1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <asm/pgalloc.h> 50 #include <asm/tlbflush.h> 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/filemap.h> 55 56 /* 57 * FIXME: remove all knowledge of the buffer layer from the core VM 58 */ 59 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 60 61 #include <asm/mman.h> 62 63 #include "swap.h" 64 65 /* 66 * Shared mappings implemented 30.11.1994. It's not fully working yet, 67 * though. 68 * 69 * Shared mappings now work. 15.8.1995 Bruno. 70 * 71 * finished 'unifying' the page and buffer cache and SMP-threaded the 72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 73 * 74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 75 */ 76 77 /* 78 * Lock ordering: 79 * 80 * ->i_mmap_rwsem (truncate_pagecache) 81 * ->private_lock (__free_pte->block_dirty_folio) 82 * ->swap_lock (exclusive_swap_page, others) 83 * ->i_pages lock 84 * 85 * ->i_rwsem 86 * ->invalidate_lock (acquired by fs in truncate path) 87 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * 89 * ->mmap_lock 90 * ->i_mmap_rwsem 91 * ->page_table_lock or pte_lock (various, mainly in memory.c) 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 93 * 94 * ->mmap_lock 95 * ->invalidate_lock (filemap_fault) 96 * ->lock_page (filemap_fault, access_process_vm) 97 * 98 * ->i_rwsem (generic_perform_write) 99 * ->mmap_lock (fault_in_readable->do_page_fault) 100 * 101 * bdi->wb.list_lock 102 * sb_lock (fs/fs-writeback.c) 103 * ->i_pages lock (__sync_single_inode) 104 * 105 * ->i_mmap_rwsem 106 * ->anon_vma.lock (vma_merge) 107 * 108 * ->anon_vma.lock 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 110 * 111 * ->page_table_lock or pte_lock 112 * ->swap_lock (try_to_unmap_one) 113 * ->private_lock (try_to_unmap_one) 114 * ->i_pages lock (try_to_unmap_one) 115 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void mapping_set_update(struct xa_state *xas, 128 struct address_space *mapping) 129 { 130 if (dax_mapping(mapping) || shmem_mapping(mapping)) 131 return; 132 xas_set_update(xas, workingset_update_node); 133 xas_set_lru(xas, &shadow_nodes); 134 } 135 136 static void page_cache_delete(struct address_space *mapping, 137 struct folio *folio, void *shadow) 138 { 139 XA_STATE(xas, &mapping->i_pages, folio->index); 140 long nr = 1; 141 142 mapping_set_update(&xas, mapping); 143 144 xas_set_order(&xas, folio->index, folio_order(folio)); 145 nr = folio_nr_pages(folio); 146 147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 148 149 xas_store(&xas, shadow); 150 xas_init_marks(&xas); 151 152 folio->mapping = NULL; 153 /* Leave page->index set: truncation lookup relies upon it */ 154 mapping->nrpages -= nr; 155 } 156 157 static void filemap_unaccount_folio(struct address_space *mapping, 158 struct folio *folio) 159 { 160 long nr; 161 162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 165 current->comm, folio_pfn(folio)); 166 dump_page(&folio->page, "still mapped when deleted"); 167 dump_stack(); 168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 169 170 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 171 int mapcount = page_mapcount(&folio->page); 172 173 if (folio_ref_count(folio) >= mapcount + 2) { 174 /* 175 * All vmas have already been torn down, so it's 176 * a good bet that actually the page is unmapped 177 * and we'd rather not leak it: if we're wrong, 178 * another bad page check should catch it later. 179 */ 180 page_mapcount_reset(&folio->page); 181 folio_ref_sub(folio, mapcount); 182 } 183 } 184 } 185 186 /* hugetlb folios do not participate in page cache accounting. */ 187 if (folio_test_hugetlb(folio)) 188 return; 189 190 nr = folio_nr_pages(folio); 191 192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 193 if (folio_test_swapbacked(folio)) { 194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 195 if (folio_test_pmd_mappable(folio)) 196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 197 } else if (folio_test_pmd_mappable(folio)) { 198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 199 filemap_nr_thps_dec(mapping); 200 } 201 202 /* 203 * At this point folio must be either written or cleaned by 204 * truncate. Dirty folio here signals a bug and loss of 205 * unwritten data - on ordinary filesystems. 206 * 207 * But it's harmless on in-memory filesystems like tmpfs; and can 208 * occur when a driver which did get_user_pages() sets page dirty 209 * before putting it, while the inode is being finally evicted. 210 * 211 * Below fixes dirty accounting after removing the folio entirely 212 * but leaves the dirty flag set: it has no effect for truncated 213 * folio and anyway will be cleared before returning folio to 214 * buddy allocator. 215 */ 216 if (WARN_ON_ONCE(folio_test_dirty(folio) && 217 mapping_can_writeback(mapping))) 218 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 219 } 220 221 /* 222 * Delete a page from the page cache and free it. Caller has to make 223 * sure the page is locked and that nobody else uses it - or that usage 224 * is safe. The caller must hold the i_pages lock. 225 */ 226 void __filemap_remove_folio(struct folio *folio, void *shadow) 227 { 228 struct address_space *mapping = folio->mapping; 229 230 trace_mm_filemap_delete_from_page_cache(folio); 231 filemap_unaccount_folio(mapping, folio); 232 page_cache_delete(mapping, folio, shadow); 233 } 234 235 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 236 { 237 void (*free_folio)(struct folio *); 238 int refs = 1; 239 240 free_folio = mapping->a_ops->free_folio; 241 if (free_folio) 242 free_folio(folio); 243 244 if (folio_test_large(folio)) 245 refs = folio_nr_pages(folio); 246 folio_put_refs(folio, refs); 247 } 248 249 /** 250 * filemap_remove_folio - Remove folio from page cache. 251 * @folio: The folio. 252 * 253 * This must be called only on folios that are locked and have been 254 * verified to be in the page cache. It will never put the folio into 255 * the free list because the caller has a reference on the page. 256 */ 257 void filemap_remove_folio(struct folio *folio) 258 { 259 struct address_space *mapping = folio->mapping; 260 261 BUG_ON(!folio_test_locked(folio)); 262 spin_lock(&mapping->host->i_lock); 263 xa_lock_irq(&mapping->i_pages); 264 __filemap_remove_folio(folio, NULL); 265 xa_unlock_irq(&mapping->i_pages); 266 if (mapping_shrinkable(mapping)) 267 inode_add_lru(mapping->host); 268 spin_unlock(&mapping->host->i_lock); 269 270 filemap_free_folio(mapping, folio); 271 } 272 273 /* 274 * page_cache_delete_batch - delete several folios from page cache 275 * @mapping: the mapping to which folios belong 276 * @fbatch: batch of folios to delete 277 * 278 * The function walks over mapping->i_pages and removes folios passed in 279 * @fbatch from the mapping. The function expects @fbatch to be sorted 280 * by page index and is optimised for it to be dense. 281 * It tolerates holes in @fbatch (mapping entries at those indices are not 282 * modified). 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct folio_batch *fbatch) 288 { 289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 290 long total_pages = 0; 291 int i = 0; 292 struct folio *folio; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, folio, ULONG_MAX) { 296 if (i >= folio_batch_count(fbatch)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(folio)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (folio != fbatch->folios[i]) { 310 VM_BUG_ON_FOLIO(folio->index > 311 fbatch->folios[i]->index, folio); 312 continue; 313 } 314 315 WARN_ON_ONCE(!folio_test_locked(folio)); 316 317 folio->mapping = NULL; 318 /* Leave folio->index set: truncation lookup relies on it */ 319 320 i++; 321 xas_store(&xas, NULL); 322 total_pages += folio_nr_pages(folio); 323 } 324 mapping->nrpages -= total_pages; 325 } 326 327 void delete_from_page_cache_batch(struct address_space *mapping, 328 struct folio_batch *fbatch) 329 { 330 int i; 331 332 if (!folio_batch_count(fbatch)) 333 return; 334 335 spin_lock(&mapping->host->i_lock); 336 xa_lock_irq(&mapping->i_pages); 337 for (i = 0; i < folio_batch_count(fbatch); i++) { 338 struct folio *folio = fbatch->folios[i]; 339 340 trace_mm_filemap_delete_from_page_cache(folio); 341 filemap_unaccount_folio(mapping, folio); 342 } 343 page_cache_delete_batch(mapping, fbatch); 344 xa_unlock_irq(&mapping->i_pages); 345 if (mapping_shrinkable(mapping)) 346 inode_add_lru(mapping->host); 347 spin_unlock(&mapping->host->i_lock); 348 349 for (i = 0; i < folio_batch_count(fbatch); i++) 350 filemap_free_folio(mapping, fbatch->folios[i]); 351 } 352 353 int filemap_check_errors(struct address_space *mapping) 354 { 355 int ret = 0; 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_ENOSPC, &mapping->flags) && 358 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 359 ret = -ENOSPC; 360 if (test_bit(AS_EIO, &mapping->flags) && 361 test_and_clear_bit(AS_EIO, &mapping->flags)) 362 ret = -EIO; 363 return ret; 364 } 365 EXPORT_SYMBOL(filemap_check_errors); 366 367 static int filemap_check_and_keep_errors(struct address_space *mapping) 368 { 369 /* Check for outstanding write errors */ 370 if (test_bit(AS_EIO, &mapping->flags)) 371 return -EIO; 372 if (test_bit(AS_ENOSPC, &mapping->flags)) 373 return -ENOSPC; 374 return 0; 375 } 376 377 /** 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 379 * @mapping: address space structure to write 380 * @wbc: the writeback_control controlling the writeout 381 * 382 * Call writepages on the mapping using the provided wbc to control the 383 * writeout. 384 * 385 * Return: %0 on success, negative error code otherwise. 386 */ 387 int filemap_fdatawrite_wbc(struct address_space *mapping, 388 struct writeback_control *wbc) 389 { 390 int ret; 391 392 if (!mapping_can_writeback(mapping) || 393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 394 return 0; 395 396 wbc_attach_fdatawrite_inode(wbc, mapping->host); 397 ret = do_writepages(mapping, wbc); 398 wbc_detach_inode(wbc); 399 return ret; 400 } 401 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 402 403 /** 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 405 * @mapping: address space structure to write 406 * @start: offset in bytes where the range starts 407 * @end: offset in bytes where the range ends (inclusive) 408 * @sync_mode: enable synchronous operation 409 * 410 * Start writeback against all of a mapping's dirty pages that lie 411 * within the byte offsets <start, end> inclusive. 412 * 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 414 * opposed to a regular memory cleansing writeback. The difference between 415 * these two operations is that if a dirty page/buffer is encountered, it must 416 * be waited upon, and not just skipped over. 417 * 418 * Return: %0 on success, negative error code otherwise. 419 */ 420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 421 loff_t end, int sync_mode) 422 { 423 struct writeback_control wbc = { 424 .sync_mode = sync_mode, 425 .nr_to_write = LONG_MAX, 426 .range_start = start, 427 .range_end = end, 428 }; 429 430 return filemap_fdatawrite_wbc(mapping, &wbc); 431 } 432 433 static inline int __filemap_fdatawrite(struct address_space *mapping, 434 int sync_mode) 435 { 436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 437 } 438 439 int filemap_fdatawrite(struct address_space *mapping) 440 { 441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite); 444 445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 446 loff_t end) 447 { 448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 449 } 450 EXPORT_SYMBOL(filemap_fdatawrite_range); 451 452 /** 453 * filemap_flush - mostly a non-blocking flush 454 * @mapping: target address_space 455 * 456 * This is a mostly non-blocking flush. Not suitable for data-integrity 457 * purposes - I/O may not be started against all dirty pages. 458 * 459 * Return: %0 on success, negative error code otherwise. 460 */ 461 int filemap_flush(struct address_space *mapping) 462 { 463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 464 } 465 EXPORT_SYMBOL(filemap_flush); 466 467 /** 468 * filemap_range_has_page - check if a page exists in range. 469 * @mapping: address space within which to check 470 * @start_byte: offset in bytes where the range starts 471 * @end_byte: offset in bytes where the range ends (inclusive) 472 * 473 * Find at least one page in the range supplied, usually used to check if 474 * direct writing in this range will trigger a writeback. 475 * 476 * Return: %true if at least one page exists in the specified range, 477 * %false otherwise. 478 */ 479 bool filemap_range_has_page(struct address_space *mapping, 480 loff_t start_byte, loff_t end_byte) 481 { 482 struct folio *folio; 483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 484 pgoff_t max = end_byte >> PAGE_SHIFT; 485 486 if (end_byte < start_byte) 487 return false; 488 489 rcu_read_lock(); 490 for (;;) { 491 folio = xas_find(&xas, max); 492 if (xas_retry(&xas, folio)) 493 continue; 494 /* Shadow entries don't count */ 495 if (xa_is_value(folio)) 496 continue; 497 /* 498 * We don't need to try to pin this page; we're about to 499 * release the RCU lock anyway. It is enough to know that 500 * there was a page here recently. 501 */ 502 break; 503 } 504 rcu_read_unlock(); 505 506 return folio != NULL; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct folio_batch fbatch; 516 unsigned nr_folios; 517 518 folio_batch_init(&fbatch); 519 520 while (index <= end) { 521 unsigned i; 522 523 nr_folios = filemap_get_folios_tag(mapping, &index, end, 524 PAGECACHE_TAG_WRITEBACK, &fbatch); 525 526 if (!nr_folios) 527 break; 528 529 for (i = 0; i < nr_folios; i++) { 530 struct folio *folio = fbatch.folios[i]; 531 532 folio_wait_writeback(folio); 533 folio_clear_error(folio); 534 } 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 } 539 540 /** 541 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 546 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 549 * 550 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 553 * 554 * Return: error status of the address space. 555 */ 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 558 { 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 570 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status of the address space. 573 * 574 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 577 */ 578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_byte) 580 { 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(mapping); 583 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 586 /** 587 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 592 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 596 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 599 * 600 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 604 struct address_space *mapping = file->f_mapping; 605 606 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(file); 608 } 609 EXPORT_SYMBOL(file_fdatawait_range); 610 611 /** 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait for 614 * 615 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address space. 618 * 619 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 622 * 623 * Return: error status of the address space. 624 */ 625 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(mapping); 629 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 632 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 635 return mapping->nrpages; 636 } 637 638 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; 644 645 if (end_byte < start_byte) 646 return false; 647 648 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { 650 if (xas_retry(&xas, folio)) 651 continue; 652 if (xa_is_value(folio)) 653 continue; 654 if (folio_test_dirty(folio) || folio_test_locked(folio) || 655 folio_test_writeback(folio)) 656 break; 657 } 658 rcu_read_unlock(); 659 return folio != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0, err2; 680 681 if (lend < lstart) 682 return 0; 683 684 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 WB_SYNC_ALL); 687 /* 688 * Even if the above returned error, the pages may be 689 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 693 if (err != -EIO) 694 __filemap_fdatawait_range(mapping, lstart, lend); 695 } 696 err2 = filemap_check_errors(mapping); 697 if (!err) 698 err = err2; 699 return err; 700 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 703 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 705 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 707 trace_filemap_set_wb_err(mapping, eseq); 708 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 710 711 /** 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance wb_err to current one 714 * @file: struct file on which the error is being reported 715 * 716 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't been any). 719 * 720 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all caught up. 722 * 723 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file descriptor. 732 * 733 * Return: %0 on success, negative error code otherwise. 734 */ 735 int file_check_and_advance_wb_err(struct file *file) 736 { 737 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file->f_mapping; 740 741 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 746 err = errseq_check_and_advance(&mapping->wb_err, 747 &file->f_wb_err); 748 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 750 } 751 752 /* 753 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had on these flags. 756 */ 757 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 760 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 763 /** 764 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the range ends (inclusive) 768 * 769 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 771 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to the very end-of-file (end = -1). 773 * 774 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 777 * Return: %0 on success, negative error code otherwise. 778 */ 779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 781 int err = 0, err2; 782 struct address_space *mapping = file->f_mapping; 783 784 if (lend < lstart) 785 return 0; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_folio - replace a pagecache folio with a new one 803 * @old: folio to be replaced 804 * @new: folio to replace with 805 * 806 * This function replaces a folio in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new folio and 808 * drops it for the old folio. Both the old and new folios must be 809 * locked. This function does not add the new folio to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_folio(struct folio *old, struct folio *new) 815 { 816 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offset); 820 821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); 824 825 folio_get(new); 826 new->mapping = mapping; 827 new->index = offset; 828 829 mem_cgroup_replace_folio(old, new); 830 831 xas_lock_irq(&xas); 832 xas_store(&xas, new); 833 834 old->mapping = NULL; 835 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) 837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) 839 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) 841 __lruvec_stat_sub_folio(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) 843 __lruvec_stat_add_folio(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 845 if (free_folio) 846 free_folio(old); 847 folio_put(old); 848 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 850 851 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, index); 855 int huge = folio_test_hugetlb(folio); 856 bool charged = false; 857 long nr = 1; 858 859 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 860 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 861 mapping_set_update(&xas, mapping); 862 863 if (!huge) { 864 int error = mem_cgroup_charge(folio, NULL, gfp); 865 if (error) 866 return error; 867 charged = true; 868 } 869 870 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 871 xas_set_order(&xas, index, folio_order(folio)); 872 nr = folio_nr_pages(folio); 873 874 gfp &= GFP_RECLAIM_MASK; 875 folio_ref_add(folio, nr); 876 folio->mapping = mapping; 877 folio->index = xas.xa_index; 878 879 do { 880 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 881 void *entry, *old = NULL; 882 883 if (order > folio_order(folio)) 884 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 885 order, gfp); 886 xas_lock_irq(&xas); 887 xas_for_each_conflict(&xas, entry) { 888 old = entry; 889 if (!xa_is_value(entry)) { 890 xas_set_err(&xas, -EEXIST); 891 goto unlock; 892 } 893 } 894 895 if (old) { 896 if (shadowp) 897 *shadowp = old; 898 /* entry may have been split before we acquired lock */ 899 order = xa_get_order(xas.xa, xas.xa_index); 900 if (order > folio_order(folio)) { 901 /* How to handle large swap entries? */ 902 BUG_ON(shmem_mapping(mapping)); 903 xas_split(&xas, old, order); 904 xas_reset(&xas); 905 } 906 } 907 908 xas_store(&xas, folio); 909 if (xas_error(&xas)) 910 goto unlock; 911 912 mapping->nrpages += nr; 913 914 /* hugetlb pages do not participate in page cache accounting */ 915 if (!huge) { 916 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 917 if (folio_test_pmd_mappable(folio)) 918 __lruvec_stat_mod_folio(folio, 919 NR_FILE_THPS, nr); 920 } 921 unlock: 922 xas_unlock_irq(&xas); 923 } while (xas_nomem(&xas, gfp)); 924 925 if (xas_error(&xas)) 926 goto error; 927 928 trace_mm_filemap_add_to_page_cache(folio); 929 return 0; 930 error: 931 if (charged) 932 mem_cgroup_uncharge(folio); 933 folio->mapping = NULL; 934 /* Leave page->index set: truncation relies upon it */ 935 folio_put_refs(folio, nr); 936 return xas_error(&xas); 937 } 938 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 939 940 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 941 pgoff_t index, gfp_t gfp) 942 { 943 void *shadow = NULL; 944 int ret; 945 946 __folio_set_locked(folio); 947 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 948 if (unlikely(ret)) 949 __folio_clear_locked(folio); 950 else { 951 /* 952 * The folio might have been evicted from cache only 953 * recently, in which case it should be activated like 954 * any other repeatedly accessed folio. 955 * The exception is folios getting rewritten; evicting other 956 * data from the working set, only to cache data that will 957 * get overwritten with something else, is a waste of memory. 958 */ 959 WARN_ON_ONCE(folio_test_active(folio)); 960 if (!(gfp & __GFP_WRITE) && shadow) 961 workingset_refault(folio, shadow); 962 folio_add_lru(folio); 963 } 964 return ret; 965 } 966 EXPORT_SYMBOL_GPL(filemap_add_folio); 967 968 #ifdef CONFIG_NUMA 969 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 970 { 971 int n; 972 struct folio *folio; 973 974 if (cpuset_do_page_mem_spread()) { 975 unsigned int cpuset_mems_cookie; 976 do { 977 cpuset_mems_cookie = read_mems_allowed_begin(); 978 n = cpuset_mem_spread_node(); 979 folio = __folio_alloc_node(gfp, order, n); 980 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 981 982 return folio; 983 } 984 return folio_alloc(gfp, order); 985 } 986 EXPORT_SYMBOL(filemap_alloc_folio); 987 #endif 988 989 /* 990 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 991 * 992 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 993 * 994 * @mapping1: the first mapping to lock 995 * @mapping2: the second mapping to lock 996 */ 997 void filemap_invalidate_lock_two(struct address_space *mapping1, 998 struct address_space *mapping2) 999 { 1000 if (mapping1 > mapping2) 1001 swap(mapping1, mapping2); 1002 if (mapping1) 1003 down_write(&mapping1->invalidate_lock); 1004 if (mapping2 && mapping1 != mapping2) 1005 down_write_nested(&mapping2->invalidate_lock, 1); 1006 } 1007 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1008 1009 /* 1010 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1011 * 1012 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1013 * 1014 * @mapping1: the first mapping to unlock 1015 * @mapping2: the second mapping to unlock 1016 */ 1017 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1018 struct address_space *mapping2) 1019 { 1020 if (mapping1) 1021 up_write(&mapping1->invalidate_lock); 1022 if (mapping2 && mapping1 != mapping2) 1023 up_write(&mapping2->invalidate_lock); 1024 } 1025 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1026 1027 /* 1028 * In order to wait for pages to become available there must be 1029 * waitqueues associated with pages. By using a hash table of 1030 * waitqueues where the bucket discipline is to maintain all 1031 * waiters on the same queue and wake all when any of the pages 1032 * become available, and for the woken contexts to check to be 1033 * sure the appropriate page became available, this saves space 1034 * at a cost of "thundering herd" phenomena during rare hash 1035 * collisions. 1036 */ 1037 #define PAGE_WAIT_TABLE_BITS 8 1038 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1039 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1040 1041 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1042 { 1043 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1044 } 1045 1046 void __init pagecache_init(void) 1047 { 1048 int i; 1049 1050 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1051 init_waitqueue_head(&folio_wait_table[i]); 1052 1053 page_writeback_init(); 1054 } 1055 1056 /* 1057 * The page wait code treats the "wait->flags" somewhat unusually, because 1058 * we have multiple different kinds of waits, not just the usual "exclusive" 1059 * one. 1060 * 1061 * We have: 1062 * 1063 * (a) no special bits set: 1064 * 1065 * We're just waiting for the bit to be released, and when a waker 1066 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1067 * and remove it from the wait queue. 1068 * 1069 * Simple and straightforward. 1070 * 1071 * (b) WQ_FLAG_EXCLUSIVE: 1072 * 1073 * The waiter is waiting to get the lock, and only one waiter should 1074 * be woken up to avoid any thundering herd behavior. We'll set the 1075 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1076 * 1077 * This is the traditional exclusive wait. 1078 * 1079 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1080 * 1081 * The waiter is waiting to get the bit, and additionally wants the 1082 * lock to be transferred to it for fair lock behavior. If the lock 1083 * cannot be taken, we stop walking the wait queue without waking 1084 * the waiter. 1085 * 1086 * This is the "fair lock handoff" case, and in addition to setting 1087 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1088 * that it now has the lock. 1089 */ 1090 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1091 { 1092 unsigned int flags; 1093 struct wait_page_key *key = arg; 1094 struct wait_page_queue *wait_page 1095 = container_of(wait, struct wait_page_queue, wait); 1096 1097 if (!wake_page_match(wait_page, key)) 1098 return 0; 1099 1100 /* 1101 * If it's a lock handoff wait, we get the bit for it, and 1102 * stop walking (and do not wake it up) if we can't. 1103 */ 1104 flags = wait->flags; 1105 if (flags & WQ_FLAG_EXCLUSIVE) { 1106 if (test_bit(key->bit_nr, &key->folio->flags)) 1107 return -1; 1108 if (flags & WQ_FLAG_CUSTOM) { 1109 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1110 return -1; 1111 flags |= WQ_FLAG_DONE; 1112 } 1113 } 1114 1115 /* 1116 * We are holding the wait-queue lock, but the waiter that 1117 * is waiting for this will be checking the flags without 1118 * any locking. 1119 * 1120 * So update the flags atomically, and wake up the waiter 1121 * afterwards to avoid any races. This store-release pairs 1122 * with the load-acquire in folio_wait_bit_common(). 1123 */ 1124 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1125 wake_up_state(wait->private, mode); 1126 1127 /* 1128 * Ok, we have successfully done what we're waiting for, 1129 * and we can unconditionally remove the wait entry. 1130 * 1131 * Note that this pairs with the "finish_wait()" in the 1132 * waiter, and has to be the absolute last thing we do. 1133 * After this list_del_init(&wait->entry) the wait entry 1134 * might be de-allocated and the process might even have 1135 * exited. 1136 */ 1137 list_del_init_careful(&wait->entry); 1138 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1139 } 1140 1141 static void folio_wake_bit(struct folio *folio, int bit_nr) 1142 { 1143 wait_queue_head_t *q = folio_waitqueue(folio); 1144 struct wait_page_key key; 1145 unsigned long flags; 1146 1147 key.folio = folio; 1148 key.bit_nr = bit_nr; 1149 key.page_match = 0; 1150 1151 spin_lock_irqsave(&q->lock, flags); 1152 __wake_up_locked_key(q, TASK_NORMAL, &key); 1153 1154 /* 1155 * It's possible to miss clearing waiters here, when we woke our page 1156 * waiters, but the hashed waitqueue has waiters for other pages on it. 1157 * That's okay, it's a rare case. The next waker will clear it. 1158 * 1159 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1160 * other), the flag may be cleared in the course of freeing the page; 1161 * but that is not required for correctness. 1162 */ 1163 if (!waitqueue_active(q) || !key.page_match) 1164 folio_clear_waiters(folio); 1165 1166 spin_unlock_irqrestore(&q->lock, flags); 1167 } 1168 1169 /* 1170 * A choice of three behaviors for folio_wait_bit_common(): 1171 */ 1172 enum behavior { 1173 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1174 * __folio_lock() waiting on then setting PG_locked. 1175 */ 1176 SHARED, /* Hold ref to page and check the bit when woken, like 1177 * folio_wait_writeback() waiting on PG_writeback. 1178 */ 1179 DROP, /* Drop ref to page before wait, no check when woken, 1180 * like folio_put_wait_locked() on PG_locked. 1181 */ 1182 }; 1183 1184 /* 1185 * Attempt to check (or get) the folio flag, and mark us done 1186 * if successful. 1187 */ 1188 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1189 struct wait_queue_entry *wait) 1190 { 1191 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1192 if (test_and_set_bit(bit_nr, &folio->flags)) 1193 return false; 1194 } else if (test_bit(bit_nr, &folio->flags)) 1195 return false; 1196 1197 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1198 return true; 1199 } 1200 1201 /* How many times do we accept lock stealing from under a waiter? */ 1202 int sysctl_page_lock_unfairness = 5; 1203 1204 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1205 int state, enum behavior behavior) 1206 { 1207 wait_queue_head_t *q = folio_waitqueue(folio); 1208 int unfairness = sysctl_page_lock_unfairness; 1209 struct wait_page_queue wait_page; 1210 wait_queue_entry_t *wait = &wait_page.wait; 1211 bool thrashing = false; 1212 unsigned long pflags; 1213 bool in_thrashing; 1214 1215 if (bit_nr == PG_locked && 1216 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1217 delayacct_thrashing_start(&in_thrashing); 1218 psi_memstall_enter(&pflags); 1219 thrashing = true; 1220 } 1221 1222 init_wait(wait); 1223 wait->func = wake_page_function; 1224 wait_page.folio = folio; 1225 wait_page.bit_nr = bit_nr; 1226 1227 repeat: 1228 wait->flags = 0; 1229 if (behavior == EXCLUSIVE) { 1230 wait->flags = WQ_FLAG_EXCLUSIVE; 1231 if (--unfairness < 0) 1232 wait->flags |= WQ_FLAG_CUSTOM; 1233 } 1234 1235 /* 1236 * Do one last check whether we can get the 1237 * page bit synchronously. 1238 * 1239 * Do the folio_set_waiters() marking before that 1240 * to let any waker we _just_ missed know they 1241 * need to wake us up (otherwise they'll never 1242 * even go to the slow case that looks at the 1243 * page queue), and add ourselves to the wait 1244 * queue if we need to sleep. 1245 * 1246 * This part needs to be done under the queue 1247 * lock to avoid races. 1248 */ 1249 spin_lock_irq(&q->lock); 1250 folio_set_waiters(folio); 1251 if (!folio_trylock_flag(folio, bit_nr, wait)) 1252 __add_wait_queue_entry_tail(q, wait); 1253 spin_unlock_irq(&q->lock); 1254 1255 /* 1256 * From now on, all the logic will be based on 1257 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1258 * see whether the page bit testing has already 1259 * been done by the wake function. 1260 * 1261 * We can drop our reference to the folio. 1262 */ 1263 if (behavior == DROP) 1264 folio_put(folio); 1265 1266 /* 1267 * Note that until the "finish_wait()", or until 1268 * we see the WQ_FLAG_WOKEN flag, we need to 1269 * be very careful with the 'wait->flags', because 1270 * we may race with a waker that sets them. 1271 */ 1272 for (;;) { 1273 unsigned int flags; 1274 1275 set_current_state(state); 1276 1277 /* Loop until we've been woken or interrupted */ 1278 flags = smp_load_acquire(&wait->flags); 1279 if (!(flags & WQ_FLAG_WOKEN)) { 1280 if (signal_pending_state(state, current)) 1281 break; 1282 1283 io_schedule(); 1284 continue; 1285 } 1286 1287 /* If we were non-exclusive, we're done */ 1288 if (behavior != EXCLUSIVE) 1289 break; 1290 1291 /* If the waker got the lock for us, we're done */ 1292 if (flags & WQ_FLAG_DONE) 1293 break; 1294 1295 /* 1296 * Otherwise, if we're getting the lock, we need to 1297 * try to get it ourselves. 1298 * 1299 * And if that fails, we'll have to retry this all. 1300 */ 1301 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1302 goto repeat; 1303 1304 wait->flags |= WQ_FLAG_DONE; 1305 break; 1306 } 1307 1308 /* 1309 * If a signal happened, this 'finish_wait()' may remove the last 1310 * waiter from the wait-queues, but the folio waiters bit will remain 1311 * set. That's ok. The next wakeup will take care of it, and trying 1312 * to do it here would be difficult and prone to races. 1313 */ 1314 finish_wait(q, wait); 1315 1316 if (thrashing) { 1317 delayacct_thrashing_end(&in_thrashing); 1318 psi_memstall_leave(&pflags); 1319 } 1320 1321 /* 1322 * NOTE! The wait->flags weren't stable until we've done the 1323 * 'finish_wait()', and we could have exited the loop above due 1324 * to a signal, and had a wakeup event happen after the signal 1325 * test but before the 'finish_wait()'. 1326 * 1327 * So only after the finish_wait() can we reliably determine 1328 * if we got woken up or not, so we can now figure out the final 1329 * return value based on that state without races. 1330 * 1331 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1332 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1333 */ 1334 if (behavior == EXCLUSIVE) 1335 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1336 1337 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1338 } 1339 1340 #ifdef CONFIG_MIGRATION 1341 /** 1342 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1343 * @entry: migration swap entry. 1344 * @ptl: already locked ptl. This function will drop the lock. 1345 * 1346 * Wait for a migration entry referencing the given page to be removed. This is 1347 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1348 * this can be called without taking a reference on the page. Instead this 1349 * should be called while holding the ptl for the migration entry referencing 1350 * the page. 1351 * 1352 * Returns after unlocking the ptl. 1353 * 1354 * This follows the same logic as folio_wait_bit_common() so see the comments 1355 * there. 1356 */ 1357 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1358 __releases(ptl) 1359 { 1360 struct wait_page_queue wait_page; 1361 wait_queue_entry_t *wait = &wait_page.wait; 1362 bool thrashing = false; 1363 unsigned long pflags; 1364 bool in_thrashing; 1365 wait_queue_head_t *q; 1366 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1367 1368 q = folio_waitqueue(folio); 1369 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1370 delayacct_thrashing_start(&in_thrashing); 1371 psi_memstall_enter(&pflags); 1372 thrashing = true; 1373 } 1374 1375 init_wait(wait); 1376 wait->func = wake_page_function; 1377 wait_page.folio = folio; 1378 wait_page.bit_nr = PG_locked; 1379 wait->flags = 0; 1380 1381 spin_lock_irq(&q->lock); 1382 folio_set_waiters(folio); 1383 if (!folio_trylock_flag(folio, PG_locked, wait)) 1384 __add_wait_queue_entry_tail(q, wait); 1385 spin_unlock_irq(&q->lock); 1386 1387 /* 1388 * If a migration entry exists for the page the migration path must hold 1389 * a valid reference to the page, and it must take the ptl to remove the 1390 * migration entry. So the page is valid until the ptl is dropped. 1391 */ 1392 spin_unlock(ptl); 1393 1394 for (;;) { 1395 unsigned int flags; 1396 1397 set_current_state(TASK_UNINTERRUPTIBLE); 1398 1399 /* Loop until we've been woken or interrupted */ 1400 flags = smp_load_acquire(&wait->flags); 1401 if (!(flags & WQ_FLAG_WOKEN)) { 1402 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1403 break; 1404 1405 io_schedule(); 1406 continue; 1407 } 1408 break; 1409 } 1410 1411 finish_wait(q, wait); 1412 1413 if (thrashing) { 1414 delayacct_thrashing_end(&in_thrashing); 1415 psi_memstall_leave(&pflags); 1416 } 1417 } 1418 #endif 1419 1420 void folio_wait_bit(struct folio *folio, int bit_nr) 1421 { 1422 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1423 } 1424 EXPORT_SYMBOL(folio_wait_bit); 1425 1426 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1427 { 1428 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1429 } 1430 EXPORT_SYMBOL(folio_wait_bit_killable); 1431 1432 /** 1433 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1434 * @folio: The folio to wait for. 1435 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1436 * 1437 * The caller should hold a reference on @folio. They expect the page to 1438 * become unlocked relatively soon, but do not wish to hold up migration 1439 * (for example) by holding the reference while waiting for the folio to 1440 * come unlocked. After this function returns, the caller should not 1441 * dereference @folio. 1442 * 1443 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1444 */ 1445 static int folio_put_wait_locked(struct folio *folio, int state) 1446 { 1447 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1448 } 1449 1450 /** 1451 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1452 * @folio: Folio defining the wait queue of interest 1453 * @waiter: Waiter to add to the queue 1454 * 1455 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1456 */ 1457 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1458 { 1459 wait_queue_head_t *q = folio_waitqueue(folio); 1460 unsigned long flags; 1461 1462 spin_lock_irqsave(&q->lock, flags); 1463 __add_wait_queue_entry_tail(q, waiter); 1464 folio_set_waiters(folio); 1465 spin_unlock_irqrestore(&q->lock, flags); 1466 } 1467 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1468 1469 /** 1470 * folio_unlock - Unlock a locked folio. 1471 * @folio: The folio. 1472 * 1473 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1474 * 1475 * Context: May be called from interrupt or process context. May not be 1476 * called from NMI context. 1477 */ 1478 void folio_unlock(struct folio *folio) 1479 { 1480 /* Bit 7 allows x86 to check the byte's sign bit */ 1481 BUILD_BUG_ON(PG_waiters != 7); 1482 BUILD_BUG_ON(PG_locked > 7); 1483 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1484 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1485 folio_wake_bit(folio, PG_locked); 1486 } 1487 EXPORT_SYMBOL(folio_unlock); 1488 1489 /** 1490 * folio_end_read - End read on a folio. 1491 * @folio: The folio. 1492 * @success: True if all reads completed successfully. 1493 * 1494 * When all reads against a folio have completed, filesystems should 1495 * call this function to let the pagecache know that no more reads 1496 * are outstanding. This will unlock the folio and wake up any thread 1497 * sleeping on the lock. The folio will also be marked uptodate if all 1498 * reads succeeded. 1499 * 1500 * Context: May be called from interrupt or process context. May not be 1501 * called from NMI context. 1502 */ 1503 void folio_end_read(struct folio *folio, bool success) 1504 { 1505 unsigned long mask = 1 << PG_locked; 1506 1507 /* Must be in bottom byte for x86 to work */ 1508 BUILD_BUG_ON(PG_uptodate > 7); 1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1510 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1511 1512 if (likely(success)) 1513 mask |= 1 << PG_uptodate; 1514 if (folio_xor_flags_has_waiters(folio, mask)) 1515 folio_wake_bit(folio, PG_locked); 1516 } 1517 EXPORT_SYMBOL(folio_end_read); 1518 1519 /** 1520 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1521 * @folio: The folio. 1522 * 1523 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1524 * it. The folio reference held for PG_private_2 being set is released. 1525 * 1526 * This is, for example, used when a netfs folio is being written to a local 1527 * disk cache, thereby allowing writes to the cache for the same folio to be 1528 * serialised. 1529 */ 1530 void folio_end_private_2(struct folio *folio) 1531 { 1532 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1533 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1534 folio_wake_bit(folio, PG_private_2); 1535 folio_put(folio); 1536 } 1537 EXPORT_SYMBOL(folio_end_private_2); 1538 1539 /** 1540 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1541 * @folio: The folio to wait on. 1542 * 1543 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1544 */ 1545 void folio_wait_private_2(struct folio *folio) 1546 { 1547 while (folio_test_private_2(folio)) 1548 folio_wait_bit(folio, PG_private_2); 1549 } 1550 EXPORT_SYMBOL(folio_wait_private_2); 1551 1552 /** 1553 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1554 * @folio: The folio to wait on. 1555 * 1556 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1557 * fatal signal is received by the calling task. 1558 * 1559 * Return: 1560 * - 0 if successful. 1561 * - -EINTR if a fatal signal was encountered. 1562 */ 1563 int folio_wait_private_2_killable(struct folio *folio) 1564 { 1565 int ret = 0; 1566 1567 while (folio_test_private_2(folio)) { 1568 ret = folio_wait_bit_killable(folio, PG_private_2); 1569 if (ret < 0) 1570 break; 1571 } 1572 1573 return ret; 1574 } 1575 EXPORT_SYMBOL(folio_wait_private_2_killable); 1576 1577 /** 1578 * folio_end_writeback - End writeback against a folio. 1579 * @folio: The folio. 1580 * 1581 * The folio must actually be under writeback. 1582 * 1583 * Context: May be called from process or interrupt context. 1584 */ 1585 void folio_end_writeback(struct folio *folio) 1586 { 1587 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1588 1589 /* 1590 * folio_test_clear_reclaim() could be used here but it is an 1591 * atomic operation and overkill in this particular case. Failing 1592 * to shuffle a folio marked for immediate reclaim is too mild 1593 * a gain to justify taking an atomic operation penalty at the 1594 * end of every folio writeback. 1595 */ 1596 if (folio_test_reclaim(folio)) { 1597 folio_clear_reclaim(folio); 1598 folio_rotate_reclaimable(folio); 1599 } 1600 1601 /* 1602 * Writeback does not hold a folio reference of its own, relying 1603 * on truncation to wait for the clearing of PG_writeback. 1604 * But here we must make sure that the folio is not freed and 1605 * reused before the folio_wake_bit(). 1606 */ 1607 folio_get(folio); 1608 if (__folio_end_writeback(folio)) 1609 folio_wake_bit(folio, PG_writeback); 1610 acct_reclaim_writeback(folio); 1611 folio_put(folio); 1612 } 1613 EXPORT_SYMBOL(folio_end_writeback); 1614 1615 /** 1616 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1617 * @folio: The folio to lock 1618 */ 1619 void __folio_lock(struct folio *folio) 1620 { 1621 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1622 EXCLUSIVE); 1623 } 1624 EXPORT_SYMBOL(__folio_lock); 1625 1626 int __folio_lock_killable(struct folio *folio) 1627 { 1628 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1629 EXCLUSIVE); 1630 } 1631 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1632 1633 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1634 { 1635 struct wait_queue_head *q = folio_waitqueue(folio); 1636 int ret; 1637 1638 wait->folio = folio; 1639 wait->bit_nr = PG_locked; 1640 1641 spin_lock_irq(&q->lock); 1642 __add_wait_queue_entry_tail(q, &wait->wait); 1643 folio_set_waiters(folio); 1644 ret = !folio_trylock(folio); 1645 /* 1646 * If we were successful now, we know we're still on the 1647 * waitqueue as we're still under the lock. This means it's 1648 * safe to remove and return success, we know the callback 1649 * isn't going to trigger. 1650 */ 1651 if (!ret) 1652 __remove_wait_queue(q, &wait->wait); 1653 else 1654 ret = -EIOCBQUEUED; 1655 spin_unlock_irq(&q->lock); 1656 return ret; 1657 } 1658 1659 /* 1660 * Return values: 1661 * 0 - folio is locked. 1662 * non-zero - folio is not locked. 1663 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1664 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1665 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1666 * 1667 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1668 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1669 */ 1670 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1671 { 1672 unsigned int flags = vmf->flags; 1673 1674 if (fault_flag_allow_retry_first(flags)) { 1675 /* 1676 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1677 * released even though returning VM_FAULT_RETRY. 1678 */ 1679 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1680 return VM_FAULT_RETRY; 1681 1682 release_fault_lock(vmf); 1683 if (flags & FAULT_FLAG_KILLABLE) 1684 folio_wait_locked_killable(folio); 1685 else 1686 folio_wait_locked(folio); 1687 return VM_FAULT_RETRY; 1688 } 1689 if (flags & FAULT_FLAG_KILLABLE) { 1690 bool ret; 1691 1692 ret = __folio_lock_killable(folio); 1693 if (ret) { 1694 release_fault_lock(vmf); 1695 return VM_FAULT_RETRY; 1696 } 1697 } else { 1698 __folio_lock(folio); 1699 } 1700 1701 return 0; 1702 } 1703 1704 /** 1705 * page_cache_next_miss() - Find the next gap in the page cache. 1706 * @mapping: Mapping. 1707 * @index: Index. 1708 * @max_scan: Maximum range to search. 1709 * 1710 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1711 * gap with the lowest index. 1712 * 1713 * This function may be called under the rcu_read_lock. However, this will 1714 * not atomically search a snapshot of the cache at a single point in time. 1715 * For example, if a gap is created at index 5, then subsequently a gap is 1716 * created at index 10, page_cache_next_miss covering both indices may 1717 * return 10 if called under the rcu_read_lock. 1718 * 1719 * Return: The index of the gap if found, otherwise an index outside the 1720 * range specified (in which case 'return - index >= max_scan' will be true). 1721 * In the rare case of index wrap-around, 0 will be returned. 1722 */ 1723 pgoff_t page_cache_next_miss(struct address_space *mapping, 1724 pgoff_t index, unsigned long max_scan) 1725 { 1726 XA_STATE(xas, &mapping->i_pages, index); 1727 1728 while (max_scan--) { 1729 void *entry = xas_next(&xas); 1730 if (!entry || xa_is_value(entry)) 1731 break; 1732 if (xas.xa_index == 0) 1733 break; 1734 } 1735 1736 return xas.xa_index; 1737 } 1738 EXPORT_SYMBOL(page_cache_next_miss); 1739 1740 /** 1741 * page_cache_prev_miss() - Find the previous gap in the page cache. 1742 * @mapping: Mapping. 1743 * @index: Index. 1744 * @max_scan: Maximum range to search. 1745 * 1746 * Search the range [max(index - max_scan + 1, 0), index] for the 1747 * gap with the highest index. 1748 * 1749 * This function may be called under the rcu_read_lock. However, this will 1750 * not atomically search a snapshot of the cache at a single point in time. 1751 * For example, if a gap is created at index 10, then subsequently a gap is 1752 * created at index 5, page_cache_prev_miss() covering both indices may 1753 * return 5 if called under the rcu_read_lock. 1754 * 1755 * Return: The index of the gap if found, otherwise an index outside the 1756 * range specified (in which case 'index - return >= max_scan' will be true). 1757 * In the rare case of wrap-around, ULONG_MAX will be returned. 1758 */ 1759 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1760 pgoff_t index, unsigned long max_scan) 1761 { 1762 XA_STATE(xas, &mapping->i_pages, index); 1763 1764 while (max_scan--) { 1765 void *entry = xas_prev(&xas); 1766 if (!entry || xa_is_value(entry)) 1767 break; 1768 if (xas.xa_index == ULONG_MAX) 1769 break; 1770 } 1771 1772 return xas.xa_index; 1773 } 1774 EXPORT_SYMBOL(page_cache_prev_miss); 1775 1776 /* 1777 * Lockless page cache protocol: 1778 * On the lookup side: 1779 * 1. Load the folio from i_pages 1780 * 2. Increment the refcount if it's not zero 1781 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1782 * 1783 * On the removal side: 1784 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1785 * B. Remove the page from i_pages 1786 * C. Return the page to the page allocator 1787 * 1788 * This means that any page may have its reference count temporarily 1789 * increased by a speculative page cache (or fast GUP) lookup as it can 1790 * be allocated by another user before the RCU grace period expires. 1791 * Because the refcount temporarily acquired here may end up being the 1792 * last refcount on the page, any page allocation must be freeable by 1793 * folio_put(). 1794 */ 1795 1796 /* 1797 * filemap_get_entry - Get a page cache entry. 1798 * @mapping: the address_space to search 1799 * @index: The page cache index. 1800 * 1801 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1802 * it is returned with an increased refcount. If it is a shadow entry 1803 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1804 * it is returned without further action. 1805 * 1806 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1807 */ 1808 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1809 { 1810 XA_STATE(xas, &mapping->i_pages, index); 1811 struct folio *folio; 1812 1813 rcu_read_lock(); 1814 repeat: 1815 xas_reset(&xas); 1816 folio = xas_load(&xas); 1817 if (xas_retry(&xas, folio)) 1818 goto repeat; 1819 /* 1820 * A shadow entry of a recently evicted page, or a swap entry from 1821 * shmem/tmpfs. Return it without attempting to raise page count. 1822 */ 1823 if (!folio || xa_is_value(folio)) 1824 goto out; 1825 1826 if (!folio_try_get_rcu(folio)) 1827 goto repeat; 1828 1829 if (unlikely(folio != xas_reload(&xas))) { 1830 folio_put(folio); 1831 goto repeat; 1832 } 1833 out: 1834 rcu_read_unlock(); 1835 1836 return folio; 1837 } 1838 1839 /** 1840 * __filemap_get_folio - Find and get a reference to a folio. 1841 * @mapping: The address_space to search. 1842 * @index: The page index. 1843 * @fgp_flags: %FGP flags modify how the folio is returned. 1844 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1845 * 1846 * Looks up the page cache entry at @mapping & @index. 1847 * 1848 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1849 * if the %GFP flags specified for %FGP_CREAT are atomic. 1850 * 1851 * If this function returns a folio, it is returned with an increased refcount. 1852 * 1853 * Return: The found folio or an ERR_PTR() otherwise. 1854 */ 1855 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1856 fgf_t fgp_flags, gfp_t gfp) 1857 { 1858 struct folio *folio; 1859 1860 repeat: 1861 folio = filemap_get_entry(mapping, index); 1862 if (xa_is_value(folio)) 1863 folio = NULL; 1864 if (!folio) 1865 goto no_page; 1866 1867 if (fgp_flags & FGP_LOCK) { 1868 if (fgp_flags & FGP_NOWAIT) { 1869 if (!folio_trylock(folio)) { 1870 folio_put(folio); 1871 return ERR_PTR(-EAGAIN); 1872 } 1873 } else { 1874 folio_lock(folio); 1875 } 1876 1877 /* Has the page been truncated? */ 1878 if (unlikely(folio->mapping != mapping)) { 1879 folio_unlock(folio); 1880 folio_put(folio); 1881 goto repeat; 1882 } 1883 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1884 } 1885 1886 if (fgp_flags & FGP_ACCESSED) 1887 folio_mark_accessed(folio); 1888 else if (fgp_flags & FGP_WRITE) { 1889 /* Clear idle flag for buffer write */ 1890 if (folio_test_idle(folio)) 1891 folio_clear_idle(folio); 1892 } 1893 1894 if (fgp_flags & FGP_STABLE) 1895 folio_wait_stable(folio); 1896 no_page: 1897 if (!folio && (fgp_flags & FGP_CREAT)) { 1898 unsigned order = FGF_GET_ORDER(fgp_flags); 1899 int err; 1900 1901 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1902 gfp |= __GFP_WRITE; 1903 if (fgp_flags & FGP_NOFS) 1904 gfp &= ~__GFP_FS; 1905 if (fgp_flags & FGP_NOWAIT) { 1906 gfp &= ~GFP_KERNEL; 1907 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1908 } 1909 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1910 fgp_flags |= FGP_LOCK; 1911 1912 if (!mapping_large_folio_support(mapping)) 1913 order = 0; 1914 if (order > MAX_PAGECACHE_ORDER) 1915 order = MAX_PAGECACHE_ORDER; 1916 /* If we're not aligned, allocate a smaller folio */ 1917 if (index & ((1UL << order) - 1)) 1918 order = __ffs(index); 1919 1920 do { 1921 gfp_t alloc_gfp = gfp; 1922 1923 err = -ENOMEM; 1924 if (order == 1) 1925 order = 0; 1926 if (order > 0) 1927 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1928 folio = filemap_alloc_folio(alloc_gfp, order); 1929 if (!folio) 1930 continue; 1931 1932 /* Init accessed so avoid atomic mark_page_accessed later */ 1933 if (fgp_flags & FGP_ACCESSED) 1934 __folio_set_referenced(folio); 1935 1936 err = filemap_add_folio(mapping, folio, index, gfp); 1937 if (!err) 1938 break; 1939 folio_put(folio); 1940 folio = NULL; 1941 } while (order-- > 0); 1942 1943 if (err == -EEXIST) 1944 goto repeat; 1945 if (err) 1946 return ERR_PTR(err); 1947 /* 1948 * filemap_add_folio locks the page, and for mmap 1949 * we expect an unlocked page. 1950 */ 1951 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1952 folio_unlock(folio); 1953 } 1954 1955 if (!folio) 1956 return ERR_PTR(-ENOENT); 1957 return folio; 1958 } 1959 EXPORT_SYMBOL(__filemap_get_folio); 1960 1961 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1962 xa_mark_t mark) 1963 { 1964 struct folio *folio; 1965 1966 retry: 1967 if (mark == XA_PRESENT) 1968 folio = xas_find(xas, max); 1969 else 1970 folio = xas_find_marked(xas, max, mark); 1971 1972 if (xas_retry(xas, folio)) 1973 goto retry; 1974 /* 1975 * A shadow entry of a recently evicted page, a swap 1976 * entry from shmem/tmpfs or a DAX entry. Return it 1977 * without attempting to raise page count. 1978 */ 1979 if (!folio || xa_is_value(folio)) 1980 return folio; 1981 1982 if (!folio_try_get_rcu(folio)) 1983 goto reset; 1984 1985 if (unlikely(folio != xas_reload(xas))) { 1986 folio_put(folio); 1987 goto reset; 1988 } 1989 1990 return folio; 1991 reset: 1992 xas_reset(xas); 1993 goto retry; 1994 } 1995 1996 /** 1997 * find_get_entries - gang pagecache lookup 1998 * @mapping: The address_space to search 1999 * @start: The starting page cache index 2000 * @end: The final page index (inclusive). 2001 * @fbatch: Where the resulting entries are placed. 2002 * @indices: The cache indices corresponding to the entries in @entries 2003 * 2004 * find_get_entries() will search for and return a batch of entries in 2005 * the mapping. The entries are placed in @fbatch. find_get_entries() 2006 * takes a reference on any actual folios it returns. 2007 * 2008 * The entries have ascending indexes. The indices may not be consecutive 2009 * due to not-present entries or large folios. 2010 * 2011 * Any shadow entries of evicted folios, or swap entries from 2012 * shmem/tmpfs, are included in the returned array. 2013 * 2014 * Return: The number of entries which were found. 2015 */ 2016 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2017 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2018 { 2019 XA_STATE(xas, &mapping->i_pages, *start); 2020 struct folio *folio; 2021 2022 rcu_read_lock(); 2023 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2024 indices[fbatch->nr] = xas.xa_index; 2025 if (!folio_batch_add(fbatch, folio)) 2026 break; 2027 } 2028 rcu_read_unlock(); 2029 2030 if (folio_batch_count(fbatch)) { 2031 unsigned long nr = 1; 2032 int idx = folio_batch_count(fbatch) - 1; 2033 2034 folio = fbatch->folios[idx]; 2035 if (!xa_is_value(folio)) 2036 nr = folio_nr_pages(folio); 2037 *start = indices[idx] + nr; 2038 } 2039 return folio_batch_count(fbatch); 2040 } 2041 2042 /** 2043 * find_lock_entries - Find a batch of pagecache entries. 2044 * @mapping: The address_space to search. 2045 * @start: The starting page cache index. 2046 * @end: The final page index (inclusive). 2047 * @fbatch: Where the resulting entries are placed. 2048 * @indices: The cache indices of the entries in @fbatch. 2049 * 2050 * find_lock_entries() will return a batch of entries from @mapping. 2051 * Swap, shadow and DAX entries are included. Folios are returned 2052 * locked and with an incremented refcount. Folios which are locked 2053 * by somebody else or under writeback are skipped. Folios which are 2054 * partially outside the range are not returned. 2055 * 2056 * The entries have ascending indexes. The indices may not be consecutive 2057 * due to not-present entries, large folios, folios which could not be 2058 * locked or folios under writeback. 2059 * 2060 * Return: The number of entries which were found. 2061 */ 2062 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2063 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2064 { 2065 XA_STATE(xas, &mapping->i_pages, *start); 2066 struct folio *folio; 2067 2068 rcu_read_lock(); 2069 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2070 if (!xa_is_value(folio)) { 2071 if (folio->index < *start) 2072 goto put; 2073 if (folio_next_index(folio) - 1 > end) 2074 goto put; 2075 if (!folio_trylock(folio)) 2076 goto put; 2077 if (folio->mapping != mapping || 2078 folio_test_writeback(folio)) 2079 goto unlock; 2080 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2081 folio); 2082 } 2083 indices[fbatch->nr] = xas.xa_index; 2084 if (!folio_batch_add(fbatch, folio)) 2085 break; 2086 continue; 2087 unlock: 2088 folio_unlock(folio); 2089 put: 2090 folio_put(folio); 2091 } 2092 rcu_read_unlock(); 2093 2094 if (folio_batch_count(fbatch)) { 2095 unsigned long nr = 1; 2096 int idx = folio_batch_count(fbatch) - 1; 2097 2098 folio = fbatch->folios[idx]; 2099 if (!xa_is_value(folio)) 2100 nr = folio_nr_pages(folio); 2101 *start = indices[idx] + nr; 2102 } 2103 return folio_batch_count(fbatch); 2104 } 2105 2106 /** 2107 * filemap_get_folios - Get a batch of folios 2108 * @mapping: The address_space to search 2109 * @start: The starting page index 2110 * @end: The final page index (inclusive) 2111 * @fbatch: The batch to fill. 2112 * 2113 * Search for and return a batch of folios in the mapping starting at 2114 * index @start and up to index @end (inclusive). The folios are returned 2115 * in @fbatch with an elevated reference count. 2116 * 2117 * Return: The number of folios which were found. 2118 * We also update @start to index the next folio for the traversal. 2119 */ 2120 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2121 pgoff_t end, struct folio_batch *fbatch) 2122 { 2123 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2124 } 2125 EXPORT_SYMBOL(filemap_get_folios); 2126 2127 /** 2128 * filemap_get_folios_contig - Get a batch of contiguous folios 2129 * @mapping: The address_space to search 2130 * @start: The starting page index 2131 * @end: The final page index (inclusive) 2132 * @fbatch: The batch to fill 2133 * 2134 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2135 * except the returned folios are guaranteed to be contiguous. This may 2136 * not return all contiguous folios if the batch gets filled up. 2137 * 2138 * Return: The number of folios found. 2139 * Also update @start to be positioned for traversal of the next folio. 2140 */ 2141 2142 unsigned filemap_get_folios_contig(struct address_space *mapping, 2143 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2144 { 2145 XA_STATE(xas, &mapping->i_pages, *start); 2146 unsigned long nr; 2147 struct folio *folio; 2148 2149 rcu_read_lock(); 2150 2151 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2152 folio = xas_next(&xas)) { 2153 if (xas_retry(&xas, folio)) 2154 continue; 2155 /* 2156 * If the entry has been swapped out, we can stop looking. 2157 * No current caller is looking for DAX entries. 2158 */ 2159 if (xa_is_value(folio)) 2160 goto update_start; 2161 2162 if (!folio_try_get_rcu(folio)) 2163 goto retry; 2164 2165 if (unlikely(folio != xas_reload(&xas))) 2166 goto put_folio; 2167 2168 if (!folio_batch_add(fbatch, folio)) { 2169 nr = folio_nr_pages(folio); 2170 *start = folio->index + nr; 2171 goto out; 2172 } 2173 continue; 2174 put_folio: 2175 folio_put(folio); 2176 2177 retry: 2178 xas_reset(&xas); 2179 } 2180 2181 update_start: 2182 nr = folio_batch_count(fbatch); 2183 2184 if (nr) { 2185 folio = fbatch->folios[nr - 1]; 2186 *start = folio_next_index(folio); 2187 } 2188 out: 2189 rcu_read_unlock(); 2190 return folio_batch_count(fbatch); 2191 } 2192 EXPORT_SYMBOL(filemap_get_folios_contig); 2193 2194 /** 2195 * filemap_get_folios_tag - Get a batch of folios matching @tag 2196 * @mapping: The address_space to search 2197 * @start: The starting page index 2198 * @end: The final page index (inclusive) 2199 * @tag: The tag index 2200 * @fbatch: The batch to fill 2201 * 2202 * The first folio may start before @start; if it does, it will contain 2203 * @start. The final folio may extend beyond @end; if it does, it will 2204 * contain @end. The folios have ascending indices. There may be gaps 2205 * between the folios if there are indices which have no folio in the 2206 * page cache. If folios are added to or removed from the page cache 2207 * while this is running, they may or may not be found by this call. 2208 * Only returns folios that are tagged with @tag. 2209 * 2210 * Return: The number of folios found. 2211 * Also update @start to index the next folio for traversal. 2212 */ 2213 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2214 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2215 { 2216 XA_STATE(xas, &mapping->i_pages, *start); 2217 struct folio *folio; 2218 2219 rcu_read_lock(); 2220 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2221 /* 2222 * Shadow entries should never be tagged, but this iteration 2223 * is lockless so there is a window for page reclaim to evict 2224 * a page we saw tagged. Skip over it. 2225 */ 2226 if (xa_is_value(folio)) 2227 continue; 2228 if (!folio_batch_add(fbatch, folio)) { 2229 unsigned long nr = folio_nr_pages(folio); 2230 *start = folio->index + nr; 2231 goto out; 2232 } 2233 } 2234 /* 2235 * We come here when there is no page beyond @end. We take care to not 2236 * overflow the index @start as it confuses some of the callers. This 2237 * breaks the iteration when there is a page at index -1 but that is 2238 * already broke anyway. 2239 */ 2240 if (end == (pgoff_t)-1) 2241 *start = (pgoff_t)-1; 2242 else 2243 *start = end + 1; 2244 out: 2245 rcu_read_unlock(); 2246 2247 return folio_batch_count(fbatch); 2248 } 2249 EXPORT_SYMBOL(filemap_get_folios_tag); 2250 2251 /* 2252 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2253 * a _large_ part of the i/o request. Imagine the worst scenario: 2254 * 2255 * ---R__________________________________________B__________ 2256 * ^ reading here ^ bad block(assume 4k) 2257 * 2258 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2259 * => failing the whole request => read(R) => read(R+1) => 2260 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2261 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2262 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2263 * 2264 * It is going insane. Fix it by quickly scaling down the readahead size. 2265 */ 2266 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2267 { 2268 ra->ra_pages /= 4; 2269 } 2270 2271 /* 2272 * filemap_get_read_batch - Get a batch of folios for read 2273 * 2274 * Get a batch of folios which represent a contiguous range of bytes in 2275 * the file. No exceptional entries will be returned. If @index is in 2276 * the middle of a folio, the entire folio will be returned. The last 2277 * folio in the batch may have the readahead flag set or the uptodate flag 2278 * clear so that the caller can take the appropriate action. 2279 */ 2280 static void filemap_get_read_batch(struct address_space *mapping, 2281 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2282 { 2283 XA_STATE(xas, &mapping->i_pages, index); 2284 struct folio *folio; 2285 2286 rcu_read_lock(); 2287 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2288 if (xas_retry(&xas, folio)) 2289 continue; 2290 if (xas.xa_index > max || xa_is_value(folio)) 2291 break; 2292 if (xa_is_sibling(folio)) 2293 break; 2294 if (!folio_try_get_rcu(folio)) 2295 goto retry; 2296 2297 if (unlikely(folio != xas_reload(&xas))) 2298 goto put_folio; 2299 2300 if (!folio_batch_add(fbatch, folio)) 2301 break; 2302 if (!folio_test_uptodate(folio)) 2303 break; 2304 if (folio_test_readahead(folio)) 2305 break; 2306 xas_advance(&xas, folio_next_index(folio) - 1); 2307 continue; 2308 put_folio: 2309 folio_put(folio); 2310 retry: 2311 xas_reset(&xas); 2312 } 2313 rcu_read_unlock(); 2314 } 2315 2316 static int filemap_read_folio(struct file *file, filler_t filler, 2317 struct folio *folio) 2318 { 2319 bool workingset = folio_test_workingset(folio); 2320 unsigned long pflags; 2321 int error; 2322 2323 /* 2324 * A previous I/O error may have been due to temporary failures, 2325 * eg. multipath errors. PG_error will be set again if read_folio 2326 * fails. 2327 */ 2328 folio_clear_error(folio); 2329 2330 /* Start the actual read. The read will unlock the page. */ 2331 if (unlikely(workingset)) 2332 psi_memstall_enter(&pflags); 2333 error = filler(file, folio); 2334 if (unlikely(workingset)) 2335 psi_memstall_leave(&pflags); 2336 if (error) 2337 return error; 2338 2339 error = folio_wait_locked_killable(folio); 2340 if (error) 2341 return error; 2342 if (folio_test_uptodate(folio)) 2343 return 0; 2344 if (file) 2345 shrink_readahead_size_eio(&file->f_ra); 2346 return -EIO; 2347 } 2348 2349 static bool filemap_range_uptodate(struct address_space *mapping, 2350 loff_t pos, size_t count, struct folio *folio, 2351 bool need_uptodate) 2352 { 2353 if (folio_test_uptodate(folio)) 2354 return true; 2355 /* pipes can't handle partially uptodate pages */ 2356 if (need_uptodate) 2357 return false; 2358 if (!mapping->a_ops->is_partially_uptodate) 2359 return false; 2360 if (mapping->host->i_blkbits >= folio_shift(folio)) 2361 return false; 2362 2363 if (folio_pos(folio) > pos) { 2364 count -= folio_pos(folio) - pos; 2365 pos = 0; 2366 } else { 2367 pos -= folio_pos(folio); 2368 } 2369 2370 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2371 } 2372 2373 static int filemap_update_page(struct kiocb *iocb, 2374 struct address_space *mapping, size_t count, 2375 struct folio *folio, bool need_uptodate) 2376 { 2377 int error; 2378 2379 if (iocb->ki_flags & IOCB_NOWAIT) { 2380 if (!filemap_invalidate_trylock_shared(mapping)) 2381 return -EAGAIN; 2382 } else { 2383 filemap_invalidate_lock_shared(mapping); 2384 } 2385 2386 if (!folio_trylock(folio)) { 2387 error = -EAGAIN; 2388 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2389 goto unlock_mapping; 2390 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2391 filemap_invalidate_unlock_shared(mapping); 2392 /* 2393 * This is where we usually end up waiting for a 2394 * previously submitted readahead to finish. 2395 */ 2396 folio_put_wait_locked(folio, TASK_KILLABLE); 2397 return AOP_TRUNCATED_PAGE; 2398 } 2399 error = __folio_lock_async(folio, iocb->ki_waitq); 2400 if (error) 2401 goto unlock_mapping; 2402 } 2403 2404 error = AOP_TRUNCATED_PAGE; 2405 if (!folio->mapping) 2406 goto unlock; 2407 2408 error = 0; 2409 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2410 need_uptodate)) 2411 goto unlock; 2412 2413 error = -EAGAIN; 2414 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2415 goto unlock; 2416 2417 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2418 folio); 2419 goto unlock_mapping; 2420 unlock: 2421 folio_unlock(folio); 2422 unlock_mapping: 2423 filemap_invalidate_unlock_shared(mapping); 2424 if (error == AOP_TRUNCATED_PAGE) 2425 folio_put(folio); 2426 return error; 2427 } 2428 2429 static int filemap_create_folio(struct file *file, 2430 struct address_space *mapping, pgoff_t index, 2431 struct folio_batch *fbatch) 2432 { 2433 struct folio *folio; 2434 int error; 2435 2436 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2437 if (!folio) 2438 return -ENOMEM; 2439 2440 /* 2441 * Protect against truncate / hole punch. Grabbing invalidate_lock 2442 * here assures we cannot instantiate and bring uptodate new 2443 * pagecache folios after evicting page cache during truncate 2444 * and before actually freeing blocks. Note that we could 2445 * release invalidate_lock after inserting the folio into 2446 * the page cache as the locked folio would then be enough to 2447 * synchronize with hole punching. But there are code paths 2448 * such as filemap_update_page() filling in partially uptodate 2449 * pages or ->readahead() that need to hold invalidate_lock 2450 * while mapping blocks for IO so let's hold the lock here as 2451 * well to keep locking rules simple. 2452 */ 2453 filemap_invalidate_lock_shared(mapping); 2454 error = filemap_add_folio(mapping, folio, index, 2455 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2456 if (error == -EEXIST) 2457 error = AOP_TRUNCATED_PAGE; 2458 if (error) 2459 goto error; 2460 2461 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2462 if (error) 2463 goto error; 2464 2465 filemap_invalidate_unlock_shared(mapping); 2466 folio_batch_add(fbatch, folio); 2467 return 0; 2468 error: 2469 filemap_invalidate_unlock_shared(mapping); 2470 folio_put(folio); 2471 return error; 2472 } 2473 2474 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2475 struct address_space *mapping, struct folio *folio, 2476 pgoff_t last_index) 2477 { 2478 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2479 2480 if (iocb->ki_flags & IOCB_NOIO) 2481 return -EAGAIN; 2482 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2483 return 0; 2484 } 2485 2486 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2487 struct folio_batch *fbatch, bool need_uptodate) 2488 { 2489 struct file *filp = iocb->ki_filp; 2490 struct address_space *mapping = filp->f_mapping; 2491 struct file_ra_state *ra = &filp->f_ra; 2492 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2493 pgoff_t last_index; 2494 struct folio *folio; 2495 int err = 0; 2496 2497 /* "last_index" is the index of the page beyond the end of the read */ 2498 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2499 retry: 2500 if (fatal_signal_pending(current)) 2501 return -EINTR; 2502 2503 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2504 if (!folio_batch_count(fbatch)) { 2505 if (iocb->ki_flags & IOCB_NOIO) 2506 return -EAGAIN; 2507 page_cache_sync_readahead(mapping, ra, filp, index, 2508 last_index - index); 2509 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2510 } 2511 if (!folio_batch_count(fbatch)) { 2512 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2513 return -EAGAIN; 2514 err = filemap_create_folio(filp, mapping, 2515 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2516 if (err == AOP_TRUNCATED_PAGE) 2517 goto retry; 2518 return err; 2519 } 2520 2521 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2522 if (folio_test_readahead(folio)) { 2523 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2524 if (err) 2525 goto err; 2526 } 2527 if (!folio_test_uptodate(folio)) { 2528 if ((iocb->ki_flags & IOCB_WAITQ) && 2529 folio_batch_count(fbatch) > 1) 2530 iocb->ki_flags |= IOCB_NOWAIT; 2531 err = filemap_update_page(iocb, mapping, count, folio, 2532 need_uptodate); 2533 if (err) 2534 goto err; 2535 } 2536 2537 return 0; 2538 err: 2539 if (err < 0) 2540 folio_put(folio); 2541 if (likely(--fbatch->nr)) 2542 return 0; 2543 if (err == AOP_TRUNCATED_PAGE) 2544 goto retry; 2545 return err; 2546 } 2547 2548 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2549 { 2550 unsigned int shift = folio_shift(folio); 2551 2552 return (pos1 >> shift == pos2 >> shift); 2553 } 2554 2555 /** 2556 * filemap_read - Read data from the page cache. 2557 * @iocb: The iocb to read. 2558 * @iter: Destination for the data. 2559 * @already_read: Number of bytes already read by the caller. 2560 * 2561 * Copies data from the page cache. If the data is not currently present, 2562 * uses the readahead and read_folio address_space operations to fetch it. 2563 * 2564 * Return: Total number of bytes copied, including those already read by 2565 * the caller. If an error happens before any bytes are copied, returns 2566 * a negative error number. 2567 */ 2568 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2569 ssize_t already_read) 2570 { 2571 struct file *filp = iocb->ki_filp; 2572 struct file_ra_state *ra = &filp->f_ra; 2573 struct address_space *mapping = filp->f_mapping; 2574 struct inode *inode = mapping->host; 2575 struct folio_batch fbatch; 2576 int i, error = 0; 2577 bool writably_mapped; 2578 loff_t isize, end_offset; 2579 loff_t last_pos = ra->prev_pos; 2580 2581 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2582 return 0; 2583 if (unlikely(!iov_iter_count(iter))) 2584 return 0; 2585 2586 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2587 folio_batch_init(&fbatch); 2588 2589 do { 2590 cond_resched(); 2591 2592 /* 2593 * If we've already successfully copied some data, then we 2594 * can no longer safely return -EIOCBQUEUED. Hence mark 2595 * an async read NOWAIT at that point. 2596 */ 2597 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2598 iocb->ki_flags |= IOCB_NOWAIT; 2599 2600 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2601 break; 2602 2603 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2604 if (error < 0) 2605 break; 2606 2607 /* 2608 * i_size must be checked after we know the pages are Uptodate. 2609 * 2610 * Checking i_size after the check allows us to calculate 2611 * the correct value for "nr", which means the zero-filled 2612 * part of the page is not copied back to userspace (unless 2613 * another truncate extends the file - this is desired though). 2614 */ 2615 isize = i_size_read(inode); 2616 if (unlikely(iocb->ki_pos >= isize)) 2617 goto put_folios; 2618 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2619 2620 /* 2621 * Once we start copying data, we don't want to be touching any 2622 * cachelines that might be contended: 2623 */ 2624 writably_mapped = mapping_writably_mapped(mapping); 2625 2626 /* 2627 * When a read accesses the same folio several times, only 2628 * mark it as accessed the first time. 2629 */ 2630 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2631 fbatch.folios[0])) 2632 folio_mark_accessed(fbatch.folios[0]); 2633 2634 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2635 struct folio *folio = fbatch.folios[i]; 2636 size_t fsize = folio_size(folio); 2637 size_t offset = iocb->ki_pos & (fsize - 1); 2638 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2639 fsize - offset); 2640 size_t copied; 2641 2642 if (end_offset < folio_pos(folio)) 2643 break; 2644 if (i > 0) 2645 folio_mark_accessed(folio); 2646 /* 2647 * If users can be writing to this folio using arbitrary 2648 * virtual addresses, take care of potential aliasing 2649 * before reading the folio on the kernel side. 2650 */ 2651 if (writably_mapped) 2652 flush_dcache_folio(folio); 2653 2654 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2655 2656 already_read += copied; 2657 iocb->ki_pos += copied; 2658 last_pos = iocb->ki_pos; 2659 2660 if (copied < bytes) { 2661 error = -EFAULT; 2662 break; 2663 } 2664 } 2665 put_folios: 2666 for (i = 0; i < folio_batch_count(&fbatch); i++) 2667 folio_put(fbatch.folios[i]); 2668 folio_batch_init(&fbatch); 2669 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2670 2671 file_accessed(filp); 2672 ra->prev_pos = last_pos; 2673 return already_read ? already_read : error; 2674 } 2675 EXPORT_SYMBOL_GPL(filemap_read); 2676 2677 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2678 { 2679 struct address_space *mapping = iocb->ki_filp->f_mapping; 2680 loff_t pos = iocb->ki_pos; 2681 loff_t end = pos + count - 1; 2682 2683 if (iocb->ki_flags & IOCB_NOWAIT) { 2684 if (filemap_range_needs_writeback(mapping, pos, end)) 2685 return -EAGAIN; 2686 return 0; 2687 } 2688 2689 return filemap_write_and_wait_range(mapping, pos, end); 2690 } 2691 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2692 2693 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2694 { 2695 struct address_space *mapping = iocb->ki_filp->f_mapping; 2696 loff_t pos = iocb->ki_pos; 2697 loff_t end = pos + count - 1; 2698 int ret; 2699 2700 if (iocb->ki_flags & IOCB_NOWAIT) { 2701 /* we could block if there are any pages in the range */ 2702 if (filemap_range_has_page(mapping, pos, end)) 2703 return -EAGAIN; 2704 } else { 2705 ret = filemap_write_and_wait_range(mapping, pos, end); 2706 if (ret) 2707 return ret; 2708 } 2709 2710 /* 2711 * After a write we want buffered reads to be sure to go to disk to get 2712 * the new data. We invalidate clean cached page from the region we're 2713 * about to write. We do this *before* the write so that we can return 2714 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2715 */ 2716 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2717 end >> PAGE_SHIFT); 2718 } 2719 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2720 2721 /** 2722 * generic_file_read_iter - generic filesystem read routine 2723 * @iocb: kernel I/O control block 2724 * @iter: destination for the data read 2725 * 2726 * This is the "read_iter()" routine for all filesystems 2727 * that can use the page cache directly. 2728 * 2729 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2730 * be returned when no data can be read without waiting for I/O requests 2731 * to complete; it doesn't prevent readahead. 2732 * 2733 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2734 * requests shall be made for the read or for readahead. When no data 2735 * can be read, -EAGAIN shall be returned. When readahead would be 2736 * triggered, a partial, possibly empty read shall be returned. 2737 * 2738 * Return: 2739 * * number of bytes copied, even for partial reads 2740 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2741 */ 2742 ssize_t 2743 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2744 { 2745 size_t count = iov_iter_count(iter); 2746 ssize_t retval = 0; 2747 2748 if (!count) 2749 return 0; /* skip atime */ 2750 2751 if (iocb->ki_flags & IOCB_DIRECT) { 2752 struct file *file = iocb->ki_filp; 2753 struct address_space *mapping = file->f_mapping; 2754 struct inode *inode = mapping->host; 2755 2756 retval = kiocb_write_and_wait(iocb, count); 2757 if (retval < 0) 2758 return retval; 2759 file_accessed(file); 2760 2761 retval = mapping->a_ops->direct_IO(iocb, iter); 2762 if (retval >= 0) { 2763 iocb->ki_pos += retval; 2764 count -= retval; 2765 } 2766 if (retval != -EIOCBQUEUED) 2767 iov_iter_revert(iter, count - iov_iter_count(iter)); 2768 2769 /* 2770 * Btrfs can have a short DIO read if we encounter 2771 * compressed extents, so if there was an error, or if 2772 * we've already read everything we wanted to, or if 2773 * there was a short read because we hit EOF, go ahead 2774 * and return. Otherwise fallthrough to buffered io for 2775 * the rest of the read. Buffered reads will not work for 2776 * DAX files, so don't bother trying. 2777 */ 2778 if (retval < 0 || !count || IS_DAX(inode)) 2779 return retval; 2780 if (iocb->ki_pos >= i_size_read(inode)) 2781 return retval; 2782 } 2783 2784 return filemap_read(iocb, iter, retval); 2785 } 2786 EXPORT_SYMBOL(generic_file_read_iter); 2787 2788 /* 2789 * Splice subpages from a folio into a pipe. 2790 */ 2791 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2792 struct folio *folio, loff_t fpos, size_t size) 2793 { 2794 struct page *page; 2795 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2796 2797 page = folio_page(folio, offset / PAGE_SIZE); 2798 size = min(size, folio_size(folio) - offset); 2799 offset %= PAGE_SIZE; 2800 2801 while (spliced < size && 2802 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2803 struct pipe_buffer *buf = pipe_head_buf(pipe); 2804 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2805 2806 *buf = (struct pipe_buffer) { 2807 .ops = &page_cache_pipe_buf_ops, 2808 .page = page, 2809 .offset = offset, 2810 .len = part, 2811 }; 2812 folio_get(folio); 2813 pipe->head++; 2814 page++; 2815 spliced += part; 2816 offset = 0; 2817 } 2818 2819 return spliced; 2820 } 2821 2822 /** 2823 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2824 * @in: The file to read from 2825 * @ppos: Pointer to the file position to read from 2826 * @pipe: The pipe to splice into 2827 * @len: The amount to splice 2828 * @flags: The SPLICE_F_* flags 2829 * 2830 * This function gets folios from a file's pagecache and splices them into the 2831 * pipe. Readahead will be called as necessary to fill more folios. This may 2832 * be used for blockdevs also. 2833 * 2834 * Return: On success, the number of bytes read will be returned and *@ppos 2835 * will be updated if appropriate; 0 will be returned if there is no more data 2836 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2837 * other negative error code will be returned on error. A short read may occur 2838 * if the pipe has insufficient space, we reach the end of the data or we hit a 2839 * hole. 2840 */ 2841 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2842 struct pipe_inode_info *pipe, 2843 size_t len, unsigned int flags) 2844 { 2845 struct folio_batch fbatch; 2846 struct kiocb iocb; 2847 size_t total_spliced = 0, used, npages; 2848 loff_t isize, end_offset; 2849 bool writably_mapped; 2850 int i, error = 0; 2851 2852 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2853 return 0; 2854 2855 init_sync_kiocb(&iocb, in); 2856 iocb.ki_pos = *ppos; 2857 2858 /* Work out how much data we can actually add into the pipe */ 2859 used = pipe_occupancy(pipe->head, pipe->tail); 2860 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2861 len = min_t(size_t, len, npages * PAGE_SIZE); 2862 2863 folio_batch_init(&fbatch); 2864 2865 do { 2866 cond_resched(); 2867 2868 if (*ppos >= i_size_read(in->f_mapping->host)) 2869 break; 2870 2871 iocb.ki_pos = *ppos; 2872 error = filemap_get_pages(&iocb, len, &fbatch, true); 2873 if (error < 0) 2874 break; 2875 2876 /* 2877 * i_size must be checked after we know the pages are Uptodate. 2878 * 2879 * Checking i_size after the check allows us to calculate 2880 * the correct value for "nr", which means the zero-filled 2881 * part of the page is not copied back to userspace (unless 2882 * another truncate extends the file - this is desired though). 2883 */ 2884 isize = i_size_read(in->f_mapping->host); 2885 if (unlikely(*ppos >= isize)) 2886 break; 2887 end_offset = min_t(loff_t, isize, *ppos + len); 2888 2889 /* 2890 * Once we start copying data, we don't want to be touching any 2891 * cachelines that might be contended: 2892 */ 2893 writably_mapped = mapping_writably_mapped(in->f_mapping); 2894 2895 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2896 struct folio *folio = fbatch.folios[i]; 2897 size_t n; 2898 2899 if (folio_pos(folio) >= end_offset) 2900 goto out; 2901 folio_mark_accessed(folio); 2902 2903 /* 2904 * If users can be writing to this folio using arbitrary 2905 * virtual addresses, take care of potential aliasing 2906 * before reading the folio on the kernel side. 2907 */ 2908 if (writably_mapped) 2909 flush_dcache_folio(folio); 2910 2911 n = min_t(loff_t, len, isize - *ppos); 2912 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2913 if (!n) 2914 goto out; 2915 len -= n; 2916 total_spliced += n; 2917 *ppos += n; 2918 in->f_ra.prev_pos = *ppos; 2919 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2920 goto out; 2921 } 2922 2923 folio_batch_release(&fbatch); 2924 } while (len); 2925 2926 out: 2927 folio_batch_release(&fbatch); 2928 file_accessed(in); 2929 2930 return total_spliced ? total_spliced : error; 2931 } 2932 EXPORT_SYMBOL(filemap_splice_read); 2933 2934 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2935 struct address_space *mapping, struct folio *folio, 2936 loff_t start, loff_t end, bool seek_data) 2937 { 2938 const struct address_space_operations *ops = mapping->a_ops; 2939 size_t offset, bsz = i_blocksize(mapping->host); 2940 2941 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2942 return seek_data ? start : end; 2943 if (!ops->is_partially_uptodate) 2944 return seek_data ? end : start; 2945 2946 xas_pause(xas); 2947 rcu_read_unlock(); 2948 folio_lock(folio); 2949 if (unlikely(folio->mapping != mapping)) 2950 goto unlock; 2951 2952 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2953 2954 do { 2955 if (ops->is_partially_uptodate(folio, offset, bsz) == 2956 seek_data) 2957 break; 2958 start = (start + bsz) & ~(bsz - 1); 2959 offset += bsz; 2960 } while (offset < folio_size(folio)); 2961 unlock: 2962 folio_unlock(folio); 2963 rcu_read_lock(); 2964 return start; 2965 } 2966 2967 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2968 { 2969 if (xa_is_value(folio)) 2970 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2971 return folio_size(folio); 2972 } 2973 2974 /** 2975 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2976 * @mapping: Address space to search. 2977 * @start: First byte to consider. 2978 * @end: Limit of search (exclusive). 2979 * @whence: Either SEEK_HOLE or SEEK_DATA. 2980 * 2981 * If the page cache knows which blocks contain holes and which blocks 2982 * contain data, your filesystem can use this function to implement 2983 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2984 * entirely memory-based such as tmpfs, and filesystems which support 2985 * unwritten extents. 2986 * 2987 * Return: The requested offset on success, or -ENXIO if @whence specifies 2988 * SEEK_DATA and there is no data after @start. There is an implicit hole 2989 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2990 * and @end contain data. 2991 */ 2992 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2993 loff_t end, int whence) 2994 { 2995 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2996 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2997 bool seek_data = (whence == SEEK_DATA); 2998 struct folio *folio; 2999 3000 if (end <= start) 3001 return -ENXIO; 3002 3003 rcu_read_lock(); 3004 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3005 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3006 size_t seek_size; 3007 3008 if (start < pos) { 3009 if (!seek_data) 3010 goto unlock; 3011 start = pos; 3012 } 3013 3014 seek_size = seek_folio_size(&xas, folio); 3015 pos = round_up((u64)pos + 1, seek_size); 3016 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3017 seek_data); 3018 if (start < pos) 3019 goto unlock; 3020 if (start >= end) 3021 break; 3022 if (seek_size > PAGE_SIZE) 3023 xas_set(&xas, pos >> PAGE_SHIFT); 3024 if (!xa_is_value(folio)) 3025 folio_put(folio); 3026 } 3027 if (seek_data) 3028 start = -ENXIO; 3029 unlock: 3030 rcu_read_unlock(); 3031 if (folio && !xa_is_value(folio)) 3032 folio_put(folio); 3033 if (start > end) 3034 return end; 3035 return start; 3036 } 3037 3038 #ifdef CONFIG_MMU 3039 #define MMAP_LOTSAMISS (100) 3040 /* 3041 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3042 * @vmf - the vm_fault for this fault. 3043 * @folio - the folio to lock. 3044 * @fpin - the pointer to the file we may pin (or is already pinned). 3045 * 3046 * This works similar to lock_folio_or_retry in that it can drop the 3047 * mmap_lock. It differs in that it actually returns the folio locked 3048 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3049 * to drop the mmap_lock then fpin will point to the pinned file and 3050 * needs to be fput()'ed at a later point. 3051 */ 3052 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3053 struct file **fpin) 3054 { 3055 if (folio_trylock(folio)) 3056 return 1; 3057 3058 /* 3059 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3060 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3061 * is supposed to work. We have way too many special cases.. 3062 */ 3063 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3064 return 0; 3065 3066 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3067 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3068 if (__folio_lock_killable(folio)) { 3069 /* 3070 * We didn't have the right flags to drop the 3071 * fault lock, but all fault_handlers only check 3072 * for fatal signals if we return VM_FAULT_RETRY, 3073 * so we need to drop the fault lock here and 3074 * return 0 if we don't have a fpin. 3075 */ 3076 if (*fpin == NULL) 3077 release_fault_lock(vmf); 3078 return 0; 3079 } 3080 } else 3081 __folio_lock(folio); 3082 3083 return 1; 3084 } 3085 3086 /* 3087 * Synchronous readahead happens when we don't even find a page in the page 3088 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3089 * to drop the mmap sem we return the file that was pinned in order for us to do 3090 * that. If we didn't pin a file then we return NULL. The file that is 3091 * returned needs to be fput()'ed when we're done with it. 3092 */ 3093 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3094 { 3095 struct file *file = vmf->vma->vm_file; 3096 struct file_ra_state *ra = &file->f_ra; 3097 struct address_space *mapping = file->f_mapping; 3098 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3099 struct file *fpin = NULL; 3100 unsigned long vm_flags = vmf->vma->vm_flags; 3101 unsigned int mmap_miss; 3102 3103 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3104 /* Use the readahead code, even if readahead is disabled */ 3105 if (vm_flags & VM_HUGEPAGE) { 3106 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3107 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3108 ra->size = HPAGE_PMD_NR; 3109 /* 3110 * Fetch two PMD folios, so we get the chance to actually 3111 * readahead, unless we've been told not to. 3112 */ 3113 if (!(vm_flags & VM_RAND_READ)) 3114 ra->size *= 2; 3115 ra->async_size = HPAGE_PMD_NR; 3116 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3117 return fpin; 3118 } 3119 #endif 3120 3121 /* If we don't want any read-ahead, don't bother */ 3122 if (vm_flags & VM_RAND_READ) 3123 return fpin; 3124 if (!ra->ra_pages) 3125 return fpin; 3126 3127 if (vm_flags & VM_SEQ_READ) { 3128 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3129 page_cache_sync_ra(&ractl, ra->ra_pages); 3130 return fpin; 3131 } 3132 3133 /* Avoid banging the cache line if not needed */ 3134 mmap_miss = READ_ONCE(ra->mmap_miss); 3135 if (mmap_miss < MMAP_LOTSAMISS * 10) 3136 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3137 3138 /* 3139 * Do we miss much more than hit in this file? If so, 3140 * stop bothering with read-ahead. It will only hurt. 3141 */ 3142 if (mmap_miss > MMAP_LOTSAMISS) 3143 return fpin; 3144 3145 /* 3146 * mmap read-around 3147 */ 3148 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3149 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3150 ra->size = ra->ra_pages; 3151 ra->async_size = ra->ra_pages / 4; 3152 ractl._index = ra->start; 3153 page_cache_ra_order(&ractl, ra, 0); 3154 return fpin; 3155 } 3156 3157 /* 3158 * Asynchronous readahead happens when we find the page and PG_readahead, 3159 * so we want to possibly extend the readahead further. We return the file that 3160 * was pinned if we have to drop the mmap_lock in order to do IO. 3161 */ 3162 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3163 struct folio *folio) 3164 { 3165 struct file *file = vmf->vma->vm_file; 3166 struct file_ra_state *ra = &file->f_ra; 3167 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3168 struct file *fpin = NULL; 3169 unsigned int mmap_miss; 3170 3171 /* If we don't want any read-ahead, don't bother */ 3172 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3173 return fpin; 3174 3175 mmap_miss = READ_ONCE(ra->mmap_miss); 3176 if (mmap_miss) 3177 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3178 3179 if (folio_test_readahead(folio)) { 3180 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3181 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3182 } 3183 return fpin; 3184 } 3185 3186 /** 3187 * filemap_fault - read in file data for page fault handling 3188 * @vmf: struct vm_fault containing details of the fault 3189 * 3190 * filemap_fault() is invoked via the vma operations vector for a 3191 * mapped memory region to read in file data during a page fault. 3192 * 3193 * The goto's are kind of ugly, but this streamlines the normal case of having 3194 * it in the page cache, and handles the special cases reasonably without 3195 * having a lot of duplicated code. 3196 * 3197 * vma->vm_mm->mmap_lock must be held on entry. 3198 * 3199 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3200 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3201 * 3202 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3203 * has not been released. 3204 * 3205 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3206 * 3207 * Return: bitwise-OR of %VM_FAULT_ codes. 3208 */ 3209 vm_fault_t filemap_fault(struct vm_fault *vmf) 3210 { 3211 int error; 3212 struct file *file = vmf->vma->vm_file; 3213 struct file *fpin = NULL; 3214 struct address_space *mapping = file->f_mapping; 3215 struct inode *inode = mapping->host; 3216 pgoff_t max_idx, index = vmf->pgoff; 3217 struct folio *folio; 3218 vm_fault_t ret = 0; 3219 bool mapping_locked = false; 3220 3221 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3222 if (unlikely(index >= max_idx)) 3223 return VM_FAULT_SIGBUS; 3224 3225 /* 3226 * Do we have something in the page cache already? 3227 */ 3228 folio = filemap_get_folio(mapping, index); 3229 if (likely(!IS_ERR(folio))) { 3230 /* 3231 * We found the page, so try async readahead before waiting for 3232 * the lock. 3233 */ 3234 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3235 fpin = do_async_mmap_readahead(vmf, folio); 3236 if (unlikely(!folio_test_uptodate(folio))) { 3237 filemap_invalidate_lock_shared(mapping); 3238 mapping_locked = true; 3239 } 3240 } else { 3241 /* No page in the page cache at all */ 3242 count_vm_event(PGMAJFAULT); 3243 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3244 ret = VM_FAULT_MAJOR; 3245 fpin = do_sync_mmap_readahead(vmf); 3246 retry_find: 3247 /* 3248 * See comment in filemap_create_folio() why we need 3249 * invalidate_lock 3250 */ 3251 if (!mapping_locked) { 3252 filemap_invalidate_lock_shared(mapping); 3253 mapping_locked = true; 3254 } 3255 folio = __filemap_get_folio(mapping, index, 3256 FGP_CREAT|FGP_FOR_MMAP, 3257 vmf->gfp_mask); 3258 if (IS_ERR(folio)) { 3259 if (fpin) 3260 goto out_retry; 3261 filemap_invalidate_unlock_shared(mapping); 3262 return VM_FAULT_OOM; 3263 } 3264 } 3265 3266 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3267 goto out_retry; 3268 3269 /* Did it get truncated? */ 3270 if (unlikely(folio->mapping != mapping)) { 3271 folio_unlock(folio); 3272 folio_put(folio); 3273 goto retry_find; 3274 } 3275 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3276 3277 /* 3278 * We have a locked folio in the page cache, now we need to check 3279 * that it's up-to-date. If not, it is going to be due to an error, 3280 * or because readahead was otherwise unable to retrieve it. 3281 */ 3282 if (unlikely(!folio_test_uptodate(folio))) { 3283 /* 3284 * If the invalidate lock is not held, the folio was in cache 3285 * and uptodate and now it is not. Strange but possible since we 3286 * didn't hold the page lock all the time. Let's drop 3287 * everything, get the invalidate lock and try again. 3288 */ 3289 if (!mapping_locked) { 3290 folio_unlock(folio); 3291 folio_put(folio); 3292 goto retry_find; 3293 } 3294 3295 /* 3296 * OK, the folio is really not uptodate. This can be because the 3297 * VMA has the VM_RAND_READ flag set, or because an error 3298 * arose. Let's read it in directly. 3299 */ 3300 goto page_not_uptodate; 3301 } 3302 3303 /* 3304 * We've made it this far and we had to drop our mmap_lock, now is the 3305 * time to return to the upper layer and have it re-find the vma and 3306 * redo the fault. 3307 */ 3308 if (fpin) { 3309 folio_unlock(folio); 3310 goto out_retry; 3311 } 3312 if (mapping_locked) 3313 filemap_invalidate_unlock_shared(mapping); 3314 3315 /* 3316 * Found the page and have a reference on it. 3317 * We must recheck i_size under page lock. 3318 */ 3319 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3320 if (unlikely(index >= max_idx)) { 3321 folio_unlock(folio); 3322 folio_put(folio); 3323 return VM_FAULT_SIGBUS; 3324 } 3325 3326 vmf->page = folio_file_page(folio, index); 3327 return ret | VM_FAULT_LOCKED; 3328 3329 page_not_uptodate: 3330 /* 3331 * Umm, take care of errors if the page isn't up-to-date. 3332 * Try to re-read it _once_. We do this synchronously, 3333 * because there really aren't any performance issues here 3334 * and we need to check for errors. 3335 */ 3336 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3337 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3338 if (fpin) 3339 goto out_retry; 3340 folio_put(folio); 3341 3342 if (!error || error == AOP_TRUNCATED_PAGE) 3343 goto retry_find; 3344 filemap_invalidate_unlock_shared(mapping); 3345 3346 return VM_FAULT_SIGBUS; 3347 3348 out_retry: 3349 /* 3350 * We dropped the mmap_lock, we need to return to the fault handler to 3351 * re-find the vma and come back and find our hopefully still populated 3352 * page. 3353 */ 3354 if (!IS_ERR(folio)) 3355 folio_put(folio); 3356 if (mapping_locked) 3357 filemap_invalidate_unlock_shared(mapping); 3358 if (fpin) 3359 fput(fpin); 3360 return ret | VM_FAULT_RETRY; 3361 } 3362 EXPORT_SYMBOL(filemap_fault); 3363 3364 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3365 pgoff_t start) 3366 { 3367 struct mm_struct *mm = vmf->vma->vm_mm; 3368 3369 /* Huge page is mapped? No need to proceed. */ 3370 if (pmd_trans_huge(*vmf->pmd)) { 3371 folio_unlock(folio); 3372 folio_put(folio); 3373 return true; 3374 } 3375 3376 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3377 struct page *page = folio_file_page(folio, start); 3378 vm_fault_t ret = do_set_pmd(vmf, page); 3379 if (!ret) { 3380 /* The page is mapped successfully, reference consumed. */ 3381 folio_unlock(folio); 3382 return true; 3383 } 3384 } 3385 3386 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3387 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3388 3389 return false; 3390 } 3391 3392 static struct folio *next_uptodate_folio(struct xa_state *xas, 3393 struct address_space *mapping, pgoff_t end_pgoff) 3394 { 3395 struct folio *folio = xas_next_entry(xas, end_pgoff); 3396 unsigned long max_idx; 3397 3398 do { 3399 if (!folio) 3400 return NULL; 3401 if (xas_retry(xas, folio)) 3402 continue; 3403 if (xa_is_value(folio)) 3404 continue; 3405 if (folio_test_locked(folio)) 3406 continue; 3407 if (!folio_try_get_rcu(folio)) 3408 continue; 3409 /* Has the page moved or been split? */ 3410 if (unlikely(folio != xas_reload(xas))) 3411 goto skip; 3412 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3413 goto skip; 3414 if (!folio_trylock(folio)) 3415 goto skip; 3416 if (folio->mapping != mapping) 3417 goto unlock; 3418 if (!folio_test_uptodate(folio)) 3419 goto unlock; 3420 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3421 if (xas->xa_index >= max_idx) 3422 goto unlock; 3423 return folio; 3424 unlock: 3425 folio_unlock(folio); 3426 skip: 3427 folio_put(folio); 3428 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3429 3430 return NULL; 3431 } 3432 3433 /* 3434 * Map page range [start_page, start_page + nr_pages) of folio. 3435 * start_page is gotten from start by folio_page(folio, start) 3436 */ 3437 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3438 struct folio *folio, unsigned long start, 3439 unsigned long addr, unsigned int nr_pages, 3440 unsigned int *mmap_miss) 3441 { 3442 vm_fault_t ret = 0; 3443 struct page *page = folio_page(folio, start); 3444 unsigned int count = 0; 3445 pte_t *old_ptep = vmf->pte; 3446 3447 do { 3448 if (PageHWPoison(page + count)) 3449 goto skip; 3450 3451 (*mmap_miss)++; 3452 3453 /* 3454 * NOTE: If there're PTE markers, we'll leave them to be 3455 * handled in the specific fault path, and it'll prohibit the 3456 * fault-around logic. 3457 */ 3458 if (!pte_none(ptep_get(&vmf->pte[count]))) 3459 goto skip; 3460 3461 count++; 3462 continue; 3463 skip: 3464 if (count) { 3465 set_pte_range(vmf, folio, page, count, addr); 3466 folio_ref_add(folio, count); 3467 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3468 ret = VM_FAULT_NOPAGE; 3469 } 3470 3471 count++; 3472 page += count; 3473 vmf->pte += count; 3474 addr += count * PAGE_SIZE; 3475 count = 0; 3476 } while (--nr_pages > 0); 3477 3478 if (count) { 3479 set_pte_range(vmf, folio, page, count, addr); 3480 folio_ref_add(folio, count); 3481 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3482 ret = VM_FAULT_NOPAGE; 3483 } 3484 3485 vmf->pte = old_ptep; 3486 3487 return ret; 3488 } 3489 3490 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3491 struct folio *folio, unsigned long addr, 3492 unsigned int *mmap_miss) 3493 { 3494 vm_fault_t ret = 0; 3495 struct page *page = &folio->page; 3496 3497 if (PageHWPoison(page)) 3498 return ret; 3499 3500 (*mmap_miss)++; 3501 3502 /* 3503 * NOTE: If there're PTE markers, we'll leave them to be 3504 * handled in the specific fault path, and it'll prohibit 3505 * the fault-around logic. 3506 */ 3507 if (!pte_none(ptep_get(vmf->pte))) 3508 return ret; 3509 3510 if (vmf->address == addr) 3511 ret = VM_FAULT_NOPAGE; 3512 3513 set_pte_range(vmf, folio, page, 1, addr); 3514 folio_ref_inc(folio); 3515 3516 return ret; 3517 } 3518 3519 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3520 pgoff_t start_pgoff, pgoff_t end_pgoff) 3521 { 3522 struct vm_area_struct *vma = vmf->vma; 3523 struct file *file = vma->vm_file; 3524 struct address_space *mapping = file->f_mapping; 3525 pgoff_t last_pgoff = start_pgoff; 3526 unsigned long addr; 3527 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3528 struct folio *folio; 3529 vm_fault_t ret = 0; 3530 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved; 3531 3532 rcu_read_lock(); 3533 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3534 if (!folio) 3535 goto out; 3536 3537 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3538 ret = VM_FAULT_NOPAGE; 3539 goto out; 3540 } 3541 3542 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3543 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3544 if (!vmf->pte) { 3545 folio_unlock(folio); 3546 folio_put(folio); 3547 goto out; 3548 } 3549 do { 3550 unsigned long end; 3551 3552 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3553 vmf->pte += xas.xa_index - last_pgoff; 3554 last_pgoff = xas.xa_index; 3555 end = folio_next_index(folio) - 1; 3556 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3557 3558 if (!folio_test_large(folio)) 3559 ret |= filemap_map_order0_folio(vmf, 3560 folio, addr, &mmap_miss); 3561 else 3562 ret |= filemap_map_folio_range(vmf, folio, 3563 xas.xa_index - folio->index, addr, 3564 nr_pages, &mmap_miss); 3565 3566 folio_unlock(folio); 3567 folio_put(folio); 3568 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3569 pte_unmap_unlock(vmf->pte, vmf->ptl); 3570 out: 3571 rcu_read_unlock(); 3572 3573 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3574 if (mmap_miss >= mmap_miss_saved) 3575 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3576 else 3577 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3578 3579 return ret; 3580 } 3581 EXPORT_SYMBOL(filemap_map_pages); 3582 3583 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3584 { 3585 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3586 struct folio *folio = page_folio(vmf->page); 3587 vm_fault_t ret = VM_FAULT_LOCKED; 3588 3589 sb_start_pagefault(mapping->host->i_sb); 3590 file_update_time(vmf->vma->vm_file); 3591 folio_lock(folio); 3592 if (folio->mapping != mapping) { 3593 folio_unlock(folio); 3594 ret = VM_FAULT_NOPAGE; 3595 goto out; 3596 } 3597 /* 3598 * We mark the folio dirty already here so that when freeze is in 3599 * progress, we are guaranteed that writeback during freezing will 3600 * see the dirty folio and writeprotect it again. 3601 */ 3602 folio_mark_dirty(folio); 3603 folio_wait_stable(folio); 3604 out: 3605 sb_end_pagefault(mapping->host->i_sb); 3606 return ret; 3607 } 3608 3609 const struct vm_operations_struct generic_file_vm_ops = { 3610 .fault = filemap_fault, 3611 .map_pages = filemap_map_pages, 3612 .page_mkwrite = filemap_page_mkwrite, 3613 }; 3614 3615 /* This is used for a general mmap of a disk file */ 3616 3617 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3618 { 3619 struct address_space *mapping = file->f_mapping; 3620 3621 if (!mapping->a_ops->read_folio) 3622 return -ENOEXEC; 3623 file_accessed(file); 3624 vma->vm_ops = &generic_file_vm_ops; 3625 return 0; 3626 } 3627 3628 /* 3629 * This is for filesystems which do not implement ->writepage. 3630 */ 3631 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3632 { 3633 if (vma_is_shared_maywrite(vma)) 3634 return -EINVAL; 3635 return generic_file_mmap(file, vma); 3636 } 3637 #else 3638 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3639 { 3640 return VM_FAULT_SIGBUS; 3641 } 3642 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3643 { 3644 return -ENOSYS; 3645 } 3646 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3647 { 3648 return -ENOSYS; 3649 } 3650 #endif /* CONFIG_MMU */ 3651 3652 EXPORT_SYMBOL(filemap_page_mkwrite); 3653 EXPORT_SYMBOL(generic_file_mmap); 3654 EXPORT_SYMBOL(generic_file_readonly_mmap); 3655 3656 static struct folio *do_read_cache_folio(struct address_space *mapping, 3657 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3658 { 3659 struct folio *folio; 3660 int err; 3661 3662 if (!filler) 3663 filler = mapping->a_ops->read_folio; 3664 repeat: 3665 folio = filemap_get_folio(mapping, index); 3666 if (IS_ERR(folio)) { 3667 folio = filemap_alloc_folio(gfp, 0); 3668 if (!folio) 3669 return ERR_PTR(-ENOMEM); 3670 err = filemap_add_folio(mapping, folio, index, gfp); 3671 if (unlikely(err)) { 3672 folio_put(folio); 3673 if (err == -EEXIST) 3674 goto repeat; 3675 /* Presumably ENOMEM for xarray node */ 3676 return ERR_PTR(err); 3677 } 3678 3679 goto filler; 3680 } 3681 if (folio_test_uptodate(folio)) 3682 goto out; 3683 3684 if (!folio_trylock(folio)) { 3685 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3686 goto repeat; 3687 } 3688 3689 /* Folio was truncated from mapping */ 3690 if (!folio->mapping) { 3691 folio_unlock(folio); 3692 folio_put(folio); 3693 goto repeat; 3694 } 3695 3696 /* Someone else locked and filled the page in a very small window */ 3697 if (folio_test_uptodate(folio)) { 3698 folio_unlock(folio); 3699 goto out; 3700 } 3701 3702 filler: 3703 err = filemap_read_folio(file, filler, folio); 3704 if (err) { 3705 folio_put(folio); 3706 if (err == AOP_TRUNCATED_PAGE) 3707 goto repeat; 3708 return ERR_PTR(err); 3709 } 3710 3711 out: 3712 folio_mark_accessed(folio); 3713 return folio; 3714 } 3715 3716 /** 3717 * read_cache_folio - Read into page cache, fill it if needed. 3718 * @mapping: The address_space to read from. 3719 * @index: The index to read. 3720 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3721 * @file: Passed to filler function, may be NULL if not required. 3722 * 3723 * Read one page into the page cache. If it succeeds, the folio returned 3724 * will contain @index, but it may not be the first page of the folio. 3725 * 3726 * If the filler function returns an error, it will be returned to the 3727 * caller. 3728 * 3729 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3730 * Return: An uptodate folio on success, ERR_PTR() on failure. 3731 */ 3732 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3733 filler_t filler, struct file *file) 3734 { 3735 return do_read_cache_folio(mapping, index, filler, file, 3736 mapping_gfp_mask(mapping)); 3737 } 3738 EXPORT_SYMBOL(read_cache_folio); 3739 3740 /** 3741 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3742 * @mapping: The address_space for the folio. 3743 * @index: The index that the allocated folio will contain. 3744 * @gfp: The page allocator flags to use if allocating. 3745 * 3746 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3747 * any new memory allocations done using the specified allocation flags. 3748 * 3749 * The most likely error from this function is EIO, but ENOMEM is 3750 * possible and so is EINTR. If ->read_folio returns another error, 3751 * that will be returned to the caller. 3752 * 3753 * The function expects mapping->invalidate_lock to be already held. 3754 * 3755 * Return: Uptodate folio on success, ERR_PTR() on failure. 3756 */ 3757 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3758 pgoff_t index, gfp_t gfp) 3759 { 3760 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3761 } 3762 EXPORT_SYMBOL(mapping_read_folio_gfp); 3763 3764 static struct page *do_read_cache_page(struct address_space *mapping, 3765 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3766 { 3767 struct folio *folio; 3768 3769 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3770 if (IS_ERR(folio)) 3771 return &folio->page; 3772 return folio_file_page(folio, index); 3773 } 3774 3775 struct page *read_cache_page(struct address_space *mapping, 3776 pgoff_t index, filler_t *filler, struct file *file) 3777 { 3778 return do_read_cache_page(mapping, index, filler, file, 3779 mapping_gfp_mask(mapping)); 3780 } 3781 EXPORT_SYMBOL(read_cache_page); 3782 3783 /** 3784 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3785 * @mapping: the page's address_space 3786 * @index: the page index 3787 * @gfp: the page allocator flags to use if allocating 3788 * 3789 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3790 * any new page allocations done using the specified allocation flags. 3791 * 3792 * If the page does not get brought uptodate, return -EIO. 3793 * 3794 * The function expects mapping->invalidate_lock to be already held. 3795 * 3796 * Return: up to date page on success, ERR_PTR() on failure. 3797 */ 3798 struct page *read_cache_page_gfp(struct address_space *mapping, 3799 pgoff_t index, 3800 gfp_t gfp) 3801 { 3802 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3803 } 3804 EXPORT_SYMBOL(read_cache_page_gfp); 3805 3806 /* 3807 * Warn about a page cache invalidation failure during a direct I/O write. 3808 */ 3809 static void dio_warn_stale_pagecache(struct file *filp) 3810 { 3811 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3812 char pathname[128]; 3813 char *path; 3814 3815 errseq_set(&filp->f_mapping->wb_err, -EIO); 3816 if (__ratelimit(&_rs)) { 3817 path = file_path(filp, pathname, sizeof(pathname)); 3818 if (IS_ERR(path)) 3819 path = "(unknown)"; 3820 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3821 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3822 current->comm); 3823 } 3824 } 3825 3826 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3827 { 3828 struct address_space *mapping = iocb->ki_filp->f_mapping; 3829 3830 if (mapping->nrpages && 3831 invalidate_inode_pages2_range(mapping, 3832 iocb->ki_pos >> PAGE_SHIFT, 3833 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3834 dio_warn_stale_pagecache(iocb->ki_filp); 3835 } 3836 3837 ssize_t 3838 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3839 { 3840 struct address_space *mapping = iocb->ki_filp->f_mapping; 3841 size_t write_len = iov_iter_count(from); 3842 ssize_t written; 3843 3844 /* 3845 * If a page can not be invalidated, return 0 to fall back 3846 * to buffered write. 3847 */ 3848 written = kiocb_invalidate_pages(iocb, write_len); 3849 if (written) { 3850 if (written == -EBUSY) 3851 return 0; 3852 return written; 3853 } 3854 3855 written = mapping->a_ops->direct_IO(iocb, from); 3856 3857 /* 3858 * Finally, try again to invalidate clean pages which might have been 3859 * cached by non-direct readahead, or faulted in by get_user_pages() 3860 * if the source of the write was an mmap'ed region of the file 3861 * we're writing. Either one is a pretty crazy thing to do, 3862 * so we don't support it 100%. If this invalidation 3863 * fails, tough, the write still worked... 3864 * 3865 * Most of the time we do not need this since dio_complete() will do 3866 * the invalidation for us. However there are some file systems that 3867 * do not end up with dio_complete() being called, so let's not break 3868 * them by removing it completely. 3869 * 3870 * Noticeable example is a blkdev_direct_IO(). 3871 * 3872 * Skip invalidation for async writes or if mapping has no pages. 3873 */ 3874 if (written > 0) { 3875 struct inode *inode = mapping->host; 3876 loff_t pos = iocb->ki_pos; 3877 3878 kiocb_invalidate_post_direct_write(iocb, written); 3879 pos += written; 3880 write_len -= written; 3881 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3882 i_size_write(inode, pos); 3883 mark_inode_dirty(inode); 3884 } 3885 iocb->ki_pos = pos; 3886 } 3887 if (written != -EIOCBQUEUED) 3888 iov_iter_revert(from, write_len - iov_iter_count(from)); 3889 return written; 3890 } 3891 EXPORT_SYMBOL(generic_file_direct_write); 3892 3893 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3894 { 3895 struct file *file = iocb->ki_filp; 3896 loff_t pos = iocb->ki_pos; 3897 struct address_space *mapping = file->f_mapping; 3898 const struct address_space_operations *a_ops = mapping->a_ops; 3899 long status = 0; 3900 ssize_t written = 0; 3901 3902 do { 3903 struct page *page; 3904 unsigned long offset; /* Offset into pagecache page */ 3905 unsigned long bytes; /* Bytes to write to page */ 3906 size_t copied; /* Bytes copied from user */ 3907 void *fsdata = NULL; 3908 3909 offset = (pos & (PAGE_SIZE - 1)); 3910 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3911 iov_iter_count(i)); 3912 3913 again: 3914 /* 3915 * Bring in the user page that we will copy from _first_. 3916 * Otherwise there's a nasty deadlock on copying from the 3917 * same page as we're writing to, without it being marked 3918 * up-to-date. 3919 */ 3920 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3921 status = -EFAULT; 3922 break; 3923 } 3924 3925 if (fatal_signal_pending(current)) { 3926 status = -EINTR; 3927 break; 3928 } 3929 3930 status = a_ops->write_begin(file, mapping, pos, bytes, 3931 &page, &fsdata); 3932 if (unlikely(status < 0)) 3933 break; 3934 3935 if (mapping_writably_mapped(mapping)) 3936 flush_dcache_page(page); 3937 3938 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3939 flush_dcache_page(page); 3940 3941 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3942 page, fsdata); 3943 if (unlikely(status != copied)) { 3944 iov_iter_revert(i, copied - max(status, 0L)); 3945 if (unlikely(status < 0)) 3946 break; 3947 } 3948 cond_resched(); 3949 3950 if (unlikely(status == 0)) { 3951 /* 3952 * A short copy made ->write_end() reject the 3953 * thing entirely. Might be memory poisoning 3954 * halfway through, might be a race with munmap, 3955 * might be severe memory pressure. 3956 */ 3957 if (copied) 3958 bytes = copied; 3959 goto again; 3960 } 3961 pos += status; 3962 written += status; 3963 3964 balance_dirty_pages_ratelimited(mapping); 3965 } while (iov_iter_count(i)); 3966 3967 if (!written) 3968 return status; 3969 iocb->ki_pos += written; 3970 return written; 3971 } 3972 EXPORT_SYMBOL(generic_perform_write); 3973 3974 /** 3975 * __generic_file_write_iter - write data to a file 3976 * @iocb: IO state structure (file, offset, etc.) 3977 * @from: iov_iter with data to write 3978 * 3979 * This function does all the work needed for actually writing data to a 3980 * file. It does all basic checks, removes SUID from the file, updates 3981 * modification times and calls proper subroutines depending on whether we 3982 * do direct IO or a standard buffered write. 3983 * 3984 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3985 * object which does not need locking at all. 3986 * 3987 * This function does *not* take care of syncing data in case of O_SYNC write. 3988 * A caller has to handle it. This is mainly due to the fact that we want to 3989 * avoid syncing under i_rwsem. 3990 * 3991 * Return: 3992 * * number of bytes written, even for truncated writes 3993 * * negative error code if no data has been written at all 3994 */ 3995 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3996 { 3997 struct file *file = iocb->ki_filp; 3998 struct address_space *mapping = file->f_mapping; 3999 struct inode *inode = mapping->host; 4000 ssize_t ret; 4001 4002 ret = file_remove_privs(file); 4003 if (ret) 4004 return ret; 4005 4006 ret = file_update_time(file); 4007 if (ret) 4008 return ret; 4009 4010 if (iocb->ki_flags & IOCB_DIRECT) { 4011 ret = generic_file_direct_write(iocb, from); 4012 /* 4013 * If the write stopped short of completing, fall back to 4014 * buffered writes. Some filesystems do this for writes to 4015 * holes, for example. For DAX files, a buffered write will 4016 * not succeed (even if it did, DAX does not handle dirty 4017 * page-cache pages correctly). 4018 */ 4019 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4020 return ret; 4021 return direct_write_fallback(iocb, from, ret, 4022 generic_perform_write(iocb, from)); 4023 } 4024 4025 return generic_perform_write(iocb, from); 4026 } 4027 EXPORT_SYMBOL(__generic_file_write_iter); 4028 4029 /** 4030 * generic_file_write_iter - write data to a file 4031 * @iocb: IO state structure 4032 * @from: iov_iter with data to write 4033 * 4034 * This is a wrapper around __generic_file_write_iter() to be used by most 4035 * filesystems. It takes care of syncing the file in case of O_SYNC file 4036 * and acquires i_rwsem as needed. 4037 * Return: 4038 * * negative error code if no data has been written at all of 4039 * vfs_fsync_range() failed for a synchronous write 4040 * * number of bytes written, even for truncated writes 4041 */ 4042 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4043 { 4044 struct file *file = iocb->ki_filp; 4045 struct inode *inode = file->f_mapping->host; 4046 ssize_t ret; 4047 4048 inode_lock(inode); 4049 ret = generic_write_checks(iocb, from); 4050 if (ret > 0) 4051 ret = __generic_file_write_iter(iocb, from); 4052 inode_unlock(inode); 4053 4054 if (ret > 0) 4055 ret = generic_write_sync(iocb, ret); 4056 return ret; 4057 } 4058 EXPORT_SYMBOL(generic_file_write_iter); 4059 4060 /** 4061 * filemap_release_folio() - Release fs-specific metadata on a folio. 4062 * @folio: The folio which the kernel is trying to free. 4063 * @gfp: Memory allocation flags (and I/O mode). 4064 * 4065 * The address_space is trying to release any data attached to a folio 4066 * (presumably at folio->private). 4067 * 4068 * This will also be called if the private_2 flag is set on a page, 4069 * indicating that the folio has other metadata associated with it. 4070 * 4071 * The @gfp argument specifies whether I/O may be performed to release 4072 * this page (__GFP_IO), and whether the call may block 4073 * (__GFP_RECLAIM & __GFP_FS). 4074 * 4075 * Return: %true if the release was successful, otherwise %false. 4076 */ 4077 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4078 { 4079 struct address_space * const mapping = folio->mapping; 4080 4081 BUG_ON(!folio_test_locked(folio)); 4082 if (!folio_needs_release(folio)) 4083 return true; 4084 if (folio_test_writeback(folio)) 4085 return false; 4086 4087 if (mapping && mapping->a_ops->release_folio) 4088 return mapping->a_ops->release_folio(folio, gfp); 4089 return try_to_free_buffers(folio); 4090 } 4091 EXPORT_SYMBOL(filemap_release_folio); 4092 4093 #ifdef CONFIG_CACHESTAT_SYSCALL 4094 /** 4095 * filemap_cachestat() - compute the page cache statistics of a mapping 4096 * @mapping: The mapping to compute the statistics for. 4097 * @first_index: The starting page cache index. 4098 * @last_index: The final page index (inclusive). 4099 * @cs: the cachestat struct to write the result to. 4100 * 4101 * This will query the page cache statistics of a mapping in the 4102 * page range of [first_index, last_index] (inclusive). The statistics 4103 * queried include: number of dirty pages, number of pages marked for 4104 * writeback, and the number of (recently) evicted pages. 4105 */ 4106 static void filemap_cachestat(struct address_space *mapping, 4107 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4108 { 4109 XA_STATE(xas, &mapping->i_pages, first_index); 4110 struct folio *folio; 4111 4112 rcu_read_lock(); 4113 xas_for_each(&xas, folio, last_index) { 4114 int order; 4115 unsigned long nr_pages; 4116 pgoff_t folio_first_index, folio_last_index; 4117 4118 /* 4119 * Don't deref the folio. It is not pinned, and might 4120 * get freed (and reused) underneath us. 4121 * 4122 * We *could* pin it, but that would be expensive for 4123 * what should be a fast and lightweight syscall. 4124 * 4125 * Instead, derive all information of interest from 4126 * the rcu-protected xarray. 4127 */ 4128 4129 if (xas_retry(&xas, folio)) 4130 continue; 4131 4132 order = xa_get_order(xas.xa, xas.xa_index); 4133 nr_pages = 1 << order; 4134 folio_first_index = round_down(xas.xa_index, 1 << order); 4135 folio_last_index = folio_first_index + nr_pages - 1; 4136 4137 /* Folios might straddle the range boundaries, only count covered pages */ 4138 if (folio_first_index < first_index) 4139 nr_pages -= first_index - folio_first_index; 4140 4141 if (folio_last_index > last_index) 4142 nr_pages -= folio_last_index - last_index; 4143 4144 if (xa_is_value(folio)) { 4145 /* page is evicted */ 4146 void *shadow = (void *)folio; 4147 bool workingset; /* not used */ 4148 4149 cs->nr_evicted += nr_pages; 4150 4151 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4152 if (shmem_mapping(mapping)) { 4153 /* shmem file - in swap cache */ 4154 swp_entry_t swp = radix_to_swp_entry(folio); 4155 4156 shadow = get_shadow_from_swap_cache(swp); 4157 } 4158 #endif 4159 if (workingset_test_recent(shadow, true, &workingset)) 4160 cs->nr_recently_evicted += nr_pages; 4161 4162 goto resched; 4163 } 4164 4165 /* page is in cache */ 4166 cs->nr_cache += nr_pages; 4167 4168 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4169 cs->nr_dirty += nr_pages; 4170 4171 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4172 cs->nr_writeback += nr_pages; 4173 4174 resched: 4175 if (need_resched()) { 4176 xas_pause(&xas); 4177 cond_resched_rcu(); 4178 } 4179 } 4180 rcu_read_unlock(); 4181 } 4182 4183 /* 4184 * The cachestat(2) system call. 4185 * 4186 * cachestat() returns the page cache statistics of a file in the 4187 * bytes range specified by `off` and `len`: number of cached pages, 4188 * number of dirty pages, number of pages marked for writeback, 4189 * number of evicted pages, and number of recently evicted pages. 4190 * 4191 * An evicted page is a page that is previously in the page cache 4192 * but has been evicted since. A page is recently evicted if its last 4193 * eviction was recent enough that its reentry to the cache would 4194 * indicate that it is actively being used by the system, and that 4195 * there is memory pressure on the system. 4196 * 4197 * `off` and `len` must be non-negative integers. If `len` > 0, 4198 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4199 * we will query in the range from `off` to the end of the file. 4200 * 4201 * The `flags` argument is unused for now, but is included for future 4202 * extensibility. User should pass 0 (i.e no flag specified). 4203 * 4204 * Currently, hugetlbfs is not supported. 4205 * 4206 * Because the status of a page can change after cachestat() checks it 4207 * but before it returns to the application, the returned values may 4208 * contain stale information. 4209 * 4210 * return values: 4211 * zero - success 4212 * -EFAULT - cstat or cstat_range points to an illegal address 4213 * -EINVAL - invalid flags 4214 * -EBADF - invalid file descriptor 4215 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4216 */ 4217 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4218 struct cachestat_range __user *, cstat_range, 4219 struct cachestat __user *, cstat, unsigned int, flags) 4220 { 4221 struct fd f = fdget(fd); 4222 struct address_space *mapping; 4223 struct cachestat_range csr; 4224 struct cachestat cs; 4225 pgoff_t first_index, last_index; 4226 4227 if (!f.file) 4228 return -EBADF; 4229 4230 if (copy_from_user(&csr, cstat_range, 4231 sizeof(struct cachestat_range))) { 4232 fdput(f); 4233 return -EFAULT; 4234 } 4235 4236 /* hugetlbfs is not supported */ 4237 if (is_file_hugepages(f.file)) { 4238 fdput(f); 4239 return -EOPNOTSUPP; 4240 } 4241 4242 if (flags != 0) { 4243 fdput(f); 4244 return -EINVAL; 4245 } 4246 4247 first_index = csr.off >> PAGE_SHIFT; 4248 last_index = 4249 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4250 memset(&cs, 0, sizeof(struct cachestat)); 4251 mapping = f.file->f_mapping; 4252 filemap_cachestat(mapping, first_index, last_index, &cs); 4253 fdput(f); 4254 4255 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4256 return -EFAULT; 4257 4258 return 0; 4259 } 4260 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4261