteration when there is a page at index -1 but that is
2279 	 * already broke anyway.
2280 	 */
2281 	if (end == (pgoff_t)-1)
2282 		*start = (pgoff_t)-1;
2283 	else
2284 		*start = end + 1;
2285 out:
2286 	rcu_read_unlock();
2287 
2288 	return folio_batch_count(fbatch);
2289 }
2290 EXPORT_SYMBOL(filemap_get_folios_tag);
2291 
2292 /*
2293  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2294  * a _large_ part of the i/o request. Imagine the worst scenario:
2295  *
2296  *      ---R__________________________________________B__________
2297  *         ^ reading here                             ^ bad block(assume 4k)
2298  *
2299  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2300  * => failing the whole request => read(R) => read(R+1) =>
2301  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2302  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2303  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2304  *
2305  * It is going insane. Fix it by quickly scaling down the readahead size.
2306  */
2307 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2308 {
2309 	ra->ra_pages /= 4;
2310 }
2311 
2312 /*
2313  * filemap_get_read_batch - Get a batch of folios for read
2314  *
2315  * Get a batch of folios which represent a contiguous range of bytes in
2316  * the file.  No exceptional entries will be returned.  If @index is in
2317  * the middle of a folio, the entire folio will be returned.  The last
2318  * folio in the batch may have the readahead flag set or the uptodate flag
2319  * clear so that the caller can take the appropriate action.
2320  */
2321 static void filemap_get_read_batch(struct address_space *mapping,
2322 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2323 {
2324 	XA_STATE(xas, &mapping->i_pages, index);
2325 	struct folio *folio;
2326 
2327 	rcu_read_lock();
2328 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2329 		if (xas_retry(&xas, folio))
2330 			continue;
2331 		if (xas.xa_index > max || xa_is_value(folio))
2332 			break;
2333 		if (xa_is_sibling(folio))
2334 			break;
2335 		if (!folio_try_get(folio))
2336 			goto retry;
2337 
2338 		if (unlikely(folio != xas_reload(&xas)))
2339 			goto put_folio;
2340 
2341 		if (!folio_batch_add(fbatch, folio))
2342 			break;
2343 		if (!folio_test_uptodate(folio))
2344 			break;
2345 		if (folio_test_readahead(folio))
2346 			break;
2347 		xas_advance(&xas, folio_next_index(folio) - 1);
2348 		continue;
2349 put_folio:
2350 		folio_put(folio);
2351 retry:
2352 		xas_reset(&xas);
2353 	}
2354 	rcu_read_unlock();
2355 }
2356 
2357 static int filemap_read_folio(struct file *file, filler_t filler,
2358 		struct folio *folio)
2359 {
2360 	bool workingset = folio_test_workingset(folio);
2361 	unsigned long pflags;
2362 	int error;
2363 
2364 	/* Start the actual read. The read will unlock the page. */
2365 	if (unlikely(workingset))
2366 		psi_memstall_enter(&pflags);
2367 	error = filler(file, folio);
2368 	if (unlikely(workingset))
2369 		psi_memstall_leave(&pflags);
2370 	if (error)
2371 		return error;
2372 
2373 	error = folio_wait_locked_killable(folio);
2374 	if (error)
2375 		return error;
2376 	if (folio_test_uptodate(folio))
2377 		return 0;
2378 	if (file)
2379 		shrink_readahead_size_eio(&file->f_ra);
2380 	return -EIO;
2381 }
2382 
2383 static bool filemap_range_uptodate(struct address_space *mapping,
2384 		loff_t pos, size_t count, struct folio *folio,
2385 		bool need_uptodate)
2386 {
2387 	if (folio_test_uptodate(folio))
2388 		return true;
2389 	/* pipes can't handle partially uptodate pages */
2390 	if (need_uptodate)
2391 		return false;
2392 	if (!mapping->a_ops->is_partially_uptodate)
2393 		return false;
2394 	if (mapping->host->i_blkbits >= folio_shift(folio))
2395 		return false;
2396 
2397 	if (folio_pos(folio) > pos) {
2398 		count -= folio_pos(folio) - pos;
2399 		pos = 0;
2400 	} else {
2401 		pos -= folio_pos(folio);
2402 	}
2403 
2404 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2405 }
2406 
2407 static int filemap_update_page(struct kiocb *iocb,
2408 		struct address_space *mapping, size_t count,
2409 		struct folio *folio, bool need_uptodate)
2410 {
2411 	int error;
2412 
2413 	if (iocb->ki_flags & IOCB_NOWAIT) {
2414 		if (!filemap_invalidate_trylock_shared(mapping))
2415 			return -EAGAIN;
2416 	} else {
2417 		filemap_invalidate_lock_shared(mapping);
2418 	}
2419 
2420 	if (!folio_trylock(folio)) {
2421 		error = -EAGAIN;
2422 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2423 			goto unlock_mapping;
2424 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2425 			filemap_invalidate_unlock_shared(mapping);
2426 			/*
2427 			 * This is where we usually end up waiting for a
2428 			 * previously submitted readahead to finish.
2429 			 */
2430 			folio_put_wait_locked(folio, TASK_KILLABLE);
2431 			return AOP_TRUNCATED_PAGE;
2432 		}
2433 		error = __folio_lock_async(folio, iocb->ki_waitq);
2434 		if (error)
2435 			goto unlock_mapping;
2436 	}
2437 
2438 	error = AOP_TRUNCATED_PAGE;
2439 	if (!folio->mapping)
2440 		goto unlock;
2441 
2442 	error = 0;
2443 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2444 				   need_uptodate))
2445 		goto unlock;
2446 
2447 	error = -EAGAIN;
2448 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2449 		goto unlock;
2450 
2451 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2452 			folio);
2453 	goto unlock_mapping;
2454 unlock:
2455 	folio_unlock(folio);
2456 unlock_mapping:
2457 	filemap_invalidate_unlock_shared(mapping);
2458 	if (error == AOP_TRUNCATED_PAGE)
2459 		folio_put(folio);
2460 	return error;
2461 }
2462 
2463 static int filemap_create_folio(struct file *file,
2464 		struct address_space *mapping, loff_t pos,
2465 		struct folio_batch *fbatch)
2466 {
2467 	struct folio *folio;
2468 	int error;
2469 	unsigned int min_order = mapping_min_folio_order(mapping);
2470 	pgoff_t index;
2471 
2472 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2473 	if (!folio)
2474 		return -ENOMEM;
2475 
2476 	/*
2477 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2478 	 * here assures we cannot instantiate and bring uptodate new
2479 	 * pagecache folios after evicting page cache during truncate
2480 	 * and before actually freeing blocks.	Note that we could
2481 	 * release invalidate_lock after inserting the folio into
2482 	 * the page cache as the locked folio would then be enough to
2483 	 * synchronize with hole punching. But there are code paths
2484 	 * such as filemap_update_page() filling in partially uptodate
2485 	 * pages or ->readahead() that need to hold invalidate_lock
2486 	 * while mapping blocks for IO so let's hold the lock here as
2487 	 * well to keep locking rules simple.
2488 	 */
2489 	filemap_invalidate_lock_shared(mapping);
2490 	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2491 	error = filemap_add_folio(mapping, folio, index,
2492 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2493 	if (error == -EEXIST)
2494 		error = AOP_TRUNCATED_PAGE;
2495 	if (error)
2496 		goto error;
2497 
2498 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2499 	if (error)
2500 		goto error;
2501 
2502 	filemap_invalidate_unlock_shared(mapping);
2503 	folio_batch_add(fbatch, folio);
2504 	return 0;
2505 error:
2506 	filemap_invalidate_unlock_shared(mapping);
2507 	folio_put(folio);
2508 	return error;
2509 }
2510 
2511 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2512 		struct address_space *mapping, struct folio *folio,
2513 		pgoff_t last_index)
2514 {
2515 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2516 
2517 	if (iocb->ki_flags & IOCB_NOIO)
2518 		return -EAGAIN;
2519 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2520 	return 0;
2521 }
2522 
2523 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2524 		struct folio_batch *fbatch, bool need_uptodate)
2525 {
2526 	struct file *filp = iocb->ki_filp;
2527 	struct address_space *mapping = filp->f_mapping;
2528 	struct file_ra_state *ra = &filp->f_ra;
2529 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2530 	pgoff_t last_index;
2531 	struct folio *folio;
2532 	unsigned int flags;
2533 	int err = 0;
2534 
2535 	/* "last_index" is the index of the page beyond the end of the read */
2536 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2537 retry:
2538 	if (fatal_signal_pending(current))
2539 		return -EINTR;
2540 
2541 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2542 	if (!folio_batch_count(fbatch)) {
2543 		if (iocb->ki_flags & IOCB_NOIO)
2544 			return -EAGAIN;
2545 		if (iocb->ki_flags & IOCB_NOWAIT)
2546 			flags = memalloc_noio_save();
2547 		page_cache_sync_readahead(mapping, ra, filp, index,
2548 				last_index - index);
2549 		if (iocb->ki_flags & IOCB_NOWAIT)
2550 			memalloc_noio_restore(flags);
2551 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2552 	}
2553 	if (!folio_batch_count(fbatch)) {
2554 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2555 			return -EAGAIN;
2556 		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2557 		if (err == AOP_TRUNCATED_PAGE)
2558 			goto retry;
2559 		return err;
2560 	}
2561 
2562 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2563 	if (folio_test_readahead(folio)) {
2564 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2565 		if (err)
2566 			goto err;
2567 	}
2568 	if (!folio_test_uptodate(folio)) {
2569 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2570 		    folio_batch_count(fbatch) > 1)
2571 			iocb->ki_flags |= IOCB_NOWAIT;
2572 		err = filemap_update_page(iocb, mapping, count, folio,
2573 					  need_uptodate);
2574 		if (err)
2575 			goto err;
2576 	}
2577 
2578 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2579 	return 0;
2580 err:
2581 	if (err < 0)
2582 		folio_put(folio);
2583 	if (likely(--fbatch->nr))
2584 		return 0;
2585 	if (err == AOP_TRUNCATED_PAGE)
2586 		goto retry;
2587 	return err;
2588 }
2589 
2590 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2591 {
2592 	unsigned int shift = folio_shift(folio);
2593 
2594 	return (pos1 >> shift == pos2 >> shift);
2595 }
2596 
2597 /**
2598  * filemap_read - Read data from the page cache.
2599  * @iocb: The iocb to read.
2600  * @iter: Destination for the data.
2601  * @already_read: Number of bytes already read by the caller.
2602  *
2603  * Copies data from the page cache.  If the data is not currently present,
2604  * uses the readahead and read_folio address_space operations to fetch it.
2605  *
2606  * Return: Total number of bytes copied, including those already read by
2607  * the caller.  If an error happens before any bytes are copied, returns
2608  * a negative error number.
2609  */
2610 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2611 		ssize_t already_read)
2612 {
2613 	struct file *filp = iocb->ki_filp;
2614 	struct file_ra_state *ra = &filp->f_ra;
2615 	struct address_space *mapping = filp->f_mapping;
2616 	struct inode *inode = mapping->host;
2617 	struct folio_batch fbatch;
2618 	int i, error = 0;
2619 	bool writably_mapped;
2620 	loff_t isize, end_offset;
2621 	loff_t last_pos = ra->prev_pos;
2622 
2623 	if (unlikely(iocb->ki_pos < 0))
2624 		return -EINVAL;
2625 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2626 		return 0;
2627 	if (unlikely(!iov_iter_count(iter)))
2628 		return 0;
2629 
2630 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos);
2631 	folio_batch_init(&fbatch);
2632 
2633 	do {
2634 		cond_resched();
2635 
2636 		/*
2637 		 * If we've already successfully copied some data, then we
2638 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2639 		 * an async read NOWAIT at that point.
2640 		 */
2641 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2642 			iocb->ki_flags |= IOCB_NOWAIT;
2643 
2644 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2645 			break;
2646 
2647 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2648 		if (error < 0)
2649 			break;
2650 
2651 		/*
2652 		 * i_size must be checked after we know the pages are Uptodate.
2653 		 *
2654 		 * Checking i_size after the check allows us to calculate
2655 		 * the correct value for "nr", which means the zero-filled
2656 		 * part of the page is not copied back to userspace (unless
2657 		 * another truncate extends the file - this is desired though).
2658 		 */
2659 		isize = i_size_read(inode);
2660 		if (unlikely(iocb->ki_pos >= isize))
2661 			goto put_folios;
2662 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2663 
2664 		/*
2665 		 * Once we start copying data, we don't want to be touching any
2666 		 * cachelines that might be contended:
2667 		 */
2668 		writably_mapped = mapping_writably_mapped(mapping);
2669 
2670 		/*
2671 		 * When a read accesses the same folio several times, only
2672 		 * mark it as accessed the first time.
2673 		 */
2674 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2675 				    fbatch.folios[0]))
2676 			folio_mark_accessed(fbatch.folios[0]);
2677 
2678 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2679 			struct folio *folio = fbatch.folios[i];
2680 			size_t fsize = folio_size(folio);
2681 			size_t offset = iocb->ki_pos & (fsize - 1);
2682 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2683 					     fsize - offset);
2684 			size_t copied;
2685 
2686 			if (end_offset < folio_pos(folio))
2687 				break;
2688 			if (i > 0)
2689 				folio_mark_accessed(folio);
2690 			/*
2691 			 * If users can be writing to this folio using arbitrary
2692 			 * virtual addresses, take care of potential aliasing
2693 			 * before reading the folio on the kernel side.
2694 			 */
2695 			if (writably_mapped)
2696 				flush_dcache_folio(folio);
2697 
2698 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2699 
2700 			already_read += copied;
2701 			iocb->ki_pos += copied;
2702 			last_pos = iocb->ki_pos;
2703 
2704 			if (copied < bytes) {
2705 				error = -EFAULT;
2706 				break;
2707 			}
2708 		}
2709 put_folios:
2710 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2711 			folio_put(fbatch.folios[i]);
2712 		folio_batch_init(&fbatch);
2713 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2714 
2715 	file_accessed(filp);
2716 	ra->prev_pos = last_pos;
2717 	return already_read ? already_read : error;
2718 }
2719 EXPORT_SYMBOL_GPL(filemap_read);
2720 
2721 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2722 {
2723 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2724 	loff_t pos = iocb->ki_pos;
2725 	loff_t end = pos + count - 1;
2726 
2727 	if (iocb->ki_flags & IOCB_NOWAIT) {
2728 		if (filemap_range_needs_writeback(mapping, pos, end))
2729 			return -EAGAIN;
2730 		return 0;
2731 	}
2732 
2733 	return filemap_write_and_wait_range(mapping, pos, end);
2734 }
2735 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2736 
2737 int filemap_invalidate_pages(struct address_space *mapping,
2738 			     loff_t pos, loff_t end, bool nowait)
2739 {
2740 	int ret;
2741 
2742 	if (nowait) {
2743 		/* we could block if there are any pages in the range */
2744 		if (filemap_range_has_page(mapping, pos, end))
2745 			return -EAGAIN;
2746 	} else {
2747 		ret = filemap_write_and_wait_range(mapping, pos, end);
2748 		if (ret)
2749 			return ret;
2750 	}
2751 
2752 	/*
2753 	 * After a write we want buffered reads to be sure to go to disk to get
2754 	 * the new data.  We invalidate clean cached page from the region we're
2755 	 * about to write.  We do this *before* the write so that we can return
2756 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2757 	 */
2758 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2759 					     end >> PAGE_SHIFT);
2760 }
2761 
2762 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2763 {
2764 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2765 
2766 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2767 					iocb->ki_pos + count - 1,
2768 					iocb->ki_flags & IOCB_NOWAIT);
2769 }
2770 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2771 
2772 /**
2773  * generic_file_read_iter - generic filesystem read routine
2774  * @iocb:	kernel I/O control block
2775  * @iter:	destination for the data read
2776  *
2777  * This is the "read_iter()" routine for all filesystems
2778  * that can use the page cache directly.
2779  *
2780  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2781  * be returned when no data can be read without waiting for I/O requests
2782  * to complete; it doesn't prevent readahead.
2783  *
2784  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2785  * requests shall be made for the read or for readahead.  When no data
2786  * can be read, -EAGAIN shall be returned.  When readahead would be
2787  * triggered, a partial, possibly empty read shall be returned.
2788  *
2789  * Return:
2790  * * number of bytes copied, even for partial reads
2791  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2792  */
2793 ssize_t
2794 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2795 {
2796 	size_t count = iov_iter_count(iter);
2797 	ssize_t retval = 0;
2798 
2799 	if (!count)
2800 		return 0; /* skip atime */
2801 
2802 	if (iocb->ki_flags & IOCB_DIRECT) {
2803 		struct file *file = iocb->ki_filp;
2804 		struct address_space *mapping = file->f_mapping;
2805 		struct inode *inode = mapping->host;
2806 
2807 		retval = kiocb_write_and_wait(iocb, count);
2808 		if (retval < 0)
2809 			return retval;
2810 		file_accessed(file);
2811 
2812 		retval = mapping->a_ops->direct_IO(iocb, iter);
2813 		if (retval >= 0) {
2814 			iocb->ki_pos += retval;
2815 			count -= retval;
2816 		}
2817 		if (retval != -EIOCBQUEUED)
2818 			iov_iter_revert(iter, count - iov_iter_count(iter));
2819 
2820 		/*
2821 		 * Btrfs can have a short DIO read if we encounter
2822 		 * compressed extents, so if there was an error, or if
2823 		 * we've already read everything we wanted to, or if
2824 		 * there was a short read because we hit EOF, go ahead
2825 		 * and return.  Otherwise fallthrough to buffered io for
2826 		 * the rest of the read.  Buffered reads will not work for
2827 		 * DAX files, so don't bother trying.
2828 		 */
2829 		if (retval < 0 || !count || IS_DAX(inode))
2830 			return retval;
2831 		if (iocb->ki_pos >= i_size_read(inode))
2832 			return retval;
2833 	}
2834 
2835 	return filemap_read(iocb, iter, retval);
2836 }
2837 EXPORT_SYMBOL(generic_file_read_iter);
2838 
2839 /*
2840  * Splice subpages from a folio into a pipe.
2841  */
2842 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2843 			      struct folio *folio, loff_t fpos, size_t size)
2844 {
2845 	struct page *page;
2846 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2847 
2848 	page = folio_page(folio, offset / PAGE_SIZE);
2849 	size = min(size, folio_size(folio) - offset);
2850 	offset %= PAGE_SIZE;
2851 
2852 	while (spliced < size &&
2853 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2854 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2855 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2856 
2857 		*buf = (struct pipe_buffer) {
2858 			.ops	= &page_cache_pipe_buf_ops,
2859 			.page	= page,
2860 			.offset	= offset,
2861 			.len	= part,
2862 		};
2863 		folio_get(folio);
2864 		pipe->head++;
2865 		page++;
2866 		spliced += part;
2867 		offset = 0;
2868 	}
2869 
2870 	return spliced;
2871 }
2872 
2873 /**
2874  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2875  * @in: The file to read from
2876  * @ppos: Pointer to the file position to read from
2877  * @pipe: The pipe to splice into
2878  * @len: The amount to splice
2879  * @flags: The SPLICE_F_* flags
2880  *
2881  * This function gets folios from a file's pagecache and splices them into the
2882  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2883  * be used for blockdevs also.
2884  *
2885  * Return: On success, the number of bytes read will be returned and *@ppos
2886  * will be updated if appropriate; 0 will be returned if there is no more data
2887  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2888  * other negative error code will be returned on error.  A short read may occur
2889  * if the pipe has insufficient space, we reach the end of the data or we hit a
2890  * hole.
2891  */
2892 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2893 			    struct pipe_inode_info *pipe,
2894 			    size_t len, unsigned int flags)
2895 {
2896 	struct folio_batch fbatch;
2897 	struct kiocb iocb;
2898 	size_t total_spliced = 0, used, npages;
2899 	loff_t isize, end_offset;
2900 	bool writably_mapped;
2901 	int i, error = 0;
2902 
2903 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2904 		return 0;
2905 
2906 	init_sync_kiocb(&iocb, in);
2907 	iocb.ki_pos = *ppos;
2908 
2909 	/* Work out how much data we can actually add into the pipe */
2910 	used = pipe_occupancy(pipe->head, pipe->tail);
2911 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2912 	len = min_t(size_t, len, npages * PAGE_SIZE);
2913 
2914 	folio_batch_init(&fbatch);
2915 
2916 	do {
2917 		cond_resched();
2918 
2919 		if (*ppos >= i_size_read(in->f_mapping->host))
2920 			break;
2921 
2922 		iocb.ki_pos = *ppos;
2923 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2924 		if (error < 0)
2925 			break;
2926 
2927 		/*
2928 		 * i_size must be checked after we know the pages are Uptodate.
2929 		 *
2930 		 * Checking i_size after the check allows us to calculate
2931 		 * the correct value for "nr", which means the zero-filled
2932 		 * part of the page is not copied back to userspace (unless
2933 		 * another truncate extends the file - this is desired though).
2934 		 */
2935 		isize = i_size_read(in->f_mapping->host);
2936 		if (unlikely(*ppos >= isize))
2937 			break;
2938 		end_offset = min_t(loff_t, isize, *ppos + len);
2939 
2940 		/*
2941 		 * Once we start copying data, we don't want to be touching any
2942 		 * cachelines that might be contended:
2943 		 */
2944 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2945 
2946 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2947 			struct folio *folio = fbatch.folios[i];
2948 			size_t n;
2949 
2950 			if (folio_pos(folio) >= end_offset)
2951 				goto out;
2952 			folio_mark_accessed(folio);
2953 
2954 			/*
2955 			 * If users can be writing to this folio using arbitrary
2956 			 * virtual addresses, take care of potential aliasing
2957 			 * before reading the folio on the kernel side.
2958 			 */
2959 			if (writably_mapped)
2960 				flush_dcache_folio(folio);
2961 
2962 			n = min_t(loff_t, len, isize - *ppos);
2963 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2964 			if (!n)
2965 				goto out;
2966 			len -= n;
2967 			total_spliced += n;
2968 			*ppos += n;
2969 			in->f_ra.prev_pos = *ppos;
2970 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2971 				goto out;
2972 		}
2973 
2974 		folio_batch_release(&fbatch);
2975 	} while (len);
2976 
2977 out:
2978 	folio_batch_release(&fbatch);
2979 	file_accessed(in);
2980 
2981 	return total_spliced ? total_spliced : error;
2982 }
2983 EXPORT_SYMBOL(filemap_splice_read);
2984 
2985 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2986 		struct address_space *mapping, struct folio *folio,
2987 		loff_t start, loff_t end, bool seek_data)
2988 {
2989 	const struct address_space_operations *ops = mapping->a_ops;
2990 	size_t offset, bsz = i_blocksize(mapping->host);
2991 
2992 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2993 		return seek_data ? start : end;
2994 	if (!ops->is_partially_uptodate)
2995 		return seek_data ? end : start;
2996 
2997 	xas_pause(xas);
2998 	rcu_read_unlock();
2999 	folio_lock(folio);
3000 	if (unlikely(folio->mapping != mapping))
3001 		goto unlock;
3002 
3003 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
3004 
3005 	do {
3006 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3007 							seek_data)
3008 			break;
3009 		start = (start + bsz) & ~(bsz - 1);
3010 		offset += bsz;
3011 	} while (offset < folio_size(folio));
3012 unlock:
3013 	folio_unlock(folio);
3014 	rcu_read_lock();
3015 	return start;
3016 }
3017 
3018 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3019 {
3020 	if (xa_is_value(folio))
3021 		return PAGE_SIZE << xas_get_order(xas);
3022 	return folio_size(folio);
3023 }
3024 
3025 /**
3026  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3027  * @mapping: Address space to search.
3028  * @start: First byte to consider.
3029  * @end: Limit of search (exclusive).
3030  * @whence: Either SEEK_HOLE or SEEK_DATA.
3031  *
3032  * If the page cache knows which blocks contain holes and which blocks
3033  * contain data, your filesystem can use this function to implement
3034  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3035  * entirely memory-based such as tmpfs, and filesystems which support
3036  * unwritten extents.
3037  *
3038  * Return: The requested offset on success, or -ENXIO if @whence specifies
3039  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3040  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3041  * and @end contain data.
3042  */
3043 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3044 		loff_t end, int whence)
3045 {
3046 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3047 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3048 	bool seek_data = (whence == SEEK_DATA);
3049 	struct folio *folio;
3050 
3051 	if (end <= start)
3052 		return -ENXIO;
3053 
3054 	rcu_read_lock();
3055 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3056 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3057 		size_t seek_size;
3058 
3059 		if (start < pos) {
3060 			if (!seek_data)
3061 				goto unlock;
3062 			start = pos;
3063 		}
3064 
3065 		seek_size = seek_folio_size(&xas, folio);
3066 		pos = round_up((u64)pos + 1, seek_size);
3067 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3068 				seek_data);
3069 		if (start < pos)
3070 			goto unlock;
3071 		if (start >= end)
3072 			break;
3073 		if (seek_size > PAGE_SIZE)
3074 			xas_set(&xas, pos >> PAGE_SHIFT);
3075 		if (!xa_is_value(folio))
3076 			folio_put(folio);
3077 	}
3078 	if (seek_data)
3079 		start = -ENXIO;
3080 unlock:
3081 	rcu_read_unlock();
3082 	if (folio && !xa_is_value(folio))
3083 		folio_put(folio);
3084 	if (start > end)
3085 		return end;
3086 	return start;
3087 }
3088 
3089 #ifdef CONFIG_MMU
3090 #define MMAP_LOTSAMISS  (100)
3091 /*
3092  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3093  * @vmf - the vm_fault for this fault.
3094  * @folio - the folio to lock.
3095  * @fpin - the pointer to the file we may pin (or is already pinned).
3096  *
3097  * This works similar to lock_folio_or_retry in that it can drop the
3098  * mmap_lock.  It differs in that it actually returns the folio locked
3099  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3100  * to drop the mmap_lock then fpin will point to the pinned file and
3101  * needs to be fput()'ed at a later point.
3102  */
3103 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3104 				     struct file **fpin)
3105 {
3106 	if (folio_trylock(folio))
3107 		return 1;
3108 
3109 	/*
3110 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3111 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3112 	 * is supposed to work. We have way too many special cases..
3113 	 */
3114 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3115 		return 0;
3116 
3117 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3118 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3119 		if (__folio_lock_killable(folio)) {
3120 			/*
3121 			 * We didn't have the right flags to drop the
3122 			 * fault lock, but all fault_handlers only check
3123 			 * for fatal signals if we return VM_FAULT_RETRY,
3124 			 * so we need to drop the fault lock here and
3125 			 * return 0 if we don't have a fpin.
3126 			 */
3127 			if (*fpin == NULL)
3128 				release_fault_lock(vmf);
3129 			return 0;
3130 		}
3131 	} else
3132 		__folio_lock(folio);
3133 
3134 	return 1;
3135 }
3136 
3137 /*
3138  * Synchronous readahead happens when we don't even find a page in the page
3139  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3140  * to drop the mmap sem we return the file that was pinned in order for us to do
3141  * that.  If we didn't pin a file then we return NULL.  The file that is
3142  * returned needs to be fput()'ed when we're done with it.
3143  */
3144 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3145 {
3146 	struct file *file = vmf->vma->vm_file;
3147 	struct file_ra_state *ra = &file->f_ra;
3148 	struct address_space *mapping = file->f_mapping;
3149 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3150 	struct file *fpin = NULL;
3151 	unsigned long vm_flags = vmf->vma->vm_flags;
3152 	unsigned int mmap_miss;
3153 
3154 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3155 	/* Use the readahead code, even if readahead is disabled */
3156 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3157 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3158 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3159 		ra->size = HPAGE_PMD_NR;
3160 		/*
3161 		 * Fetch two PMD folios, so we get the chance to actually
3162 		 * readahead, unless we've been told not to.
3163 		 */
3164 		if (!(vm_flags & VM_RAND_READ))
3165 			ra->size *= 2;
3166 		ra->async_size = HPAGE_PMD_NR;
3167 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3168 		return fpin;
3169 	}
3170 #endif
3171 
3172 	/* If we don't want any read-ahead, don't bother */
3173 	if (vm_flags & VM_RAND_READ)
3174 		return fpin;
3175 	if (!ra->ra_pages)
3176 		return fpin;
3177 
3178 	if (vm_flags & VM_SEQ_READ) {
3179 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3180 		page_cache_sync_ra(&ractl, ra->ra_pages);
3181 		return fpin;
3182 	}
3183 
3184 	/* Avoid banging the cache line if not needed */
3185 	mmap_miss = READ_ONCE(ra->mmap_miss);
3186 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3187 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3188 
3189 	/*
3190 	 * Do we miss much more than hit in this file? If so,
3191 	 * stop bothering with read-ahead. It will only hurt.
3192 	 */
3193 	if (mmap_miss > MMAP_LOTSAMISS)
3194 		return fpin;
3195 
3196 	/*
3197 	 * mmap read-around
3198 	 */
3199 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3200 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3201 	ra->size = ra->ra_pages;
3202 	ra->async_size = ra->ra_pages / 4;
3203 	ractl._index = ra->start;
3204 	page_cache_ra_order(&ractl, ra, 0);
3205 	return fpin;
3206 }
3207 
3208 /*
3209  * Asynchronous readahead happens when we find the page and PG_readahead,
3210  * so we want to possibly extend the readahead further.  We return the file that
3211  * was pinned if we have to drop the mmap_lock in order to do IO.
3212  */
3213 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3214 					    struct folio *folio)
3215 {
3216 	struct file *file = vmf->vma->vm_file;
3217 	struct file_ra_state *ra = &file->f_ra;
3218 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3219 	struct file *fpin = NULL;
3220 	unsigned int mmap_miss;
3221 
3222 	/* If we don't want any read-ahead, don't bother */
3223 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3224 		return fpin;
3225 
3226 	mmap_miss = READ_ONCE(ra->mmap_miss);
3227 	if (mmap_miss)
3228 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3229 
3230 	if (folio_test_readahead(folio)) {
3231 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3232 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3233 	}
3234 	return fpin;
3235 }
3236 
3237 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3238 {
3239 	struct vm_area_struct *vma = vmf->vma;
3240 	vm_fault_t ret = 0;
3241 	pte_t *ptep;
3242 
3243 	/*
3244 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3245 	 * anon folio mapped. The original pagecache folio is not mlocked and
3246 	 * might have been evicted. During a read+clear/modify/write update of
3247 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3248 	 * temporarily clear the PTE under PT lock and might detect it here as
3249 	 * "none" when not holding the PT lock.
3250 	 *
3251 	 * Not rechecking the PTE under PT lock could result in an unexpected
3252 	 * major fault in an mlock'ed region. Recheck only for this special
3253 	 * scenario while holding the PT lock, to not degrade non-mlocked
3254 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3255 	 * the number of times we hold PT lock.
3256 	 */
3257 	if (!(vma->vm_flags & VM_LOCKED))
3258 		return 0;
3259 
3260 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3261 		return 0;
3262 
3263 	ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3264 				     &vmf->ptl);
3265 	if (unlikely(!ptep))
3266 		return VM_FAULT_NOPAGE;
3267 
3268 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3269 		ret = VM_FAULT_NOPAGE;
3270 	} else {
3271 		spin_lock(vmf->ptl);
3272 		if (unlikely(!pte_none(ptep_get(ptep))))
3273 			ret = VM_FAULT_NOPAGE;
3274 		spin_unlock(vmf->ptl);
3275 	}
3276 	pte_unmap(ptep);
3277 	return ret;
3278 }
3279 
3280 /**
3281  * filemap_fault - read in file data for page fault handling
3282  * @vmf:	struct vm_fault containing details of the fault
3283  *
3284  * filemap_fault() is invoked via the vma operations vector for a
3285  * mapped memory region to read in file data during a page fault.
3286  *
3287  * The goto's are kind of ugly, but this streamlines the normal case of having
3288  * it in the page cache, and handles the special cases reasonably without
3289  * having a lot of duplicated code.
3290  *
3291  * vma->vm_mm->mmap_lock must be held on entry.
3292  *
3293  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3294  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3295  *
3296  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3297  * has not been released.
3298  *
3299  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3300  *
3301  * Return: bitwise-OR of %VM_FAULT_ codes.
3302  */
3303 vm_fault_t filemap_fault(struct vm_fault *vmf)
3304 {
3305 	int error;
3306 	struct file *file = vmf->vma->vm_file;
3307 	struct file *fpin = NULL;
3308 	struct address_space *mapping = file->f_mapping;
3309 	struct inode *inode = mapping->host;
3310 	pgoff_t max_idx, index = vmf->pgoff;
3311 	struct folio *folio;
3312 	vm_fault_t ret = 0;
3313 	bool mapping_locked = false;
3314 
3315 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3316 	if (unlikely(index >= max_idx))
3317 		return VM_FAULT_SIGBUS;
3318 
3319 	trace_mm_filemap_fault(mapping, index);
3320 
3321 	/*
3322 	 * Do we have something in the page cache already?
3323 	 */
3324 	folio = filemap_get_folio(mapping, index);
3325 	if (likely(!IS_ERR(folio))) {
3326 		/*
3327 		 * We found the page, so try async readahead before waiting for
3328 		 * the lock.
3329 		 */
3330 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3331 			fpin = do_async_mmap_readahead(vmf, folio);
3332 		if (unlikely(!folio_test_uptodate(folio))) {
3333 			filemap_invalidate_lock_shared(mapping);
3334 			mapping_locked = true;
3335 		}
3336 	} else {
3337 		ret = filemap_fault_recheck_pte_none(vmf);
3338 		if (unlikely(ret))
3339 			return ret;
3340 
3341 		/* No page in the page cache at all */
3342 		count_vm_event(PGMAJFAULT);
3343 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3344 		ret = VM_FAULT_MAJOR;
3345 		fpin = do_sync_mmap_readahead(vmf);
3346 retry_find:
3347 		/*
3348 		 * See comment in filemap_create_folio() why we need
3349 		 * invalidate_lock
3350 		 */
3351 		if (!mapping_locked) {
3352 			filemap_invalidate_lock_shared(mapping);
3353 			mapping_locked = true;
3354 		}
3355 		folio = __filemap_get_folio(mapping, index,
3356 					  FGP_CREAT|FGP_FOR_MMAP,
3357 					  vmf->gfp_mask);
3358 		if (IS_ERR(folio)) {
3359 			if (fpin)
3360 				goto out_retry;
3361 			filemap_invalidate_unlock_shared(mapping);
3362 			return VM_FAULT_OOM;
3363 		}
3364 	}
3365 
3366 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3367 		goto out_retry;
3368 
3369 	/* Did it get truncated? */
3370 	if (unlikely(folio->mapping != mapping)) {
3371 		folio_unlock(folio);
3372 		folio_put(folio);
3373 		goto retry_find;
3374 	}
3375 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3376 
3377 	/*
3378 	 * We have a locked folio in the page cache, now we need to check
3379 	 * that it's up-to-date. If not, it is going to be due to an error,
3380 	 * or because readahead was otherwise unable to retrieve it.
3381 	 */
3382 	if (unlikely(!folio_test_uptodate(folio))) {
3383 		/*
3384 		 * If the invalidate lock is not held, the folio was in cache
3385 		 * and uptodate and now it is not. Strange but possible since we
3386 		 * didn't hold the page lock all the time. Let's drop
3387 		 * everything, get the invalidate lock and try again.
3388 		 */
3389 		if (!mapping_locked) {
3390 			folio_unlock(folio);
3391 			folio_put(folio);
3392 			goto retry_find;
3393 		}
3394 
3395 		/*
3396 		 * OK, the folio is really not uptodate. This can be because the
3397 		 * VMA has the VM_RAND_READ flag set, or because an error
3398 		 * arose. Let's read it in directly.
3399 		 */
3400 		goto page_not_uptodate;
3401 	}
3402 
3403 	/*
3404 	 * We've made it this far and we had to drop our mmap_lock, now is the
3405 	 * time to return to the upper layer and have it re-find the vma and
3406 	 * redo the fault.
3407 	 */
3408 	if (fpin) {
3409 		folio_unlock(folio);
3410 		goto out_retry;
3411 	}
3412 	if (mapping_locked)
3413 		filemap_invalidate_unlock_shared(mapping);
3414 
3415 	/*
3416 	 * Found the page and have a reference on it.
3417 	 * We must recheck i_size under page lock.
3418 	 */
3419 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3420 	if (unlikely(index >= max_idx)) {
3421 		folio_unlock(folio);
3422 		folio_put(folio);
3423 		return VM_FAULT_SIGBUS;
3424 	}
3425 
3426 	vmf->page = folio_file_page(folio, index);
3427 	return ret | VM_FAULT_LOCKED;
3428 
3429 page_not_uptodate:
3430 	/*
3431 	 * Umm, take care of errors if the page isn't up-to-date.
3432 	 * Try to re-read it _once_. We do this synchronously,
3433 	 * because there really aren't any performance issues here
3434 	 * and we need to check for errors.
3435 	 */
3436 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3437 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3438 	if (fpin)
3439 		goto out_retry;
3440 	folio_put(folio);
3441 
3442 	if (!error || error == AOP_TRUNCATED_PAGE)
3443 		goto retry_find;
3444 	filemap_invalidate_unlock_shared(mapping);
3445 
3446 	return VM_FAULT_SIGBUS;
3447 
3448 out_retry:
3449 	/*
3450 	 * We dropped the mmap_lock, we need to return to the fault handler to
3451 	 * re-find the vma and come back and find our hopefully still populated
3452 	 * page.
3453 	 */
3454 	if (!IS_ERR(folio))
3455 		folio_put(folio);
3456 	if (mapping_locked)
3457 		filemap_invalidate_unlock_shared(mapping);
3458 	if (fpin)
3459 		fput(fpin);
3460 	return ret | VM_FAULT_RETRY;
3461 }
3462 EXPORT_SYMBOL(filemap_fault);
3463 
3464 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3465 		pgoff_t start)
3466 {
3467 	struct mm_struct *mm = vmf->vma->vm_mm;
3468 
3469 	/* Huge page is mapped? No need to proceed. */
3470 	if (pmd_trans_huge(*vmf->pmd)) {
3471 		folio_unlock(folio);
3472 		folio_put(folio);
3473 		return true;
3474 	}
3475 
3476 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3477 		struct page *page = folio_file_page(folio, start);
3478 		vm_fault_t ret = do_set_pmd(vmf, page);
3479 		if (!ret) {
3480 			/* The page is mapped successfully, reference consumed. */
3481 			folio_unlock(folio);
3482 			return true;
3483 		}
3484 	}
3485 
3486 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3487 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3488 
3489 	return false;
3490 }
3491 
3492 static struct folio *next_uptodate_folio(struct xa_state *xas,
3493 		struct address_space *mapping, pgoff_t end_pgoff)
3494 {
3495 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3496 	unsigned long max_idx;
3497 
3498 	do {
3499 		if (!folio)
3500 			return NULL;
3501 		if (xas_retry(xas, folio))
3502 			continue;
3503 		if (xa_is_value(folio))
3504 			continue;
3505 		if (folio_test_locked(folio))
3506 			continue;
3507 		if (!folio_try_get(folio))
3508 			continue;
3509 		/* Has the page moved or been split? */
3510 		if (unlikely(folio != xas_reload(xas)))
3511 			goto skip;
3512 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3513 			goto skip;
3514 		if (!folio_trylock(folio))
3515 			goto skip;
3516 		if (folio->mapping != mapping)
3517 			goto unlock;
3518 		if (!folio_test_uptodate(folio))
3519 			goto unlock;
3520 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3521 		if (xas->xa_index >= max_idx)
3522 			goto unlock;
3523 		return folio;
3524 unlock:
3525 		folio_unlock(folio);
3526 skip:
3527 		folio_put(folio);
3528 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3529 
3530 	return NULL;
3531 }
3532 
3533 /*
3534  * Map page range [start_page, start_page + nr_pages) of folio.
3535  * start_page is gotten from start by folio_page(folio, start)
3536  */
3537 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3538 			struct folio *folio, unsigned long start,
3539 			unsigned long addr, unsigned int nr_pages,
3540 			unsigned long *rss, unsigned int *mmap_miss)
3541 {
3542 	vm_fault_t ret = 0;
3543 	struct page *page = folio_page(folio, start);
3544 	unsigned int count = 0;
3545 	pte_t *old_ptep = vmf->pte;
3546 
3547 	do {
3548 		if (PageHWPoison(page + count))
3549 			goto skip;
3550 
3551 		/*
3552 		 * If there are too many folios that are recently evicted
3553 		 * in a file, they will probably continue to be evicted.
3554 		 * In such situation, read-ahead is only a waste of IO.
3555 		 * Don't decrease mmap_miss in this scenario to make sure
3556 		 * we can stop read-ahead.
3557 		 */
3558 		if (!folio_test_workingset(folio))
3559 			(*mmap_miss)++;
3560 
3561 		/*
3562 		 * NOTE: If there're PTE markers, we'll leave them to be
3563 		 * handled in the specific fault path, and it'll prohibit the
3564 		 * fault-around logic.
3565 		 */
3566 		if (!pte_none(ptep_get(&vmf->pte[count])))
3567 			goto skip;
3568 
3569 		count++;
3570 		continue;
3571 skip:
3572 		if (count) {
3573 			set_pte_range(vmf, folio, page, count, addr);
3574 			*rss += count;
3575 			folio_ref_add(folio, count);
3576 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3577 				ret = VM_FAULT_NOPAGE;
3578 		}
3579 
3580 		count++;
3581 		page += count;
3582 		vmf->pte += count;
3583 		addr += count * PAGE_SIZE;
3584 		count = 0;
3585 	} while (--nr_pages > 0);
3586 
3587 	if (count) {
3588 		set_pte_range(vmf, folio, page, count, addr);
3589 		*rss += count;
3590 		folio_ref_add(folio, count);
3591 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3592 			ret = VM_FAULT_NOPAGE;
3593 	}
3594 
3595 	vmf->pte = old_ptep;
3596 
3597 	return ret;
3598 }
3599 
3600 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3601 		struct folio *folio, unsigned long addr,
3602 		unsigned long *rss, unsigned int *mmap_miss)
3603 {
3604 	vm_fault_t ret = 0;
3605 	struct page *page = &folio->page;
3606 
3607 	if (PageHWPoison(page))
3608 		return ret;
3609 
3610 	/* See comment of filemap_map_folio_range() */
3611 	if (!folio_test_workingset(folio))
3612 		(*mmap_miss)++;
3613 
3614 	/*
3615 	 * NOTE: If there're PTE markers, we'll leave them to be
3616 	 * handled in the specific fault path, and it'll prohibit
3617 	 * the fault-around logic.
3618 	 */
3619 	if (!pte_none(ptep_get(vmf->pte)))
3620 		return ret;
3621 
3622 	if (vmf->address == addr)
3623 		ret = VM_FAULT_NOPAGE;
3624 
3625 	set_pte_range(vmf, folio, page, 1, addr);
3626 	(*rss)++;
3627 	folio_ref_inc(folio);
3628 
3629 	return ret;
3630 }
3631 
3632 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3633 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3634 {
3635 	struct vm_area_struct *vma = vmf->vma;
3636 	struct file *file = vma->vm_file;
3637 	struct address_space *mapping = file->f_mapping;
3638 	pgoff_t file_end, last_pgoff = start_pgoff;
3639 	unsigned long addr;
3640 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3641 	struct folio *folio;
3642 	vm_fault_t ret = 0;
3643 	unsigned long rss = 0;
3644 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3645 
3646 	rcu_read_lock();
3647 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3648 	if (!folio)
3649 		goto out;
3650 
3651 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3652 		ret = VM_FAULT_NOPAGE;
3653 		goto out;
3654 	}
3655 
3656 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3657 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3658 	if (!vmf->pte) {
3659 		folio_unlock(folio);
3660 		folio_put(folio);
3661 		goto out;
3662 	}
3663 
3664 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3665 	if (end_pgoff > file_end)
3666 		end_pgoff = file_end;
3667 
3668 	folio_type = mm_counter_file(folio);
3669 	do {
3670 		unsigned long end;
3671 
3672 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3673 		vmf->pte += xas.xa_index - last_pgoff;
3674 		last_pgoff = xas.xa_index;
3675 		end = folio_next_index(folio) - 1;
3676 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3677 
3678 		if (!folio_test_large(folio))
3679 			ret |= filemap_map_order0_folio(vmf,
3680 					folio, addr, &rss, &mmap_miss);
3681 		else
3682 			ret |= filemap_map_folio_range(vmf, folio,
3683 					xas.xa_index - folio->index, addr,
3684 					nr_pages, &rss, &mmap_miss);
3685 
3686 		folio_unlock(folio);
3687 		folio_put(folio);
3688 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3689 	add_mm_counter(vma->vm_mm, folio_type, rss);
3690 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3691 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3692 out:
3693 	rcu_read_unlock();
3694 
3695 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3696 	if (mmap_miss >= mmap_miss_saved)
3697 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3698 	else
3699 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3700 
3701 	return ret;
3702 }
3703 EXPORT_SYMBOL(filemap_map_pages);
3704 
3705 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3706 {
3707 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3708 	struct folio *folio = page_folio(vmf->page);
3709 	vm_fault_t ret = VM_FAULT_LOCKED;
3710 
3711 	sb_start_pagefault(mapping->host->i_sb);
3712 	file_update_time(vmf->vma->vm_file);
3713 	folio_lock(folio);
3714 	if (folio->mapping != mapping) {
3715 		folio_unlock(folio);
3716 		ret = VM_FAULT_NOPAGE;
3717 		goto out;
3718 	}
3719 	/*
3720 	 * We mark the folio dirty already here so that when freeze is in
3721 	 * progress, we are guaranteed that writeback during freezing will
3722 	 * see the dirty folio and writeprotect it again.
3723 	 */
3724 	folio_mark_dirty(folio);
3725 	folio_wait_stable(folio);
3726 out:
3727 	sb_end_pagefault(mapping->host->i_sb);
3728 	return ret;
3729 }
3730 
3731 const struct vm_operations_struct generic_file_vm_ops = {
3732 	.fault		= filemap_fault,
3733 	.map_pages	= filemap_map_pages,
3734 	.page_mkwrite	= filemap_page_mkwrite,
3735 };
3736 
3737 /* This is used for a general mmap of a disk file */
3738 
3739 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3740 {
3741 	struct address_space *mapping = file->f_mapping;
3742 
3743 	if (!mapping->a_ops->read_folio)
3744 		return -ENOEXEC;
3745 	file_accessed(file);
3746 	vma->vm_ops = &generic_file_vm_ops;
3747 	return 0;
3748 }
3749 
3750 /*
3751  * This is for filesystems which do not implement ->writepage.
3752  */
3753 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3754 {
3755 	if (vma_is_shared_maywrite(vma))
3756 		return -EINVAL;
3757 	return generic_file_mmap(file, vma);
3758 }
3759 #else
3760 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3761 {
3762 	return VM_FAULT_SIGBUS;
3763 }
3764 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3765 {
3766 	return -ENOSYS;
3767 }
3768 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3769 {
3770 	return -ENOSYS;
3771 }
3772 #endif /* CONFIG_MMU */
3773 
3774 EXPORT_SYMBOL(filemap_page_mkwrite);
3775 EXPORT_SYMBOL(generic_file_mmap);
3776 EXPORT_SYMBOL(generic_file_readonly_mmap);
3777 
3778 static struct folio *do_read_cache_folio(struct address_space *mapping,
3779 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3780 {
3781 	struct folio *folio;
3782 	int err;
3783 
3784 	if (!filler)
3785 		filler = mapping->a_ops->read_folio;
3786 repeat:
3787 	folio = filemap_get_folio(mapping, index);
3788 	if (IS_ERR(folio)) {
3789 		folio = filemap_alloc_folio(gfp,
3790 					    mapping_min_folio_order(mapping));
3791 		if (!folio)
3792 			return ERR_PTR(-ENOMEM);
3793 		index = mapping_align_index(mapping, index);
3794 		err = filemap_add_folio(mapping, folio, index, gfp);
3795 		if (unlikely(err)) {
3796 			folio_put(folio);
3797 			if (err == -EEXIST)
3798 				goto repeat;
3799 			/* Presumably ENOMEM for xarray node */
3800 			return ERR_PTR(err);
3801 		}
3802 
3803 		goto filler;
3804 	}
3805 	if (folio_test_uptodate(folio))
3806 		goto out;
3807 
3808 	if (!folio_trylock(folio)) {
3809 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3810 		goto repeat;
3811 	}
3812 
3813 	/* Folio was truncated from mapping */
3814 	if (!folio->mapping) {
3815 		folio_unlock(folio);
3816 		folio_put(folio);
3817 		goto repeat;
3818 	}
3819 
3820 	/* Someone else locked and filled the page in a very small window */
3821 	if (folio_test_uptodate(folio)) {
3822 		folio_unlock(folio);
3823 		goto out;
3824 	}
3825 
3826 filler:
3827 	err = filemap_read_folio(file, filler, folio);
3828 	if (err) {
3829 		folio_put(folio);
3830 		if (err == AOP_TRUNCATED_PAGE)
3831 			goto repeat;
3832 		return ERR_PTR(err);
3833 	}
3834 
3835 out:
3836 	folio_mark_accessed(folio);
3837 	return folio;
3838 }
3839 
3840 /**
3841  * read_cache_folio - Read into page cache, fill it if needed.
3842  * @mapping: The address_space to read from.
3843  * @index: The index to read.
3844  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3845  * @file: Passed to filler function, may be NULL if not required.
3846  *
3847  * Read one page into the page cache.  If it succeeds, the folio returned
3848  * will contain @index, but it may not be the first page of the folio.
3849  *
3850  * If the filler function returns an error, it will be returned to the
3851  * caller.
3852  *
3853  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3854  * Return: An uptodate folio on success, ERR_PTR() on failure.
3855  */
3856 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3857 		filler_t filler, struct file *file)
3858 {
3859 	return do_read_cache_folio(mapping, index, filler, file,
3860 			mapping_gfp_mask(mapping));
3861 }
3862 EXPORT_SYMBOL(read_cache_folio);
3863 
3864 /**
3865  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3866  * @mapping:	The address_space for the folio.
3867  * @index:	The index that the allocated folio will contain.
3868  * @gfp:	The page allocator flags to use if allocating.
3869  *
3870  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3871  * any new memory allocations done using the specified allocation flags.
3872  *
3873  * The most likely error from this function is EIO, but ENOMEM is
3874  * possible and so is EINTR.  If ->read_folio returns another error,
3875  * that will be returned to the caller.
3876  *
3877  * The function expects mapping->invalidate_lock to be already held.
3878  *
3879  * Return: Uptodate folio on success, ERR_PTR() on failure.
3880  */
3881 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3882 		pgoff_t index, gfp_t gfp)
3883 {
3884 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3885 }
3886 EXPORT_SYMBOL(mapping_read_folio_gfp);
3887 
3888 static struct page *do_read_cache_page(struct address_space *mapping,
3889 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3890 {
3891 	struct folio *folio;
3892 
3893 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3894 	if (IS_ERR(folio))
3895 		return &folio->page;
3896 	return folio_file_page(folio, index);
3897 }
3898 
3899 struct page *read_cache_page(struct address_space *mapping,
3900 			pgoff_t index, filler_t *filler, struct file *file)
3901 {
3902 	return do_read_cache_page(mapping, index, filler, file,
3903 			mapping_gfp_mask(mapping));
3904 }
3905 EXPORT_SYMBOL(read_cache_page);
3906 
3907 /**
3908  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3909  * @mapping:	the page's address_space
3910  * @index:	the page index
3911  * @gfp:	the page allocator flags to use if allocating
3912  *
3913  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3914  * any new page allocations done using the specified allocation flags.
3915  *
3916  * If the page does not get brought uptodate, return -EIO.
3917  *
3918  * The function expects mapping->invalidate_lock to be already held.
3919  *
3920  * Return: up to date page on success, ERR_PTR() on failure.
3921  */
3922 struct page *read_cache_page_gfp(struct address_space *mapping,
3923 				pgoff_t index,
3924 				gfp_t gfp)
3925 {
3926 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3927 }
3928 EXPORT_SYMBOL(read_cache_page_gfp);
3929 
3930 /*
3931  * Warn about a page cache invalidation failure during a direct I/O write.
3932  */
3933 static void dio_warn_stale_pagecache(struct file *filp)
3934 {
3935 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3936 	char pathname[128];
3937 	char *path;
3938 
3939 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3940 	if (__ratelimit(&_rs)) {
3941 		path = file_path(filp, pathname, sizeof(pathname));
3942 		if (IS_ERR(path))
3943 			path = "(unknown)";
3944 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3945 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3946 			current->comm);
3947 	}
3948 }
3949 
3950 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3951 {
3952 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3953 
3954 	if (mapping->nrpages &&
3955 	    invalidate_inode_pages2_range(mapping,
3956 			iocb->ki_pos >> PAGE_SHIFT,
3957 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3958 		dio_warn_stale_pagecache(iocb->ki_filp);
3959 }
3960 
3961 ssize_t
3962 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3963 {
3964 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3965 	size_t write_len = iov_iter_count(from);
3966 	ssize_t written;
3967 
3968 	/*
3969 	 * If a page can not be invalidated, return 0 to fall back
3970 	 * to buffered write.
3971 	 */
3972 	written = kiocb_invalidate_pages(iocb, write_len);
3973 	if (written) {
3974 		if (written == -EBUSY)
3975 			return 0;
3976 		return written;
3977 	}
3978 
3979 	written = mapping->a_ops->direct_IO(iocb, from);
3980 
3981 	/*
3982 	 * Finally, try again to invalidate clean pages which might have been
3983 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3984 	 * if the source of the write was an mmap'ed region of the file
3985 	 * we're writing.  Either one is a pretty crazy thing to do,
3986 	 * so we don't support it 100%.  If this invalidation
3987 	 * fails, tough, the write still worked...
3988 	 *
3989 	 * Most of the time we do not need this since dio_complete() will do
3990 	 * the invalidation for us. However there are some file systems that
3991 	 * do not end up with dio_complete() being called, so let's not break
3992 	 * them by removing it completely.
3993 	 *
3994 	 * Noticeable example is a blkdev_direct_IO().
3995 	 *
3996 	 * Skip invalidation for async writes or if mapping has no pages.
3997 	 */
3998 	if (written > 0) {
3999 		struct inode *inode = mapping->host;
4000 		loff_t pos = iocb->ki_pos;
4001 
4002 		kiocb_invalidate_post_direct_write(iocb, written);
4003 		pos += written;
4004 		write_len -= written;
4005 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4006 			i_size_write(inode, pos);
4007 			mark_inode_dirty(inode);
4008 		}
4009 		iocb->ki_pos = pos;
4010 	}
4011 	if (written != -EIOCBQUEUED)
4012 		iov_iter_revert(from, write_len - iov_iter_count(from));
4013 	return written;
4014 }
4015 EXPORT_SYMBOL(generic_file_direct_write);
4016 
4017 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4018 {
4019 	struct file *file = iocb->ki_filp;
4020 	loff_t pos = iocb->ki_pos;
4021 	struct address_space *mapping = file->f_mapping;
4022 	const struct address_space_operations *a_ops = mapping->a_ops;
4023 	size_t chunk = mapping_max_folio_size(mapping);
4024 	long status = 0;
4025 	ssize_t written = 0;
4026 
4027 	do {
4028 		struct folio *folio;
4029 		size_t offset;		/* Offset into folio */
4030 		size_t bytes;		/* Bytes to write to folio */
4031 		size_t copied;		/* Bytes copied from user */
4032 		void *fsdata = NULL;
4033 
4034 		bytes = iov_iter_count(i);
4035 retry:
4036 		offset = pos & (chunk - 1);
4037 		bytes = min(chunk - offset, bytes);
4038 		balance_dirty_pages_ratelimited(mapping);
4039 
4040 		/*
4041 		 * Bring in the user page that we will copy from _first_.
4042 		 * Otherwise there's a nasty deadlock on copying from the
4043 		 * same page as we're writing to, without it being marked
4044 		 * up-to-date.
4045 		 */
4046 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4047 			status = -EFAULT;
4048 			break;
4049 		}
4050 
4051 		if (fatal_signal_pending(current)) {
4052 			status = -EINTR;
4053 			break;
4054 		}
4055 
4056 		status = a_ops->write_begin(file, mapping, pos, bytes,
4057 						&folio, &fsdata);
4058 		if (unlikely(status < 0))
4059 			break;
4060 
4061 		offset = offset_in_folio(folio, pos);
4062 		if (bytes > folio_size(folio) - offset)
4063 			bytes = folio_size(folio) - offset;
4064 
4065 		if (mapping_writably_mapped(mapping))
4066 			flush_dcache_folio(folio);
4067 
4068 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4069 		flush_dcache_folio(folio);
4070 
4071 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4072 						folio, fsdata);
4073 		if (unlikely(status != copied)) {
4074 			iov_iter_revert(i, copied - max(status, 0L));
4075 			if (unlikely(status < 0))
4076 				break;
4077 		}
4078 		cond_resched();
4079 
4080 		if (unlikely(status == 0)) {
4081 			/*
4082 			 * A short copy made ->write_end() reject the
4083 			 * thing entirely.  Might be memory poisoning
4084 			 * halfway through, might be a race with munmap,
4085 			 * might be severe memory pressure.
4086 			 */
4087 			if (chunk > PAGE_SIZE)
4088 				chunk /= 2;
4089 			if (copied) {
4090 				bytes = copied;
4091 				goto retry;
4092 			}
4093 		} else {
4094 			pos += status;
4095 			written += status;
4096 		}
4097 	} while (iov_iter_count(i));
4098 
4099 	if (!written)
4100 		return status;
4101 	iocb->ki_pos += written;
4102 	return written;
4103 }
4104 EXPORT_SYMBOL(generic_perform_write);
4105 
4106 /**
4107  * __generic_file_write_iter - write data to a file
4108  * @iocb:	IO state structure (file, offset, etc.)
4109  * @from:	iov_iter with data to write
4110  *
4111  * This function does all the work needed for actually writing data to a
4112  * file. It does all basic checks, removes SUID from the file, updates
4113  * modification times and calls proper subroutines depending on whether we
4114  * do direct IO or a standard buffered write.
4115  *
4116  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4117  * object which does not need locking at all.
4118  *
4119  * This function does *not* take care of syncing data in case of O_SYNC write.
4120  * A caller has to handle it. This is mainly due to the fact that we want to
4121  * avoid syncing under i_rwsem.
4122  *
4123  * Return:
4124  * * number of bytes written, even for truncated writes
4125  * * negative error code if no data has been written at all
4126  */
4127 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4128 {
4129 	struct file *file = iocb->ki_filp;
4130 	struct address_space *mapping = file->f_mapping;
4131 	struct inode *inode = mapping->host;
4132 	ssize_t ret;
4133 
4134 	ret = file_remove_privs(file);
4135 	if (ret)
4136 		return ret;
4137 
4138 	ret = file_update_time(file);
4139 	if (ret)
4140 		return ret;
4141 
4142 	if (iocb->ki_flags & IOCB_DIRECT) {
4143 		ret = generic_file_direct_write(iocb, from);
4144 		/*
4145 		 * If the write stopped short of completing, fall back to
4146 		 * buffered writes.  Some filesystems do this for writes to
4147 		 * holes, for example.  For DAX files, a buffered write will
4148 		 * not succeed (even if it did, DAX does not handle dirty
4149 		 * page-cache pages correctly).
4150 		 */
4151 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4152 			return ret;
4153 		return direct_write_fallback(iocb, from, ret,
4154 				generic_perform_write(iocb, from));
4155 	}
4156 
4157 	return generic_perform_write(iocb, from);
4158 }
4159 EXPORT_SYMBOL(__generic_file_write_iter);
4160 
4161 /**
4162  * generic_file_write_iter - write data to a file
4163  * @iocb:	IO state structure
4164  * @from:	iov_iter with data to write
4165  *
4166  * This is a wrapper around __generic_file_write_iter() to be used by most
4167  * filesystems. It takes care of syncing the file in case of O_SYNC file
4168  * and acquires i_rwsem as needed.
4169  * Return:
4170  * * negative error code if no data has been written at all of
4171  *   vfs_fsync_range() failed for a synchronous write
4172  * * number of bytes written, even for truncated writes
4173  */
4174 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4175 {
4176 	struct file *file = iocb->ki_filp;
4177 	struct inode *inode = file->f_mapping->host;
4178 	ssize_t ret;
4179 
4180 	inode_lock(inode);
4181 	ret = generic_write_checks(iocb, from);
4182 	if (ret > 0)
4183 		ret = __generic_file_write_iter(iocb, from);
4184 	inode_unlock(inode);
4185 
4186 	if (ret > 0)
4187 		ret = generic_write_sync(iocb, ret);
4188 	return ret;
4189 }
4190 EXPORT_SYMBOL(generic_file_write_iter);
4191 
4192 /**
4193  * filemap_release_folio() - Release fs-specific metadata on a folio.
4194  * @folio: The folio which the kernel is trying to free.
4195  * @gfp: Memory allocation flags (and I/O mode).
4196  *
4197  * The address_space is trying to release any data attached to a folio
4198  * (presumably at folio->private).
4199  *
4200  * This will also be called if the private_2 flag is set on a page,
4201  * indicating that the folio has other metadata associated with it.
4202  *
4203  * The @gfp argument specifies whether I/O may be performed to release
4204  * this page (__GFP_IO), and whether the call may block
4205  * (__GFP_RECLAIM & __GFP_FS).
4206  *
4207  * Return: %true if the release was successful, otherwise %false.
4208  */
4209 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4210 {
4211 	struct address_space * const mapping = folio->mapping;
4212 
4213 	BUG_ON(!folio_test_locked(folio));
4214 	if (!folio_needs_release(folio))
4215 		return true;
4216 	if (folio_test_writeback(folio))
4217 		return false;
4218 
4219 	if (mapping && mapping->a_ops->release_folio)
4220 		return mapping->a_ops->release_folio(folio, gfp);
4221 	return try_to_free_buffers(folio);
4222 }
4223 EXPORT_SYMBOL(filemap_release_folio);
4224 
4225 /**
4226  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4227  * @inode: The inode to flush
4228  * @flush: Set to write back rather than simply invalidate.
4229  * @start: First byte to in range.
4230  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4231  *       onwards.
4232  *
4233  * Invalidate all the folios on an inode that contribute to the specified
4234  * range, possibly writing them back first.  Whilst the operation is
4235  * undertaken, the invalidate lock is held to prevent new folios from being
4236  * installed.
4237  */
4238 int filemap_invalidate_inode(struct inode *inode, bool flush,
4239 			     loff_t start, loff_t end)
4240 {
4241 	struct address_space *mapping = inode->i_mapping;
4242 	pgoff_t first = start >> PAGE_SHIFT;
4243 	pgoff_t last = end >> PAGE_SHIFT;
4244 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4245 
4246 	if (!mapping || !mapping->nrpages || end < start)
4247 		goto out;
4248 
4249 	/* Prevent new folios from being added to the inode. */
4250 	filemap_invalidate_lock(mapping);
4251 
4252 	if (!mapping->nrpages)
4253 		goto unlock;
4254 
4255 	unmap_mapping_pages(mapping, first, nr, false);
4256 
4257 	/* Write back the data if we're asked to. */
4258 	if (flush) {
4259 		struct writeback_control wbc = {
4260 			.sync_mode	= WB_SYNC_ALL,
4261 			.nr_to_write	= LONG_MAX,
4262 			.range_start	= start,
4263 			.range_end	= end,
4264 		};
4265 
4266 		filemap_fdatawrite_wbc(mapping, &wbc);
4267 	}
4268 
4269 	/* Wait for writeback to complete on all folios and discard. */
4270 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4271 
4272 unlock:
4273 	filemap_invalidate_unlock(mapping);
4274 out:
4275 	return filemap_check_errors(mapping);
4276 }
4277 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4278 
4279 #ifdef CONFIG_CACHESTAT_SYSCALL
4280 /**
4281  * filemap_cachestat() - compute the page cache statistics of a mapping
4282  * @mapping:	The mapping to compute the statistics for.
4283  * @first_index:	The starting page cache index.
4284  * @last_index:	The final page index (inclusive).
4285  * @cs:	the cachestat struct to write the result to.
4286  *
4287  * This will query the page cache statistics of a mapping in the
4288  * page range of [first_index, last_index] (inclusive). The statistics
4289  * queried include: number of dirty pages, number of pages marked for
4290  * writeback, and the number of (recently) evicted pages.
4291  */
4292 static void filemap_cachestat(struct address_space *mapping,
4293 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4294 {
4295 	XA_STATE(xas, &mapping->i_pages, first_index);
4296 	struct folio *folio;
4297 
4298 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4299 	mem_cgroup_flush_stats_ratelimited(NULL);
4300 
4301 	rcu_read_lock();
4302 	xas_for_each(&xas, folio, last_index) {
4303 		int order;
4304 		unsigned long nr_pages;
4305 		pgoff_t folio_first_index, folio_last_index;
4306 
4307 		/*
4308 		 * Don't deref the folio. It is not pinned, and might
4309 		 * get freed (and reused) underneath us.
4310 		 *
4311 		 * We *could* pin it, but that would be expensive for
4312 		 * what should be a fast and lightweight syscall.
4313 		 *
4314 		 * Instead, derive all information of interest from
4315 		 * the rcu-protected xarray.
4316 		 */
4317 
4318 		if (xas_retry(&xas, folio))
4319 			continue;
4320 
4321 		order = xas_get_order(&xas);
4322 		nr_pages = 1 << order;
4323 		folio_first_index = round_down(xas.xa_index, 1 << order);
4324 		folio_last_index = folio_first_index + nr_pages - 1;
4325 
4326 		/* Folios might straddle the range boundaries, only count covered pages */
4327 		if (folio_first_index < first_index)
4328 			nr_pages -= first_index - folio_first_index;
4329 
4330 		if (folio_last_index > last_index)
4331 			nr_pages -= folio_last_index - last_index;
4332 
4333 		if (xa_is_value(folio)) {
4334 			/* page is evicted */
4335 			void *shadow = (void *)folio;
4336 			bool workingset; /* not used */
4337 
4338 			cs->nr_evicted += nr_pages;
4339 
4340 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4341 			if (shmem_mapping(mapping)) {
4342 				/* shmem file - in swap cache */
4343 				swp_entry_t swp = radix_to_swp_entry(folio);
4344 
4345 				/* swapin error results in poisoned entry */
4346 				if (non_swap_entry(swp))
4347 					goto resched;
4348 
4349 				/*
4350 				 * Getting a swap entry from the shmem
4351 				 * inode means we beat
4352 				 * shmem_unuse(). rcu_read_lock()
4353 				 * ensures swapoff waits for us before
4354 				 * freeing the swapper space. However,
4355 				 * we can race with swapping and
4356 				 * invalidation, so there might not be
4357 				 * a shadow in the swapcache (yet).
4358 				 */
4359 				shadow = get_shadow_from_swap_cache(swp);
4360 				if (!shadow)
4361 					goto resched;
4362 			}
4363 #endif
4364 			if (workingset_test_recent(shadow, true, &workingset, false))
4365 				cs->nr_recently_evicted += nr_pages;
4366 
4367 			goto resched;
4368 		}
4369 
4370 		/* page is in cache */
4371 		cs->nr_cache += nr_pages;
4372 
4373 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4374 			cs->nr_dirty += nr_pages;
4375 
4376 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4377 			cs->nr_writeback += nr_pages;
4378 
4379 resched:
4380 		if (need_resched()) {
4381 			xas_pause(&xas);
4382 			cond_resched_rcu();
4383 		}
4384 	}
4385 	rcu_read_unlock();
4386 }
4387 
4388 /*
4389  * The cachestat(2) system call.
4390  *
4391  * cachestat() returns the page cache statistics of a file in the
4392  * bytes range specified by `off` and `len`: number of cached pages,
4393  * number of dirty pages, number of pages marked for writeback,
4394  * number of evicted pages, and number of recently evicted pages.
4395  *
4396  * An evicted page is a page that is previously in the page cache
4397  * but has been evicted since. A page is recently evicted if its last
4398  * eviction was recent enough that its reentry to the cache would
4399  * indicate that it is actively being used by the system, and that
4400  * there is memory pressure on the system.
4401  *
4402  * `off` and `len` must be non-negative integers. If `len` > 0,
4403  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4404  * we will query in the range from `off` to the end of the file.
4405  *
4406  * The `flags` argument is unused for now, but is included for future
4407  * extensibility. User should pass 0 (i.e no flag specified).
4408  *
4409  * Currently, hugetlbfs is not supported.
4410  *
4411  * Because the status of a page can change after cachestat() checks it
4412  * but before it returns to the application, the returned values may
4413  * contain stale information.
4414  *
4415  * return values:
4416  *  zero        - success
4417  *  -EFAULT     - cstat or cstat_range points to an illegal address
4418  *  -EINVAL     - invalid flags
4419  *  -EBADF      - invalid file descriptor
4420  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4421  */
4422 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4423 		struct cachestat_range __user *, cstat_range,
4424 		struct cachestat __user *, cstat, unsigned int, flags)
4425 {
4426 	struct fd f = fdget(fd);
4427 	struct address_space *mapping;
4428 	struct cachestat_range csr;
4429 	struct cachestat cs;
4430 	pgoff_t first_index, last_index;
4431 
4432 	if (!fd_file(f))
4433 		return -EBADF;
4434 
4435 	if (copy_from_user(&csr, cstat_range,
4436 			sizeof(struct cachestat_range))) {
4437 		fdput(f);
4438 		return -EFAULT;
4439 	}
4440 
4441 	/* hugetlbfs is not supported */
4442 	if (is_file_hugepages(fd_file(f))) {
4443 		fdput(f);
4444 		return -EOPNOTSUPP;
4445 	}
4446 
4447 	if (flags != 0) {
4448 		fdput(f);
4449 		return -EINVAL;
4450 	}
4451 
4452 	first_index = csr.off >> PAGE_SHIFT;
4453 	last_index =
4454 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4455 	memset(&cs, 0, sizeof(struct cachestat));
4456 	mapping = fd_file(f)->f_mapping;
4457 	filemap_cachestat(mapping, first_index, last_index, &cs);
4458 	fdput(f);
4459 
4460 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4461 		return -EFAULT;
4462 
4463 	return 0;
4464 }
4465 #endif /* CONFIG_CACHESTAT_SYSCALL */
4466