1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/shmem_fs.h> 38 #include <linux/rmap.h> 39 #include <linux/delayacct.h> 40 #include <linux/psi.h> 41 #include "internal.h" 42 43 #define CREATE_TRACE_POINTS 44 #include <trace/events/filemap.h> 45 46 /* 47 * FIXME: remove all knowledge of the buffer layer from the core VM 48 */ 49 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 50 51 #include <asm/mman.h> 52 53 /* 54 * Shared mappings implemented 30.11.1994. It's not fully working yet, 55 * though. 56 * 57 * Shared mappings now work. 15.8.1995 Bruno. 58 * 59 * finished 'unifying' the page and buffer cache and SMP-threaded the 60 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 61 * 62 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 63 */ 64 65 /* 66 * Lock ordering: 67 * 68 * ->i_mmap_rwsem (truncate_pagecache) 69 * ->private_lock (__free_pte->__set_page_dirty_buffers) 70 * ->swap_lock (exclusive_swap_page, others) 71 * ->i_pages lock 72 * 73 * ->i_mutex 74 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 75 * 76 * ->mmap_sem 77 * ->i_mmap_rwsem 78 * ->page_table_lock or pte_lock (various, mainly in memory.c) 79 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 80 * 81 * ->mmap_sem 82 * ->lock_page (access_process_vm) 83 * 84 * ->i_mutex (generic_perform_write) 85 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 86 * 87 * bdi->wb.list_lock 88 * sb_lock (fs/fs-writeback.c) 89 * ->i_pages lock (__sync_single_inode) 90 * 91 * ->i_mmap_rwsem 92 * ->anon_vma.lock (vma_adjust) 93 * 94 * ->anon_vma.lock 95 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 96 * 97 * ->page_table_lock or pte_lock 98 * ->swap_lock (try_to_unmap_one) 99 * ->private_lock (try_to_unmap_one) 100 * ->i_pages lock (try_to_unmap_one) 101 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 102 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 103 * ->private_lock (page_remove_rmap->set_page_dirty) 104 * ->i_pages lock (page_remove_rmap->set_page_dirty) 105 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 106 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 107 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 108 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 109 * ->inode->i_lock (zap_pte_range->set_page_dirty) 110 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 111 * 112 * ->i_mmap_rwsem 113 * ->tasklist_lock (memory_failure, collect_procs_ao) 114 */ 115 116 static void page_cache_delete(struct address_space *mapping, 117 struct page *page, void *shadow) 118 { 119 XA_STATE(xas, &mapping->i_pages, page->index); 120 unsigned int nr = 1; 121 122 mapping_set_update(&xas, mapping); 123 124 /* hugetlb pages are represented by a single entry in the xarray */ 125 if (!PageHuge(page)) { 126 xas_set_order(&xas, page->index, compound_order(page)); 127 nr = 1U << compound_order(page); 128 } 129 130 VM_BUG_ON_PAGE(!PageLocked(page), page); 131 VM_BUG_ON_PAGE(PageTail(page), page); 132 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 133 134 xas_store(&xas, shadow); 135 xas_init_marks(&xas); 136 137 page->mapping = NULL; 138 /* Leave page->index set: truncation lookup relies upon it */ 139 140 if (shadow) { 141 mapping->nrexceptional += nr; 142 /* 143 * Make sure the nrexceptional update is committed before 144 * the nrpages update so that final truncate racing 145 * with reclaim does not see both counters 0 at the 146 * same time and miss a shadow entry. 147 */ 148 smp_wmb(); 149 } 150 mapping->nrpages -= nr; 151 } 152 153 static void unaccount_page_cache_page(struct address_space *mapping, 154 struct page *page) 155 { 156 int nr; 157 158 /* 159 * if we're uptodate, flush out into the cleancache, otherwise 160 * invalidate any existing cleancache entries. We can't leave 161 * stale data around in the cleancache once our page is gone 162 */ 163 if (PageUptodate(page) && PageMappedToDisk(page)) 164 cleancache_put_page(page); 165 else 166 cleancache_invalidate_page(mapping, page); 167 168 VM_BUG_ON_PAGE(PageTail(page), page); 169 VM_BUG_ON_PAGE(page_mapped(page), page); 170 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 171 int mapcount; 172 173 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 174 current->comm, page_to_pfn(page)); 175 dump_page(page, "still mapped when deleted"); 176 dump_stack(); 177 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 178 179 mapcount = page_mapcount(page); 180 if (mapping_exiting(mapping) && 181 page_count(page) >= mapcount + 2) { 182 /* 183 * All vmas have already been torn down, so it's 184 * a good bet that actually the page is unmapped, 185 * and we'd prefer not to leak it: if we're wrong, 186 * some other bad page check should catch it later. 187 */ 188 page_mapcount_reset(page); 189 page_ref_sub(page, mapcount); 190 } 191 } 192 193 /* hugetlb pages do not participate in page cache accounting. */ 194 if (PageHuge(page)) 195 return; 196 197 nr = hpage_nr_pages(page); 198 199 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 200 if (PageSwapBacked(page)) { 201 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 202 if (PageTransHuge(page)) 203 __dec_node_page_state(page, NR_SHMEM_THPS); 204 } else { 205 VM_BUG_ON_PAGE(PageTransHuge(page), page); 206 } 207 208 /* 209 * At this point page must be either written or cleaned by 210 * truncate. Dirty page here signals a bug and loss of 211 * unwritten data. 212 * 213 * This fixes dirty accounting after removing the page entirely 214 * but leaves PageDirty set: it has no effect for truncated 215 * page and anyway will be cleared before returning page into 216 * buddy allocator. 217 */ 218 if (WARN_ON_ONCE(PageDirty(page))) 219 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __delete_from_page_cache(struct page *page, void *shadow) 228 { 229 struct address_space *mapping = page->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(page); 232 233 unaccount_page_cache_page(mapping, page); 234 page_cache_delete(mapping, page, shadow); 235 } 236 237 static void page_cache_free_page(struct address_space *mapping, 238 struct page *page) 239 { 240 void (*freepage)(struct page *); 241 242 freepage = mapping->a_ops->freepage; 243 if (freepage) 244 freepage(page); 245 246 if (PageTransHuge(page) && !PageHuge(page)) { 247 page_ref_sub(page, HPAGE_PMD_NR); 248 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 249 } else { 250 put_page(page); 251 } 252 } 253 254 /** 255 * delete_from_page_cache - delete page from page cache 256 * @page: the page which the kernel is trying to remove from page cache 257 * 258 * This must be called only on pages that have been verified to be in the page 259 * cache and locked. It will never put the page into the free list, the caller 260 * has a reference on the page. 261 */ 262 void delete_from_page_cache(struct page *page) 263 { 264 struct address_space *mapping = page_mapping(page); 265 unsigned long flags; 266 267 BUG_ON(!PageLocked(page)); 268 xa_lock_irqsave(&mapping->i_pages, flags); 269 __delete_from_page_cache(page, NULL); 270 xa_unlock_irqrestore(&mapping->i_pages, flags); 271 272 page_cache_free_page(mapping, page); 273 } 274 EXPORT_SYMBOL(delete_from_page_cache); 275 276 /* 277 * page_cache_delete_batch - delete several pages from page cache 278 * @mapping: the mapping to which pages belong 279 * @pvec: pagevec with pages to delete 280 * 281 * The function walks over mapping->i_pages and removes pages passed in @pvec 282 * from the mapping. The function expects @pvec to be sorted by page index. 283 * It tolerates holes in @pvec (mapping entries at those indices are not 284 * modified). The function expects only THP head pages to be present in the 285 * @pvec and takes care to delete all corresponding tail pages from the 286 * mapping as well. 287 * 288 * The function expects the i_pages lock to be held. 289 */ 290 static void page_cache_delete_batch(struct address_space *mapping, 291 struct pagevec *pvec) 292 { 293 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index); 294 int total_pages = 0; 295 int i = 0, tail_pages = 0; 296 struct page *page; 297 298 mapping_set_update(&xas, mapping); 299 xas_for_each(&xas, page, ULONG_MAX) { 300 if (i >= pagevec_count(pvec) && !tail_pages) 301 break; 302 if (xa_is_value(page)) 303 continue; 304 if (!tail_pages) { 305 /* 306 * Some page got inserted in our range? Skip it. We 307 * have our pages locked so they are protected from 308 * being removed. 309 */ 310 if (page != pvec->pages[i]) { 311 VM_BUG_ON_PAGE(page->index > 312 pvec->pages[i]->index, page); 313 continue; 314 } 315 WARN_ON_ONCE(!PageLocked(page)); 316 if (PageTransHuge(page) && !PageHuge(page)) 317 tail_pages = HPAGE_PMD_NR - 1; 318 page->mapping = NULL; 319 /* 320 * Leave page->index set: truncation lookup relies 321 * upon it 322 */ 323 i++; 324 } else { 325 VM_BUG_ON_PAGE(page->index + HPAGE_PMD_NR - tail_pages 326 != pvec->pages[i]->index, page); 327 tail_pages--; 328 } 329 xas_store(&xas, NULL); 330 total_pages++; 331 } 332 mapping->nrpages -= total_pages; 333 } 334 335 void delete_from_page_cache_batch(struct address_space *mapping, 336 struct pagevec *pvec) 337 { 338 int i; 339 unsigned long flags; 340 341 if (!pagevec_count(pvec)) 342 return; 343 344 xa_lock_irqsave(&mapping->i_pages, flags); 345 for (i = 0; i < pagevec_count(pvec); i++) { 346 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]); 347 348 unaccount_page_cache_page(mapping, pvec->pages[i]); 349 } 350 page_cache_delete_batch(mapping, pvec); 351 xa_unlock_irqrestore(&mapping->i_pages, flags); 352 353 for (i = 0; i < pagevec_count(pvec); i++) 354 page_cache_free_page(mapping, pvec->pages[i]); 355 } 356 357 int filemap_check_errors(struct address_space *mapping) 358 { 359 int ret = 0; 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_ENOSPC, &mapping->flags) && 362 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 363 ret = -ENOSPC; 364 if (test_bit(AS_EIO, &mapping->flags) && 365 test_and_clear_bit(AS_EIO, &mapping->flags)) 366 ret = -EIO; 367 return ret; 368 } 369 EXPORT_SYMBOL(filemap_check_errors); 370 371 static int filemap_check_and_keep_errors(struct address_space *mapping) 372 { 373 /* Check for outstanding write errors */ 374 if (test_bit(AS_EIO, &mapping->flags)) 375 return -EIO; 376 if (test_bit(AS_ENOSPC, &mapping->flags)) 377 return -ENOSPC; 378 return 0; 379 } 380 381 /** 382 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 383 * @mapping: address space structure to write 384 * @start: offset in bytes where the range starts 385 * @end: offset in bytes where the range ends (inclusive) 386 * @sync_mode: enable synchronous operation 387 * 388 * Start writeback against all of a mapping's dirty pages that lie 389 * within the byte offsets <start, end> inclusive. 390 * 391 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 392 * opposed to a regular memory cleansing writeback. The difference between 393 * these two operations is that if a dirty page/buffer is encountered, it must 394 * be waited upon, and not just skipped over. 395 */ 396 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 397 loff_t end, int sync_mode) 398 { 399 int ret; 400 struct writeback_control wbc = { 401 .sync_mode = sync_mode, 402 .nr_to_write = LONG_MAX, 403 .range_start = start, 404 .range_end = end, 405 }; 406 407 if (!mapping_cap_writeback_dirty(mapping)) 408 return 0; 409 410 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 411 ret = do_writepages(mapping, &wbc); 412 wbc_detach_inode(&wbc); 413 return ret; 414 } 415 416 static inline int __filemap_fdatawrite(struct address_space *mapping, 417 int sync_mode) 418 { 419 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 420 } 421 422 int filemap_fdatawrite(struct address_space *mapping) 423 { 424 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 425 } 426 EXPORT_SYMBOL(filemap_fdatawrite); 427 428 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 429 loff_t end) 430 { 431 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 432 } 433 EXPORT_SYMBOL(filemap_fdatawrite_range); 434 435 /** 436 * filemap_flush - mostly a non-blocking flush 437 * @mapping: target address_space 438 * 439 * This is a mostly non-blocking flush. Not suitable for data-integrity 440 * purposes - I/O may not be started against all dirty pages. 441 */ 442 int filemap_flush(struct address_space *mapping) 443 { 444 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 445 } 446 EXPORT_SYMBOL(filemap_flush); 447 448 /** 449 * filemap_range_has_page - check if a page exists in range. 450 * @mapping: address space within which to check 451 * @start_byte: offset in bytes where the range starts 452 * @end_byte: offset in bytes where the range ends (inclusive) 453 * 454 * Find at least one page in the range supplied, usually used to check if 455 * direct writing in this range will trigger a writeback. 456 */ 457 bool filemap_range_has_page(struct address_space *mapping, 458 loff_t start_byte, loff_t end_byte) 459 { 460 struct page *page; 461 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 462 pgoff_t max = end_byte >> PAGE_SHIFT; 463 464 if (end_byte < start_byte) 465 return false; 466 467 rcu_read_lock(); 468 for (;;) { 469 page = xas_find(&xas, max); 470 if (xas_retry(&xas, page)) 471 continue; 472 /* Shadow entries don't count */ 473 if (xa_is_value(page)) 474 continue; 475 /* 476 * We don't need to try to pin this page; we're about to 477 * release the RCU lock anyway. It is enough to know that 478 * there was a page here recently. 479 */ 480 break; 481 } 482 rcu_read_unlock(); 483 484 return page != NULL; 485 } 486 EXPORT_SYMBOL(filemap_range_has_page); 487 488 static void __filemap_fdatawait_range(struct address_space *mapping, 489 loff_t start_byte, loff_t end_byte) 490 { 491 pgoff_t index = start_byte >> PAGE_SHIFT; 492 pgoff_t end = end_byte >> PAGE_SHIFT; 493 struct pagevec pvec; 494 int nr_pages; 495 496 if (end_byte < start_byte) 497 return; 498 499 pagevec_init(&pvec); 500 while (index <= end) { 501 unsigned i; 502 503 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 504 end, PAGECACHE_TAG_WRITEBACK); 505 if (!nr_pages) 506 break; 507 508 for (i = 0; i < nr_pages; i++) { 509 struct page *page = pvec.pages[i]; 510 511 wait_on_page_writeback(page); 512 ClearPageError(page); 513 } 514 pagevec_release(&pvec); 515 cond_resched(); 516 } 517 } 518 519 /** 520 * filemap_fdatawait_range - wait for writeback to complete 521 * @mapping: address space structure to wait for 522 * @start_byte: offset in bytes where the range starts 523 * @end_byte: offset in bytes where the range ends (inclusive) 524 * 525 * Walk the list of under-writeback pages of the given address space 526 * in the given range and wait for all of them. Check error status of 527 * the address space and return it. 528 * 529 * Since the error status of the address space is cleared by this function, 530 * callers are responsible for checking the return value and handling and/or 531 * reporting the error. 532 */ 533 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 534 loff_t end_byte) 535 { 536 __filemap_fdatawait_range(mapping, start_byte, end_byte); 537 return filemap_check_errors(mapping); 538 } 539 EXPORT_SYMBOL(filemap_fdatawait_range); 540 541 /** 542 * file_fdatawait_range - wait for writeback to complete 543 * @file: file pointing to address space structure to wait for 544 * @start_byte: offset in bytes where the range starts 545 * @end_byte: offset in bytes where the range ends (inclusive) 546 * 547 * Walk the list of under-writeback pages of the address space that file 548 * refers to, in the given range and wait for all of them. Check error 549 * status of the address space vs. the file->f_wb_err cursor and return it. 550 * 551 * Since the error status of the file is advanced by this function, 552 * callers are responsible for checking the return value and handling and/or 553 * reporting the error. 554 */ 555 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 556 { 557 struct address_space *mapping = file->f_mapping; 558 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return file_check_and_advance_wb_err(file); 561 } 562 EXPORT_SYMBOL(file_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 566 * @mapping: address space structure to wait for 567 * 568 * Walk the list of under-writeback pages of the given address space 569 * and wait for all of them. Unlike filemap_fdatawait(), this function 570 * does not clear error status of the address space. 571 * 572 * Use this function if callers don't handle errors themselves. Expected 573 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 574 * fsfreeze(8) 575 */ 576 int filemap_fdatawait_keep_errors(struct address_space *mapping) 577 { 578 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 579 return filemap_check_and_keep_errors(mapping); 580 } 581 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 582 583 static bool mapping_needs_writeback(struct address_space *mapping) 584 { 585 return (!dax_mapping(mapping) && mapping->nrpages) || 586 (dax_mapping(mapping) && mapping->nrexceptional); 587 } 588 589 int filemap_write_and_wait(struct address_space *mapping) 590 { 591 int err = 0; 592 593 if (mapping_needs_writeback(mapping)) { 594 err = filemap_fdatawrite(mapping); 595 /* 596 * Even if the above returned error, the pages may be 597 * written partially (e.g. -ENOSPC), so we wait for it. 598 * But the -EIO is special case, it may indicate the worst 599 * thing (e.g. bug) happened, so we avoid waiting for it. 600 */ 601 if (err != -EIO) { 602 int err2 = filemap_fdatawait(mapping); 603 if (!err) 604 err = err2; 605 } else { 606 /* Clear any previously stored errors */ 607 filemap_check_errors(mapping); 608 } 609 } else { 610 err = filemap_check_errors(mapping); 611 } 612 return err; 613 } 614 EXPORT_SYMBOL(filemap_write_and_wait); 615 616 /** 617 * filemap_write_and_wait_range - write out & wait on a file range 618 * @mapping: the address_space for the pages 619 * @lstart: offset in bytes where the range starts 620 * @lend: offset in bytes where the range ends (inclusive) 621 * 622 * Write out and wait upon file offsets lstart->lend, inclusive. 623 * 624 * Note that @lend is inclusive (describes the last byte to be written) so 625 * that this function can be used to write to the very end-of-file (end = -1). 626 */ 627 int filemap_write_and_wait_range(struct address_space *mapping, 628 loff_t lstart, loff_t lend) 629 { 630 int err = 0; 631 632 if (mapping_needs_writeback(mapping)) { 633 err = __filemap_fdatawrite_range(mapping, lstart, lend, 634 WB_SYNC_ALL); 635 /* See comment of filemap_write_and_wait() */ 636 if (err != -EIO) { 637 int err2 = filemap_fdatawait_range(mapping, 638 lstart, lend); 639 if (!err) 640 err = err2; 641 } else { 642 /* Clear any previously stored errors */ 643 filemap_check_errors(mapping); 644 } 645 } else { 646 err = filemap_check_errors(mapping); 647 } 648 return err; 649 } 650 EXPORT_SYMBOL(filemap_write_and_wait_range); 651 652 void __filemap_set_wb_err(struct address_space *mapping, int err) 653 { 654 errseq_t eseq = errseq_set(&mapping->wb_err, err); 655 656 trace_filemap_set_wb_err(mapping, eseq); 657 } 658 EXPORT_SYMBOL(__filemap_set_wb_err); 659 660 /** 661 * file_check_and_advance_wb_err - report wb error (if any) that was previously 662 * and advance wb_err to current one 663 * @file: struct file on which the error is being reported 664 * 665 * When userland calls fsync (or something like nfsd does the equivalent), we 666 * want to report any writeback errors that occurred since the last fsync (or 667 * since the file was opened if there haven't been any). 668 * 669 * Grab the wb_err from the mapping. If it matches what we have in the file, 670 * then just quickly return 0. The file is all caught up. 671 * 672 * If it doesn't match, then take the mapping value, set the "seen" flag in 673 * it and try to swap it into place. If it works, or another task beat us 674 * to it with the new value, then update the f_wb_err and return the error 675 * portion. The error at this point must be reported via proper channels 676 * (a'la fsync, or NFS COMMIT operation, etc.). 677 * 678 * While we handle mapping->wb_err with atomic operations, the f_wb_err 679 * value is protected by the f_lock since we must ensure that it reflects 680 * the latest value swapped in for this file descriptor. 681 */ 682 int file_check_and_advance_wb_err(struct file *file) 683 { 684 int err = 0; 685 errseq_t old = READ_ONCE(file->f_wb_err); 686 struct address_space *mapping = file->f_mapping; 687 688 /* Locklessly handle the common case where nothing has changed */ 689 if (errseq_check(&mapping->wb_err, old)) { 690 /* Something changed, must use slow path */ 691 spin_lock(&file->f_lock); 692 old = file->f_wb_err; 693 err = errseq_check_and_advance(&mapping->wb_err, 694 &file->f_wb_err); 695 trace_file_check_and_advance_wb_err(file, old); 696 spin_unlock(&file->f_lock); 697 } 698 699 /* 700 * We're mostly using this function as a drop in replacement for 701 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 702 * that the legacy code would have had on these flags. 703 */ 704 clear_bit(AS_EIO, &mapping->flags); 705 clear_bit(AS_ENOSPC, &mapping->flags); 706 return err; 707 } 708 EXPORT_SYMBOL(file_check_and_advance_wb_err); 709 710 /** 711 * file_write_and_wait_range - write out & wait on a file range 712 * @file: file pointing to address_space with pages 713 * @lstart: offset in bytes where the range starts 714 * @lend: offset in bytes where the range ends (inclusive) 715 * 716 * Write out and wait upon file offsets lstart->lend, inclusive. 717 * 718 * Note that @lend is inclusive (describes the last byte to be written) so 719 * that this function can be used to write to the very end-of-file (end = -1). 720 * 721 * After writing out and waiting on the data, we check and advance the 722 * f_wb_err cursor to the latest value, and return any errors detected there. 723 */ 724 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 725 { 726 int err = 0, err2; 727 struct address_space *mapping = file->f_mapping; 728 729 if (mapping_needs_writeback(mapping)) { 730 err = __filemap_fdatawrite_range(mapping, lstart, lend, 731 WB_SYNC_ALL); 732 /* See comment of filemap_write_and_wait() */ 733 if (err != -EIO) 734 __filemap_fdatawait_range(mapping, lstart, lend); 735 } 736 err2 = file_check_and_advance_wb_err(file); 737 if (!err) 738 err = err2; 739 return err; 740 } 741 EXPORT_SYMBOL(file_write_and_wait_range); 742 743 /** 744 * replace_page_cache_page - replace a pagecache page with a new one 745 * @old: page to be replaced 746 * @new: page to replace with 747 * @gfp_mask: allocation mode 748 * 749 * This function replaces a page in the pagecache with a new one. On 750 * success it acquires the pagecache reference for the new page and 751 * drops it for the old page. Both the old and new pages must be 752 * locked. This function does not add the new page to the LRU, the 753 * caller must do that. 754 * 755 * The remove + add is atomic. This function cannot fail. 756 */ 757 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 758 { 759 struct address_space *mapping = old->mapping; 760 void (*freepage)(struct page *) = mapping->a_ops->freepage; 761 pgoff_t offset = old->index; 762 XA_STATE(xas, &mapping->i_pages, offset); 763 unsigned long flags; 764 765 VM_BUG_ON_PAGE(!PageLocked(old), old); 766 VM_BUG_ON_PAGE(!PageLocked(new), new); 767 VM_BUG_ON_PAGE(new->mapping, new); 768 769 get_page(new); 770 new->mapping = mapping; 771 new->index = offset; 772 773 xas_lock_irqsave(&xas, flags); 774 xas_store(&xas, new); 775 776 old->mapping = NULL; 777 /* hugetlb pages do not participate in page cache accounting. */ 778 if (!PageHuge(old)) 779 __dec_node_page_state(new, NR_FILE_PAGES); 780 if (!PageHuge(new)) 781 __inc_node_page_state(new, NR_FILE_PAGES); 782 if (PageSwapBacked(old)) 783 __dec_node_page_state(new, NR_SHMEM); 784 if (PageSwapBacked(new)) 785 __inc_node_page_state(new, NR_SHMEM); 786 xas_unlock_irqrestore(&xas, flags); 787 mem_cgroup_migrate(old, new); 788 if (freepage) 789 freepage(old); 790 put_page(old); 791 792 return 0; 793 } 794 EXPORT_SYMBOL_GPL(replace_page_cache_page); 795 796 static int __add_to_page_cache_locked(struct page *page, 797 struct address_space *mapping, 798 pgoff_t offset, gfp_t gfp_mask, 799 void **shadowp) 800 { 801 XA_STATE(xas, &mapping->i_pages, offset); 802 int huge = PageHuge(page); 803 struct mem_cgroup *memcg; 804 int error; 805 void *old; 806 807 VM_BUG_ON_PAGE(!PageLocked(page), page); 808 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 809 mapping_set_update(&xas, mapping); 810 811 if (!huge) { 812 error = mem_cgroup_try_charge(page, current->mm, 813 gfp_mask, &memcg, false); 814 if (error) 815 return error; 816 } 817 818 get_page(page); 819 page->mapping = mapping; 820 page->index = offset; 821 822 do { 823 xas_lock_irq(&xas); 824 old = xas_load(&xas); 825 if (old && !xa_is_value(old)) 826 xas_set_err(&xas, -EEXIST); 827 xas_store(&xas, page); 828 if (xas_error(&xas)) 829 goto unlock; 830 831 if (xa_is_value(old)) { 832 mapping->nrexceptional--; 833 if (shadowp) 834 *shadowp = old; 835 } 836 mapping->nrpages++; 837 838 /* hugetlb pages do not participate in page cache accounting */ 839 if (!huge) 840 __inc_node_page_state(page, NR_FILE_PAGES); 841 unlock: 842 xas_unlock_irq(&xas); 843 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK)); 844 845 if (xas_error(&xas)) 846 goto error; 847 848 if (!huge) 849 mem_cgroup_commit_charge(page, memcg, false, false); 850 trace_mm_filemap_add_to_page_cache(page); 851 return 0; 852 error: 853 page->mapping = NULL; 854 /* Leave page->index set: truncation relies upon it */ 855 if (!huge) 856 mem_cgroup_cancel_charge(page, memcg, false); 857 put_page(page); 858 return xas_error(&xas); 859 } 860 861 /** 862 * add_to_page_cache_locked - add a locked page to the pagecache 863 * @page: page to add 864 * @mapping: the page's address_space 865 * @offset: page index 866 * @gfp_mask: page allocation mode 867 * 868 * This function is used to add a page to the pagecache. It must be locked. 869 * This function does not add the page to the LRU. The caller must do that. 870 */ 871 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 872 pgoff_t offset, gfp_t gfp_mask) 873 { 874 return __add_to_page_cache_locked(page, mapping, offset, 875 gfp_mask, NULL); 876 } 877 EXPORT_SYMBOL(add_to_page_cache_locked); 878 879 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 880 pgoff_t offset, gfp_t gfp_mask) 881 { 882 void *shadow = NULL; 883 int ret; 884 885 __SetPageLocked(page); 886 ret = __add_to_page_cache_locked(page, mapping, offset, 887 gfp_mask, &shadow); 888 if (unlikely(ret)) 889 __ClearPageLocked(page); 890 else { 891 /* 892 * The page might have been evicted from cache only 893 * recently, in which case it should be activated like 894 * any other repeatedly accessed page. 895 * The exception is pages getting rewritten; evicting other 896 * data from the working set, only to cache data that will 897 * get overwritten with something else, is a waste of memory. 898 */ 899 WARN_ON_ONCE(PageActive(page)); 900 if (!(gfp_mask & __GFP_WRITE) && shadow) 901 workingset_refault(page, shadow); 902 lru_cache_add(page); 903 } 904 return ret; 905 } 906 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 907 908 #ifdef CONFIG_NUMA 909 struct page *__page_cache_alloc(gfp_t gfp) 910 { 911 int n; 912 struct page *page; 913 914 if (cpuset_do_page_mem_spread()) { 915 unsigned int cpuset_mems_cookie; 916 do { 917 cpuset_mems_cookie = read_mems_allowed_begin(); 918 n = cpuset_mem_spread_node(); 919 page = __alloc_pages_node(n, gfp, 0); 920 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 921 922 return page; 923 } 924 return alloc_pages(gfp, 0); 925 } 926 EXPORT_SYMBOL(__page_cache_alloc); 927 #endif 928 929 /* 930 * In order to wait for pages to become available there must be 931 * waitqueues associated with pages. By using a hash table of 932 * waitqueues where the bucket discipline is to maintain all 933 * waiters on the same queue and wake all when any of the pages 934 * become available, and for the woken contexts to check to be 935 * sure the appropriate page became available, this saves space 936 * at a cost of "thundering herd" phenomena during rare hash 937 * collisions. 938 */ 939 #define PAGE_WAIT_TABLE_BITS 8 940 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 941 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 942 943 static wait_queue_head_t *page_waitqueue(struct page *page) 944 { 945 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 946 } 947 948 void __init pagecache_init(void) 949 { 950 int i; 951 952 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 953 init_waitqueue_head(&page_wait_table[i]); 954 955 page_writeback_init(); 956 } 957 958 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 959 struct wait_page_key { 960 struct page *page; 961 int bit_nr; 962 int page_match; 963 }; 964 965 struct wait_page_queue { 966 struct page *page; 967 int bit_nr; 968 wait_queue_entry_t wait; 969 }; 970 971 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 972 { 973 struct wait_page_key *key = arg; 974 struct wait_page_queue *wait_page 975 = container_of(wait, struct wait_page_queue, wait); 976 977 if (wait_page->page != key->page) 978 return 0; 979 key->page_match = 1; 980 981 if (wait_page->bit_nr != key->bit_nr) 982 return 0; 983 984 /* 985 * Stop walking if it's locked. 986 * Is this safe if put_and_wait_on_page_locked() is in use? 987 * Yes: the waker must hold a reference to this page, and if PG_locked 988 * has now already been set by another task, that task must also hold 989 * a reference to the *same usage* of this page; so there is no need 990 * to walk on to wake even the put_and_wait_on_page_locked() callers. 991 */ 992 if (test_bit(key->bit_nr, &key->page->flags)) 993 return -1; 994 995 return autoremove_wake_function(wait, mode, sync, key); 996 } 997 998 static void wake_up_page_bit(struct page *page, int bit_nr) 999 { 1000 wait_queue_head_t *q = page_waitqueue(page); 1001 struct wait_page_key key; 1002 unsigned long flags; 1003 wait_queue_entry_t bookmark; 1004 1005 key.page = page; 1006 key.bit_nr = bit_nr; 1007 key.page_match = 0; 1008 1009 bookmark.flags = 0; 1010 bookmark.private = NULL; 1011 bookmark.func = NULL; 1012 INIT_LIST_HEAD(&bookmark.entry); 1013 1014 spin_lock_irqsave(&q->lock, flags); 1015 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1016 1017 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1018 /* 1019 * Take a breather from holding the lock, 1020 * allow pages that finish wake up asynchronously 1021 * to acquire the lock and remove themselves 1022 * from wait queue 1023 */ 1024 spin_unlock_irqrestore(&q->lock, flags); 1025 cpu_relax(); 1026 spin_lock_irqsave(&q->lock, flags); 1027 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1028 } 1029 1030 /* 1031 * It is possible for other pages to have collided on the waitqueue 1032 * hash, so in that case check for a page match. That prevents a long- 1033 * term waiter 1034 * 1035 * It is still possible to miss a case here, when we woke page waiters 1036 * and removed them from the waitqueue, but there are still other 1037 * page waiters. 1038 */ 1039 if (!waitqueue_active(q) || !key.page_match) { 1040 ClearPageWaiters(page); 1041 /* 1042 * It's possible to miss clearing Waiters here, when we woke 1043 * our page waiters, but the hashed waitqueue has waiters for 1044 * other pages on it. 1045 * 1046 * That's okay, it's a rare case. The next waker will clear it. 1047 */ 1048 } 1049 spin_unlock_irqrestore(&q->lock, flags); 1050 } 1051 1052 static void wake_up_page(struct page *page, int bit) 1053 { 1054 if (!PageWaiters(page)) 1055 return; 1056 wake_up_page_bit(page, bit); 1057 } 1058 1059 /* 1060 * A choice of three behaviors for wait_on_page_bit_common(): 1061 */ 1062 enum behavior { 1063 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1064 * __lock_page() waiting on then setting PG_locked. 1065 */ 1066 SHARED, /* Hold ref to page and check the bit when woken, like 1067 * wait_on_page_writeback() waiting on PG_writeback. 1068 */ 1069 DROP, /* Drop ref to page before wait, no check when woken, 1070 * like put_and_wait_on_page_locked() on PG_locked. 1071 */ 1072 }; 1073 1074 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 1075 struct page *page, int bit_nr, int state, enum behavior behavior) 1076 { 1077 struct wait_page_queue wait_page; 1078 wait_queue_entry_t *wait = &wait_page.wait; 1079 bool bit_is_set; 1080 bool thrashing = false; 1081 bool delayacct = false; 1082 unsigned long pflags; 1083 int ret = 0; 1084 1085 if (bit_nr == PG_locked && 1086 !PageUptodate(page) && PageWorkingset(page)) { 1087 if (!PageSwapBacked(page)) { 1088 delayacct_thrashing_start(); 1089 delayacct = true; 1090 } 1091 psi_memstall_enter(&pflags); 1092 thrashing = true; 1093 } 1094 1095 init_wait(wait); 1096 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0; 1097 wait->func = wake_page_function; 1098 wait_page.page = page; 1099 wait_page.bit_nr = bit_nr; 1100 1101 for (;;) { 1102 spin_lock_irq(&q->lock); 1103 1104 if (likely(list_empty(&wait->entry))) { 1105 __add_wait_queue_entry_tail(q, wait); 1106 SetPageWaiters(page); 1107 } 1108 1109 set_current_state(state); 1110 1111 spin_unlock_irq(&q->lock); 1112 1113 bit_is_set = test_bit(bit_nr, &page->flags); 1114 if (behavior == DROP) 1115 put_page(page); 1116 1117 if (likely(bit_is_set)) 1118 io_schedule(); 1119 1120 if (behavior == EXCLUSIVE) { 1121 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 1122 break; 1123 } else if (behavior == SHARED) { 1124 if (!test_bit(bit_nr, &page->flags)) 1125 break; 1126 } 1127 1128 if (signal_pending_state(state, current)) { 1129 ret = -EINTR; 1130 break; 1131 } 1132 1133 if (behavior == DROP) { 1134 /* 1135 * We can no longer safely access page->flags: 1136 * even if CONFIG_MEMORY_HOTREMOVE is not enabled, 1137 * there is a risk of waiting forever on a page reused 1138 * for something that keeps it locked indefinitely. 1139 * But best check for -EINTR above before breaking. 1140 */ 1141 break; 1142 } 1143 } 1144 1145 finish_wait(q, wait); 1146 1147 if (thrashing) { 1148 if (delayacct) 1149 delayacct_thrashing_end(); 1150 psi_memstall_leave(&pflags); 1151 } 1152 1153 /* 1154 * A signal could leave PageWaiters set. Clearing it here if 1155 * !waitqueue_active would be possible (by open-coding finish_wait), 1156 * but still fail to catch it in the case of wait hash collision. We 1157 * already can fail to clear wait hash collision cases, so don't 1158 * bother with signals either. 1159 */ 1160 1161 return ret; 1162 } 1163 1164 void wait_on_page_bit(struct page *page, int bit_nr) 1165 { 1166 wait_queue_head_t *q = page_waitqueue(page); 1167 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1168 } 1169 EXPORT_SYMBOL(wait_on_page_bit); 1170 1171 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1172 { 1173 wait_queue_head_t *q = page_waitqueue(page); 1174 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED); 1175 } 1176 EXPORT_SYMBOL(wait_on_page_bit_killable); 1177 1178 /** 1179 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked 1180 * @page: The page to wait for. 1181 * 1182 * The caller should hold a reference on @page. They expect the page to 1183 * become unlocked relatively soon, but do not wish to hold up migration 1184 * (for example) by holding the reference while waiting for the page to 1185 * come unlocked. After this function returns, the caller should not 1186 * dereference @page. 1187 */ 1188 void put_and_wait_on_page_locked(struct page *page) 1189 { 1190 wait_queue_head_t *q; 1191 1192 page = compound_head(page); 1193 q = page_waitqueue(page); 1194 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP); 1195 } 1196 1197 /** 1198 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1199 * @page: Page defining the wait queue of interest 1200 * @waiter: Waiter to add to the queue 1201 * 1202 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1203 */ 1204 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1205 { 1206 wait_queue_head_t *q = page_waitqueue(page); 1207 unsigned long flags; 1208 1209 spin_lock_irqsave(&q->lock, flags); 1210 __add_wait_queue_entry_tail(q, waiter); 1211 SetPageWaiters(page); 1212 spin_unlock_irqrestore(&q->lock, flags); 1213 } 1214 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1215 1216 #ifndef clear_bit_unlock_is_negative_byte 1217 1218 /* 1219 * PG_waiters is the high bit in the same byte as PG_lock. 1220 * 1221 * On x86 (and on many other architectures), we can clear PG_lock and 1222 * test the sign bit at the same time. But if the architecture does 1223 * not support that special operation, we just do this all by hand 1224 * instead. 1225 * 1226 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1227 * being cleared, but a memory barrier should be unneccssary since it is 1228 * in the same byte as PG_locked. 1229 */ 1230 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1231 { 1232 clear_bit_unlock(nr, mem); 1233 /* smp_mb__after_atomic(); */ 1234 return test_bit(PG_waiters, mem); 1235 } 1236 1237 #endif 1238 1239 /** 1240 * unlock_page - unlock a locked page 1241 * @page: the page 1242 * 1243 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1244 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1245 * mechanism between PageLocked pages and PageWriteback pages is shared. 1246 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1247 * 1248 * Note that this depends on PG_waiters being the sign bit in the byte 1249 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1250 * clear the PG_locked bit and test PG_waiters at the same time fairly 1251 * portably (architectures that do LL/SC can test any bit, while x86 can 1252 * test the sign bit). 1253 */ 1254 void unlock_page(struct page *page) 1255 { 1256 BUILD_BUG_ON(PG_waiters != 7); 1257 page = compound_head(page); 1258 VM_BUG_ON_PAGE(!PageLocked(page), page); 1259 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1260 wake_up_page_bit(page, PG_locked); 1261 } 1262 EXPORT_SYMBOL(unlock_page); 1263 1264 /** 1265 * end_page_writeback - end writeback against a page 1266 * @page: the page 1267 */ 1268 void end_page_writeback(struct page *page) 1269 { 1270 /* 1271 * TestClearPageReclaim could be used here but it is an atomic 1272 * operation and overkill in this particular case. Failing to 1273 * shuffle a page marked for immediate reclaim is too mild to 1274 * justify taking an atomic operation penalty at the end of 1275 * ever page writeback. 1276 */ 1277 if (PageReclaim(page)) { 1278 ClearPageReclaim(page); 1279 rotate_reclaimable_page(page); 1280 } 1281 1282 if (!test_clear_page_writeback(page)) 1283 BUG(); 1284 1285 smp_mb__after_atomic(); 1286 wake_up_page(page, PG_writeback); 1287 } 1288 EXPORT_SYMBOL(end_page_writeback); 1289 1290 /* 1291 * After completing I/O on a page, call this routine to update the page 1292 * flags appropriately 1293 */ 1294 void page_endio(struct page *page, bool is_write, int err) 1295 { 1296 if (!is_write) { 1297 if (!err) { 1298 SetPageUptodate(page); 1299 } else { 1300 ClearPageUptodate(page); 1301 SetPageError(page); 1302 } 1303 unlock_page(page); 1304 } else { 1305 if (err) { 1306 struct address_space *mapping; 1307 1308 SetPageError(page); 1309 mapping = page_mapping(page); 1310 if (mapping) 1311 mapping_set_error(mapping, err); 1312 } 1313 end_page_writeback(page); 1314 } 1315 } 1316 EXPORT_SYMBOL_GPL(page_endio); 1317 1318 /** 1319 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1320 * @__page: the page to lock 1321 */ 1322 void __lock_page(struct page *__page) 1323 { 1324 struct page *page = compound_head(__page); 1325 wait_queue_head_t *q = page_waitqueue(page); 1326 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, 1327 EXCLUSIVE); 1328 } 1329 EXPORT_SYMBOL(__lock_page); 1330 1331 int __lock_page_killable(struct page *__page) 1332 { 1333 struct page *page = compound_head(__page); 1334 wait_queue_head_t *q = page_waitqueue(page); 1335 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, 1336 EXCLUSIVE); 1337 } 1338 EXPORT_SYMBOL_GPL(__lock_page_killable); 1339 1340 /* 1341 * Return values: 1342 * 1 - page is locked; mmap_sem is still held. 1343 * 0 - page is not locked. 1344 * mmap_sem has been released (up_read()), unless flags had both 1345 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1346 * which case mmap_sem is still held. 1347 * 1348 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1349 * with the page locked and the mmap_sem unperturbed. 1350 */ 1351 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1352 unsigned int flags) 1353 { 1354 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1355 /* 1356 * CAUTION! In this case, mmap_sem is not released 1357 * even though return 0. 1358 */ 1359 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1360 return 0; 1361 1362 up_read(&mm->mmap_sem); 1363 if (flags & FAULT_FLAG_KILLABLE) 1364 wait_on_page_locked_killable(page); 1365 else 1366 wait_on_page_locked(page); 1367 return 0; 1368 } else { 1369 if (flags & FAULT_FLAG_KILLABLE) { 1370 int ret; 1371 1372 ret = __lock_page_killable(page); 1373 if (ret) { 1374 up_read(&mm->mmap_sem); 1375 return 0; 1376 } 1377 } else 1378 __lock_page(page); 1379 return 1; 1380 } 1381 } 1382 1383 /** 1384 * page_cache_next_miss() - Find the next gap in the page cache. 1385 * @mapping: Mapping. 1386 * @index: Index. 1387 * @max_scan: Maximum range to search. 1388 * 1389 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1390 * gap with the lowest index. 1391 * 1392 * This function may be called under the rcu_read_lock. However, this will 1393 * not atomically search a snapshot of the cache at a single point in time. 1394 * For example, if a gap is created at index 5, then subsequently a gap is 1395 * created at index 10, page_cache_next_miss covering both indices may 1396 * return 10 if called under the rcu_read_lock. 1397 * 1398 * Return: The index of the gap if found, otherwise an index outside the 1399 * range specified (in which case 'return - index >= max_scan' will be true). 1400 * In the rare case of index wrap-around, 0 will be returned. 1401 */ 1402 pgoff_t page_cache_next_miss(struct address_space *mapping, 1403 pgoff_t index, unsigned long max_scan) 1404 { 1405 XA_STATE(xas, &mapping->i_pages, index); 1406 1407 while (max_scan--) { 1408 void *entry = xas_next(&xas); 1409 if (!entry || xa_is_value(entry)) 1410 break; 1411 if (xas.xa_index == 0) 1412 break; 1413 } 1414 1415 return xas.xa_index; 1416 } 1417 EXPORT_SYMBOL(page_cache_next_miss); 1418 1419 /** 1420 * page_cache_prev_miss() - Find the next gap in the page cache. 1421 * @mapping: Mapping. 1422 * @index: Index. 1423 * @max_scan: Maximum range to search. 1424 * 1425 * Search the range [max(index - max_scan + 1, 0), index] for the 1426 * gap with the highest index. 1427 * 1428 * This function may be called under the rcu_read_lock. However, this will 1429 * not atomically search a snapshot of the cache at a single point in time. 1430 * For example, if a gap is created at index 10, then subsequently a gap is 1431 * created at index 5, page_cache_prev_miss() covering both indices may 1432 * return 5 if called under the rcu_read_lock. 1433 * 1434 * Return: The index of the gap if found, otherwise an index outside the 1435 * range specified (in which case 'index - return >= max_scan' will be true). 1436 * In the rare case of wrap-around, ULONG_MAX will be returned. 1437 */ 1438 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1439 pgoff_t index, unsigned long max_scan) 1440 { 1441 XA_STATE(xas, &mapping->i_pages, index); 1442 1443 while (max_scan--) { 1444 void *entry = xas_prev(&xas); 1445 if (!entry || xa_is_value(entry)) 1446 break; 1447 if (xas.xa_index == ULONG_MAX) 1448 break; 1449 } 1450 1451 return xas.xa_index; 1452 } 1453 EXPORT_SYMBOL(page_cache_prev_miss); 1454 1455 /** 1456 * find_get_entry - find and get a page cache entry 1457 * @mapping: the address_space to search 1458 * @offset: the page cache index 1459 * 1460 * Looks up the page cache slot at @mapping & @offset. If there is a 1461 * page cache page, it is returned with an increased refcount. 1462 * 1463 * If the slot holds a shadow entry of a previously evicted page, or a 1464 * swap entry from shmem/tmpfs, it is returned. 1465 * 1466 * Otherwise, %NULL is returned. 1467 */ 1468 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1469 { 1470 XA_STATE(xas, &mapping->i_pages, offset); 1471 struct page *head, *page; 1472 1473 rcu_read_lock(); 1474 repeat: 1475 xas_reset(&xas); 1476 page = xas_load(&xas); 1477 if (xas_retry(&xas, page)) 1478 goto repeat; 1479 /* 1480 * A shadow entry of a recently evicted page, or a swap entry from 1481 * shmem/tmpfs. Return it without attempting to raise page count. 1482 */ 1483 if (!page || xa_is_value(page)) 1484 goto out; 1485 1486 head = compound_head(page); 1487 if (!page_cache_get_speculative(head)) 1488 goto repeat; 1489 1490 /* The page was split under us? */ 1491 if (compound_head(page) != head) { 1492 put_page(head); 1493 goto repeat; 1494 } 1495 1496 /* 1497 * Has the page moved? 1498 * This is part of the lockless pagecache protocol. See 1499 * include/linux/pagemap.h for details. 1500 */ 1501 if (unlikely(page != xas_reload(&xas))) { 1502 put_page(head); 1503 goto repeat; 1504 } 1505 out: 1506 rcu_read_unlock(); 1507 1508 return page; 1509 } 1510 EXPORT_SYMBOL(find_get_entry); 1511 1512 /** 1513 * find_lock_entry - locate, pin and lock a page cache entry 1514 * @mapping: the address_space to search 1515 * @offset: the page cache index 1516 * 1517 * Looks up the page cache slot at @mapping & @offset. If there is a 1518 * page cache page, it is returned locked and with an increased 1519 * refcount. 1520 * 1521 * If the slot holds a shadow entry of a previously evicted page, or a 1522 * swap entry from shmem/tmpfs, it is returned. 1523 * 1524 * Otherwise, %NULL is returned. 1525 * 1526 * find_lock_entry() may sleep. 1527 */ 1528 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1529 { 1530 struct page *page; 1531 1532 repeat: 1533 page = find_get_entry(mapping, offset); 1534 if (page && !xa_is_value(page)) { 1535 lock_page(page); 1536 /* Has the page been truncated? */ 1537 if (unlikely(page_mapping(page) != mapping)) { 1538 unlock_page(page); 1539 put_page(page); 1540 goto repeat; 1541 } 1542 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1543 } 1544 return page; 1545 } 1546 EXPORT_SYMBOL(find_lock_entry); 1547 1548 /** 1549 * pagecache_get_page - find and get a page reference 1550 * @mapping: the address_space to search 1551 * @offset: the page index 1552 * @fgp_flags: PCG flags 1553 * @gfp_mask: gfp mask to use for the page cache data page allocation 1554 * 1555 * Looks up the page cache slot at @mapping & @offset. 1556 * 1557 * PCG flags modify how the page is returned. 1558 * 1559 * @fgp_flags can be: 1560 * 1561 * - FGP_ACCESSED: the page will be marked accessed 1562 * - FGP_LOCK: Page is return locked 1563 * - FGP_CREAT: If page is not present then a new page is allocated using 1564 * @gfp_mask and added to the page cache and the VM's LRU 1565 * list. The page is returned locked and with an increased 1566 * refcount. Otherwise, NULL is returned. 1567 * 1568 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1569 * if the GFP flags specified for FGP_CREAT are atomic. 1570 * 1571 * If there is a page cache page, it is returned with an increased refcount. 1572 */ 1573 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1574 int fgp_flags, gfp_t gfp_mask) 1575 { 1576 struct page *page; 1577 1578 repeat: 1579 page = find_get_entry(mapping, offset); 1580 if (xa_is_value(page)) 1581 page = NULL; 1582 if (!page) 1583 goto no_page; 1584 1585 if (fgp_flags & FGP_LOCK) { 1586 if (fgp_flags & FGP_NOWAIT) { 1587 if (!trylock_page(page)) { 1588 put_page(page); 1589 return NULL; 1590 } 1591 } else { 1592 lock_page(page); 1593 } 1594 1595 /* Has the page been truncated? */ 1596 if (unlikely(page->mapping != mapping)) { 1597 unlock_page(page); 1598 put_page(page); 1599 goto repeat; 1600 } 1601 VM_BUG_ON_PAGE(page->index != offset, page); 1602 } 1603 1604 if (fgp_flags & FGP_ACCESSED) 1605 mark_page_accessed(page); 1606 1607 no_page: 1608 if (!page && (fgp_flags & FGP_CREAT)) { 1609 int err; 1610 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1611 gfp_mask |= __GFP_WRITE; 1612 if (fgp_flags & FGP_NOFS) 1613 gfp_mask &= ~__GFP_FS; 1614 1615 page = __page_cache_alloc(gfp_mask); 1616 if (!page) 1617 return NULL; 1618 1619 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1620 fgp_flags |= FGP_LOCK; 1621 1622 /* Init accessed so avoid atomic mark_page_accessed later */ 1623 if (fgp_flags & FGP_ACCESSED) 1624 __SetPageReferenced(page); 1625 1626 err = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 1627 if (unlikely(err)) { 1628 put_page(page); 1629 page = NULL; 1630 if (err == -EEXIST) 1631 goto repeat; 1632 } 1633 } 1634 1635 return page; 1636 } 1637 EXPORT_SYMBOL(pagecache_get_page); 1638 1639 /** 1640 * find_get_entries - gang pagecache lookup 1641 * @mapping: The address_space to search 1642 * @start: The starting page cache index 1643 * @nr_entries: The maximum number of entries 1644 * @entries: Where the resulting entries are placed 1645 * @indices: The cache indices corresponding to the entries in @entries 1646 * 1647 * find_get_entries() will search for and return a group of up to 1648 * @nr_entries entries in the mapping. The entries are placed at 1649 * @entries. find_get_entries() takes a reference against any actual 1650 * pages it returns. 1651 * 1652 * The search returns a group of mapping-contiguous page cache entries 1653 * with ascending indexes. There may be holes in the indices due to 1654 * not-present pages. 1655 * 1656 * Any shadow entries of evicted pages, or swap entries from 1657 * shmem/tmpfs, are included in the returned array. 1658 * 1659 * find_get_entries() returns the number of pages and shadow entries 1660 * which were found. 1661 */ 1662 unsigned find_get_entries(struct address_space *mapping, 1663 pgoff_t start, unsigned int nr_entries, 1664 struct page **entries, pgoff_t *indices) 1665 { 1666 XA_STATE(xas, &mapping->i_pages, start); 1667 struct page *page; 1668 unsigned int ret = 0; 1669 1670 if (!nr_entries) 1671 return 0; 1672 1673 rcu_read_lock(); 1674 xas_for_each(&xas, page, ULONG_MAX) { 1675 struct page *head; 1676 if (xas_retry(&xas, page)) 1677 continue; 1678 /* 1679 * A shadow entry of a recently evicted page, a swap 1680 * entry from shmem/tmpfs or a DAX entry. Return it 1681 * without attempting to raise page count. 1682 */ 1683 if (xa_is_value(page)) 1684 goto export; 1685 1686 head = compound_head(page); 1687 if (!page_cache_get_speculative(head)) 1688 goto retry; 1689 1690 /* The page was split under us? */ 1691 if (compound_head(page) != head) 1692 goto put_page; 1693 1694 /* Has the page moved? */ 1695 if (unlikely(page != xas_reload(&xas))) 1696 goto put_page; 1697 1698 export: 1699 indices[ret] = xas.xa_index; 1700 entries[ret] = page; 1701 if (++ret == nr_entries) 1702 break; 1703 continue; 1704 put_page: 1705 put_page(head); 1706 retry: 1707 xas_reset(&xas); 1708 } 1709 rcu_read_unlock(); 1710 return ret; 1711 } 1712 1713 /** 1714 * find_get_pages_range - gang pagecache lookup 1715 * @mapping: The address_space to search 1716 * @start: The starting page index 1717 * @end: The final page index (inclusive) 1718 * @nr_pages: The maximum number of pages 1719 * @pages: Where the resulting pages are placed 1720 * 1721 * find_get_pages_range() will search for and return a group of up to @nr_pages 1722 * pages in the mapping starting at index @start and up to index @end 1723 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 1724 * a reference against the returned pages. 1725 * 1726 * The search returns a group of mapping-contiguous pages with ascending 1727 * indexes. There may be holes in the indices due to not-present pages. 1728 * We also update @start to index the next page for the traversal. 1729 * 1730 * find_get_pages_range() returns the number of pages which were found. If this 1731 * number is smaller than @nr_pages, the end of specified range has been 1732 * reached. 1733 */ 1734 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 1735 pgoff_t end, unsigned int nr_pages, 1736 struct page **pages) 1737 { 1738 XA_STATE(xas, &mapping->i_pages, *start); 1739 struct page *page; 1740 unsigned ret = 0; 1741 1742 if (unlikely(!nr_pages)) 1743 return 0; 1744 1745 rcu_read_lock(); 1746 xas_for_each(&xas, page, end) { 1747 struct page *head; 1748 if (xas_retry(&xas, page)) 1749 continue; 1750 /* Skip over shadow, swap and DAX entries */ 1751 if (xa_is_value(page)) 1752 continue; 1753 1754 head = compound_head(page); 1755 if (!page_cache_get_speculative(head)) 1756 goto retry; 1757 1758 /* The page was split under us? */ 1759 if (compound_head(page) != head) 1760 goto put_page; 1761 1762 /* Has the page moved? */ 1763 if (unlikely(page != xas_reload(&xas))) 1764 goto put_page; 1765 1766 pages[ret] = page; 1767 if (++ret == nr_pages) { 1768 *start = page->index + 1; 1769 goto out; 1770 } 1771 continue; 1772 put_page: 1773 put_page(head); 1774 retry: 1775 xas_reset(&xas); 1776 } 1777 1778 /* 1779 * We come here when there is no page beyond @end. We take care to not 1780 * overflow the index @start as it confuses some of the callers. This 1781 * breaks the iteration when there is a page at index -1 but that is 1782 * already broken anyway. 1783 */ 1784 if (end == (pgoff_t)-1) 1785 *start = (pgoff_t)-1; 1786 else 1787 *start = end + 1; 1788 out: 1789 rcu_read_unlock(); 1790 1791 return ret; 1792 } 1793 1794 /** 1795 * find_get_pages_contig - gang contiguous pagecache lookup 1796 * @mapping: The address_space to search 1797 * @index: The starting page index 1798 * @nr_pages: The maximum number of pages 1799 * @pages: Where the resulting pages are placed 1800 * 1801 * find_get_pages_contig() works exactly like find_get_pages(), except 1802 * that the returned number of pages are guaranteed to be contiguous. 1803 * 1804 * find_get_pages_contig() returns the number of pages which were found. 1805 */ 1806 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1807 unsigned int nr_pages, struct page **pages) 1808 { 1809 XA_STATE(xas, &mapping->i_pages, index); 1810 struct page *page; 1811 unsigned int ret = 0; 1812 1813 if (unlikely(!nr_pages)) 1814 return 0; 1815 1816 rcu_read_lock(); 1817 for (page = xas_load(&xas); page; page = xas_next(&xas)) { 1818 struct page *head; 1819 if (xas_retry(&xas, page)) 1820 continue; 1821 /* 1822 * If the entry has been swapped out, we can stop looking. 1823 * No current caller is looking for DAX entries. 1824 */ 1825 if (xa_is_value(page)) 1826 break; 1827 1828 head = compound_head(page); 1829 if (!page_cache_get_speculative(head)) 1830 goto retry; 1831 1832 /* The page was split under us? */ 1833 if (compound_head(page) != head) 1834 goto put_page; 1835 1836 /* Has the page moved? */ 1837 if (unlikely(page != xas_reload(&xas))) 1838 goto put_page; 1839 1840 pages[ret] = page; 1841 if (++ret == nr_pages) 1842 break; 1843 continue; 1844 put_page: 1845 put_page(head); 1846 retry: 1847 xas_reset(&xas); 1848 } 1849 rcu_read_unlock(); 1850 return ret; 1851 } 1852 EXPORT_SYMBOL(find_get_pages_contig); 1853 1854 /** 1855 * find_get_pages_range_tag - find and return pages in given range matching @tag 1856 * @mapping: the address_space to search 1857 * @index: the starting page index 1858 * @end: The final page index (inclusive) 1859 * @tag: the tag index 1860 * @nr_pages: the maximum number of pages 1861 * @pages: where the resulting pages are placed 1862 * 1863 * Like find_get_pages, except we only return pages which are tagged with 1864 * @tag. We update @index to index the next page for the traversal. 1865 */ 1866 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 1867 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 1868 struct page **pages) 1869 { 1870 XA_STATE(xas, &mapping->i_pages, *index); 1871 struct page *page; 1872 unsigned ret = 0; 1873 1874 if (unlikely(!nr_pages)) 1875 return 0; 1876 1877 rcu_read_lock(); 1878 xas_for_each_marked(&xas, page, end, tag) { 1879 struct page *head; 1880 if (xas_retry(&xas, page)) 1881 continue; 1882 /* 1883 * Shadow entries should never be tagged, but this iteration 1884 * is lockless so there is a window for page reclaim to evict 1885 * a page we saw tagged. Skip over it. 1886 */ 1887 if (xa_is_value(page)) 1888 continue; 1889 1890 head = compound_head(page); 1891 if (!page_cache_get_speculative(head)) 1892 goto retry; 1893 1894 /* The page was split under us? */ 1895 if (compound_head(page) != head) 1896 goto put_page; 1897 1898 /* Has the page moved? */ 1899 if (unlikely(page != xas_reload(&xas))) 1900 goto put_page; 1901 1902 pages[ret] = page; 1903 if (++ret == nr_pages) { 1904 *index = page->index + 1; 1905 goto out; 1906 } 1907 continue; 1908 put_page: 1909 put_page(head); 1910 retry: 1911 xas_reset(&xas); 1912 } 1913 1914 /* 1915 * We come here when we got to @end. We take care to not overflow the 1916 * index @index as it confuses some of the callers. This breaks the 1917 * iteration when there is a page at index -1 but that is already 1918 * broken anyway. 1919 */ 1920 if (end == (pgoff_t)-1) 1921 *index = (pgoff_t)-1; 1922 else 1923 *index = end + 1; 1924 out: 1925 rcu_read_unlock(); 1926 1927 return ret; 1928 } 1929 EXPORT_SYMBOL(find_get_pages_range_tag); 1930 1931 /** 1932 * find_get_entries_tag - find and return entries that match @tag 1933 * @mapping: the address_space to search 1934 * @start: the starting page cache index 1935 * @tag: the tag index 1936 * @nr_entries: the maximum number of entries 1937 * @entries: where the resulting entries are placed 1938 * @indices: the cache indices corresponding to the entries in @entries 1939 * 1940 * Like find_get_entries, except we only return entries which are tagged with 1941 * @tag. 1942 */ 1943 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1944 xa_mark_t tag, unsigned int nr_entries, 1945 struct page **entries, pgoff_t *indices) 1946 { 1947 XA_STATE(xas, &mapping->i_pages, start); 1948 struct page *page; 1949 unsigned int ret = 0; 1950 1951 if (!nr_entries) 1952 return 0; 1953 1954 rcu_read_lock(); 1955 xas_for_each_marked(&xas, page, ULONG_MAX, tag) { 1956 struct page *head; 1957 if (xas_retry(&xas, page)) 1958 continue; 1959 /* 1960 * A shadow entry of a recently evicted page, a swap 1961 * entry from shmem/tmpfs or a DAX entry. Return it 1962 * without attempting to raise page count. 1963 */ 1964 if (xa_is_value(page)) 1965 goto export; 1966 1967 head = compound_head(page); 1968 if (!page_cache_get_speculative(head)) 1969 goto retry; 1970 1971 /* The page was split under us? */ 1972 if (compound_head(page) != head) 1973 goto put_page; 1974 1975 /* Has the page moved? */ 1976 if (unlikely(page != xas_reload(&xas))) 1977 goto put_page; 1978 1979 export: 1980 indices[ret] = xas.xa_index; 1981 entries[ret] = page; 1982 if (++ret == nr_entries) 1983 break; 1984 continue; 1985 put_page: 1986 put_page(head); 1987 retry: 1988 xas_reset(&xas); 1989 } 1990 rcu_read_unlock(); 1991 return ret; 1992 } 1993 EXPORT_SYMBOL(find_get_entries_tag); 1994 1995 /* 1996 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1997 * a _large_ part of the i/o request. Imagine the worst scenario: 1998 * 1999 * ---R__________________________________________B__________ 2000 * ^ reading here ^ bad block(assume 4k) 2001 * 2002 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2003 * => failing the whole request => read(R) => read(R+1) => 2004 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2005 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2006 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2007 * 2008 * It is going insane. Fix it by quickly scaling down the readahead size. 2009 */ 2010 static void shrink_readahead_size_eio(struct file *filp, 2011 struct file_ra_state *ra) 2012 { 2013 ra->ra_pages /= 4; 2014 } 2015 2016 /** 2017 * generic_file_buffered_read - generic file read routine 2018 * @iocb: the iocb to read 2019 * @iter: data destination 2020 * @written: already copied 2021 * 2022 * This is a generic file read routine, and uses the 2023 * mapping->a_ops->readpage() function for the actual low-level stuff. 2024 * 2025 * This is really ugly. But the goto's actually try to clarify some 2026 * of the logic when it comes to error handling etc. 2027 */ 2028 static ssize_t generic_file_buffered_read(struct kiocb *iocb, 2029 struct iov_iter *iter, ssize_t written) 2030 { 2031 struct file *filp = iocb->ki_filp; 2032 struct address_space *mapping = filp->f_mapping; 2033 struct inode *inode = mapping->host; 2034 struct file_ra_state *ra = &filp->f_ra; 2035 loff_t *ppos = &iocb->ki_pos; 2036 pgoff_t index; 2037 pgoff_t last_index; 2038 pgoff_t prev_index; 2039 unsigned long offset; /* offset into pagecache page */ 2040 unsigned int prev_offset; 2041 int error = 0; 2042 2043 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 2044 return 0; 2045 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2046 2047 index = *ppos >> PAGE_SHIFT; 2048 prev_index = ra->prev_pos >> PAGE_SHIFT; 2049 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 2050 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 2051 offset = *ppos & ~PAGE_MASK; 2052 2053 for (;;) { 2054 struct page *page; 2055 pgoff_t end_index; 2056 loff_t isize; 2057 unsigned long nr, ret; 2058 2059 cond_resched(); 2060 find_page: 2061 if (fatal_signal_pending(current)) { 2062 error = -EINTR; 2063 goto out; 2064 } 2065 2066 page = find_get_page(mapping, index); 2067 if (!page) { 2068 if (iocb->ki_flags & IOCB_NOWAIT) 2069 goto would_block; 2070 page_cache_sync_readahead(mapping, 2071 ra, filp, 2072 index, last_index - index); 2073 page = find_get_page(mapping, index); 2074 if (unlikely(page == NULL)) 2075 goto no_cached_page; 2076 } 2077 if (PageReadahead(page)) { 2078 page_cache_async_readahead(mapping, 2079 ra, filp, page, 2080 index, last_index - index); 2081 } 2082 if (!PageUptodate(page)) { 2083 if (iocb->ki_flags & IOCB_NOWAIT) { 2084 put_page(page); 2085 goto would_block; 2086 } 2087 2088 /* 2089 * See comment in do_read_cache_page on why 2090 * wait_on_page_locked is used to avoid unnecessarily 2091 * serialisations and why it's safe. 2092 */ 2093 error = wait_on_page_locked_killable(page); 2094 if (unlikely(error)) 2095 goto readpage_error; 2096 if (PageUptodate(page)) 2097 goto page_ok; 2098 2099 if (inode->i_blkbits == PAGE_SHIFT || 2100 !mapping->a_ops->is_partially_uptodate) 2101 goto page_not_up_to_date; 2102 /* pipes can't handle partially uptodate pages */ 2103 if (unlikely(iov_iter_is_pipe(iter))) 2104 goto page_not_up_to_date; 2105 if (!trylock_page(page)) 2106 goto page_not_up_to_date; 2107 /* Did it get truncated before we got the lock? */ 2108 if (!page->mapping) 2109 goto page_not_up_to_date_locked; 2110 if (!mapping->a_ops->is_partially_uptodate(page, 2111 offset, iter->count)) 2112 goto page_not_up_to_date_locked; 2113 unlock_page(page); 2114 } 2115 page_ok: 2116 /* 2117 * i_size must be checked after we know the page is Uptodate. 2118 * 2119 * Checking i_size after the check allows us to calculate 2120 * the correct value for "nr", which means the zero-filled 2121 * part of the page is not copied back to userspace (unless 2122 * another truncate extends the file - this is desired though). 2123 */ 2124 2125 isize = i_size_read(inode); 2126 end_index = (isize - 1) >> PAGE_SHIFT; 2127 if (unlikely(!isize || index > end_index)) { 2128 put_page(page); 2129 goto out; 2130 } 2131 2132 /* nr is the maximum number of bytes to copy from this page */ 2133 nr = PAGE_SIZE; 2134 if (index == end_index) { 2135 nr = ((isize - 1) & ~PAGE_MASK) + 1; 2136 if (nr <= offset) { 2137 put_page(page); 2138 goto out; 2139 } 2140 } 2141 nr = nr - offset; 2142 2143 /* If users can be writing to this page using arbitrary 2144 * virtual addresses, take care about potential aliasing 2145 * before reading the page on the kernel side. 2146 */ 2147 if (mapping_writably_mapped(mapping)) 2148 flush_dcache_page(page); 2149 2150 /* 2151 * When a sequential read accesses a page several times, 2152 * only mark it as accessed the first time. 2153 */ 2154 if (prev_index != index || offset != prev_offset) 2155 mark_page_accessed(page); 2156 prev_index = index; 2157 2158 /* 2159 * Ok, we have the page, and it's up-to-date, so 2160 * now we can copy it to user space... 2161 */ 2162 2163 ret = copy_page_to_iter(page, offset, nr, iter); 2164 offset += ret; 2165 index += offset >> PAGE_SHIFT; 2166 offset &= ~PAGE_MASK; 2167 prev_offset = offset; 2168 2169 put_page(page); 2170 written += ret; 2171 if (!iov_iter_count(iter)) 2172 goto out; 2173 if (ret < nr) { 2174 error = -EFAULT; 2175 goto out; 2176 } 2177 continue; 2178 2179 page_not_up_to_date: 2180 /* Get exclusive access to the page ... */ 2181 error = lock_page_killable(page); 2182 if (unlikely(error)) 2183 goto readpage_error; 2184 2185 page_not_up_to_date_locked: 2186 /* Did it get truncated before we got the lock? */ 2187 if (!page->mapping) { 2188 unlock_page(page); 2189 put_page(page); 2190 continue; 2191 } 2192 2193 /* Did somebody else fill it already? */ 2194 if (PageUptodate(page)) { 2195 unlock_page(page); 2196 goto page_ok; 2197 } 2198 2199 readpage: 2200 /* 2201 * A previous I/O error may have been due to temporary 2202 * failures, eg. multipath errors. 2203 * PG_error will be set again if readpage fails. 2204 */ 2205 ClearPageError(page); 2206 /* Start the actual read. The read will unlock the page. */ 2207 error = mapping->a_ops->readpage(filp, page); 2208 2209 if (unlikely(error)) { 2210 if (error == AOP_TRUNCATED_PAGE) { 2211 put_page(page); 2212 error = 0; 2213 goto find_page; 2214 } 2215 goto readpage_error; 2216 } 2217 2218 if (!PageUptodate(page)) { 2219 error = lock_page_killable(page); 2220 if (unlikely(error)) 2221 goto readpage_error; 2222 if (!PageUptodate(page)) { 2223 if (page->mapping == NULL) { 2224 /* 2225 * invalidate_mapping_pages got it 2226 */ 2227 unlock_page(page); 2228 put_page(page); 2229 goto find_page; 2230 } 2231 unlock_page(page); 2232 shrink_readahead_size_eio(filp, ra); 2233 error = -EIO; 2234 goto readpage_error; 2235 } 2236 unlock_page(page); 2237 } 2238 2239 goto page_ok; 2240 2241 readpage_error: 2242 /* UHHUH! A synchronous read error occurred. Report it */ 2243 put_page(page); 2244 goto out; 2245 2246 no_cached_page: 2247 /* 2248 * Ok, it wasn't cached, so we need to create a new 2249 * page.. 2250 */ 2251 page = page_cache_alloc(mapping); 2252 if (!page) { 2253 error = -ENOMEM; 2254 goto out; 2255 } 2256 error = add_to_page_cache_lru(page, mapping, index, 2257 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2258 if (error) { 2259 put_page(page); 2260 if (error == -EEXIST) { 2261 error = 0; 2262 goto find_page; 2263 } 2264 goto out; 2265 } 2266 goto readpage; 2267 } 2268 2269 would_block: 2270 error = -EAGAIN; 2271 out: 2272 ra->prev_pos = prev_index; 2273 ra->prev_pos <<= PAGE_SHIFT; 2274 ra->prev_pos |= prev_offset; 2275 2276 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2277 file_accessed(filp); 2278 return written ? written : error; 2279 } 2280 2281 /** 2282 * generic_file_read_iter - generic filesystem read routine 2283 * @iocb: kernel I/O control block 2284 * @iter: destination for the data read 2285 * 2286 * This is the "read_iter()" routine for all filesystems 2287 * that can use the page cache directly. 2288 */ 2289 ssize_t 2290 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2291 { 2292 size_t count = iov_iter_count(iter); 2293 ssize_t retval = 0; 2294 2295 if (!count) 2296 goto out; /* skip atime */ 2297 2298 if (iocb->ki_flags & IOCB_DIRECT) { 2299 struct file *file = iocb->ki_filp; 2300 struct address_space *mapping = file->f_mapping; 2301 struct inode *inode = mapping->host; 2302 loff_t size; 2303 2304 size = i_size_read(inode); 2305 if (iocb->ki_flags & IOCB_NOWAIT) { 2306 if (filemap_range_has_page(mapping, iocb->ki_pos, 2307 iocb->ki_pos + count - 1)) 2308 return -EAGAIN; 2309 } else { 2310 retval = filemap_write_and_wait_range(mapping, 2311 iocb->ki_pos, 2312 iocb->ki_pos + count - 1); 2313 if (retval < 0) 2314 goto out; 2315 } 2316 2317 file_accessed(file); 2318 2319 retval = mapping->a_ops->direct_IO(iocb, iter); 2320 if (retval >= 0) { 2321 iocb->ki_pos += retval; 2322 count -= retval; 2323 } 2324 iov_iter_revert(iter, count - iov_iter_count(iter)); 2325 2326 /* 2327 * Btrfs can have a short DIO read if we encounter 2328 * compressed extents, so if there was an error, or if 2329 * we've already read everything we wanted to, or if 2330 * there was a short read because we hit EOF, go ahead 2331 * and return. Otherwise fallthrough to buffered io for 2332 * the rest of the read. Buffered reads will not work for 2333 * DAX files, so don't bother trying. 2334 */ 2335 if (retval < 0 || !count || iocb->ki_pos >= size || 2336 IS_DAX(inode)) 2337 goto out; 2338 } 2339 2340 retval = generic_file_buffered_read(iocb, iter, retval); 2341 out: 2342 return retval; 2343 } 2344 EXPORT_SYMBOL(generic_file_read_iter); 2345 2346 #ifdef CONFIG_MMU 2347 /** 2348 * page_cache_read - adds requested page to the page cache if not already there 2349 * @file: file to read 2350 * @offset: page index 2351 * @gfp_mask: memory allocation flags 2352 * 2353 * This adds the requested page to the page cache if it isn't already there, 2354 * and schedules an I/O to read in its contents from disk. 2355 */ 2356 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2357 { 2358 struct address_space *mapping = file->f_mapping; 2359 struct page *page; 2360 int ret; 2361 2362 do { 2363 page = __page_cache_alloc(gfp_mask); 2364 if (!page) 2365 return -ENOMEM; 2366 2367 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask); 2368 if (ret == 0) 2369 ret = mapping->a_ops->readpage(file, page); 2370 else if (ret == -EEXIST) 2371 ret = 0; /* losing race to add is OK */ 2372 2373 put_page(page); 2374 2375 } while (ret == AOP_TRUNCATED_PAGE); 2376 2377 return ret; 2378 } 2379 2380 #define MMAP_LOTSAMISS (100) 2381 2382 /* 2383 * Synchronous readahead happens when we don't even find 2384 * a page in the page cache at all. 2385 */ 2386 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2387 struct file_ra_state *ra, 2388 struct file *file, 2389 pgoff_t offset) 2390 { 2391 struct address_space *mapping = file->f_mapping; 2392 2393 /* If we don't want any read-ahead, don't bother */ 2394 if (vma->vm_flags & VM_RAND_READ) 2395 return; 2396 if (!ra->ra_pages) 2397 return; 2398 2399 if (vma->vm_flags & VM_SEQ_READ) { 2400 page_cache_sync_readahead(mapping, ra, file, offset, 2401 ra->ra_pages); 2402 return; 2403 } 2404 2405 /* Avoid banging the cache line if not needed */ 2406 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2407 ra->mmap_miss++; 2408 2409 /* 2410 * Do we miss much more than hit in this file? If so, 2411 * stop bothering with read-ahead. It will only hurt. 2412 */ 2413 if (ra->mmap_miss > MMAP_LOTSAMISS) 2414 return; 2415 2416 /* 2417 * mmap read-around 2418 */ 2419 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2420 ra->size = ra->ra_pages; 2421 ra->async_size = ra->ra_pages / 4; 2422 ra_submit(ra, mapping, file); 2423 } 2424 2425 /* 2426 * Asynchronous readahead happens when we find the page and PG_readahead, 2427 * so we want to possibly extend the readahead further.. 2428 */ 2429 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2430 struct file_ra_state *ra, 2431 struct file *file, 2432 struct page *page, 2433 pgoff_t offset) 2434 { 2435 struct address_space *mapping = file->f_mapping; 2436 2437 /* If we don't want any read-ahead, don't bother */ 2438 if (vma->vm_flags & VM_RAND_READ) 2439 return; 2440 if (ra->mmap_miss > 0) 2441 ra->mmap_miss--; 2442 if (PageReadahead(page)) 2443 page_cache_async_readahead(mapping, ra, file, 2444 page, offset, ra->ra_pages); 2445 } 2446 2447 /** 2448 * filemap_fault - read in file data for page fault handling 2449 * @vmf: struct vm_fault containing details of the fault 2450 * 2451 * filemap_fault() is invoked via the vma operations vector for a 2452 * mapped memory region to read in file data during a page fault. 2453 * 2454 * The goto's are kind of ugly, but this streamlines the normal case of having 2455 * it in the page cache, and handles the special cases reasonably without 2456 * having a lot of duplicated code. 2457 * 2458 * vma->vm_mm->mmap_sem must be held on entry. 2459 * 2460 * If our return value has VM_FAULT_RETRY set, it's because 2461 * lock_page_or_retry() returned 0. 2462 * The mmap_sem has usually been released in this case. 2463 * See __lock_page_or_retry() for the exception. 2464 * 2465 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2466 * has not been released. 2467 * 2468 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2469 */ 2470 vm_fault_t filemap_fault(struct vm_fault *vmf) 2471 { 2472 int error; 2473 struct file *file = vmf->vma->vm_file; 2474 struct address_space *mapping = file->f_mapping; 2475 struct file_ra_state *ra = &file->f_ra; 2476 struct inode *inode = mapping->host; 2477 pgoff_t offset = vmf->pgoff; 2478 pgoff_t max_off; 2479 struct page *page; 2480 vm_fault_t ret = 0; 2481 2482 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2483 if (unlikely(offset >= max_off)) 2484 return VM_FAULT_SIGBUS; 2485 2486 /* 2487 * Do we have something in the page cache already? 2488 */ 2489 page = find_get_page(mapping, offset); 2490 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2491 /* 2492 * We found the page, so try async readahead before 2493 * waiting for the lock. 2494 */ 2495 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2496 } else if (!page) { 2497 /* No page in the page cache at all */ 2498 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2499 count_vm_event(PGMAJFAULT); 2500 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2501 ret = VM_FAULT_MAJOR; 2502 retry_find: 2503 page = find_get_page(mapping, offset); 2504 if (!page) 2505 goto no_cached_page; 2506 } 2507 2508 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2509 put_page(page); 2510 return ret | VM_FAULT_RETRY; 2511 } 2512 2513 /* Did it get truncated? */ 2514 if (unlikely(page->mapping != mapping)) { 2515 unlock_page(page); 2516 put_page(page); 2517 goto retry_find; 2518 } 2519 VM_BUG_ON_PAGE(page->index != offset, page); 2520 2521 /* 2522 * We have a locked page in the page cache, now we need to check 2523 * that it's up-to-date. If not, it is going to be due to an error. 2524 */ 2525 if (unlikely(!PageUptodate(page))) 2526 goto page_not_uptodate; 2527 2528 /* 2529 * Found the page and have a reference on it. 2530 * We must recheck i_size under page lock. 2531 */ 2532 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2533 if (unlikely(offset >= max_off)) { 2534 unlock_page(page); 2535 put_page(page); 2536 return VM_FAULT_SIGBUS; 2537 } 2538 2539 vmf->page = page; 2540 return ret | VM_FAULT_LOCKED; 2541 2542 no_cached_page: 2543 /* 2544 * We're only likely to ever get here if MADV_RANDOM is in 2545 * effect. 2546 */ 2547 error = page_cache_read(file, offset, vmf->gfp_mask); 2548 2549 /* 2550 * The page we want has now been added to the page cache. 2551 * In the unlikely event that someone removed it in the 2552 * meantime, we'll just come back here and read it again. 2553 */ 2554 if (error >= 0) 2555 goto retry_find; 2556 2557 /* 2558 * An error return from page_cache_read can result if the 2559 * system is low on memory, or a problem occurs while trying 2560 * to schedule I/O. 2561 */ 2562 return vmf_error(error); 2563 2564 page_not_uptodate: 2565 /* 2566 * Umm, take care of errors if the page isn't up-to-date. 2567 * Try to re-read it _once_. We do this synchronously, 2568 * because there really aren't any performance issues here 2569 * and we need to check for errors. 2570 */ 2571 ClearPageError(page); 2572 error = mapping->a_ops->readpage(file, page); 2573 if (!error) { 2574 wait_on_page_locked(page); 2575 if (!PageUptodate(page)) 2576 error = -EIO; 2577 } 2578 put_page(page); 2579 2580 if (!error || error == AOP_TRUNCATED_PAGE) 2581 goto retry_find; 2582 2583 /* Things didn't work out. Return zero to tell the mm layer so. */ 2584 shrink_readahead_size_eio(file, ra); 2585 return VM_FAULT_SIGBUS; 2586 } 2587 EXPORT_SYMBOL(filemap_fault); 2588 2589 void filemap_map_pages(struct vm_fault *vmf, 2590 pgoff_t start_pgoff, pgoff_t end_pgoff) 2591 { 2592 struct file *file = vmf->vma->vm_file; 2593 struct address_space *mapping = file->f_mapping; 2594 pgoff_t last_pgoff = start_pgoff; 2595 unsigned long max_idx; 2596 XA_STATE(xas, &mapping->i_pages, start_pgoff); 2597 struct page *head, *page; 2598 2599 rcu_read_lock(); 2600 xas_for_each(&xas, page, end_pgoff) { 2601 if (xas_retry(&xas, page)) 2602 continue; 2603 if (xa_is_value(page)) 2604 goto next; 2605 2606 head = compound_head(page); 2607 2608 /* 2609 * Check for a locked page first, as a speculative 2610 * reference may adversely influence page migration. 2611 */ 2612 if (PageLocked(head)) 2613 goto next; 2614 if (!page_cache_get_speculative(head)) 2615 goto next; 2616 2617 /* The page was split under us? */ 2618 if (compound_head(page) != head) 2619 goto skip; 2620 2621 /* Has the page moved? */ 2622 if (unlikely(page != xas_reload(&xas))) 2623 goto skip; 2624 2625 if (!PageUptodate(page) || 2626 PageReadahead(page) || 2627 PageHWPoison(page)) 2628 goto skip; 2629 if (!trylock_page(page)) 2630 goto skip; 2631 2632 if (page->mapping != mapping || !PageUptodate(page)) 2633 goto unlock; 2634 2635 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2636 if (page->index >= max_idx) 2637 goto unlock; 2638 2639 if (file->f_ra.mmap_miss > 0) 2640 file->f_ra.mmap_miss--; 2641 2642 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 2643 if (vmf->pte) 2644 vmf->pte += xas.xa_index - last_pgoff; 2645 last_pgoff = xas.xa_index; 2646 if (alloc_set_pte(vmf, NULL, page)) 2647 goto unlock; 2648 unlock_page(page); 2649 goto next; 2650 unlock: 2651 unlock_page(page); 2652 skip: 2653 put_page(page); 2654 next: 2655 /* Huge page is mapped? No need to proceed. */ 2656 if (pmd_trans_huge(*vmf->pmd)) 2657 break; 2658 } 2659 rcu_read_unlock(); 2660 } 2661 EXPORT_SYMBOL(filemap_map_pages); 2662 2663 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2664 { 2665 struct page *page = vmf->page; 2666 struct inode *inode = file_inode(vmf->vma->vm_file); 2667 vm_fault_t ret = VM_FAULT_LOCKED; 2668 2669 sb_start_pagefault(inode->i_sb); 2670 file_update_time(vmf->vma->vm_file); 2671 lock_page(page); 2672 if (page->mapping != inode->i_mapping) { 2673 unlock_page(page); 2674 ret = VM_FAULT_NOPAGE; 2675 goto out; 2676 } 2677 /* 2678 * We mark the page dirty already here so that when freeze is in 2679 * progress, we are guaranteed that writeback during freezing will 2680 * see the dirty page and writeprotect it again. 2681 */ 2682 set_page_dirty(page); 2683 wait_for_stable_page(page); 2684 out: 2685 sb_end_pagefault(inode->i_sb); 2686 return ret; 2687 } 2688 2689 const struct vm_operations_struct generic_file_vm_ops = { 2690 .fault = filemap_fault, 2691 .map_pages = filemap_map_pages, 2692 .page_mkwrite = filemap_page_mkwrite, 2693 }; 2694 2695 /* This is used for a general mmap of a disk file */ 2696 2697 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2698 { 2699 struct address_space *mapping = file->f_mapping; 2700 2701 if (!mapping->a_ops->readpage) 2702 return -ENOEXEC; 2703 file_accessed(file); 2704 vma->vm_ops = &generic_file_vm_ops; 2705 return 0; 2706 } 2707 2708 /* 2709 * This is for filesystems which do not implement ->writepage. 2710 */ 2711 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2712 { 2713 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2714 return -EINVAL; 2715 return generic_file_mmap(file, vma); 2716 } 2717 #else 2718 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 2719 { 2720 return VM_FAULT_SIGBUS; 2721 } 2722 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2723 { 2724 return -ENOSYS; 2725 } 2726 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2727 { 2728 return -ENOSYS; 2729 } 2730 #endif /* CONFIG_MMU */ 2731 2732 EXPORT_SYMBOL(filemap_page_mkwrite); 2733 EXPORT_SYMBOL(generic_file_mmap); 2734 EXPORT_SYMBOL(generic_file_readonly_mmap); 2735 2736 static struct page *wait_on_page_read(struct page *page) 2737 { 2738 if (!IS_ERR(page)) { 2739 wait_on_page_locked(page); 2740 if (!PageUptodate(page)) { 2741 put_page(page); 2742 page = ERR_PTR(-EIO); 2743 } 2744 } 2745 return page; 2746 } 2747 2748 static struct page *do_read_cache_page(struct address_space *mapping, 2749 pgoff_t index, 2750 int (*filler)(void *, struct page *), 2751 void *data, 2752 gfp_t gfp) 2753 { 2754 struct page *page; 2755 int err; 2756 repeat: 2757 page = find_get_page(mapping, index); 2758 if (!page) { 2759 page = __page_cache_alloc(gfp); 2760 if (!page) 2761 return ERR_PTR(-ENOMEM); 2762 err = add_to_page_cache_lru(page, mapping, index, gfp); 2763 if (unlikely(err)) { 2764 put_page(page); 2765 if (err == -EEXIST) 2766 goto repeat; 2767 /* Presumably ENOMEM for xarray node */ 2768 return ERR_PTR(err); 2769 } 2770 2771 filler: 2772 err = filler(data, page); 2773 if (err < 0) { 2774 put_page(page); 2775 return ERR_PTR(err); 2776 } 2777 2778 page = wait_on_page_read(page); 2779 if (IS_ERR(page)) 2780 return page; 2781 goto out; 2782 } 2783 if (PageUptodate(page)) 2784 goto out; 2785 2786 /* 2787 * Page is not up to date and may be locked due one of the following 2788 * case a: Page is being filled and the page lock is held 2789 * case b: Read/write error clearing the page uptodate status 2790 * case c: Truncation in progress (page locked) 2791 * case d: Reclaim in progress 2792 * 2793 * Case a, the page will be up to date when the page is unlocked. 2794 * There is no need to serialise on the page lock here as the page 2795 * is pinned so the lock gives no additional protection. Even if the 2796 * the page is truncated, the data is still valid if PageUptodate as 2797 * it's a race vs truncate race. 2798 * Case b, the page will not be up to date 2799 * Case c, the page may be truncated but in itself, the data may still 2800 * be valid after IO completes as it's a read vs truncate race. The 2801 * operation must restart if the page is not uptodate on unlock but 2802 * otherwise serialising on page lock to stabilise the mapping gives 2803 * no additional guarantees to the caller as the page lock is 2804 * released before return. 2805 * Case d, similar to truncation. If reclaim holds the page lock, it 2806 * will be a race with remove_mapping that determines if the mapping 2807 * is valid on unlock but otherwise the data is valid and there is 2808 * no need to serialise with page lock. 2809 * 2810 * As the page lock gives no additional guarantee, we optimistically 2811 * wait on the page to be unlocked and check if it's up to date and 2812 * use the page if it is. Otherwise, the page lock is required to 2813 * distinguish between the different cases. The motivation is that we 2814 * avoid spurious serialisations and wakeups when multiple processes 2815 * wait on the same page for IO to complete. 2816 */ 2817 wait_on_page_locked(page); 2818 if (PageUptodate(page)) 2819 goto out; 2820 2821 /* Distinguish between all the cases under the safety of the lock */ 2822 lock_page(page); 2823 2824 /* Case c or d, restart the operation */ 2825 if (!page->mapping) { 2826 unlock_page(page); 2827 put_page(page); 2828 goto repeat; 2829 } 2830 2831 /* Someone else locked and filled the page in a very small window */ 2832 if (PageUptodate(page)) { 2833 unlock_page(page); 2834 goto out; 2835 } 2836 goto filler; 2837 2838 out: 2839 mark_page_accessed(page); 2840 return page; 2841 } 2842 2843 /** 2844 * read_cache_page - read into page cache, fill it if needed 2845 * @mapping: the page's address_space 2846 * @index: the page index 2847 * @filler: function to perform the read 2848 * @data: first arg to filler(data, page) function, often left as NULL 2849 * 2850 * Read into the page cache. If a page already exists, and PageUptodate() is 2851 * not set, try to fill the page and wait for it to become unlocked. 2852 * 2853 * If the page does not get brought uptodate, return -EIO. 2854 */ 2855 struct page *read_cache_page(struct address_space *mapping, 2856 pgoff_t index, 2857 int (*filler)(void *, struct page *), 2858 void *data) 2859 { 2860 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2861 } 2862 EXPORT_SYMBOL(read_cache_page); 2863 2864 /** 2865 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2866 * @mapping: the page's address_space 2867 * @index: the page index 2868 * @gfp: the page allocator flags to use if allocating 2869 * 2870 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2871 * any new page allocations done using the specified allocation flags. 2872 * 2873 * If the page does not get brought uptodate, return -EIO. 2874 */ 2875 struct page *read_cache_page_gfp(struct address_space *mapping, 2876 pgoff_t index, 2877 gfp_t gfp) 2878 { 2879 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2880 2881 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2882 } 2883 EXPORT_SYMBOL(read_cache_page_gfp); 2884 2885 /* 2886 * Don't operate on ranges the page cache doesn't support, and don't exceed the 2887 * LFS limits. If pos is under the limit it becomes a short access. If it 2888 * exceeds the limit we return -EFBIG. 2889 */ 2890 static int generic_access_check_limits(struct file *file, loff_t pos, 2891 loff_t *count) 2892 { 2893 struct inode *inode = file->f_mapping->host; 2894 loff_t max_size = inode->i_sb->s_maxbytes; 2895 2896 if (!(file->f_flags & O_LARGEFILE)) 2897 max_size = MAX_NON_LFS; 2898 2899 if (unlikely(pos >= max_size)) 2900 return -EFBIG; 2901 *count = min(*count, max_size - pos); 2902 return 0; 2903 } 2904 2905 static int generic_write_check_limits(struct file *file, loff_t pos, 2906 loff_t *count) 2907 { 2908 loff_t limit = rlimit(RLIMIT_FSIZE); 2909 2910 if (limit != RLIM_INFINITY) { 2911 if (pos >= limit) { 2912 send_sig(SIGXFSZ, current, 0); 2913 return -EFBIG; 2914 } 2915 *count = min(*count, limit - pos); 2916 } 2917 2918 return generic_access_check_limits(file, pos, count); 2919 } 2920 2921 /* 2922 * Performs necessary checks before doing a write 2923 * 2924 * Can adjust writing position or amount of bytes to write. 2925 * Returns appropriate error code that caller should return or 2926 * zero in case that write should be allowed. 2927 */ 2928 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2929 { 2930 struct file *file = iocb->ki_filp; 2931 struct inode *inode = file->f_mapping->host; 2932 loff_t count; 2933 int ret; 2934 2935 if (!iov_iter_count(from)) 2936 return 0; 2937 2938 /* FIXME: this is for backwards compatibility with 2.4 */ 2939 if (iocb->ki_flags & IOCB_APPEND) 2940 iocb->ki_pos = i_size_read(inode); 2941 2942 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2943 return -EINVAL; 2944 2945 count = iov_iter_count(from); 2946 ret = generic_write_check_limits(file, iocb->ki_pos, &count); 2947 if (ret) 2948 return ret; 2949 2950 iov_iter_truncate(from, count); 2951 return iov_iter_count(from); 2952 } 2953 EXPORT_SYMBOL(generic_write_checks); 2954 2955 /* 2956 * Performs necessary checks before doing a clone. 2957 * 2958 * Can adjust amount of bytes to clone. 2959 * Returns appropriate error code that caller should return or 2960 * zero in case the clone should be allowed. 2961 */ 2962 int generic_remap_checks(struct file *file_in, loff_t pos_in, 2963 struct file *file_out, loff_t pos_out, 2964 loff_t *req_count, unsigned int remap_flags) 2965 { 2966 struct inode *inode_in = file_in->f_mapping->host; 2967 struct inode *inode_out = file_out->f_mapping->host; 2968 uint64_t count = *req_count; 2969 uint64_t bcount; 2970 loff_t size_in, size_out; 2971 loff_t bs = inode_out->i_sb->s_blocksize; 2972 int ret; 2973 2974 /* The start of both ranges must be aligned to an fs block. */ 2975 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs)) 2976 return -EINVAL; 2977 2978 /* Ensure offsets don't wrap. */ 2979 if (pos_in + count < pos_in || pos_out + count < pos_out) 2980 return -EINVAL; 2981 2982 size_in = i_size_read(inode_in); 2983 size_out = i_size_read(inode_out); 2984 2985 /* Dedupe requires both ranges to be within EOF. */ 2986 if ((remap_flags & REMAP_FILE_DEDUP) && 2987 (pos_in >= size_in || pos_in + count > size_in || 2988 pos_out >= size_out || pos_out + count > size_out)) 2989 return -EINVAL; 2990 2991 /* Ensure the infile range is within the infile. */ 2992 if (pos_in >= size_in) 2993 return -EINVAL; 2994 count = min(count, size_in - (uint64_t)pos_in); 2995 2996 ret = generic_access_check_limits(file_in, pos_in, &count); 2997 if (ret) 2998 return ret; 2999 3000 ret = generic_write_check_limits(file_out, pos_out, &count); 3001 if (ret) 3002 return ret; 3003 3004 /* 3005 * If the user wanted us to link to the infile's EOF, round up to the 3006 * next block boundary for this check. 3007 * 3008 * Otherwise, make sure the count is also block-aligned, having 3009 * already confirmed the starting offsets' block alignment. 3010 */ 3011 if (pos_in + count == size_in) { 3012 bcount = ALIGN(size_in, bs) - pos_in; 3013 } else { 3014 if (!IS_ALIGNED(count, bs)) 3015 count = ALIGN_DOWN(count, bs); 3016 bcount = count; 3017 } 3018 3019 /* Don't allow overlapped cloning within the same file. */ 3020 if (inode_in == inode_out && 3021 pos_out + bcount > pos_in && 3022 pos_out < pos_in + bcount) 3023 return -EINVAL; 3024 3025 /* 3026 * We shortened the request but the caller can't deal with that, so 3027 * bounce the request back to userspace. 3028 */ 3029 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN)) 3030 return -EINVAL; 3031 3032 *req_count = count; 3033 return 0; 3034 } 3035 3036 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3037 loff_t pos, unsigned len, unsigned flags, 3038 struct page **pagep, void **fsdata) 3039 { 3040 const struct address_space_operations *aops = mapping->a_ops; 3041 3042 return aops->write_begin(file, mapping, pos, len, flags, 3043 pagep, fsdata); 3044 } 3045 EXPORT_SYMBOL(pagecache_write_begin); 3046 3047 int pagecache_write_end(struct file *file, struct address_space *mapping, 3048 loff_t pos, unsigned len, unsigned copied, 3049 struct page *page, void *fsdata) 3050 { 3051 const struct address_space_operations *aops = mapping->a_ops; 3052 3053 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3054 } 3055 EXPORT_SYMBOL(pagecache_write_end); 3056 3057 ssize_t 3058 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3059 { 3060 struct file *file = iocb->ki_filp; 3061 struct address_space *mapping = file->f_mapping; 3062 struct inode *inode = mapping->host; 3063 loff_t pos = iocb->ki_pos; 3064 ssize_t written; 3065 size_t write_len; 3066 pgoff_t end; 3067 3068 write_len = iov_iter_count(from); 3069 end = (pos + write_len - 1) >> PAGE_SHIFT; 3070 3071 if (iocb->ki_flags & IOCB_NOWAIT) { 3072 /* If there are pages to writeback, return */ 3073 if (filemap_range_has_page(inode->i_mapping, pos, 3074 pos + write_len - 1)) 3075 return -EAGAIN; 3076 } else { 3077 written = filemap_write_and_wait_range(mapping, pos, 3078 pos + write_len - 1); 3079 if (written) 3080 goto out; 3081 } 3082 3083 /* 3084 * After a write we want buffered reads to be sure to go to disk to get 3085 * the new data. We invalidate clean cached page from the region we're 3086 * about to write. We do this *before* the write so that we can return 3087 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3088 */ 3089 written = invalidate_inode_pages2_range(mapping, 3090 pos >> PAGE_SHIFT, end); 3091 /* 3092 * If a page can not be invalidated, return 0 to fall back 3093 * to buffered write. 3094 */ 3095 if (written) { 3096 if (written == -EBUSY) 3097 return 0; 3098 goto out; 3099 } 3100 3101 written = mapping->a_ops->direct_IO(iocb, from); 3102 3103 /* 3104 * Finally, try again to invalidate clean pages which might have been 3105 * cached by non-direct readahead, or faulted in by get_user_pages() 3106 * if the source of the write was an mmap'ed region of the file 3107 * we're writing. Either one is a pretty crazy thing to do, 3108 * so we don't support it 100%. If this invalidation 3109 * fails, tough, the write still worked... 3110 * 3111 * Most of the time we do not need this since dio_complete() will do 3112 * the invalidation for us. However there are some file systems that 3113 * do not end up with dio_complete() being called, so let's not break 3114 * them by removing it completely 3115 */ 3116 if (mapping->nrpages) 3117 invalidate_inode_pages2_range(mapping, 3118 pos >> PAGE_SHIFT, end); 3119 3120 if (written > 0) { 3121 pos += written; 3122 write_len -= written; 3123 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3124 i_size_write(inode, pos); 3125 mark_inode_dirty(inode); 3126 } 3127 iocb->ki_pos = pos; 3128 } 3129 iov_iter_revert(from, write_len - iov_iter_count(from)); 3130 out: 3131 return written; 3132 } 3133 EXPORT_SYMBOL(generic_file_direct_write); 3134 3135 /* 3136 * Find or create a page at the given pagecache position. Return the locked 3137 * page. This function is specifically for buffered writes. 3138 */ 3139 struct page *grab_cache_page_write_begin(struct address_space *mapping, 3140 pgoff_t index, unsigned flags) 3141 { 3142 struct page *page; 3143 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 3144 3145 if (flags & AOP_FLAG_NOFS) 3146 fgp_flags |= FGP_NOFS; 3147 3148 page = pagecache_get_page(mapping, index, fgp_flags, 3149 mapping_gfp_mask(mapping)); 3150 if (page) 3151 wait_for_stable_page(page); 3152 3153 return page; 3154 } 3155 EXPORT_SYMBOL(grab_cache_page_write_begin); 3156 3157 ssize_t generic_perform_write(struct file *file, 3158 struct iov_iter *i, loff_t pos) 3159 { 3160 struct address_space *mapping = file->f_mapping; 3161 const struct address_space_operations *a_ops = mapping->a_ops; 3162 long status = 0; 3163 ssize_t written = 0; 3164 unsigned int flags = 0; 3165 3166 do { 3167 struct page *page; 3168 unsigned long offset; /* Offset into pagecache page */ 3169 unsigned long bytes; /* Bytes to write to page */ 3170 size_t copied; /* Bytes copied from user */ 3171 void *fsdata; 3172 3173 offset = (pos & (PAGE_SIZE - 1)); 3174 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3175 iov_iter_count(i)); 3176 3177 again: 3178 /* 3179 * Bring in the user page that we will copy from _first_. 3180 * Otherwise there's a nasty deadlock on copying from the 3181 * same page as we're writing to, without it being marked 3182 * up-to-date. 3183 * 3184 * Not only is this an optimisation, but it is also required 3185 * to check that the address is actually valid, when atomic 3186 * usercopies are used, below. 3187 */ 3188 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 3189 status = -EFAULT; 3190 break; 3191 } 3192 3193 if (fatal_signal_pending(current)) { 3194 status = -EINTR; 3195 break; 3196 } 3197 3198 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3199 &page, &fsdata); 3200 if (unlikely(status < 0)) 3201 break; 3202 3203 if (mapping_writably_mapped(mapping)) 3204 flush_dcache_page(page); 3205 3206 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 3207 flush_dcache_page(page); 3208 3209 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3210 page, fsdata); 3211 if (unlikely(status < 0)) 3212 break; 3213 copied = status; 3214 3215 cond_resched(); 3216 3217 iov_iter_advance(i, copied); 3218 if (unlikely(copied == 0)) { 3219 /* 3220 * If we were unable to copy any data at all, we must 3221 * fall back to a single segment length write. 3222 * 3223 * If we didn't fallback here, we could livelock 3224 * because not all segments in the iov can be copied at 3225 * once without a pagefault. 3226 */ 3227 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3228 iov_iter_single_seg_count(i)); 3229 goto again; 3230 } 3231 pos += copied; 3232 written += copied; 3233 3234 balance_dirty_pages_ratelimited(mapping); 3235 } while (iov_iter_count(i)); 3236 3237 return written ? written : status; 3238 } 3239 EXPORT_SYMBOL(generic_perform_write); 3240 3241 /** 3242 * __generic_file_write_iter - write data to a file 3243 * @iocb: IO state structure (file, offset, etc.) 3244 * @from: iov_iter with data to write 3245 * 3246 * This function does all the work needed for actually writing data to a 3247 * file. It does all basic checks, removes SUID from the file, updates 3248 * modification times and calls proper subroutines depending on whether we 3249 * do direct IO or a standard buffered write. 3250 * 3251 * It expects i_mutex to be grabbed unless we work on a block device or similar 3252 * object which does not need locking at all. 3253 * 3254 * This function does *not* take care of syncing data in case of O_SYNC write. 3255 * A caller has to handle it. This is mainly due to the fact that we want to 3256 * avoid syncing under i_mutex. 3257 */ 3258 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3259 { 3260 struct file *file = iocb->ki_filp; 3261 struct address_space * mapping = file->f_mapping; 3262 struct inode *inode = mapping->host; 3263 ssize_t written = 0; 3264 ssize_t err; 3265 ssize_t status; 3266 3267 /* We can write back this queue in page reclaim */ 3268 current->backing_dev_info = inode_to_bdi(inode); 3269 err = file_remove_privs(file); 3270 if (err) 3271 goto out; 3272 3273 err = file_update_time(file); 3274 if (err) 3275 goto out; 3276 3277 if (iocb->ki_flags & IOCB_DIRECT) { 3278 loff_t pos, endbyte; 3279 3280 written = generic_file_direct_write(iocb, from); 3281 /* 3282 * If the write stopped short of completing, fall back to 3283 * buffered writes. Some filesystems do this for writes to 3284 * holes, for example. For DAX files, a buffered write will 3285 * not succeed (even if it did, DAX does not handle dirty 3286 * page-cache pages correctly). 3287 */ 3288 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3289 goto out; 3290 3291 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3292 /* 3293 * If generic_perform_write() returned a synchronous error 3294 * then we want to return the number of bytes which were 3295 * direct-written, or the error code if that was zero. Note 3296 * that this differs from normal direct-io semantics, which 3297 * will return -EFOO even if some bytes were written. 3298 */ 3299 if (unlikely(status < 0)) { 3300 err = status; 3301 goto out; 3302 } 3303 /* 3304 * We need to ensure that the page cache pages are written to 3305 * disk and invalidated to preserve the expected O_DIRECT 3306 * semantics. 3307 */ 3308 endbyte = pos + status - 1; 3309 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3310 if (err == 0) { 3311 iocb->ki_pos = endbyte + 1; 3312 written += status; 3313 invalidate_mapping_pages(mapping, 3314 pos >> PAGE_SHIFT, 3315 endbyte >> PAGE_SHIFT); 3316 } else { 3317 /* 3318 * We don't know how much we wrote, so just return 3319 * the number of bytes which were direct-written 3320 */ 3321 } 3322 } else { 3323 written = generic_perform_write(file, from, iocb->ki_pos); 3324 if (likely(written > 0)) 3325 iocb->ki_pos += written; 3326 } 3327 out: 3328 current->backing_dev_info = NULL; 3329 return written ? written : err; 3330 } 3331 EXPORT_SYMBOL(__generic_file_write_iter); 3332 3333 /** 3334 * generic_file_write_iter - write data to a file 3335 * @iocb: IO state structure 3336 * @from: iov_iter with data to write 3337 * 3338 * This is a wrapper around __generic_file_write_iter() to be used by most 3339 * filesystems. It takes care of syncing the file in case of O_SYNC file 3340 * and acquires i_mutex as needed. 3341 */ 3342 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3343 { 3344 struct file *file = iocb->ki_filp; 3345 struct inode *inode = file->f_mapping->host; 3346 ssize_t ret; 3347 3348 inode_lock(inode); 3349 ret = generic_write_checks(iocb, from); 3350 if (ret > 0) 3351 ret = __generic_file_write_iter(iocb, from); 3352 inode_unlock(inode); 3353 3354 if (ret > 0) 3355 ret = generic_write_sync(iocb, ret); 3356 return ret; 3357 } 3358 EXPORT_SYMBOL(generic_file_write_iter); 3359 3360 /** 3361 * try_to_release_page() - release old fs-specific metadata on a page 3362 * 3363 * @page: the page which the kernel is trying to free 3364 * @gfp_mask: memory allocation flags (and I/O mode) 3365 * 3366 * The address_space is to try to release any data against the page 3367 * (presumably at page->private). If the release was successful, return '1'. 3368 * Otherwise return zero. 3369 * 3370 * This may also be called if PG_fscache is set on a page, indicating that the 3371 * page is known to the local caching routines. 3372 * 3373 * The @gfp_mask argument specifies whether I/O may be performed to release 3374 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3375 * 3376 */ 3377 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3378 { 3379 struct address_space * const mapping = page->mapping; 3380 3381 BUG_ON(!PageLocked(page)); 3382 if (PageWriteback(page)) 3383 return 0; 3384 3385 if (mapping && mapping->a_ops->releasepage) 3386 return mapping->a_ops->releasepage(page, gfp_mask); 3387 return try_to_free_buffers(page); 3388 } 3389 3390 EXPORT_SYMBOL(try_to_release_page); 3391