xref: /linux/mm/filemap.c (revision 4cb584e0ee7df70fd0376aee60cf701855ea8c81)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 		} else {
136 			/* DAX can replace empty locked entry with a hole */
137 			WARN_ON_ONCE(p !=
138 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 			/* Wakeup waiters for exceptional entry lock */
140 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 						      true);
142 		}
143 	}
144 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
145 			     workingset_update_node, mapping);
146 	mapping->nrpages++;
147 	return 0;
148 }
149 
150 static void page_cache_tree_delete(struct address_space *mapping,
151 				   struct page *page, void *shadow)
152 {
153 	int i, nr;
154 
155 	/* hugetlb pages are represented by one entry in the radix tree */
156 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157 
158 	VM_BUG_ON_PAGE(!PageLocked(page), page);
159 	VM_BUG_ON_PAGE(PageTail(page), page);
160 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161 
162 	for (i = 0; i < nr; i++) {
163 		struct radix_tree_node *node;
164 		void **slot;
165 
166 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
167 				    &node, &slot);
168 
169 		VM_BUG_ON_PAGE(!node && nr != 1, page);
170 
171 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 				     workingset_update_node, mapping);
174 	}
175 
176 	if (shadow) {
177 		mapping->nrexceptional += nr;
178 		/*
179 		 * Make sure the nrexceptional update is committed before
180 		 * the nrpages update so that final truncate racing
181 		 * with reclaim does not see both counters 0 at the
182 		 * same time and miss a shadow entry.
183 		 */
184 		smp_wmb();
185 	}
186 	mapping->nrpages -= nr;
187 }
188 
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 	struct address_space *mapping = page->mapping;
197 	int nr = hpage_nr_pages(page);
198 
199 	trace_mm_filemap_delete_from_page_cache(page);
200 	/*
201 	 * if we're uptodate, flush out into the cleancache, otherwise
202 	 * invalidate any existing cleancache entries.  We can't leave
203 	 * stale data around in the cleancache once our page is gone
204 	 */
205 	if (PageUptodate(page) && PageMappedToDisk(page))
206 		cleancache_put_page(page);
207 	else
208 		cleancache_invalidate_page(mapping, page);
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	VM_BUG_ON_PAGE(page_mapped(page), page);
212 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 		int mapcount;
214 
215 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216 			 current->comm, page_to_pfn(page));
217 		dump_page(page, "still mapped when deleted");
218 		dump_stack();
219 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220 
221 		mapcount = page_mapcount(page);
222 		if (mapping_exiting(mapping) &&
223 		    page_count(page) >= mapcount + 2) {
224 			/*
225 			 * All vmas have already been torn down, so it's
226 			 * a good bet that actually the page is unmapped,
227 			 * and we'd prefer not to leak it: if we're wrong,
228 			 * some other bad page check should catch it later.
229 			 */
230 			page_mapcount_reset(page);
231 			page_ref_sub(page, mapcount);
232 		}
233 	}
234 
235 	page_cache_tree_delete(mapping, page, shadow);
236 
237 	page->mapping = NULL;
238 	/* Leave page->index set: truncation lookup relies upon it */
239 
240 	/* hugetlb pages do not participate in page cache accounting. */
241 	if (!PageHuge(page))
242 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 	if (PageSwapBacked(page)) {
244 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 		if (PageTransHuge(page))
246 			__dec_node_page_state(page, NR_SHMEM_THPS);
247 	} else {
248 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 	}
250 
251 	/*
252 	 * At this point page must be either written or cleaned by truncate.
253 	 * Dirty page here signals a bug and loss of unwritten data.
254 	 *
255 	 * This fixes dirty accounting after removing the page entirely but
256 	 * leaves PageDirty set: it has no effect for truncated page and
257 	 * anyway will be cleared before returning page into buddy allocator.
258 	 */
259 	if (WARN_ON_ONCE(PageDirty(page)))
260 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262 
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273 	struct address_space *mapping = page_mapping(page);
274 	unsigned long flags;
275 	void (*freepage)(struct page *);
276 
277 	BUG_ON(!PageLocked(page));
278 
279 	freepage = mapping->a_ops->freepage;
280 
281 	spin_lock_irqsave(&mapping->tree_lock, flags);
282 	__delete_from_page_cache(page, NULL);
283 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
284 
285 	if (freepage)
286 		freepage(page);
287 
288 	if (PageTransHuge(page) && !PageHuge(page)) {
289 		page_ref_sub(page, HPAGE_PMD_NR);
290 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 	} else {
292 		put_page(page);
293 	}
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296 
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 	int ret = 0;
300 	/* Check for outstanding write errors */
301 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_bit(AS_EIO, &mapping->flags) &&
305 	    test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 	return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310 
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:	address space structure to write
314  * @start:	offset in bytes where the range starts
315  * @end:	offset in bytes where the range ends (inclusive)
316  * @sync_mode:	enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 				loff_t end, int sync_mode)
328 {
329 	int ret;
330 	struct writeback_control wbc = {
331 		.sync_mode = sync_mode,
332 		.nr_to_write = LONG_MAX,
333 		.range_start = start,
334 		.range_end = end,
335 	};
336 
337 	if (!mapping_cap_writeback_dirty(mapping))
338 		return 0;
339 
340 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 	ret = do_writepages(mapping, &wbc);
342 	wbc_detach_inode(&wbc);
343 	return ret;
344 }
345 
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 	int sync_mode)
348 {
349 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351 
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357 
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 				loff_t end)
360 {
361 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364 
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:	target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377 
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 				     loff_t start_byte, loff_t end_byte)
380 {
381 	pgoff_t index = start_byte >> PAGE_SHIFT;
382 	pgoff_t end = end_byte >> PAGE_SHIFT;
383 	struct pagevec pvec;
384 	int nr_pages;
385 	int ret = 0;
386 
387 	if (end_byte < start_byte)
388 		goto out;
389 
390 	pagevec_init(&pvec, 0);
391 	while ((index <= end) &&
392 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 			PAGECACHE_TAG_WRITEBACK,
394 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 		unsigned i;
396 
397 		for (i = 0; i < nr_pages; i++) {
398 			struct page *page = pvec.pages[i];
399 
400 			/* until radix tree lookup accepts end_index */
401 			if (page->index > end)
402 				continue;
403 
404 			wait_on_page_writeback(page);
405 			if (TestClearPageError(page))
406 				ret = -EIO;
407 		}
408 		pagevec_release(&pvec);
409 		cond_resched();
410 	}
411 out:
412 	return ret;
413 }
414 
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:		address space structure to wait for
418  * @start_byte:		offset in bytes where the range starts
419  * @end_byte:		offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 			    loff_t end_byte)
431 {
432 	int ret, ret2;
433 
434 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 	ret2 = filemap_check_errors(mapping);
436 	if (!ret)
437 		ret = ret2;
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442 
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 	loff_t i_size = i_size_read(mapping->host);
458 
459 	if (i_size == 0)
460 		return;
461 
462 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 	loff_t i_size = i_size_read(mapping->host);
480 
481 	if (i_size == 0)
482 		return 0;
483 
484 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487 
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 	int err = 0;
491 
492 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
494 		err = filemap_fdatawrite(mapping);
495 		/*
496 		 * Even if the above returned error, the pages may be
497 		 * written partially (e.g. -ENOSPC), so we wait for it.
498 		 * But the -EIO is special case, it may indicate the worst
499 		 * thing (e.g. bug) happened, so we avoid waiting for it.
500 		 */
501 		if (err != -EIO) {
502 			int err2 = filemap_fdatawait(mapping);
503 			if (!err)
504 				err = err2;
505 		}
506 	} else {
507 		err = filemap_check_errors(mapping);
508 	}
509 	return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512 
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:	the address_space for the pages
516  * @lstart:	offset in bytes where the range starts
517  * @lend:	offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 				 loff_t lstart, loff_t lend)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 						 WB_SYNC_ALL);
533 		/* See comment of filemap_write_and_wait() */
534 		if (err != -EIO) {
535 			int err2 = filemap_fdatawait_range(mapping,
536 						lstart, lend);
537 			if (!err)
538 				err = err2;
539 		}
540 	} else {
541 		err = filemap_check_errors(mapping);
542 	}
543 	return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546 
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:	page to be replaced
550  * @new:	page to replace with
551  * @gfp_mask:	allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 	int error;
565 
566 	VM_BUG_ON_PAGE(!PageLocked(old), old);
567 	VM_BUG_ON_PAGE(!PageLocked(new), new);
568 	VM_BUG_ON_PAGE(new->mapping, new);
569 
570 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 	if (!error) {
572 		struct address_space *mapping = old->mapping;
573 		void (*freepage)(struct page *);
574 		unsigned long flags;
575 
576 		pgoff_t offset = old->index;
577 		freepage = mapping->a_ops->freepage;
578 
579 		get_page(new);
580 		new->mapping = mapping;
581 		new->index = offset;
582 
583 		spin_lock_irqsave(&mapping->tree_lock, flags);
584 		__delete_from_page_cache(old, NULL);
585 		error = page_cache_tree_insert(mapping, new, NULL);
586 		BUG_ON(error);
587 
588 		/*
589 		 * hugetlb pages do not participate in page cache accounting.
590 		 */
591 		if (!PageHuge(new))
592 			__inc_node_page_state(new, NR_FILE_PAGES);
593 		if (PageSwapBacked(new))
594 			__inc_node_page_state(new, NR_SHMEM);
595 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 		mem_cgroup_migrate(old, new);
597 		radix_tree_preload_end();
598 		if (freepage)
599 			freepage(old);
600 		put_page(old);
601 	}
602 
603 	return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606 
607 static int __add_to_page_cache_locked(struct page *page,
608 				      struct address_space *mapping,
609 				      pgoff_t offset, gfp_t gfp_mask,
610 				      void **shadowp)
611 {
612 	int huge = PageHuge(page);
613 	struct mem_cgroup *memcg;
614 	int error;
615 
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618 
619 	if (!huge) {
620 		error = mem_cgroup_try_charge(page, current->mm,
621 					      gfp_mask, &memcg, false);
622 		if (error)
623 			return error;
624 	}
625 
626 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 	if (error) {
628 		if (!huge)
629 			mem_cgroup_cancel_charge(page, memcg, false);
630 		return error;
631 	}
632 
633 	get_page(page);
634 	page->mapping = mapping;
635 	page->index = offset;
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = page_cache_tree_insert(mapping, page, shadowp);
639 	radix_tree_preload_end();
640 	if (unlikely(error))
641 		goto err_insert;
642 
643 	/* hugetlb pages do not participate in page cache accounting. */
644 	if (!huge)
645 		__inc_node_page_state(page, NR_FILE_PAGES);
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (!huge)
648 		mem_cgroup_commit_charge(page, memcg, false, false);
649 	trace_mm_filemap_add_to_page_cache(page);
650 	return 0;
651 err_insert:
652 	page->mapping = NULL;
653 	/* Leave page->index set: truncation relies upon it */
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_cancel_charge(page, memcg, false);
657 	put_page(page);
658 	return error;
659 }
660 
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:	page to add
664  * @mapping:	the page's address_space
665  * @offset:	page index
666  * @gfp_mask:	page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 		pgoff_t offset, gfp_t gfp_mask)
673 {
674 	return __add_to_page_cache_locked(page, mapping, offset,
675 					  gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678 
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 				pgoff_t offset, gfp_t gfp_mask)
681 {
682 	void *shadow = NULL;
683 	int ret;
684 
685 	__SetPageLocked(page);
686 	ret = __add_to_page_cache_locked(page, mapping, offset,
687 					 gfp_mask, &shadow);
688 	if (unlikely(ret))
689 		__ClearPageLocked(page);
690 	else {
691 		/*
692 		 * The page might have been evicted from cache only
693 		 * recently, in which case it should be activated like
694 		 * any other repeatedly accessed page.
695 		 * The exception is pages getting rewritten; evicting other
696 		 * data from the working set, only to cache data that will
697 		 * get overwritten with something else, is a waste of memory.
698 		 */
699 		if (!(gfp_mask & __GFP_WRITE) &&
700 		    shadow && workingset_refault(shadow)) {
701 			SetPageActive(page);
702 			workingset_activation(page);
703 		} else
704 			ClearPageActive(page);
705 		lru_cache_add(page);
706 	}
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710 
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 	int n;
715 	struct page *page;
716 
717 	if (cpuset_do_page_mem_spread()) {
718 		unsigned int cpuset_mems_cookie;
719 		do {
720 			cpuset_mems_cookie = read_mems_allowed_begin();
721 			n = cpuset_mem_spread_node();
722 			page = __alloc_pages_node(n, gfp, 0);
723 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724 
725 		return page;
726 	}
727 	return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731 
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 #define PAGE_WAIT_TABLE_BITS 8
743 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
744 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
745 
746 static wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
749 }
750 
751 void __init pagecache_init(void)
752 {
753 	int i;
754 
755 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
756 		init_waitqueue_head(&page_wait_table[i]);
757 
758 	page_writeback_init();
759 }
760 
761 struct wait_page_key {
762 	struct page *page;
763 	int bit_nr;
764 	int page_match;
765 };
766 
767 struct wait_page_queue {
768 	struct page *page;
769 	int bit_nr;
770 	wait_queue_t wait;
771 };
772 
773 static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
774 {
775 	struct wait_page_key *key = arg;
776 	struct wait_page_queue *wait_page
777 		= container_of(wait, struct wait_page_queue, wait);
778 
779 	if (wait_page->page != key->page)
780 	       return 0;
781 	key->page_match = 1;
782 
783 	if (wait_page->bit_nr != key->bit_nr)
784 		return 0;
785 	if (test_bit(key->bit_nr, &key->page->flags))
786 		return 0;
787 
788 	return autoremove_wake_function(wait, mode, sync, key);
789 }
790 
791 void wake_up_page_bit(struct page *page, int bit_nr)
792 {
793 	wait_queue_head_t *q = page_waitqueue(page);
794 	struct wait_page_key key;
795 	unsigned long flags;
796 
797 	key.page = page;
798 	key.bit_nr = bit_nr;
799 	key.page_match = 0;
800 
801 	spin_lock_irqsave(&q->lock, flags);
802 	__wake_up_locked_key(q, TASK_NORMAL, &key);
803 	/*
804 	 * It is possible for other pages to have collided on the waitqueue
805 	 * hash, so in that case check for a page match. That prevents a long-
806 	 * term waiter
807 	 *
808 	 * It is still possible to miss a case here, when we woke page waiters
809 	 * and removed them from the waitqueue, but there are still other
810 	 * page waiters.
811 	 */
812 	if (!waitqueue_active(q) || !key.page_match) {
813 		ClearPageWaiters(page);
814 		/*
815 		 * It's possible to miss clearing Waiters here, when we woke
816 		 * our page waiters, but the hashed waitqueue has waiters for
817 		 * other pages on it.
818 		 *
819 		 * That's okay, it's a rare case. The next waker will clear it.
820 		 */
821 	}
822 	spin_unlock_irqrestore(&q->lock, flags);
823 }
824 EXPORT_SYMBOL(wake_up_page_bit);
825 
826 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
827 		struct page *page, int bit_nr, int state, bool lock)
828 {
829 	struct wait_page_queue wait_page;
830 	wait_queue_t *wait = &wait_page.wait;
831 	int ret = 0;
832 
833 	init_wait(wait);
834 	wait->func = wake_page_function;
835 	wait_page.page = page;
836 	wait_page.bit_nr = bit_nr;
837 
838 	for (;;) {
839 		spin_lock_irq(&q->lock);
840 
841 		if (likely(list_empty(&wait->task_list))) {
842 			if (lock)
843 				__add_wait_queue_tail_exclusive(q, wait);
844 			else
845 				__add_wait_queue(q, wait);
846 			SetPageWaiters(page);
847 		}
848 
849 		set_current_state(state);
850 
851 		spin_unlock_irq(&q->lock);
852 
853 		if (likely(test_bit(bit_nr, &page->flags))) {
854 			io_schedule();
855 			if (unlikely(signal_pending_state(state, current))) {
856 				ret = -EINTR;
857 				break;
858 			}
859 		}
860 
861 		if (lock) {
862 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
863 				break;
864 		} else {
865 			if (!test_bit(bit_nr, &page->flags))
866 				break;
867 		}
868 	}
869 
870 	finish_wait(q, wait);
871 
872 	/*
873 	 * A signal could leave PageWaiters set. Clearing it here if
874 	 * !waitqueue_active would be possible (by open-coding finish_wait),
875 	 * but still fail to catch it in the case of wait hash collision. We
876 	 * already can fail to clear wait hash collision cases, so don't
877 	 * bother with signals either.
878 	 */
879 
880 	return ret;
881 }
882 
883 void wait_on_page_bit(struct page *page, int bit_nr)
884 {
885 	wait_queue_head_t *q = page_waitqueue(page);
886 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
887 }
888 EXPORT_SYMBOL(wait_on_page_bit);
889 
890 int wait_on_page_bit_killable(struct page *page, int bit_nr)
891 {
892 	wait_queue_head_t *q = page_waitqueue(page);
893 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
894 }
895 
896 /**
897  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
898  * @page: Page defining the wait queue of interest
899  * @waiter: Waiter to add to the queue
900  *
901  * Add an arbitrary @waiter to the wait queue for the nominated @page.
902  */
903 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
904 {
905 	wait_queue_head_t *q = page_waitqueue(page);
906 	unsigned long flags;
907 
908 	spin_lock_irqsave(&q->lock, flags);
909 	__add_wait_queue(q, waiter);
910 	SetPageWaiters(page);
911 	spin_unlock_irqrestore(&q->lock, flags);
912 }
913 EXPORT_SYMBOL_GPL(add_page_wait_queue);
914 
915 #ifndef clear_bit_unlock_is_negative_byte
916 
917 /*
918  * PG_waiters is the high bit in the same byte as PG_lock.
919  *
920  * On x86 (and on many other architectures), we can clear PG_lock and
921  * test the sign bit at the same time. But if the architecture does
922  * not support that special operation, we just do this all by hand
923  * instead.
924  *
925  * The read of PG_waiters has to be after (or concurrently with) PG_locked
926  * being cleared, but a memory barrier should be unneccssary since it is
927  * in the same byte as PG_locked.
928  */
929 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
930 {
931 	clear_bit_unlock(nr, mem);
932 	/* smp_mb__after_atomic(); */
933 	return test_bit(PG_waiters, mem);
934 }
935 
936 #endif
937 
938 /**
939  * unlock_page - unlock a locked page
940  * @page: the page
941  *
942  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
943  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
944  * mechanism between PageLocked pages and PageWriteback pages is shared.
945  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
946  *
947  * Note that this depends on PG_waiters being the sign bit in the byte
948  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
949  * clear the PG_locked bit and test PG_waiters at the same time fairly
950  * portably (architectures that do LL/SC can test any bit, while x86 can
951  * test the sign bit).
952  */
953 void unlock_page(struct page *page)
954 {
955 	BUILD_BUG_ON(PG_waiters != 7);
956 	page = compound_head(page);
957 	VM_BUG_ON_PAGE(!PageLocked(page), page);
958 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
959 		wake_up_page_bit(page, PG_locked);
960 }
961 EXPORT_SYMBOL(unlock_page);
962 
963 /**
964  * end_page_writeback - end writeback against a page
965  * @page: the page
966  */
967 void end_page_writeback(struct page *page)
968 {
969 	/*
970 	 * TestClearPageReclaim could be used here but it is an atomic
971 	 * operation and overkill in this particular case. Failing to
972 	 * shuffle a page marked for immediate reclaim is too mild to
973 	 * justify taking an atomic operation penalty at the end of
974 	 * ever page writeback.
975 	 */
976 	if (PageReclaim(page)) {
977 		ClearPageReclaim(page);
978 		rotate_reclaimable_page(page);
979 	}
980 
981 	if (!test_clear_page_writeback(page))
982 		BUG();
983 
984 	smp_mb__after_atomic();
985 	wake_up_page(page, PG_writeback);
986 }
987 EXPORT_SYMBOL(end_page_writeback);
988 
989 /*
990  * After completing I/O on a page, call this routine to update the page
991  * flags appropriately
992  */
993 void page_endio(struct page *page, bool is_write, int err)
994 {
995 	if (!is_write) {
996 		if (!err) {
997 			SetPageUptodate(page);
998 		} else {
999 			ClearPageUptodate(page);
1000 			SetPageError(page);
1001 		}
1002 		unlock_page(page);
1003 	} else {
1004 		if (err) {
1005 			SetPageError(page);
1006 			if (page->mapping)
1007 				mapping_set_error(page->mapping, err);
1008 		}
1009 		end_page_writeback(page);
1010 	}
1011 }
1012 EXPORT_SYMBOL_GPL(page_endio);
1013 
1014 /**
1015  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1016  * @page: the page to lock
1017  */
1018 void __lock_page(struct page *__page)
1019 {
1020 	struct page *page = compound_head(__page);
1021 	wait_queue_head_t *q = page_waitqueue(page);
1022 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1023 }
1024 EXPORT_SYMBOL(__lock_page);
1025 
1026 int __lock_page_killable(struct page *__page)
1027 {
1028 	struct page *page = compound_head(__page);
1029 	wait_queue_head_t *q = page_waitqueue(page);
1030 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1031 }
1032 EXPORT_SYMBOL_GPL(__lock_page_killable);
1033 
1034 /*
1035  * Return values:
1036  * 1 - page is locked; mmap_sem is still held.
1037  * 0 - page is not locked.
1038  *     mmap_sem has been released (up_read()), unless flags had both
1039  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1040  *     which case mmap_sem is still held.
1041  *
1042  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1043  * with the page locked and the mmap_sem unperturbed.
1044  */
1045 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1046 			 unsigned int flags)
1047 {
1048 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1049 		/*
1050 		 * CAUTION! In this case, mmap_sem is not released
1051 		 * even though return 0.
1052 		 */
1053 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1054 			return 0;
1055 
1056 		up_read(&mm->mmap_sem);
1057 		if (flags & FAULT_FLAG_KILLABLE)
1058 			wait_on_page_locked_killable(page);
1059 		else
1060 			wait_on_page_locked(page);
1061 		return 0;
1062 	} else {
1063 		if (flags & FAULT_FLAG_KILLABLE) {
1064 			int ret;
1065 
1066 			ret = __lock_page_killable(page);
1067 			if (ret) {
1068 				up_read(&mm->mmap_sem);
1069 				return 0;
1070 			}
1071 		} else
1072 			__lock_page(page);
1073 		return 1;
1074 	}
1075 }
1076 
1077 /**
1078  * page_cache_next_hole - find the next hole (not-present entry)
1079  * @mapping: mapping
1080  * @index: index
1081  * @max_scan: maximum range to search
1082  *
1083  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1084  * lowest indexed hole.
1085  *
1086  * Returns: the index of the hole if found, otherwise returns an index
1087  * outside of the set specified (in which case 'return - index >=
1088  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1089  * be returned.
1090  *
1091  * page_cache_next_hole may be called under rcu_read_lock. However,
1092  * like radix_tree_gang_lookup, this will not atomically search a
1093  * snapshot of the tree at a single point in time. For example, if a
1094  * hole is created at index 5, then subsequently a hole is created at
1095  * index 10, page_cache_next_hole covering both indexes may return 10
1096  * if called under rcu_read_lock.
1097  */
1098 pgoff_t page_cache_next_hole(struct address_space *mapping,
1099 			     pgoff_t index, unsigned long max_scan)
1100 {
1101 	unsigned long i;
1102 
1103 	for (i = 0; i < max_scan; i++) {
1104 		struct page *page;
1105 
1106 		page = radix_tree_lookup(&mapping->page_tree, index);
1107 		if (!page || radix_tree_exceptional_entry(page))
1108 			break;
1109 		index++;
1110 		if (index == 0)
1111 			break;
1112 	}
1113 
1114 	return index;
1115 }
1116 EXPORT_SYMBOL(page_cache_next_hole);
1117 
1118 /**
1119  * page_cache_prev_hole - find the prev hole (not-present entry)
1120  * @mapping: mapping
1121  * @index: index
1122  * @max_scan: maximum range to search
1123  *
1124  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1125  * the first hole.
1126  *
1127  * Returns: the index of the hole if found, otherwise returns an index
1128  * outside of the set specified (in which case 'index - return >=
1129  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1130  * will be returned.
1131  *
1132  * page_cache_prev_hole may be called under rcu_read_lock. However,
1133  * like radix_tree_gang_lookup, this will not atomically search a
1134  * snapshot of the tree at a single point in time. For example, if a
1135  * hole is created at index 10, then subsequently a hole is created at
1136  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1137  * called under rcu_read_lock.
1138  */
1139 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1140 			     pgoff_t index, unsigned long max_scan)
1141 {
1142 	unsigned long i;
1143 
1144 	for (i = 0; i < max_scan; i++) {
1145 		struct page *page;
1146 
1147 		page = radix_tree_lookup(&mapping->page_tree, index);
1148 		if (!page || radix_tree_exceptional_entry(page))
1149 			break;
1150 		index--;
1151 		if (index == ULONG_MAX)
1152 			break;
1153 	}
1154 
1155 	return index;
1156 }
1157 EXPORT_SYMBOL(page_cache_prev_hole);
1158 
1159 /**
1160  * find_get_entry - find and get a page cache entry
1161  * @mapping: the address_space to search
1162  * @offset: the page cache index
1163  *
1164  * Looks up the page cache slot at @mapping & @offset.  If there is a
1165  * page cache page, it is returned with an increased refcount.
1166  *
1167  * If the slot holds a shadow entry of a previously evicted page, or a
1168  * swap entry from shmem/tmpfs, it is returned.
1169  *
1170  * Otherwise, %NULL is returned.
1171  */
1172 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1173 {
1174 	void **pagep;
1175 	struct page *head, *page;
1176 
1177 	rcu_read_lock();
1178 repeat:
1179 	page = NULL;
1180 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1181 	if (pagep) {
1182 		page = radix_tree_deref_slot(pagep);
1183 		if (unlikely(!page))
1184 			goto out;
1185 		if (radix_tree_exception(page)) {
1186 			if (radix_tree_deref_retry(page))
1187 				goto repeat;
1188 			/*
1189 			 * A shadow entry of a recently evicted page,
1190 			 * or a swap entry from shmem/tmpfs.  Return
1191 			 * it without attempting to raise page count.
1192 			 */
1193 			goto out;
1194 		}
1195 
1196 		head = compound_head(page);
1197 		if (!page_cache_get_speculative(head))
1198 			goto repeat;
1199 
1200 		/* The page was split under us? */
1201 		if (compound_head(page) != head) {
1202 			put_page(head);
1203 			goto repeat;
1204 		}
1205 
1206 		/*
1207 		 * Has the page moved?
1208 		 * This is part of the lockless pagecache protocol. See
1209 		 * include/linux/pagemap.h for details.
1210 		 */
1211 		if (unlikely(page != *pagep)) {
1212 			put_page(head);
1213 			goto repeat;
1214 		}
1215 	}
1216 out:
1217 	rcu_read_unlock();
1218 
1219 	return page;
1220 }
1221 EXPORT_SYMBOL(find_get_entry);
1222 
1223 /**
1224  * find_lock_entry - locate, pin and lock a page cache entry
1225  * @mapping: the address_space to search
1226  * @offset: the page cache index
1227  *
1228  * Looks up the page cache slot at @mapping & @offset.  If there is a
1229  * page cache page, it is returned locked and with an increased
1230  * refcount.
1231  *
1232  * If the slot holds a shadow entry of a previously evicted page, or a
1233  * swap entry from shmem/tmpfs, it is returned.
1234  *
1235  * Otherwise, %NULL is returned.
1236  *
1237  * find_lock_entry() may sleep.
1238  */
1239 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1240 {
1241 	struct page *page;
1242 
1243 repeat:
1244 	page = find_get_entry(mapping, offset);
1245 	if (page && !radix_tree_exception(page)) {
1246 		lock_page(page);
1247 		/* Has the page been truncated? */
1248 		if (unlikely(page_mapping(page) != mapping)) {
1249 			unlock_page(page);
1250 			put_page(page);
1251 			goto repeat;
1252 		}
1253 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1254 	}
1255 	return page;
1256 }
1257 EXPORT_SYMBOL(find_lock_entry);
1258 
1259 /**
1260  * pagecache_get_page - find and get a page reference
1261  * @mapping: the address_space to search
1262  * @offset: the page index
1263  * @fgp_flags: PCG flags
1264  * @gfp_mask: gfp mask to use for the page cache data page allocation
1265  *
1266  * Looks up the page cache slot at @mapping & @offset.
1267  *
1268  * PCG flags modify how the page is returned.
1269  *
1270  * FGP_ACCESSED: the page will be marked accessed
1271  * FGP_LOCK: Page is return locked
1272  * FGP_CREAT: If page is not present then a new page is allocated using
1273  *		@gfp_mask and added to the page cache and the VM's LRU
1274  *		list. The page is returned locked and with an increased
1275  *		refcount. Otherwise, %NULL is returned.
1276  *
1277  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1278  * if the GFP flags specified for FGP_CREAT are atomic.
1279  *
1280  * If there is a page cache page, it is returned with an increased refcount.
1281  */
1282 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1283 	int fgp_flags, gfp_t gfp_mask)
1284 {
1285 	struct page *page;
1286 
1287 repeat:
1288 	page = find_get_entry(mapping, offset);
1289 	if (radix_tree_exceptional_entry(page))
1290 		page = NULL;
1291 	if (!page)
1292 		goto no_page;
1293 
1294 	if (fgp_flags & FGP_LOCK) {
1295 		if (fgp_flags & FGP_NOWAIT) {
1296 			if (!trylock_page(page)) {
1297 				put_page(page);
1298 				return NULL;
1299 			}
1300 		} else {
1301 			lock_page(page);
1302 		}
1303 
1304 		/* Has the page been truncated? */
1305 		if (unlikely(page->mapping != mapping)) {
1306 			unlock_page(page);
1307 			put_page(page);
1308 			goto repeat;
1309 		}
1310 		VM_BUG_ON_PAGE(page->index != offset, page);
1311 	}
1312 
1313 	if (page && (fgp_flags & FGP_ACCESSED))
1314 		mark_page_accessed(page);
1315 
1316 no_page:
1317 	if (!page && (fgp_flags & FGP_CREAT)) {
1318 		int err;
1319 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1320 			gfp_mask |= __GFP_WRITE;
1321 		if (fgp_flags & FGP_NOFS)
1322 			gfp_mask &= ~__GFP_FS;
1323 
1324 		page = __page_cache_alloc(gfp_mask);
1325 		if (!page)
1326 			return NULL;
1327 
1328 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1329 			fgp_flags |= FGP_LOCK;
1330 
1331 		/* Init accessed so avoid atomic mark_page_accessed later */
1332 		if (fgp_flags & FGP_ACCESSED)
1333 			__SetPageReferenced(page);
1334 
1335 		err = add_to_page_cache_lru(page, mapping, offset,
1336 				gfp_mask & GFP_RECLAIM_MASK);
1337 		if (unlikely(err)) {
1338 			put_page(page);
1339 			page = NULL;
1340 			if (err == -EEXIST)
1341 				goto repeat;
1342 		}
1343 	}
1344 
1345 	return page;
1346 }
1347 EXPORT_SYMBOL(pagecache_get_page);
1348 
1349 /**
1350  * find_get_entries - gang pagecache lookup
1351  * @mapping:	The address_space to search
1352  * @start:	The starting page cache index
1353  * @nr_entries:	The maximum number of entries
1354  * @entries:	Where the resulting entries are placed
1355  * @indices:	The cache indices corresponding to the entries in @entries
1356  *
1357  * find_get_entries() will search for and return a group of up to
1358  * @nr_entries entries in the mapping.  The entries are placed at
1359  * @entries.  find_get_entries() takes a reference against any actual
1360  * pages it returns.
1361  *
1362  * The search returns a group of mapping-contiguous page cache entries
1363  * with ascending indexes.  There may be holes in the indices due to
1364  * not-present pages.
1365  *
1366  * Any shadow entries of evicted pages, or swap entries from
1367  * shmem/tmpfs, are included in the returned array.
1368  *
1369  * find_get_entries() returns the number of pages and shadow entries
1370  * which were found.
1371  */
1372 unsigned find_get_entries(struct address_space *mapping,
1373 			  pgoff_t start, unsigned int nr_entries,
1374 			  struct page **entries, pgoff_t *indices)
1375 {
1376 	void **slot;
1377 	unsigned int ret = 0;
1378 	struct radix_tree_iter iter;
1379 
1380 	if (!nr_entries)
1381 		return 0;
1382 
1383 	rcu_read_lock();
1384 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1385 		struct page *head, *page;
1386 repeat:
1387 		page = radix_tree_deref_slot(slot);
1388 		if (unlikely(!page))
1389 			continue;
1390 		if (radix_tree_exception(page)) {
1391 			if (radix_tree_deref_retry(page)) {
1392 				slot = radix_tree_iter_retry(&iter);
1393 				continue;
1394 			}
1395 			/*
1396 			 * A shadow entry of a recently evicted page, a swap
1397 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1398 			 * without attempting to raise page count.
1399 			 */
1400 			goto export;
1401 		}
1402 
1403 		head = compound_head(page);
1404 		if (!page_cache_get_speculative(head))
1405 			goto repeat;
1406 
1407 		/* The page was split under us? */
1408 		if (compound_head(page) != head) {
1409 			put_page(head);
1410 			goto repeat;
1411 		}
1412 
1413 		/* Has the page moved? */
1414 		if (unlikely(page != *slot)) {
1415 			put_page(head);
1416 			goto repeat;
1417 		}
1418 export:
1419 		indices[ret] = iter.index;
1420 		entries[ret] = page;
1421 		if (++ret == nr_entries)
1422 			break;
1423 	}
1424 	rcu_read_unlock();
1425 	return ret;
1426 }
1427 
1428 /**
1429  * find_get_pages - gang pagecache lookup
1430  * @mapping:	The address_space to search
1431  * @start:	The starting page index
1432  * @nr_pages:	The maximum number of pages
1433  * @pages:	Where the resulting pages are placed
1434  *
1435  * find_get_pages() will search for and return a group of up to
1436  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1437  * find_get_pages() takes a reference against the returned pages.
1438  *
1439  * The search returns a group of mapping-contiguous pages with ascending
1440  * indexes.  There may be holes in the indices due to not-present pages.
1441  *
1442  * find_get_pages() returns the number of pages which were found.
1443  */
1444 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1445 			    unsigned int nr_pages, struct page **pages)
1446 {
1447 	struct radix_tree_iter iter;
1448 	void **slot;
1449 	unsigned ret = 0;
1450 
1451 	if (unlikely(!nr_pages))
1452 		return 0;
1453 
1454 	rcu_read_lock();
1455 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1456 		struct page *head, *page;
1457 repeat:
1458 		page = radix_tree_deref_slot(slot);
1459 		if (unlikely(!page))
1460 			continue;
1461 
1462 		if (radix_tree_exception(page)) {
1463 			if (radix_tree_deref_retry(page)) {
1464 				slot = radix_tree_iter_retry(&iter);
1465 				continue;
1466 			}
1467 			/*
1468 			 * A shadow entry of a recently evicted page,
1469 			 * or a swap entry from shmem/tmpfs.  Skip
1470 			 * over it.
1471 			 */
1472 			continue;
1473 		}
1474 
1475 		head = compound_head(page);
1476 		if (!page_cache_get_speculative(head))
1477 			goto repeat;
1478 
1479 		/* The page was split under us? */
1480 		if (compound_head(page) != head) {
1481 			put_page(head);
1482 			goto repeat;
1483 		}
1484 
1485 		/* Has the page moved? */
1486 		if (unlikely(page != *slot)) {
1487 			put_page(head);
1488 			goto repeat;
1489 		}
1490 
1491 		pages[ret] = page;
1492 		if (++ret == nr_pages)
1493 			break;
1494 	}
1495 
1496 	rcu_read_unlock();
1497 	return ret;
1498 }
1499 
1500 /**
1501  * find_get_pages_contig - gang contiguous pagecache lookup
1502  * @mapping:	The address_space to search
1503  * @index:	The starting page index
1504  * @nr_pages:	The maximum number of pages
1505  * @pages:	Where the resulting pages are placed
1506  *
1507  * find_get_pages_contig() works exactly like find_get_pages(), except
1508  * that the returned number of pages are guaranteed to be contiguous.
1509  *
1510  * find_get_pages_contig() returns the number of pages which were found.
1511  */
1512 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1513 			       unsigned int nr_pages, struct page **pages)
1514 {
1515 	struct radix_tree_iter iter;
1516 	void **slot;
1517 	unsigned int ret = 0;
1518 
1519 	if (unlikely(!nr_pages))
1520 		return 0;
1521 
1522 	rcu_read_lock();
1523 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1524 		struct page *head, *page;
1525 repeat:
1526 		page = radix_tree_deref_slot(slot);
1527 		/* The hole, there no reason to continue */
1528 		if (unlikely(!page))
1529 			break;
1530 
1531 		if (radix_tree_exception(page)) {
1532 			if (radix_tree_deref_retry(page)) {
1533 				slot = radix_tree_iter_retry(&iter);
1534 				continue;
1535 			}
1536 			/*
1537 			 * A shadow entry of a recently evicted page,
1538 			 * or a swap entry from shmem/tmpfs.  Stop
1539 			 * looking for contiguous pages.
1540 			 */
1541 			break;
1542 		}
1543 
1544 		head = compound_head(page);
1545 		if (!page_cache_get_speculative(head))
1546 			goto repeat;
1547 
1548 		/* The page was split under us? */
1549 		if (compound_head(page) != head) {
1550 			put_page(head);
1551 			goto repeat;
1552 		}
1553 
1554 		/* Has the page moved? */
1555 		if (unlikely(page != *slot)) {
1556 			put_page(head);
1557 			goto repeat;
1558 		}
1559 
1560 		/*
1561 		 * must check mapping and index after taking the ref.
1562 		 * otherwise we can get both false positives and false
1563 		 * negatives, which is just confusing to the caller.
1564 		 */
1565 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1566 			put_page(page);
1567 			break;
1568 		}
1569 
1570 		pages[ret] = page;
1571 		if (++ret == nr_pages)
1572 			break;
1573 	}
1574 	rcu_read_unlock();
1575 	return ret;
1576 }
1577 EXPORT_SYMBOL(find_get_pages_contig);
1578 
1579 /**
1580  * find_get_pages_tag - find and return pages that match @tag
1581  * @mapping:	the address_space to search
1582  * @index:	the starting page index
1583  * @tag:	the tag index
1584  * @nr_pages:	the maximum number of pages
1585  * @pages:	where the resulting pages are placed
1586  *
1587  * Like find_get_pages, except we only return pages which are tagged with
1588  * @tag.   We update @index to index the next page for the traversal.
1589  */
1590 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1591 			int tag, unsigned int nr_pages, struct page **pages)
1592 {
1593 	struct radix_tree_iter iter;
1594 	void **slot;
1595 	unsigned ret = 0;
1596 
1597 	if (unlikely(!nr_pages))
1598 		return 0;
1599 
1600 	rcu_read_lock();
1601 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1602 				   &iter, *index, tag) {
1603 		struct page *head, *page;
1604 repeat:
1605 		page = radix_tree_deref_slot(slot);
1606 		if (unlikely(!page))
1607 			continue;
1608 
1609 		if (radix_tree_exception(page)) {
1610 			if (radix_tree_deref_retry(page)) {
1611 				slot = radix_tree_iter_retry(&iter);
1612 				continue;
1613 			}
1614 			/*
1615 			 * A shadow entry of a recently evicted page.
1616 			 *
1617 			 * Those entries should never be tagged, but
1618 			 * this tree walk is lockless and the tags are
1619 			 * looked up in bulk, one radix tree node at a
1620 			 * time, so there is a sizable window for page
1621 			 * reclaim to evict a page we saw tagged.
1622 			 *
1623 			 * Skip over it.
1624 			 */
1625 			continue;
1626 		}
1627 
1628 		head = compound_head(page);
1629 		if (!page_cache_get_speculative(head))
1630 			goto repeat;
1631 
1632 		/* The page was split under us? */
1633 		if (compound_head(page) != head) {
1634 			put_page(head);
1635 			goto repeat;
1636 		}
1637 
1638 		/* Has the page moved? */
1639 		if (unlikely(page != *slot)) {
1640 			put_page(head);
1641 			goto repeat;
1642 		}
1643 
1644 		pages[ret] = page;
1645 		if (++ret == nr_pages)
1646 			break;
1647 	}
1648 
1649 	rcu_read_unlock();
1650 
1651 	if (ret)
1652 		*index = pages[ret - 1]->index + 1;
1653 
1654 	return ret;
1655 }
1656 EXPORT_SYMBOL(find_get_pages_tag);
1657 
1658 /**
1659  * find_get_entries_tag - find and return entries that match @tag
1660  * @mapping:	the address_space to search
1661  * @start:	the starting page cache index
1662  * @tag:	the tag index
1663  * @nr_entries:	the maximum number of entries
1664  * @entries:	where the resulting entries are placed
1665  * @indices:	the cache indices corresponding to the entries in @entries
1666  *
1667  * Like find_get_entries, except we only return entries which are tagged with
1668  * @tag.
1669  */
1670 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1671 			int tag, unsigned int nr_entries,
1672 			struct page **entries, pgoff_t *indices)
1673 {
1674 	void **slot;
1675 	unsigned int ret = 0;
1676 	struct radix_tree_iter iter;
1677 
1678 	if (!nr_entries)
1679 		return 0;
1680 
1681 	rcu_read_lock();
1682 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1683 				   &iter, start, tag) {
1684 		struct page *head, *page;
1685 repeat:
1686 		page = radix_tree_deref_slot(slot);
1687 		if (unlikely(!page))
1688 			continue;
1689 		if (radix_tree_exception(page)) {
1690 			if (radix_tree_deref_retry(page)) {
1691 				slot = radix_tree_iter_retry(&iter);
1692 				continue;
1693 			}
1694 
1695 			/*
1696 			 * A shadow entry of a recently evicted page, a swap
1697 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1698 			 * without attempting to raise page count.
1699 			 */
1700 			goto export;
1701 		}
1702 
1703 		head = compound_head(page);
1704 		if (!page_cache_get_speculative(head))
1705 			goto repeat;
1706 
1707 		/* The page was split under us? */
1708 		if (compound_head(page) != head) {
1709 			put_page(head);
1710 			goto repeat;
1711 		}
1712 
1713 		/* Has the page moved? */
1714 		if (unlikely(page != *slot)) {
1715 			put_page(head);
1716 			goto repeat;
1717 		}
1718 export:
1719 		indices[ret] = iter.index;
1720 		entries[ret] = page;
1721 		if (++ret == nr_entries)
1722 			break;
1723 	}
1724 	rcu_read_unlock();
1725 	return ret;
1726 }
1727 EXPORT_SYMBOL(find_get_entries_tag);
1728 
1729 /*
1730  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1731  * a _large_ part of the i/o request. Imagine the worst scenario:
1732  *
1733  *      ---R__________________________________________B__________
1734  *         ^ reading here                             ^ bad block(assume 4k)
1735  *
1736  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1737  * => failing the whole request => read(R) => read(R+1) =>
1738  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1739  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1740  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1741  *
1742  * It is going insane. Fix it by quickly scaling down the readahead size.
1743  */
1744 static void shrink_readahead_size_eio(struct file *filp,
1745 					struct file_ra_state *ra)
1746 {
1747 	ra->ra_pages /= 4;
1748 }
1749 
1750 /**
1751  * do_generic_file_read - generic file read routine
1752  * @filp:	the file to read
1753  * @ppos:	current file position
1754  * @iter:	data destination
1755  * @written:	already copied
1756  *
1757  * This is a generic file read routine, and uses the
1758  * mapping->a_ops->readpage() function for the actual low-level stuff.
1759  *
1760  * This is really ugly. But the goto's actually try to clarify some
1761  * of the logic when it comes to error handling etc.
1762  */
1763 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1764 		struct iov_iter *iter, ssize_t written)
1765 {
1766 	struct address_space *mapping = filp->f_mapping;
1767 	struct inode *inode = mapping->host;
1768 	struct file_ra_state *ra = &filp->f_ra;
1769 	pgoff_t index;
1770 	pgoff_t last_index;
1771 	pgoff_t prev_index;
1772 	unsigned long offset;      /* offset into pagecache page */
1773 	unsigned int prev_offset;
1774 	int error = 0;
1775 
1776 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1777 		return 0;
1778 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1779 
1780 	index = *ppos >> PAGE_SHIFT;
1781 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1782 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1783 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1784 	offset = *ppos & ~PAGE_MASK;
1785 
1786 	for (;;) {
1787 		struct page *page;
1788 		pgoff_t end_index;
1789 		loff_t isize;
1790 		unsigned long nr, ret;
1791 
1792 		cond_resched();
1793 find_page:
1794 		if (fatal_signal_pending(current)) {
1795 			error = -EINTR;
1796 			goto out;
1797 		}
1798 
1799 		page = find_get_page(mapping, index);
1800 		if (!page) {
1801 			page_cache_sync_readahead(mapping,
1802 					ra, filp,
1803 					index, last_index - index);
1804 			page = find_get_page(mapping, index);
1805 			if (unlikely(page == NULL))
1806 				goto no_cached_page;
1807 		}
1808 		if (PageReadahead(page)) {
1809 			page_cache_async_readahead(mapping,
1810 					ra, filp, page,
1811 					index, last_index - index);
1812 		}
1813 		if (!PageUptodate(page)) {
1814 			/*
1815 			 * See comment in do_read_cache_page on why
1816 			 * wait_on_page_locked is used to avoid unnecessarily
1817 			 * serialisations and why it's safe.
1818 			 */
1819 			error = wait_on_page_locked_killable(page);
1820 			if (unlikely(error))
1821 				goto readpage_error;
1822 			if (PageUptodate(page))
1823 				goto page_ok;
1824 
1825 			if (inode->i_blkbits == PAGE_SHIFT ||
1826 					!mapping->a_ops->is_partially_uptodate)
1827 				goto page_not_up_to_date;
1828 			/* pipes can't handle partially uptodate pages */
1829 			if (unlikely(iter->type & ITER_PIPE))
1830 				goto page_not_up_to_date;
1831 			if (!trylock_page(page))
1832 				goto page_not_up_to_date;
1833 			/* Did it get truncated before we got the lock? */
1834 			if (!page->mapping)
1835 				goto page_not_up_to_date_locked;
1836 			if (!mapping->a_ops->is_partially_uptodate(page,
1837 							offset, iter->count))
1838 				goto page_not_up_to_date_locked;
1839 			unlock_page(page);
1840 		}
1841 page_ok:
1842 		/*
1843 		 * i_size must be checked after we know the page is Uptodate.
1844 		 *
1845 		 * Checking i_size after the check allows us to calculate
1846 		 * the correct value for "nr", which means the zero-filled
1847 		 * part of the page is not copied back to userspace (unless
1848 		 * another truncate extends the file - this is desired though).
1849 		 */
1850 
1851 		isize = i_size_read(inode);
1852 		end_index = (isize - 1) >> PAGE_SHIFT;
1853 		if (unlikely(!isize || index > end_index)) {
1854 			put_page(page);
1855 			goto out;
1856 		}
1857 
1858 		/* nr is the maximum number of bytes to copy from this page */
1859 		nr = PAGE_SIZE;
1860 		if (index == end_index) {
1861 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1862 			if (nr <= offset) {
1863 				put_page(page);
1864 				goto out;
1865 			}
1866 		}
1867 		nr = nr - offset;
1868 
1869 		/* If users can be writing to this page using arbitrary
1870 		 * virtual addresses, take care about potential aliasing
1871 		 * before reading the page on the kernel side.
1872 		 */
1873 		if (mapping_writably_mapped(mapping))
1874 			flush_dcache_page(page);
1875 
1876 		/*
1877 		 * When a sequential read accesses a page several times,
1878 		 * only mark it as accessed the first time.
1879 		 */
1880 		if (prev_index != index || offset != prev_offset)
1881 			mark_page_accessed(page);
1882 		prev_index = index;
1883 
1884 		/*
1885 		 * Ok, we have the page, and it's up-to-date, so
1886 		 * now we can copy it to user space...
1887 		 */
1888 
1889 		ret = copy_page_to_iter(page, offset, nr, iter);
1890 		offset += ret;
1891 		index += offset >> PAGE_SHIFT;
1892 		offset &= ~PAGE_MASK;
1893 		prev_offset = offset;
1894 
1895 		put_page(page);
1896 		written += ret;
1897 		if (!iov_iter_count(iter))
1898 			goto out;
1899 		if (ret < nr) {
1900 			error = -EFAULT;
1901 			goto out;
1902 		}
1903 		continue;
1904 
1905 page_not_up_to_date:
1906 		/* Get exclusive access to the page ... */
1907 		error = lock_page_killable(page);
1908 		if (unlikely(error))
1909 			goto readpage_error;
1910 
1911 page_not_up_to_date_locked:
1912 		/* Did it get truncated before we got the lock? */
1913 		if (!page->mapping) {
1914 			unlock_page(page);
1915 			put_page(page);
1916 			continue;
1917 		}
1918 
1919 		/* Did somebody else fill it already? */
1920 		if (PageUptodate(page)) {
1921 			unlock_page(page);
1922 			goto page_ok;
1923 		}
1924 
1925 readpage:
1926 		/*
1927 		 * A previous I/O error may have been due to temporary
1928 		 * failures, eg. multipath errors.
1929 		 * PG_error will be set again if readpage fails.
1930 		 */
1931 		ClearPageError(page);
1932 		/* Start the actual read. The read will unlock the page. */
1933 		error = mapping->a_ops->readpage(filp, page);
1934 
1935 		if (unlikely(error)) {
1936 			if (error == AOP_TRUNCATED_PAGE) {
1937 				put_page(page);
1938 				error = 0;
1939 				goto find_page;
1940 			}
1941 			goto readpage_error;
1942 		}
1943 
1944 		if (!PageUptodate(page)) {
1945 			error = lock_page_killable(page);
1946 			if (unlikely(error))
1947 				goto readpage_error;
1948 			if (!PageUptodate(page)) {
1949 				if (page->mapping == NULL) {
1950 					/*
1951 					 * invalidate_mapping_pages got it
1952 					 */
1953 					unlock_page(page);
1954 					put_page(page);
1955 					goto find_page;
1956 				}
1957 				unlock_page(page);
1958 				shrink_readahead_size_eio(filp, ra);
1959 				error = -EIO;
1960 				goto readpage_error;
1961 			}
1962 			unlock_page(page);
1963 		}
1964 
1965 		goto page_ok;
1966 
1967 readpage_error:
1968 		/* UHHUH! A synchronous read error occurred. Report it */
1969 		put_page(page);
1970 		goto out;
1971 
1972 no_cached_page:
1973 		/*
1974 		 * Ok, it wasn't cached, so we need to create a new
1975 		 * page..
1976 		 */
1977 		page = page_cache_alloc_cold(mapping);
1978 		if (!page) {
1979 			error = -ENOMEM;
1980 			goto out;
1981 		}
1982 		error = add_to_page_cache_lru(page, mapping, index,
1983 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1984 		if (error) {
1985 			put_page(page);
1986 			if (error == -EEXIST) {
1987 				error = 0;
1988 				goto find_page;
1989 			}
1990 			goto out;
1991 		}
1992 		goto readpage;
1993 	}
1994 
1995 out:
1996 	ra->prev_pos = prev_index;
1997 	ra->prev_pos <<= PAGE_SHIFT;
1998 	ra->prev_pos |= prev_offset;
1999 
2000 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2001 	file_accessed(filp);
2002 	return written ? written : error;
2003 }
2004 
2005 /**
2006  * generic_file_read_iter - generic filesystem read routine
2007  * @iocb:	kernel I/O control block
2008  * @iter:	destination for the data read
2009  *
2010  * This is the "read_iter()" routine for all filesystems
2011  * that can use the page cache directly.
2012  */
2013 ssize_t
2014 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2015 {
2016 	struct file *file = iocb->ki_filp;
2017 	ssize_t retval = 0;
2018 	size_t count = iov_iter_count(iter);
2019 
2020 	if (!count)
2021 		goto out; /* skip atime */
2022 
2023 	if (iocb->ki_flags & IOCB_DIRECT) {
2024 		struct address_space *mapping = file->f_mapping;
2025 		struct inode *inode = mapping->host;
2026 		struct iov_iter data = *iter;
2027 		loff_t size;
2028 
2029 		size = i_size_read(inode);
2030 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2031 					iocb->ki_pos + count - 1);
2032 		if (retval < 0)
2033 			goto out;
2034 
2035 		file_accessed(file);
2036 
2037 		retval = mapping->a_ops->direct_IO(iocb, &data);
2038 		if (retval >= 0) {
2039 			iocb->ki_pos += retval;
2040 			iov_iter_advance(iter, retval);
2041 		}
2042 
2043 		/*
2044 		 * Btrfs can have a short DIO read if we encounter
2045 		 * compressed extents, so if there was an error, or if
2046 		 * we've already read everything we wanted to, or if
2047 		 * there was a short read because we hit EOF, go ahead
2048 		 * and return.  Otherwise fallthrough to buffered io for
2049 		 * the rest of the read.  Buffered reads will not work for
2050 		 * DAX files, so don't bother trying.
2051 		 */
2052 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
2053 		    IS_DAX(inode))
2054 			goto out;
2055 	}
2056 
2057 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2058 out:
2059 	return retval;
2060 }
2061 EXPORT_SYMBOL(generic_file_read_iter);
2062 
2063 #ifdef CONFIG_MMU
2064 /**
2065  * page_cache_read - adds requested page to the page cache if not already there
2066  * @file:	file to read
2067  * @offset:	page index
2068  * @gfp_mask:	memory allocation flags
2069  *
2070  * This adds the requested page to the page cache if it isn't already there,
2071  * and schedules an I/O to read in its contents from disk.
2072  */
2073 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2074 {
2075 	struct address_space *mapping = file->f_mapping;
2076 	struct page *page;
2077 	int ret;
2078 
2079 	do {
2080 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2081 		if (!page)
2082 			return -ENOMEM;
2083 
2084 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2085 		if (ret == 0)
2086 			ret = mapping->a_ops->readpage(file, page);
2087 		else if (ret == -EEXIST)
2088 			ret = 0; /* losing race to add is OK */
2089 
2090 		put_page(page);
2091 
2092 	} while (ret == AOP_TRUNCATED_PAGE);
2093 
2094 	return ret;
2095 }
2096 
2097 #define MMAP_LOTSAMISS  (100)
2098 
2099 /*
2100  * Synchronous readahead happens when we don't even find
2101  * a page in the page cache at all.
2102  */
2103 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2104 				   struct file_ra_state *ra,
2105 				   struct file *file,
2106 				   pgoff_t offset)
2107 {
2108 	struct address_space *mapping = file->f_mapping;
2109 
2110 	/* If we don't want any read-ahead, don't bother */
2111 	if (vma->vm_flags & VM_RAND_READ)
2112 		return;
2113 	if (!ra->ra_pages)
2114 		return;
2115 
2116 	if (vma->vm_flags & VM_SEQ_READ) {
2117 		page_cache_sync_readahead(mapping, ra, file, offset,
2118 					  ra->ra_pages);
2119 		return;
2120 	}
2121 
2122 	/* Avoid banging the cache line if not needed */
2123 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2124 		ra->mmap_miss++;
2125 
2126 	/*
2127 	 * Do we miss much more than hit in this file? If so,
2128 	 * stop bothering with read-ahead. It will only hurt.
2129 	 */
2130 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2131 		return;
2132 
2133 	/*
2134 	 * mmap read-around
2135 	 */
2136 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2137 	ra->size = ra->ra_pages;
2138 	ra->async_size = ra->ra_pages / 4;
2139 	ra_submit(ra, mapping, file);
2140 }
2141 
2142 /*
2143  * Asynchronous readahead happens when we find the page and PG_readahead,
2144  * so we want to possibly extend the readahead further..
2145  */
2146 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2147 				    struct file_ra_state *ra,
2148 				    struct file *file,
2149 				    struct page *page,
2150 				    pgoff_t offset)
2151 {
2152 	struct address_space *mapping = file->f_mapping;
2153 
2154 	/* If we don't want any read-ahead, don't bother */
2155 	if (vma->vm_flags & VM_RAND_READ)
2156 		return;
2157 	if (ra->mmap_miss > 0)
2158 		ra->mmap_miss--;
2159 	if (PageReadahead(page))
2160 		page_cache_async_readahead(mapping, ra, file,
2161 					   page, offset, ra->ra_pages);
2162 }
2163 
2164 /**
2165  * filemap_fault - read in file data for page fault handling
2166  * @vma:	vma in which the fault was taken
2167  * @vmf:	struct vm_fault containing details of the fault
2168  *
2169  * filemap_fault() is invoked via the vma operations vector for a
2170  * mapped memory region to read in file data during a page fault.
2171  *
2172  * The goto's are kind of ugly, but this streamlines the normal case of having
2173  * it in the page cache, and handles the special cases reasonably without
2174  * having a lot of duplicated code.
2175  *
2176  * vma->vm_mm->mmap_sem must be held on entry.
2177  *
2178  * If our return value has VM_FAULT_RETRY set, it's because
2179  * lock_page_or_retry() returned 0.
2180  * The mmap_sem has usually been released in this case.
2181  * See __lock_page_or_retry() for the exception.
2182  *
2183  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2184  * has not been released.
2185  *
2186  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2187  */
2188 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2189 {
2190 	int error;
2191 	struct file *file = vma->vm_file;
2192 	struct address_space *mapping = file->f_mapping;
2193 	struct file_ra_state *ra = &file->f_ra;
2194 	struct inode *inode = mapping->host;
2195 	pgoff_t offset = vmf->pgoff;
2196 	struct page *page;
2197 	loff_t size;
2198 	int ret = 0;
2199 
2200 	size = round_up(i_size_read(inode), PAGE_SIZE);
2201 	if (offset >= size >> PAGE_SHIFT)
2202 		return VM_FAULT_SIGBUS;
2203 
2204 	/*
2205 	 * Do we have something in the page cache already?
2206 	 */
2207 	page = find_get_page(mapping, offset);
2208 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2209 		/*
2210 		 * We found the page, so try async readahead before
2211 		 * waiting for the lock.
2212 		 */
2213 		do_async_mmap_readahead(vma, ra, file, page, offset);
2214 	} else if (!page) {
2215 		/* No page in the page cache at all */
2216 		do_sync_mmap_readahead(vma, ra, file, offset);
2217 		count_vm_event(PGMAJFAULT);
2218 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2219 		ret = VM_FAULT_MAJOR;
2220 retry_find:
2221 		page = find_get_page(mapping, offset);
2222 		if (!page)
2223 			goto no_cached_page;
2224 	}
2225 
2226 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2227 		put_page(page);
2228 		return ret | VM_FAULT_RETRY;
2229 	}
2230 
2231 	/* Did it get truncated? */
2232 	if (unlikely(page->mapping != mapping)) {
2233 		unlock_page(page);
2234 		put_page(page);
2235 		goto retry_find;
2236 	}
2237 	VM_BUG_ON_PAGE(page->index != offset, page);
2238 
2239 	/*
2240 	 * We have a locked page in the page cache, now we need to check
2241 	 * that it's up-to-date. If not, it is going to be due to an error.
2242 	 */
2243 	if (unlikely(!PageUptodate(page)))
2244 		goto page_not_uptodate;
2245 
2246 	/*
2247 	 * Found the page and have a reference on it.
2248 	 * We must recheck i_size under page lock.
2249 	 */
2250 	size = round_up(i_size_read(inode), PAGE_SIZE);
2251 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2252 		unlock_page(page);
2253 		put_page(page);
2254 		return VM_FAULT_SIGBUS;
2255 	}
2256 
2257 	vmf->page = page;
2258 	return ret | VM_FAULT_LOCKED;
2259 
2260 no_cached_page:
2261 	/*
2262 	 * We're only likely to ever get here if MADV_RANDOM is in
2263 	 * effect.
2264 	 */
2265 	error = page_cache_read(file, offset, vmf->gfp_mask);
2266 
2267 	/*
2268 	 * The page we want has now been added to the page cache.
2269 	 * In the unlikely event that someone removed it in the
2270 	 * meantime, we'll just come back here and read it again.
2271 	 */
2272 	if (error >= 0)
2273 		goto retry_find;
2274 
2275 	/*
2276 	 * An error return from page_cache_read can result if the
2277 	 * system is low on memory, or a problem occurs while trying
2278 	 * to schedule I/O.
2279 	 */
2280 	if (error == -ENOMEM)
2281 		return VM_FAULT_OOM;
2282 	return VM_FAULT_SIGBUS;
2283 
2284 page_not_uptodate:
2285 	/*
2286 	 * Umm, take care of errors if the page isn't up-to-date.
2287 	 * Try to re-read it _once_. We do this synchronously,
2288 	 * because there really aren't any performance issues here
2289 	 * and we need to check for errors.
2290 	 */
2291 	ClearPageError(page);
2292 	error = mapping->a_ops->readpage(file, page);
2293 	if (!error) {
2294 		wait_on_page_locked(page);
2295 		if (!PageUptodate(page))
2296 			error = -EIO;
2297 	}
2298 	put_page(page);
2299 
2300 	if (!error || error == AOP_TRUNCATED_PAGE)
2301 		goto retry_find;
2302 
2303 	/* Things didn't work out. Return zero to tell the mm layer so. */
2304 	shrink_readahead_size_eio(file, ra);
2305 	return VM_FAULT_SIGBUS;
2306 }
2307 EXPORT_SYMBOL(filemap_fault);
2308 
2309 void filemap_map_pages(struct vm_fault *vmf,
2310 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2311 {
2312 	struct radix_tree_iter iter;
2313 	void **slot;
2314 	struct file *file = vmf->vma->vm_file;
2315 	struct address_space *mapping = file->f_mapping;
2316 	pgoff_t last_pgoff = start_pgoff;
2317 	loff_t size;
2318 	struct page *head, *page;
2319 
2320 	rcu_read_lock();
2321 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2322 			start_pgoff) {
2323 		if (iter.index > end_pgoff)
2324 			break;
2325 repeat:
2326 		page = radix_tree_deref_slot(slot);
2327 		if (unlikely(!page))
2328 			goto next;
2329 		if (radix_tree_exception(page)) {
2330 			if (radix_tree_deref_retry(page)) {
2331 				slot = radix_tree_iter_retry(&iter);
2332 				continue;
2333 			}
2334 			goto next;
2335 		}
2336 
2337 		head = compound_head(page);
2338 		if (!page_cache_get_speculative(head))
2339 			goto repeat;
2340 
2341 		/* The page was split under us? */
2342 		if (compound_head(page) != head) {
2343 			put_page(head);
2344 			goto repeat;
2345 		}
2346 
2347 		/* Has the page moved? */
2348 		if (unlikely(page != *slot)) {
2349 			put_page(head);
2350 			goto repeat;
2351 		}
2352 
2353 		if (!PageUptodate(page) ||
2354 				PageReadahead(page) ||
2355 				PageHWPoison(page))
2356 			goto skip;
2357 		if (!trylock_page(page))
2358 			goto skip;
2359 
2360 		if (page->mapping != mapping || !PageUptodate(page))
2361 			goto unlock;
2362 
2363 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2364 		if (page->index >= size >> PAGE_SHIFT)
2365 			goto unlock;
2366 
2367 		if (file->f_ra.mmap_miss > 0)
2368 			file->f_ra.mmap_miss--;
2369 
2370 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2371 		if (vmf->pte)
2372 			vmf->pte += iter.index - last_pgoff;
2373 		last_pgoff = iter.index;
2374 		if (alloc_set_pte(vmf, NULL, page))
2375 			goto unlock;
2376 		unlock_page(page);
2377 		goto next;
2378 unlock:
2379 		unlock_page(page);
2380 skip:
2381 		put_page(page);
2382 next:
2383 		/* Huge page is mapped? No need to proceed. */
2384 		if (pmd_trans_huge(*vmf->pmd))
2385 			break;
2386 		if (iter.index == end_pgoff)
2387 			break;
2388 	}
2389 	rcu_read_unlock();
2390 }
2391 EXPORT_SYMBOL(filemap_map_pages);
2392 
2393 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2394 {
2395 	struct page *page = vmf->page;
2396 	struct inode *inode = file_inode(vma->vm_file);
2397 	int ret = VM_FAULT_LOCKED;
2398 
2399 	sb_start_pagefault(inode->i_sb);
2400 	file_update_time(vma->vm_file);
2401 	lock_page(page);
2402 	if (page->mapping != inode->i_mapping) {
2403 		unlock_page(page);
2404 		ret = VM_FAULT_NOPAGE;
2405 		goto out;
2406 	}
2407 	/*
2408 	 * We mark the page dirty already here so that when freeze is in
2409 	 * progress, we are guaranteed that writeback during freezing will
2410 	 * see the dirty page and writeprotect it again.
2411 	 */
2412 	set_page_dirty(page);
2413 	wait_for_stable_page(page);
2414 out:
2415 	sb_end_pagefault(inode->i_sb);
2416 	return ret;
2417 }
2418 EXPORT_SYMBOL(filemap_page_mkwrite);
2419 
2420 const struct vm_operations_struct generic_file_vm_ops = {
2421 	.fault		= filemap_fault,
2422 	.map_pages	= filemap_map_pages,
2423 	.page_mkwrite	= filemap_page_mkwrite,
2424 };
2425 
2426 /* This is used for a general mmap of a disk file */
2427 
2428 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2429 {
2430 	struct address_space *mapping = file->f_mapping;
2431 
2432 	if (!mapping->a_ops->readpage)
2433 		return -ENOEXEC;
2434 	file_accessed(file);
2435 	vma->vm_ops = &generic_file_vm_ops;
2436 	return 0;
2437 }
2438 
2439 /*
2440  * This is for filesystems which do not implement ->writepage.
2441  */
2442 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2443 {
2444 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2445 		return -EINVAL;
2446 	return generic_file_mmap(file, vma);
2447 }
2448 #else
2449 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2450 {
2451 	return -ENOSYS;
2452 }
2453 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2454 {
2455 	return -ENOSYS;
2456 }
2457 #endif /* CONFIG_MMU */
2458 
2459 EXPORT_SYMBOL(generic_file_mmap);
2460 EXPORT_SYMBOL(generic_file_readonly_mmap);
2461 
2462 static struct page *wait_on_page_read(struct page *page)
2463 {
2464 	if (!IS_ERR(page)) {
2465 		wait_on_page_locked(page);
2466 		if (!PageUptodate(page)) {
2467 			put_page(page);
2468 			page = ERR_PTR(-EIO);
2469 		}
2470 	}
2471 	return page;
2472 }
2473 
2474 static struct page *do_read_cache_page(struct address_space *mapping,
2475 				pgoff_t index,
2476 				int (*filler)(void *, struct page *),
2477 				void *data,
2478 				gfp_t gfp)
2479 {
2480 	struct page *page;
2481 	int err;
2482 repeat:
2483 	page = find_get_page(mapping, index);
2484 	if (!page) {
2485 		page = __page_cache_alloc(gfp | __GFP_COLD);
2486 		if (!page)
2487 			return ERR_PTR(-ENOMEM);
2488 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2489 		if (unlikely(err)) {
2490 			put_page(page);
2491 			if (err == -EEXIST)
2492 				goto repeat;
2493 			/* Presumably ENOMEM for radix tree node */
2494 			return ERR_PTR(err);
2495 		}
2496 
2497 filler:
2498 		err = filler(data, page);
2499 		if (err < 0) {
2500 			put_page(page);
2501 			return ERR_PTR(err);
2502 		}
2503 
2504 		page = wait_on_page_read(page);
2505 		if (IS_ERR(page))
2506 			return page;
2507 		goto out;
2508 	}
2509 	if (PageUptodate(page))
2510 		goto out;
2511 
2512 	/*
2513 	 * Page is not up to date and may be locked due one of the following
2514 	 * case a: Page is being filled and the page lock is held
2515 	 * case b: Read/write error clearing the page uptodate status
2516 	 * case c: Truncation in progress (page locked)
2517 	 * case d: Reclaim in progress
2518 	 *
2519 	 * Case a, the page will be up to date when the page is unlocked.
2520 	 *    There is no need to serialise on the page lock here as the page
2521 	 *    is pinned so the lock gives no additional protection. Even if the
2522 	 *    the page is truncated, the data is still valid if PageUptodate as
2523 	 *    it's a race vs truncate race.
2524 	 * Case b, the page will not be up to date
2525 	 * Case c, the page may be truncated but in itself, the data may still
2526 	 *    be valid after IO completes as it's a read vs truncate race. The
2527 	 *    operation must restart if the page is not uptodate on unlock but
2528 	 *    otherwise serialising on page lock to stabilise the mapping gives
2529 	 *    no additional guarantees to the caller as the page lock is
2530 	 *    released before return.
2531 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2532 	 *    will be a race with remove_mapping that determines if the mapping
2533 	 *    is valid on unlock but otherwise the data is valid and there is
2534 	 *    no need to serialise with page lock.
2535 	 *
2536 	 * As the page lock gives no additional guarantee, we optimistically
2537 	 * wait on the page to be unlocked and check if it's up to date and
2538 	 * use the page if it is. Otherwise, the page lock is required to
2539 	 * distinguish between the different cases. The motivation is that we
2540 	 * avoid spurious serialisations and wakeups when multiple processes
2541 	 * wait on the same page for IO to complete.
2542 	 */
2543 	wait_on_page_locked(page);
2544 	if (PageUptodate(page))
2545 		goto out;
2546 
2547 	/* Distinguish between all the cases under the safety of the lock */
2548 	lock_page(page);
2549 
2550 	/* Case c or d, restart the operation */
2551 	if (!page->mapping) {
2552 		unlock_page(page);
2553 		put_page(page);
2554 		goto repeat;
2555 	}
2556 
2557 	/* Someone else locked and filled the page in a very small window */
2558 	if (PageUptodate(page)) {
2559 		unlock_page(page);
2560 		goto out;
2561 	}
2562 	goto filler;
2563 
2564 out:
2565 	mark_page_accessed(page);
2566 	return page;
2567 }
2568 
2569 /**
2570  * read_cache_page - read into page cache, fill it if needed
2571  * @mapping:	the page's address_space
2572  * @index:	the page index
2573  * @filler:	function to perform the read
2574  * @data:	first arg to filler(data, page) function, often left as NULL
2575  *
2576  * Read into the page cache. If a page already exists, and PageUptodate() is
2577  * not set, try to fill the page and wait for it to become unlocked.
2578  *
2579  * If the page does not get brought uptodate, return -EIO.
2580  */
2581 struct page *read_cache_page(struct address_space *mapping,
2582 				pgoff_t index,
2583 				int (*filler)(void *, struct page *),
2584 				void *data)
2585 {
2586 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2587 }
2588 EXPORT_SYMBOL(read_cache_page);
2589 
2590 /**
2591  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2592  * @mapping:	the page's address_space
2593  * @index:	the page index
2594  * @gfp:	the page allocator flags to use if allocating
2595  *
2596  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2597  * any new page allocations done using the specified allocation flags.
2598  *
2599  * If the page does not get brought uptodate, return -EIO.
2600  */
2601 struct page *read_cache_page_gfp(struct address_space *mapping,
2602 				pgoff_t index,
2603 				gfp_t gfp)
2604 {
2605 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2606 
2607 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2608 }
2609 EXPORT_SYMBOL(read_cache_page_gfp);
2610 
2611 /*
2612  * Performs necessary checks before doing a write
2613  *
2614  * Can adjust writing position or amount of bytes to write.
2615  * Returns appropriate error code that caller should return or
2616  * zero in case that write should be allowed.
2617  */
2618 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2619 {
2620 	struct file *file = iocb->ki_filp;
2621 	struct inode *inode = file->f_mapping->host;
2622 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2623 	loff_t pos;
2624 
2625 	if (!iov_iter_count(from))
2626 		return 0;
2627 
2628 	/* FIXME: this is for backwards compatibility with 2.4 */
2629 	if (iocb->ki_flags & IOCB_APPEND)
2630 		iocb->ki_pos = i_size_read(inode);
2631 
2632 	pos = iocb->ki_pos;
2633 
2634 	if (limit != RLIM_INFINITY) {
2635 		if (iocb->ki_pos >= limit) {
2636 			send_sig(SIGXFSZ, current, 0);
2637 			return -EFBIG;
2638 		}
2639 		iov_iter_truncate(from, limit - (unsigned long)pos);
2640 	}
2641 
2642 	/*
2643 	 * LFS rule
2644 	 */
2645 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2646 				!(file->f_flags & O_LARGEFILE))) {
2647 		if (pos >= MAX_NON_LFS)
2648 			return -EFBIG;
2649 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2650 	}
2651 
2652 	/*
2653 	 * Are we about to exceed the fs block limit ?
2654 	 *
2655 	 * If we have written data it becomes a short write.  If we have
2656 	 * exceeded without writing data we send a signal and return EFBIG.
2657 	 * Linus frestrict idea will clean these up nicely..
2658 	 */
2659 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2660 		return -EFBIG;
2661 
2662 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2663 	return iov_iter_count(from);
2664 }
2665 EXPORT_SYMBOL(generic_write_checks);
2666 
2667 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2668 				loff_t pos, unsigned len, unsigned flags,
2669 				struct page **pagep, void **fsdata)
2670 {
2671 	const struct address_space_operations *aops = mapping->a_ops;
2672 
2673 	return aops->write_begin(file, mapping, pos, len, flags,
2674 							pagep, fsdata);
2675 }
2676 EXPORT_SYMBOL(pagecache_write_begin);
2677 
2678 int pagecache_write_end(struct file *file, struct address_space *mapping,
2679 				loff_t pos, unsigned len, unsigned copied,
2680 				struct page *page, void *fsdata)
2681 {
2682 	const struct address_space_operations *aops = mapping->a_ops;
2683 
2684 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2685 }
2686 EXPORT_SYMBOL(pagecache_write_end);
2687 
2688 ssize_t
2689 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2690 {
2691 	struct file	*file = iocb->ki_filp;
2692 	struct address_space *mapping = file->f_mapping;
2693 	struct inode	*inode = mapping->host;
2694 	loff_t		pos = iocb->ki_pos;
2695 	ssize_t		written;
2696 	size_t		write_len;
2697 	pgoff_t		end;
2698 	struct iov_iter data;
2699 
2700 	write_len = iov_iter_count(from);
2701 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2702 
2703 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2704 	if (written)
2705 		goto out;
2706 
2707 	/*
2708 	 * After a write we want buffered reads to be sure to go to disk to get
2709 	 * the new data.  We invalidate clean cached page from the region we're
2710 	 * about to write.  We do this *before* the write so that we can return
2711 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2712 	 */
2713 	if (mapping->nrpages) {
2714 		written = invalidate_inode_pages2_range(mapping,
2715 					pos >> PAGE_SHIFT, end);
2716 		/*
2717 		 * If a page can not be invalidated, return 0 to fall back
2718 		 * to buffered write.
2719 		 */
2720 		if (written) {
2721 			if (written == -EBUSY)
2722 				return 0;
2723 			goto out;
2724 		}
2725 	}
2726 
2727 	data = *from;
2728 	written = mapping->a_ops->direct_IO(iocb, &data);
2729 
2730 	/*
2731 	 * Finally, try again to invalidate clean pages which might have been
2732 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2733 	 * if the source of the write was an mmap'ed region of the file
2734 	 * we're writing.  Either one is a pretty crazy thing to do,
2735 	 * so we don't support it 100%.  If this invalidation
2736 	 * fails, tough, the write still worked...
2737 	 */
2738 	if (mapping->nrpages) {
2739 		invalidate_inode_pages2_range(mapping,
2740 					      pos >> PAGE_SHIFT, end);
2741 	}
2742 
2743 	if (written > 0) {
2744 		pos += written;
2745 		iov_iter_advance(from, written);
2746 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2747 			i_size_write(inode, pos);
2748 			mark_inode_dirty(inode);
2749 		}
2750 		iocb->ki_pos = pos;
2751 	}
2752 out:
2753 	return written;
2754 }
2755 EXPORT_SYMBOL(generic_file_direct_write);
2756 
2757 /*
2758  * Find or create a page at the given pagecache position. Return the locked
2759  * page. This function is specifically for buffered writes.
2760  */
2761 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2762 					pgoff_t index, unsigned flags)
2763 {
2764 	struct page *page;
2765 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2766 
2767 	if (flags & AOP_FLAG_NOFS)
2768 		fgp_flags |= FGP_NOFS;
2769 
2770 	page = pagecache_get_page(mapping, index, fgp_flags,
2771 			mapping_gfp_mask(mapping));
2772 	if (page)
2773 		wait_for_stable_page(page);
2774 
2775 	return page;
2776 }
2777 EXPORT_SYMBOL(grab_cache_page_write_begin);
2778 
2779 ssize_t generic_perform_write(struct file *file,
2780 				struct iov_iter *i, loff_t pos)
2781 {
2782 	struct address_space *mapping = file->f_mapping;
2783 	const struct address_space_operations *a_ops = mapping->a_ops;
2784 	long status = 0;
2785 	ssize_t written = 0;
2786 	unsigned int flags = 0;
2787 
2788 	/*
2789 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2790 	 */
2791 	if (!iter_is_iovec(i))
2792 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2793 
2794 	do {
2795 		struct page *page;
2796 		unsigned long offset;	/* Offset into pagecache page */
2797 		unsigned long bytes;	/* Bytes to write to page */
2798 		size_t copied;		/* Bytes copied from user */
2799 		void *fsdata;
2800 
2801 		offset = (pos & (PAGE_SIZE - 1));
2802 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2803 						iov_iter_count(i));
2804 
2805 again:
2806 		/*
2807 		 * Bring in the user page that we will copy from _first_.
2808 		 * Otherwise there's a nasty deadlock on copying from the
2809 		 * same page as we're writing to, without it being marked
2810 		 * up-to-date.
2811 		 *
2812 		 * Not only is this an optimisation, but it is also required
2813 		 * to check that the address is actually valid, when atomic
2814 		 * usercopies are used, below.
2815 		 */
2816 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2817 			status = -EFAULT;
2818 			break;
2819 		}
2820 
2821 		if (fatal_signal_pending(current)) {
2822 			status = -EINTR;
2823 			break;
2824 		}
2825 
2826 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2827 						&page, &fsdata);
2828 		if (unlikely(status < 0))
2829 			break;
2830 
2831 		if (mapping_writably_mapped(mapping))
2832 			flush_dcache_page(page);
2833 
2834 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2835 		flush_dcache_page(page);
2836 
2837 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2838 						page, fsdata);
2839 		if (unlikely(status < 0))
2840 			break;
2841 		copied = status;
2842 
2843 		cond_resched();
2844 
2845 		iov_iter_advance(i, copied);
2846 		if (unlikely(copied == 0)) {
2847 			/*
2848 			 * If we were unable to copy any data at all, we must
2849 			 * fall back to a single segment length write.
2850 			 *
2851 			 * If we didn't fallback here, we could livelock
2852 			 * because not all segments in the iov can be copied at
2853 			 * once without a pagefault.
2854 			 */
2855 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2856 						iov_iter_single_seg_count(i));
2857 			goto again;
2858 		}
2859 		pos += copied;
2860 		written += copied;
2861 
2862 		balance_dirty_pages_ratelimited(mapping);
2863 	} while (iov_iter_count(i));
2864 
2865 	return written ? written : status;
2866 }
2867 EXPORT_SYMBOL(generic_perform_write);
2868 
2869 /**
2870  * __generic_file_write_iter - write data to a file
2871  * @iocb:	IO state structure (file, offset, etc.)
2872  * @from:	iov_iter with data to write
2873  *
2874  * This function does all the work needed for actually writing data to a
2875  * file. It does all basic checks, removes SUID from the file, updates
2876  * modification times and calls proper subroutines depending on whether we
2877  * do direct IO or a standard buffered write.
2878  *
2879  * It expects i_mutex to be grabbed unless we work on a block device or similar
2880  * object which does not need locking at all.
2881  *
2882  * This function does *not* take care of syncing data in case of O_SYNC write.
2883  * A caller has to handle it. This is mainly due to the fact that we want to
2884  * avoid syncing under i_mutex.
2885  */
2886 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2887 {
2888 	struct file *file = iocb->ki_filp;
2889 	struct address_space * mapping = file->f_mapping;
2890 	struct inode 	*inode = mapping->host;
2891 	ssize_t		written = 0;
2892 	ssize_t		err;
2893 	ssize_t		status;
2894 
2895 	/* We can write back this queue in page reclaim */
2896 	current->backing_dev_info = inode_to_bdi(inode);
2897 	err = file_remove_privs(file);
2898 	if (err)
2899 		goto out;
2900 
2901 	err = file_update_time(file);
2902 	if (err)
2903 		goto out;
2904 
2905 	if (iocb->ki_flags & IOCB_DIRECT) {
2906 		loff_t pos, endbyte;
2907 
2908 		written = generic_file_direct_write(iocb, from);
2909 		/*
2910 		 * If the write stopped short of completing, fall back to
2911 		 * buffered writes.  Some filesystems do this for writes to
2912 		 * holes, for example.  For DAX files, a buffered write will
2913 		 * not succeed (even if it did, DAX does not handle dirty
2914 		 * page-cache pages correctly).
2915 		 */
2916 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2917 			goto out;
2918 
2919 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2920 		/*
2921 		 * If generic_perform_write() returned a synchronous error
2922 		 * then we want to return the number of bytes which were
2923 		 * direct-written, or the error code if that was zero.  Note
2924 		 * that this differs from normal direct-io semantics, which
2925 		 * will return -EFOO even if some bytes were written.
2926 		 */
2927 		if (unlikely(status < 0)) {
2928 			err = status;
2929 			goto out;
2930 		}
2931 		/*
2932 		 * We need to ensure that the page cache pages are written to
2933 		 * disk and invalidated to preserve the expected O_DIRECT
2934 		 * semantics.
2935 		 */
2936 		endbyte = pos + status - 1;
2937 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2938 		if (err == 0) {
2939 			iocb->ki_pos = endbyte + 1;
2940 			written += status;
2941 			invalidate_mapping_pages(mapping,
2942 						 pos >> PAGE_SHIFT,
2943 						 endbyte >> PAGE_SHIFT);
2944 		} else {
2945 			/*
2946 			 * We don't know how much we wrote, so just return
2947 			 * the number of bytes which were direct-written
2948 			 */
2949 		}
2950 	} else {
2951 		written = generic_perform_write(file, from, iocb->ki_pos);
2952 		if (likely(written > 0))
2953 			iocb->ki_pos += written;
2954 	}
2955 out:
2956 	current->backing_dev_info = NULL;
2957 	return written ? written : err;
2958 }
2959 EXPORT_SYMBOL(__generic_file_write_iter);
2960 
2961 /**
2962  * generic_file_write_iter - write data to a file
2963  * @iocb:	IO state structure
2964  * @from:	iov_iter with data to write
2965  *
2966  * This is a wrapper around __generic_file_write_iter() to be used by most
2967  * filesystems. It takes care of syncing the file in case of O_SYNC file
2968  * and acquires i_mutex as needed.
2969  */
2970 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2971 {
2972 	struct file *file = iocb->ki_filp;
2973 	struct inode *inode = file->f_mapping->host;
2974 	ssize_t ret;
2975 
2976 	inode_lock(inode);
2977 	ret = generic_write_checks(iocb, from);
2978 	if (ret > 0)
2979 		ret = __generic_file_write_iter(iocb, from);
2980 	inode_unlock(inode);
2981 
2982 	if (ret > 0)
2983 		ret = generic_write_sync(iocb, ret);
2984 	return ret;
2985 }
2986 EXPORT_SYMBOL(generic_file_write_iter);
2987 
2988 /**
2989  * try_to_release_page() - release old fs-specific metadata on a page
2990  *
2991  * @page: the page which the kernel is trying to free
2992  * @gfp_mask: memory allocation flags (and I/O mode)
2993  *
2994  * The address_space is to try to release any data against the page
2995  * (presumably at page->private).  If the release was successful, return `1'.
2996  * Otherwise return zero.
2997  *
2998  * This may also be called if PG_fscache is set on a page, indicating that the
2999  * page is known to the local caching routines.
3000  *
3001  * The @gfp_mask argument specifies whether I/O may be performed to release
3002  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3003  *
3004  */
3005 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3006 {
3007 	struct address_space * const mapping = page->mapping;
3008 
3009 	BUG_ON(!PageLocked(page));
3010 	if (PageWriteback(page))
3011 		return 0;
3012 
3013 	if (mapping && mapping->a_ops->releasepage)
3014 		return mapping->a_ops->releasepage(page, gfp_mask);
3015 	return try_to_free_buffers(page);
3016 }
3017 
3018 EXPORT_SYMBOL(try_to_release_page);
3019