xref: /linux/mm/filemap.c (revision 4c8644f86c854c214aaabbcc24a27fa4c7e6a951)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <asm/pgalloc.h>
50 #include <asm/tlbflush.h>
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/filemap.h>
55 
56 /*
57  * FIXME: remove all knowledge of the buffer layer from the core VM
58  */
59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 
61 #include <asm/mman.h>
62 
63 #include "swap.h"
64 
65 /*
66  * Shared mappings implemented 30.11.1994. It's not fully working yet,
67  * though.
68  *
69  * Shared mappings now work. 15.8.1995  Bruno.
70  *
71  * finished 'unifying' the page and buffer cache and SMP-threaded the
72  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73  *
74  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75  */
76 
77 /*
78  * Lock ordering:
79  *
80  *  ->i_mmap_rwsem		(truncate_pagecache)
81  *    ->private_lock		(__free_pte->block_dirty_folio)
82  *      ->swap_lock		(exclusive_swap_page, others)
83  *        ->i_pages lock
84  *
85  *  ->i_rwsem
86  *    ->invalidate_lock		(acquired by fs in truncate path)
87  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
88  *
89  *  ->mmap_lock
90  *    ->i_mmap_rwsem
91  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
92  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
93  *
94  *  ->mmap_lock
95  *    ->invalidate_lock		(filemap_fault)
96  *      ->lock_page		(filemap_fault, access_process_vm)
97  *
98  *  ->i_rwsem			(generic_perform_write)
99  *    ->mmap_lock		(fault_in_readable->do_page_fault)
100  *
101  *  bdi->wb.list_lock
102  *    sb_lock			(fs/fs-writeback.c)
103  *    ->i_pages lock		(__sync_single_inode)
104  *
105  *  ->i_mmap_rwsem
106  *    ->anon_vma.lock		(vma_merge)
107  *
108  *  ->anon_vma.lock
109  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
110  *
111  *  ->page_table_lock or pte_lock
112  *    ->swap_lock		(try_to_unmap_one)
113  *    ->private_lock		(try_to_unmap_one)
114  *    ->i_pages lock		(try_to_unmap_one)
115  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
116  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
117  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
118  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
127 static void page_cache_delete(struct address_space *mapping,
128 				   struct folio *folio, void *shadow)
129 {
130 	XA_STATE(xas, &mapping->i_pages, folio->index);
131 	long nr = 1;
132 
133 	mapping_set_update(&xas, mapping);
134 
135 	xas_set_order(&xas, folio->index, folio_order(folio));
136 	nr = folio_nr_pages(folio);
137 
138 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	folio->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void filemap_unaccount_folio(struct address_space *mapping,
149 		struct folio *folio)
150 {
151 	long nr;
152 
153 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
154 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
155 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
156 			 current->comm, folio_pfn(folio));
157 		dump_page(&folio->page, "still mapped when deleted");
158 		dump_stack();
159 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
160 
161 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
162 			int mapcount = page_mapcount(&folio->page);
163 
164 			if (folio_ref_count(folio) >= mapcount + 2) {
165 				/*
166 				 * All vmas have already been torn down, so it's
167 				 * a good bet that actually the page is unmapped
168 				 * and we'd rather not leak it: if we're wrong,
169 				 * another bad page check should catch it later.
170 				 */
171 				page_mapcount_reset(&folio->page);
172 				folio_ref_sub(folio, mapcount);
173 			}
174 		}
175 	}
176 
177 	/* hugetlb folios do not participate in page cache accounting. */
178 	if (folio_test_hugetlb(folio))
179 		return;
180 
181 	nr = folio_nr_pages(folio);
182 
183 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
184 	if (folio_test_swapbacked(folio)) {
185 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
186 		if (folio_test_pmd_mappable(folio))
187 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
188 	} else if (folio_test_pmd_mappable(folio)) {
189 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
190 		filemap_nr_thps_dec(mapping);
191 	}
192 
193 	/*
194 	 * At this point folio must be either written or cleaned by
195 	 * truncate.  Dirty folio here signals a bug and loss of
196 	 * unwritten data - on ordinary filesystems.
197 	 *
198 	 * But it's harmless on in-memory filesystems like tmpfs; and can
199 	 * occur when a driver which did get_user_pages() sets page dirty
200 	 * before putting it, while the inode is being finally evicted.
201 	 *
202 	 * Below fixes dirty accounting after removing the folio entirely
203 	 * but leaves the dirty flag set: it has no effect for truncated
204 	 * folio and anyway will be cleared before returning folio to
205 	 * buddy allocator.
206 	 */
207 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
208 			 mapping_can_writeback(mapping)))
209 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
210 }
211 
212 /*
213  * Delete a page from the page cache and free it. Caller has to make
214  * sure the page is locked and that nobody else uses it - or that usage
215  * is safe.  The caller must hold the i_pages lock.
216  */
217 void __filemap_remove_folio(struct folio *folio, void *shadow)
218 {
219 	struct address_space *mapping = folio->mapping;
220 
221 	trace_mm_filemap_delete_from_page_cache(folio);
222 	filemap_unaccount_folio(mapping, folio);
223 	page_cache_delete(mapping, folio, shadow);
224 }
225 
226 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
227 {
228 	void (*free_folio)(struct folio *);
229 	int refs = 1;
230 
231 	free_folio = mapping->a_ops->free_folio;
232 	if (free_folio)
233 		free_folio(folio);
234 
235 	if (folio_test_large(folio))
236 		refs = folio_nr_pages(folio);
237 	folio_put_refs(folio, refs);
238 }
239 
240 /**
241  * filemap_remove_folio - Remove folio from page cache.
242  * @folio: The folio.
243  *
244  * This must be called only on folios that are locked and have been
245  * verified to be in the page cache.  It will never put the folio into
246  * the free list because the caller has a reference on the page.
247  */
248 void filemap_remove_folio(struct folio *folio)
249 {
250 	struct address_space *mapping = folio->mapping;
251 
252 	BUG_ON(!folio_test_locked(folio));
253 	spin_lock(&mapping->host->i_lock);
254 	xa_lock_irq(&mapping->i_pages);
255 	__filemap_remove_folio(folio, NULL);
256 	xa_unlock_irq(&mapping->i_pages);
257 	if (mapping_shrinkable(mapping))
258 		inode_add_lru(mapping->host);
259 	spin_unlock(&mapping->host->i_lock);
260 
261 	filemap_free_folio(mapping, folio);
262 }
263 
264 /*
265  * page_cache_delete_batch - delete several folios from page cache
266  * @mapping: the mapping to which folios belong
267  * @fbatch: batch of folios to delete
268  *
269  * The function walks over mapping->i_pages and removes folios passed in
270  * @fbatch from the mapping. The function expects @fbatch to be sorted
271  * by page index and is optimised for it to be dense.
272  * It tolerates holes in @fbatch (mapping entries at those indices are not
273  * modified).
274  *
275  * The function expects the i_pages lock to be held.
276  */
277 static void page_cache_delete_batch(struct address_space *mapping,
278 			     struct folio_batch *fbatch)
279 {
280 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
281 	long total_pages = 0;
282 	int i = 0;
283 	struct folio *folio;
284 
285 	mapping_set_update(&xas, mapping);
286 	xas_for_each(&xas, folio, ULONG_MAX) {
287 		if (i >= folio_batch_count(fbatch))
288 			break;
289 
290 		/* A swap/dax/shadow entry got inserted? Skip it. */
291 		if (xa_is_value(folio))
292 			continue;
293 		/*
294 		 * A page got inserted in our range? Skip it. We have our
295 		 * pages locked so they are protected from being removed.
296 		 * If we see a page whose index is higher than ours, it
297 		 * means our page has been removed, which shouldn't be
298 		 * possible because we're holding the PageLock.
299 		 */
300 		if (folio != fbatch->folios[i]) {
301 			VM_BUG_ON_FOLIO(folio->index >
302 					fbatch->folios[i]->index, folio);
303 			continue;
304 		}
305 
306 		WARN_ON_ONCE(!folio_test_locked(folio));
307 
308 		folio->mapping = NULL;
309 		/* Leave folio->index set: truncation lookup relies on it */
310 
311 		i++;
312 		xas_store(&xas, NULL);
313 		total_pages += folio_nr_pages(folio);
314 	}
315 	mapping->nrpages -= total_pages;
316 }
317 
318 void delete_from_page_cache_batch(struct address_space *mapping,
319 				  struct folio_batch *fbatch)
320 {
321 	int i;
322 
323 	if (!folio_batch_count(fbatch))
324 		return;
325 
326 	spin_lock(&mapping->host->i_lock);
327 	xa_lock_irq(&mapping->i_pages);
328 	for (i = 0; i < folio_batch_count(fbatch); i++) {
329 		struct folio *folio = fbatch->folios[i];
330 
331 		trace_mm_filemap_delete_from_page_cache(folio);
332 		filemap_unaccount_folio(mapping, folio);
333 	}
334 	page_cache_delete_batch(mapping, fbatch);
335 	xa_unlock_irq(&mapping->i_pages);
336 	if (mapping_shrinkable(mapping))
337 		inode_add_lru(mapping->host);
338 	spin_unlock(&mapping->host->i_lock);
339 
340 	for (i = 0; i < folio_batch_count(fbatch); i++)
341 		filemap_free_folio(mapping, fbatch->folios[i]);
342 }
343 
344 int filemap_check_errors(struct address_space *mapping)
345 {
346 	int ret = 0;
347 	/* Check for outstanding write errors */
348 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
349 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
350 		ret = -ENOSPC;
351 	if (test_bit(AS_EIO, &mapping->flags) &&
352 	    test_and_clear_bit(AS_EIO, &mapping->flags))
353 		ret = -EIO;
354 	return ret;
355 }
356 EXPORT_SYMBOL(filemap_check_errors);
357 
358 static int filemap_check_and_keep_errors(struct address_space *mapping)
359 {
360 	/* Check for outstanding write errors */
361 	if (test_bit(AS_EIO, &mapping->flags))
362 		return -EIO;
363 	if (test_bit(AS_ENOSPC, &mapping->flags))
364 		return -ENOSPC;
365 	return 0;
366 }
367 
368 /**
369  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
370  * @mapping:	address space structure to write
371  * @wbc:	the writeback_control controlling the writeout
372  *
373  * Call writepages on the mapping using the provided wbc to control the
374  * writeout.
375  *
376  * Return: %0 on success, negative error code otherwise.
377  */
378 int filemap_fdatawrite_wbc(struct address_space *mapping,
379 			   struct writeback_control *wbc)
380 {
381 	int ret;
382 
383 	if (!mapping_can_writeback(mapping) ||
384 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
385 		return 0;
386 
387 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
388 	ret = do_writepages(mapping, wbc);
389 	wbc_detach_inode(wbc);
390 	return ret;
391 }
392 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
393 
394 /**
395  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
396  * @mapping:	address space structure to write
397  * @start:	offset in bytes where the range starts
398  * @end:	offset in bytes where the range ends (inclusive)
399  * @sync_mode:	enable synchronous operation
400  *
401  * Start writeback against all of a mapping's dirty pages that lie
402  * within the byte offsets <start, end> inclusive.
403  *
404  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
405  * opposed to a regular memory cleansing writeback.  The difference between
406  * these two operations is that if a dirty page/buffer is encountered, it must
407  * be waited upon, and not just skipped over.
408  *
409  * Return: %0 on success, negative error code otherwise.
410  */
411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
412 				loff_t end, int sync_mode)
413 {
414 	struct writeback_control wbc = {
415 		.sync_mode = sync_mode,
416 		.nr_to_write = LONG_MAX,
417 		.range_start = start,
418 		.range_end = end,
419 	};
420 
421 	return filemap_fdatawrite_wbc(mapping, &wbc);
422 }
423 
424 static inline int __filemap_fdatawrite(struct address_space *mapping,
425 	int sync_mode)
426 {
427 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
428 }
429 
430 int filemap_fdatawrite(struct address_space *mapping)
431 {
432 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
433 }
434 EXPORT_SYMBOL(filemap_fdatawrite);
435 
436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
437 				loff_t end)
438 {
439 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
440 }
441 EXPORT_SYMBOL(filemap_fdatawrite_range);
442 
443 /**
444  * filemap_flush - mostly a non-blocking flush
445  * @mapping:	target address_space
446  *
447  * This is a mostly non-blocking flush.  Not suitable for data-integrity
448  * purposes - I/O may not be started against all dirty pages.
449  *
450  * Return: %0 on success, negative error code otherwise.
451  */
452 int filemap_flush(struct address_space *mapping)
453 {
454 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
455 }
456 EXPORT_SYMBOL(filemap_flush);
457 
458 /**
459  * filemap_range_has_page - check if a page exists in range.
460  * @mapping:           address space within which to check
461  * @start_byte:        offset in bytes where the range starts
462  * @end_byte:          offset in bytes where the range ends (inclusive)
463  *
464  * Find at least one page in the range supplied, usually used to check if
465  * direct writing in this range will trigger a writeback.
466  *
467  * Return: %true if at least one page exists in the specified range,
468  * %false otherwise.
469  */
470 bool filemap_range_has_page(struct address_space *mapping,
471 			   loff_t start_byte, loff_t end_byte)
472 {
473 	struct folio *folio;
474 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
475 	pgoff_t max = end_byte >> PAGE_SHIFT;
476 
477 	if (end_byte < start_byte)
478 		return false;
479 
480 	rcu_read_lock();
481 	for (;;) {
482 		folio = xas_find(&xas, max);
483 		if (xas_retry(&xas, folio))
484 			continue;
485 		/* Shadow entries don't count */
486 		if (xa_is_value(folio))
487 			continue;
488 		/*
489 		 * We don't need to try to pin this page; we're about to
490 		 * release the RCU lock anyway.  It is enough to know that
491 		 * there was a page here recently.
492 		 */
493 		break;
494 	}
495 	rcu_read_unlock();
496 
497 	return folio != NULL;
498 }
499 EXPORT_SYMBOL(filemap_range_has_page);
500 
501 static void __filemap_fdatawait_range(struct address_space *mapping,
502 				     loff_t start_byte, loff_t end_byte)
503 {
504 	pgoff_t index = start_byte >> PAGE_SHIFT;
505 	pgoff_t end = end_byte >> PAGE_SHIFT;
506 	struct folio_batch fbatch;
507 	unsigned nr_folios;
508 
509 	folio_batch_init(&fbatch);
510 
511 	while (index <= end) {
512 		unsigned i;
513 
514 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
515 				PAGECACHE_TAG_WRITEBACK, &fbatch);
516 
517 		if (!nr_folios)
518 			break;
519 
520 		for (i = 0; i < nr_folios; i++) {
521 			struct folio *folio = fbatch.folios[i];
522 
523 			folio_wait_writeback(folio);
524 			folio_clear_error(folio);
525 		}
526 		folio_batch_release(&fbatch);
527 		cond_resched();
528 	}
529 }
530 
531 /**
532  * filemap_fdatawait_range - wait for writeback to complete
533  * @mapping:		address space structure to wait for
534  * @start_byte:		offset in bytes where the range starts
535  * @end_byte:		offset in bytes where the range ends (inclusive)
536  *
537  * Walk the list of under-writeback pages of the given address space
538  * in the given range and wait for all of them.  Check error status of
539  * the address space and return it.
540  *
541  * Since the error status of the address space is cleared by this function,
542  * callers are responsible for checking the return value and handling and/or
543  * reporting the error.
544  *
545  * Return: error status of the address space.
546  */
547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
548 			    loff_t end_byte)
549 {
550 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
551 	return filemap_check_errors(mapping);
552 }
553 EXPORT_SYMBOL(filemap_fdatawait_range);
554 
555 /**
556  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
557  * @mapping:		address space structure to wait for
558  * @start_byte:		offset in bytes where the range starts
559  * @end_byte:		offset in bytes where the range ends (inclusive)
560  *
561  * Walk the list of under-writeback pages of the given address space in the
562  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
563  * this function does not clear error status of the address space.
564  *
565  * Use this function if callers don't handle errors themselves.  Expected
566  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
567  * fsfreeze(8)
568  */
569 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
570 		loff_t start_byte, loff_t end_byte)
571 {
572 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
573 	return filemap_check_and_keep_errors(mapping);
574 }
575 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
576 
577 /**
578  * file_fdatawait_range - wait for writeback to complete
579  * @file:		file pointing to address space structure to wait for
580  * @start_byte:		offset in bytes where the range starts
581  * @end_byte:		offset in bytes where the range ends (inclusive)
582  *
583  * Walk the list of under-writeback pages of the address space that file
584  * refers to, in the given range and wait for all of them.  Check error
585  * status of the address space vs. the file->f_wb_err cursor and return it.
586  *
587  * Since the error status of the file is advanced by this function,
588  * callers are responsible for checking the return value and handling and/or
589  * reporting the error.
590  *
591  * Return: error status of the address space vs. the file->f_wb_err cursor.
592  */
593 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
594 {
595 	struct address_space *mapping = file->f_mapping;
596 
597 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
598 	return file_check_and_advance_wb_err(file);
599 }
600 EXPORT_SYMBOL(file_fdatawait_range);
601 
602 /**
603  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
604  * @mapping: address space structure to wait for
605  *
606  * Walk the list of under-writeback pages of the given address space
607  * and wait for all of them.  Unlike filemap_fdatawait(), this function
608  * does not clear error status of the address space.
609  *
610  * Use this function if callers don't handle errors themselves.  Expected
611  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
612  * fsfreeze(8)
613  *
614  * Return: error status of the address space.
615  */
616 int filemap_fdatawait_keep_errors(struct address_space *mapping)
617 {
618 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
619 	return filemap_check_and_keep_errors(mapping);
620 }
621 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
622 
623 /* Returns true if writeback might be needed or already in progress. */
624 static bool mapping_needs_writeback(struct address_space *mapping)
625 {
626 	return mapping->nrpages;
627 }
628 
629 bool filemap_range_has_writeback(struct address_space *mapping,
630 				 loff_t start_byte, loff_t end_byte)
631 {
632 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
633 	pgoff_t max = end_byte >> PAGE_SHIFT;
634 	struct folio *folio;
635 
636 	if (end_byte < start_byte)
637 		return false;
638 
639 	rcu_read_lock();
640 	xas_for_each(&xas, folio, max) {
641 		if (xas_retry(&xas, folio))
642 			continue;
643 		if (xa_is_value(folio))
644 			continue;
645 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
646 				folio_test_writeback(folio))
647 			break;
648 	}
649 	rcu_read_unlock();
650 	return folio != NULL;
651 }
652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
653 
654 /**
655  * filemap_write_and_wait_range - write out & wait on a file range
656  * @mapping:	the address_space for the pages
657  * @lstart:	offset in bytes where the range starts
658  * @lend:	offset in bytes where the range ends (inclusive)
659  *
660  * Write out and wait upon file offsets lstart->lend, inclusive.
661  *
662  * Note that @lend is inclusive (describes the last byte to be written) so
663  * that this function can be used to write to the very end-of-file (end = -1).
664  *
665  * Return: error status of the address space.
666  */
667 int filemap_write_and_wait_range(struct address_space *mapping,
668 				 loff_t lstart, loff_t lend)
669 {
670 	int err = 0, err2;
671 
672 	if (lend < lstart)
673 		return 0;
674 
675 	if (mapping_needs_writeback(mapping)) {
676 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
677 						 WB_SYNC_ALL);
678 		/*
679 		 * Even if the above returned error, the pages may be
680 		 * written partially (e.g. -ENOSPC), so we wait for it.
681 		 * But the -EIO is special case, it may indicate the worst
682 		 * thing (e.g. bug) happened, so we avoid waiting for it.
683 		 */
684 		if (err != -EIO)
685 			__filemap_fdatawait_range(mapping, lstart, lend);
686 	}
687 	err2 = filemap_check_errors(mapping);
688 	if (!err)
689 		err = err2;
690 	return err;
691 }
692 EXPORT_SYMBOL(filemap_write_and_wait_range);
693 
694 void __filemap_set_wb_err(struct address_space *mapping, int err)
695 {
696 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
697 
698 	trace_filemap_set_wb_err(mapping, eseq);
699 }
700 EXPORT_SYMBOL(__filemap_set_wb_err);
701 
702 /**
703  * file_check_and_advance_wb_err - report wb error (if any) that was previously
704  * 				   and advance wb_err to current one
705  * @file: struct file on which the error is being reported
706  *
707  * When userland calls fsync (or something like nfsd does the equivalent), we
708  * want to report any writeback errors that occurred since the last fsync (or
709  * since the file was opened if there haven't been any).
710  *
711  * Grab the wb_err from the mapping. If it matches what we have in the file,
712  * then just quickly return 0. The file is all caught up.
713  *
714  * If it doesn't match, then take the mapping value, set the "seen" flag in
715  * it and try to swap it into place. If it works, or another task beat us
716  * to it with the new value, then update the f_wb_err and return the error
717  * portion. The error at this point must be reported via proper channels
718  * (a'la fsync, or NFS COMMIT operation, etc.).
719  *
720  * While we handle mapping->wb_err with atomic operations, the f_wb_err
721  * value is protected by the f_lock since we must ensure that it reflects
722  * the latest value swapped in for this file descriptor.
723  *
724  * Return: %0 on success, negative error code otherwise.
725  */
726 int file_check_and_advance_wb_err(struct file *file)
727 {
728 	int err = 0;
729 	errseq_t old = READ_ONCE(file->f_wb_err);
730 	struct address_space *mapping = file->f_mapping;
731 
732 	/* Locklessly handle the common case where nothing has changed */
733 	if (errseq_check(&mapping->wb_err, old)) {
734 		/* Something changed, must use slow path */
735 		spin_lock(&file->f_lock);
736 		old = file->f_wb_err;
737 		err = errseq_check_and_advance(&mapping->wb_err,
738 						&file->f_wb_err);
739 		trace_file_check_and_advance_wb_err(file, old);
740 		spin_unlock(&file->f_lock);
741 	}
742 
743 	/*
744 	 * We're mostly using this function as a drop in replacement for
745 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
746 	 * that the legacy code would have had on these flags.
747 	 */
748 	clear_bit(AS_EIO, &mapping->flags);
749 	clear_bit(AS_ENOSPC, &mapping->flags);
750 	return err;
751 }
752 EXPORT_SYMBOL(file_check_and_advance_wb_err);
753 
754 /**
755  * file_write_and_wait_range - write out & wait on a file range
756  * @file:	file pointing to address_space with pages
757  * @lstart:	offset in bytes where the range starts
758  * @lend:	offset in bytes where the range ends (inclusive)
759  *
760  * Write out and wait upon file offsets lstart->lend, inclusive.
761  *
762  * Note that @lend is inclusive (describes the last byte to be written) so
763  * that this function can be used to write to the very end-of-file (end = -1).
764  *
765  * After writing out and waiting on the data, we check and advance the
766  * f_wb_err cursor to the latest value, and return any errors detected there.
767  *
768  * Return: %0 on success, negative error code otherwise.
769  */
770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
771 {
772 	int err = 0, err2;
773 	struct address_space *mapping = file->f_mapping;
774 
775 	if (lend < lstart)
776 		return 0;
777 
778 	if (mapping_needs_writeback(mapping)) {
779 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
780 						 WB_SYNC_ALL);
781 		/* See comment of filemap_write_and_wait() */
782 		if (err != -EIO)
783 			__filemap_fdatawait_range(mapping, lstart, lend);
784 	}
785 	err2 = file_check_and_advance_wb_err(file);
786 	if (!err)
787 		err = err2;
788 	return err;
789 }
790 EXPORT_SYMBOL(file_write_and_wait_range);
791 
792 /**
793  * replace_page_cache_folio - replace a pagecache folio with a new one
794  * @old:	folio to be replaced
795  * @new:	folio to replace with
796  *
797  * This function replaces a folio in the pagecache with a new one.  On
798  * success it acquires the pagecache reference for the new folio and
799  * drops it for the old folio.  Both the old and new folios must be
800  * locked.  This function does not add the new folio to the LRU, the
801  * caller must do that.
802  *
803  * The remove + add is atomic.  This function cannot fail.
804  */
805 void replace_page_cache_folio(struct folio *old, struct folio *new)
806 {
807 	struct address_space *mapping = old->mapping;
808 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
809 	pgoff_t offset = old->index;
810 	XA_STATE(xas, &mapping->i_pages, offset);
811 
812 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
813 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
814 	VM_BUG_ON_FOLIO(new->mapping, new);
815 
816 	folio_get(new);
817 	new->mapping = mapping;
818 	new->index = offset;
819 
820 	mem_cgroup_replace_folio(old, new);
821 
822 	xas_lock_irq(&xas);
823 	xas_store(&xas, new);
824 
825 	old->mapping = NULL;
826 	/* hugetlb pages do not participate in page cache accounting. */
827 	if (!folio_test_hugetlb(old))
828 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
829 	if (!folio_test_hugetlb(new))
830 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
831 	if (folio_test_swapbacked(old))
832 		__lruvec_stat_sub_folio(old, NR_SHMEM);
833 	if (folio_test_swapbacked(new))
834 		__lruvec_stat_add_folio(new, NR_SHMEM);
835 	xas_unlock_irq(&xas);
836 	if (free_folio)
837 		free_folio(old);
838 	folio_put(old);
839 }
840 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
841 
842 noinline int __filemap_add_folio(struct address_space *mapping,
843 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
844 {
845 	XA_STATE(xas, &mapping->i_pages, index);
846 	int huge = folio_test_hugetlb(folio);
847 	bool charged = false;
848 	long nr = 1;
849 
850 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
851 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
852 	mapping_set_update(&xas, mapping);
853 
854 	if (!huge) {
855 		int error = mem_cgroup_charge(folio, NULL, gfp);
856 		if (error)
857 			return error;
858 		charged = true;
859 	}
860 
861 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 	xas_set_order(&xas, index, folio_order(folio));
863 	nr = folio_nr_pages(folio);
864 
865 	gfp &= GFP_RECLAIM_MASK;
866 	folio_ref_add(folio, nr);
867 	folio->mapping = mapping;
868 	folio->index = xas.xa_index;
869 
870 	do {
871 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
872 		void *entry, *old = NULL;
873 
874 		if (order > folio_order(folio))
875 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
876 					order, gfp);
877 		xas_lock_irq(&xas);
878 		xas_for_each_conflict(&xas, entry) {
879 			old = entry;
880 			if (!xa_is_value(entry)) {
881 				xas_set_err(&xas, -EEXIST);
882 				goto unlock;
883 			}
884 		}
885 
886 		if (old) {
887 			if (shadowp)
888 				*shadowp = old;
889 			/* entry may have been split before we acquired lock */
890 			order = xa_get_order(xas.xa, xas.xa_index);
891 			if (order > folio_order(folio)) {
892 				/* How to handle large swap entries? */
893 				BUG_ON(shmem_mapping(mapping));
894 				xas_split(&xas, old, order);
895 				xas_reset(&xas);
896 			}
897 		}
898 
899 		xas_store(&xas, folio);
900 		if (xas_error(&xas))
901 			goto unlock;
902 
903 		mapping->nrpages += nr;
904 
905 		/* hugetlb pages do not participate in page cache accounting */
906 		if (!huge) {
907 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
908 			if (folio_test_pmd_mappable(folio))
909 				__lruvec_stat_mod_folio(folio,
910 						NR_FILE_THPS, nr);
911 		}
912 unlock:
913 		xas_unlock_irq(&xas);
914 	} while (xas_nomem(&xas, gfp));
915 
916 	if (xas_error(&xas))
917 		goto error;
918 
919 	trace_mm_filemap_add_to_page_cache(folio);
920 	return 0;
921 error:
922 	if (charged)
923 		mem_cgroup_uncharge(folio);
924 	folio->mapping = NULL;
925 	/* Leave page->index set: truncation relies upon it */
926 	folio_put_refs(folio, nr);
927 	return xas_error(&xas);
928 }
929 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
930 
931 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
932 				pgoff_t index, gfp_t gfp)
933 {
934 	void *shadow = NULL;
935 	int ret;
936 
937 	__folio_set_locked(folio);
938 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
939 	if (unlikely(ret))
940 		__folio_clear_locked(folio);
941 	else {
942 		/*
943 		 * The folio might have been evicted from cache only
944 		 * recently, in which case it should be activated like
945 		 * any other repeatedly accessed folio.
946 		 * The exception is folios getting rewritten; evicting other
947 		 * data from the working set, only to cache data that will
948 		 * get overwritten with something else, is a waste of memory.
949 		 */
950 		WARN_ON_ONCE(folio_test_active(folio));
951 		if (!(gfp & __GFP_WRITE) && shadow)
952 			workingset_refault(folio, shadow);
953 		folio_add_lru(folio);
954 	}
955 	return ret;
956 }
957 EXPORT_SYMBOL_GPL(filemap_add_folio);
958 
959 #ifdef CONFIG_NUMA
960 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
961 {
962 	int n;
963 	struct folio *folio;
964 
965 	if (cpuset_do_page_mem_spread()) {
966 		unsigned int cpuset_mems_cookie;
967 		do {
968 			cpuset_mems_cookie = read_mems_allowed_begin();
969 			n = cpuset_mem_spread_node();
970 			folio = __folio_alloc_node(gfp, order, n);
971 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
972 
973 		return folio;
974 	}
975 	return folio_alloc(gfp, order);
976 }
977 EXPORT_SYMBOL(filemap_alloc_folio);
978 #endif
979 
980 /*
981  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
982  *
983  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
984  *
985  * @mapping1: the first mapping to lock
986  * @mapping2: the second mapping to lock
987  */
988 void filemap_invalidate_lock_two(struct address_space *mapping1,
989 				 struct address_space *mapping2)
990 {
991 	if (mapping1 > mapping2)
992 		swap(mapping1, mapping2);
993 	if (mapping1)
994 		down_write(&mapping1->invalidate_lock);
995 	if (mapping2 && mapping1 != mapping2)
996 		down_write_nested(&mapping2->invalidate_lock, 1);
997 }
998 EXPORT_SYMBOL(filemap_invalidate_lock_two);
999 
1000 /*
1001  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1002  *
1003  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1004  *
1005  * @mapping1: the first mapping to unlock
1006  * @mapping2: the second mapping to unlock
1007  */
1008 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1009 				   struct address_space *mapping2)
1010 {
1011 	if (mapping1)
1012 		up_write(&mapping1->invalidate_lock);
1013 	if (mapping2 && mapping1 != mapping2)
1014 		up_write(&mapping2->invalidate_lock);
1015 }
1016 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1017 
1018 /*
1019  * In order to wait for pages to become available there must be
1020  * waitqueues associated with pages. By using a hash table of
1021  * waitqueues where the bucket discipline is to maintain all
1022  * waiters on the same queue and wake all when any of the pages
1023  * become available, and for the woken contexts to check to be
1024  * sure the appropriate page became available, this saves space
1025  * at a cost of "thundering herd" phenomena during rare hash
1026  * collisions.
1027  */
1028 #define PAGE_WAIT_TABLE_BITS 8
1029 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1030 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1031 
1032 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1033 {
1034 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1035 }
1036 
1037 void __init pagecache_init(void)
1038 {
1039 	int i;
1040 
1041 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1042 		init_waitqueue_head(&folio_wait_table[i]);
1043 
1044 	page_writeback_init();
1045 }
1046 
1047 /*
1048  * The page wait code treats the "wait->flags" somewhat unusually, because
1049  * we have multiple different kinds of waits, not just the usual "exclusive"
1050  * one.
1051  *
1052  * We have:
1053  *
1054  *  (a) no special bits set:
1055  *
1056  *	We're just waiting for the bit to be released, and when a waker
1057  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1058  *	and remove it from the wait queue.
1059  *
1060  *	Simple and straightforward.
1061  *
1062  *  (b) WQ_FLAG_EXCLUSIVE:
1063  *
1064  *	The waiter is waiting to get the lock, and only one waiter should
1065  *	be woken up to avoid any thundering herd behavior. We'll set the
1066  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1067  *
1068  *	This is the traditional exclusive wait.
1069  *
1070  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1071  *
1072  *	The waiter is waiting to get the bit, and additionally wants the
1073  *	lock to be transferred to it for fair lock behavior. If the lock
1074  *	cannot be taken, we stop walking the wait queue without waking
1075  *	the waiter.
1076  *
1077  *	This is the "fair lock handoff" case, and in addition to setting
1078  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1079  *	that it now has the lock.
1080  */
1081 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1082 {
1083 	unsigned int flags;
1084 	struct wait_page_key *key = arg;
1085 	struct wait_page_queue *wait_page
1086 		= container_of(wait, struct wait_page_queue, wait);
1087 
1088 	if (!wake_page_match(wait_page, key))
1089 		return 0;
1090 
1091 	/*
1092 	 * If it's a lock handoff wait, we get the bit for it, and
1093 	 * stop walking (and do not wake it up) if we can't.
1094 	 */
1095 	flags = wait->flags;
1096 	if (flags & WQ_FLAG_EXCLUSIVE) {
1097 		if (test_bit(key->bit_nr, &key->folio->flags))
1098 			return -1;
1099 		if (flags & WQ_FLAG_CUSTOM) {
1100 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1101 				return -1;
1102 			flags |= WQ_FLAG_DONE;
1103 		}
1104 	}
1105 
1106 	/*
1107 	 * We are holding the wait-queue lock, but the waiter that
1108 	 * is waiting for this will be checking the flags without
1109 	 * any locking.
1110 	 *
1111 	 * So update the flags atomically, and wake up the waiter
1112 	 * afterwards to avoid any races. This store-release pairs
1113 	 * with the load-acquire in folio_wait_bit_common().
1114 	 */
1115 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1116 	wake_up_state(wait->private, mode);
1117 
1118 	/*
1119 	 * Ok, we have successfully done what we're waiting for,
1120 	 * and we can unconditionally remove the wait entry.
1121 	 *
1122 	 * Note that this pairs with the "finish_wait()" in the
1123 	 * waiter, and has to be the absolute last thing we do.
1124 	 * After this list_del_init(&wait->entry) the wait entry
1125 	 * might be de-allocated and the process might even have
1126 	 * exited.
1127 	 */
1128 	list_del_init_careful(&wait->entry);
1129 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1130 }
1131 
1132 static void folio_wake_bit(struct folio *folio, int bit_nr)
1133 {
1134 	wait_queue_head_t *q = folio_waitqueue(folio);
1135 	struct wait_page_key key;
1136 	unsigned long flags;
1137 
1138 	key.folio = folio;
1139 	key.bit_nr = bit_nr;
1140 	key.page_match = 0;
1141 
1142 	spin_lock_irqsave(&q->lock, flags);
1143 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1144 
1145 	/*
1146 	 * It's possible to miss clearing waiters here, when we woke our page
1147 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1148 	 * That's okay, it's a rare case. The next waker will clear it.
1149 	 *
1150 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1151 	 * other), the flag may be cleared in the course of freeing the page;
1152 	 * but that is not required for correctness.
1153 	 */
1154 	if (!waitqueue_active(q) || !key.page_match)
1155 		folio_clear_waiters(folio);
1156 
1157 	spin_unlock_irqrestore(&q->lock, flags);
1158 }
1159 
1160 /*
1161  * A choice of three behaviors for folio_wait_bit_common():
1162  */
1163 enum behavior {
1164 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1165 			 * __folio_lock() waiting on then setting PG_locked.
1166 			 */
1167 	SHARED,		/* Hold ref to page and check the bit when woken, like
1168 			 * folio_wait_writeback() waiting on PG_writeback.
1169 			 */
1170 	DROP,		/* Drop ref to page before wait, no check when woken,
1171 			 * like folio_put_wait_locked() on PG_locked.
1172 			 */
1173 };
1174 
1175 /*
1176  * Attempt to check (or get) the folio flag, and mark us done
1177  * if successful.
1178  */
1179 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1180 					struct wait_queue_entry *wait)
1181 {
1182 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1183 		if (test_and_set_bit(bit_nr, &folio->flags))
1184 			return false;
1185 	} else if (test_bit(bit_nr, &folio->flags))
1186 		return false;
1187 
1188 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1189 	return true;
1190 }
1191 
1192 /* How many times do we accept lock stealing from under a waiter? */
1193 int sysctl_page_lock_unfairness = 5;
1194 
1195 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1196 		int state, enum behavior behavior)
1197 {
1198 	wait_queue_head_t *q = folio_waitqueue(folio);
1199 	int unfairness = sysctl_page_lock_unfairness;
1200 	struct wait_page_queue wait_page;
1201 	wait_queue_entry_t *wait = &wait_page.wait;
1202 	bool thrashing = false;
1203 	unsigned long pflags;
1204 	bool in_thrashing;
1205 
1206 	if (bit_nr == PG_locked &&
1207 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1208 		delayacct_thrashing_start(&in_thrashing);
1209 		psi_memstall_enter(&pflags);
1210 		thrashing = true;
1211 	}
1212 
1213 	init_wait(wait);
1214 	wait->func = wake_page_function;
1215 	wait_page.folio = folio;
1216 	wait_page.bit_nr = bit_nr;
1217 
1218 repeat:
1219 	wait->flags = 0;
1220 	if (behavior == EXCLUSIVE) {
1221 		wait->flags = WQ_FLAG_EXCLUSIVE;
1222 		if (--unfairness < 0)
1223 			wait->flags |= WQ_FLAG_CUSTOM;
1224 	}
1225 
1226 	/*
1227 	 * Do one last check whether we can get the
1228 	 * page bit synchronously.
1229 	 *
1230 	 * Do the folio_set_waiters() marking before that
1231 	 * to let any waker we _just_ missed know they
1232 	 * need to wake us up (otherwise they'll never
1233 	 * even go to the slow case that looks at the
1234 	 * page queue), and add ourselves to the wait
1235 	 * queue if we need to sleep.
1236 	 *
1237 	 * This part needs to be done under the queue
1238 	 * lock to avoid races.
1239 	 */
1240 	spin_lock_irq(&q->lock);
1241 	folio_set_waiters(folio);
1242 	if (!folio_trylock_flag(folio, bit_nr, wait))
1243 		__add_wait_queue_entry_tail(q, wait);
1244 	spin_unlock_irq(&q->lock);
1245 
1246 	/*
1247 	 * From now on, all the logic will be based on
1248 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 	 * see whether the page bit testing has already
1250 	 * been done by the wake function.
1251 	 *
1252 	 * We can drop our reference to the folio.
1253 	 */
1254 	if (behavior == DROP)
1255 		folio_put(folio);
1256 
1257 	/*
1258 	 * Note that until the "finish_wait()", or until
1259 	 * we see the WQ_FLAG_WOKEN flag, we need to
1260 	 * be very careful with the 'wait->flags', because
1261 	 * we may race with a waker that sets them.
1262 	 */
1263 	for (;;) {
1264 		unsigned int flags;
1265 
1266 		set_current_state(state);
1267 
1268 		/* Loop until we've been woken or interrupted */
1269 		flags = smp_load_acquire(&wait->flags);
1270 		if (!(flags & WQ_FLAG_WOKEN)) {
1271 			if (signal_pending_state(state, current))
1272 				break;
1273 
1274 			io_schedule();
1275 			continue;
1276 		}
1277 
1278 		/* If we were non-exclusive, we're done */
1279 		if (behavior != EXCLUSIVE)
1280 			break;
1281 
1282 		/* If the waker got the lock for us, we're done */
1283 		if (flags & WQ_FLAG_DONE)
1284 			break;
1285 
1286 		/*
1287 		 * Otherwise, if we're getting the lock, we need to
1288 		 * try to get it ourselves.
1289 		 *
1290 		 * And if that fails, we'll have to retry this all.
1291 		 */
1292 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1293 			goto repeat;
1294 
1295 		wait->flags |= WQ_FLAG_DONE;
1296 		break;
1297 	}
1298 
1299 	/*
1300 	 * If a signal happened, this 'finish_wait()' may remove the last
1301 	 * waiter from the wait-queues, but the folio waiters bit will remain
1302 	 * set. That's ok. The next wakeup will take care of it, and trying
1303 	 * to do it here would be difficult and prone to races.
1304 	 */
1305 	finish_wait(q, wait);
1306 
1307 	if (thrashing) {
1308 		delayacct_thrashing_end(&in_thrashing);
1309 		psi_memstall_leave(&pflags);
1310 	}
1311 
1312 	/*
1313 	 * NOTE! The wait->flags weren't stable until we've done the
1314 	 * 'finish_wait()', and we could have exited the loop above due
1315 	 * to a signal, and had a wakeup event happen after the signal
1316 	 * test but before the 'finish_wait()'.
1317 	 *
1318 	 * So only after the finish_wait() can we reliably determine
1319 	 * if we got woken up or not, so we can now figure out the final
1320 	 * return value based on that state without races.
1321 	 *
1322 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1323 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1324 	 */
1325 	if (behavior == EXCLUSIVE)
1326 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1327 
1328 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1329 }
1330 
1331 #ifdef CONFIG_MIGRATION
1332 /**
1333  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1334  * @entry: migration swap entry.
1335  * @ptl: already locked ptl. This function will drop the lock.
1336  *
1337  * Wait for a migration entry referencing the given page to be removed. This is
1338  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1339  * this can be called without taking a reference on the page. Instead this
1340  * should be called while holding the ptl for the migration entry referencing
1341  * the page.
1342  *
1343  * Returns after unlocking the ptl.
1344  *
1345  * This follows the same logic as folio_wait_bit_common() so see the comments
1346  * there.
1347  */
1348 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1349 	__releases(ptl)
1350 {
1351 	struct wait_page_queue wait_page;
1352 	wait_queue_entry_t *wait = &wait_page.wait;
1353 	bool thrashing = false;
1354 	unsigned long pflags;
1355 	bool in_thrashing;
1356 	wait_queue_head_t *q;
1357 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1358 
1359 	q = folio_waitqueue(folio);
1360 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1361 		delayacct_thrashing_start(&in_thrashing);
1362 		psi_memstall_enter(&pflags);
1363 		thrashing = true;
1364 	}
1365 
1366 	init_wait(wait);
1367 	wait->func = wake_page_function;
1368 	wait_page.folio = folio;
1369 	wait_page.bit_nr = PG_locked;
1370 	wait->flags = 0;
1371 
1372 	spin_lock_irq(&q->lock);
1373 	folio_set_waiters(folio);
1374 	if (!folio_trylock_flag(folio, PG_locked, wait))
1375 		__add_wait_queue_entry_tail(q, wait);
1376 	spin_unlock_irq(&q->lock);
1377 
1378 	/*
1379 	 * If a migration entry exists for the page the migration path must hold
1380 	 * a valid reference to the page, and it must take the ptl to remove the
1381 	 * migration entry. So the page is valid until the ptl is dropped.
1382 	 */
1383 	spin_unlock(ptl);
1384 
1385 	for (;;) {
1386 		unsigned int flags;
1387 
1388 		set_current_state(TASK_UNINTERRUPTIBLE);
1389 
1390 		/* Loop until we've been woken or interrupted */
1391 		flags = smp_load_acquire(&wait->flags);
1392 		if (!(flags & WQ_FLAG_WOKEN)) {
1393 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1394 				break;
1395 
1396 			io_schedule();
1397 			continue;
1398 		}
1399 		break;
1400 	}
1401 
1402 	finish_wait(q, wait);
1403 
1404 	if (thrashing) {
1405 		delayacct_thrashing_end(&in_thrashing);
1406 		psi_memstall_leave(&pflags);
1407 	}
1408 }
1409 #endif
1410 
1411 void folio_wait_bit(struct folio *folio, int bit_nr)
1412 {
1413 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1414 }
1415 EXPORT_SYMBOL(folio_wait_bit);
1416 
1417 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1418 {
1419 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1420 }
1421 EXPORT_SYMBOL(folio_wait_bit_killable);
1422 
1423 /**
1424  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1425  * @folio: The folio to wait for.
1426  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1427  *
1428  * The caller should hold a reference on @folio.  They expect the page to
1429  * become unlocked relatively soon, but do not wish to hold up migration
1430  * (for example) by holding the reference while waiting for the folio to
1431  * come unlocked.  After this function returns, the caller should not
1432  * dereference @folio.
1433  *
1434  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1435  */
1436 static int folio_put_wait_locked(struct folio *folio, int state)
1437 {
1438 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1439 }
1440 
1441 /**
1442  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1443  * @folio: Folio defining the wait queue of interest
1444  * @waiter: Waiter to add to the queue
1445  *
1446  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1447  */
1448 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1449 {
1450 	wait_queue_head_t *q = folio_waitqueue(folio);
1451 	unsigned long flags;
1452 
1453 	spin_lock_irqsave(&q->lock, flags);
1454 	__add_wait_queue_entry_tail(q, waiter);
1455 	folio_set_waiters(folio);
1456 	spin_unlock_irqrestore(&q->lock, flags);
1457 }
1458 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1459 
1460 /**
1461  * folio_unlock - Unlock a locked folio.
1462  * @folio: The folio.
1463  *
1464  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1465  *
1466  * Context: May be called from interrupt or process context.  May not be
1467  * called from NMI context.
1468  */
1469 void folio_unlock(struct folio *folio)
1470 {
1471 	/* Bit 7 allows x86 to check the byte's sign bit */
1472 	BUILD_BUG_ON(PG_waiters != 7);
1473 	BUILD_BUG_ON(PG_locked > 7);
1474 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1475 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1476 		folio_wake_bit(folio, PG_locked);
1477 }
1478 EXPORT_SYMBOL(folio_unlock);
1479 
1480 /**
1481  * folio_end_read - End read on a folio.
1482  * @folio: The folio.
1483  * @success: True if all reads completed successfully.
1484  *
1485  * When all reads against a folio have completed, filesystems should
1486  * call this function to let the pagecache know that no more reads
1487  * are outstanding.  This will unlock the folio and wake up any thread
1488  * sleeping on the lock.  The folio will also be marked uptodate if all
1489  * reads succeeded.
1490  *
1491  * Context: May be called from interrupt or process context.  May not be
1492  * called from NMI context.
1493  */
1494 void folio_end_read(struct folio *folio, bool success)
1495 {
1496 	unsigned long mask = 1 << PG_locked;
1497 
1498 	/* Must be in bottom byte for x86 to work */
1499 	BUILD_BUG_ON(PG_uptodate > 7);
1500 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1501 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1502 
1503 	if (likely(success))
1504 		mask |= 1 << PG_uptodate;
1505 	if (folio_xor_flags_has_waiters(folio, mask))
1506 		folio_wake_bit(folio, PG_locked);
1507 }
1508 EXPORT_SYMBOL(folio_end_read);
1509 
1510 /**
1511  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1512  * @folio: The folio.
1513  *
1514  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1515  * it.  The folio reference held for PG_private_2 being set is released.
1516  *
1517  * This is, for example, used when a netfs folio is being written to a local
1518  * disk cache, thereby allowing writes to the cache for the same folio to be
1519  * serialised.
1520  */
1521 void folio_end_private_2(struct folio *folio)
1522 {
1523 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1524 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1525 	folio_wake_bit(folio, PG_private_2);
1526 	folio_put(folio);
1527 }
1528 EXPORT_SYMBOL(folio_end_private_2);
1529 
1530 /**
1531  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1532  * @folio: The folio to wait on.
1533  *
1534  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1535  */
1536 void folio_wait_private_2(struct folio *folio)
1537 {
1538 	while (folio_test_private_2(folio))
1539 		folio_wait_bit(folio, PG_private_2);
1540 }
1541 EXPORT_SYMBOL(folio_wait_private_2);
1542 
1543 /**
1544  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1545  * @folio: The folio to wait on.
1546  *
1547  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1548  * fatal signal is received by the calling task.
1549  *
1550  * Return:
1551  * - 0 if successful.
1552  * - -EINTR if a fatal signal was encountered.
1553  */
1554 int folio_wait_private_2_killable(struct folio *folio)
1555 {
1556 	int ret = 0;
1557 
1558 	while (folio_test_private_2(folio)) {
1559 		ret = folio_wait_bit_killable(folio, PG_private_2);
1560 		if (ret < 0)
1561 			break;
1562 	}
1563 
1564 	return ret;
1565 }
1566 EXPORT_SYMBOL(folio_wait_private_2_killable);
1567 
1568 /**
1569  * folio_end_writeback - End writeback against a folio.
1570  * @folio: The folio.
1571  *
1572  * The folio must actually be under writeback.
1573  *
1574  * Context: May be called from process or interrupt context.
1575  */
1576 void folio_end_writeback(struct folio *folio)
1577 {
1578 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1579 
1580 	/*
1581 	 * folio_test_clear_reclaim() could be used here but it is an
1582 	 * atomic operation and overkill in this particular case. Failing
1583 	 * to shuffle a folio marked for immediate reclaim is too mild
1584 	 * a gain to justify taking an atomic operation penalty at the
1585 	 * end of every folio writeback.
1586 	 */
1587 	if (folio_test_reclaim(folio)) {
1588 		folio_clear_reclaim(folio);
1589 		folio_rotate_reclaimable(folio);
1590 	}
1591 
1592 	/*
1593 	 * Writeback does not hold a folio reference of its own, relying
1594 	 * on truncation to wait for the clearing of PG_writeback.
1595 	 * But here we must make sure that the folio is not freed and
1596 	 * reused before the folio_wake_bit().
1597 	 */
1598 	folio_get(folio);
1599 	if (__folio_end_writeback(folio))
1600 		folio_wake_bit(folio, PG_writeback);
1601 	acct_reclaim_writeback(folio);
1602 	folio_put(folio);
1603 }
1604 EXPORT_SYMBOL(folio_end_writeback);
1605 
1606 /**
1607  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1608  * @folio: The folio to lock
1609  */
1610 void __folio_lock(struct folio *folio)
1611 {
1612 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1613 				EXCLUSIVE);
1614 }
1615 EXPORT_SYMBOL(__folio_lock);
1616 
1617 int __folio_lock_killable(struct folio *folio)
1618 {
1619 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1620 					EXCLUSIVE);
1621 }
1622 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1623 
1624 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1625 {
1626 	struct wait_queue_head *q = folio_waitqueue(folio);
1627 	int ret;
1628 
1629 	wait->folio = folio;
1630 	wait->bit_nr = PG_locked;
1631 
1632 	spin_lock_irq(&q->lock);
1633 	__add_wait_queue_entry_tail(q, &wait->wait);
1634 	folio_set_waiters(folio);
1635 	ret = !folio_trylock(folio);
1636 	/*
1637 	 * If we were successful now, we know we're still on the
1638 	 * waitqueue as we're still under the lock. This means it's
1639 	 * safe to remove and return success, we know the callback
1640 	 * isn't going to trigger.
1641 	 */
1642 	if (!ret)
1643 		__remove_wait_queue(q, &wait->wait);
1644 	else
1645 		ret = -EIOCBQUEUED;
1646 	spin_unlock_irq(&q->lock);
1647 	return ret;
1648 }
1649 
1650 /*
1651  * Return values:
1652  * 0 - folio is locked.
1653  * non-zero - folio is not locked.
1654  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1655  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1656  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1657  *
1658  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1659  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1660  */
1661 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1662 {
1663 	unsigned int flags = vmf->flags;
1664 
1665 	if (fault_flag_allow_retry_first(flags)) {
1666 		/*
1667 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1668 		 * released even though returning VM_FAULT_RETRY.
1669 		 */
1670 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1671 			return VM_FAULT_RETRY;
1672 
1673 		release_fault_lock(vmf);
1674 		if (flags & FAULT_FLAG_KILLABLE)
1675 			folio_wait_locked_killable(folio);
1676 		else
1677 			folio_wait_locked(folio);
1678 		return VM_FAULT_RETRY;
1679 	}
1680 	if (flags & FAULT_FLAG_KILLABLE) {
1681 		bool ret;
1682 
1683 		ret = __folio_lock_killable(folio);
1684 		if (ret) {
1685 			release_fault_lock(vmf);
1686 			return VM_FAULT_RETRY;
1687 		}
1688 	} else {
1689 		__folio_lock(folio);
1690 	}
1691 
1692 	return 0;
1693 }
1694 
1695 /**
1696  * page_cache_next_miss() - Find the next gap in the page cache.
1697  * @mapping: Mapping.
1698  * @index: Index.
1699  * @max_scan: Maximum range to search.
1700  *
1701  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1702  * gap with the lowest index.
1703  *
1704  * This function may be called under the rcu_read_lock.  However, this will
1705  * not atomically search a snapshot of the cache at a single point in time.
1706  * For example, if a gap is created at index 5, then subsequently a gap is
1707  * created at index 10, page_cache_next_miss covering both indices may
1708  * return 10 if called under the rcu_read_lock.
1709  *
1710  * Return: The index of the gap if found, otherwise an index outside the
1711  * range specified (in which case 'return - index >= max_scan' will be true).
1712  * In the rare case of index wrap-around, 0 will be returned.
1713  */
1714 pgoff_t page_cache_next_miss(struct address_space *mapping,
1715 			     pgoff_t index, unsigned long max_scan)
1716 {
1717 	XA_STATE(xas, &mapping->i_pages, index);
1718 
1719 	while (max_scan--) {
1720 		void *entry = xas_next(&xas);
1721 		if (!entry || xa_is_value(entry))
1722 			break;
1723 		if (xas.xa_index == 0)
1724 			break;
1725 	}
1726 
1727 	return xas.xa_index;
1728 }
1729 EXPORT_SYMBOL(page_cache_next_miss);
1730 
1731 /**
1732  * page_cache_prev_miss() - Find the previous gap in the page cache.
1733  * @mapping: Mapping.
1734  * @index: Index.
1735  * @max_scan: Maximum range to search.
1736  *
1737  * Search the range [max(index - max_scan + 1, 0), index] for the
1738  * gap with the highest index.
1739  *
1740  * This function may be called under the rcu_read_lock.  However, this will
1741  * not atomically search a snapshot of the cache at a single point in time.
1742  * For example, if a gap is created at index 10, then subsequently a gap is
1743  * created at index 5, page_cache_prev_miss() covering both indices may
1744  * return 5 if called under the rcu_read_lock.
1745  *
1746  * Return: The index of the gap if found, otherwise an index outside the
1747  * range specified (in which case 'index - return >= max_scan' will be true).
1748  * In the rare case of wrap-around, ULONG_MAX will be returned.
1749  */
1750 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1751 			     pgoff_t index, unsigned long max_scan)
1752 {
1753 	XA_STATE(xas, &mapping->i_pages, index);
1754 
1755 	while (max_scan--) {
1756 		void *entry = xas_prev(&xas);
1757 		if (!entry || xa_is_value(entry))
1758 			break;
1759 		if (xas.xa_index == ULONG_MAX)
1760 			break;
1761 	}
1762 
1763 	return xas.xa_index;
1764 }
1765 EXPORT_SYMBOL(page_cache_prev_miss);
1766 
1767 /*
1768  * Lockless page cache protocol:
1769  * On the lookup side:
1770  * 1. Load the folio from i_pages
1771  * 2. Increment the refcount if it's not zero
1772  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1773  *
1774  * On the removal side:
1775  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1776  * B. Remove the page from i_pages
1777  * C. Return the page to the page allocator
1778  *
1779  * This means that any page may have its reference count temporarily
1780  * increased by a speculative page cache (or fast GUP) lookup as it can
1781  * be allocated by another user before the RCU grace period expires.
1782  * Because the refcount temporarily acquired here may end up being the
1783  * last refcount on the page, any page allocation must be freeable by
1784  * folio_put().
1785  */
1786 
1787 /*
1788  * filemap_get_entry - Get a page cache entry.
1789  * @mapping: the address_space to search
1790  * @index: The page cache index.
1791  *
1792  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1793  * it is returned with an increased refcount.  If it is a shadow entry
1794  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1795  * it is returned without further action.
1796  *
1797  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1798  */
1799 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1800 {
1801 	XA_STATE(xas, &mapping->i_pages, index);
1802 	struct folio *folio;
1803 
1804 	rcu_read_lock();
1805 repeat:
1806 	xas_reset(&xas);
1807 	folio = xas_load(&xas);
1808 	if (xas_retry(&xas, folio))
1809 		goto repeat;
1810 	/*
1811 	 * A shadow entry of a recently evicted page, or a swap entry from
1812 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1813 	 */
1814 	if (!folio || xa_is_value(folio))
1815 		goto out;
1816 
1817 	if (!folio_try_get_rcu(folio))
1818 		goto repeat;
1819 
1820 	if (unlikely(folio != xas_reload(&xas))) {
1821 		folio_put(folio);
1822 		goto repeat;
1823 	}
1824 out:
1825 	rcu_read_unlock();
1826 
1827 	return folio;
1828 }
1829 
1830 /**
1831  * __filemap_get_folio - Find and get a reference to a folio.
1832  * @mapping: The address_space to search.
1833  * @index: The page index.
1834  * @fgp_flags: %FGP flags modify how the folio is returned.
1835  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1836  *
1837  * Looks up the page cache entry at @mapping & @index.
1838  *
1839  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1840  * if the %GFP flags specified for %FGP_CREAT are atomic.
1841  *
1842  * If this function returns a folio, it is returned with an increased refcount.
1843  *
1844  * Return: The found folio or an ERR_PTR() otherwise.
1845  */
1846 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1847 		fgf_t fgp_flags, gfp_t gfp)
1848 {
1849 	struct folio *folio;
1850 
1851 repeat:
1852 	folio = filemap_get_entry(mapping, index);
1853 	if (xa_is_value(folio))
1854 		folio = NULL;
1855 	if (!folio)
1856 		goto no_page;
1857 
1858 	if (fgp_flags & FGP_LOCK) {
1859 		if (fgp_flags & FGP_NOWAIT) {
1860 			if (!folio_trylock(folio)) {
1861 				folio_put(folio);
1862 				return ERR_PTR(-EAGAIN);
1863 			}
1864 		} else {
1865 			folio_lock(folio);
1866 		}
1867 
1868 		/* Has the page been truncated? */
1869 		if (unlikely(folio->mapping != mapping)) {
1870 			folio_unlock(folio);
1871 			folio_put(folio);
1872 			goto repeat;
1873 		}
1874 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1875 	}
1876 
1877 	if (fgp_flags & FGP_ACCESSED)
1878 		folio_mark_accessed(folio);
1879 	else if (fgp_flags & FGP_WRITE) {
1880 		/* Clear idle flag for buffer write */
1881 		if (folio_test_idle(folio))
1882 			folio_clear_idle(folio);
1883 	}
1884 
1885 	if (fgp_flags & FGP_STABLE)
1886 		folio_wait_stable(folio);
1887 no_page:
1888 	if (!folio && (fgp_flags & FGP_CREAT)) {
1889 		unsigned order = FGF_GET_ORDER(fgp_flags);
1890 		int err;
1891 
1892 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1893 			gfp |= __GFP_WRITE;
1894 		if (fgp_flags & FGP_NOFS)
1895 			gfp &= ~__GFP_FS;
1896 		if (fgp_flags & FGP_NOWAIT) {
1897 			gfp &= ~GFP_KERNEL;
1898 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1899 		}
1900 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1901 			fgp_flags |= FGP_LOCK;
1902 
1903 		if (!mapping_large_folio_support(mapping))
1904 			order = 0;
1905 		if (order > MAX_PAGECACHE_ORDER)
1906 			order = MAX_PAGECACHE_ORDER;
1907 		/* If we're not aligned, allocate a smaller folio */
1908 		if (index & ((1UL << order) - 1))
1909 			order = __ffs(index);
1910 
1911 		do {
1912 			gfp_t alloc_gfp = gfp;
1913 
1914 			err = -ENOMEM;
1915 			if (order == 1)
1916 				order = 0;
1917 			if (order > 0)
1918 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1919 			folio = filemap_alloc_folio(alloc_gfp, order);
1920 			if (!folio)
1921 				continue;
1922 
1923 			/* Init accessed so avoid atomic mark_page_accessed later */
1924 			if (fgp_flags & FGP_ACCESSED)
1925 				__folio_set_referenced(folio);
1926 
1927 			err = filemap_add_folio(mapping, folio, index, gfp);
1928 			if (!err)
1929 				break;
1930 			folio_put(folio);
1931 			folio = NULL;
1932 		} while (order-- > 0);
1933 
1934 		if (err == -EEXIST)
1935 			goto repeat;
1936 		if (err)
1937 			return ERR_PTR(err);
1938 		/*
1939 		 * filemap_add_folio locks the page, and for mmap
1940 		 * we expect an unlocked page.
1941 		 */
1942 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1943 			folio_unlock(folio);
1944 	}
1945 
1946 	if (!folio)
1947 		return ERR_PTR(-ENOENT);
1948 	return folio;
1949 }
1950 EXPORT_SYMBOL(__filemap_get_folio);
1951 
1952 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1953 		xa_mark_t mark)
1954 {
1955 	struct folio *folio;
1956 
1957 retry:
1958 	if (mark == XA_PRESENT)
1959 		folio = xas_find(xas, max);
1960 	else
1961 		folio = xas_find_marked(xas, max, mark);
1962 
1963 	if (xas_retry(xas, folio))
1964 		goto retry;
1965 	/*
1966 	 * A shadow entry of a recently evicted page, a swap
1967 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1968 	 * without attempting to raise page count.
1969 	 */
1970 	if (!folio || xa_is_value(folio))
1971 		return folio;
1972 
1973 	if (!folio_try_get_rcu(folio))
1974 		goto reset;
1975 
1976 	if (unlikely(folio != xas_reload(xas))) {
1977 		folio_put(folio);
1978 		goto reset;
1979 	}
1980 
1981 	return folio;
1982 reset:
1983 	xas_reset(xas);
1984 	goto retry;
1985 }
1986 
1987 /**
1988  * find_get_entries - gang pagecache lookup
1989  * @mapping:	The address_space to search
1990  * @start:	The starting page cache index
1991  * @end:	The final page index (inclusive).
1992  * @fbatch:	Where the resulting entries are placed.
1993  * @indices:	The cache indices corresponding to the entries in @entries
1994  *
1995  * find_get_entries() will search for and return a batch of entries in
1996  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
1997  * takes a reference on any actual folios it returns.
1998  *
1999  * The entries have ascending indexes.  The indices may not be consecutive
2000  * due to not-present entries or large folios.
2001  *
2002  * Any shadow entries of evicted folios, or swap entries from
2003  * shmem/tmpfs, are included in the returned array.
2004  *
2005  * Return: The number of entries which were found.
2006  */
2007 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2008 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2009 {
2010 	XA_STATE(xas, &mapping->i_pages, *start);
2011 	struct folio *folio;
2012 
2013 	rcu_read_lock();
2014 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2015 		indices[fbatch->nr] = xas.xa_index;
2016 		if (!folio_batch_add(fbatch, folio))
2017 			break;
2018 	}
2019 	rcu_read_unlock();
2020 
2021 	if (folio_batch_count(fbatch)) {
2022 		unsigned long nr = 1;
2023 		int idx = folio_batch_count(fbatch) - 1;
2024 
2025 		folio = fbatch->folios[idx];
2026 		if (!xa_is_value(folio))
2027 			nr = folio_nr_pages(folio);
2028 		*start = indices[idx] + nr;
2029 	}
2030 	return folio_batch_count(fbatch);
2031 }
2032 
2033 /**
2034  * find_lock_entries - Find a batch of pagecache entries.
2035  * @mapping:	The address_space to search.
2036  * @start:	The starting page cache index.
2037  * @end:	The final page index (inclusive).
2038  * @fbatch:	Where the resulting entries are placed.
2039  * @indices:	The cache indices of the entries in @fbatch.
2040  *
2041  * find_lock_entries() will return a batch of entries from @mapping.
2042  * Swap, shadow and DAX entries are included.  Folios are returned
2043  * locked and with an incremented refcount.  Folios which are locked
2044  * by somebody else or under writeback are skipped.  Folios which are
2045  * partially outside the range are not returned.
2046  *
2047  * The entries have ascending indexes.  The indices may not be consecutive
2048  * due to not-present entries, large folios, folios which could not be
2049  * locked or folios under writeback.
2050  *
2051  * Return: The number of entries which were found.
2052  */
2053 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2054 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2055 {
2056 	XA_STATE(xas, &mapping->i_pages, *start);
2057 	struct folio *folio;
2058 
2059 	rcu_read_lock();
2060 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2061 		if (!xa_is_value(folio)) {
2062 			if (folio->index < *start)
2063 				goto put;
2064 			if (folio_next_index(folio) - 1 > end)
2065 				goto put;
2066 			if (!folio_trylock(folio))
2067 				goto put;
2068 			if (folio->mapping != mapping ||
2069 			    folio_test_writeback(folio))
2070 				goto unlock;
2071 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2072 					folio);
2073 		}
2074 		indices[fbatch->nr] = xas.xa_index;
2075 		if (!folio_batch_add(fbatch, folio))
2076 			break;
2077 		continue;
2078 unlock:
2079 		folio_unlock(folio);
2080 put:
2081 		folio_put(folio);
2082 	}
2083 	rcu_read_unlock();
2084 
2085 	if (folio_batch_count(fbatch)) {
2086 		unsigned long nr = 1;
2087 		int idx = folio_batch_count(fbatch) - 1;
2088 
2089 		folio = fbatch->folios[idx];
2090 		if (!xa_is_value(folio))
2091 			nr = folio_nr_pages(folio);
2092 		*start = indices[idx] + nr;
2093 	}
2094 	return folio_batch_count(fbatch);
2095 }
2096 
2097 /**
2098  * filemap_get_folios - Get a batch of folios
2099  * @mapping:	The address_space to search
2100  * @start:	The starting page index
2101  * @end:	The final page index (inclusive)
2102  * @fbatch:	The batch to fill.
2103  *
2104  * Search for and return a batch of folios in the mapping starting at
2105  * index @start and up to index @end (inclusive).  The folios are returned
2106  * in @fbatch with an elevated reference count.
2107  *
2108  * Return: The number of folios which were found.
2109  * We also update @start to index the next folio for the traversal.
2110  */
2111 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2112 		pgoff_t end, struct folio_batch *fbatch)
2113 {
2114 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2115 }
2116 EXPORT_SYMBOL(filemap_get_folios);
2117 
2118 /**
2119  * filemap_get_folios_contig - Get a batch of contiguous folios
2120  * @mapping:	The address_space to search
2121  * @start:	The starting page index
2122  * @end:	The final page index (inclusive)
2123  * @fbatch:	The batch to fill
2124  *
2125  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2126  * except the returned folios are guaranteed to be contiguous. This may
2127  * not return all contiguous folios if the batch gets filled up.
2128  *
2129  * Return: The number of folios found.
2130  * Also update @start to be positioned for traversal of the next folio.
2131  */
2132 
2133 unsigned filemap_get_folios_contig(struct address_space *mapping,
2134 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2135 {
2136 	XA_STATE(xas, &mapping->i_pages, *start);
2137 	unsigned long nr;
2138 	struct folio *folio;
2139 
2140 	rcu_read_lock();
2141 
2142 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2143 			folio = xas_next(&xas)) {
2144 		if (xas_retry(&xas, folio))
2145 			continue;
2146 		/*
2147 		 * If the entry has been swapped out, we can stop looking.
2148 		 * No current caller is looking for DAX entries.
2149 		 */
2150 		if (xa_is_value(folio))
2151 			goto update_start;
2152 
2153 		if (!folio_try_get_rcu(folio))
2154 			goto retry;
2155 
2156 		if (unlikely(folio != xas_reload(&xas)))
2157 			goto put_folio;
2158 
2159 		if (!folio_batch_add(fbatch, folio)) {
2160 			nr = folio_nr_pages(folio);
2161 			*start = folio->index + nr;
2162 			goto out;
2163 		}
2164 		continue;
2165 put_folio:
2166 		folio_put(folio);
2167 
2168 retry:
2169 		xas_reset(&xas);
2170 	}
2171 
2172 update_start:
2173 	nr = folio_batch_count(fbatch);
2174 
2175 	if (nr) {
2176 		folio = fbatch->folios[nr - 1];
2177 		*start = folio_next_index(folio);
2178 	}
2179 out:
2180 	rcu_read_unlock();
2181 	return folio_batch_count(fbatch);
2182 }
2183 EXPORT_SYMBOL(filemap_get_folios_contig);
2184 
2185 /**
2186  * filemap_get_folios_tag - Get a batch of folios matching @tag
2187  * @mapping:    The address_space to search
2188  * @start:      The starting page index
2189  * @end:        The final page index (inclusive)
2190  * @tag:        The tag index
2191  * @fbatch:     The batch to fill
2192  *
2193  * The first folio may start before @start; if it does, it will contain
2194  * @start.  The final folio may extend beyond @end; if it does, it will
2195  * contain @end.  The folios have ascending indices.  There may be gaps
2196  * between the folios if there are indices which have no folio in the
2197  * page cache.  If folios are added to or removed from the page cache
2198  * while this is running, they may or may not be found by this call.
2199  * Only returns folios that are tagged with @tag.
2200  *
2201  * Return: The number of folios found.
2202  * Also update @start to index the next folio for traversal.
2203  */
2204 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2205 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2206 {
2207 	XA_STATE(xas, &mapping->i_pages, *start);
2208 	struct folio *folio;
2209 
2210 	rcu_read_lock();
2211 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2212 		/*
2213 		 * Shadow entries should never be tagged, but this iteration
2214 		 * is lockless so there is a window for page reclaim to evict
2215 		 * a page we saw tagged. Skip over it.
2216 		 */
2217 		if (xa_is_value(folio))
2218 			continue;
2219 		if (!folio_batch_add(fbatch, folio)) {
2220 			unsigned long nr = folio_nr_pages(folio);
2221 			*start = folio->index + nr;
2222 			goto out;
2223 		}
2224 	}
2225 	/*
2226 	 * We come here when there is no page beyond @end. We take care to not
2227 	 * overflow the index @start as it confuses some of the callers. This
2228 	 * breaks the iteration when there is a page at index -1 but that is
2229 	 * already broke anyway.
2230 	 */
2231 	if (end == (pgoff_t)-1)
2232 		*start = (pgoff_t)-1;
2233 	else
2234 		*start = end + 1;
2235 out:
2236 	rcu_read_unlock();
2237 
2238 	return folio_batch_count(fbatch);
2239 }
2240 EXPORT_SYMBOL(filemap_get_folios_tag);
2241 
2242 /*
2243  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2244  * a _large_ part of the i/o request. Imagine the worst scenario:
2245  *
2246  *      ---R__________________________________________B__________
2247  *         ^ reading here                             ^ bad block(assume 4k)
2248  *
2249  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2250  * => failing the whole request => read(R) => read(R+1) =>
2251  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2252  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2253  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2254  *
2255  * It is going insane. Fix it by quickly scaling down the readahead size.
2256  */
2257 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2258 {
2259 	ra->ra_pages /= 4;
2260 }
2261 
2262 /*
2263  * filemap_get_read_batch - Get a batch of folios for read
2264  *
2265  * Get a batch of folios which represent a contiguous range of bytes in
2266  * the file.  No exceptional entries will be returned.  If @index is in
2267  * the middle of a folio, the entire folio will be returned.  The last
2268  * folio in the batch may have the readahead flag set or the uptodate flag
2269  * clear so that the caller can take the appropriate action.
2270  */
2271 static void filemap_get_read_batch(struct address_space *mapping,
2272 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2273 {
2274 	XA_STATE(xas, &mapping->i_pages, index);
2275 	struct folio *folio;
2276 
2277 	rcu_read_lock();
2278 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2279 		if (xas_retry(&xas, folio))
2280 			continue;
2281 		if (xas.xa_index > max || xa_is_value(folio))
2282 			break;
2283 		if (xa_is_sibling(folio))
2284 			break;
2285 		if (!folio_try_get_rcu(folio))
2286 			goto retry;
2287 
2288 		if (unlikely(folio != xas_reload(&xas)))
2289 			goto put_folio;
2290 
2291 		if (!folio_batch_add(fbatch, folio))
2292 			break;
2293 		if (!folio_test_uptodate(folio))
2294 			break;
2295 		if (folio_test_readahead(folio))
2296 			break;
2297 		xas_advance(&xas, folio_next_index(folio) - 1);
2298 		continue;
2299 put_folio:
2300 		folio_put(folio);
2301 retry:
2302 		xas_reset(&xas);
2303 	}
2304 	rcu_read_unlock();
2305 }
2306 
2307 static int filemap_read_folio(struct file *file, filler_t filler,
2308 		struct folio *folio)
2309 {
2310 	bool workingset = folio_test_workingset(folio);
2311 	unsigned long pflags;
2312 	int error;
2313 
2314 	/*
2315 	 * A previous I/O error may have been due to temporary failures,
2316 	 * eg. multipath errors.  PG_error will be set again if read_folio
2317 	 * fails.
2318 	 */
2319 	folio_clear_error(folio);
2320 
2321 	/* Start the actual read. The read will unlock the page. */
2322 	if (unlikely(workingset))
2323 		psi_memstall_enter(&pflags);
2324 	error = filler(file, folio);
2325 	if (unlikely(workingset))
2326 		psi_memstall_leave(&pflags);
2327 	if (error)
2328 		return error;
2329 
2330 	error = folio_wait_locked_killable(folio);
2331 	if (error)
2332 		return error;
2333 	if (folio_test_uptodate(folio))
2334 		return 0;
2335 	if (file)
2336 		shrink_readahead_size_eio(&file->f_ra);
2337 	return -EIO;
2338 }
2339 
2340 static bool filemap_range_uptodate(struct address_space *mapping,
2341 		loff_t pos, size_t count, struct folio *folio,
2342 		bool need_uptodate)
2343 {
2344 	if (folio_test_uptodate(folio))
2345 		return true;
2346 	/* pipes can't handle partially uptodate pages */
2347 	if (need_uptodate)
2348 		return false;
2349 	if (!mapping->a_ops->is_partially_uptodate)
2350 		return false;
2351 	if (mapping->host->i_blkbits >= folio_shift(folio))
2352 		return false;
2353 
2354 	if (folio_pos(folio) > pos) {
2355 		count -= folio_pos(folio) - pos;
2356 		pos = 0;
2357 	} else {
2358 		pos -= folio_pos(folio);
2359 	}
2360 
2361 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2362 }
2363 
2364 static int filemap_update_page(struct kiocb *iocb,
2365 		struct address_space *mapping, size_t count,
2366 		struct folio *folio, bool need_uptodate)
2367 {
2368 	int error;
2369 
2370 	if (iocb->ki_flags & IOCB_NOWAIT) {
2371 		if (!filemap_invalidate_trylock_shared(mapping))
2372 			return -EAGAIN;
2373 	} else {
2374 		filemap_invalidate_lock_shared(mapping);
2375 	}
2376 
2377 	if (!folio_trylock(folio)) {
2378 		error = -EAGAIN;
2379 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2380 			goto unlock_mapping;
2381 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2382 			filemap_invalidate_unlock_shared(mapping);
2383 			/*
2384 			 * This is where we usually end up waiting for a
2385 			 * previously submitted readahead to finish.
2386 			 */
2387 			folio_put_wait_locked(folio, TASK_KILLABLE);
2388 			return AOP_TRUNCATED_PAGE;
2389 		}
2390 		error = __folio_lock_async(folio, iocb->ki_waitq);
2391 		if (error)
2392 			goto unlock_mapping;
2393 	}
2394 
2395 	error = AOP_TRUNCATED_PAGE;
2396 	if (!folio->mapping)
2397 		goto unlock;
2398 
2399 	error = 0;
2400 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2401 				   need_uptodate))
2402 		goto unlock;
2403 
2404 	error = -EAGAIN;
2405 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2406 		goto unlock;
2407 
2408 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2409 			folio);
2410 	goto unlock_mapping;
2411 unlock:
2412 	folio_unlock(folio);
2413 unlock_mapping:
2414 	filemap_invalidate_unlock_shared(mapping);
2415 	if (error == AOP_TRUNCATED_PAGE)
2416 		folio_put(folio);
2417 	return error;
2418 }
2419 
2420 static int filemap_create_folio(struct file *file,
2421 		struct address_space *mapping, pgoff_t index,
2422 		struct folio_batch *fbatch)
2423 {
2424 	struct folio *folio;
2425 	int error;
2426 
2427 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2428 	if (!folio)
2429 		return -ENOMEM;
2430 
2431 	/*
2432 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2433 	 * here assures we cannot instantiate and bring uptodate new
2434 	 * pagecache folios after evicting page cache during truncate
2435 	 * and before actually freeing blocks.	Note that we could
2436 	 * release invalidate_lock after inserting the folio into
2437 	 * the page cache as the locked folio would then be enough to
2438 	 * synchronize with hole punching. But there are code paths
2439 	 * such as filemap_update_page() filling in partially uptodate
2440 	 * pages or ->readahead() that need to hold invalidate_lock
2441 	 * while mapping blocks for IO so let's hold the lock here as
2442 	 * well to keep locking rules simple.
2443 	 */
2444 	filemap_invalidate_lock_shared(mapping);
2445 	error = filemap_add_folio(mapping, folio, index,
2446 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2447 	if (error == -EEXIST)
2448 		error = AOP_TRUNCATED_PAGE;
2449 	if (error)
2450 		goto error;
2451 
2452 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2453 	if (error)
2454 		goto error;
2455 
2456 	filemap_invalidate_unlock_shared(mapping);
2457 	folio_batch_add(fbatch, folio);
2458 	return 0;
2459 error:
2460 	filemap_invalidate_unlock_shared(mapping);
2461 	folio_put(folio);
2462 	return error;
2463 }
2464 
2465 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2466 		struct address_space *mapping, struct folio *folio,
2467 		pgoff_t last_index)
2468 {
2469 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2470 
2471 	if (iocb->ki_flags & IOCB_NOIO)
2472 		return -EAGAIN;
2473 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2474 	return 0;
2475 }
2476 
2477 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2478 		struct folio_batch *fbatch, bool need_uptodate)
2479 {
2480 	struct file *filp = iocb->ki_filp;
2481 	struct address_space *mapping = filp->f_mapping;
2482 	struct file_ra_state *ra = &filp->f_ra;
2483 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2484 	pgoff_t last_index;
2485 	struct folio *folio;
2486 	int err = 0;
2487 
2488 	/* "last_index" is the index of the page beyond the end of the read */
2489 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2490 retry:
2491 	if (fatal_signal_pending(current))
2492 		return -EINTR;
2493 
2494 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2495 	if (!folio_batch_count(fbatch)) {
2496 		if (iocb->ki_flags & IOCB_NOIO)
2497 			return -EAGAIN;
2498 		page_cache_sync_readahead(mapping, ra, filp, index,
2499 				last_index - index);
2500 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2501 	}
2502 	if (!folio_batch_count(fbatch)) {
2503 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2504 			return -EAGAIN;
2505 		err = filemap_create_folio(filp, mapping,
2506 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2507 		if (err == AOP_TRUNCATED_PAGE)
2508 			goto retry;
2509 		return err;
2510 	}
2511 
2512 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2513 	if (folio_test_readahead(folio)) {
2514 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2515 		if (err)
2516 			goto err;
2517 	}
2518 	if (!folio_test_uptodate(folio)) {
2519 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2520 		    folio_batch_count(fbatch) > 1)
2521 			iocb->ki_flags |= IOCB_NOWAIT;
2522 		err = filemap_update_page(iocb, mapping, count, folio,
2523 					  need_uptodate);
2524 		if (err)
2525 			goto err;
2526 	}
2527 
2528 	return 0;
2529 err:
2530 	if (err < 0)
2531 		folio_put(folio);
2532 	if (likely(--fbatch->nr))
2533 		return 0;
2534 	if (err == AOP_TRUNCATED_PAGE)
2535 		goto retry;
2536 	return err;
2537 }
2538 
2539 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2540 {
2541 	unsigned int shift = folio_shift(folio);
2542 
2543 	return (pos1 >> shift == pos2 >> shift);
2544 }
2545 
2546 /**
2547  * filemap_read - Read data from the page cache.
2548  * @iocb: The iocb to read.
2549  * @iter: Destination for the data.
2550  * @already_read: Number of bytes already read by the caller.
2551  *
2552  * Copies data from the page cache.  If the data is not currently present,
2553  * uses the readahead and read_folio address_space operations to fetch it.
2554  *
2555  * Return: Total number of bytes copied, including those already read by
2556  * the caller.  If an error happens before any bytes are copied, returns
2557  * a negative error number.
2558  */
2559 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2560 		ssize_t already_read)
2561 {
2562 	struct file *filp = iocb->ki_filp;
2563 	struct file_ra_state *ra = &filp->f_ra;
2564 	struct address_space *mapping = filp->f_mapping;
2565 	struct inode *inode = mapping->host;
2566 	struct folio_batch fbatch;
2567 	int i, error = 0;
2568 	bool writably_mapped;
2569 	loff_t isize, end_offset;
2570 	loff_t last_pos = ra->prev_pos;
2571 
2572 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2573 		return 0;
2574 	if (unlikely(!iov_iter_count(iter)))
2575 		return 0;
2576 
2577 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2578 	folio_batch_init(&fbatch);
2579 
2580 	do {
2581 		cond_resched();
2582 
2583 		/*
2584 		 * If we've already successfully copied some data, then we
2585 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2586 		 * an async read NOWAIT at that point.
2587 		 */
2588 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2589 			iocb->ki_flags |= IOCB_NOWAIT;
2590 
2591 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2592 			break;
2593 
2594 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2595 		if (error < 0)
2596 			break;
2597 
2598 		/*
2599 		 * i_size must be checked after we know the pages are Uptodate.
2600 		 *
2601 		 * Checking i_size after the check allows us to calculate
2602 		 * the correct value for "nr", which means the zero-filled
2603 		 * part of the page is not copied back to userspace (unless
2604 		 * another truncate extends the file - this is desired though).
2605 		 */
2606 		isize = i_size_read(inode);
2607 		if (unlikely(iocb->ki_pos >= isize))
2608 			goto put_folios;
2609 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2610 
2611 		/*
2612 		 * Once we start copying data, we don't want to be touching any
2613 		 * cachelines that might be contended:
2614 		 */
2615 		writably_mapped = mapping_writably_mapped(mapping);
2616 
2617 		/*
2618 		 * When a read accesses the same folio several times, only
2619 		 * mark it as accessed the first time.
2620 		 */
2621 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2622 				    fbatch.folios[0]))
2623 			folio_mark_accessed(fbatch.folios[0]);
2624 
2625 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2626 			struct folio *folio = fbatch.folios[i];
2627 			size_t fsize = folio_size(folio);
2628 			size_t offset = iocb->ki_pos & (fsize - 1);
2629 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2630 					     fsize - offset);
2631 			size_t copied;
2632 
2633 			if (end_offset < folio_pos(folio))
2634 				break;
2635 			if (i > 0)
2636 				folio_mark_accessed(folio);
2637 			/*
2638 			 * If users can be writing to this folio using arbitrary
2639 			 * virtual addresses, take care of potential aliasing
2640 			 * before reading the folio on the kernel side.
2641 			 */
2642 			if (writably_mapped)
2643 				flush_dcache_folio(folio);
2644 
2645 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2646 
2647 			already_read += copied;
2648 			iocb->ki_pos += copied;
2649 			last_pos = iocb->ki_pos;
2650 
2651 			if (copied < bytes) {
2652 				error = -EFAULT;
2653 				break;
2654 			}
2655 		}
2656 put_folios:
2657 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2658 			folio_put(fbatch.folios[i]);
2659 		folio_batch_init(&fbatch);
2660 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2661 
2662 	file_accessed(filp);
2663 	ra->prev_pos = last_pos;
2664 	return already_read ? already_read : error;
2665 }
2666 EXPORT_SYMBOL_GPL(filemap_read);
2667 
2668 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2669 {
2670 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2671 	loff_t pos = iocb->ki_pos;
2672 	loff_t end = pos + count - 1;
2673 
2674 	if (iocb->ki_flags & IOCB_NOWAIT) {
2675 		if (filemap_range_needs_writeback(mapping, pos, end))
2676 			return -EAGAIN;
2677 		return 0;
2678 	}
2679 
2680 	return filemap_write_and_wait_range(mapping, pos, end);
2681 }
2682 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2683 
2684 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2685 {
2686 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2687 	loff_t pos = iocb->ki_pos;
2688 	loff_t end = pos + count - 1;
2689 	int ret;
2690 
2691 	if (iocb->ki_flags & IOCB_NOWAIT) {
2692 		/* we could block if there are any pages in the range */
2693 		if (filemap_range_has_page(mapping, pos, end))
2694 			return -EAGAIN;
2695 	} else {
2696 		ret = filemap_write_and_wait_range(mapping, pos, end);
2697 		if (ret)
2698 			return ret;
2699 	}
2700 
2701 	/*
2702 	 * After a write we want buffered reads to be sure to go to disk to get
2703 	 * the new data.  We invalidate clean cached page from the region we're
2704 	 * about to write.  We do this *before* the write so that we can return
2705 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2706 	 */
2707 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2708 					     end >> PAGE_SHIFT);
2709 }
2710 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2711 
2712 /**
2713  * generic_file_read_iter - generic filesystem read routine
2714  * @iocb:	kernel I/O control block
2715  * @iter:	destination for the data read
2716  *
2717  * This is the "read_iter()" routine for all filesystems
2718  * that can use the page cache directly.
2719  *
2720  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2721  * be returned when no data can be read without waiting for I/O requests
2722  * to complete; it doesn't prevent readahead.
2723  *
2724  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2725  * requests shall be made for the read or for readahead.  When no data
2726  * can be read, -EAGAIN shall be returned.  When readahead would be
2727  * triggered, a partial, possibly empty read shall be returned.
2728  *
2729  * Return:
2730  * * number of bytes copied, even for partial reads
2731  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2732  */
2733 ssize_t
2734 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2735 {
2736 	size_t count = iov_iter_count(iter);
2737 	ssize_t retval = 0;
2738 
2739 	if (!count)
2740 		return 0; /* skip atime */
2741 
2742 	if (iocb->ki_flags & IOCB_DIRECT) {
2743 		struct file *file = iocb->ki_filp;
2744 		struct address_space *mapping = file->f_mapping;
2745 		struct inode *inode = mapping->host;
2746 
2747 		retval = kiocb_write_and_wait(iocb, count);
2748 		if (retval < 0)
2749 			return retval;
2750 		file_accessed(file);
2751 
2752 		retval = mapping->a_ops->direct_IO(iocb, iter);
2753 		if (retval >= 0) {
2754 			iocb->ki_pos += retval;
2755 			count -= retval;
2756 		}
2757 		if (retval != -EIOCBQUEUED)
2758 			iov_iter_revert(iter, count - iov_iter_count(iter));
2759 
2760 		/*
2761 		 * Btrfs can have a short DIO read if we encounter
2762 		 * compressed extents, so if there was an error, or if
2763 		 * we've already read everything we wanted to, or if
2764 		 * there was a short read because we hit EOF, go ahead
2765 		 * and return.  Otherwise fallthrough to buffered io for
2766 		 * the rest of the read.  Buffered reads will not work for
2767 		 * DAX files, so don't bother trying.
2768 		 */
2769 		if (retval < 0 || !count || IS_DAX(inode))
2770 			return retval;
2771 		if (iocb->ki_pos >= i_size_read(inode))
2772 			return retval;
2773 	}
2774 
2775 	return filemap_read(iocb, iter, retval);
2776 }
2777 EXPORT_SYMBOL(generic_file_read_iter);
2778 
2779 /*
2780  * Splice subpages from a folio into a pipe.
2781  */
2782 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2783 			      struct folio *folio, loff_t fpos, size_t size)
2784 {
2785 	struct page *page;
2786 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2787 
2788 	page = folio_page(folio, offset / PAGE_SIZE);
2789 	size = min(size, folio_size(folio) - offset);
2790 	offset %= PAGE_SIZE;
2791 
2792 	while (spliced < size &&
2793 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2794 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2795 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2796 
2797 		*buf = (struct pipe_buffer) {
2798 			.ops	= &page_cache_pipe_buf_ops,
2799 			.page	= page,
2800 			.offset	= offset,
2801 			.len	= part,
2802 		};
2803 		folio_get(folio);
2804 		pipe->head++;
2805 		page++;
2806 		spliced += part;
2807 		offset = 0;
2808 	}
2809 
2810 	return spliced;
2811 }
2812 
2813 /**
2814  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2815  * @in: The file to read from
2816  * @ppos: Pointer to the file position to read from
2817  * @pipe: The pipe to splice into
2818  * @len: The amount to splice
2819  * @flags: The SPLICE_F_* flags
2820  *
2821  * This function gets folios from a file's pagecache and splices them into the
2822  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2823  * be used for blockdevs also.
2824  *
2825  * Return: On success, the number of bytes read will be returned and *@ppos
2826  * will be updated if appropriate; 0 will be returned if there is no more data
2827  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2828  * other negative error code will be returned on error.  A short read may occur
2829  * if the pipe has insufficient space, we reach the end of the data or we hit a
2830  * hole.
2831  */
2832 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2833 			    struct pipe_inode_info *pipe,
2834 			    size_t len, unsigned int flags)
2835 {
2836 	struct folio_batch fbatch;
2837 	struct kiocb iocb;
2838 	size_t total_spliced = 0, used, npages;
2839 	loff_t isize, end_offset;
2840 	bool writably_mapped;
2841 	int i, error = 0;
2842 
2843 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2844 		return 0;
2845 
2846 	init_sync_kiocb(&iocb, in);
2847 	iocb.ki_pos = *ppos;
2848 
2849 	/* Work out how much data we can actually add into the pipe */
2850 	used = pipe_occupancy(pipe->head, pipe->tail);
2851 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2852 	len = min_t(size_t, len, npages * PAGE_SIZE);
2853 
2854 	folio_batch_init(&fbatch);
2855 
2856 	do {
2857 		cond_resched();
2858 
2859 		if (*ppos >= i_size_read(in->f_mapping->host))
2860 			break;
2861 
2862 		iocb.ki_pos = *ppos;
2863 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2864 		if (error < 0)
2865 			break;
2866 
2867 		/*
2868 		 * i_size must be checked after we know the pages are Uptodate.
2869 		 *
2870 		 * Checking i_size after the check allows us to calculate
2871 		 * the correct value for "nr", which means the zero-filled
2872 		 * part of the page is not copied back to userspace (unless
2873 		 * another truncate extends the file - this is desired though).
2874 		 */
2875 		isize = i_size_read(in->f_mapping->host);
2876 		if (unlikely(*ppos >= isize))
2877 			break;
2878 		end_offset = min_t(loff_t, isize, *ppos + len);
2879 
2880 		/*
2881 		 * Once we start copying data, we don't want to be touching any
2882 		 * cachelines that might be contended:
2883 		 */
2884 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2885 
2886 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2887 			struct folio *folio = fbatch.folios[i];
2888 			size_t n;
2889 
2890 			if (folio_pos(folio) >= end_offset)
2891 				goto out;
2892 			folio_mark_accessed(folio);
2893 
2894 			/*
2895 			 * If users can be writing to this folio using arbitrary
2896 			 * virtual addresses, take care of potential aliasing
2897 			 * before reading the folio on the kernel side.
2898 			 */
2899 			if (writably_mapped)
2900 				flush_dcache_folio(folio);
2901 
2902 			n = min_t(loff_t, len, isize - *ppos);
2903 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2904 			if (!n)
2905 				goto out;
2906 			len -= n;
2907 			total_spliced += n;
2908 			*ppos += n;
2909 			in->f_ra.prev_pos = *ppos;
2910 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2911 				goto out;
2912 		}
2913 
2914 		folio_batch_release(&fbatch);
2915 	} while (len);
2916 
2917 out:
2918 	folio_batch_release(&fbatch);
2919 	file_accessed(in);
2920 
2921 	return total_spliced ? total_spliced : error;
2922 }
2923 EXPORT_SYMBOL(filemap_splice_read);
2924 
2925 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2926 		struct address_space *mapping, struct folio *folio,
2927 		loff_t start, loff_t end, bool seek_data)
2928 {
2929 	const struct address_space_operations *ops = mapping->a_ops;
2930 	size_t offset, bsz = i_blocksize(mapping->host);
2931 
2932 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2933 		return seek_data ? start : end;
2934 	if (!ops->is_partially_uptodate)
2935 		return seek_data ? end : start;
2936 
2937 	xas_pause(xas);
2938 	rcu_read_unlock();
2939 	folio_lock(folio);
2940 	if (unlikely(folio->mapping != mapping))
2941 		goto unlock;
2942 
2943 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2944 
2945 	do {
2946 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2947 							seek_data)
2948 			break;
2949 		start = (start + bsz) & ~(bsz - 1);
2950 		offset += bsz;
2951 	} while (offset < folio_size(folio));
2952 unlock:
2953 	folio_unlock(folio);
2954 	rcu_read_lock();
2955 	return start;
2956 }
2957 
2958 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2959 {
2960 	if (xa_is_value(folio))
2961 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2962 	return folio_size(folio);
2963 }
2964 
2965 /**
2966  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2967  * @mapping: Address space to search.
2968  * @start: First byte to consider.
2969  * @end: Limit of search (exclusive).
2970  * @whence: Either SEEK_HOLE or SEEK_DATA.
2971  *
2972  * If the page cache knows which blocks contain holes and which blocks
2973  * contain data, your filesystem can use this function to implement
2974  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2975  * entirely memory-based such as tmpfs, and filesystems which support
2976  * unwritten extents.
2977  *
2978  * Return: The requested offset on success, or -ENXIO if @whence specifies
2979  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2980  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2981  * and @end contain data.
2982  */
2983 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2984 		loff_t end, int whence)
2985 {
2986 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2987 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2988 	bool seek_data = (whence == SEEK_DATA);
2989 	struct folio *folio;
2990 
2991 	if (end <= start)
2992 		return -ENXIO;
2993 
2994 	rcu_read_lock();
2995 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
2996 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2997 		size_t seek_size;
2998 
2999 		if (start < pos) {
3000 			if (!seek_data)
3001 				goto unlock;
3002 			start = pos;
3003 		}
3004 
3005 		seek_size = seek_folio_size(&xas, folio);
3006 		pos = round_up((u64)pos + 1, seek_size);
3007 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3008 				seek_data);
3009 		if (start < pos)
3010 			goto unlock;
3011 		if (start >= end)
3012 			break;
3013 		if (seek_size > PAGE_SIZE)
3014 			xas_set(&xas, pos >> PAGE_SHIFT);
3015 		if (!xa_is_value(folio))
3016 			folio_put(folio);
3017 	}
3018 	if (seek_data)
3019 		start = -ENXIO;
3020 unlock:
3021 	rcu_read_unlock();
3022 	if (folio && !xa_is_value(folio))
3023 		folio_put(folio);
3024 	if (start > end)
3025 		return end;
3026 	return start;
3027 }
3028 
3029 #ifdef CONFIG_MMU
3030 #define MMAP_LOTSAMISS  (100)
3031 /*
3032  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3033  * @vmf - the vm_fault for this fault.
3034  * @folio - the folio to lock.
3035  * @fpin - the pointer to the file we may pin (or is already pinned).
3036  *
3037  * This works similar to lock_folio_or_retry in that it can drop the
3038  * mmap_lock.  It differs in that it actually returns the folio locked
3039  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3040  * to drop the mmap_lock then fpin will point to the pinned file and
3041  * needs to be fput()'ed at a later point.
3042  */
3043 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3044 				     struct file **fpin)
3045 {
3046 	if (folio_trylock(folio))
3047 		return 1;
3048 
3049 	/*
3050 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3051 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3052 	 * is supposed to work. We have way too many special cases..
3053 	 */
3054 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3055 		return 0;
3056 
3057 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3058 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3059 		if (__folio_lock_killable(folio)) {
3060 			/*
3061 			 * We didn't have the right flags to drop the
3062 			 * fault lock, but all fault_handlers only check
3063 			 * for fatal signals if we return VM_FAULT_RETRY,
3064 			 * so we need to drop the fault lock here and
3065 			 * return 0 if we don't have a fpin.
3066 			 */
3067 			if (*fpin == NULL)
3068 				release_fault_lock(vmf);
3069 			return 0;
3070 		}
3071 	} else
3072 		__folio_lock(folio);
3073 
3074 	return 1;
3075 }
3076 
3077 /*
3078  * Synchronous readahead happens when we don't even find a page in the page
3079  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3080  * to drop the mmap sem we return the file that was pinned in order for us to do
3081  * that.  If we didn't pin a file then we return NULL.  The file that is
3082  * returned needs to be fput()'ed when we're done with it.
3083  */
3084 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3085 {
3086 	struct file *file = vmf->vma->vm_file;
3087 	struct file_ra_state *ra = &file->f_ra;
3088 	struct address_space *mapping = file->f_mapping;
3089 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3090 	struct file *fpin = NULL;
3091 	unsigned long vm_flags = vmf->vma->vm_flags;
3092 	unsigned int mmap_miss;
3093 
3094 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3095 	/* Use the readahead code, even if readahead is disabled */
3096 	if (vm_flags & VM_HUGEPAGE) {
3097 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3098 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3099 		ra->size = HPAGE_PMD_NR;
3100 		/*
3101 		 * Fetch two PMD folios, so we get the chance to actually
3102 		 * readahead, unless we've been told not to.
3103 		 */
3104 		if (!(vm_flags & VM_RAND_READ))
3105 			ra->size *= 2;
3106 		ra->async_size = HPAGE_PMD_NR;
3107 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3108 		return fpin;
3109 	}
3110 #endif
3111 
3112 	/* If we don't want any read-ahead, don't bother */
3113 	if (vm_flags & VM_RAND_READ)
3114 		return fpin;
3115 	if (!ra->ra_pages)
3116 		return fpin;
3117 
3118 	if (vm_flags & VM_SEQ_READ) {
3119 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3120 		page_cache_sync_ra(&ractl, ra->ra_pages);
3121 		return fpin;
3122 	}
3123 
3124 	/* Avoid banging the cache line if not needed */
3125 	mmap_miss = READ_ONCE(ra->mmap_miss);
3126 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3127 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3128 
3129 	/*
3130 	 * Do we miss much more than hit in this file? If so,
3131 	 * stop bothering with read-ahead. It will only hurt.
3132 	 */
3133 	if (mmap_miss > MMAP_LOTSAMISS)
3134 		return fpin;
3135 
3136 	/*
3137 	 * mmap read-around
3138 	 */
3139 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3140 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3141 	ra->size = ra->ra_pages;
3142 	ra->async_size = ra->ra_pages / 4;
3143 	ractl._index = ra->start;
3144 	page_cache_ra_order(&ractl, ra, 0);
3145 	return fpin;
3146 }
3147 
3148 /*
3149  * Asynchronous readahead happens when we find the page and PG_readahead,
3150  * so we want to possibly extend the readahead further.  We return the file that
3151  * was pinned if we have to drop the mmap_lock in order to do IO.
3152  */
3153 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3154 					    struct folio *folio)
3155 {
3156 	struct file *file = vmf->vma->vm_file;
3157 	struct file_ra_state *ra = &file->f_ra;
3158 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3159 	struct file *fpin = NULL;
3160 	unsigned int mmap_miss;
3161 
3162 	/* If we don't want any read-ahead, don't bother */
3163 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3164 		return fpin;
3165 
3166 	mmap_miss = READ_ONCE(ra->mmap_miss);
3167 	if (mmap_miss)
3168 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3169 
3170 	if (folio_test_readahead(folio)) {
3171 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3172 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3173 	}
3174 	return fpin;
3175 }
3176 
3177 /**
3178  * filemap_fault - read in file data for page fault handling
3179  * @vmf:	struct vm_fault containing details of the fault
3180  *
3181  * filemap_fault() is invoked via the vma operations vector for a
3182  * mapped memory region to read in file data during a page fault.
3183  *
3184  * The goto's are kind of ugly, but this streamlines the normal case of having
3185  * it in the page cache, and handles the special cases reasonably without
3186  * having a lot of duplicated code.
3187  *
3188  * vma->vm_mm->mmap_lock must be held on entry.
3189  *
3190  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3191  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3192  *
3193  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3194  * has not been released.
3195  *
3196  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3197  *
3198  * Return: bitwise-OR of %VM_FAULT_ codes.
3199  */
3200 vm_fault_t filemap_fault(struct vm_fault *vmf)
3201 {
3202 	int error;
3203 	struct file *file = vmf->vma->vm_file;
3204 	struct file *fpin = NULL;
3205 	struct address_space *mapping = file->f_mapping;
3206 	struct inode *inode = mapping->host;
3207 	pgoff_t max_idx, index = vmf->pgoff;
3208 	struct folio *folio;
3209 	vm_fault_t ret = 0;
3210 	bool mapping_locked = false;
3211 
3212 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3213 	if (unlikely(index >= max_idx))
3214 		return VM_FAULT_SIGBUS;
3215 
3216 	/*
3217 	 * Do we have something in the page cache already?
3218 	 */
3219 	folio = filemap_get_folio(mapping, index);
3220 	if (likely(!IS_ERR(folio))) {
3221 		/*
3222 		 * We found the page, so try async readahead before waiting for
3223 		 * the lock.
3224 		 */
3225 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3226 			fpin = do_async_mmap_readahead(vmf, folio);
3227 		if (unlikely(!folio_test_uptodate(folio))) {
3228 			filemap_invalidate_lock_shared(mapping);
3229 			mapping_locked = true;
3230 		}
3231 	} else {
3232 		/* No page in the page cache at all */
3233 		count_vm_event(PGMAJFAULT);
3234 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3235 		ret = VM_FAULT_MAJOR;
3236 		fpin = do_sync_mmap_readahead(vmf);
3237 retry_find:
3238 		/*
3239 		 * See comment in filemap_create_folio() why we need
3240 		 * invalidate_lock
3241 		 */
3242 		if (!mapping_locked) {
3243 			filemap_invalidate_lock_shared(mapping);
3244 			mapping_locked = true;
3245 		}
3246 		folio = __filemap_get_folio(mapping, index,
3247 					  FGP_CREAT|FGP_FOR_MMAP,
3248 					  vmf->gfp_mask);
3249 		if (IS_ERR(folio)) {
3250 			if (fpin)
3251 				goto out_retry;
3252 			filemap_invalidate_unlock_shared(mapping);
3253 			return VM_FAULT_OOM;
3254 		}
3255 	}
3256 
3257 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3258 		goto out_retry;
3259 
3260 	/* Did it get truncated? */
3261 	if (unlikely(folio->mapping != mapping)) {
3262 		folio_unlock(folio);
3263 		folio_put(folio);
3264 		goto retry_find;
3265 	}
3266 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3267 
3268 	/*
3269 	 * We have a locked folio in the page cache, now we need to check
3270 	 * that it's up-to-date. If not, it is going to be due to an error,
3271 	 * or because readahead was otherwise unable to retrieve it.
3272 	 */
3273 	if (unlikely(!folio_test_uptodate(folio))) {
3274 		/*
3275 		 * If the invalidate lock is not held, the folio was in cache
3276 		 * and uptodate and now it is not. Strange but possible since we
3277 		 * didn't hold the page lock all the time. Let's drop
3278 		 * everything, get the invalidate lock and try again.
3279 		 */
3280 		if (!mapping_locked) {
3281 			folio_unlock(folio);
3282 			folio_put(folio);
3283 			goto retry_find;
3284 		}
3285 
3286 		/*
3287 		 * OK, the folio is really not uptodate. This can be because the
3288 		 * VMA has the VM_RAND_READ flag set, or because an error
3289 		 * arose. Let's read it in directly.
3290 		 */
3291 		goto page_not_uptodate;
3292 	}
3293 
3294 	/*
3295 	 * We've made it this far and we had to drop our mmap_lock, now is the
3296 	 * time to return to the upper layer and have it re-find the vma and
3297 	 * redo the fault.
3298 	 */
3299 	if (fpin) {
3300 		folio_unlock(folio);
3301 		goto out_retry;
3302 	}
3303 	if (mapping_locked)
3304 		filemap_invalidate_unlock_shared(mapping);
3305 
3306 	/*
3307 	 * Found the page and have a reference on it.
3308 	 * We must recheck i_size under page lock.
3309 	 */
3310 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3311 	if (unlikely(index >= max_idx)) {
3312 		folio_unlock(folio);
3313 		folio_put(folio);
3314 		return VM_FAULT_SIGBUS;
3315 	}
3316 
3317 	vmf->page = folio_file_page(folio, index);
3318 	return ret | VM_FAULT_LOCKED;
3319 
3320 page_not_uptodate:
3321 	/*
3322 	 * Umm, take care of errors if the page isn't up-to-date.
3323 	 * Try to re-read it _once_. We do this synchronously,
3324 	 * because there really aren't any performance issues here
3325 	 * and we need to check for errors.
3326 	 */
3327 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3328 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3329 	if (fpin)
3330 		goto out_retry;
3331 	folio_put(folio);
3332 
3333 	if (!error || error == AOP_TRUNCATED_PAGE)
3334 		goto retry_find;
3335 	filemap_invalidate_unlock_shared(mapping);
3336 
3337 	return VM_FAULT_SIGBUS;
3338 
3339 out_retry:
3340 	/*
3341 	 * We dropped the mmap_lock, we need to return to the fault handler to
3342 	 * re-find the vma and come back and find our hopefully still populated
3343 	 * page.
3344 	 */
3345 	if (!IS_ERR(folio))
3346 		folio_put(folio);
3347 	if (mapping_locked)
3348 		filemap_invalidate_unlock_shared(mapping);
3349 	if (fpin)
3350 		fput(fpin);
3351 	return ret | VM_FAULT_RETRY;
3352 }
3353 EXPORT_SYMBOL(filemap_fault);
3354 
3355 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3356 		pgoff_t start)
3357 {
3358 	struct mm_struct *mm = vmf->vma->vm_mm;
3359 
3360 	/* Huge page is mapped? No need to proceed. */
3361 	if (pmd_trans_huge(*vmf->pmd)) {
3362 		folio_unlock(folio);
3363 		folio_put(folio);
3364 		return true;
3365 	}
3366 
3367 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3368 		struct page *page = folio_file_page(folio, start);
3369 		vm_fault_t ret = do_set_pmd(vmf, page);
3370 		if (!ret) {
3371 			/* The page is mapped successfully, reference consumed. */
3372 			folio_unlock(folio);
3373 			return true;
3374 		}
3375 	}
3376 
3377 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3378 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3379 
3380 	return false;
3381 }
3382 
3383 static struct folio *next_uptodate_folio(struct xa_state *xas,
3384 		struct address_space *mapping, pgoff_t end_pgoff)
3385 {
3386 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3387 	unsigned long max_idx;
3388 
3389 	do {
3390 		if (!folio)
3391 			return NULL;
3392 		if (xas_retry(xas, folio))
3393 			continue;
3394 		if (xa_is_value(folio))
3395 			continue;
3396 		if (folio_test_locked(folio))
3397 			continue;
3398 		if (!folio_try_get_rcu(folio))
3399 			continue;
3400 		/* Has the page moved or been split? */
3401 		if (unlikely(folio != xas_reload(xas)))
3402 			goto skip;
3403 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3404 			goto skip;
3405 		if (!folio_trylock(folio))
3406 			goto skip;
3407 		if (folio->mapping != mapping)
3408 			goto unlock;
3409 		if (!folio_test_uptodate(folio))
3410 			goto unlock;
3411 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3412 		if (xas->xa_index >= max_idx)
3413 			goto unlock;
3414 		return folio;
3415 unlock:
3416 		folio_unlock(folio);
3417 skip:
3418 		folio_put(folio);
3419 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3420 
3421 	return NULL;
3422 }
3423 
3424 /*
3425  * Map page range [start_page, start_page + nr_pages) of folio.
3426  * start_page is gotten from start by folio_page(folio, start)
3427  */
3428 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3429 			struct folio *folio, unsigned long start,
3430 			unsigned long addr, unsigned int nr_pages,
3431 			unsigned int *mmap_miss)
3432 {
3433 	vm_fault_t ret = 0;
3434 	struct page *page = folio_page(folio, start);
3435 	unsigned int count = 0;
3436 	pte_t *old_ptep = vmf->pte;
3437 
3438 	do {
3439 		if (PageHWPoison(page + count))
3440 			goto skip;
3441 
3442 		(*mmap_miss)++;
3443 
3444 		/*
3445 		 * NOTE: If there're PTE markers, we'll leave them to be
3446 		 * handled in the specific fault path, and it'll prohibit the
3447 		 * fault-around logic.
3448 		 */
3449 		if (!pte_none(ptep_get(&vmf->pte[count])))
3450 			goto skip;
3451 
3452 		count++;
3453 		continue;
3454 skip:
3455 		if (count) {
3456 			set_pte_range(vmf, folio, page, count, addr);
3457 			folio_ref_add(folio, count);
3458 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3459 				ret = VM_FAULT_NOPAGE;
3460 		}
3461 
3462 		count++;
3463 		page += count;
3464 		vmf->pte += count;
3465 		addr += count * PAGE_SIZE;
3466 		count = 0;
3467 	} while (--nr_pages > 0);
3468 
3469 	if (count) {
3470 		set_pte_range(vmf, folio, page, count, addr);
3471 		folio_ref_add(folio, count);
3472 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3473 			ret = VM_FAULT_NOPAGE;
3474 	}
3475 
3476 	vmf->pte = old_ptep;
3477 
3478 	return ret;
3479 }
3480 
3481 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3482 		struct folio *folio, unsigned long addr,
3483 		unsigned int *mmap_miss)
3484 {
3485 	vm_fault_t ret = 0;
3486 	struct page *page = &folio->page;
3487 
3488 	if (PageHWPoison(page))
3489 		return ret;
3490 
3491 	(*mmap_miss)++;
3492 
3493 	/*
3494 	 * NOTE: If there're PTE markers, we'll leave them to be
3495 	 * handled in the specific fault path, and it'll prohibit
3496 	 * the fault-around logic.
3497 	 */
3498 	if (!pte_none(ptep_get(vmf->pte)))
3499 		return ret;
3500 
3501 	if (vmf->address == addr)
3502 		ret = VM_FAULT_NOPAGE;
3503 
3504 	set_pte_range(vmf, folio, page, 1, addr);
3505 	folio_ref_inc(folio);
3506 
3507 	return ret;
3508 }
3509 
3510 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3511 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3512 {
3513 	struct vm_area_struct *vma = vmf->vma;
3514 	struct file *file = vma->vm_file;
3515 	struct address_space *mapping = file->f_mapping;
3516 	pgoff_t last_pgoff = start_pgoff;
3517 	unsigned long addr;
3518 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3519 	struct folio *folio;
3520 	vm_fault_t ret = 0;
3521 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3522 
3523 	rcu_read_lock();
3524 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3525 	if (!folio)
3526 		goto out;
3527 
3528 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3529 		ret = VM_FAULT_NOPAGE;
3530 		goto out;
3531 	}
3532 
3533 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3534 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3535 	if (!vmf->pte) {
3536 		folio_unlock(folio);
3537 		folio_put(folio);
3538 		goto out;
3539 	}
3540 	do {
3541 		unsigned long end;
3542 
3543 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3544 		vmf->pte += xas.xa_index - last_pgoff;
3545 		last_pgoff = xas.xa_index;
3546 		end = folio_next_index(folio) - 1;
3547 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3548 
3549 		if (!folio_test_large(folio))
3550 			ret |= filemap_map_order0_folio(vmf,
3551 					folio, addr, &mmap_miss);
3552 		else
3553 			ret |= filemap_map_folio_range(vmf, folio,
3554 					xas.xa_index - folio->index, addr,
3555 					nr_pages, &mmap_miss);
3556 
3557 		folio_unlock(folio);
3558 		folio_put(folio);
3559 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3560 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3561 out:
3562 	rcu_read_unlock();
3563 
3564 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3565 	if (mmap_miss >= mmap_miss_saved)
3566 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3567 	else
3568 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3569 
3570 	return ret;
3571 }
3572 EXPORT_SYMBOL(filemap_map_pages);
3573 
3574 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3575 {
3576 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3577 	struct folio *folio = page_folio(vmf->page);
3578 	vm_fault_t ret = VM_FAULT_LOCKED;
3579 
3580 	sb_start_pagefault(mapping->host->i_sb);
3581 	file_update_time(vmf->vma->vm_file);
3582 	folio_lock(folio);
3583 	if (folio->mapping != mapping) {
3584 		folio_unlock(folio);
3585 		ret = VM_FAULT_NOPAGE;
3586 		goto out;
3587 	}
3588 	/*
3589 	 * We mark the folio dirty already here so that when freeze is in
3590 	 * progress, we are guaranteed that writeback during freezing will
3591 	 * see the dirty folio and writeprotect it again.
3592 	 */
3593 	folio_mark_dirty(folio);
3594 	folio_wait_stable(folio);
3595 out:
3596 	sb_end_pagefault(mapping->host->i_sb);
3597 	return ret;
3598 }
3599 
3600 const struct vm_operations_struct generic_file_vm_ops = {
3601 	.fault		= filemap_fault,
3602 	.map_pages	= filemap_map_pages,
3603 	.page_mkwrite	= filemap_page_mkwrite,
3604 };
3605 
3606 /* This is used for a general mmap of a disk file */
3607 
3608 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3609 {
3610 	struct address_space *mapping = file->f_mapping;
3611 
3612 	if (!mapping->a_ops->read_folio)
3613 		return -ENOEXEC;
3614 	file_accessed(file);
3615 	vma->vm_ops = &generic_file_vm_ops;
3616 	return 0;
3617 }
3618 
3619 /*
3620  * This is for filesystems which do not implement ->writepage.
3621  */
3622 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3623 {
3624 	if (vma_is_shared_maywrite(vma))
3625 		return -EINVAL;
3626 	return generic_file_mmap(file, vma);
3627 }
3628 #else
3629 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3630 {
3631 	return VM_FAULT_SIGBUS;
3632 }
3633 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3634 {
3635 	return -ENOSYS;
3636 }
3637 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3638 {
3639 	return -ENOSYS;
3640 }
3641 #endif /* CONFIG_MMU */
3642 
3643 EXPORT_SYMBOL(filemap_page_mkwrite);
3644 EXPORT_SYMBOL(generic_file_mmap);
3645 EXPORT_SYMBOL(generic_file_readonly_mmap);
3646 
3647 static struct folio *do_read_cache_folio(struct address_space *mapping,
3648 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3649 {
3650 	struct folio *folio;
3651 	int err;
3652 
3653 	if (!filler)
3654 		filler = mapping->a_ops->read_folio;
3655 repeat:
3656 	folio = filemap_get_folio(mapping, index);
3657 	if (IS_ERR(folio)) {
3658 		folio = filemap_alloc_folio(gfp, 0);
3659 		if (!folio)
3660 			return ERR_PTR(-ENOMEM);
3661 		err = filemap_add_folio(mapping, folio, index, gfp);
3662 		if (unlikely(err)) {
3663 			folio_put(folio);
3664 			if (err == -EEXIST)
3665 				goto repeat;
3666 			/* Presumably ENOMEM for xarray node */
3667 			return ERR_PTR(err);
3668 		}
3669 
3670 		goto filler;
3671 	}
3672 	if (folio_test_uptodate(folio))
3673 		goto out;
3674 
3675 	if (!folio_trylock(folio)) {
3676 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3677 		goto repeat;
3678 	}
3679 
3680 	/* Folio was truncated from mapping */
3681 	if (!folio->mapping) {
3682 		folio_unlock(folio);
3683 		folio_put(folio);
3684 		goto repeat;
3685 	}
3686 
3687 	/* Someone else locked and filled the page in a very small window */
3688 	if (folio_test_uptodate(folio)) {
3689 		folio_unlock(folio);
3690 		goto out;
3691 	}
3692 
3693 filler:
3694 	err = filemap_read_folio(file, filler, folio);
3695 	if (err) {
3696 		folio_put(folio);
3697 		if (err == AOP_TRUNCATED_PAGE)
3698 			goto repeat;
3699 		return ERR_PTR(err);
3700 	}
3701 
3702 out:
3703 	folio_mark_accessed(folio);
3704 	return folio;
3705 }
3706 
3707 /**
3708  * read_cache_folio - Read into page cache, fill it if needed.
3709  * @mapping: The address_space to read from.
3710  * @index: The index to read.
3711  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3712  * @file: Passed to filler function, may be NULL if not required.
3713  *
3714  * Read one page into the page cache.  If it succeeds, the folio returned
3715  * will contain @index, but it may not be the first page of the folio.
3716  *
3717  * If the filler function returns an error, it will be returned to the
3718  * caller.
3719  *
3720  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3721  * Return: An uptodate folio on success, ERR_PTR() on failure.
3722  */
3723 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3724 		filler_t filler, struct file *file)
3725 {
3726 	return do_read_cache_folio(mapping, index, filler, file,
3727 			mapping_gfp_mask(mapping));
3728 }
3729 EXPORT_SYMBOL(read_cache_folio);
3730 
3731 /**
3732  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3733  * @mapping:	The address_space for the folio.
3734  * @index:	The index that the allocated folio will contain.
3735  * @gfp:	The page allocator flags to use if allocating.
3736  *
3737  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3738  * any new memory allocations done using the specified allocation flags.
3739  *
3740  * The most likely error from this function is EIO, but ENOMEM is
3741  * possible and so is EINTR.  If ->read_folio returns another error,
3742  * that will be returned to the caller.
3743  *
3744  * The function expects mapping->invalidate_lock to be already held.
3745  *
3746  * Return: Uptodate folio on success, ERR_PTR() on failure.
3747  */
3748 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3749 		pgoff_t index, gfp_t gfp)
3750 {
3751 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3752 }
3753 EXPORT_SYMBOL(mapping_read_folio_gfp);
3754 
3755 static struct page *do_read_cache_page(struct address_space *mapping,
3756 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3757 {
3758 	struct folio *folio;
3759 
3760 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3761 	if (IS_ERR(folio))
3762 		return &folio->page;
3763 	return folio_file_page(folio, index);
3764 }
3765 
3766 struct page *read_cache_page(struct address_space *mapping,
3767 			pgoff_t index, filler_t *filler, struct file *file)
3768 {
3769 	return do_read_cache_page(mapping, index, filler, file,
3770 			mapping_gfp_mask(mapping));
3771 }
3772 EXPORT_SYMBOL(read_cache_page);
3773 
3774 /**
3775  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3776  * @mapping:	the page's address_space
3777  * @index:	the page index
3778  * @gfp:	the page allocator flags to use if allocating
3779  *
3780  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3781  * any new page allocations done using the specified allocation flags.
3782  *
3783  * If the page does not get brought uptodate, return -EIO.
3784  *
3785  * The function expects mapping->invalidate_lock to be already held.
3786  *
3787  * Return: up to date page on success, ERR_PTR() on failure.
3788  */
3789 struct page *read_cache_page_gfp(struct address_space *mapping,
3790 				pgoff_t index,
3791 				gfp_t gfp)
3792 {
3793 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3794 }
3795 EXPORT_SYMBOL(read_cache_page_gfp);
3796 
3797 /*
3798  * Warn about a page cache invalidation failure during a direct I/O write.
3799  */
3800 static void dio_warn_stale_pagecache(struct file *filp)
3801 {
3802 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3803 	char pathname[128];
3804 	char *path;
3805 
3806 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3807 	if (__ratelimit(&_rs)) {
3808 		path = file_path(filp, pathname, sizeof(pathname));
3809 		if (IS_ERR(path))
3810 			path = "(unknown)";
3811 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3812 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3813 			current->comm);
3814 	}
3815 }
3816 
3817 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3818 {
3819 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3820 
3821 	if (mapping->nrpages &&
3822 	    invalidate_inode_pages2_range(mapping,
3823 			iocb->ki_pos >> PAGE_SHIFT,
3824 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3825 		dio_warn_stale_pagecache(iocb->ki_filp);
3826 }
3827 
3828 ssize_t
3829 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3830 {
3831 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3832 	size_t write_len = iov_iter_count(from);
3833 	ssize_t written;
3834 
3835 	/*
3836 	 * If a page can not be invalidated, return 0 to fall back
3837 	 * to buffered write.
3838 	 */
3839 	written = kiocb_invalidate_pages(iocb, write_len);
3840 	if (written) {
3841 		if (written == -EBUSY)
3842 			return 0;
3843 		return written;
3844 	}
3845 
3846 	written = mapping->a_ops->direct_IO(iocb, from);
3847 
3848 	/*
3849 	 * Finally, try again to invalidate clean pages which might have been
3850 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3851 	 * if the source of the write was an mmap'ed region of the file
3852 	 * we're writing.  Either one is a pretty crazy thing to do,
3853 	 * so we don't support it 100%.  If this invalidation
3854 	 * fails, tough, the write still worked...
3855 	 *
3856 	 * Most of the time we do not need this since dio_complete() will do
3857 	 * the invalidation for us. However there are some file systems that
3858 	 * do not end up with dio_complete() being called, so let's not break
3859 	 * them by removing it completely.
3860 	 *
3861 	 * Noticeable example is a blkdev_direct_IO().
3862 	 *
3863 	 * Skip invalidation for async writes or if mapping has no pages.
3864 	 */
3865 	if (written > 0) {
3866 		struct inode *inode = mapping->host;
3867 		loff_t pos = iocb->ki_pos;
3868 
3869 		kiocb_invalidate_post_direct_write(iocb, written);
3870 		pos += written;
3871 		write_len -= written;
3872 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3873 			i_size_write(inode, pos);
3874 			mark_inode_dirty(inode);
3875 		}
3876 		iocb->ki_pos = pos;
3877 	}
3878 	if (written != -EIOCBQUEUED)
3879 		iov_iter_revert(from, write_len - iov_iter_count(from));
3880 	return written;
3881 }
3882 EXPORT_SYMBOL(generic_file_direct_write);
3883 
3884 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3885 {
3886 	struct file *file = iocb->ki_filp;
3887 	loff_t pos = iocb->ki_pos;
3888 	struct address_space *mapping = file->f_mapping;
3889 	const struct address_space_operations *a_ops = mapping->a_ops;
3890 	long status = 0;
3891 	ssize_t written = 0;
3892 
3893 	do {
3894 		struct page *page;
3895 		unsigned long offset;	/* Offset into pagecache page */
3896 		unsigned long bytes;	/* Bytes to write to page */
3897 		size_t copied;		/* Bytes copied from user */
3898 		void *fsdata = NULL;
3899 
3900 		offset = (pos & (PAGE_SIZE - 1));
3901 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3902 						iov_iter_count(i));
3903 
3904 again:
3905 		/*
3906 		 * Bring in the user page that we will copy from _first_.
3907 		 * Otherwise there's a nasty deadlock on copying from the
3908 		 * same page as we're writing to, without it being marked
3909 		 * up-to-date.
3910 		 */
3911 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3912 			status = -EFAULT;
3913 			break;
3914 		}
3915 
3916 		if (fatal_signal_pending(current)) {
3917 			status = -EINTR;
3918 			break;
3919 		}
3920 
3921 		status = a_ops->write_begin(file, mapping, pos, bytes,
3922 						&page, &fsdata);
3923 		if (unlikely(status < 0))
3924 			break;
3925 
3926 		if (mapping_writably_mapped(mapping))
3927 			flush_dcache_page(page);
3928 
3929 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3930 		flush_dcache_page(page);
3931 
3932 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3933 						page, fsdata);
3934 		if (unlikely(status != copied)) {
3935 			iov_iter_revert(i, copied - max(status, 0L));
3936 			if (unlikely(status < 0))
3937 				break;
3938 		}
3939 		cond_resched();
3940 
3941 		if (unlikely(status == 0)) {
3942 			/*
3943 			 * A short copy made ->write_end() reject the
3944 			 * thing entirely.  Might be memory poisoning
3945 			 * halfway through, might be a race with munmap,
3946 			 * might be severe memory pressure.
3947 			 */
3948 			if (copied)
3949 				bytes = copied;
3950 			goto again;
3951 		}
3952 		pos += status;
3953 		written += status;
3954 
3955 		balance_dirty_pages_ratelimited(mapping);
3956 	} while (iov_iter_count(i));
3957 
3958 	if (!written)
3959 		return status;
3960 	iocb->ki_pos += written;
3961 	return written;
3962 }
3963 EXPORT_SYMBOL(generic_perform_write);
3964 
3965 /**
3966  * __generic_file_write_iter - write data to a file
3967  * @iocb:	IO state structure (file, offset, etc.)
3968  * @from:	iov_iter with data to write
3969  *
3970  * This function does all the work needed for actually writing data to a
3971  * file. It does all basic checks, removes SUID from the file, updates
3972  * modification times and calls proper subroutines depending on whether we
3973  * do direct IO or a standard buffered write.
3974  *
3975  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3976  * object which does not need locking at all.
3977  *
3978  * This function does *not* take care of syncing data in case of O_SYNC write.
3979  * A caller has to handle it. This is mainly due to the fact that we want to
3980  * avoid syncing under i_rwsem.
3981  *
3982  * Return:
3983  * * number of bytes written, even for truncated writes
3984  * * negative error code if no data has been written at all
3985  */
3986 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3987 {
3988 	struct file *file = iocb->ki_filp;
3989 	struct address_space *mapping = file->f_mapping;
3990 	struct inode *inode = mapping->host;
3991 	ssize_t ret;
3992 
3993 	ret = file_remove_privs(file);
3994 	if (ret)
3995 		return ret;
3996 
3997 	ret = file_update_time(file);
3998 	if (ret)
3999 		return ret;
4000 
4001 	if (iocb->ki_flags & IOCB_DIRECT) {
4002 		ret = generic_file_direct_write(iocb, from);
4003 		/*
4004 		 * If the write stopped short of completing, fall back to
4005 		 * buffered writes.  Some filesystems do this for writes to
4006 		 * holes, for example.  For DAX files, a buffered write will
4007 		 * not succeed (even if it did, DAX does not handle dirty
4008 		 * page-cache pages correctly).
4009 		 */
4010 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4011 			return ret;
4012 		return direct_write_fallback(iocb, from, ret,
4013 				generic_perform_write(iocb, from));
4014 	}
4015 
4016 	return generic_perform_write(iocb, from);
4017 }
4018 EXPORT_SYMBOL(__generic_file_write_iter);
4019 
4020 /**
4021  * generic_file_write_iter - write data to a file
4022  * @iocb:	IO state structure
4023  * @from:	iov_iter with data to write
4024  *
4025  * This is a wrapper around __generic_file_write_iter() to be used by most
4026  * filesystems. It takes care of syncing the file in case of O_SYNC file
4027  * and acquires i_rwsem as needed.
4028  * Return:
4029  * * negative error code if no data has been written at all of
4030  *   vfs_fsync_range() failed for a synchronous write
4031  * * number of bytes written, even for truncated writes
4032  */
4033 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4034 {
4035 	struct file *file = iocb->ki_filp;
4036 	struct inode *inode = file->f_mapping->host;
4037 	ssize_t ret;
4038 
4039 	inode_lock(inode);
4040 	ret = generic_write_checks(iocb, from);
4041 	if (ret > 0)
4042 		ret = __generic_file_write_iter(iocb, from);
4043 	inode_unlock(inode);
4044 
4045 	if (ret > 0)
4046 		ret = generic_write_sync(iocb, ret);
4047 	return ret;
4048 }
4049 EXPORT_SYMBOL(generic_file_write_iter);
4050 
4051 /**
4052  * filemap_release_folio() - Release fs-specific metadata on a folio.
4053  * @folio: The folio which the kernel is trying to free.
4054  * @gfp: Memory allocation flags (and I/O mode).
4055  *
4056  * The address_space is trying to release any data attached to a folio
4057  * (presumably at folio->private).
4058  *
4059  * This will also be called if the private_2 flag is set on a page,
4060  * indicating that the folio has other metadata associated with it.
4061  *
4062  * The @gfp argument specifies whether I/O may be performed to release
4063  * this page (__GFP_IO), and whether the call may block
4064  * (__GFP_RECLAIM & __GFP_FS).
4065  *
4066  * Return: %true if the release was successful, otherwise %false.
4067  */
4068 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4069 {
4070 	struct address_space * const mapping = folio->mapping;
4071 
4072 	BUG_ON(!folio_test_locked(folio));
4073 	if (!folio_needs_release(folio))
4074 		return true;
4075 	if (folio_test_writeback(folio))
4076 		return false;
4077 
4078 	if (mapping && mapping->a_ops->release_folio)
4079 		return mapping->a_ops->release_folio(folio, gfp);
4080 	return try_to_free_buffers(folio);
4081 }
4082 EXPORT_SYMBOL(filemap_release_folio);
4083 
4084 #ifdef CONFIG_CACHESTAT_SYSCALL
4085 /**
4086  * filemap_cachestat() - compute the page cache statistics of a mapping
4087  * @mapping:	The mapping to compute the statistics for.
4088  * @first_index:	The starting page cache index.
4089  * @last_index:	The final page index (inclusive).
4090  * @cs:	the cachestat struct to write the result to.
4091  *
4092  * This will query the page cache statistics of a mapping in the
4093  * page range of [first_index, last_index] (inclusive). The statistics
4094  * queried include: number of dirty pages, number of pages marked for
4095  * writeback, and the number of (recently) evicted pages.
4096  */
4097 static void filemap_cachestat(struct address_space *mapping,
4098 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4099 {
4100 	XA_STATE(xas, &mapping->i_pages, first_index);
4101 	struct folio *folio;
4102 
4103 	rcu_read_lock();
4104 	xas_for_each(&xas, folio, last_index) {
4105 		int order;
4106 		unsigned long nr_pages;
4107 		pgoff_t folio_first_index, folio_last_index;
4108 
4109 		/*
4110 		 * Don't deref the folio. It is not pinned, and might
4111 		 * get freed (and reused) underneath us.
4112 		 *
4113 		 * We *could* pin it, but that would be expensive for
4114 		 * what should be a fast and lightweight syscall.
4115 		 *
4116 		 * Instead, derive all information of interest from
4117 		 * the rcu-protected xarray.
4118 		 */
4119 
4120 		if (xas_retry(&xas, folio))
4121 			continue;
4122 
4123 		order = xa_get_order(xas.xa, xas.xa_index);
4124 		nr_pages = 1 << order;
4125 		folio_first_index = round_down(xas.xa_index, 1 << order);
4126 		folio_last_index = folio_first_index + nr_pages - 1;
4127 
4128 		/* Folios might straddle the range boundaries, only count covered pages */
4129 		if (folio_first_index < first_index)
4130 			nr_pages -= first_index - folio_first_index;
4131 
4132 		if (folio_last_index > last_index)
4133 			nr_pages -= folio_last_index - last_index;
4134 
4135 		if (xa_is_value(folio)) {
4136 			/* page is evicted */
4137 			void *shadow = (void *)folio;
4138 			bool workingset; /* not used */
4139 
4140 			cs->nr_evicted += nr_pages;
4141 
4142 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4143 			if (shmem_mapping(mapping)) {
4144 				/* shmem file - in swap cache */
4145 				swp_entry_t swp = radix_to_swp_entry(folio);
4146 
4147 				shadow = get_shadow_from_swap_cache(swp);
4148 			}
4149 #endif
4150 			if (workingset_test_recent(shadow, true, &workingset))
4151 				cs->nr_recently_evicted += nr_pages;
4152 
4153 			goto resched;
4154 		}
4155 
4156 		/* page is in cache */
4157 		cs->nr_cache += nr_pages;
4158 
4159 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4160 			cs->nr_dirty += nr_pages;
4161 
4162 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4163 			cs->nr_writeback += nr_pages;
4164 
4165 resched:
4166 		if (need_resched()) {
4167 			xas_pause(&xas);
4168 			cond_resched_rcu();
4169 		}
4170 	}
4171 	rcu_read_unlock();
4172 }
4173 
4174 /*
4175  * The cachestat(2) system call.
4176  *
4177  * cachestat() returns the page cache statistics of a file in the
4178  * bytes range specified by `off` and `len`: number of cached pages,
4179  * number of dirty pages, number of pages marked for writeback,
4180  * number of evicted pages, and number of recently evicted pages.
4181  *
4182  * An evicted page is a page that is previously in the page cache
4183  * but has been evicted since. A page is recently evicted if its last
4184  * eviction was recent enough that its reentry to the cache would
4185  * indicate that it is actively being used by the system, and that
4186  * there is memory pressure on the system.
4187  *
4188  * `off` and `len` must be non-negative integers. If `len` > 0,
4189  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4190  * we will query in the range from `off` to the end of the file.
4191  *
4192  * The `flags` argument is unused for now, but is included for future
4193  * extensibility. User should pass 0 (i.e no flag specified).
4194  *
4195  * Currently, hugetlbfs is not supported.
4196  *
4197  * Because the status of a page can change after cachestat() checks it
4198  * but before it returns to the application, the returned values may
4199  * contain stale information.
4200  *
4201  * return values:
4202  *  zero        - success
4203  *  -EFAULT     - cstat or cstat_range points to an illegal address
4204  *  -EINVAL     - invalid flags
4205  *  -EBADF      - invalid file descriptor
4206  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4207  */
4208 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4209 		struct cachestat_range __user *, cstat_range,
4210 		struct cachestat __user *, cstat, unsigned int, flags)
4211 {
4212 	struct fd f = fdget(fd);
4213 	struct address_space *mapping;
4214 	struct cachestat_range csr;
4215 	struct cachestat cs;
4216 	pgoff_t first_index, last_index;
4217 
4218 	if (!f.file)
4219 		return -EBADF;
4220 
4221 	if (copy_from_user(&csr, cstat_range,
4222 			sizeof(struct cachestat_range))) {
4223 		fdput(f);
4224 		return -EFAULT;
4225 	}
4226 
4227 	/* hugetlbfs is not supported */
4228 	if (is_file_hugepages(f.file)) {
4229 		fdput(f);
4230 		return -EOPNOTSUPP;
4231 	}
4232 
4233 	if (flags != 0) {
4234 		fdput(f);
4235 		return -EINVAL;
4236 	}
4237 
4238 	first_index = csr.off >> PAGE_SHIFT;
4239 	last_index =
4240 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4241 	memset(&cs, 0, sizeof(struct cachestat));
4242 	mapping = f.file->f_mapping;
4243 	filemap_cachestat(mapping, first_index, last_index, &cs);
4244 	fdput(f);
4245 
4246 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4247 		return -EFAULT;
4248 
4249 	return 0;
4250 }
4251 #endif /* CONFIG_CACHESTAT_SYSCALL */
4252