1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <asm/pgalloc.h> 50 #include <asm/tlbflush.h> 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/filemap.h> 55 56 /* 57 * FIXME: remove all knowledge of the buffer layer from the core VM 58 */ 59 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 60 61 #include <asm/mman.h> 62 63 #include "swap.h" 64 65 /* 66 * Shared mappings implemented 30.11.1994. It's not fully working yet, 67 * though. 68 * 69 * Shared mappings now work. 15.8.1995 Bruno. 70 * 71 * finished 'unifying' the page and buffer cache and SMP-threaded the 72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 73 * 74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 75 */ 76 77 /* 78 * Lock ordering: 79 * 80 * ->i_mmap_rwsem (truncate_pagecache) 81 * ->private_lock (__free_pte->block_dirty_folio) 82 * ->swap_lock (exclusive_swap_page, others) 83 * ->i_pages lock 84 * 85 * ->i_rwsem 86 * ->invalidate_lock (acquired by fs in truncate path) 87 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * 89 * ->mmap_lock 90 * ->i_mmap_rwsem 91 * ->page_table_lock or pte_lock (various, mainly in memory.c) 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 93 * 94 * ->mmap_lock 95 * ->invalidate_lock (filemap_fault) 96 * ->lock_page (filemap_fault, access_process_vm) 97 * 98 * ->i_rwsem (generic_perform_write) 99 * ->mmap_lock (fault_in_readable->do_page_fault) 100 * 101 * bdi->wb.list_lock 102 * sb_lock (fs/fs-writeback.c) 103 * ->i_pages lock (__sync_single_inode) 104 * 105 * ->i_mmap_rwsem 106 * ->anon_vma.lock (vma_merge) 107 * 108 * ->anon_vma.lock 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 110 * 111 * ->page_table_lock or pte_lock 112 * ->swap_lock (try_to_unmap_one) 113 * ->private_lock (try_to_unmap_one) 114 * ->i_pages lock (try_to_unmap_one) 115 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void page_cache_delete(struct address_space *mapping, 128 struct folio *folio, void *shadow) 129 { 130 XA_STATE(xas, &mapping->i_pages, folio->index); 131 long nr = 1; 132 133 mapping_set_update(&xas, mapping); 134 135 xas_set_order(&xas, folio->index, folio_order(folio)); 136 nr = folio_nr_pages(folio); 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = page_mapcount(&folio->page); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 page_mapcount_reset(&folio->page); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_flush - mostly a non-blocking flush 445 * @mapping: target address_space 446 * 447 * This is a mostly non-blocking flush. Not suitable for data-integrity 448 * purposes - I/O may not be started against all dirty pages. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_flush(struct address_space *mapping) 453 { 454 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 455 } 456 EXPORT_SYMBOL(filemap_flush); 457 458 /** 459 * filemap_range_has_page - check if a page exists in range. 460 * @mapping: address space within which to check 461 * @start_byte: offset in bytes where the range starts 462 * @end_byte: offset in bytes where the range ends (inclusive) 463 * 464 * Find at least one page in the range supplied, usually used to check if 465 * direct writing in this range will trigger a writeback. 466 * 467 * Return: %true if at least one page exists in the specified range, 468 * %false otherwise. 469 */ 470 bool filemap_range_has_page(struct address_space *mapping, 471 loff_t start_byte, loff_t end_byte) 472 { 473 struct folio *folio; 474 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 475 pgoff_t max = end_byte >> PAGE_SHIFT; 476 477 if (end_byte < start_byte) 478 return false; 479 480 rcu_read_lock(); 481 for (;;) { 482 folio = xas_find(&xas, max); 483 if (xas_retry(&xas, folio)) 484 continue; 485 /* Shadow entries don't count */ 486 if (xa_is_value(folio)) 487 continue; 488 /* 489 * We don't need to try to pin this page; we're about to 490 * release the RCU lock anyway. It is enough to know that 491 * there was a page here recently. 492 */ 493 break; 494 } 495 rcu_read_unlock(); 496 497 return folio != NULL; 498 } 499 EXPORT_SYMBOL(filemap_range_has_page); 500 501 static void __filemap_fdatawait_range(struct address_space *mapping, 502 loff_t start_byte, loff_t end_byte) 503 { 504 pgoff_t index = start_byte >> PAGE_SHIFT; 505 pgoff_t end = end_byte >> PAGE_SHIFT; 506 struct folio_batch fbatch; 507 unsigned nr_folios; 508 509 folio_batch_init(&fbatch); 510 511 while (index <= end) { 512 unsigned i; 513 514 nr_folios = filemap_get_folios_tag(mapping, &index, end, 515 PAGECACHE_TAG_WRITEBACK, &fbatch); 516 517 if (!nr_folios) 518 break; 519 520 for (i = 0; i < nr_folios; i++) { 521 struct folio *folio = fbatch.folios[i]; 522 523 folio_wait_writeback(folio); 524 folio_clear_error(folio); 525 } 526 folio_batch_release(&fbatch); 527 cond_resched(); 528 } 529 } 530 531 /** 532 * filemap_fdatawait_range - wait for writeback to complete 533 * @mapping: address space structure to wait for 534 * @start_byte: offset in bytes where the range starts 535 * @end_byte: offset in bytes where the range ends (inclusive) 536 * 537 * Walk the list of under-writeback pages of the given address space 538 * in the given range and wait for all of them. Check error status of 539 * the address space and return it. 540 * 541 * Since the error status of the address space is cleared by this function, 542 * callers are responsible for checking the return value and handling and/or 543 * reporting the error. 544 * 545 * Return: error status of the address space. 546 */ 547 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 548 loff_t end_byte) 549 { 550 __filemap_fdatawait_range(mapping, start_byte, end_byte); 551 return filemap_check_errors(mapping); 552 } 553 EXPORT_SYMBOL(filemap_fdatawait_range); 554 555 /** 556 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 557 * @mapping: address space structure to wait for 558 * @start_byte: offset in bytes where the range starts 559 * @end_byte: offset in bytes where the range ends (inclusive) 560 * 561 * Walk the list of under-writeback pages of the given address space in the 562 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 563 * this function does not clear error status of the address space. 564 * 565 * Use this function if callers don't handle errors themselves. Expected 566 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 567 * fsfreeze(8) 568 */ 569 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 570 loff_t start_byte, loff_t end_byte) 571 { 572 __filemap_fdatawait_range(mapping, start_byte, end_byte); 573 return filemap_check_and_keep_errors(mapping); 574 } 575 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 576 577 /** 578 * file_fdatawait_range - wait for writeback to complete 579 * @file: file pointing to address space structure to wait for 580 * @start_byte: offset in bytes where the range starts 581 * @end_byte: offset in bytes where the range ends (inclusive) 582 * 583 * Walk the list of under-writeback pages of the address space that file 584 * refers to, in the given range and wait for all of them. Check error 585 * status of the address space vs. the file->f_wb_err cursor and return it. 586 * 587 * Since the error status of the file is advanced by this function, 588 * callers are responsible for checking the return value and handling and/or 589 * reporting the error. 590 * 591 * Return: error status of the address space vs. the file->f_wb_err cursor. 592 */ 593 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 594 { 595 struct address_space *mapping = file->f_mapping; 596 597 __filemap_fdatawait_range(mapping, start_byte, end_byte); 598 return file_check_and_advance_wb_err(file); 599 } 600 EXPORT_SYMBOL(file_fdatawait_range); 601 602 /** 603 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 604 * @mapping: address space structure to wait for 605 * 606 * Walk the list of under-writeback pages of the given address space 607 * and wait for all of them. Unlike filemap_fdatawait(), this function 608 * does not clear error status of the address space. 609 * 610 * Use this function if callers don't handle errors themselves. Expected 611 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 612 * fsfreeze(8) 613 * 614 * Return: error status of the address space. 615 */ 616 int filemap_fdatawait_keep_errors(struct address_space *mapping) 617 { 618 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 619 return filemap_check_and_keep_errors(mapping); 620 } 621 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 622 623 /* Returns true if writeback might be needed or already in progress. */ 624 static bool mapping_needs_writeback(struct address_space *mapping) 625 { 626 return mapping->nrpages; 627 } 628 629 bool filemap_range_has_writeback(struct address_space *mapping, 630 loff_t start_byte, loff_t end_byte) 631 { 632 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 633 pgoff_t max = end_byte >> PAGE_SHIFT; 634 struct folio *folio; 635 636 if (end_byte < start_byte) 637 return false; 638 639 rcu_read_lock(); 640 xas_for_each(&xas, folio, max) { 641 if (xas_retry(&xas, folio)) 642 continue; 643 if (xa_is_value(folio)) 644 continue; 645 if (folio_test_dirty(folio) || folio_test_locked(folio) || 646 folio_test_writeback(folio)) 647 break; 648 } 649 rcu_read_unlock(); 650 return folio != NULL; 651 } 652 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 653 654 /** 655 * filemap_write_and_wait_range - write out & wait on a file range 656 * @mapping: the address_space for the pages 657 * @lstart: offset in bytes where the range starts 658 * @lend: offset in bytes where the range ends (inclusive) 659 * 660 * Write out and wait upon file offsets lstart->lend, inclusive. 661 * 662 * Note that @lend is inclusive (describes the last byte to be written) so 663 * that this function can be used to write to the very end-of-file (end = -1). 664 * 665 * Return: error status of the address space. 666 */ 667 int filemap_write_and_wait_range(struct address_space *mapping, 668 loff_t lstart, loff_t lend) 669 { 670 int err = 0, err2; 671 672 if (lend < lstart) 673 return 0; 674 675 if (mapping_needs_writeback(mapping)) { 676 err = __filemap_fdatawrite_range(mapping, lstart, lend, 677 WB_SYNC_ALL); 678 /* 679 * Even if the above returned error, the pages may be 680 * written partially (e.g. -ENOSPC), so we wait for it. 681 * But the -EIO is special case, it may indicate the worst 682 * thing (e.g. bug) happened, so we avoid waiting for it. 683 */ 684 if (err != -EIO) 685 __filemap_fdatawait_range(mapping, lstart, lend); 686 } 687 err2 = filemap_check_errors(mapping); 688 if (!err) 689 err = err2; 690 return err; 691 } 692 EXPORT_SYMBOL(filemap_write_and_wait_range); 693 694 void __filemap_set_wb_err(struct address_space *mapping, int err) 695 { 696 errseq_t eseq = errseq_set(&mapping->wb_err, err); 697 698 trace_filemap_set_wb_err(mapping, eseq); 699 } 700 EXPORT_SYMBOL(__filemap_set_wb_err); 701 702 /** 703 * file_check_and_advance_wb_err - report wb error (if any) that was previously 704 * and advance wb_err to current one 705 * @file: struct file on which the error is being reported 706 * 707 * When userland calls fsync (or something like nfsd does the equivalent), we 708 * want to report any writeback errors that occurred since the last fsync (or 709 * since the file was opened if there haven't been any). 710 * 711 * Grab the wb_err from the mapping. If it matches what we have in the file, 712 * then just quickly return 0. The file is all caught up. 713 * 714 * If it doesn't match, then take the mapping value, set the "seen" flag in 715 * it and try to swap it into place. If it works, or another task beat us 716 * to it with the new value, then update the f_wb_err and return the error 717 * portion. The error at this point must be reported via proper channels 718 * (a'la fsync, or NFS COMMIT operation, etc.). 719 * 720 * While we handle mapping->wb_err with atomic operations, the f_wb_err 721 * value is protected by the f_lock since we must ensure that it reflects 722 * the latest value swapped in for this file descriptor. 723 * 724 * Return: %0 on success, negative error code otherwise. 725 */ 726 int file_check_and_advance_wb_err(struct file *file) 727 { 728 int err = 0; 729 errseq_t old = READ_ONCE(file->f_wb_err); 730 struct address_space *mapping = file->f_mapping; 731 732 /* Locklessly handle the common case where nothing has changed */ 733 if (errseq_check(&mapping->wb_err, old)) { 734 /* Something changed, must use slow path */ 735 spin_lock(&file->f_lock); 736 old = file->f_wb_err; 737 err = errseq_check_and_advance(&mapping->wb_err, 738 &file->f_wb_err); 739 trace_file_check_and_advance_wb_err(file, old); 740 spin_unlock(&file->f_lock); 741 } 742 743 /* 744 * We're mostly using this function as a drop in replacement for 745 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 746 * that the legacy code would have had on these flags. 747 */ 748 clear_bit(AS_EIO, &mapping->flags); 749 clear_bit(AS_ENOSPC, &mapping->flags); 750 return err; 751 } 752 EXPORT_SYMBOL(file_check_and_advance_wb_err); 753 754 /** 755 * file_write_and_wait_range - write out & wait on a file range 756 * @file: file pointing to address_space with pages 757 * @lstart: offset in bytes where the range starts 758 * @lend: offset in bytes where the range ends (inclusive) 759 * 760 * Write out and wait upon file offsets lstart->lend, inclusive. 761 * 762 * Note that @lend is inclusive (describes the last byte to be written) so 763 * that this function can be used to write to the very end-of-file (end = -1). 764 * 765 * After writing out and waiting on the data, we check and advance the 766 * f_wb_err cursor to the latest value, and return any errors detected there. 767 * 768 * Return: %0 on success, negative error code otherwise. 769 */ 770 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 771 { 772 int err = 0, err2; 773 struct address_space *mapping = file->f_mapping; 774 775 if (lend < lstart) 776 return 0; 777 778 if (mapping_needs_writeback(mapping)) { 779 err = __filemap_fdatawrite_range(mapping, lstart, lend, 780 WB_SYNC_ALL); 781 /* See comment of filemap_write_and_wait() */ 782 if (err != -EIO) 783 __filemap_fdatawait_range(mapping, lstart, lend); 784 } 785 err2 = file_check_and_advance_wb_err(file); 786 if (!err) 787 err = err2; 788 return err; 789 } 790 EXPORT_SYMBOL(file_write_and_wait_range); 791 792 /** 793 * replace_page_cache_folio - replace a pagecache folio with a new one 794 * @old: folio to be replaced 795 * @new: folio to replace with 796 * 797 * This function replaces a folio in the pagecache with a new one. On 798 * success it acquires the pagecache reference for the new folio and 799 * drops it for the old folio. Both the old and new folios must be 800 * locked. This function does not add the new folio to the LRU, the 801 * caller must do that. 802 * 803 * The remove + add is atomic. This function cannot fail. 804 */ 805 void replace_page_cache_folio(struct folio *old, struct folio *new) 806 { 807 struct address_space *mapping = old->mapping; 808 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 809 pgoff_t offset = old->index; 810 XA_STATE(xas, &mapping->i_pages, offset); 811 812 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 813 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 814 VM_BUG_ON_FOLIO(new->mapping, new); 815 816 folio_get(new); 817 new->mapping = mapping; 818 new->index = offset; 819 820 mem_cgroup_replace_folio(old, new); 821 822 xas_lock_irq(&xas); 823 xas_store(&xas, new); 824 825 old->mapping = NULL; 826 /* hugetlb pages do not participate in page cache accounting. */ 827 if (!folio_test_hugetlb(old)) 828 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 829 if (!folio_test_hugetlb(new)) 830 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 831 if (folio_test_swapbacked(old)) 832 __lruvec_stat_sub_folio(old, NR_SHMEM); 833 if (folio_test_swapbacked(new)) 834 __lruvec_stat_add_folio(new, NR_SHMEM); 835 xas_unlock_irq(&xas); 836 if (free_folio) 837 free_folio(old); 838 folio_put(old); 839 } 840 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 841 842 noinline int __filemap_add_folio(struct address_space *mapping, 843 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 844 { 845 XA_STATE(xas, &mapping->i_pages, index); 846 int huge = folio_test_hugetlb(folio); 847 bool charged = false; 848 long nr = 1; 849 850 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 851 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 852 mapping_set_update(&xas, mapping); 853 854 if (!huge) { 855 int error = mem_cgroup_charge(folio, NULL, gfp); 856 if (error) 857 return error; 858 charged = true; 859 } 860 861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 862 xas_set_order(&xas, index, folio_order(folio)); 863 nr = folio_nr_pages(folio); 864 865 gfp &= GFP_RECLAIM_MASK; 866 folio_ref_add(folio, nr); 867 folio->mapping = mapping; 868 folio->index = xas.xa_index; 869 870 do { 871 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 872 void *entry, *old = NULL; 873 874 if (order > folio_order(folio)) 875 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 876 order, gfp); 877 xas_lock_irq(&xas); 878 xas_for_each_conflict(&xas, entry) { 879 old = entry; 880 if (!xa_is_value(entry)) { 881 xas_set_err(&xas, -EEXIST); 882 goto unlock; 883 } 884 } 885 886 if (old) { 887 if (shadowp) 888 *shadowp = old; 889 /* entry may have been split before we acquired lock */ 890 order = xa_get_order(xas.xa, xas.xa_index); 891 if (order > folio_order(folio)) { 892 /* How to handle large swap entries? */ 893 BUG_ON(shmem_mapping(mapping)); 894 xas_split(&xas, old, order); 895 xas_reset(&xas); 896 } 897 } 898 899 xas_store(&xas, folio); 900 if (xas_error(&xas)) 901 goto unlock; 902 903 mapping->nrpages += nr; 904 905 /* hugetlb pages do not participate in page cache accounting */ 906 if (!huge) { 907 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 908 if (folio_test_pmd_mappable(folio)) 909 __lruvec_stat_mod_folio(folio, 910 NR_FILE_THPS, nr); 911 } 912 unlock: 913 xas_unlock_irq(&xas); 914 } while (xas_nomem(&xas, gfp)); 915 916 if (xas_error(&xas)) 917 goto error; 918 919 trace_mm_filemap_add_to_page_cache(folio); 920 return 0; 921 error: 922 if (charged) 923 mem_cgroup_uncharge(folio); 924 folio->mapping = NULL; 925 /* Leave page->index set: truncation relies upon it */ 926 folio_put_refs(folio, nr); 927 return xas_error(&xas); 928 } 929 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 930 931 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 932 pgoff_t index, gfp_t gfp) 933 { 934 void *shadow = NULL; 935 int ret; 936 937 __folio_set_locked(folio); 938 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 939 if (unlikely(ret)) 940 __folio_clear_locked(folio); 941 else { 942 /* 943 * The folio might have been evicted from cache only 944 * recently, in which case it should be activated like 945 * any other repeatedly accessed folio. 946 * The exception is folios getting rewritten; evicting other 947 * data from the working set, only to cache data that will 948 * get overwritten with something else, is a waste of memory. 949 */ 950 WARN_ON_ONCE(folio_test_active(folio)); 951 if (!(gfp & __GFP_WRITE) && shadow) 952 workingset_refault(folio, shadow); 953 folio_add_lru(folio); 954 } 955 return ret; 956 } 957 EXPORT_SYMBOL_GPL(filemap_add_folio); 958 959 #ifdef CONFIG_NUMA 960 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 961 { 962 int n; 963 struct folio *folio; 964 965 if (cpuset_do_page_mem_spread()) { 966 unsigned int cpuset_mems_cookie; 967 do { 968 cpuset_mems_cookie = read_mems_allowed_begin(); 969 n = cpuset_mem_spread_node(); 970 folio = __folio_alloc_node(gfp, order, n); 971 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 972 973 return folio; 974 } 975 return folio_alloc(gfp, order); 976 } 977 EXPORT_SYMBOL(filemap_alloc_folio); 978 #endif 979 980 /* 981 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 982 * 983 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 984 * 985 * @mapping1: the first mapping to lock 986 * @mapping2: the second mapping to lock 987 */ 988 void filemap_invalidate_lock_two(struct address_space *mapping1, 989 struct address_space *mapping2) 990 { 991 if (mapping1 > mapping2) 992 swap(mapping1, mapping2); 993 if (mapping1) 994 down_write(&mapping1->invalidate_lock); 995 if (mapping2 && mapping1 != mapping2) 996 down_write_nested(&mapping2->invalidate_lock, 1); 997 } 998 EXPORT_SYMBOL(filemap_invalidate_lock_two); 999 1000 /* 1001 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1002 * 1003 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1004 * 1005 * @mapping1: the first mapping to unlock 1006 * @mapping2: the second mapping to unlock 1007 */ 1008 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1009 struct address_space *mapping2) 1010 { 1011 if (mapping1) 1012 up_write(&mapping1->invalidate_lock); 1013 if (mapping2 && mapping1 != mapping2) 1014 up_write(&mapping2->invalidate_lock); 1015 } 1016 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1017 1018 /* 1019 * In order to wait for pages to become available there must be 1020 * waitqueues associated with pages. By using a hash table of 1021 * waitqueues where the bucket discipline is to maintain all 1022 * waiters on the same queue and wake all when any of the pages 1023 * become available, and for the woken contexts to check to be 1024 * sure the appropriate page became available, this saves space 1025 * at a cost of "thundering herd" phenomena during rare hash 1026 * collisions. 1027 */ 1028 #define PAGE_WAIT_TABLE_BITS 8 1029 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1030 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1031 1032 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1033 { 1034 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1035 } 1036 1037 void __init pagecache_init(void) 1038 { 1039 int i; 1040 1041 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1042 init_waitqueue_head(&folio_wait_table[i]); 1043 1044 page_writeback_init(); 1045 } 1046 1047 /* 1048 * The page wait code treats the "wait->flags" somewhat unusually, because 1049 * we have multiple different kinds of waits, not just the usual "exclusive" 1050 * one. 1051 * 1052 * We have: 1053 * 1054 * (a) no special bits set: 1055 * 1056 * We're just waiting for the bit to be released, and when a waker 1057 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1058 * and remove it from the wait queue. 1059 * 1060 * Simple and straightforward. 1061 * 1062 * (b) WQ_FLAG_EXCLUSIVE: 1063 * 1064 * The waiter is waiting to get the lock, and only one waiter should 1065 * be woken up to avoid any thundering herd behavior. We'll set the 1066 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1067 * 1068 * This is the traditional exclusive wait. 1069 * 1070 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1071 * 1072 * The waiter is waiting to get the bit, and additionally wants the 1073 * lock to be transferred to it for fair lock behavior. If the lock 1074 * cannot be taken, we stop walking the wait queue without waking 1075 * the waiter. 1076 * 1077 * This is the "fair lock handoff" case, and in addition to setting 1078 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1079 * that it now has the lock. 1080 */ 1081 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1082 { 1083 unsigned int flags; 1084 struct wait_page_key *key = arg; 1085 struct wait_page_queue *wait_page 1086 = container_of(wait, struct wait_page_queue, wait); 1087 1088 if (!wake_page_match(wait_page, key)) 1089 return 0; 1090 1091 /* 1092 * If it's a lock handoff wait, we get the bit for it, and 1093 * stop walking (and do not wake it up) if we can't. 1094 */ 1095 flags = wait->flags; 1096 if (flags & WQ_FLAG_EXCLUSIVE) { 1097 if (test_bit(key->bit_nr, &key->folio->flags)) 1098 return -1; 1099 if (flags & WQ_FLAG_CUSTOM) { 1100 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1101 return -1; 1102 flags |= WQ_FLAG_DONE; 1103 } 1104 } 1105 1106 /* 1107 * We are holding the wait-queue lock, but the waiter that 1108 * is waiting for this will be checking the flags without 1109 * any locking. 1110 * 1111 * So update the flags atomically, and wake up the waiter 1112 * afterwards to avoid any races. This store-release pairs 1113 * with the load-acquire in folio_wait_bit_common(). 1114 */ 1115 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1116 wake_up_state(wait->private, mode); 1117 1118 /* 1119 * Ok, we have successfully done what we're waiting for, 1120 * and we can unconditionally remove the wait entry. 1121 * 1122 * Note that this pairs with the "finish_wait()" in the 1123 * waiter, and has to be the absolute last thing we do. 1124 * After this list_del_init(&wait->entry) the wait entry 1125 * might be de-allocated and the process might even have 1126 * exited. 1127 */ 1128 list_del_init_careful(&wait->entry); 1129 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1130 } 1131 1132 static void folio_wake_bit(struct folio *folio, int bit_nr) 1133 { 1134 wait_queue_head_t *q = folio_waitqueue(folio); 1135 struct wait_page_key key; 1136 unsigned long flags; 1137 1138 key.folio = folio; 1139 key.bit_nr = bit_nr; 1140 key.page_match = 0; 1141 1142 spin_lock_irqsave(&q->lock, flags); 1143 __wake_up_locked_key(q, TASK_NORMAL, &key); 1144 1145 /* 1146 * It's possible to miss clearing waiters here, when we woke our page 1147 * waiters, but the hashed waitqueue has waiters for other pages on it. 1148 * That's okay, it's a rare case. The next waker will clear it. 1149 * 1150 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1151 * other), the flag may be cleared in the course of freeing the page; 1152 * but that is not required for correctness. 1153 */ 1154 if (!waitqueue_active(q) || !key.page_match) 1155 folio_clear_waiters(folio); 1156 1157 spin_unlock_irqrestore(&q->lock, flags); 1158 } 1159 1160 /* 1161 * A choice of three behaviors for folio_wait_bit_common(): 1162 */ 1163 enum behavior { 1164 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1165 * __folio_lock() waiting on then setting PG_locked. 1166 */ 1167 SHARED, /* Hold ref to page and check the bit when woken, like 1168 * folio_wait_writeback() waiting on PG_writeback. 1169 */ 1170 DROP, /* Drop ref to page before wait, no check when woken, 1171 * like folio_put_wait_locked() on PG_locked. 1172 */ 1173 }; 1174 1175 /* 1176 * Attempt to check (or get) the folio flag, and mark us done 1177 * if successful. 1178 */ 1179 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1180 struct wait_queue_entry *wait) 1181 { 1182 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1183 if (test_and_set_bit(bit_nr, &folio->flags)) 1184 return false; 1185 } else if (test_bit(bit_nr, &folio->flags)) 1186 return false; 1187 1188 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1189 return true; 1190 } 1191 1192 /* How many times do we accept lock stealing from under a waiter? */ 1193 int sysctl_page_lock_unfairness = 5; 1194 1195 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1196 int state, enum behavior behavior) 1197 { 1198 wait_queue_head_t *q = folio_waitqueue(folio); 1199 int unfairness = sysctl_page_lock_unfairness; 1200 struct wait_page_queue wait_page; 1201 wait_queue_entry_t *wait = &wait_page.wait; 1202 bool thrashing = false; 1203 unsigned long pflags; 1204 bool in_thrashing; 1205 1206 if (bit_nr == PG_locked && 1207 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1208 delayacct_thrashing_start(&in_thrashing); 1209 psi_memstall_enter(&pflags); 1210 thrashing = true; 1211 } 1212 1213 init_wait(wait); 1214 wait->func = wake_page_function; 1215 wait_page.folio = folio; 1216 wait_page.bit_nr = bit_nr; 1217 1218 repeat: 1219 wait->flags = 0; 1220 if (behavior == EXCLUSIVE) { 1221 wait->flags = WQ_FLAG_EXCLUSIVE; 1222 if (--unfairness < 0) 1223 wait->flags |= WQ_FLAG_CUSTOM; 1224 } 1225 1226 /* 1227 * Do one last check whether we can get the 1228 * page bit synchronously. 1229 * 1230 * Do the folio_set_waiters() marking before that 1231 * to let any waker we _just_ missed know they 1232 * need to wake us up (otherwise they'll never 1233 * even go to the slow case that looks at the 1234 * page queue), and add ourselves to the wait 1235 * queue if we need to sleep. 1236 * 1237 * This part needs to be done under the queue 1238 * lock to avoid races. 1239 */ 1240 spin_lock_irq(&q->lock); 1241 folio_set_waiters(folio); 1242 if (!folio_trylock_flag(folio, bit_nr, wait)) 1243 __add_wait_queue_entry_tail(q, wait); 1244 spin_unlock_irq(&q->lock); 1245 1246 /* 1247 * From now on, all the logic will be based on 1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1249 * see whether the page bit testing has already 1250 * been done by the wake function. 1251 * 1252 * We can drop our reference to the folio. 1253 */ 1254 if (behavior == DROP) 1255 folio_put(folio); 1256 1257 /* 1258 * Note that until the "finish_wait()", or until 1259 * we see the WQ_FLAG_WOKEN flag, we need to 1260 * be very careful with the 'wait->flags', because 1261 * we may race with a waker that sets them. 1262 */ 1263 for (;;) { 1264 unsigned int flags; 1265 1266 set_current_state(state); 1267 1268 /* Loop until we've been woken or interrupted */ 1269 flags = smp_load_acquire(&wait->flags); 1270 if (!(flags & WQ_FLAG_WOKEN)) { 1271 if (signal_pending_state(state, current)) 1272 break; 1273 1274 io_schedule(); 1275 continue; 1276 } 1277 1278 /* If we were non-exclusive, we're done */ 1279 if (behavior != EXCLUSIVE) 1280 break; 1281 1282 /* If the waker got the lock for us, we're done */ 1283 if (flags & WQ_FLAG_DONE) 1284 break; 1285 1286 /* 1287 * Otherwise, if we're getting the lock, we need to 1288 * try to get it ourselves. 1289 * 1290 * And if that fails, we'll have to retry this all. 1291 */ 1292 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1293 goto repeat; 1294 1295 wait->flags |= WQ_FLAG_DONE; 1296 break; 1297 } 1298 1299 /* 1300 * If a signal happened, this 'finish_wait()' may remove the last 1301 * waiter from the wait-queues, but the folio waiters bit will remain 1302 * set. That's ok. The next wakeup will take care of it, and trying 1303 * to do it here would be difficult and prone to races. 1304 */ 1305 finish_wait(q, wait); 1306 1307 if (thrashing) { 1308 delayacct_thrashing_end(&in_thrashing); 1309 psi_memstall_leave(&pflags); 1310 } 1311 1312 /* 1313 * NOTE! The wait->flags weren't stable until we've done the 1314 * 'finish_wait()', and we could have exited the loop above due 1315 * to a signal, and had a wakeup event happen after the signal 1316 * test but before the 'finish_wait()'. 1317 * 1318 * So only after the finish_wait() can we reliably determine 1319 * if we got woken up or not, so we can now figure out the final 1320 * return value based on that state without races. 1321 * 1322 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1323 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1324 */ 1325 if (behavior == EXCLUSIVE) 1326 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1327 1328 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1329 } 1330 1331 #ifdef CONFIG_MIGRATION 1332 /** 1333 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1334 * @entry: migration swap entry. 1335 * @ptl: already locked ptl. This function will drop the lock. 1336 * 1337 * Wait for a migration entry referencing the given page to be removed. This is 1338 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1339 * this can be called without taking a reference on the page. Instead this 1340 * should be called while holding the ptl for the migration entry referencing 1341 * the page. 1342 * 1343 * Returns after unlocking the ptl. 1344 * 1345 * This follows the same logic as folio_wait_bit_common() so see the comments 1346 * there. 1347 */ 1348 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1349 __releases(ptl) 1350 { 1351 struct wait_page_queue wait_page; 1352 wait_queue_entry_t *wait = &wait_page.wait; 1353 bool thrashing = false; 1354 unsigned long pflags; 1355 bool in_thrashing; 1356 wait_queue_head_t *q; 1357 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1358 1359 q = folio_waitqueue(folio); 1360 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1361 delayacct_thrashing_start(&in_thrashing); 1362 psi_memstall_enter(&pflags); 1363 thrashing = true; 1364 } 1365 1366 init_wait(wait); 1367 wait->func = wake_page_function; 1368 wait_page.folio = folio; 1369 wait_page.bit_nr = PG_locked; 1370 wait->flags = 0; 1371 1372 spin_lock_irq(&q->lock); 1373 folio_set_waiters(folio); 1374 if (!folio_trylock_flag(folio, PG_locked, wait)) 1375 __add_wait_queue_entry_tail(q, wait); 1376 spin_unlock_irq(&q->lock); 1377 1378 /* 1379 * If a migration entry exists for the page the migration path must hold 1380 * a valid reference to the page, and it must take the ptl to remove the 1381 * migration entry. So the page is valid until the ptl is dropped. 1382 */ 1383 spin_unlock(ptl); 1384 1385 for (;;) { 1386 unsigned int flags; 1387 1388 set_current_state(TASK_UNINTERRUPTIBLE); 1389 1390 /* Loop until we've been woken or interrupted */ 1391 flags = smp_load_acquire(&wait->flags); 1392 if (!(flags & WQ_FLAG_WOKEN)) { 1393 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1394 break; 1395 1396 io_schedule(); 1397 continue; 1398 } 1399 break; 1400 } 1401 1402 finish_wait(q, wait); 1403 1404 if (thrashing) { 1405 delayacct_thrashing_end(&in_thrashing); 1406 psi_memstall_leave(&pflags); 1407 } 1408 } 1409 #endif 1410 1411 void folio_wait_bit(struct folio *folio, int bit_nr) 1412 { 1413 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1414 } 1415 EXPORT_SYMBOL(folio_wait_bit); 1416 1417 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1418 { 1419 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1420 } 1421 EXPORT_SYMBOL(folio_wait_bit_killable); 1422 1423 /** 1424 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1425 * @folio: The folio to wait for. 1426 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1427 * 1428 * The caller should hold a reference on @folio. They expect the page to 1429 * become unlocked relatively soon, but do not wish to hold up migration 1430 * (for example) by holding the reference while waiting for the folio to 1431 * come unlocked. After this function returns, the caller should not 1432 * dereference @folio. 1433 * 1434 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1435 */ 1436 static int folio_put_wait_locked(struct folio *folio, int state) 1437 { 1438 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1439 } 1440 1441 /** 1442 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1443 * @folio: Folio defining the wait queue of interest 1444 * @waiter: Waiter to add to the queue 1445 * 1446 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1447 */ 1448 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1449 { 1450 wait_queue_head_t *q = folio_waitqueue(folio); 1451 unsigned long flags; 1452 1453 spin_lock_irqsave(&q->lock, flags); 1454 __add_wait_queue_entry_tail(q, waiter); 1455 folio_set_waiters(folio); 1456 spin_unlock_irqrestore(&q->lock, flags); 1457 } 1458 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1459 1460 /** 1461 * folio_unlock - Unlock a locked folio. 1462 * @folio: The folio. 1463 * 1464 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1465 * 1466 * Context: May be called from interrupt or process context. May not be 1467 * called from NMI context. 1468 */ 1469 void folio_unlock(struct folio *folio) 1470 { 1471 /* Bit 7 allows x86 to check the byte's sign bit */ 1472 BUILD_BUG_ON(PG_waiters != 7); 1473 BUILD_BUG_ON(PG_locked > 7); 1474 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1475 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1476 folio_wake_bit(folio, PG_locked); 1477 } 1478 EXPORT_SYMBOL(folio_unlock); 1479 1480 /** 1481 * folio_end_read - End read on a folio. 1482 * @folio: The folio. 1483 * @success: True if all reads completed successfully. 1484 * 1485 * When all reads against a folio have completed, filesystems should 1486 * call this function to let the pagecache know that no more reads 1487 * are outstanding. This will unlock the folio and wake up any thread 1488 * sleeping on the lock. The folio will also be marked uptodate if all 1489 * reads succeeded. 1490 * 1491 * Context: May be called from interrupt or process context. May not be 1492 * called from NMI context. 1493 */ 1494 void folio_end_read(struct folio *folio, bool success) 1495 { 1496 unsigned long mask = 1 << PG_locked; 1497 1498 /* Must be in bottom byte for x86 to work */ 1499 BUILD_BUG_ON(PG_uptodate > 7); 1500 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1501 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1502 1503 if (likely(success)) 1504 mask |= 1 << PG_uptodate; 1505 if (folio_xor_flags_has_waiters(folio, mask)) 1506 folio_wake_bit(folio, PG_locked); 1507 } 1508 EXPORT_SYMBOL(folio_end_read); 1509 1510 /** 1511 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1512 * @folio: The folio. 1513 * 1514 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1515 * it. The folio reference held for PG_private_2 being set is released. 1516 * 1517 * This is, for example, used when a netfs folio is being written to a local 1518 * disk cache, thereby allowing writes to the cache for the same folio to be 1519 * serialised. 1520 */ 1521 void folio_end_private_2(struct folio *folio) 1522 { 1523 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1524 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1525 folio_wake_bit(folio, PG_private_2); 1526 folio_put(folio); 1527 } 1528 EXPORT_SYMBOL(folio_end_private_2); 1529 1530 /** 1531 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1532 * @folio: The folio to wait on. 1533 * 1534 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1535 */ 1536 void folio_wait_private_2(struct folio *folio) 1537 { 1538 while (folio_test_private_2(folio)) 1539 folio_wait_bit(folio, PG_private_2); 1540 } 1541 EXPORT_SYMBOL(folio_wait_private_2); 1542 1543 /** 1544 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1545 * @folio: The folio to wait on. 1546 * 1547 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1548 * fatal signal is received by the calling task. 1549 * 1550 * Return: 1551 * - 0 if successful. 1552 * - -EINTR if a fatal signal was encountered. 1553 */ 1554 int folio_wait_private_2_killable(struct folio *folio) 1555 { 1556 int ret = 0; 1557 1558 while (folio_test_private_2(folio)) { 1559 ret = folio_wait_bit_killable(folio, PG_private_2); 1560 if (ret < 0) 1561 break; 1562 } 1563 1564 return ret; 1565 } 1566 EXPORT_SYMBOL(folio_wait_private_2_killable); 1567 1568 /** 1569 * folio_end_writeback - End writeback against a folio. 1570 * @folio: The folio. 1571 * 1572 * The folio must actually be under writeback. 1573 * 1574 * Context: May be called from process or interrupt context. 1575 */ 1576 void folio_end_writeback(struct folio *folio) 1577 { 1578 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1579 1580 /* 1581 * folio_test_clear_reclaim() could be used here but it is an 1582 * atomic operation and overkill in this particular case. Failing 1583 * to shuffle a folio marked for immediate reclaim is too mild 1584 * a gain to justify taking an atomic operation penalty at the 1585 * end of every folio writeback. 1586 */ 1587 if (folio_test_reclaim(folio)) { 1588 folio_clear_reclaim(folio); 1589 folio_rotate_reclaimable(folio); 1590 } 1591 1592 /* 1593 * Writeback does not hold a folio reference of its own, relying 1594 * on truncation to wait for the clearing of PG_writeback. 1595 * But here we must make sure that the folio is not freed and 1596 * reused before the folio_wake_bit(). 1597 */ 1598 folio_get(folio); 1599 if (__folio_end_writeback(folio)) 1600 folio_wake_bit(folio, PG_writeback); 1601 acct_reclaim_writeback(folio); 1602 folio_put(folio); 1603 } 1604 EXPORT_SYMBOL(folio_end_writeback); 1605 1606 /** 1607 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1608 * @folio: The folio to lock 1609 */ 1610 void __folio_lock(struct folio *folio) 1611 { 1612 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1613 EXCLUSIVE); 1614 } 1615 EXPORT_SYMBOL(__folio_lock); 1616 1617 int __folio_lock_killable(struct folio *folio) 1618 { 1619 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1620 EXCLUSIVE); 1621 } 1622 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1623 1624 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1625 { 1626 struct wait_queue_head *q = folio_waitqueue(folio); 1627 int ret; 1628 1629 wait->folio = folio; 1630 wait->bit_nr = PG_locked; 1631 1632 spin_lock_irq(&q->lock); 1633 __add_wait_queue_entry_tail(q, &wait->wait); 1634 folio_set_waiters(folio); 1635 ret = !folio_trylock(folio); 1636 /* 1637 * If we were successful now, we know we're still on the 1638 * waitqueue as we're still under the lock. This means it's 1639 * safe to remove and return success, we know the callback 1640 * isn't going to trigger. 1641 */ 1642 if (!ret) 1643 __remove_wait_queue(q, &wait->wait); 1644 else 1645 ret = -EIOCBQUEUED; 1646 spin_unlock_irq(&q->lock); 1647 return ret; 1648 } 1649 1650 /* 1651 * Return values: 1652 * 0 - folio is locked. 1653 * non-zero - folio is not locked. 1654 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1655 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1656 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1657 * 1658 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1659 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1660 */ 1661 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1662 { 1663 unsigned int flags = vmf->flags; 1664 1665 if (fault_flag_allow_retry_first(flags)) { 1666 /* 1667 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1668 * released even though returning VM_FAULT_RETRY. 1669 */ 1670 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1671 return VM_FAULT_RETRY; 1672 1673 release_fault_lock(vmf); 1674 if (flags & FAULT_FLAG_KILLABLE) 1675 folio_wait_locked_killable(folio); 1676 else 1677 folio_wait_locked(folio); 1678 return VM_FAULT_RETRY; 1679 } 1680 if (flags & FAULT_FLAG_KILLABLE) { 1681 bool ret; 1682 1683 ret = __folio_lock_killable(folio); 1684 if (ret) { 1685 release_fault_lock(vmf); 1686 return VM_FAULT_RETRY; 1687 } 1688 } else { 1689 __folio_lock(folio); 1690 } 1691 1692 return 0; 1693 } 1694 1695 /** 1696 * page_cache_next_miss() - Find the next gap in the page cache. 1697 * @mapping: Mapping. 1698 * @index: Index. 1699 * @max_scan: Maximum range to search. 1700 * 1701 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1702 * gap with the lowest index. 1703 * 1704 * This function may be called under the rcu_read_lock. However, this will 1705 * not atomically search a snapshot of the cache at a single point in time. 1706 * For example, if a gap is created at index 5, then subsequently a gap is 1707 * created at index 10, page_cache_next_miss covering both indices may 1708 * return 10 if called under the rcu_read_lock. 1709 * 1710 * Return: The index of the gap if found, otherwise an index outside the 1711 * range specified (in which case 'return - index >= max_scan' will be true). 1712 * In the rare case of index wrap-around, 0 will be returned. 1713 */ 1714 pgoff_t page_cache_next_miss(struct address_space *mapping, 1715 pgoff_t index, unsigned long max_scan) 1716 { 1717 XA_STATE(xas, &mapping->i_pages, index); 1718 1719 while (max_scan--) { 1720 void *entry = xas_next(&xas); 1721 if (!entry || xa_is_value(entry)) 1722 break; 1723 if (xas.xa_index == 0) 1724 break; 1725 } 1726 1727 return xas.xa_index; 1728 } 1729 EXPORT_SYMBOL(page_cache_next_miss); 1730 1731 /** 1732 * page_cache_prev_miss() - Find the previous gap in the page cache. 1733 * @mapping: Mapping. 1734 * @index: Index. 1735 * @max_scan: Maximum range to search. 1736 * 1737 * Search the range [max(index - max_scan + 1, 0), index] for the 1738 * gap with the highest index. 1739 * 1740 * This function may be called under the rcu_read_lock. However, this will 1741 * not atomically search a snapshot of the cache at a single point in time. 1742 * For example, if a gap is created at index 10, then subsequently a gap is 1743 * created at index 5, page_cache_prev_miss() covering both indices may 1744 * return 5 if called under the rcu_read_lock. 1745 * 1746 * Return: The index of the gap if found, otherwise an index outside the 1747 * range specified (in which case 'index - return >= max_scan' will be true). 1748 * In the rare case of wrap-around, ULONG_MAX will be returned. 1749 */ 1750 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1751 pgoff_t index, unsigned long max_scan) 1752 { 1753 XA_STATE(xas, &mapping->i_pages, index); 1754 1755 while (max_scan--) { 1756 void *entry = xas_prev(&xas); 1757 if (!entry || xa_is_value(entry)) 1758 break; 1759 if (xas.xa_index == ULONG_MAX) 1760 break; 1761 } 1762 1763 return xas.xa_index; 1764 } 1765 EXPORT_SYMBOL(page_cache_prev_miss); 1766 1767 /* 1768 * Lockless page cache protocol: 1769 * On the lookup side: 1770 * 1. Load the folio from i_pages 1771 * 2. Increment the refcount if it's not zero 1772 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1773 * 1774 * On the removal side: 1775 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1776 * B. Remove the page from i_pages 1777 * C. Return the page to the page allocator 1778 * 1779 * This means that any page may have its reference count temporarily 1780 * increased by a speculative page cache (or fast GUP) lookup as it can 1781 * be allocated by another user before the RCU grace period expires. 1782 * Because the refcount temporarily acquired here may end up being the 1783 * last refcount on the page, any page allocation must be freeable by 1784 * folio_put(). 1785 */ 1786 1787 /* 1788 * filemap_get_entry - Get a page cache entry. 1789 * @mapping: the address_space to search 1790 * @index: The page cache index. 1791 * 1792 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1793 * it is returned with an increased refcount. If it is a shadow entry 1794 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1795 * it is returned without further action. 1796 * 1797 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1798 */ 1799 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1800 { 1801 XA_STATE(xas, &mapping->i_pages, index); 1802 struct folio *folio; 1803 1804 rcu_read_lock(); 1805 repeat: 1806 xas_reset(&xas); 1807 folio = xas_load(&xas); 1808 if (xas_retry(&xas, folio)) 1809 goto repeat; 1810 /* 1811 * A shadow entry of a recently evicted page, or a swap entry from 1812 * shmem/tmpfs. Return it without attempting to raise page count. 1813 */ 1814 if (!folio || xa_is_value(folio)) 1815 goto out; 1816 1817 if (!folio_try_get_rcu(folio)) 1818 goto repeat; 1819 1820 if (unlikely(folio != xas_reload(&xas))) { 1821 folio_put(folio); 1822 goto repeat; 1823 } 1824 out: 1825 rcu_read_unlock(); 1826 1827 return folio; 1828 } 1829 1830 /** 1831 * __filemap_get_folio - Find and get a reference to a folio. 1832 * @mapping: The address_space to search. 1833 * @index: The page index. 1834 * @fgp_flags: %FGP flags modify how the folio is returned. 1835 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1836 * 1837 * Looks up the page cache entry at @mapping & @index. 1838 * 1839 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1840 * if the %GFP flags specified for %FGP_CREAT are atomic. 1841 * 1842 * If this function returns a folio, it is returned with an increased refcount. 1843 * 1844 * Return: The found folio or an ERR_PTR() otherwise. 1845 */ 1846 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1847 fgf_t fgp_flags, gfp_t gfp) 1848 { 1849 struct folio *folio; 1850 1851 repeat: 1852 folio = filemap_get_entry(mapping, index); 1853 if (xa_is_value(folio)) 1854 folio = NULL; 1855 if (!folio) 1856 goto no_page; 1857 1858 if (fgp_flags & FGP_LOCK) { 1859 if (fgp_flags & FGP_NOWAIT) { 1860 if (!folio_trylock(folio)) { 1861 folio_put(folio); 1862 return ERR_PTR(-EAGAIN); 1863 } 1864 } else { 1865 folio_lock(folio); 1866 } 1867 1868 /* Has the page been truncated? */ 1869 if (unlikely(folio->mapping != mapping)) { 1870 folio_unlock(folio); 1871 folio_put(folio); 1872 goto repeat; 1873 } 1874 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1875 } 1876 1877 if (fgp_flags & FGP_ACCESSED) 1878 folio_mark_accessed(folio); 1879 else if (fgp_flags & FGP_WRITE) { 1880 /* Clear idle flag for buffer write */ 1881 if (folio_test_idle(folio)) 1882 folio_clear_idle(folio); 1883 } 1884 1885 if (fgp_flags & FGP_STABLE) 1886 folio_wait_stable(folio); 1887 no_page: 1888 if (!folio && (fgp_flags & FGP_CREAT)) { 1889 unsigned order = FGF_GET_ORDER(fgp_flags); 1890 int err; 1891 1892 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1893 gfp |= __GFP_WRITE; 1894 if (fgp_flags & FGP_NOFS) 1895 gfp &= ~__GFP_FS; 1896 if (fgp_flags & FGP_NOWAIT) { 1897 gfp &= ~GFP_KERNEL; 1898 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1899 } 1900 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1901 fgp_flags |= FGP_LOCK; 1902 1903 if (!mapping_large_folio_support(mapping)) 1904 order = 0; 1905 if (order > MAX_PAGECACHE_ORDER) 1906 order = MAX_PAGECACHE_ORDER; 1907 /* If we're not aligned, allocate a smaller folio */ 1908 if (index & ((1UL << order) - 1)) 1909 order = __ffs(index); 1910 1911 do { 1912 gfp_t alloc_gfp = gfp; 1913 1914 err = -ENOMEM; 1915 if (order == 1) 1916 order = 0; 1917 if (order > 0) 1918 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1919 folio = filemap_alloc_folio(alloc_gfp, order); 1920 if (!folio) 1921 continue; 1922 1923 /* Init accessed so avoid atomic mark_page_accessed later */ 1924 if (fgp_flags & FGP_ACCESSED) 1925 __folio_set_referenced(folio); 1926 1927 err = filemap_add_folio(mapping, folio, index, gfp); 1928 if (!err) 1929 break; 1930 folio_put(folio); 1931 folio = NULL; 1932 } while (order-- > 0); 1933 1934 if (err == -EEXIST) 1935 goto repeat; 1936 if (err) 1937 return ERR_PTR(err); 1938 /* 1939 * filemap_add_folio locks the page, and for mmap 1940 * we expect an unlocked page. 1941 */ 1942 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1943 folio_unlock(folio); 1944 } 1945 1946 if (!folio) 1947 return ERR_PTR(-ENOENT); 1948 return folio; 1949 } 1950 EXPORT_SYMBOL(__filemap_get_folio); 1951 1952 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1953 xa_mark_t mark) 1954 { 1955 struct folio *folio; 1956 1957 retry: 1958 if (mark == XA_PRESENT) 1959 folio = xas_find(xas, max); 1960 else 1961 folio = xas_find_marked(xas, max, mark); 1962 1963 if (xas_retry(xas, folio)) 1964 goto retry; 1965 /* 1966 * A shadow entry of a recently evicted page, a swap 1967 * entry from shmem/tmpfs or a DAX entry. Return it 1968 * without attempting to raise page count. 1969 */ 1970 if (!folio || xa_is_value(folio)) 1971 return folio; 1972 1973 if (!folio_try_get_rcu(folio)) 1974 goto reset; 1975 1976 if (unlikely(folio != xas_reload(xas))) { 1977 folio_put(folio); 1978 goto reset; 1979 } 1980 1981 return folio; 1982 reset: 1983 xas_reset(xas); 1984 goto retry; 1985 } 1986 1987 /** 1988 * find_get_entries - gang pagecache lookup 1989 * @mapping: The address_space to search 1990 * @start: The starting page cache index 1991 * @end: The final page index (inclusive). 1992 * @fbatch: Where the resulting entries are placed. 1993 * @indices: The cache indices corresponding to the entries in @entries 1994 * 1995 * find_get_entries() will search for and return a batch of entries in 1996 * the mapping. The entries are placed in @fbatch. find_get_entries() 1997 * takes a reference on any actual folios it returns. 1998 * 1999 * The entries have ascending indexes. The indices may not be consecutive 2000 * due to not-present entries or large folios. 2001 * 2002 * Any shadow entries of evicted folios, or swap entries from 2003 * shmem/tmpfs, are included in the returned array. 2004 * 2005 * Return: The number of entries which were found. 2006 */ 2007 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2008 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2009 { 2010 XA_STATE(xas, &mapping->i_pages, *start); 2011 struct folio *folio; 2012 2013 rcu_read_lock(); 2014 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2015 indices[fbatch->nr] = xas.xa_index; 2016 if (!folio_batch_add(fbatch, folio)) 2017 break; 2018 } 2019 rcu_read_unlock(); 2020 2021 if (folio_batch_count(fbatch)) { 2022 unsigned long nr = 1; 2023 int idx = folio_batch_count(fbatch) - 1; 2024 2025 folio = fbatch->folios[idx]; 2026 if (!xa_is_value(folio)) 2027 nr = folio_nr_pages(folio); 2028 *start = indices[idx] + nr; 2029 } 2030 return folio_batch_count(fbatch); 2031 } 2032 2033 /** 2034 * find_lock_entries - Find a batch of pagecache entries. 2035 * @mapping: The address_space to search. 2036 * @start: The starting page cache index. 2037 * @end: The final page index (inclusive). 2038 * @fbatch: Where the resulting entries are placed. 2039 * @indices: The cache indices of the entries in @fbatch. 2040 * 2041 * find_lock_entries() will return a batch of entries from @mapping. 2042 * Swap, shadow and DAX entries are included. Folios are returned 2043 * locked and with an incremented refcount. Folios which are locked 2044 * by somebody else or under writeback are skipped. Folios which are 2045 * partially outside the range are not returned. 2046 * 2047 * The entries have ascending indexes. The indices may not be consecutive 2048 * due to not-present entries, large folios, folios which could not be 2049 * locked or folios under writeback. 2050 * 2051 * Return: The number of entries which were found. 2052 */ 2053 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2054 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2055 { 2056 XA_STATE(xas, &mapping->i_pages, *start); 2057 struct folio *folio; 2058 2059 rcu_read_lock(); 2060 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2061 if (!xa_is_value(folio)) { 2062 if (folio->index < *start) 2063 goto put; 2064 if (folio_next_index(folio) - 1 > end) 2065 goto put; 2066 if (!folio_trylock(folio)) 2067 goto put; 2068 if (folio->mapping != mapping || 2069 folio_test_writeback(folio)) 2070 goto unlock; 2071 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2072 folio); 2073 } 2074 indices[fbatch->nr] = xas.xa_index; 2075 if (!folio_batch_add(fbatch, folio)) 2076 break; 2077 continue; 2078 unlock: 2079 folio_unlock(folio); 2080 put: 2081 folio_put(folio); 2082 } 2083 rcu_read_unlock(); 2084 2085 if (folio_batch_count(fbatch)) { 2086 unsigned long nr = 1; 2087 int idx = folio_batch_count(fbatch) - 1; 2088 2089 folio = fbatch->folios[idx]; 2090 if (!xa_is_value(folio)) 2091 nr = folio_nr_pages(folio); 2092 *start = indices[idx] + nr; 2093 } 2094 return folio_batch_count(fbatch); 2095 } 2096 2097 /** 2098 * filemap_get_folios - Get a batch of folios 2099 * @mapping: The address_space to search 2100 * @start: The starting page index 2101 * @end: The final page index (inclusive) 2102 * @fbatch: The batch to fill. 2103 * 2104 * Search for and return a batch of folios in the mapping starting at 2105 * index @start and up to index @end (inclusive). The folios are returned 2106 * in @fbatch with an elevated reference count. 2107 * 2108 * Return: The number of folios which were found. 2109 * We also update @start to index the next folio for the traversal. 2110 */ 2111 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2112 pgoff_t end, struct folio_batch *fbatch) 2113 { 2114 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2115 } 2116 EXPORT_SYMBOL(filemap_get_folios); 2117 2118 /** 2119 * filemap_get_folios_contig - Get a batch of contiguous folios 2120 * @mapping: The address_space to search 2121 * @start: The starting page index 2122 * @end: The final page index (inclusive) 2123 * @fbatch: The batch to fill 2124 * 2125 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2126 * except the returned folios are guaranteed to be contiguous. This may 2127 * not return all contiguous folios if the batch gets filled up. 2128 * 2129 * Return: The number of folios found. 2130 * Also update @start to be positioned for traversal of the next folio. 2131 */ 2132 2133 unsigned filemap_get_folios_contig(struct address_space *mapping, 2134 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2135 { 2136 XA_STATE(xas, &mapping->i_pages, *start); 2137 unsigned long nr; 2138 struct folio *folio; 2139 2140 rcu_read_lock(); 2141 2142 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2143 folio = xas_next(&xas)) { 2144 if (xas_retry(&xas, folio)) 2145 continue; 2146 /* 2147 * If the entry has been swapped out, we can stop looking. 2148 * No current caller is looking for DAX entries. 2149 */ 2150 if (xa_is_value(folio)) 2151 goto update_start; 2152 2153 if (!folio_try_get_rcu(folio)) 2154 goto retry; 2155 2156 if (unlikely(folio != xas_reload(&xas))) 2157 goto put_folio; 2158 2159 if (!folio_batch_add(fbatch, folio)) { 2160 nr = folio_nr_pages(folio); 2161 *start = folio->index + nr; 2162 goto out; 2163 } 2164 continue; 2165 put_folio: 2166 folio_put(folio); 2167 2168 retry: 2169 xas_reset(&xas); 2170 } 2171 2172 update_start: 2173 nr = folio_batch_count(fbatch); 2174 2175 if (nr) { 2176 folio = fbatch->folios[nr - 1]; 2177 *start = folio_next_index(folio); 2178 } 2179 out: 2180 rcu_read_unlock(); 2181 return folio_batch_count(fbatch); 2182 } 2183 EXPORT_SYMBOL(filemap_get_folios_contig); 2184 2185 /** 2186 * filemap_get_folios_tag - Get a batch of folios matching @tag 2187 * @mapping: The address_space to search 2188 * @start: The starting page index 2189 * @end: The final page index (inclusive) 2190 * @tag: The tag index 2191 * @fbatch: The batch to fill 2192 * 2193 * The first folio may start before @start; if it does, it will contain 2194 * @start. The final folio may extend beyond @end; if it does, it will 2195 * contain @end. The folios have ascending indices. There may be gaps 2196 * between the folios if there are indices which have no folio in the 2197 * page cache. If folios are added to or removed from the page cache 2198 * while this is running, they may or may not be found by this call. 2199 * Only returns folios that are tagged with @tag. 2200 * 2201 * Return: The number of folios found. 2202 * Also update @start to index the next folio for traversal. 2203 */ 2204 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2205 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2206 { 2207 XA_STATE(xas, &mapping->i_pages, *start); 2208 struct folio *folio; 2209 2210 rcu_read_lock(); 2211 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2212 /* 2213 * Shadow entries should never be tagged, but this iteration 2214 * is lockless so there is a window for page reclaim to evict 2215 * a page we saw tagged. Skip over it. 2216 */ 2217 if (xa_is_value(folio)) 2218 continue; 2219 if (!folio_batch_add(fbatch, folio)) { 2220 unsigned long nr = folio_nr_pages(folio); 2221 *start = folio->index + nr; 2222 goto out; 2223 } 2224 } 2225 /* 2226 * We come here when there is no page beyond @end. We take care to not 2227 * overflow the index @start as it confuses some of the callers. This 2228 * breaks the iteration when there is a page at index -1 but that is 2229 * already broke anyway. 2230 */ 2231 if (end == (pgoff_t)-1) 2232 *start = (pgoff_t)-1; 2233 else 2234 *start = end + 1; 2235 out: 2236 rcu_read_unlock(); 2237 2238 return folio_batch_count(fbatch); 2239 } 2240 EXPORT_SYMBOL(filemap_get_folios_tag); 2241 2242 /* 2243 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2244 * a _large_ part of the i/o request. Imagine the worst scenario: 2245 * 2246 * ---R__________________________________________B__________ 2247 * ^ reading here ^ bad block(assume 4k) 2248 * 2249 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2250 * => failing the whole request => read(R) => read(R+1) => 2251 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2252 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2253 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2254 * 2255 * It is going insane. Fix it by quickly scaling down the readahead size. 2256 */ 2257 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2258 { 2259 ra->ra_pages /= 4; 2260 } 2261 2262 /* 2263 * filemap_get_read_batch - Get a batch of folios for read 2264 * 2265 * Get a batch of folios which represent a contiguous range of bytes in 2266 * the file. No exceptional entries will be returned. If @index is in 2267 * the middle of a folio, the entire folio will be returned. The last 2268 * folio in the batch may have the readahead flag set or the uptodate flag 2269 * clear so that the caller can take the appropriate action. 2270 */ 2271 static void filemap_get_read_batch(struct address_space *mapping, 2272 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2273 { 2274 XA_STATE(xas, &mapping->i_pages, index); 2275 struct folio *folio; 2276 2277 rcu_read_lock(); 2278 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2279 if (xas_retry(&xas, folio)) 2280 continue; 2281 if (xas.xa_index > max || xa_is_value(folio)) 2282 break; 2283 if (xa_is_sibling(folio)) 2284 break; 2285 if (!folio_try_get_rcu(folio)) 2286 goto retry; 2287 2288 if (unlikely(folio != xas_reload(&xas))) 2289 goto put_folio; 2290 2291 if (!folio_batch_add(fbatch, folio)) 2292 break; 2293 if (!folio_test_uptodate(folio)) 2294 break; 2295 if (folio_test_readahead(folio)) 2296 break; 2297 xas_advance(&xas, folio_next_index(folio) - 1); 2298 continue; 2299 put_folio: 2300 folio_put(folio); 2301 retry: 2302 xas_reset(&xas); 2303 } 2304 rcu_read_unlock(); 2305 } 2306 2307 static int filemap_read_folio(struct file *file, filler_t filler, 2308 struct folio *folio) 2309 { 2310 bool workingset = folio_test_workingset(folio); 2311 unsigned long pflags; 2312 int error; 2313 2314 /* 2315 * A previous I/O error may have been due to temporary failures, 2316 * eg. multipath errors. PG_error will be set again if read_folio 2317 * fails. 2318 */ 2319 folio_clear_error(folio); 2320 2321 /* Start the actual read. The read will unlock the page. */ 2322 if (unlikely(workingset)) 2323 psi_memstall_enter(&pflags); 2324 error = filler(file, folio); 2325 if (unlikely(workingset)) 2326 psi_memstall_leave(&pflags); 2327 if (error) 2328 return error; 2329 2330 error = folio_wait_locked_killable(folio); 2331 if (error) 2332 return error; 2333 if (folio_test_uptodate(folio)) 2334 return 0; 2335 if (file) 2336 shrink_readahead_size_eio(&file->f_ra); 2337 return -EIO; 2338 } 2339 2340 static bool filemap_range_uptodate(struct address_space *mapping, 2341 loff_t pos, size_t count, struct folio *folio, 2342 bool need_uptodate) 2343 { 2344 if (folio_test_uptodate(folio)) 2345 return true; 2346 /* pipes can't handle partially uptodate pages */ 2347 if (need_uptodate) 2348 return false; 2349 if (!mapping->a_ops->is_partially_uptodate) 2350 return false; 2351 if (mapping->host->i_blkbits >= folio_shift(folio)) 2352 return false; 2353 2354 if (folio_pos(folio) > pos) { 2355 count -= folio_pos(folio) - pos; 2356 pos = 0; 2357 } else { 2358 pos -= folio_pos(folio); 2359 } 2360 2361 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2362 } 2363 2364 static int filemap_update_page(struct kiocb *iocb, 2365 struct address_space *mapping, size_t count, 2366 struct folio *folio, bool need_uptodate) 2367 { 2368 int error; 2369 2370 if (iocb->ki_flags & IOCB_NOWAIT) { 2371 if (!filemap_invalidate_trylock_shared(mapping)) 2372 return -EAGAIN; 2373 } else { 2374 filemap_invalidate_lock_shared(mapping); 2375 } 2376 2377 if (!folio_trylock(folio)) { 2378 error = -EAGAIN; 2379 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2380 goto unlock_mapping; 2381 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2382 filemap_invalidate_unlock_shared(mapping); 2383 /* 2384 * This is where we usually end up waiting for a 2385 * previously submitted readahead to finish. 2386 */ 2387 folio_put_wait_locked(folio, TASK_KILLABLE); 2388 return AOP_TRUNCATED_PAGE; 2389 } 2390 error = __folio_lock_async(folio, iocb->ki_waitq); 2391 if (error) 2392 goto unlock_mapping; 2393 } 2394 2395 error = AOP_TRUNCATED_PAGE; 2396 if (!folio->mapping) 2397 goto unlock; 2398 2399 error = 0; 2400 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2401 need_uptodate)) 2402 goto unlock; 2403 2404 error = -EAGAIN; 2405 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2406 goto unlock; 2407 2408 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2409 folio); 2410 goto unlock_mapping; 2411 unlock: 2412 folio_unlock(folio); 2413 unlock_mapping: 2414 filemap_invalidate_unlock_shared(mapping); 2415 if (error == AOP_TRUNCATED_PAGE) 2416 folio_put(folio); 2417 return error; 2418 } 2419 2420 static int filemap_create_folio(struct file *file, 2421 struct address_space *mapping, pgoff_t index, 2422 struct folio_batch *fbatch) 2423 { 2424 struct folio *folio; 2425 int error; 2426 2427 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2428 if (!folio) 2429 return -ENOMEM; 2430 2431 /* 2432 * Protect against truncate / hole punch. Grabbing invalidate_lock 2433 * here assures we cannot instantiate and bring uptodate new 2434 * pagecache folios after evicting page cache during truncate 2435 * and before actually freeing blocks. Note that we could 2436 * release invalidate_lock after inserting the folio into 2437 * the page cache as the locked folio would then be enough to 2438 * synchronize with hole punching. But there are code paths 2439 * such as filemap_update_page() filling in partially uptodate 2440 * pages or ->readahead() that need to hold invalidate_lock 2441 * while mapping blocks for IO so let's hold the lock here as 2442 * well to keep locking rules simple. 2443 */ 2444 filemap_invalidate_lock_shared(mapping); 2445 error = filemap_add_folio(mapping, folio, index, 2446 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2447 if (error == -EEXIST) 2448 error = AOP_TRUNCATED_PAGE; 2449 if (error) 2450 goto error; 2451 2452 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2453 if (error) 2454 goto error; 2455 2456 filemap_invalidate_unlock_shared(mapping); 2457 folio_batch_add(fbatch, folio); 2458 return 0; 2459 error: 2460 filemap_invalidate_unlock_shared(mapping); 2461 folio_put(folio); 2462 return error; 2463 } 2464 2465 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2466 struct address_space *mapping, struct folio *folio, 2467 pgoff_t last_index) 2468 { 2469 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2470 2471 if (iocb->ki_flags & IOCB_NOIO) 2472 return -EAGAIN; 2473 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2474 return 0; 2475 } 2476 2477 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2478 struct folio_batch *fbatch, bool need_uptodate) 2479 { 2480 struct file *filp = iocb->ki_filp; 2481 struct address_space *mapping = filp->f_mapping; 2482 struct file_ra_state *ra = &filp->f_ra; 2483 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2484 pgoff_t last_index; 2485 struct folio *folio; 2486 int err = 0; 2487 2488 /* "last_index" is the index of the page beyond the end of the read */ 2489 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2490 retry: 2491 if (fatal_signal_pending(current)) 2492 return -EINTR; 2493 2494 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2495 if (!folio_batch_count(fbatch)) { 2496 if (iocb->ki_flags & IOCB_NOIO) 2497 return -EAGAIN; 2498 page_cache_sync_readahead(mapping, ra, filp, index, 2499 last_index - index); 2500 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2501 } 2502 if (!folio_batch_count(fbatch)) { 2503 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2504 return -EAGAIN; 2505 err = filemap_create_folio(filp, mapping, 2506 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2507 if (err == AOP_TRUNCATED_PAGE) 2508 goto retry; 2509 return err; 2510 } 2511 2512 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2513 if (folio_test_readahead(folio)) { 2514 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2515 if (err) 2516 goto err; 2517 } 2518 if (!folio_test_uptodate(folio)) { 2519 if ((iocb->ki_flags & IOCB_WAITQ) && 2520 folio_batch_count(fbatch) > 1) 2521 iocb->ki_flags |= IOCB_NOWAIT; 2522 err = filemap_update_page(iocb, mapping, count, folio, 2523 need_uptodate); 2524 if (err) 2525 goto err; 2526 } 2527 2528 return 0; 2529 err: 2530 if (err < 0) 2531 folio_put(folio); 2532 if (likely(--fbatch->nr)) 2533 return 0; 2534 if (err == AOP_TRUNCATED_PAGE) 2535 goto retry; 2536 return err; 2537 } 2538 2539 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2540 { 2541 unsigned int shift = folio_shift(folio); 2542 2543 return (pos1 >> shift == pos2 >> shift); 2544 } 2545 2546 /** 2547 * filemap_read - Read data from the page cache. 2548 * @iocb: The iocb to read. 2549 * @iter: Destination for the data. 2550 * @already_read: Number of bytes already read by the caller. 2551 * 2552 * Copies data from the page cache. If the data is not currently present, 2553 * uses the readahead and read_folio address_space operations to fetch it. 2554 * 2555 * Return: Total number of bytes copied, including those already read by 2556 * the caller. If an error happens before any bytes are copied, returns 2557 * a negative error number. 2558 */ 2559 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2560 ssize_t already_read) 2561 { 2562 struct file *filp = iocb->ki_filp; 2563 struct file_ra_state *ra = &filp->f_ra; 2564 struct address_space *mapping = filp->f_mapping; 2565 struct inode *inode = mapping->host; 2566 struct folio_batch fbatch; 2567 int i, error = 0; 2568 bool writably_mapped; 2569 loff_t isize, end_offset; 2570 loff_t last_pos = ra->prev_pos; 2571 2572 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2573 return 0; 2574 if (unlikely(!iov_iter_count(iter))) 2575 return 0; 2576 2577 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2578 folio_batch_init(&fbatch); 2579 2580 do { 2581 cond_resched(); 2582 2583 /* 2584 * If we've already successfully copied some data, then we 2585 * can no longer safely return -EIOCBQUEUED. Hence mark 2586 * an async read NOWAIT at that point. 2587 */ 2588 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2589 iocb->ki_flags |= IOCB_NOWAIT; 2590 2591 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2592 break; 2593 2594 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2595 if (error < 0) 2596 break; 2597 2598 /* 2599 * i_size must be checked after we know the pages are Uptodate. 2600 * 2601 * Checking i_size after the check allows us to calculate 2602 * the correct value for "nr", which means the zero-filled 2603 * part of the page is not copied back to userspace (unless 2604 * another truncate extends the file - this is desired though). 2605 */ 2606 isize = i_size_read(inode); 2607 if (unlikely(iocb->ki_pos >= isize)) 2608 goto put_folios; 2609 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2610 2611 /* 2612 * Once we start copying data, we don't want to be touching any 2613 * cachelines that might be contended: 2614 */ 2615 writably_mapped = mapping_writably_mapped(mapping); 2616 2617 /* 2618 * When a read accesses the same folio several times, only 2619 * mark it as accessed the first time. 2620 */ 2621 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2622 fbatch.folios[0])) 2623 folio_mark_accessed(fbatch.folios[0]); 2624 2625 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2626 struct folio *folio = fbatch.folios[i]; 2627 size_t fsize = folio_size(folio); 2628 size_t offset = iocb->ki_pos & (fsize - 1); 2629 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2630 fsize - offset); 2631 size_t copied; 2632 2633 if (end_offset < folio_pos(folio)) 2634 break; 2635 if (i > 0) 2636 folio_mark_accessed(folio); 2637 /* 2638 * If users can be writing to this folio using arbitrary 2639 * virtual addresses, take care of potential aliasing 2640 * before reading the folio on the kernel side. 2641 */ 2642 if (writably_mapped) 2643 flush_dcache_folio(folio); 2644 2645 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2646 2647 already_read += copied; 2648 iocb->ki_pos += copied; 2649 last_pos = iocb->ki_pos; 2650 2651 if (copied < bytes) { 2652 error = -EFAULT; 2653 break; 2654 } 2655 } 2656 put_folios: 2657 for (i = 0; i < folio_batch_count(&fbatch); i++) 2658 folio_put(fbatch.folios[i]); 2659 folio_batch_init(&fbatch); 2660 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2661 2662 file_accessed(filp); 2663 ra->prev_pos = last_pos; 2664 return already_read ? already_read : error; 2665 } 2666 EXPORT_SYMBOL_GPL(filemap_read); 2667 2668 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2669 { 2670 struct address_space *mapping = iocb->ki_filp->f_mapping; 2671 loff_t pos = iocb->ki_pos; 2672 loff_t end = pos + count - 1; 2673 2674 if (iocb->ki_flags & IOCB_NOWAIT) { 2675 if (filemap_range_needs_writeback(mapping, pos, end)) 2676 return -EAGAIN; 2677 return 0; 2678 } 2679 2680 return filemap_write_and_wait_range(mapping, pos, end); 2681 } 2682 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2683 2684 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2685 { 2686 struct address_space *mapping = iocb->ki_filp->f_mapping; 2687 loff_t pos = iocb->ki_pos; 2688 loff_t end = pos + count - 1; 2689 int ret; 2690 2691 if (iocb->ki_flags & IOCB_NOWAIT) { 2692 /* we could block if there are any pages in the range */ 2693 if (filemap_range_has_page(mapping, pos, end)) 2694 return -EAGAIN; 2695 } else { 2696 ret = filemap_write_and_wait_range(mapping, pos, end); 2697 if (ret) 2698 return ret; 2699 } 2700 2701 /* 2702 * After a write we want buffered reads to be sure to go to disk to get 2703 * the new data. We invalidate clean cached page from the region we're 2704 * about to write. We do this *before* the write so that we can return 2705 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2706 */ 2707 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2708 end >> PAGE_SHIFT); 2709 } 2710 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2711 2712 /** 2713 * generic_file_read_iter - generic filesystem read routine 2714 * @iocb: kernel I/O control block 2715 * @iter: destination for the data read 2716 * 2717 * This is the "read_iter()" routine for all filesystems 2718 * that can use the page cache directly. 2719 * 2720 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2721 * be returned when no data can be read without waiting for I/O requests 2722 * to complete; it doesn't prevent readahead. 2723 * 2724 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2725 * requests shall be made for the read or for readahead. When no data 2726 * can be read, -EAGAIN shall be returned. When readahead would be 2727 * triggered, a partial, possibly empty read shall be returned. 2728 * 2729 * Return: 2730 * * number of bytes copied, even for partial reads 2731 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2732 */ 2733 ssize_t 2734 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2735 { 2736 size_t count = iov_iter_count(iter); 2737 ssize_t retval = 0; 2738 2739 if (!count) 2740 return 0; /* skip atime */ 2741 2742 if (iocb->ki_flags & IOCB_DIRECT) { 2743 struct file *file = iocb->ki_filp; 2744 struct address_space *mapping = file->f_mapping; 2745 struct inode *inode = mapping->host; 2746 2747 retval = kiocb_write_and_wait(iocb, count); 2748 if (retval < 0) 2749 return retval; 2750 file_accessed(file); 2751 2752 retval = mapping->a_ops->direct_IO(iocb, iter); 2753 if (retval >= 0) { 2754 iocb->ki_pos += retval; 2755 count -= retval; 2756 } 2757 if (retval != -EIOCBQUEUED) 2758 iov_iter_revert(iter, count - iov_iter_count(iter)); 2759 2760 /* 2761 * Btrfs can have a short DIO read if we encounter 2762 * compressed extents, so if there was an error, or if 2763 * we've already read everything we wanted to, or if 2764 * there was a short read because we hit EOF, go ahead 2765 * and return. Otherwise fallthrough to buffered io for 2766 * the rest of the read. Buffered reads will not work for 2767 * DAX files, so don't bother trying. 2768 */ 2769 if (retval < 0 || !count || IS_DAX(inode)) 2770 return retval; 2771 if (iocb->ki_pos >= i_size_read(inode)) 2772 return retval; 2773 } 2774 2775 return filemap_read(iocb, iter, retval); 2776 } 2777 EXPORT_SYMBOL(generic_file_read_iter); 2778 2779 /* 2780 * Splice subpages from a folio into a pipe. 2781 */ 2782 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2783 struct folio *folio, loff_t fpos, size_t size) 2784 { 2785 struct page *page; 2786 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2787 2788 page = folio_page(folio, offset / PAGE_SIZE); 2789 size = min(size, folio_size(folio) - offset); 2790 offset %= PAGE_SIZE; 2791 2792 while (spliced < size && 2793 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2794 struct pipe_buffer *buf = pipe_head_buf(pipe); 2795 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2796 2797 *buf = (struct pipe_buffer) { 2798 .ops = &page_cache_pipe_buf_ops, 2799 .page = page, 2800 .offset = offset, 2801 .len = part, 2802 }; 2803 folio_get(folio); 2804 pipe->head++; 2805 page++; 2806 spliced += part; 2807 offset = 0; 2808 } 2809 2810 return spliced; 2811 } 2812 2813 /** 2814 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2815 * @in: The file to read from 2816 * @ppos: Pointer to the file position to read from 2817 * @pipe: The pipe to splice into 2818 * @len: The amount to splice 2819 * @flags: The SPLICE_F_* flags 2820 * 2821 * This function gets folios from a file's pagecache and splices them into the 2822 * pipe. Readahead will be called as necessary to fill more folios. This may 2823 * be used for blockdevs also. 2824 * 2825 * Return: On success, the number of bytes read will be returned and *@ppos 2826 * will be updated if appropriate; 0 will be returned if there is no more data 2827 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2828 * other negative error code will be returned on error. A short read may occur 2829 * if the pipe has insufficient space, we reach the end of the data or we hit a 2830 * hole. 2831 */ 2832 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2833 struct pipe_inode_info *pipe, 2834 size_t len, unsigned int flags) 2835 { 2836 struct folio_batch fbatch; 2837 struct kiocb iocb; 2838 size_t total_spliced = 0, used, npages; 2839 loff_t isize, end_offset; 2840 bool writably_mapped; 2841 int i, error = 0; 2842 2843 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2844 return 0; 2845 2846 init_sync_kiocb(&iocb, in); 2847 iocb.ki_pos = *ppos; 2848 2849 /* Work out how much data we can actually add into the pipe */ 2850 used = pipe_occupancy(pipe->head, pipe->tail); 2851 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2852 len = min_t(size_t, len, npages * PAGE_SIZE); 2853 2854 folio_batch_init(&fbatch); 2855 2856 do { 2857 cond_resched(); 2858 2859 if (*ppos >= i_size_read(in->f_mapping->host)) 2860 break; 2861 2862 iocb.ki_pos = *ppos; 2863 error = filemap_get_pages(&iocb, len, &fbatch, true); 2864 if (error < 0) 2865 break; 2866 2867 /* 2868 * i_size must be checked after we know the pages are Uptodate. 2869 * 2870 * Checking i_size after the check allows us to calculate 2871 * the correct value for "nr", which means the zero-filled 2872 * part of the page is not copied back to userspace (unless 2873 * another truncate extends the file - this is desired though). 2874 */ 2875 isize = i_size_read(in->f_mapping->host); 2876 if (unlikely(*ppos >= isize)) 2877 break; 2878 end_offset = min_t(loff_t, isize, *ppos + len); 2879 2880 /* 2881 * Once we start copying data, we don't want to be touching any 2882 * cachelines that might be contended: 2883 */ 2884 writably_mapped = mapping_writably_mapped(in->f_mapping); 2885 2886 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2887 struct folio *folio = fbatch.folios[i]; 2888 size_t n; 2889 2890 if (folio_pos(folio) >= end_offset) 2891 goto out; 2892 folio_mark_accessed(folio); 2893 2894 /* 2895 * If users can be writing to this folio using arbitrary 2896 * virtual addresses, take care of potential aliasing 2897 * before reading the folio on the kernel side. 2898 */ 2899 if (writably_mapped) 2900 flush_dcache_folio(folio); 2901 2902 n = min_t(loff_t, len, isize - *ppos); 2903 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2904 if (!n) 2905 goto out; 2906 len -= n; 2907 total_spliced += n; 2908 *ppos += n; 2909 in->f_ra.prev_pos = *ppos; 2910 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2911 goto out; 2912 } 2913 2914 folio_batch_release(&fbatch); 2915 } while (len); 2916 2917 out: 2918 folio_batch_release(&fbatch); 2919 file_accessed(in); 2920 2921 return total_spliced ? total_spliced : error; 2922 } 2923 EXPORT_SYMBOL(filemap_splice_read); 2924 2925 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2926 struct address_space *mapping, struct folio *folio, 2927 loff_t start, loff_t end, bool seek_data) 2928 { 2929 const struct address_space_operations *ops = mapping->a_ops; 2930 size_t offset, bsz = i_blocksize(mapping->host); 2931 2932 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2933 return seek_data ? start : end; 2934 if (!ops->is_partially_uptodate) 2935 return seek_data ? end : start; 2936 2937 xas_pause(xas); 2938 rcu_read_unlock(); 2939 folio_lock(folio); 2940 if (unlikely(folio->mapping != mapping)) 2941 goto unlock; 2942 2943 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2944 2945 do { 2946 if (ops->is_partially_uptodate(folio, offset, bsz) == 2947 seek_data) 2948 break; 2949 start = (start + bsz) & ~(bsz - 1); 2950 offset += bsz; 2951 } while (offset < folio_size(folio)); 2952 unlock: 2953 folio_unlock(folio); 2954 rcu_read_lock(); 2955 return start; 2956 } 2957 2958 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2959 { 2960 if (xa_is_value(folio)) 2961 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2962 return folio_size(folio); 2963 } 2964 2965 /** 2966 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2967 * @mapping: Address space to search. 2968 * @start: First byte to consider. 2969 * @end: Limit of search (exclusive). 2970 * @whence: Either SEEK_HOLE or SEEK_DATA. 2971 * 2972 * If the page cache knows which blocks contain holes and which blocks 2973 * contain data, your filesystem can use this function to implement 2974 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2975 * entirely memory-based such as tmpfs, and filesystems which support 2976 * unwritten extents. 2977 * 2978 * Return: The requested offset on success, or -ENXIO if @whence specifies 2979 * SEEK_DATA and there is no data after @start. There is an implicit hole 2980 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2981 * and @end contain data. 2982 */ 2983 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2984 loff_t end, int whence) 2985 { 2986 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2987 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2988 bool seek_data = (whence == SEEK_DATA); 2989 struct folio *folio; 2990 2991 if (end <= start) 2992 return -ENXIO; 2993 2994 rcu_read_lock(); 2995 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2996 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2997 size_t seek_size; 2998 2999 if (start < pos) { 3000 if (!seek_data) 3001 goto unlock; 3002 start = pos; 3003 } 3004 3005 seek_size = seek_folio_size(&xas, folio); 3006 pos = round_up((u64)pos + 1, seek_size); 3007 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3008 seek_data); 3009 if (start < pos) 3010 goto unlock; 3011 if (start >= end) 3012 break; 3013 if (seek_size > PAGE_SIZE) 3014 xas_set(&xas, pos >> PAGE_SHIFT); 3015 if (!xa_is_value(folio)) 3016 folio_put(folio); 3017 } 3018 if (seek_data) 3019 start = -ENXIO; 3020 unlock: 3021 rcu_read_unlock(); 3022 if (folio && !xa_is_value(folio)) 3023 folio_put(folio); 3024 if (start > end) 3025 return end; 3026 return start; 3027 } 3028 3029 #ifdef CONFIG_MMU 3030 #define MMAP_LOTSAMISS (100) 3031 /* 3032 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3033 * @vmf - the vm_fault for this fault. 3034 * @folio - the folio to lock. 3035 * @fpin - the pointer to the file we may pin (or is already pinned). 3036 * 3037 * This works similar to lock_folio_or_retry in that it can drop the 3038 * mmap_lock. It differs in that it actually returns the folio locked 3039 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3040 * to drop the mmap_lock then fpin will point to the pinned file and 3041 * needs to be fput()'ed at a later point. 3042 */ 3043 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3044 struct file **fpin) 3045 { 3046 if (folio_trylock(folio)) 3047 return 1; 3048 3049 /* 3050 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3051 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3052 * is supposed to work. We have way too many special cases.. 3053 */ 3054 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3055 return 0; 3056 3057 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3058 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3059 if (__folio_lock_killable(folio)) { 3060 /* 3061 * We didn't have the right flags to drop the 3062 * fault lock, but all fault_handlers only check 3063 * for fatal signals if we return VM_FAULT_RETRY, 3064 * so we need to drop the fault lock here and 3065 * return 0 if we don't have a fpin. 3066 */ 3067 if (*fpin == NULL) 3068 release_fault_lock(vmf); 3069 return 0; 3070 } 3071 } else 3072 __folio_lock(folio); 3073 3074 return 1; 3075 } 3076 3077 /* 3078 * Synchronous readahead happens when we don't even find a page in the page 3079 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3080 * to drop the mmap sem we return the file that was pinned in order for us to do 3081 * that. If we didn't pin a file then we return NULL. The file that is 3082 * returned needs to be fput()'ed when we're done with it. 3083 */ 3084 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3085 { 3086 struct file *file = vmf->vma->vm_file; 3087 struct file_ra_state *ra = &file->f_ra; 3088 struct address_space *mapping = file->f_mapping; 3089 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3090 struct file *fpin = NULL; 3091 unsigned long vm_flags = vmf->vma->vm_flags; 3092 unsigned int mmap_miss; 3093 3094 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3095 /* Use the readahead code, even if readahead is disabled */ 3096 if (vm_flags & VM_HUGEPAGE) { 3097 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3098 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3099 ra->size = HPAGE_PMD_NR; 3100 /* 3101 * Fetch two PMD folios, so we get the chance to actually 3102 * readahead, unless we've been told not to. 3103 */ 3104 if (!(vm_flags & VM_RAND_READ)) 3105 ra->size *= 2; 3106 ra->async_size = HPAGE_PMD_NR; 3107 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3108 return fpin; 3109 } 3110 #endif 3111 3112 /* If we don't want any read-ahead, don't bother */ 3113 if (vm_flags & VM_RAND_READ) 3114 return fpin; 3115 if (!ra->ra_pages) 3116 return fpin; 3117 3118 if (vm_flags & VM_SEQ_READ) { 3119 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3120 page_cache_sync_ra(&ractl, ra->ra_pages); 3121 return fpin; 3122 } 3123 3124 /* Avoid banging the cache line if not needed */ 3125 mmap_miss = READ_ONCE(ra->mmap_miss); 3126 if (mmap_miss < MMAP_LOTSAMISS * 10) 3127 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3128 3129 /* 3130 * Do we miss much more than hit in this file? If so, 3131 * stop bothering with read-ahead. It will only hurt. 3132 */ 3133 if (mmap_miss > MMAP_LOTSAMISS) 3134 return fpin; 3135 3136 /* 3137 * mmap read-around 3138 */ 3139 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3140 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3141 ra->size = ra->ra_pages; 3142 ra->async_size = ra->ra_pages / 4; 3143 ractl._index = ra->start; 3144 page_cache_ra_order(&ractl, ra, 0); 3145 return fpin; 3146 } 3147 3148 /* 3149 * Asynchronous readahead happens when we find the page and PG_readahead, 3150 * so we want to possibly extend the readahead further. We return the file that 3151 * was pinned if we have to drop the mmap_lock in order to do IO. 3152 */ 3153 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3154 struct folio *folio) 3155 { 3156 struct file *file = vmf->vma->vm_file; 3157 struct file_ra_state *ra = &file->f_ra; 3158 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3159 struct file *fpin = NULL; 3160 unsigned int mmap_miss; 3161 3162 /* If we don't want any read-ahead, don't bother */ 3163 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3164 return fpin; 3165 3166 mmap_miss = READ_ONCE(ra->mmap_miss); 3167 if (mmap_miss) 3168 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3169 3170 if (folio_test_readahead(folio)) { 3171 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3172 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3173 } 3174 return fpin; 3175 } 3176 3177 /** 3178 * filemap_fault - read in file data for page fault handling 3179 * @vmf: struct vm_fault containing details of the fault 3180 * 3181 * filemap_fault() is invoked via the vma operations vector for a 3182 * mapped memory region to read in file data during a page fault. 3183 * 3184 * The goto's are kind of ugly, but this streamlines the normal case of having 3185 * it in the page cache, and handles the special cases reasonably without 3186 * having a lot of duplicated code. 3187 * 3188 * vma->vm_mm->mmap_lock must be held on entry. 3189 * 3190 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3191 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3192 * 3193 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3194 * has not been released. 3195 * 3196 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3197 * 3198 * Return: bitwise-OR of %VM_FAULT_ codes. 3199 */ 3200 vm_fault_t filemap_fault(struct vm_fault *vmf) 3201 { 3202 int error; 3203 struct file *file = vmf->vma->vm_file; 3204 struct file *fpin = NULL; 3205 struct address_space *mapping = file->f_mapping; 3206 struct inode *inode = mapping->host; 3207 pgoff_t max_idx, index = vmf->pgoff; 3208 struct folio *folio; 3209 vm_fault_t ret = 0; 3210 bool mapping_locked = false; 3211 3212 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3213 if (unlikely(index >= max_idx)) 3214 return VM_FAULT_SIGBUS; 3215 3216 /* 3217 * Do we have something in the page cache already? 3218 */ 3219 folio = filemap_get_folio(mapping, index); 3220 if (likely(!IS_ERR(folio))) { 3221 /* 3222 * We found the page, so try async readahead before waiting for 3223 * the lock. 3224 */ 3225 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3226 fpin = do_async_mmap_readahead(vmf, folio); 3227 if (unlikely(!folio_test_uptodate(folio))) { 3228 filemap_invalidate_lock_shared(mapping); 3229 mapping_locked = true; 3230 } 3231 } else { 3232 /* No page in the page cache at all */ 3233 count_vm_event(PGMAJFAULT); 3234 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3235 ret = VM_FAULT_MAJOR; 3236 fpin = do_sync_mmap_readahead(vmf); 3237 retry_find: 3238 /* 3239 * See comment in filemap_create_folio() why we need 3240 * invalidate_lock 3241 */ 3242 if (!mapping_locked) { 3243 filemap_invalidate_lock_shared(mapping); 3244 mapping_locked = true; 3245 } 3246 folio = __filemap_get_folio(mapping, index, 3247 FGP_CREAT|FGP_FOR_MMAP, 3248 vmf->gfp_mask); 3249 if (IS_ERR(folio)) { 3250 if (fpin) 3251 goto out_retry; 3252 filemap_invalidate_unlock_shared(mapping); 3253 return VM_FAULT_OOM; 3254 } 3255 } 3256 3257 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3258 goto out_retry; 3259 3260 /* Did it get truncated? */ 3261 if (unlikely(folio->mapping != mapping)) { 3262 folio_unlock(folio); 3263 folio_put(folio); 3264 goto retry_find; 3265 } 3266 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3267 3268 /* 3269 * We have a locked folio in the page cache, now we need to check 3270 * that it's up-to-date. If not, it is going to be due to an error, 3271 * or because readahead was otherwise unable to retrieve it. 3272 */ 3273 if (unlikely(!folio_test_uptodate(folio))) { 3274 /* 3275 * If the invalidate lock is not held, the folio was in cache 3276 * and uptodate and now it is not. Strange but possible since we 3277 * didn't hold the page lock all the time. Let's drop 3278 * everything, get the invalidate lock and try again. 3279 */ 3280 if (!mapping_locked) { 3281 folio_unlock(folio); 3282 folio_put(folio); 3283 goto retry_find; 3284 } 3285 3286 /* 3287 * OK, the folio is really not uptodate. This can be because the 3288 * VMA has the VM_RAND_READ flag set, or because an error 3289 * arose. Let's read it in directly. 3290 */ 3291 goto page_not_uptodate; 3292 } 3293 3294 /* 3295 * We've made it this far and we had to drop our mmap_lock, now is the 3296 * time to return to the upper layer and have it re-find the vma and 3297 * redo the fault. 3298 */ 3299 if (fpin) { 3300 folio_unlock(folio); 3301 goto out_retry; 3302 } 3303 if (mapping_locked) 3304 filemap_invalidate_unlock_shared(mapping); 3305 3306 /* 3307 * Found the page and have a reference on it. 3308 * We must recheck i_size under page lock. 3309 */ 3310 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3311 if (unlikely(index >= max_idx)) { 3312 folio_unlock(folio); 3313 folio_put(folio); 3314 return VM_FAULT_SIGBUS; 3315 } 3316 3317 vmf->page = folio_file_page(folio, index); 3318 return ret | VM_FAULT_LOCKED; 3319 3320 page_not_uptodate: 3321 /* 3322 * Umm, take care of errors if the page isn't up-to-date. 3323 * Try to re-read it _once_. We do this synchronously, 3324 * because there really aren't any performance issues here 3325 * and we need to check for errors. 3326 */ 3327 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3328 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3329 if (fpin) 3330 goto out_retry; 3331 folio_put(folio); 3332 3333 if (!error || error == AOP_TRUNCATED_PAGE) 3334 goto retry_find; 3335 filemap_invalidate_unlock_shared(mapping); 3336 3337 return VM_FAULT_SIGBUS; 3338 3339 out_retry: 3340 /* 3341 * We dropped the mmap_lock, we need to return to the fault handler to 3342 * re-find the vma and come back and find our hopefully still populated 3343 * page. 3344 */ 3345 if (!IS_ERR(folio)) 3346 folio_put(folio); 3347 if (mapping_locked) 3348 filemap_invalidate_unlock_shared(mapping); 3349 if (fpin) 3350 fput(fpin); 3351 return ret | VM_FAULT_RETRY; 3352 } 3353 EXPORT_SYMBOL(filemap_fault); 3354 3355 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3356 pgoff_t start) 3357 { 3358 struct mm_struct *mm = vmf->vma->vm_mm; 3359 3360 /* Huge page is mapped? No need to proceed. */ 3361 if (pmd_trans_huge(*vmf->pmd)) { 3362 folio_unlock(folio); 3363 folio_put(folio); 3364 return true; 3365 } 3366 3367 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3368 struct page *page = folio_file_page(folio, start); 3369 vm_fault_t ret = do_set_pmd(vmf, page); 3370 if (!ret) { 3371 /* The page is mapped successfully, reference consumed. */ 3372 folio_unlock(folio); 3373 return true; 3374 } 3375 } 3376 3377 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3378 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3379 3380 return false; 3381 } 3382 3383 static struct folio *next_uptodate_folio(struct xa_state *xas, 3384 struct address_space *mapping, pgoff_t end_pgoff) 3385 { 3386 struct folio *folio = xas_next_entry(xas, end_pgoff); 3387 unsigned long max_idx; 3388 3389 do { 3390 if (!folio) 3391 return NULL; 3392 if (xas_retry(xas, folio)) 3393 continue; 3394 if (xa_is_value(folio)) 3395 continue; 3396 if (folio_test_locked(folio)) 3397 continue; 3398 if (!folio_try_get_rcu(folio)) 3399 continue; 3400 /* Has the page moved or been split? */ 3401 if (unlikely(folio != xas_reload(xas))) 3402 goto skip; 3403 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3404 goto skip; 3405 if (!folio_trylock(folio)) 3406 goto skip; 3407 if (folio->mapping != mapping) 3408 goto unlock; 3409 if (!folio_test_uptodate(folio)) 3410 goto unlock; 3411 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3412 if (xas->xa_index >= max_idx) 3413 goto unlock; 3414 return folio; 3415 unlock: 3416 folio_unlock(folio); 3417 skip: 3418 folio_put(folio); 3419 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3420 3421 return NULL; 3422 } 3423 3424 /* 3425 * Map page range [start_page, start_page + nr_pages) of folio. 3426 * start_page is gotten from start by folio_page(folio, start) 3427 */ 3428 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3429 struct folio *folio, unsigned long start, 3430 unsigned long addr, unsigned int nr_pages, 3431 unsigned int *mmap_miss) 3432 { 3433 vm_fault_t ret = 0; 3434 struct page *page = folio_page(folio, start); 3435 unsigned int count = 0; 3436 pte_t *old_ptep = vmf->pte; 3437 3438 do { 3439 if (PageHWPoison(page + count)) 3440 goto skip; 3441 3442 (*mmap_miss)++; 3443 3444 /* 3445 * NOTE: If there're PTE markers, we'll leave them to be 3446 * handled in the specific fault path, and it'll prohibit the 3447 * fault-around logic. 3448 */ 3449 if (!pte_none(ptep_get(&vmf->pte[count]))) 3450 goto skip; 3451 3452 count++; 3453 continue; 3454 skip: 3455 if (count) { 3456 set_pte_range(vmf, folio, page, count, addr); 3457 folio_ref_add(folio, count); 3458 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3459 ret = VM_FAULT_NOPAGE; 3460 } 3461 3462 count++; 3463 page += count; 3464 vmf->pte += count; 3465 addr += count * PAGE_SIZE; 3466 count = 0; 3467 } while (--nr_pages > 0); 3468 3469 if (count) { 3470 set_pte_range(vmf, folio, page, count, addr); 3471 folio_ref_add(folio, count); 3472 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3473 ret = VM_FAULT_NOPAGE; 3474 } 3475 3476 vmf->pte = old_ptep; 3477 3478 return ret; 3479 } 3480 3481 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3482 struct folio *folio, unsigned long addr, 3483 unsigned int *mmap_miss) 3484 { 3485 vm_fault_t ret = 0; 3486 struct page *page = &folio->page; 3487 3488 if (PageHWPoison(page)) 3489 return ret; 3490 3491 (*mmap_miss)++; 3492 3493 /* 3494 * NOTE: If there're PTE markers, we'll leave them to be 3495 * handled in the specific fault path, and it'll prohibit 3496 * the fault-around logic. 3497 */ 3498 if (!pte_none(ptep_get(vmf->pte))) 3499 return ret; 3500 3501 if (vmf->address == addr) 3502 ret = VM_FAULT_NOPAGE; 3503 3504 set_pte_range(vmf, folio, page, 1, addr); 3505 folio_ref_inc(folio); 3506 3507 return ret; 3508 } 3509 3510 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3511 pgoff_t start_pgoff, pgoff_t end_pgoff) 3512 { 3513 struct vm_area_struct *vma = vmf->vma; 3514 struct file *file = vma->vm_file; 3515 struct address_space *mapping = file->f_mapping; 3516 pgoff_t last_pgoff = start_pgoff; 3517 unsigned long addr; 3518 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3519 struct folio *folio; 3520 vm_fault_t ret = 0; 3521 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved; 3522 3523 rcu_read_lock(); 3524 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3525 if (!folio) 3526 goto out; 3527 3528 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3529 ret = VM_FAULT_NOPAGE; 3530 goto out; 3531 } 3532 3533 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3534 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3535 if (!vmf->pte) { 3536 folio_unlock(folio); 3537 folio_put(folio); 3538 goto out; 3539 } 3540 do { 3541 unsigned long end; 3542 3543 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3544 vmf->pte += xas.xa_index - last_pgoff; 3545 last_pgoff = xas.xa_index; 3546 end = folio_next_index(folio) - 1; 3547 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3548 3549 if (!folio_test_large(folio)) 3550 ret |= filemap_map_order0_folio(vmf, 3551 folio, addr, &mmap_miss); 3552 else 3553 ret |= filemap_map_folio_range(vmf, folio, 3554 xas.xa_index - folio->index, addr, 3555 nr_pages, &mmap_miss); 3556 3557 folio_unlock(folio); 3558 folio_put(folio); 3559 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3560 pte_unmap_unlock(vmf->pte, vmf->ptl); 3561 out: 3562 rcu_read_unlock(); 3563 3564 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3565 if (mmap_miss >= mmap_miss_saved) 3566 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3567 else 3568 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3569 3570 return ret; 3571 } 3572 EXPORT_SYMBOL(filemap_map_pages); 3573 3574 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3575 { 3576 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3577 struct folio *folio = page_folio(vmf->page); 3578 vm_fault_t ret = VM_FAULT_LOCKED; 3579 3580 sb_start_pagefault(mapping->host->i_sb); 3581 file_update_time(vmf->vma->vm_file); 3582 folio_lock(folio); 3583 if (folio->mapping != mapping) { 3584 folio_unlock(folio); 3585 ret = VM_FAULT_NOPAGE; 3586 goto out; 3587 } 3588 /* 3589 * We mark the folio dirty already here so that when freeze is in 3590 * progress, we are guaranteed that writeback during freezing will 3591 * see the dirty folio and writeprotect it again. 3592 */ 3593 folio_mark_dirty(folio); 3594 folio_wait_stable(folio); 3595 out: 3596 sb_end_pagefault(mapping->host->i_sb); 3597 return ret; 3598 } 3599 3600 const struct vm_operations_struct generic_file_vm_ops = { 3601 .fault = filemap_fault, 3602 .map_pages = filemap_map_pages, 3603 .page_mkwrite = filemap_page_mkwrite, 3604 }; 3605 3606 /* This is used for a general mmap of a disk file */ 3607 3608 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3609 { 3610 struct address_space *mapping = file->f_mapping; 3611 3612 if (!mapping->a_ops->read_folio) 3613 return -ENOEXEC; 3614 file_accessed(file); 3615 vma->vm_ops = &generic_file_vm_ops; 3616 return 0; 3617 } 3618 3619 /* 3620 * This is for filesystems which do not implement ->writepage. 3621 */ 3622 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3623 { 3624 if (vma_is_shared_maywrite(vma)) 3625 return -EINVAL; 3626 return generic_file_mmap(file, vma); 3627 } 3628 #else 3629 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3630 { 3631 return VM_FAULT_SIGBUS; 3632 } 3633 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3634 { 3635 return -ENOSYS; 3636 } 3637 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3638 { 3639 return -ENOSYS; 3640 } 3641 #endif /* CONFIG_MMU */ 3642 3643 EXPORT_SYMBOL(filemap_page_mkwrite); 3644 EXPORT_SYMBOL(generic_file_mmap); 3645 EXPORT_SYMBOL(generic_file_readonly_mmap); 3646 3647 static struct folio *do_read_cache_folio(struct address_space *mapping, 3648 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3649 { 3650 struct folio *folio; 3651 int err; 3652 3653 if (!filler) 3654 filler = mapping->a_ops->read_folio; 3655 repeat: 3656 folio = filemap_get_folio(mapping, index); 3657 if (IS_ERR(folio)) { 3658 folio = filemap_alloc_folio(gfp, 0); 3659 if (!folio) 3660 return ERR_PTR(-ENOMEM); 3661 err = filemap_add_folio(mapping, folio, index, gfp); 3662 if (unlikely(err)) { 3663 folio_put(folio); 3664 if (err == -EEXIST) 3665 goto repeat; 3666 /* Presumably ENOMEM for xarray node */ 3667 return ERR_PTR(err); 3668 } 3669 3670 goto filler; 3671 } 3672 if (folio_test_uptodate(folio)) 3673 goto out; 3674 3675 if (!folio_trylock(folio)) { 3676 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3677 goto repeat; 3678 } 3679 3680 /* Folio was truncated from mapping */ 3681 if (!folio->mapping) { 3682 folio_unlock(folio); 3683 folio_put(folio); 3684 goto repeat; 3685 } 3686 3687 /* Someone else locked and filled the page in a very small window */ 3688 if (folio_test_uptodate(folio)) { 3689 folio_unlock(folio); 3690 goto out; 3691 } 3692 3693 filler: 3694 err = filemap_read_folio(file, filler, folio); 3695 if (err) { 3696 folio_put(folio); 3697 if (err == AOP_TRUNCATED_PAGE) 3698 goto repeat; 3699 return ERR_PTR(err); 3700 } 3701 3702 out: 3703 folio_mark_accessed(folio); 3704 return folio; 3705 } 3706 3707 /** 3708 * read_cache_folio - Read into page cache, fill it if needed. 3709 * @mapping: The address_space to read from. 3710 * @index: The index to read. 3711 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3712 * @file: Passed to filler function, may be NULL if not required. 3713 * 3714 * Read one page into the page cache. If it succeeds, the folio returned 3715 * will contain @index, but it may not be the first page of the folio. 3716 * 3717 * If the filler function returns an error, it will be returned to the 3718 * caller. 3719 * 3720 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3721 * Return: An uptodate folio on success, ERR_PTR() on failure. 3722 */ 3723 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3724 filler_t filler, struct file *file) 3725 { 3726 return do_read_cache_folio(mapping, index, filler, file, 3727 mapping_gfp_mask(mapping)); 3728 } 3729 EXPORT_SYMBOL(read_cache_folio); 3730 3731 /** 3732 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3733 * @mapping: The address_space for the folio. 3734 * @index: The index that the allocated folio will contain. 3735 * @gfp: The page allocator flags to use if allocating. 3736 * 3737 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3738 * any new memory allocations done using the specified allocation flags. 3739 * 3740 * The most likely error from this function is EIO, but ENOMEM is 3741 * possible and so is EINTR. If ->read_folio returns another error, 3742 * that will be returned to the caller. 3743 * 3744 * The function expects mapping->invalidate_lock to be already held. 3745 * 3746 * Return: Uptodate folio on success, ERR_PTR() on failure. 3747 */ 3748 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3749 pgoff_t index, gfp_t gfp) 3750 { 3751 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3752 } 3753 EXPORT_SYMBOL(mapping_read_folio_gfp); 3754 3755 static struct page *do_read_cache_page(struct address_space *mapping, 3756 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3757 { 3758 struct folio *folio; 3759 3760 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3761 if (IS_ERR(folio)) 3762 return &folio->page; 3763 return folio_file_page(folio, index); 3764 } 3765 3766 struct page *read_cache_page(struct address_space *mapping, 3767 pgoff_t index, filler_t *filler, struct file *file) 3768 { 3769 return do_read_cache_page(mapping, index, filler, file, 3770 mapping_gfp_mask(mapping)); 3771 } 3772 EXPORT_SYMBOL(read_cache_page); 3773 3774 /** 3775 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3776 * @mapping: the page's address_space 3777 * @index: the page index 3778 * @gfp: the page allocator flags to use if allocating 3779 * 3780 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3781 * any new page allocations done using the specified allocation flags. 3782 * 3783 * If the page does not get brought uptodate, return -EIO. 3784 * 3785 * The function expects mapping->invalidate_lock to be already held. 3786 * 3787 * Return: up to date page on success, ERR_PTR() on failure. 3788 */ 3789 struct page *read_cache_page_gfp(struct address_space *mapping, 3790 pgoff_t index, 3791 gfp_t gfp) 3792 { 3793 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3794 } 3795 EXPORT_SYMBOL(read_cache_page_gfp); 3796 3797 /* 3798 * Warn about a page cache invalidation failure during a direct I/O write. 3799 */ 3800 static void dio_warn_stale_pagecache(struct file *filp) 3801 { 3802 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3803 char pathname[128]; 3804 char *path; 3805 3806 errseq_set(&filp->f_mapping->wb_err, -EIO); 3807 if (__ratelimit(&_rs)) { 3808 path = file_path(filp, pathname, sizeof(pathname)); 3809 if (IS_ERR(path)) 3810 path = "(unknown)"; 3811 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3812 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3813 current->comm); 3814 } 3815 } 3816 3817 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3818 { 3819 struct address_space *mapping = iocb->ki_filp->f_mapping; 3820 3821 if (mapping->nrpages && 3822 invalidate_inode_pages2_range(mapping, 3823 iocb->ki_pos >> PAGE_SHIFT, 3824 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3825 dio_warn_stale_pagecache(iocb->ki_filp); 3826 } 3827 3828 ssize_t 3829 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3830 { 3831 struct address_space *mapping = iocb->ki_filp->f_mapping; 3832 size_t write_len = iov_iter_count(from); 3833 ssize_t written; 3834 3835 /* 3836 * If a page can not be invalidated, return 0 to fall back 3837 * to buffered write. 3838 */ 3839 written = kiocb_invalidate_pages(iocb, write_len); 3840 if (written) { 3841 if (written == -EBUSY) 3842 return 0; 3843 return written; 3844 } 3845 3846 written = mapping->a_ops->direct_IO(iocb, from); 3847 3848 /* 3849 * Finally, try again to invalidate clean pages which might have been 3850 * cached by non-direct readahead, or faulted in by get_user_pages() 3851 * if the source of the write was an mmap'ed region of the file 3852 * we're writing. Either one is a pretty crazy thing to do, 3853 * so we don't support it 100%. If this invalidation 3854 * fails, tough, the write still worked... 3855 * 3856 * Most of the time we do not need this since dio_complete() will do 3857 * the invalidation for us. However there are some file systems that 3858 * do not end up with dio_complete() being called, so let's not break 3859 * them by removing it completely. 3860 * 3861 * Noticeable example is a blkdev_direct_IO(). 3862 * 3863 * Skip invalidation for async writes or if mapping has no pages. 3864 */ 3865 if (written > 0) { 3866 struct inode *inode = mapping->host; 3867 loff_t pos = iocb->ki_pos; 3868 3869 kiocb_invalidate_post_direct_write(iocb, written); 3870 pos += written; 3871 write_len -= written; 3872 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3873 i_size_write(inode, pos); 3874 mark_inode_dirty(inode); 3875 } 3876 iocb->ki_pos = pos; 3877 } 3878 if (written != -EIOCBQUEUED) 3879 iov_iter_revert(from, write_len - iov_iter_count(from)); 3880 return written; 3881 } 3882 EXPORT_SYMBOL(generic_file_direct_write); 3883 3884 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3885 { 3886 struct file *file = iocb->ki_filp; 3887 loff_t pos = iocb->ki_pos; 3888 struct address_space *mapping = file->f_mapping; 3889 const struct address_space_operations *a_ops = mapping->a_ops; 3890 long status = 0; 3891 ssize_t written = 0; 3892 3893 do { 3894 struct page *page; 3895 unsigned long offset; /* Offset into pagecache page */ 3896 unsigned long bytes; /* Bytes to write to page */ 3897 size_t copied; /* Bytes copied from user */ 3898 void *fsdata = NULL; 3899 3900 offset = (pos & (PAGE_SIZE - 1)); 3901 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3902 iov_iter_count(i)); 3903 3904 again: 3905 /* 3906 * Bring in the user page that we will copy from _first_. 3907 * Otherwise there's a nasty deadlock on copying from the 3908 * same page as we're writing to, without it being marked 3909 * up-to-date. 3910 */ 3911 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3912 status = -EFAULT; 3913 break; 3914 } 3915 3916 if (fatal_signal_pending(current)) { 3917 status = -EINTR; 3918 break; 3919 } 3920 3921 status = a_ops->write_begin(file, mapping, pos, bytes, 3922 &page, &fsdata); 3923 if (unlikely(status < 0)) 3924 break; 3925 3926 if (mapping_writably_mapped(mapping)) 3927 flush_dcache_page(page); 3928 3929 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3930 flush_dcache_page(page); 3931 3932 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3933 page, fsdata); 3934 if (unlikely(status != copied)) { 3935 iov_iter_revert(i, copied - max(status, 0L)); 3936 if (unlikely(status < 0)) 3937 break; 3938 } 3939 cond_resched(); 3940 3941 if (unlikely(status == 0)) { 3942 /* 3943 * A short copy made ->write_end() reject the 3944 * thing entirely. Might be memory poisoning 3945 * halfway through, might be a race with munmap, 3946 * might be severe memory pressure. 3947 */ 3948 if (copied) 3949 bytes = copied; 3950 goto again; 3951 } 3952 pos += status; 3953 written += status; 3954 3955 balance_dirty_pages_ratelimited(mapping); 3956 } while (iov_iter_count(i)); 3957 3958 if (!written) 3959 return status; 3960 iocb->ki_pos += written; 3961 return written; 3962 } 3963 EXPORT_SYMBOL(generic_perform_write); 3964 3965 /** 3966 * __generic_file_write_iter - write data to a file 3967 * @iocb: IO state structure (file, offset, etc.) 3968 * @from: iov_iter with data to write 3969 * 3970 * This function does all the work needed for actually writing data to a 3971 * file. It does all basic checks, removes SUID from the file, updates 3972 * modification times and calls proper subroutines depending on whether we 3973 * do direct IO or a standard buffered write. 3974 * 3975 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3976 * object which does not need locking at all. 3977 * 3978 * This function does *not* take care of syncing data in case of O_SYNC write. 3979 * A caller has to handle it. This is mainly due to the fact that we want to 3980 * avoid syncing under i_rwsem. 3981 * 3982 * Return: 3983 * * number of bytes written, even for truncated writes 3984 * * negative error code if no data has been written at all 3985 */ 3986 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3987 { 3988 struct file *file = iocb->ki_filp; 3989 struct address_space *mapping = file->f_mapping; 3990 struct inode *inode = mapping->host; 3991 ssize_t ret; 3992 3993 ret = file_remove_privs(file); 3994 if (ret) 3995 return ret; 3996 3997 ret = file_update_time(file); 3998 if (ret) 3999 return ret; 4000 4001 if (iocb->ki_flags & IOCB_DIRECT) { 4002 ret = generic_file_direct_write(iocb, from); 4003 /* 4004 * If the write stopped short of completing, fall back to 4005 * buffered writes. Some filesystems do this for writes to 4006 * holes, for example. For DAX files, a buffered write will 4007 * not succeed (even if it did, DAX does not handle dirty 4008 * page-cache pages correctly). 4009 */ 4010 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4011 return ret; 4012 return direct_write_fallback(iocb, from, ret, 4013 generic_perform_write(iocb, from)); 4014 } 4015 4016 return generic_perform_write(iocb, from); 4017 } 4018 EXPORT_SYMBOL(__generic_file_write_iter); 4019 4020 /** 4021 * generic_file_write_iter - write data to a file 4022 * @iocb: IO state structure 4023 * @from: iov_iter with data to write 4024 * 4025 * This is a wrapper around __generic_file_write_iter() to be used by most 4026 * filesystems. It takes care of syncing the file in case of O_SYNC file 4027 * and acquires i_rwsem as needed. 4028 * Return: 4029 * * negative error code if no data has been written at all of 4030 * vfs_fsync_range() failed for a synchronous write 4031 * * number of bytes written, even for truncated writes 4032 */ 4033 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4034 { 4035 struct file *file = iocb->ki_filp; 4036 struct inode *inode = file->f_mapping->host; 4037 ssize_t ret; 4038 4039 inode_lock(inode); 4040 ret = generic_write_checks(iocb, from); 4041 if (ret > 0) 4042 ret = __generic_file_write_iter(iocb, from); 4043 inode_unlock(inode); 4044 4045 if (ret > 0) 4046 ret = generic_write_sync(iocb, ret); 4047 return ret; 4048 } 4049 EXPORT_SYMBOL(generic_file_write_iter); 4050 4051 /** 4052 * filemap_release_folio() - Release fs-specific metadata on a folio. 4053 * @folio: The folio which the kernel is trying to free. 4054 * @gfp: Memory allocation flags (and I/O mode). 4055 * 4056 * The address_space is trying to release any data attached to a folio 4057 * (presumably at folio->private). 4058 * 4059 * This will also be called if the private_2 flag is set on a page, 4060 * indicating that the folio has other metadata associated with it. 4061 * 4062 * The @gfp argument specifies whether I/O may be performed to release 4063 * this page (__GFP_IO), and whether the call may block 4064 * (__GFP_RECLAIM & __GFP_FS). 4065 * 4066 * Return: %true if the release was successful, otherwise %false. 4067 */ 4068 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4069 { 4070 struct address_space * const mapping = folio->mapping; 4071 4072 BUG_ON(!folio_test_locked(folio)); 4073 if (!folio_needs_release(folio)) 4074 return true; 4075 if (folio_test_writeback(folio)) 4076 return false; 4077 4078 if (mapping && mapping->a_ops->release_folio) 4079 return mapping->a_ops->release_folio(folio, gfp); 4080 return try_to_free_buffers(folio); 4081 } 4082 EXPORT_SYMBOL(filemap_release_folio); 4083 4084 #ifdef CONFIG_CACHESTAT_SYSCALL 4085 /** 4086 * filemap_cachestat() - compute the page cache statistics of a mapping 4087 * @mapping: The mapping to compute the statistics for. 4088 * @first_index: The starting page cache index. 4089 * @last_index: The final page index (inclusive). 4090 * @cs: the cachestat struct to write the result to. 4091 * 4092 * This will query the page cache statistics of a mapping in the 4093 * page range of [first_index, last_index] (inclusive). The statistics 4094 * queried include: number of dirty pages, number of pages marked for 4095 * writeback, and the number of (recently) evicted pages. 4096 */ 4097 static void filemap_cachestat(struct address_space *mapping, 4098 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4099 { 4100 XA_STATE(xas, &mapping->i_pages, first_index); 4101 struct folio *folio; 4102 4103 rcu_read_lock(); 4104 xas_for_each(&xas, folio, last_index) { 4105 int order; 4106 unsigned long nr_pages; 4107 pgoff_t folio_first_index, folio_last_index; 4108 4109 /* 4110 * Don't deref the folio. It is not pinned, and might 4111 * get freed (and reused) underneath us. 4112 * 4113 * We *could* pin it, but that would be expensive for 4114 * what should be a fast and lightweight syscall. 4115 * 4116 * Instead, derive all information of interest from 4117 * the rcu-protected xarray. 4118 */ 4119 4120 if (xas_retry(&xas, folio)) 4121 continue; 4122 4123 order = xa_get_order(xas.xa, xas.xa_index); 4124 nr_pages = 1 << order; 4125 folio_first_index = round_down(xas.xa_index, 1 << order); 4126 folio_last_index = folio_first_index + nr_pages - 1; 4127 4128 /* Folios might straddle the range boundaries, only count covered pages */ 4129 if (folio_first_index < first_index) 4130 nr_pages -= first_index - folio_first_index; 4131 4132 if (folio_last_index > last_index) 4133 nr_pages -= folio_last_index - last_index; 4134 4135 if (xa_is_value(folio)) { 4136 /* page is evicted */ 4137 void *shadow = (void *)folio; 4138 bool workingset; /* not used */ 4139 4140 cs->nr_evicted += nr_pages; 4141 4142 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4143 if (shmem_mapping(mapping)) { 4144 /* shmem file - in swap cache */ 4145 swp_entry_t swp = radix_to_swp_entry(folio); 4146 4147 shadow = get_shadow_from_swap_cache(swp); 4148 } 4149 #endif 4150 if (workingset_test_recent(shadow, true, &workingset)) 4151 cs->nr_recently_evicted += nr_pages; 4152 4153 goto resched; 4154 } 4155 4156 /* page is in cache */ 4157 cs->nr_cache += nr_pages; 4158 4159 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4160 cs->nr_dirty += nr_pages; 4161 4162 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4163 cs->nr_writeback += nr_pages; 4164 4165 resched: 4166 if (need_resched()) { 4167 xas_pause(&xas); 4168 cond_resched_rcu(); 4169 } 4170 } 4171 rcu_read_unlock(); 4172 } 4173 4174 /* 4175 * The cachestat(2) system call. 4176 * 4177 * cachestat() returns the page cache statistics of a file in the 4178 * bytes range specified by `off` and `len`: number of cached pages, 4179 * number of dirty pages, number of pages marked for writeback, 4180 * number of evicted pages, and number of recently evicted pages. 4181 * 4182 * An evicted page is a page that is previously in the page cache 4183 * but has been evicted since. A page is recently evicted if its last 4184 * eviction was recent enough that its reentry to the cache would 4185 * indicate that it is actively being used by the system, and that 4186 * there is memory pressure on the system. 4187 * 4188 * `off` and `len` must be non-negative integers. If `len` > 0, 4189 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4190 * we will query in the range from `off` to the end of the file. 4191 * 4192 * The `flags` argument is unused for now, but is included for future 4193 * extensibility. User should pass 0 (i.e no flag specified). 4194 * 4195 * Currently, hugetlbfs is not supported. 4196 * 4197 * Because the status of a page can change after cachestat() checks it 4198 * but before it returns to the application, the returned values may 4199 * contain stale information. 4200 * 4201 * return values: 4202 * zero - success 4203 * -EFAULT - cstat or cstat_range points to an illegal address 4204 * -EINVAL - invalid flags 4205 * -EBADF - invalid file descriptor 4206 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4207 */ 4208 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4209 struct cachestat_range __user *, cstat_range, 4210 struct cachestat __user *, cstat, unsigned int, flags) 4211 { 4212 struct fd f = fdget(fd); 4213 struct address_space *mapping; 4214 struct cachestat_range csr; 4215 struct cachestat cs; 4216 pgoff_t first_index, last_index; 4217 4218 if (!f.file) 4219 return -EBADF; 4220 4221 if (copy_from_user(&csr, cstat_range, 4222 sizeof(struct cachestat_range))) { 4223 fdput(f); 4224 return -EFAULT; 4225 } 4226 4227 /* hugetlbfs is not supported */ 4228 if (is_file_hugepages(f.file)) { 4229 fdput(f); 4230 return -EOPNOTSUPP; 4231 } 4232 4233 if (flags != 0) { 4234 fdput(f); 4235 return -EINVAL; 4236 } 4237 4238 first_index = csr.off >> PAGE_SHIFT; 4239 last_index = 4240 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4241 memset(&cs, 0, sizeof(struct cachestat)); 4242 mapping = f.file->f_mapping; 4243 filemap_cachestat(mapping, first_index, last_index, &cs); 4244 fdput(f); 4245 4246 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4247 return -EFAULT; 4248 4249 return 0; 4250 } 4251 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4252