1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 99 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113 static int page_cache_tree_insert(struct address_space *mapping, 114 struct page *page, void **shadowp) 115 { 116 struct radix_tree_node *node; 117 void **slot; 118 int error; 119 120 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 121 &node, &slot); 122 if (error) 123 return error; 124 if (*slot) { 125 void *p; 126 127 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 128 if (!radix_tree_exceptional_entry(p)) 129 return -EEXIST; 130 131 mapping->nrexceptional--; 132 if (!dax_mapping(mapping)) { 133 if (shadowp) 134 *shadowp = p; 135 } else { 136 /* DAX can replace empty locked entry with a hole */ 137 WARN_ON_ONCE(p != 138 dax_radix_locked_entry(0, RADIX_DAX_EMPTY)); 139 /* Wakeup waiters for exceptional entry lock */ 140 dax_wake_mapping_entry_waiter(mapping, page->index, p, 141 true); 142 } 143 } 144 __radix_tree_replace(&mapping->page_tree, node, slot, page, 145 workingset_update_node, mapping); 146 mapping->nrpages++; 147 return 0; 148 } 149 150 static void page_cache_tree_delete(struct address_space *mapping, 151 struct page *page, void *shadow) 152 { 153 int i, nr; 154 155 /* hugetlb pages are represented by one entry in the radix tree */ 156 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 157 158 VM_BUG_ON_PAGE(!PageLocked(page), page); 159 VM_BUG_ON_PAGE(PageTail(page), page); 160 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 161 162 for (i = 0; i < nr; i++) { 163 struct radix_tree_node *node; 164 void **slot; 165 166 __radix_tree_lookup(&mapping->page_tree, page->index + i, 167 &node, &slot); 168 169 VM_BUG_ON_PAGE(!node && nr != 1, page); 170 171 radix_tree_clear_tags(&mapping->page_tree, node, slot); 172 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 173 workingset_update_node, mapping); 174 } 175 176 if (shadow) { 177 mapping->nrexceptional += nr; 178 /* 179 * Make sure the nrexceptional update is committed before 180 * the nrpages update so that final truncate racing 181 * with reclaim does not see both counters 0 at the 182 * same time and miss a shadow entry. 183 */ 184 smp_wmb(); 185 } 186 mapping->nrpages -= nr; 187 } 188 189 /* 190 * Delete a page from the page cache and free it. Caller has to make 191 * sure the page is locked and that nobody else uses it - or that usage 192 * is safe. The caller must hold the mapping's tree_lock. 193 */ 194 void __delete_from_page_cache(struct page *page, void *shadow) 195 { 196 struct address_space *mapping = page->mapping; 197 int nr = hpage_nr_pages(page); 198 199 trace_mm_filemap_delete_from_page_cache(page); 200 /* 201 * if we're uptodate, flush out into the cleancache, otherwise 202 * invalidate any existing cleancache entries. We can't leave 203 * stale data around in the cleancache once our page is gone 204 */ 205 if (PageUptodate(page) && PageMappedToDisk(page)) 206 cleancache_put_page(page); 207 else 208 cleancache_invalidate_page(mapping, page); 209 210 VM_BUG_ON_PAGE(PageTail(page), page); 211 VM_BUG_ON_PAGE(page_mapped(page), page); 212 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 213 int mapcount; 214 215 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 216 current->comm, page_to_pfn(page)); 217 dump_page(page, "still mapped when deleted"); 218 dump_stack(); 219 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 220 221 mapcount = page_mapcount(page); 222 if (mapping_exiting(mapping) && 223 page_count(page) >= mapcount + 2) { 224 /* 225 * All vmas have already been torn down, so it's 226 * a good bet that actually the page is unmapped, 227 * and we'd prefer not to leak it: if we're wrong, 228 * some other bad page check should catch it later. 229 */ 230 page_mapcount_reset(page); 231 page_ref_sub(page, mapcount); 232 } 233 } 234 235 page_cache_tree_delete(mapping, page, shadow); 236 237 page->mapping = NULL; 238 /* Leave page->index set: truncation lookup relies upon it */ 239 240 /* hugetlb pages do not participate in page cache accounting. */ 241 if (!PageHuge(page)) 242 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 243 if (PageSwapBacked(page)) { 244 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 245 if (PageTransHuge(page)) 246 __dec_node_page_state(page, NR_SHMEM_THPS); 247 } else { 248 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page); 249 } 250 251 /* 252 * At this point page must be either written or cleaned by truncate. 253 * Dirty page here signals a bug and loss of unwritten data. 254 * 255 * This fixes dirty accounting after removing the page entirely but 256 * leaves PageDirty set: it has no effect for truncated page and 257 * anyway will be cleared before returning page into buddy allocator. 258 */ 259 if (WARN_ON_ONCE(PageDirty(page))) 260 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 261 } 262 263 /** 264 * delete_from_page_cache - delete page from page cache 265 * @page: the page which the kernel is trying to remove from page cache 266 * 267 * This must be called only on pages that have been verified to be in the page 268 * cache and locked. It will never put the page into the free list, the caller 269 * has a reference on the page. 270 */ 271 void delete_from_page_cache(struct page *page) 272 { 273 struct address_space *mapping = page_mapping(page); 274 unsigned long flags; 275 void (*freepage)(struct page *); 276 277 BUG_ON(!PageLocked(page)); 278 279 freepage = mapping->a_ops->freepage; 280 281 spin_lock_irqsave(&mapping->tree_lock, flags); 282 __delete_from_page_cache(page, NULL); 283 spin_unlock_irqrestore(&mapping->tree_lock, flags); 284 285 if (freepage) 286 freepage(page); 287 288 if (PageTransHuge(page) && !PageHuge(page)) { 289 page_ref_sub(page, HPAGE_PMD_NR); 290 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 291 } else { 292 put_page(page); 293 } 294 } 295 EXPORT_SYMBOL(delete_from_page_cache); 296 297 int filemap_check_errors(struct address_space *mapping) 298 { 299 int ret = 0; 300 /* Check for outstanding write errors */ 301 if (test_bit(AS_ENOSPC, &mapping->flags) && 302 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 303 ret = -ENOSPC; 304 if (test_bit(AS_EIO, &mapping->flags) && 305 test_and_clear_bit(AS_EIO, &mapping->flags)) 306 ret = -EIO; 307 return ret; 308 } 309 EXPORT_SYMBOL(filemap_check_errors); 310 311 /** 312 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 313 * @mapping: address space structure to write 314 * @start: offset in bytes where the range starts 315 * @end: offset in bytes where the range ends (inclusive) 316 * @sync_mode: enable synchronous operation 317 * 318 * Start writeback against all of a mapping's dirty pages that lie 319 * within the byte offsets <start, end> inclusive. 320 * 321 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 322 * opposed to a regular memory cleansing writeback. The difference between 323 * these two operations is that if a dirty page/buffer is encountered, it must 324 * be waited upon, and not just skipped over. 325 */ 326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 327 loff_t end, int sync_mode) 328 { 329 int ret; 330 struct writeback_control wbc = { 331 .sync_mode = sync_mode, 332 .nr_to_write = LONG_MAX, 333 .range_start = start, 334 .range_end = end, 335 }; 336 337 if (!mapping_cap_writeback_dirty(mapping)) 338 return 0; 339 340 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 341 ret = do_writepages(mapping, &wbc); 342 wbc_detach_inode(&wbc); 343 return ret; 344 } 345 346 static inline int __filemap_fdatawrite(struct address_space *mapping, 347 int sync_mode) 348 { 349 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 350 } 351 352 int filemap_fdatawrite(struct address_space *mapping) 353 { 354 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 355 } 356 EXPORT_SYMBOL(filemap_fdatawrite); 357 358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 359 loff_t end) 360 { 361 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 362 } 363 EXPORT_SYMBOL(filemap_fdatawrite_range); 364 365 /** 366 * filemap_flush - mostly a non-blocking flush 367 * @mapping: target address_space 368 * 369 * This is a mostly non-blocking flush. Not suitable for data-integrity 370 * purposes - I/O may not be started against all dirty pages. 371 */ 372 int filemap_flush(struct address_space *mapping) 373 { 374 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 375 } 376 EXPORT_SYMBOL(filemap_flush); 377 378 static int __filemap_fdatawait_range(struct address_space *mapping, 379 loff_t start_byte, loff_t end_byte) 380 { 381 pgoff_t index = start_byte >> PAGE_SHIFT; 382 pgoff_t end = end_byte >> PAGE_SHIFT; 383 struct pagevec pvec; 384 int nr_pages; 385 int ret = 0; 386 387 if (end_byte < start_byte) 388 goto out; 389 390 pagevec_init(&pvec, 0); 391 while ((index <= end) && 392 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 393 PAGECACHE_TAG_WRITEBACK, 394 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 395 unsigned i; 396 397 for (i = 0; i < nr_pages; i++) { 398 struct page *page = pvec.pages[i]; 399 400 /* until radix tree lookup accepts end_index */ 401 if (page->index > end) 402 continue; 403 404 wait_on_page_writeback(page); 405 if (TestClearPageError(page)) 406 ret = -EIO; 407 } 408 pagevec_release(&pvec); 409 cond_resched(); 410 } 411 out: 412 return ret; 413 } 414 415 /** 416 * filemap_fdatawait_range - wait for writeback to complete 417 * @mapping: address space structure to wait for 418 * @start_byte: offset in bytes where the range starts 419 * @end_byte: offset in bytes where the range ends (inclusive) 420 * 421 * Walk the list of under-writeback pages of the given address space 422 * in the given range and wait for all of them. Check error status of 423 * the address space and return it. 424 * 425 * Since the error status of the address space is cleared by this function, 426 * callers are responsible for checking the return value and handling and/or 427 * reporting the error. 428 */ 429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 430 loff_t end_byte) 431 { 432 int ret, ret2; 433 434 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 435 ret2 = filemap_check_errors(mapping); 436 if (!ret) 437 ret = ret2; 438 439 return ret; 440 } 441 EXPORT_SYMBOL(filemap_fdatawait_range); 442 443 /** 444 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 445 * @mapping: address space structure to wait for 446 * 447 * Walk the list of under-writeback pages of the given address space 448 * and wait for all of them. Unlike filemap_fdatawait(), this function 449 * does not clear error status of the address space. 450 * 451 * Use this function if callers don't handle errors themselves. Expected 452 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 453 * fsfreeze(8) 454 */ 455 void filemap_fdatawait_keep_errors(struct address_space *mapping) 456 { 457 loff_t i_size = i_size_read(mapping->host); 458 459 if (i_size == 0) 460 return; 461 462 __filemap_fdatawait_range(mapping, 0, i_size - 1); 463 } 464 465 /** 466 * filemap_fdatawait - wait for all under-writeback pages to complete 467 * @mapping: address space structure to wait for 468 * 469 * Walk the list of under-writeback pages of the given address space 470 * and wait for all of them. Check error status of the address space 471 * and return it. 472 * 473 * Since the error status of the address space is cleared by this function, 474 * callers are responsible for checking the return value and handling and/or 475 * reporting the error. 476 */ 477 int filemap_fdatawait(struct address_space *mapping) 478 { 479 loff_t i_size = i_size_read(mapping->host); 480 481 if (i_size == 0) 482 return 0; 483 484 return filemap_fdatawait_range(mapping, 0, i_size - 1); 485 } 486 EXPORT_SYMBOL(filemap_fdatawait); 487 488 int filemap_write_and_wait(struct address_space *mapping) 489 { 490 int err = 0; 491 492 if ((!dax_mapping(mapping) && mapping->nrpages) || 493 (dax_mapping(mapping) && mapping->nrexceptional)) { 494 err = filemap_fdatawrite(mapping); 495 /* 496 * Even if the above returned error, the pages may be 497 * written partially (e.g. -ENOSPC), so we wait for it. 498 * But the -EIO is special case, it may indicate the worst 499 * thing (e.g. bug) happened, so we avoid waiting for it. 500 */ 501 if (err != -EIO) { 502 int err2 = filemap_fdatawait(mapping); 503 if (!err) 504 err = err2; 505 } 506 } else { 507 err = filemap_check_errors(mapping); 508 } 509 return err; 510 } 511 EXPORT_SYMBOL(filemap_write_and_wait); 512 513 /** 514 * filemap_write_and_wait_range - write out & wait on a file range 515 * @mapping: the address_space for the pages 516 * @lstart: offset in bytes where the range starts 517 * @lend: offset in bytes where the range ends (inclusive) 518 * 519 * Write out and wait upon file offsets lstart->lend, inclusive. 520 * 521 * Note that `lend' is inclusive (describes the last byte to be written) so 522 * that this function can be used to write to the very end-of-file (end = -1). 523 */ 524 int filemap_write_and_wait_range(struct address_space *mapping, 525 loff_t lstart, loff_t lend) 526 { 527 int err = 0; 528 529 if ((!dax_mapping(mapping) && mapping->nrpages) || 530 (dax_mapping(mapping) && mapping->nrexceptional)) { 531 err = __filemap_fdatawrite_range(mapping, lstart, lend, 532 WB_SYNC_ALL); 533 /* See comment of filemap_write_and_wait() */ 534 if (err != -EIO) { 535 int err2 = filemap_fdatawait_range(mapping, 536 lstart, lend); 537 if (!err) 538 err = err2; 539 } 540 } else { 541 err = filemap_check_errors(mapping); 542 } 543 return err; 544 } 545 EXPORT_SYMBOL(filemap_write_and_wait_range); 546 547 /** 548 * replace_page_cache_page - replace a pagecache page with a new one 549 * @old: page to be replaced 550 * @new: page to replace with 551 * @gfp_mask: allocation mode 552 * 553 * This function replaces a page in the pagecache with a new one. On 554 * success it acquires the pagecache reference for the new page and 555 * drops it for the old page. Both the old and new pages must be 556 * locked. This function does not add the new page to the LRU, the 557 * caller must do that. 558 * 559 * The remove + add is atomic. The only way this function can fail is 560 * memory allocation failure. 561 */ 562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 563 { 564 int error; 565 566 VM_BUG_ON_PAGE(!PageLocked(old), old); 567 VM_BUG_ON_PAGE(!PageLocked(new), new); 568 VM_BUG_ON_PAGE(new->mapping, new); 569 570 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 571 if (!error) { 572 struct address_space *mapping = old->mapping; 573 void (*freepage)(struct page *); 574 unsigned long flags; 575 576 pgoff_t offset = old->index; 577 freepage = mapping->a_ops->freepage; 578 579 get_page(new); 580 new->mapping = mapping; 581 new->index = offset; 582 583 spin_lock_irqsave(&mapping->tree_lock, flags); 584 __delete_from_page_cache(old, NULL); 585 error = page_cache_tree_insert(mapping, new, NULL); 586 BUG_ON(error); 587 588 /* 589 * hugetlb pages do not participate in page cache accounting. 590 */ 591 if (!PageHuge(new)) 592 __inc_node_page_state(new, NR_FILE_PAGES); 593 if (PageSwapBacked(new)) 594 __inc_node_page_state(new, NR_SHMEM); 595 spin_unlock_irqrestore(&mapping->tree_lock, flags); 596 mem_cgroup_migrate(old, new); 597 radix_tree_preload_end(); 598 if (freepage) 599 freepage(old); 600 put_page(old); 601 } 602 603 return error; 604 } 605 EXPORT_SYMBOL_GPL(replace_page_cache_page); 606 607 static int __add_to_page_cache_locked(struct page *page, 608 struct address_space *mapping, 609 pgoff_t offset, gfp_t gfp_mask, 610 void **shadowp) 611 { 612 int huge = PageHuge(page); 613 struct mem_cgroup *memcg; 614 int error; 615 616 VM_BUG_ON_PAGE(!PageLocked(page), page); 617 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 618 619 if (!huge) { 620 error = mem_cgroup_try_charge(page, current->mm, 621 gfp_mask, &memcg, false); 622 if (error) 623 return error; 624 } 625 626 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 627 if (error) { 628 if (!huge) 629 mem_cgroup_cancel_charge(page, memcg, false); 630 return error; 631 } 632 633 get_page(page); 634 page->mapping = mapping; 635 page->index = offset; 636 637 spin_lock_irq(&mapping->tree_lock); 638 error = page_cache_tree_insert(mapping, page, shadowp); 639 radix_tree_preload_end(); 640 if (unlikely(error)) 641 goto err_insert; 642 643 /* hugetlb pages do not participate in page cache accounting. */ 644 if (!huge) 645 __inc_node_page_state(page, NR_FILE_PAGES); 646 spin_unlock_irq(&mapping->tree_lock); 647 if (!huge) 648 mem_cgroup_commit_charge(page, memcg, false, false); 649 trace_mm_filemap_add_to_page_cache(page); 650 return 0; 651 err_insert: 652 page->mapping = NULL; 653 /* Leave page->index set: truncation relies upon it */ 654 spin_unlock_irq(&mapping->tree_lock); 655 if (!huge) 656 mem_cgroup_cancel_charge(page, memcg, false); 657 put_page(page); 658 return error; 659 } 660 661 /** 662 * add_to_page_cache_locked - add a locked page to the pagecache 663 * @page: page to add 664 * @mapping: the page's address_space 665 * @offset: page index 666 * @gfp_mask: page allocation mode 667 * 668 * This function is used to add a page to the pagecache. It must be locked. 669 * This function does not add the page to the LRU. The caller must do that. 670 */ 671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 672 pgoff_t offset, gfp_t gfp_mask) 673 { 674 return __add_to_page_cache_locked(page, mapping, offset, 675 gfp_mask, NULL); 676 } 677 EXPORT_SYMBOL(add_to_page_cache_locked); 678 679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 680 pgoff_t offset, gfp_t gfp_mask) 681 { 682 void *shadow = NULL; 683 int ret; 684 685 __SetPageLocked(page); 686 ret = __add_to_page_cache_locked(page, mapping, offset, 687 gfp_mask, &shadow); 688 if (unlikely(ret)) 689 __ClearPageLocked(page); 690 else { 691 /* 692 * The page might have been evicted from cache only 693 * recently, in which case it should be activated like 694 * any other repeatedly accessed page. 695 * The exception is pages getting rewritten; evicting other 696 * data from the working set, only to cache data that will 697 * get overwritten with something else, is a waste of memory. 698 */ 699 if (!(gfp_mask & __GFP_WRITE) && 700 shadow && workingset_refault(shadow)) { 701 SetPageActive(page); 702 workingset_activation(page); 703 } else 704 ClearPageActive(page); 705 lru_cache_add(page); 706 } 707 return ret; 708 } 709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 710 711 #ifdef CONFIG_NUMA 712 struct page *__page_cache_alloc(gfp_t gfp) 713 { 714 int n; 715 struct page *page; 716 717 if (cpuset_do_page_mem_spread()) { 718 unsigned int cpuset_mems_cookie; 719 do { 720 cpuset_mems_cookie = read_mems_allowed_begin(); 721 n = cpuset_mem_spread_node(); 722 page = __alloc_pages_node(n, gfp, 0); 723 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 724 725 return page; 726 } 727 return alloc_pages(gfp, 0); 728 } 729 EXPORT_SYMBOL(__page_cache_alloc); 730 #endif 731 732 /* 733 * In order to wait for pages to become available there must be 734 * waitqueues associated with pages. By using a hash table of 735 * waitqueues where the bucket discipline is to maintain all 736 * waiters on the same queue and wake all when any of the pages 737 * become available, and for the woken contexts to check to be 738 * sure the appropriate page became available, this saves space 739 * at a cost of "thundering herd" phenomena during rare hash 740 * collisions. 741 */ 742 #define PAGE_WAIT_TABLE_BITS 8 743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 745 746 static wait_queue_head_t *page_waitqueue(struct page *page) 747 { 748 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 749 } 750 751 void __init pagecache_init(void) 752 { 753 int i; 754 755 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 756 init_waitqueue_head(&page_wait_table[i]); 757 758 page_writeback_init(); 759 } 760 761 struct wait_page_key { 762 struct page *page; 763 int bit_nr; 764 int page_match; 765 }; 766 767 struct wait_page_queue { 768 struct page *page; 769 int bit_nr; 770 wait_queue_t wait; 771 }; 772 773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) 774 { 775 struct wait_page_key *key = arg; 776 struct wait_page_queue *wait_page 777 = container_of(wait, struct wait_page_queue, wait); 778 779 if (wait_page->page != key->page) 780 return 0; 781 key->page_match = 1; 782 783 if (wait_page->bit_nr != key->bit_nr) 784 return 0; 785 if (test_bit(key->bit_nr, &key->page->flags)) 786 return 0; 787 788 return autoremove_wake_function(wait, mode, sync, key); 789 } 790 791 void wake_up_page_bit(struct page *page, int bit_nr) 792 { 793 wait_queue_head_t *q = page_waitqueue(page); 794 struct wait_page_key key; 795 unsigned long flags; 796 797 key.page = page; 798 key.bit_nr = bit_nr; 799 key.page_match = 0; 800 801 spin_lock_irqsave(&q->lock, flags); 802 __wake_up_locked_key(q, TASK_NORMAL, &key); 803 /* 804 * It is possible for other pages to have collided on the waitqueue 805 * hash, so in that case check for a page match. That prevents a long- 806 * term waiter 807 * 808 * It is still possible to miss a case here, when we woke page waiters 809 * and removed them from the waitqueue, but there are still other 810 * page waiters. 811 */ 812 if (!waitqueue_active(q) || !key.page_match) { 813 ClearPageWaiters(page); 814 /* 815 * It's possible to miss clearing Waiters here, when we woke 816 * our page waiters, but the hashed waitqueue has waiters for 817 * other pages on it. 818 * 819 * That's okay, it's a rare case. The next waker will clear it. 820 */ 821 } 822 spin_unlock_irqrestore(&q->lock, flags); 823 } 824 EXPORT_SYMBOL(wake_up_page_bit); 825 826 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 827 struct page *page, int bit_nr, int state, bool lock) 828 { 829 struct wait_page_queue wait_page; 830 wait_queue_t *wait = &wait_page.wait; 831 int ret = 0; 832 833 init_wait(wait); 834 wait->func = wake_page_function; 835 wait_page.page = page; 836 wait_page.bit_nr = bit_nr; 837 838 for (;;) { 839 spin_lock_irq(&q->lock); 840 841 if (likely(list_empty(&wait->task_list))) { 842 if (lock) 843 __add_wait_queue_tail_exclusive(q, wait); 844 else 845 __add_wait_queue(q, wait); 846 SetPageWaiters(page); 847 } 848 849 set_current_state(state); 850 851 spin_unlock_irq(&q->lock); 852 853 if (likely(test_bit(bit_nr, &page->flags))) { 854 io_schedule(); 855 if (unlikely(signal_pending_state(state, current))) { 856 ret = -EINTR; 857 break; 858 } 859 } 860 861 if (lock) { 862 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 863 break; 864 } else { 865 if (!test_bit(bit_nr, &page->flags)) 866 break; 867 } 868 } 869 870 finish_wait(q, wait); 871 872 /* 873 * A signal could leave PageWaiters set. Clearing it here if 874 * !waitqueue_active would be possible (by open-coding finish_wait), 875 * but still fail to catch it in the case of wait hash collision. We 876 * already can fail to clear wait hash collision cases, so don't 877 * bother with signals either. 878 */ 879 880 return ret; 881 } 882 883 void wait_on_page_bit(struct page *page, int bit_nr) 884 { 885 wait_queue_head_t *q = page_waitqueue(page); 886 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 887 } 888 EXPORT_SYMBOL(wait_on_page_bit); 889 890 int wait_on_page_bit_killable(struct page *page, int bit_nr) 891 { 892 wait_queue_head_t *q = page_waitqueue(page); 893 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 894 } 895 896 /** 897 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 898 * @page: Page defining the wait queue of interest 899 * @waiter: Waiter to add to the queue 900 * 901 * Add an arbitrary @waiter to the wait queue for the nominated @page. 902 */ 903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 904 { 905 wait_queue_head_t *q = page_waitqueue(page); 906 unsigned long flags; 907 908 spin_lock_irqsave(&q->lock, flags); 909 __add_wait_queue(q, waiter); 910 SetPageWaiters(page); 911 spin_unlock_irqrestore(&q->lock, flags); 912 } 913 EXPORT_SYMBOL_GPL(add_page_wait_queue); 914 915 #ifndef clear_bit_unlock_is_negative_byte 916 917 /* 918 * PG_waiters is the high bit in the same byte as PG_lock. 919 * 920 * On x86 (and on many other architectures), we can clear PG_lock and 921 * test the sign bit at the same time. But if the architecture does 922 * not support that special operation, we just do this all by hand 923 * instead. 924 * 925 * The read of PG_waiters has to be after (or concurrently with) PG_locked 926 * being cleared, but a memory barrier should be unneccssary since it is 927 * in the same byte as PG_locked. 928 */ 929 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 930 { 931 clear_bit_unlock(nr, mem); 932 /* smp_mb__after_atomic(); */ 933 return test_bit(PG_waiters, mem); 934 } 935 936 #endif 937 938 /** 939 * unlock_page - unlock a locked page 940 * @page: the page 941 * 942 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 943 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 944 * mechanism between PageLocked pages and PageWriteback pages is shared. 945 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 946 * 947 * Note that this depends on PG_waiters being the sign bit in the byte 948 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 949 * clear the PG_locked bit and test PG_waiters at the same time fairly 950 * portably (architectures that do LL/SC can test any bit, while x86 can 951 * test the sign bit). 952 */ 953 void unlock_page(struct page *page) 954 { 955 BUILD_BUG_ON(PG_waiters != 7); 956 page = compound_head(page); 957 VM_BUG_ON_PAGE(!PageLocked(page), page); 958 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 959 wake_up_page_bit(page, PG_locked); 960 } 961 EXPORT_SYMBOL(unlock_page); 962 963 /** 964 * end_page_writeback - end writeback against a page 965 * @page: the page 966 */ 967 void end_page_writeback(struct page *page) 968 { 969 /* 970 * TestClearPageReclaim could be used here but it is an atomic 971 * operation and overkill in this particular case. Failing to 972 * shuffle a page marked for immediate reclaim is too mild to 973 * justify taking an atomic operation penalty at the end of 974 * ever page writeback. 975 */ 976 if (PageReclaim(page)) { 977 ClearPageReclaim(page); 978 rotate_reclaimable_page(page); 979 } 980 981 if (!test_clear_page_writeback(page)) 982 BUG(); 983 984 smp_mb__after_atomic(); 985 wake_up_page(page, PG_writeback); 986 } 987 EXPORT_SYMBOL(end_page_writeback); 988 989 /* 990 * After completing I/O on a page, call this routine to update the page 991 * flags appropriately 992 */ 993 void page_endio(struct page *page, bool is_write, int err) 994 { 995 if (!is_write) { 996 if (!err) { 997 SetPageUptodate(page); 998 } else { 999 ClearPageUptodate(page); 1000 SetPageError(page); 1001 } 1002 unlock_page(page); 1003 } else { 1004 if (err) { 1005 SetPageError(page); 1006 if (page->mapping) 1007 mapping_set_error(page->mapping, err); 1008 } 1009 end_page_writeback(page); 1010 } 1011 } 1012 EXPORT_SYMBOL_GPL(page_endio); 1013 1014 /** 1015 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1016 * @page: the page to lock 1017 */ 1018 void __lock_page(struct page *__page) 1019 { 1020 struct page *page = compound_head(__page); 1021 wait_queue_head_t *q = page_waitqueue(page); 1022 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1023 } 1024 EXPORT_SYMBOL(__lock_page); 1025 1026 int __lock_page_killable(struct page *__page) 1027 { 1028 struct page *page = compound_head(__page); 1029 wait_queue_head_t *q = page_waitqueue(page); 1030 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1031 } 1032 EXPORT_SYMBOL_GPL(__lock_page_killable); 1033 1034 /* 1035 * Return values: 1036 * 1 - page is locked; mmap_sem is still held. 1037 * 0 - page is not locked. 1038 * mmap_sem has been released (up_read()), unless flags had both 1039 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1040 * which case mmap_sem is still held. 1041 * 1042 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1043 * with the page locked and the mmap_sem unperturbed. 1044 */ 1045 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1046 unsigned int flags) 1047 { 1048 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1049 /* 1050 * CAUTION! In this case, mmap_sem is not released 1051 * even though return 0. 1052 */ 1053 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1054 return 0; 1055 1056 up_read(&mm->mmap_sem); 1057 if (flags & FAULT_FLAG_KILLABLE) 1058 wait_on_page_locked_killable(page); 1059 else 1060 wait_on_page_locked(page); 1061 return 0; 1062 } else { 1063 if (flags & FAULT_FLAG_KILLABLE) { 1064 int ret; 1065 1066 ret = __lock_page_killable(page); 1067 if (ret) { 1068 up_read(&mm->mmap_sem); 1069 return 0; 1070 } 1071 } else 1072 __lock_page(page); 1073 return 1; 1074 } 1075 } 1076 1077 /** 1078 * page_cache_next_hole - find the next hole (not-present entry) 1079 * @mapping: mapping 1080 * @index: index 1081 * @max_scan: maximum range to search 1082 * 1083 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1084 * lowest indexed hole. 1085 * 1086 * Returns: the index of the hole if found, otherwise returns an index 1087 * outside of the set specified (in which case 'return - index >= 1088 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1089 * be returned. 1090 * 1091 * page_cache_next_hole may be called under rcu_read_lock. However, 1092 * like radix_tree_gang_lookup, this will not atomically search a 1093 * snapshot of the tree at a single point in time. For example, if a 1094 * hole is created at index 5, then subsequently a hole is created at 1095 * index 10, page_cache_next_hole covering both indexes may return 10 1096 * if called under rcu_read_lock. 1097 */ 1098 pgoff_t page_cache_next_hole(struct address_space *mapping, 1099 pgoff_t index, unsigned long max_scan) 1100 { 1101 unsigned long i; 1102 1103 for (i = 0; i < max_scan; i++) { 1104 struct page *page; 1105 1106 page = radix_tree_lookup(&mapping->page_tree, index); 1107 if (!page || radix_tree_exceptional_entry(page)) 1108 break; 1109 index++; 1110 if (index == 0) 1111 break; 1112 } 1113 1114 return index; 1115 } 1116 EXPORT_SYMBOL(page_cache_next_hole); 1117 1118 /** 1119 * page_cache_prev_hole - find the prev hole (not-present entry) 1120 * @mapping: mapping 1121 * @index: index 1122 * @max_scan: maximum range to search 1123 * 1124 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1125 * the first hole. 1126 * 1127 * Returns: the index of the hole if found, otherwise returns an index 1128 * outside of the set specified (in which case 'index - return >= 1129 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1130 * will be returned. 1131 * 1132 * page_cache_prev_hole may be called under rcu_read_lock. However, 1133 * like radix_tree_gang_lookup, this will not atomically search a 1134 * snapshot of the tree at a single point in time. For example, if a 1135 * hole is created at index 10, then subsequently a hole is created at 1136 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1137 * called under rcu_read_lock. 1138 */ 1139 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1140 pgoff_t index, unsigned long max_scan) 1141 { 1142 unsigned long i; 1143 1144 for (i = 0; i < max_scan; i++) { 1145 struct page *page; 1146 1147 page = radix_tree_lookup(&mapping->page_tree, index); 1148 if (!page || radix_tree_exceptional_entry(page)) 1149 break; 1150 index--; 1151 if (index == ULONG_MAX) 1152 break; 1153 } 1154 1155 return index; 1156 } 1157 EXPORT_SYMBOL(page_cache_prev_hole); 1158 1159 /** 1160 * find_get_entry - find and get a page cache entry 1161 * @mapping: the address_space to search 1162 * @offset: the page cache index 1163 * 1164 * Looks up the page cache slot at @mapping & @offset. If there is a 1165 * page cache page, it is returned with an increased refcount. 1166 * 1167 * If the slot holds a shadow entry of a previously evicted page, or a 1168 * swap entry from shmem/tmpfs, it is returned. 1169 * 1170 * Otherwise, %NULL is returned. 1171 */ 1172 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1173 { 1174 void **pagep; 1175 struct page *head, *page; 1176 1177 rcu_read_lock(); 1178 repeat: 1179 page = NULL; 1180 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1181 if (pagep) { 1182 page = radix_tree_deref_slot(pagep); 1183 if (unlikely(!page)) 1184 goto out; 1185 if (radix_tree_exception(page)) { 1186 if (radix_tree_deref_retry(page)) 1187 goto repeat; 1188 /* 1189 * A shadow entry of a recently evicted page, 1190 * or a swap entry from shmem/tmpfs. Return 1191 * it without attempting to raise page count. 1192 */ 1193 goto out; 1194 } 1195 1196 head = compound_head(page); 1197 if (!page_cache_get_speculative(head)) 1198 goto repeat; 1199 1200 /* The page was split under us? */ 1201 if (compound_head(page) != head) { 1202 put_page(head); 1203 goto repeat; 1204 } 1205 1206 /* 1207 * Has the page moved? 1208 * This is part of the lockless pagecache protocol. See 1209 * include/linux/pagemap.h for details. 1210 */ 1211 if (unlikely(page != *pagep)) { 1212 put_page(head); 1213 goto repeat; 1214 } 1215 } 1216 out: 1217 rcu_read_unlock(); 1218 1219 return page; 1220 } 1221 EXPORT_SYMBOL(find_get_entry); 1222 1223 /** 1224 * find_lock_entry - locate, pin and lock a page cache entry 1225 * @mapping: the address_space to search 1226 * @offset: the page cache index 1227 * 1228 * Looks up the page cache slot at @mapping & @offset. If there is a 1229 * page cache page, it is returned locked and with an increased 1230 * refcount. 1231 * 1232 * If the slot holds a shadow entry of a previously evicted page, or a 1233 * swap entry from shmem/tmpfs, it is returned. 1234 * 1235 * Otherwise, %NULL is returned. 1236 * 1237 * find_lock_entry() may sleep. 1238 */ 1239 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1240 { 1241 struct page *page; 1242 1243 repeat: 1244 page = find_get_entry(mapping, offset); 1245 if (page && !radix_tree_exception(page)) { 1246 lock_page(page); 1247 /* Has the page been truncated? */ 1248 if (unlikely(page_mapping(page) != mapping)) { 1249 unlock_page(page); 1250 put_page(page); 1251 goto repeat; 1252 } 1253 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1254 } 1255 return page; 1256 } 1257 EXPORT_SYMBOL(find_lock_entry); 1258 1259 /** 1260 * pagecache_get_page - find and get a page reference 1261 * @mapping: the address_space to search 1262 * @offset: the page index 1263 * @fgp_flags: PCG flags 1264 * @gfp_mask: gfp mask to use for the page cache data page allocation 1265 * 1266 * Looks up the page cache slot at @mapping & @offset. 1267 * 1268 * PCG flags modify how the page is returned. 1269 * 1270 * FGP_ACCESSED: the page will be marked accessed 1271 * FGP_LOCK: Page is return locked 1272 * FGP_CREAT: If page is not present then a new page is allocated using 1273 * @gfp_mask and added to the page cache and the VM's LRU 1274 * list. The page is returned locked and with an increased 1275 * refcount. Otherwise, %NULL is returned. 1276 * 1277 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1278 * if the GFP flags specified for FGP_CREAT are atomic. 1279 * 1280 * If there is a page cache page, it is returned with an increased refcount. 1281 */ 1282 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1283 int fgp_flags, gfp_t gfp_mask) 1284 { 1285 struct page *page; 1286 1287 repeat: 1288 page = find_get_entry(mapping, offset); 1289 if (radix_tree_exceptional_entry(page)) 1290 page = NULL; 1291 if (!page) 1292 goto no_page; 1293 1294 if (fgp_flags & FGP_LOCK) { 1295 if (fgp_flags & FGP_NOWAIT) { 1296 if (!trylock_page(page)) { 1297 put_page(page); 1298 return NULL; 1299 } 1300 } else { 1301 lock_page(page); 1302 } 1303 1304 /* Has the page been truncated? */ 1305 if (unlikely(page->mapping != mapping)) { 1306 unlock_page(page); 1307 put_page(page); 1308 goto repeat; 1309 } 1310 VM_BUG_ON_PAGE(page->index != offset, page); 1311 } 1312 1313 if (page && (fgp_flags & FGP_ACCESSED)) 1314 mark_page_accessed(page); 1315 1316 no_page: 1317 if (!page && (fgp_flags & FGP_CREAT)) { 1318 int err; 1319 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1320 gfp_mask |= __GFP_WRITE; 1321 if (fgp_flags & FGP_NOFS) 1322 gfp_mask &= ~__GFP_FS; 1323 1324 page = __page_cache_alloc(gfp_mask); 1325 if (!page) 1326 return NULL; 1327 1328 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1329 fgp_flags |= FGP_LOCK; 1330 1331 /* Init accessed so avoid atomic mark_page_accessed later */ 1332 if (fgp_flags & FGP_ACCESSED) 1333 __SetPageReferenced(page); 1334 1335 err = add_to_page_cache_lru(page, mapping, offset, 1336 gfp_mask & GFP_RECLAIM_MASK); 1337 if (unlikely(err)) { 1338 put_page(page); 1339 page = NULL; 1340 if (err == -EEXIST) 1341 goto repeat; 1342 } 1343 } 1344 1345 return page; 1346 } 1347 EXPORT_SYMBOL(pagecache_get_page); 1348 1349 /** 1350 * find_get_entries - gang pagecache lookup 1351 * @mapping: The address_space to search 1352 * @start: The starting page cache index 1353 * @nr_entries: The maximum number of entries 1354 * @entries: Where the resulting entries are placed 1355 * @indices: The cache indices corresponding to the entries in @entries 1356 * 1357 * find_get_entries() will search for and return a group of up to 1358 * @nr_entries entries in the mapping. The entries are placed at 1359 * @entries. find_get_entries() takes a reference against any actual 1360 * pages it returns. 1361 * 1362 * The search returns a group of mapping-contiguous page cache entries 1363 * with ascending indexes. There may be holes in the indices due to 1364 * not-present pages. 1365 * 1366 * Any shadow entries of evicted pages, or swap entries from 1367 * shmem/tmpfs, are included in the returned array. 1368 * 1369 * find_get_entries() returns the number of pages and shadow entries 1370 * which were found. 1371 */ 1372 unsigned find_get_entries(struct address_space *mapping, 1373 pgoff_t start, unsigned int nr_entries, 1374 struct page **entries, pgoff_t *indices) 1375 { 1376 void **slot; 1377 unsigned int ret = 0; 1378 struct radix_tree_iter iter; 1379 1380 if (!nr_entries) 1381 return 0; 1382 1383 rcu_read_lock(); 1384 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1385 struct page *head, *page; 1386 repeat: 1387 page = radix_tree_deref_slot(slot); 1388 if (unlikely(!page)) 1389 continue; 1390 if (radix_tree_exception(page)) { 1391 if (radix_tree_deref_retry(page)) { 1392 slot = radix_tree_iter_retry(&iter); 1393 continue; 1394 } 1395 /* 1396 * A shadow entry of a recently evicted page, a swap 1397 * entry from shmem/tmpfs or a DAX entry. Return it 1398 * without attempting to raise page count. 1399 */ 1400 goto export; 1401 } 1402 1403 head = compound_head(page); 1404 if (!page_cache_get_speculative(head)) 1405 goto repeat; 1406 1407 /* The page was split under us? */ 1408 if (compound_head(page) != head) { 1409 put_page(head); 1410 goto repeat; 1411 } 1412 1413 /* Has the page moved? */ 1414 if (unlikely(page != *slot)) { 1415 put_page(head); 1416 goto repeat; 1417 } 1418 export: 1419 indices[ret] = iter.index; 1420 entries[ret] = page; 1421 if (++ret == nr_entries) 1422 break; 1423 } 1424 rcu_read_unlock(); 1425 return ret; 1426 } 1427 1428 /** 1429 * find_get_pages - gang pagecache lookup 1430 * @mapping: The address_space to search 1431 * @start: The starting page index 1432 * @nr_pages: The maximum number of pages 1433 * @pages: Where the resulting pages are placed 1434 * 1435 * find_get_pages() will search for and return a group of up to 1436 * @nr_pages pages in the mapping. The pages are placed at @pages. 1437 * find_get_pages() takes a reference against the returned pages. 1438 * 1439 * The search returns a group of mapping-contiguous pages with ascending 1440 * indexes. There may be holes in the indices due to not-present pages. 1441 * 1442 * find_get_pages() returns the number of pages which were found. 1443 */ 1444 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1445 unsigned int nr_pages, struct page **pages) 1446 { 1447 struct radix_tree_iter iter; 1448 void **slot; 1449 unsigned ret = 0; 1450 1451 if (unlikely(!nr_pages)) 1452 return 0; 1453 1454 rcu_read_lock(); 1455 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1456 struct page *head, *page; 1457 repeat: 1458 page = radix_tree_deref_slot(slot); 1459 if (unlikely(!page)) 1460 continue; 1461 1462 if (radix_tree_exception(page)) { 1463 if (radix_tree_deref_retry(page)) { 1464 slot = radix_tree_iter_retry(&iter); 1465 continue; 1466 } 1467 /* 1468 * A shadow entry of a recently evicted page, 1469 * or a swap entry from shmem/tmpfs. Skip 1470 * over it. 1471 */ 1472 continue; 1473 } 1474 1475 head = compound_head(page); 1476 if (!page_cache_get_speculative(head)) 1477 goto repeat; 1478 1479 /* The page was split under us? */ 1480 if (compound_head(page) != head) { 1481 put_page(head); 1482 goto repeat; 1483 } 1484 1485 /* Has the page moved? */ 1486 if (unlikely(page != *slot)) { 1487 put_page(head); 1488 goto repeat; 1489 } 1490 1491 pages[ret] = page; 1492 if (++ret == nr_pages) 1493 break; 1494 } 1495 1496 rcu_read_unlock(); 1497 return ret; 1498 } 1499 1500 /** 1501 * find_get_pages_contig - gang contiguous pagecache lookup 1502 * @mapping: The address_space to search 1503 * @index: The starting page index 1504 * @nr_pages: The maximum number of pages 1505 * @pages: Where the resulting pages are placed 1506 * 1507 * find_get_pages_contig() works exactly like find_get_pages(), except 1508 * that the returned number of pages are guaranteed to be contiguous. 1509 * 1510 * find_get_pages_contig() returns the number of pages which were found. 1511 */ 1512 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1513 unsigned int nr_pages, struct page **pages) 1514 { 1515 struct radix_tree_iter iter; 1516 void **slot; 1517 unsigned int ret = 0; 1518 1519 if (unlikely(!nr_pages)) 1520 return 0; 1521 1522 rcu_read_lock(); 1523 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1524 struct page *head, *page; 1525 repeat: 1526 page = radix_tree_deref_slot(slot); 1527 /* The hole, there no reason to continue */ 1528 if (unlikely(!page)) 1529 break; 1530 1531 if (radix_tree_exception(page)) { 1532 if (radix_tree_deref_retry(page)) { 1533 slot = radix_tree_iter_retry(&iter); 1534 continue; 1535 } 1536 /* 1537 * A shadow entry of a recently evicted page, 1538 * or a swap entry from shmem/tmpfs. Stop 1539 * looking for contiguous pages. 1540 */ 1541 break; 1542 } 1543 1544 head = compound_head(page); 1545 if (!page_cache_get_speculative(head)) 1546 goto repeat; 1547 1548 /* The page was split under us? */ 1549 if (compound_head(page) != head) { 1550 put_page(head); 1551 goto repeat; 1552 } 1553 1554 /* Has the page moved? */ 1555 if (unlikely(page != *slot)) { 1556 put_page(head); 1557 goto repeat; 1558 } 1559 1560 /* 1561 * must check mapping and index after taking the ref. 1562 * otherwise we can get both false positives and false 1563 * negatives, which is just confusing to the caller. 1564 */ 1565 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1566 put_page(page); 1567 break; 1568 } 1569 1570 pages[ret] = page; 1571 if (++ret == nr_pages) 1572 break; 1573 } 1574 rcu_read_unlock(); 1575 return ret; 1576 } 1577 EXPORT_SYMBOL(find_get_pages_contig); 1578 1579 /** 1580 * find_get_pages_tag - find and return pages that match @tag 1581 * @mapping: the address_space to search 1582 * @index: the starting page index 1583 * @tag: the tag index 1584 * @nr_pages: the maximum number of pages 1585 * @pages: where the resulting pages are placed 1586 * 1587 * Like find_get_pages, except we only return pages which are tagged with 1588 * @tag. We update @index to index the next page for the traversal. 1589 */ 1590 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1591 int tag, unsigned int nr_pages, struct page **pages) 1592 { 1593 struct radix_tree_iter iter; 1594 void **slot; 1595 unsigned ret = 0; 1596 1597 if (unlikely(!nr_pages)) 1598 return 0; 1599 1600 rcu_read_lock(); 1601 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1602 &iter, *index, tag) { 1603 struct page *head, *page; 1604 repeat: 1605 page = radix_tree_deref_slot(slot); 1606 if (unlikely(!page)) 1607 continue; 1608 1609 if (radix_tree_exception(page)) { 1610 if (radix_tree_deref_retry(page)) { 1611 slot = radix_tree_iter_retry(&iter); 1612 continue; 1613 } 1614 /* 1615 * A shadow entry of a recently evicted page. 1616 * 1617 * Those entries should never be tagged, but 1618 * this tree walk is lockless and the tags are 1619 * looked up in bulk, one radix tree node at a 1620 * time, so there is a sizable window for page 1621 * reclaim to evict a page we saw tagged. 1622 * 1623 * Skip over it. 1624 */ 1625 continue; 1626 } 1627 1628 head = compound_head(page); 1629 if (!page_cache_get_speculative(head)) 1630 goto repeat; 1631 1632 /* The page was split under us? */ 1633 if (compound_head(page) != head) { 1634 put_page(head); 1635 goto repeat; 1636 } 1637 1638 /* Has the page moved? */ 1639 if (unlikely(page != *slot)) { 1640 put_page(head); 1641 goto repeat; 1642 } 1643 1644 pages[ret] = page; 1645 if (++ret == nr_pages) 1646 break; 1647 } 1648 1649 rcu_read_unlock(); 1650 1651 if (ret) 1652 *index = pages[ret - 1]->index + 1; 1653 1654 return ret; 1655 } 1656 EXPORT_SYMBOL(find_get_pages_tag); 1657 1658 /** 1659 * find_get_entries_tag - find and return entries that match @tag 1660 * @mapping: the address_space to search 1661 * @start: the starting page cache index 1662 * @tag: the tag index 1663 * @nr_entries: the maximum number of entries 1664 * @entries: where the resulting entries are placed 1665 * @indices: the cache indices corresponding to the entries in @entries 1666 * 1667 * Like find_get_entries, except we only return entries which are tagged with 1668 * @tag. 1669 */ 1670 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1671 int tag, unsigned int nr_entries, 1672 struct page **entries, pgoff_t *indices) 1673 { 1674 void **slot; 1675 unsigned int ret = 0; 1676 struct radix_tree_iter iter; 1677 1678 if (!nr_entries) 1679 return 0; 1680 1681 rcu_read_lock(); 1682 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1683 &iter, start, tag) { 1684 struct page *head, *page; 1685 repeat: 1686 page = radix_tree_deref_slot(slot); 1687 if (unlikely(!page)) 1688 continue; 1689 if (radix_tree_exception(page)) { 1690 if (radix_tree_deref_retry(page)) { 1691 slot = radix_tree_iter_retry(&iter); 1692 continue; 1693 } 1694 1695 /* 1696 * A shadow entry of a recently evicted page, a swap 1697 * entry from shmem/tmpfs or a DAX entry. Return it 1698 * without attempting to raise page count. 1699 */ 1700 goto export; 1701 } 1702 1703 head = compound_head(page); 1704 if (!page_cache_get_speculative(head)) 1705 goto repeat; 1706 1707 /* The page was split under us? */ 1708 if (compound_head(page) != head) { 1709 put_page(head); 1710 goto repeat; 1711 } 1712 1713 /* Has the page moved? */ 1714 if (unlikely(page != *slot)) { 1715 put_page(head); 1716 goto repeat; 1717 } 1718 export: 1719 indices[ret] = iter.index; 1720 entries[ret] = page; 1721 if (++ret == nr_entries) 1722 break; 1723 } 1724 rcu_read_unlock(); 1725 return ret; 1726 } 1727 EXPORT_SYMBOL(find_get_entries_tag); 1728 1729 /* 1730 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1731 * a _large_ part of the i/o request. Imagine the worst scenario: 1732 * 1733 * ---R__________________________________________B__________ 1734 * ^ reading here ^ bad block(assume 4k) 1735 * 1736 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1737 * => failing the whole request => read(R) => read(R+1) => 1738 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1739 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1740 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1741 * 1742 * It is going insane. Fix it by quickly scaling down the readahead size. 1743 */ 1744 static void shrink_readahead_size_eio(struct file *filp, 1745 struct file_ra_state *ra) 1746 { 1747 ra->ra_pages /= 4; 1748 } 1749 1750 /** 1751 * do_generic_file_read - generic file read routine 1752 * @filp: the file to read 1753 * @ppos: current file position 1754 * @iter: data destination 1755 * @written: already copied 1756 * 1757 * This is a generic file read routine, and uses the 1758 * mapping->a_ops->readpage() function for the actual low-level stuff. 1759 * 1760 * This is really ugly. But the goto's actually try to clarify some 1761 * of the logic when it comes to error handling etc. 1762 */ 1763 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1764 struct iov_iter *iter, ssize_t written) 1765 { 1766 struct address_space *mapping = filp->f_mapping; 1767 struct inode *inode = mapping->host; 1768 struct file_ra_state *ra = &filp->f_ra; 1769 pgoff_t index; 1770 pgoff_t last_index; 1771 pgoff_t prev_index; 1772 unsigned long offset; /* offset into pagecache page */ 1773 unsigned int prev_offset; 1774 int error = 0; 1775 1776 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1777 return 0; 1778 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1779 1780 index = *ppos >> PAGE_SHIFT; 1781 prev_index = ra->prev_pos >> PAGE_SHIFT; 1782 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1783 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1784 offset = *ppos & ~PAGE_MASK; 1785 1786 for (;;) { 1787 struct page *page; 1788 pgoff_t end_index; 1789 loff_t isize; 1790 unsigned long nr, ret; 1791 1792 cond_resched(); 1793 find_page: 1794 if (fatal_signal_pending(current)) { 1795 error = -EINTR; 1796 goto out; 1797 } 1798 1799 page = find_get_page(mapping, index); 1800 if (!page) { 1801 page_cache_sync_readahead(mapping, 1802 ra, filp, 1803 index, last_index - index); 1804 page = find_get_page(mapping, index); 1805 if (unlikely(page == NULL)) 1806 goto no_cached_page; 1807 } 1808 if (PageReadahead(page)) { 1809 page_cache_async_readahead(mapping, 1810 ra, filp, page, 1811 index, last_index - index); 1812 } 1813 if (!PageUptodate(page)) { 1814 /* 1815 * See comment in do_read_cache_page on why 1816 * wait_on_page_locked is used to avoid unnecessarily 1817 * serialisations and why it's safe. 1818 */ 1819 error = wait_on_page_locked_killable(page); 1820 if (unlikely(error)) 1821 goto readpage_error; 1822 if (PageUptodate(page)) 1823 goto page_ok; 1824 1825 if (inode->i_blkbits == PAGE_SHIFT || 1826 !mapping->a_ops->is_partially_uptodate) 1827 goto page_not_up_to_date; 1828 /* pipes can't handle partially uptodate pages */ 1829 if (unlikely(iter->type & ITER_PIPE)) 1830 goto page_not_up_to_date; 1831 if (!trylock_page(page)) 1832 goto page_not_up_to_date; 1833 /* Did it get truncated before we got the lock? */ 1834 if (!page->mapping) 1835 goto page_not_up_to_date_locked; 1836 if (!mapping->a_ops->is_partially_uptodate(page, 1837 offset, iter->count)) 1838 goto page_not_up_to_date_locked; 1839 unlock_page(page); 1840 } 1841 page_ok: 1842 /* 1843 * i_size must be checked after we know the page is Uptodate. 1844 * 1845 * Checking i_size after the check allows us to calculate 1846 * the correct value for "nr", which means the zero-filled 1847 * part of the page is not copied back to userspace (unless 1848 * another truncate extends the file - this is desired though). 1849 */ 1850 1851 isize = i_size_read(inode); 1852 end_index = (isize - 1) >> PAGE_SHIFT; 1853 if (unlikely(!isize || index > end_index)) { 1854 put_page(page); 1855 goto out; 1856 } 1857 1858 /* nr is the maximum number of bytes to copy from this page */ 1859 nr = PAGE_SIZE; 1860 if (index == end_index) { 1861 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1862 if (nr <= offset) { 1863 put_page(page); 1864 goto out; 1865 } 1866 } 1867 nr = nr - offset; 1868 1869 /* If users can be writing to this page using arbitrary 1870 * virtual addresses, take care about potential aliasing 1871 * before reading the page on the kernel side. 1872 */ 1873 if (mapping_writably_mapped(mapping)) 1874 flush_dcache_page(page); 1875 1876 /* 1877 * When a sequential read accesses a page several times, 1878 * only mark it as accessed the first time. 1879 */ 1880 if (prev_index != index || offset != prev_offset) 1881 mark_page_accessed(page); 1882 prev_index = index; 1883 1884 /* 1885 * Ok, we have the page, and it's up-to-date, so 1886 * now we can copy it to user space... 1887 */ 1888 1889 ret = copy_page_to_iter(page, offset, nr, iter); 1890 offset += ret; 1891 index += offset >> PAGE_SHIFT; 1892 offset &= ~PAGE_MASK; 1893 prev_offset = offset; 1894 1895 put_page(page); 1896 written += ret; 1897 if (!iov_iter_count(iter)) 1898 goto out; 1899 if (ret < nr) { 1900 error = -EFAULT; 1901 goto out; 1902 } 1903 continue; 1904 1905 page_not_up_to_date: 1906 /* Get exclusive access to the page ... */ 1907 error = lock_page_killable(page); 1908 if (unlikely(error)) 1909 goto readpage_error; 1910 1911 page_not_up_to_date_locked: 1912 /* Did it get truncated before we got the lock? */ 1913 if (!page->mapping) { 1914 unlock_page(page); 1915 put_page(page); 1916 continue; 1917 } 1918 1919 /* Did somebody else fill it already? */ 1920 if (PageUptodate(page)) { 1921 unlock_page(page); 1922 goto page_ok; 1923 } 1924 1925 readpage: 1926 /* 1927 * A previous I/O error may have been due to temporary 1928 * failures, eg. multipath errors. 1929 * PG_error will be set again if readpage fails. 1930 */ 1931 ClearPageError(page); 1932 /* Start the actual read. The read will unlock the page. */ 1933 error = mapping->a_ops->readpage(filp, page); 1934 1935 if (unlikely(error)) { 1936 if (error == AOP_TRUNCATED_PAGE) { 1937 put_page(page); 1938 error = 0; 1939 goto find_page; 1940 } 1941 goto readpage_error; 1942 } 1943 1944 if (!PageUptodate(page)) { 1945 error = lock_page_killable(page); 1946 if (unlikely(error)) 1947 goto readpage_error; 1948 if (!PageUptodate(page)) { 1949 if (page->mapping == NULL) { 1950 /* 1951 * invalidate_mapping_pages got it 1952 */ 1953 unlock_page(page); 1954 put_page(page); 1955 goto find_page; 1956 } 1957 unlock_page(page); 1958 shrink_readahead_size_eio(filp, ra); 1959 error = -EIO; 1960 goto readpage_error; 1961 } 1962 unlock_page(page); 1963 } 1964 1965 goto page_ok; 1966 1967 readpage_error: 1968 /* UHHUH! A synchronous read error occurred. Report it */ 1969 put_page(page); 1970 goto out; 1971 1972 no_cached_page: 1973 /* 1974 * Ok, it wasn't cached, so we need to create a new 1975 * page.. 1976 */ 1977 page = page_cache_alloc_cold(mapping); 1978 if (!page) { 1979 error = -ENOMEM; 1980 goto out; 1981 } 1982 error = add_to_page_cache_lru(page, mapping, index, 1983 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1984 if (error) { 1985 put_page(page); 1986 if (error == -EEXIST) { 1987 error = 0; 1988 goto find_page; 1989 } 1990 goto out; 1991 } 1992 goto readpage; 1993 } 1994 1995 out: 1996 ra->prev_pos = prev_index; 1997 ra->prev_pos <<= PAGE_SHIFT; 1998 ra->prev_pos |= prev_offset; 1999 2000 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2001 file_accessed(filp); 2002 return written ? written : error; 2003 } 2004 2005 /** 2006 * generic_file_read_iter - generic filesystem read routine 2007 * @iocb: kernel I/O control block 2008 * @iter: destination for the data read 2009 * 2010 * This is the "read_iter()" routine for all filesystems 2011 * that can use the page cache directly. 2012 */ 2013 ssize_t 2014 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2015 { 2016 struct file *file = iocb->ki_filp; 2017 ssize_t retval = 0; 2018 size_t count = iov_iter_count(iter); 2019 2020 if (!count) 2021 goto out; /* skip atime */ 2022 2023 if (iocb->ki_flags & IOCB_DIRECT) { 2024 struct address_space *mapping = file->f_mapping; 2025 struct inode *inode = mapping->host; 2026 struct iov_iter data = *iter; 2027 loff_t size; 2028 2029 size = i_size_read(inode); 2030 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos, 2031 iocb->ki_pos + count - 1); 2032 if (retval < 0) 2033 goto out; 2034 2035 file_accessed(file); 2036 2037 retval = mapping->a_ops->direct_IO(iocb, &data); 2038 if (retval >= 0) { 2039 iocb->ki_pos += retval; 2040 iov_iter_advance(iter, retval); 2041 } 2042 2043 /* 2044 * Btrfs can have a short DIO read if we encounter 2045 * compressed extents, so if there was an error, or if 2046 * we've already read everything we wanted to, or if 2047 * there was a short read because we hit EOF, go ahead 2048 * and return. Otherwise fallthrough to buffered io for 2049 * the rest of the read. Buffered reads will not work for 2050 * DAX files, so don't bother trying. 2051 */ 2052 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size || 2053 IS_DAX(inode)) 2054 goto out; 2055 } 2056 2057 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2058 out: 2059 return retval; 2060 } 2061 EXPORT_SYMBOL(generic_file_read_iter); 2062 2063 #ifdef CONFIG_MMU 2064 /** 2065 * page_cache_read - adds requested page to the page cache if not already there 2066 * @file: file to read 2067 * @offset: page index 2068 * @gfp_mask: memory allocation flags 2069 * 2070 * This adds the requested page to the page cache if it isn't already there, 2071 * and schedules an I/O to read in its contents from disk. 2072 */ 2073 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2074 { 2075 struct address_space *mapping = file->f_mapping; 2076 struct page *page; 2077 int ret; 2078 2079 do { 2080 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2081 if (!page) 2082 return -ENOMEM; 2083 2084 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2085 if (ret == 0) 2086 ret = mapping->a_ops->readpage(file, page); 2087 else if (ret == -EEXIST) 2088 ret = 0; /* losing race to add is OK */ 2089 2090 put_page(page); 2091 2092 } while (ret == AOP_TRUNCATED_PAGE); 2093 2094 return ret; 2095 } 2096 2097 #define MMAP_LOTSAMISS (100) 2098 2099 /* 2100 * Synchronous readahead happens when we don't even find 2101 * a page in the page cache at all. 2102 */ 2103 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2104 struct file_ra_state *ra, 2105 struct file *file, 2106 pgoff_t offset) 2107 { 2108 struct address_space *mapping = file->f_mapping; 2109 2110 /* If we don't want any read-ahead, don't bother */ 2111 if (vma->vm_flags & VM_RAND_READ) 2112 return; 2113 if (!ra->ra_pages) 2114 return; 2115 2116 if (vma->vm_flags & VM_SEQ_READ) { 2117 page_cache_sync_readahead(mapping, ra, file, offset, 2118 ra->ra_pages); 2119 return; 2120 } 2121 2122 /* Avoid banging the cache line if not needed */ 2123 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2124 ra->mmap_miss++; 2125 2126 /* 2127 * Do we miss much more than hit in this file? If so, 2128 * stop bothering with read-ahead. It will only hurt. 2129 */ 2130 if (ra->mmap_miss > MMAP_LOTSAMISS) 2131 return; 2132 2133 /* 2134 * mmap read-around 2135 */ 2136 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2137 ra->size = ra->ra_pages; 2138 ra->async_size = ra->ra_pages / 4; 2139 ra_submit(ra, mapping, file); 2140 } 2141 2142 /* 2143 * Asynchronous readahead happens when we find the page and PG_readahead, 2144 * so we want to possibly extend the readahead further.. 2145 */ 2146 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2147 struct file_ra_state *ra, 2148 struct file *file, 2149 struct page *page, 2150 pgoff_t offset) 2151 { 2152 struct address_space *mapping = file->f_mapping; 2153 2154 /* If we don't want any read-ahead, don't bother */ 2155 if (vma->vm_flags & VM_RAND_READ) 2156 return; 2157 if (ra->mmap_miss > 0) 2158 ra->mmap_miss--; 2159 if (PageReadahead(page)) 2160 page_cache_async_readahead(mapping, ra, file, 2161 page, offset, ra->ra_pages); 2162 } 2163 2164 /** 2165 * filemap_fault - read in file data for page fault handling 2166 * @vma: vma in which the fault was taken 2167 * @vmf: struct vm_fault containing details of the fault 2168 * 2169 * filemap_fault() is invoked via the vma operations vector for a 2170 * mapped memory region to read in file data during a page fault. 2171 * 2172 * The goto's are kind of ugly, but this streamlines the normal case of having 2173 * it in the page cache, and handles the special cases reasonably without 2174 * having a lot of duplicated code. 2175 * 2176 * vma->vm_mm->mmap_sem must be held on entry. 2177 * 2178 * If our return value has VM_FAULT_RETRY set, it's because 2179 * lock_page_or_retry() returned 0. 2180 * The mmap_sem has usually been released in this case. 2181 * See __lock_page_or_retry() for the exception. 2182 * 2183 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2184 * has not been released. 2185 * 2186 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2187 */ 2188 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2189 { 2190 int error; 2191 struct file *file = vma->vm_file; 2192 struct address_space *mapping = file->f_mapping; 2193 struct file_ra_state *ra = &file->f_ra; 2194 struct inode *inode = mapping->host; 2195 pgoff_t offset = vmf->pgoff; 2196 struct page *page; 2197 loff_t size; 2198 int ret = 0; 2199 2200 size = round_up(i_size_read(inode), PAGE_SIZE); 2201 if (offset >= size >> PAGE_SHIFT) 2202 return VM_FAULT_SIGBUS; 2203 2204 /* 2205 * Do we have something in the page cache already? 2206 */ 2207 page = find_get_page(mapping, offset); 2208 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2209 /* 2210 * We found the page, so try async readahead before 2211 * waiting for the lock. 2212 */ 2213 do_async_mmap_readahead(vma, ra, file, page, offset); 2214 } else if (!page) { 2215 /* No page in the page cache at all */ 2216 do_sync_mmap_readahead(vma, ra, file, offset); 2217 count_vm_event(PGMAJFAULT); 2218 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2219 ret = VM_FAULT_MAJOR; 2220 retry_find: 2221 page = find_get_page(mapping, offset); 2222 if (!page) 2223 goto no_cached_page; 2224 } 2225 2226 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 2227 put_page(page); 2228 return ret | VM_FAULT_RETRY; 2229 } 2230 2231 /* Did it get truncated? */ 2232 if (unlikely(page->mapping != mapping)) { 2233 unlock_page(page); 2234 put_page(page); 2235 goto retry_find; 2236 } 2237 VM_BUG_ON_PAGE(page->index != offset, page); 2238 2239 /* 2240 * We have a locked page in the page cache, now we need to check 2241 * that it's up-to-date. If not, it is going to be due to an error. 2242 */ 2243 if (unlikely(!PageUptodate(page))) 2244 goto page_not_uptodate; 2245 2246 /* 2247 * Found the page and have a reference on it. 2248 * We must recheck i_size under page lock. 2249 */ 2250 size = round_up(i_size_read(inode), PAGE_SIZE); 2251 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2252 unlock_page(page); 2253 put_page(page); 2254 return VM_FAULT_SIGBUS; 2255 } 2256 2257 vmf->page = page; 2258 return ret | VM_FAULT_LOCKED; 2259 2260 no_cached_page: 2261 /* 2262 * We're only likely to ever get here if MADV_RANDOM is in 2263 * effect. 2264 */ 2265 error = page_cache_read(file, offset, vmf->gfp_mask); 2266 2267 /* 2268 * The page we want has now been added to the page cache. 2269 * In the unlikely event that someone removed it in the 2270 * meantime, we'll just come back here and read it again. 2271 */ 2272 if (error >= 0) 2273 goto retry_find; 2274 2275 /* 2276 * An error return from page_cache_read can result if the 2277 * system is low on memory, or a problem occurs while trying 2278 * to schedule I/O. 2279 */ 2280 if (error == -ENOMEM) 2281 return VM_FAULT_OOM; 2282 return VM_FAULT_SIGBUS; 2283 2284 page_not_uptodate: 2285 /* 2286 * Umm, take care of errors if the page isn't up-to-date. 2287 * Try to re-read it _once_. We do this synchronously, 2288 * because there really aren't any performance issues here 2289 * and we need to check for errors. 2290 */ 2291 ClearPageError(page); 2292 error = mapping->a_ops->readpage(file, page); 2293 if (!error) { 2294 wait_on_page_locked(page); 2295 if (!PageUptodate(page)) 2296 error = -EIO; 2297 } 2298 put_page(page); 2299 2300 if (!error || error == AOP_TRUNCATED_PAGE) 2301 goto retry_find; 2302 2303 /* Things didn't work out. Return zero to tell the mm layer so. */ 2304 shrink_readahead_size_eio(file, ra); 2305 return VM_FAULT_SIGBUS; 2306 } 2307 EXPORT_SYMBOL(filemap_fault); 2308 2309 void filemap_map_pages(struct vm_fault *vmf, 2310 pgoff_t start_pgoff, pgoff_t end_pgoff) 2311 { 2312 struct radix_tree_iter iter; 2313 void **slot; 2314 struct file *file = vmf->vma->vm_file; 2315 struct address_space *mapping = file->f_mapping; 2316 pgoff_t last_pgoff = start_pgoff; 2317 loff_t size; 2318 struct page *head, *page; 2319 2320 rcu_read_lock(); 2321 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2322 start_pgoff) { 2323 if (iter.index > end_pgoff) 2324 break; 2325 repeat: 2326 page = radix_tree_deref_slot(slot); 2327 if (unlikely(!page)) 2328 goto next; 2329 if (radix_tree_exception(page)) { 2330 if (radix_tree_deref_retry(page)) { 2331 slot = radix_tree_iter_retry(&iter); 2332 continue; 2333 } 2334 goto next; 2335 } 2336 2337 head = compound_head(page); 2338 if (!page_cache_get_speculative(head)) 2339 goto repeat; 2340 2341 /* The page was split under us? */ 2342 if (compound_head(page) != head) { 2343 put_page(head); 2344 goto repeat; 2345 } 2346 2347 /* Has the page moved? */ 2348 if (unlikely(page != *slot)) { 2349 put_page(head); 2350 goto repeat; 2351 } 2352 2353 if (!PageUptodate(page) || 2354 PageReadahead(page) || 2355 PageHWPoison(page)) 2356 goto skip; 2357 if (!trylock_page(page)) 2358 goto skip; 2359 2360 if (page->mapping != mapping || !PageUptodate(page)) 2361 goto unlock; 2362 2363 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2364 if (page->index >= size >> PAGE_SHIFT) 2365 goto unlock; 2366 2367 if (file->f_ra.mmap_miss > 0) 2368 file->f_ra.mmap_miss--; 2369 2370 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2371 if (vmf->pte) 2372 vmf->pte += iter.index - last_pgoff; 2373 last_pgoff = iter.index; 2374 if (alloc_set_pte(vmf, NULL, page)) 2375 goto unlock; 2376 unlock_page(page); 2377 goto next; 2378 unlock: 2379 unlock_page(page); 2380 skip: 2381 put_page(page); 2382 next: 2383 /* Huge page is mapped? No need to proceed. */ 2384 if (pmd_trans_huge(*vmf->pmd)) 2385 break; 2386 if (iter.index == end_pgoff) 2387 break; 2388 } 2389 rcu_read_unlock(); 2390 } 2391 EXPORT_SYMBOL(filemap_map_pages); 2392 2393 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2394 { 2395 struct page *page = vmf->page; 2396 struct inode *inode = file_inode(vma->vm_file); 2397 int ret = VM_FAULT_LOCKED; 2398 2399 sb_start_pagefault(inode->i_sb); 2400 file_update_time(vma->vm_file); 2401 lock_page(page); 2402 if (page->mapping != inode->i_mapping) { 2403 unlock_page(page); 2404 ret = VM_FAULT_NOPAGE; 2405 goto out; 2406 } 2407 /* 2408 * We mark the page dirty already here so that when freeze is in 2409 * progress, we are guaranteed that writeback during freezing will 2410 * see the dirty page and writeprotect it again. 2411 */ 2412 set_page_dirty(page); 2413 wait_for_stable_page(page); 2414 out: 2415 sb_end_pagefault(inode->i_sb); 2416 return ret; 2417 } 2418 EXPORT_SYMBOL(filemap_page_mkwrite); 2419 2420 const struct vm_operations_struct generic_file_vm_ops = { 2421 .fault = filemap_fault, 2422 .map_pages = filemap_map_pages, 2423 .page_mkwrite = filemap_page_mkwrite, 2424 }; 2425 2426 /* This is used for a general mmap of a disk file */ 2427 2428 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2429 { 2430 struct address_space *mapping = file->f_mapping; 2431 2432 if (!mapping->a_ops->readpage) 2433 return -ENOEXEC; 2434 file_accessed(file); 2435 vma->vm_ops = &generic_file_vm_ops; 2436 return 0; 2437 } 2438 2439 /* 2440 * This is for filesystems which do not implement ->writepage. 2441 */ 2442 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2443 { 2444 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2445 return -EINVAL; 2446 return generic_file_mmap(file, vma); 2447 } 2448 #else 2449 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2450 { 2451 return -ENOSYS; 2452 } 2453 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2454 { 2455 return -ENOSYS; 2456 } 2457 #endif /* CONFIG_MMU */ 2458 2459 EXPORT_SYMBOL(generic_file_mmap); 2460 EXPORT_SYMBOL(generic_file_readonly_mmap); 2461 2462 static struct page *wait_on_page_read(struct page *page) 2463 { 2464 if (!IS_ERR(page)) { 2465 wait_on_page_locked(page); 2466 if (!PageUptodate(page)) { 2467 put_page(page); 2468 page = ERR_PTR(-EIO); 2469 } 2470 } 2471 return page; 2472 } 2473 2474 static struct page *do_read_cache_page(struct address_space *mapping, 2475 pgoff_t index, 2476 int (*filler)(void *, struct page *), 2477 void *data, 2478 gfp_t gfp) 2479 { 2480 struct page *page; 2481 int err; 2482 repeat: 2483 page = find_get_page(mapping, index); 2484 if (!page) { 2485 page = __page_cache_alloc(gfp | __GFP_COLD); 2486 if (!page) 2487 return ERR_PTR(-ENOMEM); 2488 err = add_to_page_cache_lru(page, mapping, index, gfp); 2489 if (unlikely(err)) { 2490 put_page(page); 2491 if (err == -EEXIST) 2492 goto repeat; 2493 /* Presumably ENOMEM for radix tree node */ 2494 return ERR_PTR(err); 2495 } 2496 2497 filler: 2498 err = filler(data, page); 2499 if (err < 0) { 2500 put_page(page); 2501 return ERR_PTR(err); 2502 } 2503 2504 page = wait_on_page_read(page); 2505 if (IS_ERR(page)) 2506 return page; 2507 goto out; 2508 } 2509 if (PageUptodate(page)) 2510 goto out; 2511 2512 /* 2513 * Page is not up to date and may be locked due one of the following 2514 * case a: Page is being filled and the page lock is held 2515 * case b: Read/write error clearing the page uptodate status 2516 * case c: Truncation in progress (page locked) 2517 * case d: Reclaim in progress 2518 * 2519 * Case a, the page will be up to date when the page is unlocked. 2520 * There is no need to serialise on the page lock here as the page 2521 * is pinned so the lock gives no additional protection. Even if the 2522 * the page is truncated, the data is still valid if PageUptodate as 2523 * it's a race vs truncate race. 2524 * Case b, the page will not be up to date 2525 * Case c, the page may be truncated but in itself, the data may still 2526 * be valid after IO completes as it's a read vs truncate race. The 2527 * operation must restart if the page is not uptodate on unlock but 2528 * otherwise serialising on page lock to stabilise the mapping gives 2529 * no additional guarantees to the caller as the page lock is 2530 * released before return. 2531 * Case d, similar to truncation. If reclaim holds the page lock, it 2532 * will be a race with remove_mapping that determines if the mapping 2533 * is valid on unlock but otherwise the data is valid and there is 2534 * no need to serialise with page lock. 2535 * 2536 * As the page lock gives no additional guarantee, we optimistically 2537 * wait on the page to be unlocked and check if it's up to date and 2538 * use the page if it is. Otherwise, the page lock is required to 2539 * distinguish between the different cases. The motivation is that we 2540 * avoid spurious serialisations and wakeups when multiple processes 2541 * wait on the same page for IO to complete. 2542 */ 2543 wait_on_page_locked(page); 2544 if (PageUptodate(page)) 2545 goto out; 2546 2547 /* Distinguish between all the cases under the safety of the lock */ 2548 lock_page(page); 2549 2550 /* Case c or d, restart the operation */ 2551 if (!page->mapping) { 2552 unlock_page(page); 2553 put_page(page); 2554 goto repeat; 2555 } 2556 2557 /* Someone else locked and filled the page in a very small window */ 2558 if (PageUptodate(page)) { 2559 unlock_page(page); 2560 goto out; 2561 } 2562 goto filler; 2563 2564 out: 2565 mark_page_accessed(page); 2566 return page; 2567 } 2568 2569 /** 2570 * read_cache_page - read into page cache, fill it if needed 2571 * @mapping: the page's address_space 2572 * @index: the page index 2573 * @filler: function to perform the read 2574 * @data: first arg to filler(data, page) function, often left as NULL 2575 * 2576 * Read into the page cache. If a page already exists, and PageUptodate() is 2577 * not set, try to fill the page and wait for it to become unlocked. 2578 * 2579 * If the page does not get brought uptodate, return -EIO. 2580 */ 2581 struct page *read_cache_page(struct address_space *mapping, 2582 pgoff_t index, 2583 int (*filler)(void *, struct page *), 2584 void *data) 2585 { 2586 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2587 } 2588 EXPORT_SYMBOL(read_cache_page); 2589 2590 /** 2591 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2592 * @mapping: the page's address_space 2593 * @index: the page index 2594 * @gfp: the page allocator flags to use if allocating 2595 * 2596 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2597 * any new page allocations done using the specified allocation flags. 2598 * 2599 * If the page does not get brought uptodate, return -EIO. 2600 */ 2601 struct page *read_cache_page_gfp(struct address_space *mapping, 2602 pgoff_t index, 2603 gfp_t gfp) 2604 { 2605 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2606 2607 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2608 } 2609 EXPORT_SYMBOL(read_cache_page_gfp); 2610 2611 /* 2612 * Performs necessary checks before doing a write 2613 * 2614 * Can adjust writing position or amount of bytes to write. 2615 * Returns appropriate error code that caller should return or 2616 * zero in case that write should be allowed. 2617 */ 2618 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2619 { 2620 struct file *file = iocb->ki_filp; 2621 struct inode *inode = file->f_mapping->host; 2622 unsigned long limit = rlimit(RLIMIT_FSIZE); 2623 loff_t pos; 2624 2625 if (!iov_iter_count(from)) 2626 return 0; 2627 2628 /* FIXME: this is for backwards compatibility with 2.4 */ 2629 if (iocb->ki_flags & IOCB_APPEND) 2630 iocb->ki_pos = i_size_read(inode); 2631 2632 pos = iocb->ki_pos; 2633 2634 if (limit != RLIM_INFINITY) { 2635 if (iocb->ki_pos >= limit) { 2636 send_sig(SIGXFSZ, current, 0); 2637 return -EFBIG; 2638 } 2639 iov_iter_truncate(from, limit - (unsigned long)pos); 2640 } 2641 2642 /* 2643 * LFS rule 2644 */ 2645 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2646 !(file->f_flags & O_LARGEFILE))) { 2647 if (pos >= MAX_NON_LFS) 2648 return -EFBIG; 2649 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2650 } 2651 2652 /* 2653 * Are we about to exceed the fs block limit ? 2654 * 2655 * If we have written data it becomes a short write. If we have 2656 * exceeded without writing data we send a signal and return EFBIG. 2657 * Linus frestrict idea will clean these up nicely.. 2658 */ 2659 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2660 return -EFBIG; 2661 2662 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2663 return iov_iter_count(from); 2664 } 2665 EXPORT_SYMBOL(generic_write_checks); 2666 2667 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2668 loff_t pos, unsigned len, unsigned flags, 2669 struct page **pagep, void **fsdata) 2670 { 2671 const struct address_space_operations *aops = mapping->a_ops; 2672 2673 return aops->write_begin(file, mapping, pos, len, flags, 2674 pagep, fsdata); 2675 } 2676 EXPORT_SYMBOL(pagecache_write_begin); 2677 2678 int pagecache_write_end(struct file *file, struct address_space *mapping, 2679 loff_t pos, unsigned len, unsigned copied, 2680 struct page *page, void *fsdata) 2681 { 2682 const struct address_space_operations *aops = mapping->a_ops; 2683 2684 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2685 } 2686 EXPORT_SYMBOL(pagecache_write_end); 2687 2688 ssize_t 2689 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2690 { 2691 struct file *file = iocb->ki_filp; 2692 struct address_space *mapping = file->f_mapping; 2693 struct inode *inode = mapping->host; 2694 loff_t pos = iocb->ki_pos; 2695 ssize_t written; 2696 size_t write_len; 2697 pgoff_t end; 2698 struct iov_iter data; 2699 2700 write_len = iov_iter_count(from); 2701 end = (pos + write_len - 1) >> PAGE_SHIFT; 2702 2703 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2704 if (written) 2705 goto out; 2706 2707 /* 2708 * After a write we want buffered reads to be sure to go to disk to get 2709 * the new data. We invalidate clean cached page from the region we're 2710 * about to write. We do this *before* the write so that we can return 2711 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2712 */ 2713 if (mapping->nrpages) { 2714 written = invalidate_inode_pages2_range(mapping, 2715 pos >> PAGE_SHIFT, end); 2716 /* 2717 * If a page can not be invalidated, return 0 to fall back 2718 * to buffered write. 2719 */ 2720 if (written) { 2721 if (written == -EBUSY) 2722 return 0; 2723 goto out; 2724 } 2725 } 2726 2727 data = *from; 2728 written = mapping->a_ops->direct_IO(iocb, &data); 2729 2730 /* 2731 * Finally, try again to invalidate clean pages which might have been 2732 * cached by non-direct readahead, or faulted in by get_user_pages() 2733 * if the source of the write was an mmap'ed region of the file 2734 * we're writing. Either one is a pretty crazy thing to do, 2735 * so we don't support it 100%. If this invalidation 2736 * fails, tough, the write still worked... 2737 */ 2738 if (mapping->nrpages) { 2739 invalidate_inode_pages2_range(mapping, 2740 pos >> PAGE_SHIFT, end); 2741 } 2742 2743 if (written > 0) { 2744 pos += written; 2745 iov_iter_advance(from, written); 2746 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2747 i_size_write(inode, pos); 2748 mark_inode_dirty(inode); 2749 } 2750 iocb->ki_pos = pos; 2751 } 2752 out: 2753 return written; 2754 } 2755 EXPORT_SYMBOL(generic_file_direct_write); 2756 2757 /* 2758 * Find or create a page at the given pagecache position. Return the locked 2759 * page. This function is specifically for buffered writes. 2760 */ 2761 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2762 pgoff_t index, unsigned flags) 2763 { 2764 struct page *page; 2765 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2766 2767 if (flags & AOP_FLAG_NOFS) 2768 fgp_flags |= FGP_NOFS; 2769 2770 page = pagecache_get_page(mapping, index, fgp_flags, 2771 mapping_gfp_mask(mapping)); 2772 if (page) 2773 wait_for_stable_page(page); 2774 2775 return page; 2776 } 2777 EXPORT_SYMBOL(grab_cache_page_write_begin); 2778 2779 ssize_t generic_perform_write(struct file *file, 2780 struct iov_iter *i, loff_t pos) 2781 { 2782 struct address_space *mapping = file->f_mapping; 2783 const struct address_space_operations *a_ops = mapping->a_ops; 2784 long status = 0; 2785 ssize_t written = 0; 2786 unsigned int flags = 0; 2787 2788 /* 2789 * Copies from kernel address space cannot fail (NFSD is a big user). 2790 */ 2791 if (!iter_is_iovec(i)) 2792 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2793 2794 do { 2795 struct page *page; 2796 unsigned long offset; /* Offset into pagecache page */ 2797 unsigned long bytes; /* Bytes to write to page */ 2798 size_t copied; /* Bytes copied from user */ 2799 void *fsdata; 2800 2801 offset = (pos & (PAGE_SIZE - 1)); 2802 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2803 iov_iter_count(i)); 2804 2805 again: 2806 /* 2807 * Bring in the user page that we will copy from _first_. 2808 * Otherwise there's a nasty deadlock on copying from the 2809 * same page as we're writing to, without it being marked 2810 * up-to-date. 2811 * 2812 * Not only is this an optimisation, but it is also required 2813 * to check that the address is actually valid, when atomic 2814 * usercopies are used, below. 2815 */ 2816 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2817 status = -EFAULT; 2818 break; 2819 } 2820 2821 if (fatal_signal_pending(current)) { 2822 status = -EINTR; 2823 break; 2824 } 2825 2826 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2827 &page, &fsdata); 2828 if (unlikely(status < 0)) 2829 break; 2830 2831 if (mapping_writably_mapped(mapping)) 2832 flush_dcache_page(page); 2833 2834 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2835 flush_dcache_page(page); 2836 2837 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2838 page, fsdata); 2839 if (unlikely(status < 0)) 2840 break; 2841 copied = status; 2842 2843 cond_resched(); 2844 2845 iov_iter_advance(i, copied); 2846 if (unlikely(copied == 0)) { 2847 /* 2848 * If we were unable to copy any data at all, we must 2849 * fall back to a single segment length write. 2850 * 2851 * If we didn't fallback here, we could livelock 2852 * because not all segments in the iov can be copied at 2853 * once without a pagefault. 2854 */ 2855 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2856 iov_iter_single_seg_count(i)); 2857 goto again; 2858 } 2859 pos += copied; 2860 written += copied; 2861 2862 balance_dirty_pages_ratelimited(mapping); 2863 } while (iov_iter_count(i)); 2864 2865 return written ? written : status; 2866 } 2867 EXPORT_SYMBOL(generic_perform_write); 2868 2869 /** 2870 * __generic_file_write_iter - write data to a file 2871 * @iocb: IO state structure (file, offset, etc.) 2872 * @from: iov_iter with data to write 2873 * 2874 * This function does all the work needed for actually writing data to a 2875 * file. It does all basic checks, removes SUID from the file, updates 2876 * modification times and calls proper subroutines depending on whether we 2877 * do direct IO or a standard buffered write. 2878 * 2879 * It expects i_mutex to be grabbed unless we work on a block device or similar 2880 * object which does not need locking at all. 2881 * 2882 * This function does *not* take care of syncing data in case of O_SYNC write. 2883 * A caller has to handle it. This is mainly due to the fact that we want to 2884 * avoid syncing under i_mutex. 2885 */ 2886 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2887 { 2888 struct file *file = iocb->ki_filp; 2889 struct address_space * mapping = file->f_mapping; 2890 struct inode *inode = mapping->host; 2891 ssize_t written = 0; 2892 ssize_t err; 2893 ssize_t status; 2894 2895 /* We can write back this queue in page reclaim */ 2896 current->backing_dev_info = inode_to_bdi(inode); 2897 err = file_remove_privs(file); 2898 if (err) 2899 goto out; 2900 2901 err = file_update_time(file); 2902 if (err) 2903 goto out; 2904 2905 if (iocb->ki_flags & IOCB_DIRECT) { 2906 loff_t pos, endbyte; 2907 2908 written = generic_file_direct_write(iocb, from); 2909 /* 2910 * If the write stopped short of completing, fall back to 2911 * buffered writes. Some filesystems do this for writes to 2912 * holes, for example. For DAX files, a buffered write will 2913 * not succeed (even if it did, DAX does not handle dirty 2914 * page-cache pages correctly). 2915 */ 2916 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2917 goto out; 2918 2919 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2920 /* 2921 * If generic_perform_write() returned a synchronous error 2922 * then we want to return the number of bytes which were 2923 * direct-written, or the error code if that was zero. Note 2924 * that this differs from normal direct-io semantics, which 2925 * will return -EFOO even if some bytes were written. 2926 */ 2927 if (unlikely(status < 0)) { 2928 err = status; 2929 goto out; 2930 } 2931 /* 2932 * We need to ensure that the page cache pages are written to 2933 * disk and invalidated to preserve the expected O_DIRECT 2934 * semantics. 2935 */ 2936 endbyte = pos + status - 1; 2937 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2938 if (err == 0) { 2939 iocb->ki_pos = endbyte + 1; 2940 written += status; 2941 invalidate_mapping_pages(mapping, 2942 pos >> PAGE_SHIFT, 2943 endbyte >> PAGE_SHIFT); 2944 } else { 2945 /* 2946 * We don't know how much we wrote, so just return 2947 * the number of bytes which were direct-written 2948 */ 2949 } 2950 } else { 2951 written = generic_perform_write(file, from, iocb->ki_pos); 2952 if (likely(written > 0)) 2953 iocb->ki_pos += written; 2954 } 2955 out: 2956 current->backing_dev_info = NULL; 2957 return written ? written : err; 2958 } 2959 EXPORT_SYMBOL(__generic_file_write_iter); 2960 2961 /** 2962 * generic_file_write_iter - write data to a file 2963 * @iocb: IO state structure 2964 * @from: iov_iter with data to write 2965 * 2966 * This is a wrapper around __generic_file_write_iter() to be used by most 2967 * filesystems. It takes care of syncing the file in case of O_SYNC file 2968 * and acquires i_mutex as needed. 2969 */ 2970 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2971 { 2972 struct file *file = iocb->ki_filp; 2973 struct inode *inode = file->f_mapping->host; 2974 ssize_t ret; 2975 2976 inode_lock(inode); 2977 ret = generic_write_checks(iocb, from); 2978 if (ret > 0) 2979 ret = __generic_file_write_iter(iocb, from); 2980 inode_unlock(inode); 2981 2982 if (ret > 0) 2983 ret = generic_write_sync(iocb, ret); 2984 return ret; 2985 } 2986 EXPORT_SYMBOL(generic_file_write_iter); 2987 2988 /** 2989 * try_to_release_page() - release old fs-specific metadata on a page 2990 * 2991 * @page: the page which the kernel is trying to free 2992 * @gfp_mask: memory allocation flags (and I/O mode) 2993 * 2994 * The address_space is to try to release any data against the page 2995 * (presumably at page->private). If the release was successful, return `1'. 2996 * Otherwise return zero. 2997 * 2998 * This may also be called if PG_fscache is set on a page, indicating that the 2999 * page is known to the local caching routines. 3000 * 3001 * The @gfp_mask argument specifies whether I/O may be performed to release 3002 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3003 * 3004 */ 3005 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3006 { 3007 struct address_space * const mapping = page->mapping; 3008 3009 BUG_ON(!PageLocked(page)); 3010 if (PageWriteback(page)) 3011 return 0; 3012 3013 if (mapping && mapping->a_ops->releasepage) 3014 return mapping->a_ops->releasepage(page, gfp_mask); 3015 return try_to_free_buffers(page); 3016 } 3017 3018 EXPORT_SYMBOL(try_to_release_page); 3019