xref: /linux/mm/filemap.c (revision 4b4e41f35cc700e328e693f0c18b24424ab47ff0)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include "internal.h"
45 
46 #define CREATE_TRACE_POINTS
47 #include <trace/events/filemap.h>
48 
49 /*
50  * FIXME: remove all knowledge of the buffer layer from the core VM
51  */
52 #include <linux/buffer_head.h> /* for try_to_free_buffers */
53 
54 #include <asm/mman.h>
55 
56 /*
57  * Shared mappings implemented 30.11.1994. It's not fully working yet,
58  * though.
59  *
60  * Shared mappings now work. 15.8.1995  Bruno.
61  *
62  * finished 'unifying' the page and buffer cache and SMP-threaded the
63  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
64  *
65  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
66  */
67 
68 /*
69  * Lock ordering:
70  *
71  *  ->i_mmap_rwsem		(truncate_pagecache)
72  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
73  *      ->swap_lock		(exclusive_swap_page, others)
74  *        ->i_pages lock
75  *
76  *  ->i_mutex
77  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
78  *
79  *  ->mmap_sem
80  *    ->i_mmap_rwsem
81  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
82  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
83  *
84  *  ->mmap_sem
85  *    ->lock_page		(access_process_vm)
86  *
87  *  ->i_mutex			(generic_perform_write)
88  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
89  *
90  *  bdi->wb.list_lock
91  *    sb_lock			(fs/fs-writeback.c)
92  *    ->i_pages lock		(__sync_single_inode)
93  *
94  *  ->i_mmap_rwsem
95  *    ->anon_vma.lock		(vma_adjust)
96  *
97  *  ->anon_vma.lock
98  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
99  *
100  *  ->page_table_lock or pte_lock
101  *    ->swap_lock		(try_to_unmap_one)
102  *    ->private_lock		(try_to_unmap_one)
103  *    ->i_pages lock		(try_to_unmap_one)
104  *    ->pgdat->lru_lock		(follow_page->mark_page_accessed)
105  *    ->pgdat->lru_lock		(check_pte_range->isolate_lru_page)
106  *    ->private_lock		(page_remove_rmap->set_page_dirty)
107  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
108  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
109  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
110  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
111  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
112  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
113  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
114  *
115  * ->i_mmap_rwsem
116  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
117  */
118 
119 static void page_cache_delete(struct address_space *mapping,
120 				   struct page *page, void *shadow)
121 {
122 	XA_STATE(xas, &mapping->i_pages, page->index);
123 	unsigned int nr = 1;
124 
125 	mapping_set_update(&xas, mapping);
126 
127 	/* hugetlb pages are represented by a single entry in the xarray */
128 	if (!PageHuge(page)) {
129 		xas_set_order(&xas, page->index, compound_order(page));
130 		nr = compound_nr(page);
131 	}
132 
133 	VM_BUG_ON_PAGE(!PageLocked(page), page);
134 	VM_BUG_ON_PAGE(PageTail(page), page);
135 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
136 
137 	xas_store(&xas, shadow);
138 	xas_init_marks(&xas);
139 
140 	page->mapping = NULL;
141 	/* Leave page->index set: truncation lookup relies upon it */
142 
143 	if (shadow) {
144 		mapping->nrexceptional += nr;
145 		/*
146 		 * Make sure the nrexceptional update is committed before
147 		 * the nrpages update so that final truncate racing
148 		 * with reclaim does not see both counters 0 at the
149 		 * same time and miss a shadow entry.
150 		 */
151 		smp_wmb();
152 	}
153 	mapping->nrpages -= nr;
154 }
155 
156 static void unaccount_page_cache_page(struct address_space *mapping,
157 				      struct page *page)
158 {
159 	int nr;
160 
161 	/*
162 	 * if we're uptodate, flush out into the cleancache, otherwise
163 	 * invalidate any existing cleancache entries.  We can't leave
164 	 * stale data around in the cleancache once our page is gone
165 	 */
166 	if (PageUptodate(page) && PageMappedToDisk(page))
167 		cleancache_put_page(page);
168 	else
169 		cleancache_invalidate_page(mapping, page);
170 
171 	VM_BUG_ON_PAGE(PageTail(page), page);
172 	VM_BUG_ON_PAGE(page_mapped(page), page);
173 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
174 		int mapcount;
175 
176 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
177 			 current->comm, page_to_pfn(page));
178 		dump_page(page, "still mapped when deleted");
179 		dump_stack();
180 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
181 
182 		mapcount = page_mapcount(page);
183 		if (mapping_exiting(mapping) &&
184 		    page_count(page) >= mapcount + 2) {
185 			/*
186 			 * All vmas have already been torn down, so it's
187 			 * a good bet that actually the page is unmapped,
188 			 * and we'd prefer not to leak it: if we're wrong,
189 			 * some other bad page check should catch it later.
190 			 */
191 			page_mapcount_reset(page);
192 			page_ref_sub(page, mapcount);
193 		}
194 	}
195 
196 	/* hugetlb pages do not participate in page cache accounting. */
197 	if (PageHuge(page))
198 		return;
199 
200 	nr = hpage_nr_pages(page);
201 
202 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
203 	if (PageSwapBacked(page)) {
204 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
205 		if (PageTransHuge(page))
206 			__dec_node_page_state(page, NR_SHMEM_THPS);
207 	} else if (PageTransHuge(page)) {
208 		__dec_node_page_state(page, NR_FILE_THPS);
209 		filemap_nr_thps_dec(mapping);
210 	}
211 
212 	/*
213 	 * At this point page must be either written or cleaned by
214 	 * truncate.  Dirty page here signals a bug and loss of
215 	 * unwritten data.
216 	 *
217 	 * This fixes dirty accounting after removing the page entirely
218 	 * but leaves PageDirty set: it has no effect for truncated
219 	 * page and anyway will be cleared before returning page into
220 	 * buddy allocator.
221 	 */
222 	if (WARN_ON_ONCE(PageDirty(page)))
223 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225 
226 /*
227  * Delete a page from the page cache and free it. Caller has to make
228  * sure the page is locked and that nobody else uses it - or that usage
229  * is safe.  The caller must hold the i_pages lock.
230  */
231 void __delete_from_page_cache(struct page *page, void *shadow)
232 {
233 	struct address_space *mapping = page->mapping;
234 
235 	trace_mm_filemap_delete_from_page_cache(page);
236 
237 	unaccount_page_cache_page(mapping, page);
238 	page_cache_delete(mapping, page, shadow);
239 }
240 
241 static void page_cache_free_page(struct address_space *mapping,
242 				struct page *page)
243 {
244 	void (*freepage)(struct page *);
245 
246 	freepage = mapping->a_ops->freepage;
247 	if (freepage)
248 		freepage(page);
249 
250 	if (PageTransHuge(page) && !PageHuge(page)) {
251 		page_ref_sub(page, HPAGE_PMD_NR);
252 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
253 	} else {
254 		put_page(page);
255 	}
256 }
257 
258 /**
259  * delete_from_page_cache - delete page from page cache
260  * @page: the page which the kernel is trying to remove from page cache
261  *
262  * This must be called only on pages that have been verified to be in the page
263  * cache and locked.  It will never put the page into the free list, the caller
264  * has a reference on the page.
265  */
266 void delete_from_page_cache(struct page *page)
267 {
268 	struct address_space *mapping = page_mapping(page);
269 	unsigned long flags;
270 
271 	BUG_ON(!PageLocked(page));
272 	xa_lock_irqsave(&mapping->i_pages, flags);
273 	__delete_from_page_cache(page, NULL);
274 	xa_unlock_irqrestore(&mapping->i_pages, flags);
275 
276 	page_cache_free_page(mapping, page);
277 }
278 EXPORT_SYMBOL(delete_from_page_cache);
279 
280 /*
281  * page_cache_delete_batch - delete several pages from page cache
282  * @mapping: the mapping to which pages belong
283  * @pvec: pagevec with pages to delete
284  *
285  * The function walks over mapping->i_pages and removes pages passed in @pvec
286  * from the mapping. The function expects @pvec to be sorted by page index
287  * and is optimised for it to be dense.
288  * It tolerates holes in @pvec (mapping entries at those indices are not
289  * modified). The function expects only THP head pages to be present in the
290  * @pvec.
291  *
292  * The function expects the i_pages lock to be held.
293  */
294 static void page_cache_delete_batch(struct address_space *mapping,
295 			     struct pagevec *pvec)
296 {
297 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
298 	int total_pages = 0;
299 	int i = 0;
300 	struct page *page;
301 
302 	mapping_set_update(&xas, mapping);
303 	xas_for_each(&xas, page, ULONG_MAX) {
304 		if (i >= pagevec_count(pvec))
305 			break;
306 
307 		/* A swap/dax/shadow entry got inserted? Skip it. */
308 		if (xa_is_value(page))
309 			continue;
310 		/*
311 		 * A page got inserted in our range? Skip it. We have our
312 		 * pages locked so they are protected from being removed.
313 		 * If we see a page whose index is higher than ours, it
314 		 * means our page has been removed, which shouldn't be
315 		 * possible because we're holding the PageLock.
316 		 */
317 		if (page != pvec->pages[i]) {
318 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
319 					page);
320 			continue;
321 		}
322 
323 		WARN_ON_ONCE(!PageLocked(page));
324 
325 		if (page->index == xas.xa_index)
326 			page->mapping = NULL;
327 		/* Leave page->index set: truncation lookup relies on it */
328 
329 		/*
330 		 * Move to the next page in the vector if this is a regular
331 		 * page or the index is of the last sub-page of this compound
332 		 * page.
333 		 */
334 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
335 			i++;
336 		xas_store(&xas, NULL);
337 		total_pages++;
338 	}
339 	mapping->nrpages -= total_pages;
340 }
341 
342 void delete_from_page_cache_batch(struct address_space *mapping,
343 				  struct pagevec *pvec)
344 {
345 	int i;
346 	unsigned long flags;
347 
348 	if (!pagevec_count(pvec))
349 		return;
350 
351 	xa_lock_irqsave(&mapping->i_pages, flags);
352 	for (i = 0; i < pagevec_count(pvec); i++) {
353 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
354 
355 		unaccount_page_cache_page(mapping, pvec->pages[i]);
356 	}
357 	page_cache_delete_batch(mapping, pvec);
358 	xa_unlock_irqrestore(&mapping->i_pages, flags);
359 
360 	for (i = 0; i < pagevec_count(pvec); i++)
361 		page_cache_free_page(mapping, pvec->pages[i]);
362 }
363 
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 	int ret = 0;
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 		ret = -ENOSPC;
371 	if (test_bit(AS_EIO, &mapping->flags) &&
372 	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 		ret = -EIO;
374 	return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377 
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 	/* Check for outstanding write errors */
381 	if (test_bit(AS_EIO, &mapping->flags))
382 		return -EIO;
383 	if (test_bit(AS_ENOSPC, &mapping->flags))
384 		return -ENOSPC;
385 	return 0;
386 }
387 
388 /**
389  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
390  * @mapping:	address space structure to write
391  * @start:	offset in bytes where the range starts
392  * @end:	offset in bytes where the range ends (inclusive)
393  * @sync_mode:	enable synchronous operation
394  *
395  * Start writeback against all of a mapping's dirty pages that lie
396  * within the byte offsets <start, end> inclusive.
397  *
398  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
399  * opposed to a regular memory cleansing writeback.  The difference between
400  * these two operations is that if a dirty page/buffer is encountered, it must
401  * be waited upon, and not just skipped over.
402  *
403  * Return: %0 on success, negative error code otherwise.
404  */
405 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
406 				loff_t end, int sync_mode)
407 {
408 	int ret;
409 	struct writeback_control wbc = {
410 		.sync_mode = sync_mode,
411 		.nr_to_write = LONG_MAX,
412 		.range_start = start,
413 		.range_end = end,
414 	};
415 
416 	if (!mapping_cap_writeback_dirty(mapping) ||
417 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
418 		return 0;
419 
420 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
421 	ret = do_writepages(mapping, &wbc);
422 	wbc_detach_inode(&wbc);
423 	return ret;
424 }
425 
426 static inline int __filemap_fdatawrite(struct address_space *mapping,
427 	int sync_mode)
428 {
429 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
430 }
431 
432 int filemap_fdatawrite(struct address_space *mapping)
433 {
434 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
435 }
436 EXPORT_SYMBOL(filemap_fdatawrite);
437 
438 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
439 				loff_t end)
440 {
441 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite_range);
444 
445 /**
446  * filemap_flush - mostly a non-blocking flush
447  * @mapping:	target address_space
448  *
449  * This is a mostly non-blocking flush.  Not suitable for data-integrity
450  * purposes - I/O may not be started against all dirty pages.
451  *
452  * Return: %0 on success, negative error code otherwise.
453  */
454 int filemap_flush(struct address_space *mapping)
455 {
456 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
457 }
458 EXPORT_SYMBOL(filemap_flush);
459 
460 /**
461  * filemap_range_has_page - check if a page exists in range.
462  * @mapping:           address space within which to check
463  * @start_byte:        offset in bytes where the range starts
464  * @end_byte:          offset in bytes where the range ends (inclusive)
465  *
466  * Find at least one page in the range supplied, usually used to check if
467  * direct writing in this range will trigger a writeback.
468  *
469  * Return: %true if at least one page exists in the specified range,
470  * %false otherwise.
471  */
472 bool filemap_range_has_page(struct address_space *mapping,
473 			   loff_t start_byte, loff_t end_byte)
474 {
475 	struct page *page;
476 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
477 	pgoff_t max = end_byte >> PAGE_SHIFT;
478 
479 	if (end_byte < start_byte)
480 		return false;
481 
482 	rcu_read_lock();
483 	for (;;) {
484 		page = xas_find(&xas, max);
485 		if (xas_retry(&xas, page))
486 			continue;
487 		/* Shadow entries don't count */
488 		if (xa_is_value(page))
489 			continue;
490 		/*
491 		 * We don't need to try to pin this page; we're about to
492 		 * release the RCU lock anyway.  It is enough to know that
493 		 * there was a page here recently.
494 		 */
495 		break;
496 	}
497 	rcu_read_unlock();
498 
499 	return page != NULL;
500 }
501 EXPORT_SYMBOL(filemap_range_has_page);
502 
503 static void __filemap_fdatawait_range(struct address_space *mapping,
504 				     loff_t start_byte, loff_t end_byte)
505 {
506 	pgoff_t index = start_byte >> PAGE_SHIFT;
507 	pgoff_t end = end_byte >> PAGE_SHIFT;
508 	struct pagevec pvec;
509 	int nr_pages;
510 
511 	if (end_byte < start_byte)
512 		return;
513 
514 	pagevec_init(&pvec);
515 	while (index <= end) {
516 		unsigned i;
517 
518 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
519 				end, PAGECACHE_TAG_WRITEBACK);
520 		if (!nr_pages)
521 			break;
522 
523 		for (i = 0; i < nr_pages; i++) {
524 			struct page *page = pvec.pages[i];
525 
526 			wait_on_page_writeback(page);
527 			ClearPageError(page);
528 		}
529 		pagevec_release(&pvec);
530 		cond_resched();
531 	}
532 }
533 
534 /**
535  * filemap_fdatawait_range - wait for writeback to complete
536  * @mapping:		address space structure to wait for
537  * @start_byte:		offset in bytes where the range starts
538  * @end_byte:		offset in bytes where the range ends (inclusive)
539  *
540  * Walk the list of under-writeback pages of the given address space
541  * in the given range and wait for all of them.  Check error status of
542  * the address space and return it.
543  *
544  * Since the error status of the address space is cleared by this function,
545  * callers are responsible for checking the return value and handling and/or
546  * reporting the error.
547  *
548  * Return: error status of the address space.
549  */
550 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
551 			    loff_t end_byte)
552 {
553 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
554 	return filemap_check_errors(mapping);
555 }
556 EXPORT_SYMBOL(filemap_fdatawait_range);
557 
558 /**
559  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
560  * @mapping:		address space structure to wait for
561  * @start_byte:		offset in bytes where the range starts
562  * @end_byte:		offset in bytes where the range ends (inclusive)
563  *
564  * Walk the list of under-writeback pages of the given address space in the
565  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
566  * this function does not clear error status of the address space.
567  *
568  * Use this function if callers don't handle errors themselves.  Expected
569  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
570  * fsfreeze(8)
571  */
572 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
573 		loff_t start_byte, loff_t end_byte)
574 {
575 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
576 	return filemap_check_and_keep_errors(mapping);
577 }
578 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
579 
580 /**
581  * file_fdatawait_range - wait for writeback to complete
582  * @file:		file pointing to address space structure to wait for
583  * @start_byte:		offset in bytes where the range starts
584  * @end_byte:		offset in bytes where the range ends (inclusive)
585  *
586  * Walk the list of under-writeback pages of the address space that file
587  * refers to, in the given range and wait for all of them.  Check error
588  * status of the address space vs. the file->f_wb_err cursor and return it.
589  *
590  * Since the error status of the file is advanced by this function,
591  * callers are responsible for checking the return value and handling and/or
592  * reporting the error.
593  *
594  * Return: error status of the address space vs. the file->f_wb_err cursor.
595  */
596 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
597 {
598 	struct address_space *mapping = file->f_mapping;
599 
600 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
601 	return file_check_and_advance_wb_err(file);
602 }
603 EXPORT_SYMBOL(file_fdatawait_range);
604 
605 /**
606  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
607  * @mapping: address space structure to wait for
608  *
609  * Walk the list of under-writeback pages of the given address space
610  * and wait for all of them.  Unlike filemap_fdatawait(), this function
611  * does not clear error status of the address space.
612  *
613  * Use this function if callers don't handle errors themselves.  Expected
614  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
615  * fsfreeze(8)
616  *
617  * Return: error status of the address space.
618  */
619 int filemap_fdatawait_keep_errors(struct address_space *mapping)
620 {
621 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
622 	return filemap_check_and_keep_errors(mapping);
623 }
624 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
625 
626 /* Returns true if writeback might be needed or already in progress. */
627 static bool mapping_needs_writeback(struct address_space *mapping)
628 {
629 	if (dax_mapping(mapping))
630 		return mapping->nrexceptional;
631 
632 	return mapping->nrpages;
633 }
634 
635 int filemap_write_and_wait(struct address_space *mapping)
636 {
637 	int err = 0;
638 
639 	if (mapping_needs_writeback(mapping)) {
640 		err = filemap_fdatawrite(mapping);
641 		/*
642 		 * Even if the above returned error, the pages may be
643 		 * written partially (e.g. -ENOSPC), so we wait for it.
644 		 * But the -EIO is special case, it may indicate the worst
645 		 * thing (e.g. bug) happened, so we avoid waiting for it.
646 		 */
647 		if (err != -EIO) {
648 			int err2 = filemap_fdatawait(mapping);
649 			if (!err)
650 				err = err2;
651 		} else {
652 			/* Clear any previously stored errors */
653 			filemap_check_errors(mapping);
654 		}
655 	} else {
656 		err = filemap_check_errors(mapping);
657 	}
658 	return err;
659 }
660 EXPORT_SYMBOL(filemap_write_and_wait);
661 
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:	the address_space for the pages
665  * @lstart:	offset in bytes where the range starts
666  * @lend:	offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  *
673  * Return: error status of the address space.
674  */
675 int filemap_write_and_wait_range(struct address_space *mapping,
676 				 loff_t lstart, loff_t lend)
677 {
678 	int err = 0;
679 
680 	if (mapping_needs_writeback(mapping)) {
681 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 						 WB_SYNC_ALL);
683 		/* See comment of filemap_write_and_wait() */
684 		if (err != -EIO) {
685 			int err2 = filemap_fdatawait_range(mapping,
686 						lstart, lend);
687 			if (!err)
688 				err = err2;
689 		} else {
690 			/* Clear any previously stored errors */
691 			filemap_check_errors(mapping);
692 		}
693 	} else {
694 		err = filemap_check_errors(mapping);
695 	}
696 	return err;
697 }
698 EXPORT_SYMBOL(filemap_write_and_wait_range);
699 
700 void __filemap_set_wb_err(struct address_space *mapping, int err)
701 {
702 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
703 
704 	trace_filemap_set_wb_err(mapping, eseq);
705 }
706 EXPORT_SYMBOL(__filemap_set_wb_err);
707 
708 /**
709  * file_check_and_advance_wb_err - report wb error (if any) that was previously
710  * 				   and advance wb_err to current one
711  * @file: struct file on which the error is being reported
712  *
713  * When userland calls fsync (or something like nfsd does the equivalent), we
714  * want to report any writeback errors that occurred since the last fsync (or
715  * since the file was opened if there haven't been any).
716  *
717  * Grab the wb_err from the mapping. If it matches what we have in the file,
718  * then just quickly return 0. The file is all caught up.
719  *
720  * If it doesn't match, then take the mapping value, set the "seen" flag in
721  * it and try to swap it into place. If it works, or another task beat us
722  * to it with the new value, then update the f_wb_err and return the error
723  * portion. The error at this point must be reported via proper channels
724  * (a'la fsync, or NFS COMMIT operation, etc.).
725  *
726  * While we handle mapping->wb_err with atomic operations, the f_wb_err
727  * value is protected by the f_lock since we must ensure that it reflects
728  * the latest value swapped in for this file descriptor.
729  *
730  * Return: %0 on success, negative error code otherwise.
731  */
732 int file_check_and_advance_wb_err(struct file *file)
733 {
734 	int err = 0;
735 	errseq_t old = READ_ONCE(file->f_wb_err);
736 	struct address_space *mapping = file->f_mapping;
737 
738 	/* Locklessly handle the common case where nothing has changed */
739 	if (errseq_check(&mapping->wb_err, old)) {
740 		/* Something changed, must use slow path */
741 		spin_lock(&file->f_lock);
742 		old = file->f_wb_err;
743 		err = errseq_check_and_advance(&mapping->wb_err,
744 						&file->f_wb_err);
745 		trace_file_check_and_advance_wb_err(file, old);
746 		spin_unlock(&file->f_lock);
747 	}
748 
749 	/*
750 	 * We're mostly using this function as a drop in replacement for
751 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
752 	 * that the legacy code would have had on these flags.
753 	 */
754 	clear_bit(AS_EIO, &mapping->flags);
755 	clear_bit(AS_ENOSPC, &mapping->flags);
756 	return err;
757 }
758 EXPORT_SYMBOL(file_check_and_advance_wb_err);
759 
760 /**
761  * file_write_and_wait_range - write out & wait on a file range
762  * @file:	file pointing to address_space with pages
763  * @lstart:	offset in bytes where the range starts
764  * @lend:	offset in bytes where the range ends (inclusive)
765  *
766  * Write out and wait upon file offsets lstart->lend, inclusive.
767  *
768  * Note that @lend is inclusive (describes the last byte to be written) so
769  * that this function can be used to write to the very end-of-file (end = -1).
770  *
771  * After writing out and waiting on the data, we check and advance the
772  * f_wb_err cursor to the latest value, and return any errors detected there.
773  *
774  * Return: %0 on success, negative error code otherwise.
775  */
776 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
777 {
778 	int err = 0, err2;
779 	struct address_space *mapping = file->f_mapping;
780 
781 	if (mapping_needs_writeback(mapping)) {
782 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
783 						 WB_SYNC_ALL);
784 		/* See comment of filemap_write_and_wait() */
785 		if (err != -EIO)
786 			__filemap_fdatawait_range(mapping, lstart, lend);
787 	}
788 	err2 = file_check_and_advance_wb_err(file);
789 	if (!err)
790 		err = err2;
791 	return err;
792 }
793 EXPORT_SYMBOL(file_write_and_wait_range);
794 
795 /**
796  * replace_page_cache_page - replace a pagecache page with a new one
797  * @old:	page to be replaced
798  * @new:	page to replace with
799  * @gfp_mask:	allocation mode
800  *
801  * This function replaces a page in the pagecache with a new one.  On
802  * success it acquires the pagecache reference for the new page and
803  * drops it for the old page.  Both the old and new pages must be
804  * locked.  This function does not add the new page to the LRU, the
805  * caller must do that.
806  *
807  * The remove + add is atomic.  This function cannot fail.
808  *
809  * Return: %0
810  */
811 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
812 {
813 	struct address_space *mapping = old->mapping;
814 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
815 	pgoff_t offset = old->index;
816 	XA_STATE(xas, &mapping->i_pages, offset);
817 	unsigned long flags;
818 
819 	VM_BUG_ON_PAGE(!PageLocked(old), old);
820 	VM_BUG_ON_PAGE(!PageLocked(new), new);
821 	VM_BUG_ON_PAGE(new->mapping, new);
822 
823 	get_page(new);
824 	new->mapping = mapping;
825 	new->index = offset;
826 
827 	xas_lock_irqsave(&xas, flags);
828 	xas_store(&xas, new);
829 
830 	old->mapping = NULL;
831 	/* hugetlb pages do not participate in page cache accounting. */
832 	if (!PageHuge(old))
833 		__dec_node_page_state(new, NR_FILE_PAGES);
834 	if (!PageHuge(new))
835 		__inc_node_page_state(new, NR_FILE_PAGES);
836 	if (PageSwapBacked(old))
837 		__dec_node_page_state(new, NR_SHMEM);
838 	if (PageSwapBacked(new))
839 		__inc_node_page_state(new, NR_SHMEM);
840 	xas_unlock_irqrestore(&xas, flags);
841 	mem_cgroup_migrate(old, new);
842 	if (freepage)
843 		freepage(old);
844 	put_page(old);
845 
846 	return 0;
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_page);
849 
850 static int __add_to_page_cache_locked(struct page *page,
851 				      struct address_space *mapping,
852 				      pgoff_t offset, gfp_t gfp_mask,
853 				      void **shadowp)
854 {
855 	XA_STATE(xas, &mapping->i_pages, offset);
856 	int huge = PageHuge(page);
857 	struct mem_cgroup *memcg;
858 	int error;
859 	void *old;
860 
861 	VM_BUG_ON_PAGE(!PageLocked(page), page);
862 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
863 	mapping_set_update(&xas, mapping);
864 
865 	if (!huge) {
866 		error = mem_cgroup_try_charge(page, current->mm,
867 					      gfp_mask, &memcg, false);
868 		if (error)
869 			return error;
870 	}
871 
872 	get_page(page);
873 	page->mapping = mapping;
874 	page->index = offset;
875 
876 	do {
877 		xas_lock_irq(&xas);
878 		old = xas_load(&xas);
879 		if (old && !xa_is_value(old))
880 			xas_set_err(&xas, -EEXIST);
881 		xas_store(&xas, page);
882 		if (xas_error(&xas))
883 			goto unlock;
884 
885 		if (xa_is_value(old)) {
886 			mapping->nrexceptional--;
887 			if (shadowp)
888 				*shadowp = old;
889 		}
890 		mapping->nrpages++;
891 
892 		/* hugetlb pages do not participate in page cache accounting */
893 		if (!huge)
894 			__inc_node_page_state(page, NR_FILE_PAGES);
895 unlock:
896 		xas_unlock_irq(&xas);
897 	} while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
898 
899 	if (xas_error(&xas))
900 		goto error;
901 
902 	if (!huge)
903 		mem_cgroup_commit_charge(page, memcg, false, false);
904 	trace_mm_filemap_add_to_page_cache(page);
905 	return 0;
906 error:
907 	page->mapping = NULL;
908 	/* Leave page->index set: truncation relies upon it */
909 	if (!huge)
910 		mem_cgroup_cancel_charge(page, memcg, false);
911 	put_page(page);
912 	return xas_error(&xas);
913 }
914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
915 
916 /**
917  * add_to_page_cache_locked - add a locked page to the pagecache
918  * @page:	page to add
919  * @mapping:	the page's address_space
920  * @offset:	page index
921  * @gfp_mask:	page allocation mode
922  *
923  * This function is used to add a page to the pagecache. It must be locked.
924  * This function does not add the page to the LRU.  The caller must do that.
925  *
926  * Return: %0 on success, negative error code otherwise.
927  */
928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
929 		pgoff_t offset, gfp_t gfp_mask)
930 {
931 	return __add_to_page_cache_locked(page, mapping, offset,
932 					  gfp_mask, NULL);
933 }
934 EXPORT_SYMBOL(add_to_page_cache_locked);
935 
936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
937 				pgoff_t offset, gfp_t gfp_mask)
938 {
939 	void *shadow = NULL;
940 	int ret;
941 
942 	__SetPageLocked(page);
943 	ret = __add_to_page_cache_locked(page, mapping, offset,
944 					 gfp_mask, &shadow);
945 	if (unlikely(ret))
946 		__ClearPageLocked(page);
947 	else {
948 		/*
949 		 * The page might have been evicted from cache only
950 		 * recently, in which case it should be activated like
951 		 * any other repeatedly accessed page.
952 		 * The exception is pages getting rewritten; evicting other
953 		 * data from the working set, only to cache data that will
954 		 * get overwritten with something else, is a waste of memory.
955 		 */
956 		WARN_ON_ONCE(PageActive(page));
957 		if (!(gfp_mask & __GFP_WRITE) && shadow)
958 			workingset_refault(page, shadow);
959 		lru_cache_add(page);
960 	}
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964 
965 #ifdef CONFIG_NUMA
966 struct page *__page_cache_alloc(gfp_t gfp)
967 {
968 	int n;
969 	struct page *page;
970 
971 	if (cpuset_do_page_mem_spread()) {
972 		unsigned int cpuset_mems_cookie;
973 		do {
974 			cpuset_mems_cookie = read_mems_allowed_begin();
975 			n = cpuset_mem_spread_node();
976 			page = __alloc_pages_node(n, gfp, 0);
977 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978 
979 		return page;
980 	}
981 	return alloc_pages(gfp, 0);
982 }
983 EXPORT_SYMBOL(__page_cache_alloc);
984 #endif
985 
986 /*
987  * In order to wait for pages to become available there must be
988  * waitqueues associated with pages. By using a hash table of
989  * waitqueues where the bucket discipline is to maintain all
990  * waiters on the same queue and wake all when any of the pages
991  * become available, and for the woken contexts to check to be
992  * sure the appropriate page became available, this saves space
993  * at a cost of "thundering herd" phenomena during rare hash
994  * collisions.
995  */
996 #define PAGE_WAIT_TABLE_BITS 8
997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
999 
1000 static wait_queue_head_t *page_waitqueue(struct page *page)
1001 {
1002 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003 }
1004 
1005 void __init pagecache_init(void)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010 		init_waitqueue_head(&page_wait_table[i]);
1011 
1012 	page_writeback_init();
1013 }
1014 
1015 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
1016 struct wait_page_key {
1017 	struct page *page;
1018 	int bit_nr;
1019 	int page_match;
1020 };
1021 
1022 struct wait_page_queue {
1023 	struct page *page;
1024 	int bit_nr;
1025 	wait_queue_entry_t wait;
1026 };
1027 
1028 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1029 {
1030 	struct wait_page_key *key = arg;
1031 	struct wait_page_queue *wait_page
1032 		= container_of(wait, struct wait_page_queue, wait);
1033 
1034 	if (wait_page->page != key->page)
1035 	       return 0;
1036 	key->page_match = 1;
1037 
1038 	if (wait_page->bit_nr != key->bit_nr)
1039 		return 0;
1040 
1041 	/*
1042 	 * Stop walking if it's locked.
1043 	 * Is this safe if put_and_wait_on_page_locked() is in use?
1044 	 * Yes: the waker must hold a reference to this page, and if PG_locked
1045 	 * has now already been set by another task, that task must also hold
1046 	 * a reference to the *same usage* of this page; so there is no need
1047 	 * to walk on to wake even the put_and_wait_on_page_locked() callers.
1048 	 */
1049 	if (test_bit(key->bit_nr, &key->page->flags))
1050 		return -1;
1051 
1052 	return autoremove_wake_function(wait, mode, sync, key);
1053 }
1054 
1055 static void wake_up_page_bit(struct page *page, int bit_nr)
1056 {
1057 	wait_queue_head_t *q = page_waitqueue(page);
1058 	struct wait_page_key key;
1059 	unsigned long flags;
1060 	wait_queue_entry_t bookmark;
1061 
1062 	key.page = page;
1063 	key.bit_nr = bit_nr;
1064 	key.page_match = 0;
1065 
1066 	bookmark.flags = 0;
1067 	bookmark.private = NULL;
1068 	bookmark.func = NULL;
1069 	INIT_LIST_HEAD(&bookmark.entry);
1070 
1071 	spin_lock_irqsave(&q->lock, flags);
1072 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1073 
1074 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1075 		/*
1076 		 * Take a breather from holding the lock,
1077 		 * allow pages that finish wake up asynchronously
1078 		 * to acquire the lock and remove themselves
1079 		 * from wait queue
1080 		 */
1081 		spin_unlock_irqrestore(&q->lock, flags);
1082 		cpu_relax();
1083 		spin_lock_irqsave(&q->lock, flags);
1084 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1085 	}
1086 
1087 	/*
1088 	 * It is possible for other pages to have collided on the waitqueue
1089 	 * hash, so in that case check for a page match. That prevents a long-
1090 	 * term waiter
1091 	 *
1092 	 * It is still possible to miss a case here, when we woke page waiters
1093 	 * and removed them from the waitqueue, but there are still other
1094 	 * page waiters.
1095 	 */
1096 	if (!waitqueue_active(q) || !key.page_match) {
1097 		ClearPageWaiters(page);
1098 		/*
1099 		 * It's possible to miss clearing Waiters here, when we woke
1100 		 * our page waiters, but the hashed waitqueue has waiters for
1101 		 * other pages on it.
1102 		 *
1103 		 * That's okay, it's a rare case. The next waker will clear it.
1104 		 */
1105 	}
1106 	spin_unlock_irqrestore(&q->lock, flags);
1107 }
1108 
1109 static void wake_up_page(struct page *page, int bit)
1110 {
1111 	if (!PageWaiters(page))
1112 		return;
1113 	wake_up_page_bit(page, bit);
1114 }
1115 
1116 /*
1117  * A choice of three behaviors for wait_on_page_bit_common():
1118  */
1119 enum behavior {
1120 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1121 			 * __lock_page() waiting on then setting PG_locked.
1122 			 */
1123 	SHARED,		/* Hold ref to page and check the bit when woken, like
1124 			 * wait_on_page_writeback() waiting on PG_writeback.
1125 			 */
1126 	DROP,		/* Drop ref to page before wait, no check when woken,
1127 			 * like put_and_wait_on_page_locked() on PG_locked.
1128 			 */
1129 };
1130 
1131 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1132 	struct page *page, int bit_nr, int state, enum behavior behavior)
1133 {
1134 	struct wait_page_queue wait_page;
1135 	wait_queue_entry_t *wait = &wait_page.wait;
1136 	bool bit_is_set;
1137 	bool thrashing = false;
1138 	bool delayacct = false;
1139 	unsigned long pflags;
1140 	int ret = 0;
1141 
1142 	if (bit_nr == PG_locked &&
1143 	    !PageUptodate(page) && PageWorkingset(page)) {
1144 		if (!PageSwapBacked(page)) {
1145 			delayacct_thrashing_start();
1146 			delayacct = true;
1147 		}
1148 		psi_memstall_enter(&pflags);
1149 		thrashing = true;
1150 	}
1151 
1152 	init_wait(wait);
1153 	wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1154 	wait->func = wake_page_function;
1155 	wait_page.page = page;
1156 	wait_page.bit_nr = bit_nr;
1157 
1158 	for (;;) {
1159 		spin_lock_irq(&q->lock);
1160 
1161 		if (likely(list_empty(&wait->entry))) {
1162 			__add_wait_queue_entry_tail(q, wait);
1163 			SetPageWaiters(page);
1164 		}
1165 
1166 		set_current_state(state);
1167 
1168 		spin_unlock_irq(&q->lock);
1169 
1170 		bit_is_set = test_bit(bit_nr, &page->flags);
1171 		if (behavior == DROP)
1172 			put_page(page);
1173 
1174 		if (likely(bit_is_set))
1175 			io_schedule();
1176 
1177 		if (behavior == EXCLUSIVE) {
1178 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1179 				break;
1180 		} else if (behavior == SHARED) {
1181 			if (!test_bit(bit_nr, &page->flags))
1182 				break;
1183 		}
1184 
1185 		if (signal_pending_state(state, current)) {
1186 			ret = -EINTR;
1187 			break;
1188 		}
1189 
1190 		if (behavior == DROP) {
1191 			/*
1192 			 * We can no longer safely access page->flags:
1193 			 * even if CONFIG_MEMORY_HOTREMOVE is not enabled,
1194 			 * there is a risk of waiting forever on a page reused
1195 			 * for something that keeps it locked indefinitely.
1196 			 * But best check for -EINTR above before breaking.
1197 			 */
1198 			break;
1199 		}
1200 	}
1201 
1202 	finish_wait(q, wait);
1203 
1204 	if (thrashing) {
1205 		if (delayacct)
1206 			delayacct_thrashing_end();
1207 		psi_memstall_leave(&pflags);
1208 	}
1209 
1210 	/*
1211 	 * A signal could leave PageWaiters set. Clearing it here if
1212 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1213 	 * but still fail to catch it in the case of wait hash collision. We
1214 	 * already can fail to clear wait hash collision cases, so don't
1215 	 * bother with signals either.
1216 	 */
1217 
1218 	return ret;
1219 }
1220 
1221 void wait_on_page_bit(struct page *page, int bit_nr)
1222 {
1223 	wait_queue_head_t *q = page_waitqueue(page);
1224 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1225 }
1226 EXPORT_SYMBOL(wait_on_page_bit);
1227 
1228 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1229 {
1230 	wait_queue_head_t *q = page_waitqueue(page);
1231 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1232 }
1233 EXPORT_SYMBOL(wait_on_page_bit_killable);
1234 
1235 /**
1236  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1237  * @page: The page to wait for.
1238  *
1239  * The caller should hold a reference on @page.  They expect the page to
1240  * become unlocked relatively soon, but do not wish to hold up migration
1241  * (for example) by holding the reference while waiting for the page to
1242  * come unlocked.  After this function returns, the caller should not
1243  * dereference @page.
1244  */
1245 void put_and_wait_on_page_locked(struct page *page)
1246 {
1247 	wait_queue_head_t *q;
1248 
1249 	page = compound_head(page);
1250 	q = page_waitqueue(page);
1251 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1252 }
1253 
1254 /**
1255  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1256  * @page: Page defining the wait queue of interest
1257  * @waiter: Waiter to add to the queue
1258  *
1259  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1260  */
1261 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1262 {
1263 	wait_queue_head_t *q = page_waitqueue(page);
1264 	unsigned long flags;
1265 
1266 	spin_lock_irqsave(&q->lock, flags);
1267 	__add_wait_queue_entry_tail(q, waiter);
1268 	SetPageWaiters(page);
1269 	spin_unlock_irqrestore(&q->lock, flags);
1270 }
1271 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1272 
1273 #ifndef clear_bit_unlock_is_negative_byte
1274 
1275 /*
1276  * PG_waiters is the high bit in the same byte as PG_lock.
1277  *
1278  * On x86 (and on many other architectures), we can clear PG_lock and
1279  * test the sign bit at the same time. But if the architecture does
1280  * not support that special operation, we just do this all by hand
1281  * instead.
1282  *
1283  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1284  * being cleared, but a memory barrier should be unneccssary since it is
1285  * in the same byte as PG_locked.
1286  */
1287 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1288 {
1289 	clear_bit_unlock(nr, mem);
1290 	/* smp_mb__after_atomic(); */
1291 	return test_bit(PG_waiters, mem);
1292 }
1293 
1294 #endif
1295 
1296 /**
1297  * unlock_page - unlock a locked page
1298  * @page: the page
1299  *
1300  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1301  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1302  * mechanism between PageLocked pages and PageWriteback pages is shared.
1303  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1304  *
1305  * Note that this depends on PG_waiters being the sign bit in the byte
1306  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1307  * clear the PG_locked bit and test PG_waiters at the same time fairly
1308  * portably (architectures that do LL/SC can test any bit, while x86 can
1309  * test the sign bit).
1310  */
1311 void unlock_page(struct page *page)
1312 {
1313 	BUILD_BUG_ON(PG_waiters != 7);
1314 	page = compound_head(page);
1315 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1316 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1317 		wake_up_page_bit(page, PG_locked);
1318 }
1319 EXPORT_SYMBOL(unlock_page);
1320 
1321 /**
1322  * end_page_writeback - end writeback against a page
1323  * @page: the page
1324  */
1325 void end_page_writeback(struct page *page)
1326 {
1327 	/*
1328 	 * TestClearPageReclaim could be used here but it is an atomic
1329 	 * operation and overkill in this particular case. Failing to
1330 	 * shuffle a page marked for immediate reclaim is too mild to
1331 	 * justify taking an atomic operation penalty at the end of
1332 	 * ever page writeback.
1333 	 */
1334 	if (PageReclaim(page)) {
1335 		ClearPageReclaim(page);
1336 		rotate_reclaimable_page(page);
1337 	}
1338 
1339 	if (!test_clear_page_writeback(page))
1340 		BUG();
1341 
1342 	smp_mb__after_atomic();
1343 	wake_up_page(page, PG_writeback);
1344 }
1345 EXPORT_SYMBOL(end_page_writeback);
1346 
1347 /*
1348  * After completing I/O on a page, call this routine to update the page
1349  * flags appropriately
1350  */
1351 void page_endio(struct page *page, bool is_write, int err)
1352 {
1353 	if (!is_write) {
1354 		if (!err) {
1355 			SetPageUptodate(page);
1356 		} else {
1357 			ClearPageUptodate(page);
1358 			SetPageError(page);
1359 		}
1360 		unlock_page(page);
1361 	} else {
1362 		if (err) {
1363 			struct address_space *mapping;
1364 
1365 			SetPageError(page);
1366 			mapping = page_mapping(page);
1367 			if (mapping)
1368 				mapping_set_error(mapping, err);
1369 		}
1370 		end_page_writeback(page);
1371 	}
1372 }
1373 EXPORT_SYMBOL_GPL(page_endio);
1374 
1375 /**
1376  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1377  * @__page: the page to lock
1378  */
1379 void __lock_page(struct page *__page)
1380 {
1381 	struct page *page = compound_head(__page);
1382 	wait_queue_head_t *q = page_waitqueue(page);
1383 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1384 				EXCLUSIVE);
1385 }
1386 EXPORT_SYMBOL(__lock_page);
1387 
1388 int __lock_page_killable(struct page *__page)
1389 {
1390 	struct page *page = compound_head(__page);
1391 	wait_queue_head_t *q = page_waitqueue(page);
1392 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1393 					EXCLUSIVE);
1394 }
1395 EXPORT_SYMBOL_GPL(__lock_page_killable);
1396 
1397 /*
1398  * Return values:
1399  * 1 - page is locked; mmap_sem is still held.
1400  * 0 - page is not locked.
1401  *     mmap_sem has been released (up_read()), unless flags had both
1402  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1403  *     which case mmap_sem is still held.
1404  *
1405  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1406  * with the page locked and the mmap_sem unperturbed.
1407  */
1408 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1409 			 unsigned int flags)
1410 {
1411 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1412 		/*
1413 		 * CAUTION! In this case, mmap_sem is not released
1414 		 * even though return 0.
1415 		 */
1416 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1417 			return 0;
1418 
1419 		up_read(&mm->mmap_sem);
1420 		if (flags & FAULT_FLAG_KILLABLE)
1421 			wait_on_page_locked_killable(page);
1422 		else
1423 			wait_on_page_locked(page);
1424 		return 0;
1425 	} else {
1426 		if (flags & FAULT_FLAG_KILLABLE) {
1427 			int ret;
1428 
1429 			ret = __lock_page_killable(page);
1430 			if (ret) {
1431 				up_read(&mm->mmap_sem);
1432 				return 0;
1433 			}
1434 		} else
1435 			__lock_page(page);
1436 		return 1;
1437 	}
1438 }
1439 
1440 /**
1441  * page_cache_next_miss() - Find the next gap in the page cache.
1442  * @mapping: Mapping.
1443  * @index: Index.
1444  * @max_scan: Maximum range to search.
1445  *
1446  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1447  * gap with the lowest index.
1448  *
1449  * This function may be called under the rcu_read_lock.  However, this will
1450  * not atomically search a snapshot of the cache at a single point in time.
1451  * For example, if a gap is created at index 5, then subsequently a gap is
1452  * created at index 10, page_cache_next_miss covering both indices may
1453  * return 10 if called under the rcu_read_lock.
1454  *
1455  * Return: The index of the gap if found, otherwise an index outside the
1456  * range specified (in which case 'return - index >= max_scan' will be true).
1457  * In the rare case of index wrap-around, 0 will be returned.
1458  */
1459 pgoff_t page_cache_next_miss(struct address_space *mapping,
1460 			     pgoff_t index, unsigned long max_scan)
1461 {
1462 	XA_STATE(xas, &mapping->i_pages, index);
1463 
1464 	while (max_scan--) {
1465 		void *entry = xas_next(&xas);
1466 		if (!entry || xa_is_value(entry))
1467 			break;
1468 		if (xas.xa_index == 0)
1469 			break;
1470 	}
1471 
1472 	return xas.xa_index;
1473 }
1474 EXPORT_SYMBOL(page_cache_next_miss);
1475 
1476 /**
1477  * page_cache_prev_miss() - Find the previous gap in the page cache.
1478  * @mapping: Mapping.
1479  * @index: Index.
1480  * @max_scan: Maximum range to search.
1481  *
1482  * Search the range [max(index - max_scan + 1, 0), index] for the
1483  * gap with the highest index.
1484  *
1485  * This function may be called under the rcu_read_lock.  However, this will
1486  * not atomically search a snapshot of the cache at a single point in time.
1487  * For example, if a gap is created at index 10, then subsequently a gap is
1488  * created at index 5, page_cache_prev_miss() covering both indices may
1489  * return 5 if called under the rcu_read_lock.
1490  *
1491  * Return: The index of the gap if found, otherwise an index outside the
1492  * range specified (in which case 'index - return >= max_scan' will be true).
1493  * In the rare case of wrap-around, ULONG_MAX will be returned.
1494  */
1495 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1496 			     pgoff_t index, unsigned long max_scan)
1497 {
1498 	XA_STATE(xas, &mapping->i_pages, index);
1499 
1500 	while (max_scan--) {
1501 		void *entry = xas_prev(&xas);
1502 		if (!entry || xa_is_value(entry))
1503 			break;
1504 		if (xas.xa_index == ULONG_MAX)
1505 			break;
1506 	}
1507 
1508 	return xas.xa_index;
1509 }
1510 EXPORT_SYMBOL(page_cache_prev_miss);
1511 
1512 /**
1513  * find_get_entry - find and get a page cache entry
1514  * @mapping: the address_space to search
1515  * @offset: the page cache index
1516  *
1517  * Looks up the page cache slot at @mapping & @offset.  If there is a
1518  * page cache page, it is returned with an increased refcount.
1519  *
1520  * If the slot holds a shadow entry of a previously evicted page, or a
1521  * swap entry from shmem/tmpfs, it is returned.
1522  *
1523  * Return: the found page or shadow entry, %NULL if nothing is found.
1524  */
1525 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1526 {
1527 	XA_STATE(xas, &mapping->i_pages, offset);
1528 	struct page *page;
1529 
1530 	rcu_read_lock();
1531 repeat:
1532 	xas_reset(&xas);
1533 	page = xas_load(&xas);
1534 	if (xas_retry(&xas, page))
1535 		goto repeat;
1536 	/*
1537 	 * A shadow entry of a recently evicted page, or a swap entry from
1538 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1539 	 */
1540 	if (!page || xa_is_value(page))
1541 		goto out;
1542 
1543 	if (!page_cache_get_speculative(page))
1544 		goto repeat;
1545 
1546 	/*
1547 	 * Has the page moved or been split?
1548 	 * This is part of the lockless pagecache protocol. See
1549 	 * include/linux/pagemap.h for details.
1550 	 */
1551 	if (unlikely(page != xas_reload(&xas))) {
1552 		put_page(page);
1553 		goto repeat;
1554 	}
1555 	page = find_subpage(page, offset);
1556 out:
1557 	rcu_read_unlock();
1558 
1559 	return page;
1560 }
1561 EXPORT_SYMBOL(find_get_entry);
1562 
1563 /**
1564  * find_lock_entry - locate, pin and lock a page cache entry
1565  * @mapping: the address_space to search
1566  * @offset: the page cache index
1567  *
1568  * Looks up the page cache slot at @mapping & @offset.  If there is a
1569  * page cache page, it is returned locked and with an increased
1570  * refcount.
1571  *
1572  * If the slot holds a shadow entry of a previously evicted page, or a
1573  * swap entry from shmem/tmpfs, it is returned.
1574  *
1575  * find_lock_entry() may sleep.
1576  *
1577  * Return: the found page or shadow entry, %NULL if nothing is found.
1578  */
1579 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1580 {
1581 	struct page *page;
1582 
1583 repeat:
1584 	page = find_get_entry(mapping, offset);
1585 	if (page && !xa_is_value(page)) {
1586 		lock_page(page);
1587 		/* Has the page been truncated? */
1588 		if (unlikely(page_mapping(page) != mapping)) {
1589 			unlock_page(page);
1590 			put_page(page);
1591 			goto repeat;
1592 		}
1593 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1594 	}
1595 	return page;
1596 }
1597 EXPORT_SYMBOL(find_lock_entry);
1598 
1599 /**
1600  * pagecache_get_page - find and get a page reference
1601  * @mapping: the address_space to search
1602  * @offset: the page index
1603  * @fgp_flags: PCG flags
1604  * @gfp_mask: gfp mask to use for the page cache data page allocation
1605  *
1606  * Looks up the page cache slot at @mapping & @offset.
1607  *
1608  * PCG flags modify how the page is returned.
1609  *
1610  * @fgp_flags can be:
1611  *
1612  * - FGP_ACCESSED: the page will be marked accessed
1613  * - FGP_LOCK: Page is return locked
1614  * - FGP_CREAT: If page is not present then a new page is allocated using
1615  *   @gfp_mask and added to the page cache and the VM's LRU
1616  *   list. The page is returned locked and with an increased
1617  *   refcount.
1618  * - FGP_FOR_MMAP: Similar to FGP_CREAT, only we want to allow the caller to do
1619  *   its own locking dance if the page is already in cache, or unlock the page
1620  *   before returning if we had to add the page to pagecache.
1621  *
1622  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1623  * if the GFP flags specified for FGP_CREAT are atomic.
1624  *
1625  * If there is a page cache page, it is returned with an increased refcount.
1626  *
1627  * Return: the found page or %NULL otherwise.
1628  */
1629 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1630 	int fgp_flags, gfp_t gfp_mask)
1631 {
1632 	struct page *page;
1633 
1634 repeat:
1635 	page = find_get_entry(mapping, offset);
1636 	if (xa_is_value(page))
1637 		page = NULL;
1638 	if (!page)
1639 		goto no_page;
1640 
1641 	if (fgp_flags & FGP_LOCK) {
1642 		if (fgp_flags & FGP_NOWAIT) {
1643 			if (!trylock_page(page)) {
1644 				put_page(page);
1645 				return NULL;
1646 			}
1647 		} else {
1648 			lock_page(page);
1649 		}
1650 
1651 		/* Has the page been truncated? */
1652 		if (unlikely(compound_head(page)->mapping != mapping)) {
1653 			unlock_page(page);
1654 			put_page(page);
1655 			goto repeat;
1656 		}
1657 		VM_BUG_ON_PAGE(page->index != offset, page);
1658 	}
1659 
1660 	if (fgp_flags & FGP_ACCESSED)
1661 		mark_page_accessed(page);
1662 
1663 no_page:
1664 	if (!page && (fgp_flags & FGP_CREAT)) {
1665 		int err;
1666 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1667 			gfp_mask |= __GFP_WRITE;
1668 		if (fgp_flags & FGP_NOFS)
1669 			gfp_mask &= ~__GFP_FS;
1670 
1671 		page = __page_cache_alloc(gfp_mask);
1672 		if (!page)
1673 			return NULL;
1674 
1675 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1676 			fgp_flags |= FGP_LOCK;
1677 
1678 		/* Init accessed so avoid atomic mark_page_accessed later */
1679 		if (fgp_flags & FGP_ACCESSED)
1680 			__SetPageReferenced(page);
1681 
1682 		err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1683 		if (unlikely(err)) {
1684 			put_page(page);
1685 			page = NULL;
1686 			if (err == -EEXIST)
1687 				goto repeat;
1688 		}
1689 
1690 		/*
1691 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1692 		 * an unlocked page.
1693 		 */
1694 		if (page && (fgp_flags & FGP_FOR_MMAP))
1695 			unlock_page(page);
1696 	}
1697 
1698 	return page;
1699 }
1700 EXPORT_SYMBOL(pagecache_get_page);
1701 
1702 /**
1703  * find_get_entries - gang pagecache lookup
1704  * @mapping:	The address_space to search
1705  * @start:	The starting page cache index
1706  * @nr_entries:	The maximum number of entries
1707  * @entries:	Where the resulting entries are placed
1708  * @indices:	The cache indices corresponding to the entries in @entries
1709  *
1710  * find_get_entries() will search for and return a group of up to
1711  * @nr_entries entries in the mapping.  The entries are placed at
1712  * @entries.  find_get_entries() takes a reference against any actual
1713  * pages it returns.
1714  *
1715  * The search returns a group of mapping-contiguous page cache entries
1716  * with ascending indexes.  There may be holes in the indices due to
1717  * not-present pages.
1718  *
1719  * Any shadow entries of evicted pages, or swap entries from
1720  * shmem/tmpfs, are included in the returned array.
1721  *
1722  * Return: the number of pages and shadow entries which were found.
1723  */
1724 unsigned find_get_entries(struct address_space *mapping,
1725 			  pgoff_t start, unsigned int nr_entries,
1726 			  struct page **entries, pgoff_t *indices)
1727 {
1728 	XA_STATE(xas, &mapping->i_pages, start);
1729 	struct page *page;
1730 	unsigned int ret = 0;
1731 
1732 	if (!nr_entries)
1733 		return 0;
1734 
1735 	rcu_read_lock();
1736 	xas_for_each(&xas, page, ULONG_MAX) {
1737 		if (xas_retry(&xas, page))
1738 			continue;
1739 		/*
1740 		 * A shadow entry of a recently evicted page, a swap
1741 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1742 		 * without attempting to raise page count.
1743 		 */
1744 		if (xa_is_value(page))
1745 			goto export;
1746 
1747 		if (!page_cache_get_speculative(page))
1748 			goto retry;
1749 
1750 		/* Has the page moved or been split? */
1751 		if (unlikely(page != xas_reload(&xas)))
1752 			goto put_page;
1753 		page = find_subpage(page, xas.xa_index);
1754 
1755 export:
1756 		indices[ret] = xas.xa_index;
1757 		entries[ret] = page;
1758 		if (++ret == nr_entries)
1759 			break;
1760 		continue;
1761 put_page:
1762 		put_page(page);
1763 retry:
1764 		xas_reset(&xas);
1765 	}
1766 	rcu_read_unlock();
1767 	return ret;
1768 }
1769 
1770 /**
1771  * find_get_pages_range - gang pagecache lookup
1772  * @mapping:	The address_space to search
1773  * @start:	The starting page index
1774  * @end:	The final page index (inclusive)
1775  * @nr_pages:	The maximum number of pages
1776  * @pages:	Where the resulting pages are placed
1777  *
1778  * find_get_pages_range() will search for and return a group of up to @nr_pages
1779  * pages in the mapping starting at index @start and up to index @end
1780  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1781  * a reference against the returned pages.
1782  *
1783  * The search returns a group of mapping-contiguous pages with ascending
1784  * indexes.  There may be holes in the indices due to not-present pages.
1785  * We also update @start to index the next page for the traversal.
1786  *
1787  * Return: the number of pages which were found. If this number is
1788  * smaller than @nr_pages, the end of specified range has been
1789  * reached.
1790  */
1791 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1792 			      pgoff_t end, unsigned int nr_pages,
1793 			      struct page **pages)
1794 {
1795 	XA_STATE(xas, &mapping->i_pages, *start);
1796 	struct page *page;
1797 	unsigned ret = 0;
1798 
1799 	if (unlikely(!nr_pages))
1800 		return 0;
1801 
1802 	rcu_read_lock();
1803 	xas_for_each(&xas, page, end) {
1804 		if (xas_retry(&xas, page))
1805 			continue;
1806 		/* Skip over shadow, swap and DAX entries */
1807 		if (xa_is_value(page))
1808 			continue;
1809 
1810 		if (!page_cache_get_speculative(page))
1811 			goto retry;
1812 
1813 		/* Has the page moved or been split? */
1814 		if (unlikely(page != xas_reload(&xas)))
1815 			goto put_page;
1816 
1817 		pages[ret] = find_subpage(page, xas.xa_index);
1818 		if (++ret == nr_pages) {
1819 			*start = xas.xa_index + 1;
1820 			goto out;
1821 		}
1822 		continue;
1823 put_page:
1824 		put_page(page);
1825 retry:
1826 		xas_reset(&xas);
1827 	}
1828 
1829 	/*
1830 	 * We come here when there is no page beyond @end. We take care to not
1831 	 * overflow the index @start as it confuses some of the callers. This
1832 	 * breaks the iteration when there is a page at index -1 but that is
1833 	 * already broken anyway.
1834 	 */
1835 	if (end == (pgoff_t)-1)
1836 		*start = (pgoff_t)-1;
1837 	else
1838 		*start = end + 1;
1839 out:
1840 	rcu_read_unlock();
1841 
1842 	return ret;
1843 }
1844 
1845 /**
1846  * find_get_pages_contig - gang contiguous pagecache lookup
1847  * @mapping:	The address_space to search
1848  * @index:	The starting page index
1849  * @nr_pages:	The maximum number of pages
1850  * @pages:	Where the resulting pages are placed
1851  *
1852  * find_get_pages_contig() works exactly like find_get_pages(), except
1853  * that the returned number of pages are guaranteed to be contiguous.
1854  *
1855  * Return: the number of pages which were found.
1856  */
1857 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1858 			       unsigned int nr_pages, struct page **pages)
1859 {
1860 	XA_STATE(xas, &mapping->i_pages, index);
1861 	struct page *page;
1862 	unsigned int ret = 0;
1863 
1864 	if (unlikely(!nr_pages))
1865 		return 0;
1866 
1867 	rcu_read_lock();
1868 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1869 		if (xas_retry(&xas, page))
1870 			continue;
1871 		/*
1872 		 * If the entry has been swapped out, we can stop looking.
1873 		 * No current caller is looking for DAX entries.
1874 		 */
1875 		if (xa_is_value(page))
1876 			break;
1877 
1878 		if (!page_cache_get_speculative(page))
1879 			goto retry;
1880 
1881 		/* Has the page moved or been split? */
1882 		if (unlikely(page != xas_reload(&xas)))
1883 			goto put_page;
1884 
1885 		pages[ret] = find_subpage(page, xas.xa_index);
1886 		if (++ret == nr_pages)
1887 			break;
1888 		continue;
1889 put_page:
1890 		put_page(page);
1891 retry:
1892 		xas_reset(&xas);
1893 	}
1894 	rcu_read_unlock();
1895 	return ret;
1896 }
1897 EXPORT_SYMBOL(find_get_pages_contig);
1898 
1899 /**
1900  * find_get_pages_range_tag - find and return pages in given range matching @tag
1901  * @mapping:	the address_space to search
1902  * @index:	the starting page index
1903  * @end:	The final page index (inclusive)
1904  * @tag:	the tag index
1905  * @nr_pages:	the maximum number of pages
1906  * @pages:	where the resulting pages are placed
1907  *
1908  * Like find_get_pages, except we only return pages which are tagged with
1909  * @tag.   We update @index to index the next page for the traversal.
1910  *
1911  * Return: the number of pages which were found.
1912  */
1913 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1914 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1915 			struct page **pages)
1916 {
1917 	XA_STATE(xas, &mapping->i_pages, *index);
1918 	struct page *page;
1919 	unsigned ret = 0;
1920 
1921 	if (unlikely(!nr_pages))
1922 		return 0;
1923 
1924 	rcu_read_lock();
1925 	xas_for_each_marked(&xas, page, end, tag) {
1926 		if (xas_retry(&xas, page))
1927 			continue;
1928 		/*
1929 		 * Shadow entries should never be tagged, but this iteration
1930 		 * is lockless so there is a window for page reclaim to evict
1931 		 * a page we saw tagged.  Skip over it.
1932 		 */
1933 		if (xa_is_value(page))
1934 			continue;
1935 
1936 		if (!page_cache_get_speculative(page))
1937 			goto retry;
1938 
1939 		/* Has the page moved or been split? */
1940 		if (unlikely(page != xas_reload(&xas)))
1941 			goto put_page;
1942 
1943 		pages[ret] = find_subpage(page, xas.xa_index);
1944 		if (++ret == nr_pages) {
1945 			*index = xas.xa_index + 1;
1946 			goto out;
1947 		}
1948 		continue;
1949 put_page:
1950 		put_page(page);
1951 retry:
1952 		xas_reset(&xas);
1953 	}
1954 
1955 	/*
1956 	 * We come here when we got to @end. We take care to not overflow the
1957 	 * index @index as it confuses some of the callers. This breaks the
1958 	 * iteration when there is a page at index -1 but that is already
1959 	 * broken anyway.
1960 	 */
1961 	if (end == (pgoff_t)-1)
1962 		*index = (pgoff_t)-1;
1963 	else
1964 		*index = end + 1;
1965 out:
1966 	rcu_read_unlock();
1967 
1968 	return ret;
1969 }
1970 EXPORT_SYMBOL(find_get_pages_range_tag);
1971 
1972 /*
1973  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1974  * a _large_ part of the i/o request. Imagine the worst scenario:
1975  *
1976  *      ---R__________________________________________B__________
1977  *         ^ reading here                             ^ bad block(assume 4k)
1978  *
1979  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1980  * => failing the whole request => read(R) => read(R+1) =>
1981  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1982  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1983  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1984  *
1985  * It is going insane. Fix it by quickly scaling down the readahead size.
1986  */
1987 static void shrink_readahead_size_eio(struct file *filp,
1988 					struct file_ra_state *ra)
1989 {
1990 	ra->ra_pages /= 4;
1991 }
1992 
1993 /**
1994  * generic_file_buffered_read - generic file read routine
1995  * @iocb:	the iocb to read
1996  * @iter:	data destination
1997  * @written:	already copied
1998  *
1999  * This is a generic file read routine, and uses the
2000  * mapping->a_ops->readpage() function for the actual low-level stuff.
2001  *
2002  * This is really ugly. But the goto's actually try to clarify some
2003  * of the logic when it comes to error handling etc.
2004  *
2005  * Return:
2006  * * total number of bytes copied, including those the were already @written
2007  * * negative error code if nothing was copied
2008  */
2009 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2010 		struct iov_iter *iter, ssize_t written)
2011 {
2012 	struct file *filp = iocb->ki_filp;
2013 	struct address_space *mapping = filp->f_mapping;
2014 	struct inode *inode = mapping->host;
2015 	struct file_ra_state *ra = &filp->f_ra;
2016 	loff_t *ppos = &iocb->ki_pos;
2017 	pgoff_t index;
2018 	pgoff_t last_index;
2019 	pgoff_t prev_index;
2020 	unsigned long offset;      /* offset into pagecache page */
2021 	unsigned int prev_offset;
2022 	int error = 0;
2023 
2024 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2025 		return 0;
2026 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2027 
2028 	index = *ppos >> PAGE_SHIFT;
2029 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2030 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2031 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2032 	offset = *ppos & ~PAGE_MASK;
2033 
2034 	for (;;) {
2035 		struct page *page;
2036 		pgoff_t end_index;
2037 		loff_t isize;
2038 		unsigned long nr, ret;
2039 
2040 		cond_resched();
2041 find_page:
2042 		if (fatal_signal_pending(current)) {
2043 			error = -EINTR;
2044 			goto out;
2045 		}
2046 
2047 		page = find_get_page(mapping, index);
2048 		if (!page) {
2049 			if (iocb->ki_flags & IOCB_NOWAIT)
2050 				goto would_block;
2051 			page_cache_sync_readahead(mapping,
2052 					ra, filp,
2053 					index, last_index - index);
2054 			page = find_get_page(mapping, index);
2055 			if (unlikely(page == NULL))
2056 				goto no_cached_page;
2057 		}
2058 		if (PageReadahead(page)) {
2059 			page_cache_async_readahead(mapping,
2060 					ra, filp, page,
2061 					index, last_index - index);
2062 		}
2063 		if (!PageUptodate(page)) {
2064 			if (iocb->ki_flags & IOCB_NOWAIT) {
2065 				put_page(page);
2066 				goto would_block;
2067 			}
2068 
2069 			/*
2070 			 * See comment in do_read_cache_page on why
2071 			 * wait_on_page_locked is used to avoid unnecessarily
2072 			 * serialisations and why it's safe.
2073 			 */
2074 			error = wait_on_page_locked_killable(page);
2075 			if (unlikely(error))
2076 				goto readpage_error;
2077 			if (PageUptodate(page))
2078 				goto page_ok;
2079 
2080 			if (inode->i_blkbits == PAGE_SHIFT ||
2081 					!mapping->a_ops->is_partially_uptodate)
2082 				goto page_not_up_to_date;
2083 			/* pipes can't handle partially uptodate pages */
2084 			if (unlikely(iov_iter_is_pipe(iter)))
2085 				goto page_not_up_to_date;
2086 			if (!trylock_page(page))
2087 				goto page_not_up_to_date;
2088 			/* Did it get truncated before we got the lock? */
2089 			if (!page->mapping)
2090 				goto page_not_up_to_date_locked;
2091 			if (!mapping->a_ops->is_partially_uptodate(page,
2092 							offset, iter->count))
2093 				goto page_not_up_to_date_locked;
2094 			unlock_page(page);
2095 		}
2096 page_ok:
2097 		/*
2098 		 * i_size must be checked after we know the page is Uptodate.
2099 		 *
2100 		 * Checking i_size after the check allows us to calculate
2101 		 * the correct value for "nr", which means the zero-filled
2102 		 * part of the page is not copied back to userspace (unless
2103 		 * another truncate extends the file - this is desired though).
2104 		 */
2105 
2106 		isize = i_size_read(inode);
2107 		end_index = (isize - 1) >> PAGE_SHIFT;
2108 		if (unlikely(!isize || index > end_index)) {
2109 			put_page(page);
2110 			goto out;
2111 		}
2112 
2113 		/* nr is the maximum number of bytes to copy from this page */
2114 		nr = PAGE_SIZE;
2115 		if (index == end_index) {
2116 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2117 			if (nr <= offset) {
2118 				put_page(page);
2119 				goto out;
2120 			}
2121 		}
2122 		nr = nr - offset;
2123 
2124 		/* If users can be writing to this page using arbitrary
2125 		 * virtual addresses, take care about potential aliasing
2126 		 * before reading the page on the kernel side.
2127 		 */
2128 		if (mapping_writably_mapped(mapping))
2129 			flush_dcache_page(page);
2130 
2131 		/*
2132 		 * When a sequential read accesses a page several times,
2133 		 * only mark it as accessed the first time.
2134 		 */
2135 		if (prev_index != index || offset != prev_offset)
2136 			mark_page_accessed(page);
2137 		prev_index = index;
2138 
2139 		/*
2140 		 * Ok, we have the page, and it's up-to-date, so
2141 		 * now we can copy it to user space...
2142 		 */
2143 
2144 		ret = copy_page_to_iter(page, offset, nr, iter);
2145 		offset += ret;
2146 		index += offset >> PAGE_SHIFT;
2147 		offset &= ~PAGE_MASK;
2148 		prev_offset = offset;
2149 
2150 		put_page(page);
2151 		written += ret;
2152 		if (!iov_iter_count(iter))
2153 			goto out;
2154 		if (ret < nr) {
2155 			error = -EFAULT;
2156 			goto out;
2157 		}
2158 		continue;
2159 
2160 page_not_up_to_date:
2161 		/* Get exclusive access to the page ... */
2162 		error = lock_page_killable(page);
2163 		if (unlikely(error))
2164 			goto readpage_error;
2165 
2166 page_not_up_to_date_locked:
2167 		/* Did it get truncated before we got the lock? */
2168 		if (!page->mapping) {
2169 			unlock_page(page);
2170 			put_page(page);
2171 			continue;
2172 		}
2173 
2174 		/* Did somebody else fill it already? */
2175 		if (PageUptodate(page)) {
2176 			unlock_page(page);
2177 			goto page_ok;
2178 		}
2179 
2180 readpage:
2181 		/*
2182 		 * A previous I/O error may have been due to temporary
2183 		 * failures, eg. multipath errors.
2184 		 * PG_error will be set again if readpage fails.
2185 		 */
2186 		ClearPageError(page);
2187 		/* Start the actual read. The read will unlock the page. */
2188 		error = mapping->a_ops->readpage(filp, page);
2189 
2190 		if (unlikely(error)) {
2191 			if (error == AOP_TRUNCATED_PAGE) {
2192 				put_page(page);
2193 				error = 0;
2194 				goto find_page;
2195 			}
2196 			goto readpage_error;
2197 		}
2198 
2199 		if (!PageUptodate(page)) {
2200 			error = lock_page_killable(page);
2201 			if (unlikely(error))
2202 				goto readpage_error;
2203 			if (!PageUptodate(page)) {
2204 				if (page->mapping == NULL) {
2205 					/*
2206 					 * invalidate_mapping_pages got it
2207 					 */
2208 					unlock_page(page);
2209 					put_page(page);
2210 					goto find_page;
2211 				}
2212 				unlock_page(page);
2213 				shrink_readahead_size_eio(filp, ra);
2214 				error = -EIO;
2215 				goto readpage_error;
2216 			}
2217 			unlock_page(page);
2218 		}
2219 
2220 		goto page_ok;
2221 
2222 readpage_error:
2223 		/* UHHUH! A synchronous read error occurred. Report it */
2224 		put_page(page);
2225 		goto out;
2226 
2227 no_cached_page:
2228 		/*
2229 		 * Ok, it wasn't cached, so we need to create a new
2230 		 * page..
2231 		 */
2232 		page = page_cache_alloc(mapping);
2233 		if (!page) {
2234 			error = -ENOMEM;
2235 			goto out;
2236 		}
2237 		error = add_to_page_cache_lru(page, mapping, index,
2238 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2239 		if (error) {
2240 			put_page(page);
2241 			if (error == -EEXIST) {
2242 				error = 0;
2243 				goto find_page;
2244 			}
2245 			goto out;
2246 		}
2247 		goto readpage;
2248 	}
2249 
2250 would_block:
2251 	error = -EAGAIN;
2252 out:
2253 	ra->prev_pos = prev_index;
2254 	ra->prev_pos <<= PAGE_SHIFT;
2255 	ra->prev_pos |= prev_offset;
2256 
2257 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2258 	file_accessed(filp);
2259 	return written ? written : error;
2260 }
2261 
2262 /**
2263  * generic_file_read_iter - generic filesystem read routine
2264  * @iocb:	kernel I/O control block
2265  * @iter:	destination for the data read
2266  *
2267  * This is the "read_iter()" routine for all filesystems
2268  * that can use the page cache directly.
2269  * Return:
2270  * * number of bytes copied, even for partial reads
2271  * * negative error code if nothing was read
2272  */
2273 ssize_t
2274 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2275 {
2276 	size_t count = iov_iter_count(iter);
2277 	ssize_t retval = 0;
2278 
2279 	if (!count)
2280 		goto out; /* skip atime */
2281 
2282 	if (iocb->ki_flags & IOCB_DIRECT) {
2283 		struct file *file = iocb->ki_filp;
2284 		struct address_space *mapping = file->f_mapping;
2285 		struct inode *inode = mapping->host;
2286 		loff_t size;
2287 
2288 		size = i_size_read(inode);
2289 		if (iocb->ki_flags & IOCB_NOWAIT) {
2290 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2291 						   iocb->ki_pos + count - 1))
2292 				return -EAGAIN;
2293 		} else {
2294 			retval = filemap_write_and_wait_range(mapping,
2295 						iocb->ki_pos,
2296 					        iocb->ki_pos + count - 1);
2297 			if (retval < 0)
2298 				goto out;
2299 		}
2300 
2301 		file_accessed(file);
2302 
2303 		retval = mapping->a_ops->direct_IO(iocb, iter);
2304 		if (retval >= 0) {
2305 			iocb->ki_pos += retval;
2306 			count -= retval;
2307 		}
2308 		iov_iter_revert(iter, count - iov_iter_count(iter));
2309 
2310 		/*
2311 		 * Btrfs can have a short DIO read if we encounter
2312 		 * compressed extents, so if there was an error, or if
2313 		 * we've already read everything we wanted to, or if
2314 		 * there was a short read because we hit EOF, go ahead
2315 		 * and return.  Otherwise fallthrough to buffered io for
2316 		 * the rest of the read.  Buffered reads will not work for
2317 		 * DAX files, so don't bother trying.
2318 		 */
2319 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2320 		    IS_DAX(inode))
2321 			goto out;
2322 	}
2323 
2324 	retval = generic_file_buffered_read(iocb, iter, retval);
2325 out:
2326 	return retval;
2327 }
2328 EXPORT_SYMBOL(generic_file_read_iter);
2329 
2330 #ifdef CONFIG_MMU
2331 #define MMAP_LOTSAMISS  (100)
2332 /*
2333  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_sem
2334  * @vmf - the vm_fault for this fault.
2335  * @page - the page to lock.
2336  * @fpin - the pointer to the file we may pin (or is already pinned).
2337  *
2338  * This works similar to lock_page_or_retry in that it can drop the mmap_sem.
2339  * It differs in that it actually returns the page locked if it returns 1 and 0
2340  * if it couldn't lock the page.  If we did have to drop the mmap_sem then fpin
2341  * will point to the pinned file and needs to be fput()'ed at a later point.
2342  */
2343 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2344 				     struct file **fpin)
2345 {
2346 	if (trylock_page(page))
2347 		return 1;
2348 
2349 	/*
2350 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2351 	 * the mmap_sem still held. That's how FAULT_FLAG_RETRY_NOWAIT
2352 	 * is supposed to work. We have way too many special cases..
2353 	 */
2354 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2355 		return 0;
2356 
2357 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2358 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2359 		if (__lock_page_killable(page)) {
2360 			/*
2361 			 * We didn't have the right flags to drop the mmap_sem,
2362 			 * but all fault_handlers only check for fatal signals
2363 			 * if we return VM_FAULT_RETRY, so we need to drop the
2364 			 * mmap_sem here and return 0 if we don't have a fpin.
2365 			 */
2366 			if (*fpin == NULL)
2367 				up_read(&vmf->vma->vm_mm->mmap_sem);
2368 			return 0;
2369 		}
2370 	} else
2371 		__lock_page(page);
2372 	return 1;
2373 }
2374 
2375 
2376 /*
2377  * Synchronous readahead happens when we don't even find a page in the page
2378  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2379  * to drop the mmap sem we return the file that was pinned in order for us to do
2380  * that.  If we didn't pin a file then we return NULL.  The file that is
2381  * returned needs to be fput()'ed when we're done with it.
2382  */
2383 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2384 {
2385 	struct file *file = vmf->vma->vm_file;
2386 	struct file_ra_state *ra = &file->f_ra;
2387 	struct address_space *mapping = file->f_mapping;
2388 	struct file *fpin = NULL;
2389 	pgoff_t offset = vmf->pgoff;
2390 
2391 	/* If we don't want any read-ahead, don't bother */
2392 	if (vmf->vma->vm_flags & VM_RAND_READ)
2393 		return fpin;
2394 	if (!ra->ra_pages)
2395 		return fpin;
2396 
2397 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2398 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2399 		page_cache_sync_readahead(mapping, ra, file, offset,
2400 					  ra->ra_pages);
2401 		return fpin;
2402 	}
2403 
2404 	/* Avoid banging the cache line if not needed */
2405 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2406 		ra->mmap_miss++;
2407 
2408 	/*
2409 	 * Do we miss much more than hit in this file? If so,
2410 	 * stop bothering with read-ahead. It will only hurt.
2411 	 */
2412 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2413 		return fpin;
2414 
2415 	/*
2416 	 * mmap read-around
2417 	 */
2418 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2419 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2420 	ra->size = ra->ra_pages;
2421 	ra->async_size = ra->ra_pages / 4;
2422 	ra_submit(ra, mapping, file);
2423 	return fpin;
2424 }
2425 
2426 /*
2427  * Asynchronous readahead happens when we find the page and PG_readahead,
2428  * so we want to possibly extend the readahead further.  We return the file that
2429  * was pinned if we have to drop the mmap_sem in order to do IO.
2430  */
2431 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2432 					    struct page *page)
2433 {
2434 	struct file *file = vmf->vma->vm_file;
2435 	struct file_ra_state *ra = &file->f_ra;
2436 	struct address_space *mapping = file->f_mapping;
2437 	struct file *fpin = NULL;
2438 	pgoff_t offset = vmf->pgoff;
2439 
2440 	/* If we don't want any read-ahead, don't bother */
2441 	if (vmf->vma->vm_flags & VM_RAND_READ)
2442 		return fpin;
2443 	if (ra->mmap_miss > 0)
2444 		ra->mmap_miss--;
2445 	if (PageReadahead(page)) {
2446 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2447 		page_cache_async_readahead(mapping, ra, file,
2448 					   page, offset, ra->ra_pages);
2449 	}
2450 	return fpin;
2451 }
2452 
2453 /**
2454  * filemap_fault - read in file data for page fault handling
2455  * @vmf:	struct vm_fault containing details of the fault
2456  *
2457  * filemap_fault() is invoked via the vma operations vector for a
2458  * mapped memory region to read in file data during a page fault.
2459  *
2460  * The goto's are kind of ugly, but this streamlines the normal case of having
2461  * it in the page cache, and handles the special cases reasonably without
2462  * having a lot of duplicated code.
2463  *
2464  * vma->vm_mm->mmap_sem must be held on entry.
2465  *
2466  * If our return value has VM_FAULT_RETRY set, it's because the mmap_sem
2467  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2468  *
2469  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2470  * has not been released.
2471  *
2472  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2473  *
2474  * Return: bitwise-OR of %VM_FAULT_ codes.
2475  */
2476 vm_fault_t filemap_fault(struct vm_fault *vmf)
2477 {
2478 	int error;
2479 	struct file *file = vmf->vma->vm_file;
2480 	struct file *fpin = NULL;
2481 	struct address_space *mapping = file->f_mapping;
2482 	struct file_ra_state *ra = &file->f_ra;
2483 	struct inode *inode = mapping->host;
2484 	pgoff_t offset = vmf->pgoff;
2485 	pgoff_t max_off;
2486 	struct page *page;
2487 	vm_fault_t ret = 0;
2488 
2489 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2490 	if (unlikely(offset >= max_off))
2491 		return VM_FAULT_SIGBUS;
2492 
2493 	/*
2494 	 * Do we have something in the page cache already?
2495 	 */
2496 	page = find_get_page(mapping, offset);
2497 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2498 		/*
2499 		 * We found the page, so try async readahead before
2500 		 * waiting for the lock.
2501 		 */
2502 		fpin = do_async_mmap_readahead(vmf, page);
2503 	} else if (!page) {
2504 		/* No page in the page cache at all */
2505 		count_vm_event(PGMAJFAULT);
2506 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2507 		ret = VM_FAULT_MAJOR;
2508 		fpin = do_sync_mmap_readahead(vmf);
2509 retry_find:
2510 		page = pagecache_get_page(mapping, offset,
2511 					  FGP_CREAT|FGP_FOR_MMAP,
2512 					  vmf->gfp_mask);
2513 		if (!page) {
2514 			if (fpin)
2515 				goto out_retry;
2516 			return vmf_error(-ENOMEM);
2517 		}
2518 	}
2519 
2520 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2521 		goto out_retry;
2522 
2523 	/* Did it get truncated? */
2524 	if (unlikely(compound_head(page)->mapping != mapping)) {
2525 		unlock_page(page);
2526 		put_page(page);
2527 		goto retry_find;
2528 	}
2529 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2530 
2531 	/*
2532 	 * We have a locked page in the page cache, now we need to check
2533 	 * that it's up-to-date. If not, it is going to be due to an error.
2534 	 */
2535 	if (unlikely(!PageUptodate(page)))
2536 		goto page_not_uptodate;
2537 
2538 	/*
2539 	 * We've made it this far and we had to drop our mmap_sem, now is the
2540 	 * time to return to the upper layer and have it re-find the vma and
2541 	 * redo the fault.
2542 	 */
2543 	if (fpin) {
2544 		unlock_page(page);
2545 		goto out_retry;
2546 	}
2547 
2548 	/*
2549 	 * Found the page and have a reference on it.
2550 	 * We must recheck i_size under page lock.
2551 	 */
2552 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2553 	if (unlikely(offset >= max_off)) {
2554 		unlock_page(page);
2555 		put_page(page);
2556 		return VM_FAULT_SIGBUS;
2557 	}
2558 
2559 	vmf->page = page;
2560 	return ret | VM_FAULT_LOCKED;
2561 
2562 page_not_uptodate:
2563 	/*
2564 	 * Umm, take care of errors if the page isn't up-to-date.
2565 	 * Try to re-read it _once_. We do this synchronously,
2566 	 * because there really aren't any performance issues here
2567 	 * and we need to check for errors.
2568 	 */
2569 	ClearPageError(page);
2570 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2571 	error = mapping->a_ops->readpage(file, page);
2572 	if (!error) {
2573 		wait_on_page_locked(page);
2574 		if (!PageUptodate(page))
2575 			error = -EIO;
2576 	}
2577 	if (fpin)
2578 		goto out_retry;
2579 	put_page(page);
2580 
2581 	if (!error || error == AOP_TRUNCATED_PAGE)
2582 		goto retry_find;
2583 
2584 	/* Things didn't work out. Return zero to tell the mm layer so. */
2585 	shrink_readahead_size_eio(file, ra);
2586 	return VM_FAULT_SIGBUS;
2587 
2588 out_retry:
2589 	/*
2590 	 * We dropped the mmap_sem, we need to return to the fault handler to
2591 	 * re-find the vma and come back and find our hopefully still populated
2592 	 * page.
2593 	 */
2594 	if (page)
2595 		put_page(page);
2596 	if (fpin)
2597 		fput(fpin);
2598 	return ret | VM_FAULT_RETRY;
2599 }
2600 EXPORT_SYMBOL(filemap_fault);
2601 
2602 void filemap_map_pages(struct vm_fault *vmf,
2603 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2604 {
2605 	struct file *file = vmf->vma->vm_file;
2606 	struct address_space *mapping = file->f_mapping;
2607 	pgoff_t last_pgoff = start_pgoff;
2608 	unsigned long max_idx;
2609 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2610 	struct page *page;
2611 
2612 	rcu_read_lock();
2613 	xas_for_each(&xas, page, end_pgoff) {
2614 		if (xas_retry(&xas, page))
2615 			continue;
2616 		if (xa_is_value(page))
2617 			goto next;
2618 
2619 		/*
2620 		 * Check for a locked page first, as a speculative
2621 		 * reference may adversely influence page migration.
2622 		 */
2623 		if (PageLocked(page))
2624 			goto next;
2625 		if (!page_cache_get_speculative(page))
2626 			goto next;
2627 
2628 		/* Has the page moved or been split? */
2629 		if (unlikely(page != xas_reload(&xas)))
2630 			goto skip;
2631 		page = find_subpage(page, xas.xa_index);
2632 
2633 		if (!PageUptodate(page) ||
2634 				PageReadahead(page) ||
2635 				PageHWPoison(page))
2636 			goto skip;
2637 		if (!trylock_page(page))
2638 			goto skip;
2639 
2640 		if (page->mapping != mapping || !PageUptodate(page))
2641 			goto unlock;
2642 
2643 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2644 		if (page->index >= max_idx)
2645 			goto unlock;
2646 
2647 		if (file->f_ra.mmap_miss > 0)
2648 			file->f_ra.mmap_miss--;
2649 
2650 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2651 		if (vmf->pte)
2652 			vmf->pte += xas.xa_index - last_pgoff;
2653 		last_pgoff = xas.xa_index;
2654 		if (alloc_set_pte(vmf, NULL, page))
2655 			goto unlock;
2656 		unlock_page(page);
2657 		goto next;
2658 unlock:
2659 		unlock_page(page);
2660 skip:
2661 		put_page(page);
2662 next:
2663 		/* Huge page is mapped? No need to proceed. */
2664 		if (pmd_trans_huge(*vmf->pmd))
2665 			break;
2666 	}
2667 	rcu_read_unlock();
2668 }
2669 EXPORT_SYMBOL(filemap_map_pages);
2670 
2671 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2672 {
2673 	struct page *page = vmf->page;
2674 	struct inode *inode = file_inode(vmf->vma->vm_file);
2675 	vm_fault_t ret = VM_FAULT_LOCKED;
2676 
2677 	sb_start_pagefault(inode->i_sb);
2678 	file_update_time(vmf->vma->vm_file);
2679 	lock_page(page);
2680 	if (page->mapping != inode->i_mapping) {
2681 		unlock_page(page);
2682 		ret = VM_FAULT_NOPAGE;
2683 		goto out;
2684 	}
2685 	/*
2686 	 * We mark the page dirty already here so that when freeze is in
2687 	 * progress, we are guaranteed that writeback during freezing will
2688 	 * see the dirty page and writeprotect it again.
2689 	 */
2690 	set_page_dirty(page);
2691 	wait_for_stable_page(page);
2692 out:
2693 	sb_end_pagefault(inode->i_sb);
2694 	return ret;
2695 }
2696 
2697 const struct vm_operations_struct generic_file_vm_ops = {
2698 	.fault		= filemap_fault,
2699 	.map_pages	= filemap_map_pages,
2700 	.page_mkwrite	= filemap_page_mkwrite,
2701 };
2702 
2703 /* This is used for a general mmap of a disk file */
2704 
2705 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2706 {
2707 	struct address_space *mapping = file->f_mapping;
2708 
2709 	if (!mapping->a_ops->readpage)
2710 		return -ENOEXEC;
2711 	file_accessed(file);
2712 	vma->vm_ops = &generic_file_vm_ops;
2713 	return 0;
2714 }
2715 
2716 /*
2717  * This is for filesystems which do not implement ->writepage.
2718  */
2719 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2720 {
2721 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2722 		return -EINVAL;
2723 	return generic_file_mmap(file, vma);
2724 }
2725 #else
2726 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2727 {
2728 	return VM_FAULT_SIGBUS;
2729 }
2730 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731 {
2732 	return -ENOSYS;
2733 }
2734 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2735 {
2736 	return -ENOSYS;
2737 }
2738 #endif /* CONFIG_MMU */
2739 
2740 EXPORT_SYMBOL(filemap_page_mkwrite);
2741 EXPORT_SYMBOL(generic_file_mmap);
2742 EXPORT_SYMBOL(generic_file_readonly_mmap);
2743 
2744 static struct page *wait_on_page_read(struct page *page)
2745 {
2746 	if (!IS_ERR(page)) {
2747 		wait_on_page_locked(page);
2748 		if (!PageUptodate(page)) {
2749 			put_page(page);
2750 			page = ERR_PTR(-EIO);
2751 		}
2752 	}
2753 	return page;
2754 }
2755 
2756 static struct page *do_read_cache_page(struct address_space *mapping,
2757 				pgoff_t index,
2758 				int (*filler)(void *, struct page *),
2759 				void *data,
2760 				gfp_t gfp)
2761 {
2762 	struct page *page;
2763 	int err;
2764 repeat:
2765 	page = find_get_page(mapping, index);
2766 	if (!page) {
2767 		page = __page_cache_alloc(gfp);
2768 		if (!page)
2769 			return ERR_PTR(-ENOMEM);
2770 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2771 		if (unlikely(err)) {
2772 			put_page(page);
2773 			if (err == -EEXIST)
2774 				goto repeat;
2775 			/* Presumably ENOMEM for xarray node */
2776 			return ERR_PTR(err);
2777 		}
2778 
2779 filler:
2780 		if (filler)
2781 			err = filler(data, page);
2782 		else
2783 			err = mapping->a_ops->readpage(data, page);
2784 
2785 		if (err < 0) {
2786 			put_page(page);
2787 			return ERR_PTR(err);
2788 		}
2789 
2790 		page = wait_on_page_read(page);
2791 		if (IS_ERR(page))
2792 			return page;
2793 		goto out;
2794 	}
2795 	if (PageUptodate(page))
2796 		goto out;
2797 
2798 	/*
2799 	 * Page is not up to date and may be locked due one of the following
2800 	 * case a: Page is being filled and the page lock is held
2801 	 * case b: Read/write error clearing the page uptodate status
2802 	 * case c: Truncation in progress (page locked)
2803 	 * case d: Reclaim in progress
2804 	 *
2805 	 * Case a, the page will be up to date when the page is unlocked.
2806 	 *    There is no need to serialise on the page lock here as the page
2807 	 *    is pinned so the lock gives no additional protection. Even if the
2808 	 *    the page is truncated, the data is still valid if PageUptodate as
2809 	 *    it's a race vs truncate race.
2810 	 * Case b, the page will not be up to date
2811 	 * Case c, the page may be truncated but in itself, the data may still
2812 	 *    be valid after IO completes as it's a read vs truncate race. The
2813 	 *    operation must restart if the page is not uptodate on unlock but
2814 	 *    otherwise serialising on page lock to stabilise the mapping gives
2815 	 *    no additional guarantees to the caller as the page lock is
2816 	 *    released before return.
2817 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2818 	 *    will be a race with remove_mapping that determines if the mapping
2819 	 *    is valid on unlock but otherwise the data is valid and there is
2820 	 *    no need to serialise with page lock.
2821 	 *
2822 	 * As the page lock gives no additional guarantee, we optimistically
2823 	 * wait on the page to be unlocked and check if it's up to date and
2824 	 * use the page if it is. Otherwise, the page lock is required to
2825 	 * distinguish between the different cases. The motivation is that we
2826 	 * avoid spurious serialisations and wakeups when multiple processes
2827 	 * wait on the same page for IO to complete.
2828 	 */
2829 	wait_on_page_locked(page);
2830 	if (PageUptodate(page))
2831 		goto out;
2832 
2833 	/* Distinguish between all the cases under the safety of the lock */
2834 	lock_page(page);
2835 
2836 	/* Case c or d, restart the operation */
2837 	if (!page->mapping) {
2838 		unlock_page(page);
2839 		put_page(page);
2840 		goto repeat;
2841 	}
2842 
2843 	/* Someone else locked and filled the page in a very small window */
2844 	if (PageUptodate(page)) {
2845 		unlock_page(page);
2846 		goto out;
2847 	}
2848 	goto filler;
2849 
2850 out:
2851 	mark_page_accessed(page);
2852 	return page;
2853 }
2854 
2855 /**
2856  * read_cache_page - read into page cache, fill it if needed
2857  * @mapping:	the page's address_space
2858  * @index:	the page index
2859  * @filler:	function to perform the read
2860  * @data:	first arg to filler(data, page) function, often left as NULL
2861  *
2862  * Read into the page cache. If a page already exists, and PageUptodate() is
2863  * not set, try to fill the page and wait for it to become unlocked.
2864  *
2865  * If the page does not get brought uptodate, return -EIO.
2866  *
2867  * Return: up to date page on success, ERR_PTR() on failure.
2868  */
2869 struct page *read_cache_page(struct address_space *mapping,
2870 				pgoff_t index,
2871 				int (*filler)(void *, struct page *),
2872 				void *data)
2873 {
2874 	return do_read_cache_page(mapping, index, filler, data,
2875 			mapping_gfp_mask(mapping));
2876 }
2877 EXPORT_SYMBOL(read_cache_page);
2878 
2879 /**
2880  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2881  * @mapping:	the page's address_space
2882  * @index:	the page index
2883  * @gfp:	the page allocator flags to use if allocating
2884  *
2885  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2886  * any new page allocations done using the specified allocation flags.
2887  *
2888  * If the page does not get brought uptodate, return -EIO.
2889  *
2890  * Return: up to date page on success, ERR_PTR() on failure.
2891  */
2892 struct page *read_cache_page_gfp(struct address_space *mapping,
2893 				pgoff_t index,
2894 				gfp_t gfp)
2895 {
2896 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2897 }
2898 EXPORT_SYMBOL(read_cache_page_gfp);
2899 
2900 /*
2901  * Don't operate on ranges the page cache doesn't support, and don't exceed the
2902  * LFS limits.  If pos is under the limit it becomes a short access.  If it
2903  * exceeds the limit we return -EFBIG.
2904  */
2905 static int generic_write_check_limits(struct file *file, loff_t pos,
2906 				      loff_t *count)
2907 {
2908 	struct inode *inode = file->f_mapping->host;
2909 	loff_t max_size = inode->i_sb->s_maxbytes;
2910 	loff_t limit = rlimit(RLIMIT_FSIZE);
2911 
2912 	if (limit != RLIM_INFINITY) {
2913 		if (pos >= limit) {
2914 			send_sig(SIGXFSZ, current, 0);
2915 			return -EFBIG;
2916 		}
2917 		*count = min(*count, limit - pos);
2918 	}
2919 
2920 	if (!(file->f_flags & O_LARGEFILE))
2921 		max_size = MAX_NON_LFS;
2922 
2923 	if (unlikely(pos >= max_size))
2924 		return -EFBIG;
2925 
2926 	*count = min(*count, max_size - pos);
2927 
2928 	return 0;
2929 }
2930 
2931 /*
2932  * Performs necessary checks before doing a write
2933  *
2934  * Can adjust writing position or amount of bytes to write.
2935  * Returns appropriate error code that caller should return or
2936  * zero in case that write should be allowed.
2937  */
2938 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2939 {
2940 	struct file *file = iocb->ki_filp;
2941 	struct inode *inode = file->f_mapping->host;
2942 	loff_t count;
2943 	int ret;
2944 
2945 	if (IS_SWAPFILE(inode))
2946 		return -ETXTBSY;
2947 
2948 	if (!iov_iter_count(from))
2949 		return 0;
2950 
2951 	/* FIXME: this is for backwards compatibility with 2.4 */
2952 	if (iocb->ki_flags & IOCB_APPEND)
2953 		iocb->ki_pos = i_size_read(inode);
2954 
2955 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2956 		return -EINVAL;
2957 
2958 	count = iov_iter_count(from);
2959 	ret = generic_write_check_limits(file, iocb->ki_pos, &count);
2960 	if (ret)
2961 		return ret;
2962 
2963 	iov_iter_truncate(from, count);
2964 	return iov_iter_count(from);
2965 }
2966 EXPORT_SYMBOL(generic_write_checks);
2967 
2968 /*
2969  * Performs necessary checks before doing a clone.
2970  *
2971  * Can adjust amount of bytes to clone via @req_count argument.
2972  * Returns appropriate error code that caller should return or
2973  * zero in case the clone should be allowed.
2974  */
2975 int generic_remap_checks(struct file *file_in, loff_t pos_in,
2976 			 struct file *file_out, loff_t pos_out,
2977 			 loff_t *req_count, unsigned int remap_flags)
2978 {
2979 	struct inode *inode_in = file_in->f_mapping->host;
2980 	struct inode *inode_out = file_out->f_mapping->host;
2981 	uint64_t count = *req_count;
2982 	uint64_t bcount;
2983 	loff_t size_in, size_out;
2984 	loff_t bs = inode_out->i_sb->s_blocksize;
2985 	int ret;
2986 
2987 	/* The start of both ranges must be aligned to an fs block. */
2988 	if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
2989 		return -EINVAL;
2990 
2991 	/* Ensure offsets don't wrap. */
2992 	if (pos_in + count < pos_in || pos_out + count < pos_out)
2993 		return -EINVAL;
2994 
2995 	size_in = i_size_read(inode_in);
2996 	size_out = i_size_read(inode_out);
2997 
2998 	/* Dedupe requires both ranges to be within EOF. */
2999 	if ((remap_flags & REMAP_FILE_DEDUP) &&
3000 	    (pos_in >= size_in || pos_in + count > size_in ||
3001 	     pos_out >= size_out || pos_out + count > size_out))
3002 		return -EINVAL;
3003 
3004 	/* Ensure the infile range is within the infile. */
3005 	if (pos_in >= size_in)
3006 		return -EINVAL;
3007 	count = min(count, size_in - (uint64_t)pos_in);
3008 
3009 	ret = generic_write_check_limits(file_out, pos_out, &count);
3010 	if (ret)
3011 		return ret;
3012 
3013 	/*
3014 	 * If the user wanted us to link to the infile's EOF, round up to the
3015 	 * next block boundary for this check.
3016 	 *
3017 	 * Otherwise, make sure the count is also block-aligned, having
3018 	 * already confirmed the starting offsets' block alignment.
3019 	 */
3020 	if (pos_in + count == size_in) {
3021 		bcount = ALIGN(size_in, bs) - pos_in;
3022 	} else {
3023 		if (!IS_ALIGNED(count, bs))
3024 			count = ALIGN_DOWN(count, bs);
3025 		bcount = count;
3026 	}
3027 
3028 	/* Don't allow overlapped cloning within the same file. */
3029 	if (inode_in == inode_out &&
3030 	    pos_out + bcount > pos_in &&
3031 	    pos_out < pos_in + bcount)
3032 		return -EINVAL;
3033 
3034 	/*
3035 	 * We shortened the request but the caller can't deal with that, so
3036 	 * bounce the request back to userspace.
3037 	 */
3038 	if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3039 		return -EINVAL;
3040 
3041 	*req_count = count;
3042 	return 0;
3043 }
3044 
3045 
3046 /*
3047  * Performs common checks before doing a file copy/clone
3048  * from @file_in to @file_out.
3049  */
3050 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3051 {
3052 	struct inode *inode_in = file_inode(file_in);
3053 	struct inode *inode_out = file_inode(file_out);
3054 
3055 	/* Don't copy dirs, pipes, sockets... */
3056 	if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3057 		return -EISDIR;
3058 	if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3059 		return -EINVAL;
3060 
3061 	if (!(file_in->f_mode & FMODE_READ) ||
3062 	    !(file_out->f_mode & FMODE_WRITE) ||
3063 	    (file_out->f_flags & O_APPEND))
3064 		return -EBADF;
3065 
3066 	return 0;
3067 }
3068 
3069 /*
3070  * Performs necessary checks before doing a file copy
3071  *
3072  * Can adjust amount of bytes to copy via @req_count argument.
3073  * Returns appropriate error code that caller should return or
3074  * zero in case the copy should be allowed.
3075  */
3076 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3077 			     struct file *file_out, loff_t pos_out,
3078 			     size_t *req_count, unsigned int flags)
3079 {
3080 	struct inode *inode_in = file_inode(file_in);
3081 	struct inode *inode_out = file_inode(file_out);
3082 	uint64_t count = *req_count;
3083 	loff_t size_in;
3084 	int ret;
3085 
3086 	ret = generic_file_rw_checks(file_in, file_out);
3087 	if (ret)
3088 		return ret;
3089 
3090 	/* Don't touch certain kinds of inodes */
3091 	if (IS_IMMUTABLE(inode_out))
3092 		return -EPERM;
3093 
3094 	if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3095 		return -ETXTBSY;
3096 
3097 	/* Ensure offsets don't wrap. */
3098 	if (pos_in + count < pos_in || pos_out + count < pos_out)
3099 		return -EOVERFLOW;
3100 
3101 	/* Shorten the copy to EOF */
3102 	size_in = i_size_read(inode_in);
3103 	if (pos_in >= size_in)
3104 		count = 0;
3105 	else
3106 		count = min(count, size_in - (uint64_t)pos_in);
3107 
3108 	ret = generic_write_check_limits(file_out, pos_out, &count);
3109 	if (ret)
3110 		return ret;
3111 
3112 	/* Don't allow overlapped copying within the same file. */
3113 	if (inode_in == inode_out &&
3114 	    pos_out + count > pos_in &&
3115 	    pos_out < pos_in + count)
3116 		return -EINVAL;
3117 
3118 	*req_count = count;
3119 	return 0;
3120 }
3121 
3122 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3123 				loff_t pos, unsigned len, unsigned flags,
3124 				struct page **pagep, void **fsdata)
3125 {
3126 	const struct address_space_operations *aops = mapping->a_ops;
3127 
3128 	return aops->write_begin(file, mapping, pos, len, flags,
3129 							pagep, fsdata);
3130 }
3131 EXPORT_SYMBOL(pagecache_write_begin);
3132 
3133 int pagecache_write_end(struct file *file, struct address_space *mapping,
3134 				loff_t pos, unsigned len, unsigned copied,
3135 				struct page *page, void *fsdata)
3136 {
3137 	const struct address_space_operations *aops = mapping->a_ops;
3138 
3139 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3140 }
3141 EXPORT_SYMBOL(pagecache_write_end);
3142 
3143 /*
3144  * Warn about a page cache invalidation failure during a direct I/O write.
3145  */
3146 void dio_warn_stale_pagecache(struct file *filp)
3147 {
3148 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3149 	char pathname[128];
3150 	struct inode *inode = file_inode(filp);
3151 	char *path;
3152 
3153 	errseq_set(&inode->i_mapping->wb_err, -EIO);
3154 	if (__ratelimit(&_rs)) {
3155 		path = file_path(filp, pathname, sizeof(pathname));
3156 		if (IS_ERR(path))
3157 			path = "(unknown)";
3158 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3159 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3160 			current->comm);
3161 	}
3162 }
3163 
3164 ssize_t
3165 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3166 {
3167 	struct file	*file = iocb->ki_filp;
3168 	struct address_space *mapping = file->f_mapping;
3169 	struct inode	*inode = mapping->host;
3170 	loff_t		pos = iocb->ki_pos;
3171 	ssize_t		written;
3172 	size_t		write_len;
3173 	pgoff_t		end;
3174 
3175 	write_len = iov_iter_count(from);
3176 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3177 
3178 	if (iocb->ki_flags & IOCB_NOWAIT) {
3179 		/* If there are pages to writeback, return */
3180 		if (filemap_range_has_page(inode->i_mapping, pos,
3181 					   pos + write_len - 1))
3182 			return -EAGAIN;
3183 	} else {
3184 		written = filemap_write_and_wait_range(mapping, pos,
3185 							pos + write_len - 1);
3186 		if (written)
3187 			goto out;
3188 	}
3189 
3190 	/*
3191 	 * After a write we want buffered reads to be sure to go to disk to get
3192 	 * the new data.  We invalidate clean cached page from the region we're
3193 	 * about to write.  We do this *before* the write so that we can return
3194 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3195 	 */
3196 	written = invalidate_inode_pages2_range(mapping,
3197 					pos >> PAGE_SHIFT, end);
3198 	/*
3199 	 * If a page can not be invalidated, return 0 to fall back
3200 	 * to buffered write.
3201 	 */
3202 	if (written) {
3203 		if (written == -EBUSY)
3204 			return 0;
3205 		goto out;
3206 	}
3207 
3208 	written = mapping->a_ops->direct_IO(iocb, from);
3209 
3210 	/*
3211 	 * Finally, try again to invalidate clean pages which might have been
3212 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3213 	 * if the source of the write was an mmap'ed region of the file
3214 	 * we're writing.  Either one is a pretty crazy thing to do,
3215 	 * so we don't support it 100%.  If this invalidation
3216 	 * fails, tough, the write still worked...
3217 	 *
3218 	 * Most of the time we do not need this since dio_complete() will do
3219 	 * the invalidation for us. However there are some file systems that
3220 	 * do not end up with dio_complete() being called, so let's not break
3221 	 * them by removing it completely.
3222 	 *
3223 	 * Noticeable example is a blkdev_direct_IO().
3224 	 *
3225 	 * Skip invalidation for async writes or if mapping has no pages.
3226 	 */
3227 	if (written > 0 && mapping->nrpages &&
3228 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3229 		dio_warn_stale_pagecache(file);
3230 
3231 	if (written > 0) {
3232 		pos += written;
3233 		write_len -= written;
3234 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3235 			i_size_write(inode, pos);
3236 			mark_inode_dirty(inode);
3237 		}
3238 		iocb->ki_pos = pos;
3239 	}
3240 	iov_iter_revert(from, write_len - iov_iter_count(from));
3241 out:
3242 	return written;
3243 }
3244 EXPORT_SYMBOL(generic_file_direct_write);
3245 
3246 /*
3247  * Find or create a page at the given pagecache position. Return the locked
3248  * page. This function is specifically for buffered writes.
3249  */
3250 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3251 					pgoff_t index, unsigned flags)
3252 {
3253 	struct page *page;
3254 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3255 
3256 	if (flags & AOP_FLAG_NOFS)
3257 		fgp_flags |= FGP_NOFS;
3258 
3259 	page = pagecache_get_page(mapping, index, fgp_flags,
3260 			mapping_gfp_mask(mapping));
3261 	if (page)
3262 		wait_for_stable_page(page);
3263 
3264 	return page;
3265 }
3266 EXPORT_SYMBOL(grab_cache_page_write_begin);
3267 
3268 ssize_t generic_perform_write(struct file *file,
3269 				struct iov_iter *i, loff_t pos)
3270 {
3271 	struct address_space *mapping = file->f_mapping;
3272 	const struct address_space_operations *a_ops = mapping->a_ops;
3273 	long status = 0;
3274 	ssize_t written = 0;
3275 	unsigned int flags = 0;
3276 
3277 	do {
3278 		struct page *page;
3279 		unsigned long offset;	/* Offset into pagecache page */
3280 		unsigned long bytes;	/* Bytes to write to page */
3281 		size_t copied;		/* Bytes copied from user */
3282 		void *fsdata;
3283 
3284 		offset = (pos & (PAGE_SIZE - 1));
3285 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3286 						iov_iter_count(i));
3287 
3288 again:
3289 		/*
3290 		 * Bring in the user page that we will copy from _first_.
3291 		 * Otherwise there's a nasty deadlock on copying from the
3292 		 * same page as we're writing to, without it being marked
3293 		 * up-to-date.
3294 		 *
3295 		 * Not only is this an optimisation, but it is also required
3296 		 * to check that the address is actually valid, when atomic
3297 		 * usercopies are used, below.
3298 		 */
3299 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3300 			status = -EFAULT;
3301 			break;
3302 		}
3303 
3304 		if (fatal_signal_pending(current)) {
3305 			status = -EINTR;
3306 			break;
3307 		}
3308 
3309 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3310 						&page, &fsdata);
3311 		if (unlikely(status < 0))
3312 			break;
3313 
3314 		if (mapping_writably_mapped(mapping))
3315 			flush_dcache_page(page);
3316 
3317 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3318 		flush_dcache_page(page);
3319 
3320 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3321 						page, fsdata);
3322 		if (unlikely(status < 0))
3323 			break;
3324 		copied = status;
3325 
3326 		cond_resched();
3327 
3328 		iov_iter_advance(i, copied);
3329 		if (unlikely(copied == 0)) {
3330 			/*
3331 			 * If we were unable to copy any data at all, we must
3332 			 * fall back to a single segment length write.
3333 			 *
3334 			 * If we didn't fallback here, we could livelock
3335 			 * because not all segments in the iov can be copied at
3336 			 * once without a pagefault.
3337 			 */
3338 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3339 						iov_iter_single_seg_count(i));
3340 			goto again;
3341 		}
3342 		pos += copied;
3343 		written += copied;
3344 
3345 		balance_dirty_pages_ratelimited(mapping);
3346 	} while (iov_iter_count(i));
3347 
3348 	return written ? written : status;
3349 }
3350 EXPORT_SYMBOL(generic_perform_write);
3351 
3352 /**
3353  * __generic_file_write_iter - write data to a file
3354  * @iocb:	IO state structure (file, offset, etc.)
3355  * @from:	iov_iter with data to write
3356  *
3357  * This function does all the work needed for actually writing data to a
3358  * file. It does all basic checks, removes SUID from the file, updates
3359  * modification times and calls proper subroutines depending on whether we
3360  * do direct IO or a standard buffered write.
3361  *
3362  * It expects i_mutex to be grabbed unless we work on a block device or similar
3363  * object which does not need locking at all.
3364  *
3365  * This function does *not* take care of syncing data in case of O_SYNC write.
3366  * A caller has to handle it. This is mainly due to the fact that we want to
3367  * avoid syncing under i_mutex.
3368  *
3369  * Return:
3370  * * number of bytes written, even for truncated writes
3371  * * negative error code if no data has been written at all
3372  */
3373 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3374 {
3375 	struct file *file = iocb->ki_filp;
3376 	struct address_space * mapping = file->f_mapping;
3377 	struct inode 	*inode = mapping->host;
3378 	ssize_t		written = 0;
3379 	ssize_t		err;
3380 	ssize_t		status;
3381 
3382 	/* We can write back this queue in page reclaim */
3383 	current->backing_dev_info = inode_to_bdi(inode);
3384 	err = file_remove_privs(file);
3385 	if (err)
3386 		goto out;
3387 
3388 	err = file_update_time(file);
3389 	if (err)
3390 		goto out;
3391 
3392 	if (iocb->ki_flags & IOCB_DIRECT) {
3393 		loff_t pos, endbyte;
3394 
3395 		written = generic_file_direct_write(iocb, from);
3396 		/*
3397 		 * If the write stopped short of completing, fall back to
3398 		 * buffered writes.  Some filesystems do this for writes to
3399 		 * holes, for example.  For DAX files, a buffered write will
3400 		 * not succeed (even if it did, DAX does not handle dirty
3401 		 * page-cache pages correctly).
3402 		 */
3403 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3404 			goto out;
3405 
3406 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3407 		/*
3408 		 * If generic_perform_write() returned a synchronous error
3409 		 * then we want to return the number of bytes which were
3410 		 * direct-written, or the error code if that was zero.  Note
3411 		 * that this differs from normal direct-io semantics, which
3412 		 * will return -EFOO even if some bytes were written.
3413 		 */
3414 		if (unlikely(status < 0)) {
3415 			err = status;
3416 			goto out;
3417 		}
3418 		/*
3419 		 * We need to ensure that the page cache pages are written to
3420 		 * disk and invalidated to preserve the expected O_DIRECT
3421 		 * semantics.
3422 		 */
3423 		endbyte = pos + status - 1;
3424 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3425 		if (err == 0) {
3426 			iocb->ki_pos = endbyte + 1;
3427 			written += status;
3428 			invalidate_mapping_pages(mapping,
3429 						 pos >> PAGE_SHIFT,
3430 						 endbyte >> PAGE_SHIFT);
3431 		} else {
3432 			/*
3433 			 * We don't know how much we wrote, so just return
3434 			 * the number of bytes which were direct-written
3435 			 */
3436 		}
3437 	} else {
3438 		written = generic_perform_write(file, from, iocb->ki_pos);
3439 		if (likely(written > 0))
3440 			iocb->ki_pos += written;
3441 	}
3442 out:
3443 	current->backing_dev_info = NULL;
3444 	return written ? written : err;
3445 }
3446 EXPORT_SYMBOL(__generic_file_write_iter);
3447 
3448 /**
3449  * generic_file_write_iter - write data to a file
3450  * @iocb:	IO state structure
3451  * @from:	iov_iter with data to write
3452  *
3453  * This is a wrapper around __generic_file_write_iter() to be used by most
3454  * filesystems. It takes care of syncing the file in case of O_SYNC file
3455  * and acquires i_mutex as needed.
3456  * Return:
3457  * * negative error code if no data has been written at all of
3458  *   vfs_fsync_range() failed for a synchronous write
3459  * * number of bytes written, even for truncated writes
3460  */
3461 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3462 {
3463 	struct file *file = iocb->ki_filp;
3464 	struct inode *inode = file->f_mapping->host;
3465 	ssize_t ret;
3466 
3467 	inode_lock(inode);
3468 	ret = generic_write_checks(iocb, from);
3469 	if (ret > 0)
3470 		ret = __generic_file_write_iter(iocb, from);
3471 	inode_unlock(inode);
3472 
3473 	if (ret > 0)
3474 		ret = generic_write_sync(iocb, ret);
3475 	return ret;
3476 }
3477 EXPORT_SYMBOL(generic_file_write_iter);
3478 
3479 /**
3480  * try_to_release_page() - release old fs-specific metadata on a page
3481  *
3482  * @page: the page which the kernel is trying to free
3483  * @gfp_mask: memory allocation flags (and I/O mode)
3484  *
3485  * The address_space is to try to release any data against the page
3486  * (presumably at page->private).
3487  *
3488  * This may also be called if PG_fscache is set on a page, indicating that the
3489  * page is known to the local caching routines.
3490  *
3491  * The @gfp_mask argument specifies whether I/O may be performed to release
3492  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3493  *
3494  * Return: %1 if the release was successful, otherwise return zero.
3495  */
3496 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3497 {
3498 	struct address_space * const mapping = page->mapping;
3499 
3500 	BUG_ON(!PageLocked(page));
3501 	if (PageWriteback(page))
3502 		return 0;
3503 
3504 	if (mapping && mapping->a_ops->releasepage)
3505 		return mapping->a_ops->releasepage(page, gfp_mask);
3506 	return try_to_free_buffers(page);
3507 }
3508 
3509 EXPORT_SYMBOL(try_to_release_page);
3510