xref: /linux/mm/filemap.c (revision 497258dfafcc6b88e7c4c46a38a479721d44cf41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <asm/pgalloc.h>
50 #include <asm/tlbflush.h>
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/filemap.h>
55 
56 /*
57  * FIXME: remove all knowledge of the buffer layer from the core VM
58  */
59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 
61 #include <asm/mman.h>
62 
63 #include "swap.h"
64 
65 /*
66  * Shared mappings implemented 30.11.1994. It's not fully working yet,
67  * though.
68  *
69  * Shared mappings now work. 15.8.1995  Bruno.
70  *
71  * finished 'unifying' the page and buffer cache and SMP-threaded the
72  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73  *
74  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75  */
76 
77 /*
78  * Lock ordering:
79  *
80  *  ->i_mmap_rwsem		(truncate_pagecache)
81  *    ->private_lock		(__free_pte->block_dirty_folio)
82  *      ->swap_lock		(exclusive_swap_page, others)
83  *        ->i_pages lock
84  *
85  *  ->i_rwsem
86  *    ->invalidate_lock		(acquired by fs in truncate path)
87  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
88  *
89  *  ->mmap_lock
90  *    ->i_mmap_rwsem
91  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
92  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
93  *
94  *  ->mmap_lock
95  *    ->invalidate_lock		(filemap_fault)
96  *      ->lock_page		(filemap_fault, access_process_vm)
97  *
98  *  ->i_rwsem			(generic_perform_write)
99  *    ->mmap_lock		(fault_in_readable->do_page_fault)
100  *
101  *  bdi->wb.list_lock
102  *    sb_lock			(fs/fs-writeback.c)
103  *    ->i_pages lock		(__sync_single_inode)
104  *
105  *  ->i_mmap_rwsem
106  *    ->anon_vma.lock		(vma_merge)
107  *
108  *  ->anon_vma.lock
109  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
110  *
111  *  ->page_table_lock or pte_lock
112  *    ->swap_lock		(try_to_unmap_one)
113  *    ->private_lock		(try_to_unmap_one)
114  *    ->i_pages lock		(try_to_unmap_one)
115  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
116  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
117  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
118  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
127 static void mapping_set_update(struct xa_state *xas,
128 		struct address_space *mapping)
129 {
130 	if (dax_mapping(mapping) || shmem_mapping(mapping))
131 		return;
132 	xas_set_update(xas, workingset_update_node);
133 	xas_set_lru(xas, &shadow_nodes);
134 }
135 
136 static void page_cache_delete(struct address_space *mapping,
137 				   struct folio *folio, void *shadow)
138 {
139 	XA_STATE(xas, &mapping->i_pages, folio->index);
140 	long nr = 1;
141 
142 	mapping_set_update(&xas, mapping);
143 
144 	xas_set_order(&xas, folio->index, folio_order(folio));
145 	nr = folio_nr_pages(folio);
146 
147 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148 
149 	xas_store(&xas, shadow);
150 	xas_init_marks(&xas);
151 
152 	folio->mapping = NULL;
153 	/* Leave page->index set: truncation lookup relies upon it */
154 	mapping->nrpages -= nr;
155 }
156 
157 static void filemap_unaccount_folio(struct address_space *mapping,
158 		struct folio *folio)
159 {
160 	long nr;
161 
162 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
165 			 current->comm, folio_pfn(folio));
166 		dump_page(&folio->page, "still mapped when deleted");
167 		dump_stack();
168 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169 
170 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 			int mapcount = folio_mapcount(folio);
172 
173 			if (folio_ref_count(folio) >= mapcount + 2) {
174 				/*
175 				 * All vmas have already been torn down, so it's
176 				 * a good bet that actually the page is unmapped
177 				 * and we'd rather not leak it: if we're wrong,
178 				 * another bad page check should catch it later.
179 				 */
180 				atomic_set(&folio->_mapcount, -1);
181 				folio_ref_sub(folio, mapcount);
182 			}
183 		}
184 	}
185 
186 	/* hugetlb folios do not participate in page cache accounting. */
187 	if (folio_test_hugetlb(folio))
188 		return;
189 
190 	nr = folio_nr_pages(folio);
191 
192 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 	if (folio_test_swapbacked(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 		if (folio_test_pmd_mappable(folio))
196 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 	} else if (folio_test_pmd_mappable(folio)) {
198 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 		filemap_nr_thps_dec(mapping);
200 	}
201 
202 	/*
203 	 * At this point folio must be either written or cleaned by
204 	 * truncate.  Dirty folio here signals a bug and loss of
205 	 * unwritten data - on ordinary filesystems.
206 	 *
207 	 * But it's harmless on in-memory filesystems like tmpfs; and can
208 	 * occur when a driver which did get_user_pages() sets page dirty
209 	 * before putting it, while the inode is being finally evicted.
210 	 *
211 	 * Below fixes dirty accounting after removing the folio entirely
212 	 * but leaves the dirty flag set: it has no effect for truncated
213 	 * folio and anyway will be cleared before returning folio to
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 			 mapping_can_writeback(mapping)))
218 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220 
221 /*
222  * Delete a page from the page cache and free it. Caller has to make
223  * sure the page is locked and that nobody else uses it - or that usage
224  * is safe.  The caller must hold the i_pages lock.
225  */
226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228 	struct address_space *mapping = folio->mapping;
229 
230 	trace_mm_filemap_delete_from_page_cache(folio);
231 	filemap_unaccount_folio(mapping, folio);
232 	page_cache_delete(mapping, folio, shadow);
233 }
234 
235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237 	void (*free_folio)(struct folio *);
238 	int refs = 1;
239 
240 	free_folio = mapping->a_ops->free_folio;
241 	if (free_folio)
242 		free_folio(folio);
243 
244 	if (folio_test_large(folio))
245 		refs = folio_nr_pages(folio);
246 	folio_put_refs(folio, refs);
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259 	struct address_space *mapping = folio->mapping;
260 
261 	BUG_ON(!folio_test_locked(folio));
262 	spin_lock(&mapping->host->i_lock);
263 	xa_lock_irq(&mapping->i_pages);
264 	__filemap_remove_folio(folio, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 	if (mapping_shrinkable(mapping))
267 		inode_add_lru(mapping->host);
268 	spin_unlock(&mapping->host->i_lock);
269 
270 	filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct folio_batch *fbatch)
288 {
289 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 	long total_pages = 0;
291 	int i = 0;
292 	struct folio *folio;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, folio, ULONG_MAX) {
296 		if (i >= folio_batch_count(fbatch))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(folio))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (folio != fbatch->folios[i]) {
310 			VM_BUG_ON_FOLIO(folio->index >
311 					fbatch->folios[i]->index, folio);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!folio_test_locked(folio));
316 
317 		folio->mapping = NULL;
318 		/* Leave folio->index set: truncation lookup relies on it */
319 
320 		i++;
321 		xas_store(&xas, NULL);
322 		total_pages += folio_nr_pages(folio);
323 	}
324 	mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328 				  struct folio_batch *fbatch)
329 {
330 	int i;
331 
332 	if (!folio_batch_count(fbatch))
333 		return;
334 
335 	spin_lock(&mapping->host->i_lock);
336 	xa_lock_irq(&mapping->i_pages);
337 	for (i = 0; i < folio_batch_count(fbatch); i++) {
338 		struct folio *folio = fbatch->folios[i];
339 
340 		trace_mm_filemap_delete_from_page_cache(folio);
341 		filemap_unaccount_folio(mapping, folio);
342 	}
343 	page_cache_delete_batch(mapping, fbatch);
344 	xa_unlock_irq(&mapping->i_pages);
345 	if (mapping_shrinkable(mapping))
346 		inode_add_lru(mapping->host);
347 	spin_unlock(&mapping->host->i_lock);
348 
349 	for (i = 0; i < folio_batch_count(fbatch); i++)
350 		filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355 	int ret = 0;
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 		ret = -ENOSPC;
360 	if (test_bit(AS_EIO, &mapping->flags) &&
361 	    test_and_clear_bit(AS_EIO, &mapping->flags))
362 		ret = -EIO;
363 	return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 	/* Check for outstanding write errors */
370 	if (test_bit(AS_EIO, &mapping->flags))
371 		return -EIO;
372 	if (test_bit(AS_ENOSPC, &mapping->flags))
373 		return -ENOSPC;
374 	return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:	address space structure to write
380  * @wbc:	the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 			   struct writeback_control *wbc)
389 {
390 	int ret;
391 
392 	if (!mapping_can_writeback(mapping) ||
393 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 		return 0;
395 
396 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 	ret = do_writepages(mapping, wbc);
398 	wbc_detach_inode(wbc);
399 	return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:	address space structure to write
406  * @start:	offset in bytes where the range starts
407  * @end:	offset in bytes where the range ends (inclusive)
408  * @sync_mode:	enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 				loff_t end, int sync_mode)
422 {
423 	struct writeback_control wbc = {
424 		.sync_mode = sync_mode,
425 		.nr_to_write = LONG_MAX,
426 		.range_start = start,
427 		.range_end = end,
428 	};
429 
430 	return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 	int sync_mode)
435 {
436 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 				loff_t end)
447 {
448 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:	target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct folio *folio;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		folio = xas_find(&xas, max);
492 		if (xas_retry(&xas, folio))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(folio))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct folio_batch fbatch;
516 	unsigned nr_folios;
517 
518 	folio_batch_init(&fbatch);
519 
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 				PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526 		if (!nr_folios)
527 			break;
528 
529 		for (i = 0; i < nr_folios; i++) {
530 			struct folio *folio = fbatch.folios[i];
531 
532 			folio_wait_writeback(folio);
533 		}
534 		folio_batch_release(&fbatch);
535 		cond_resched();
536 	}
537 }
538 
539 /**
540  * filemap_fdatawait_range - wait for writeback to complete
541  * @mapping:		address space structure to wait for
542  * @start_byte:		offset in bytes where the range starts
543  * @end_byte:		offset in bytes where the range ends (inclusive)
544  *
545  * Walk the list of under-writeback pages of the given address space
546  * in the given range and wait for all of them.  Check error status of
547  * the address space and return it.
548  *
549  * Since the error status of the address space is cleared by this function,
550  * callers are responsible for checking the return value and handling and/or
551  * reporting the error.
552  *
553  * Return: error status of the address space.
554  */
555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 			    loff_t end_byte)
557 {
558 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
559 	return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562 
563 /**
564  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
565  * @mapping:		address space structure to wait for
566  * @start_byte:		offset in bytes where the range starts
567  * @end_byte:		offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the given address space in the
570  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
571  * this function does not clear error status of the address space.
572  *
573  * Use this function if callers don't handle errors themselves.  Expected
574  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
575  * fsfreeze(8)
576  */
577 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
578 		loff_t start_byte, loff_t end_byte)
579 {
580 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
581 	return filemap_check_and_keep_errors(mapping);
582 }
583 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
584 
585 /**
586  * file_fdatawait_range - wait for writeback to complete
587  * @file:		file pointing to address space structure to wait for
588  * @start_byte:		offset in bytes where the range starts
589  * @end_byte:		offset in bytes where the range ends (inclusive)
590  *
591  * Walk the list of under-writeback pages of the address space that file
592  * refers to, in the given range and wait for all of them.  Check error
593  * status of the address space vs. the file->f_wb_err cursor and return it.
594  *
595  * Since the error status of the file is advanced by this function,
596  * callers are responsible for checking the return value and handling and/or
597  * reporting the error.
598  *
599  * Return: error status of the address space vs. the file->f_wb_err cursor.
600  */
601 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
602 {
603 	struct address_space *mapping = file->f_mapping;
604 
605 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
606 	return file_check_and_advance_wb_err(file);
607 }
608 EXPORT_SYMBOL(file_fdatawait_range);
609 
610 /**
611  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
612  * @mapping: address space structure to wait for
613  *
614  * Walk the list of under-writeback pages of the given address space
615  * and wait for all of them.  Unlike filemap_fdatawait(), this function
616  * does not clear error status of the address space.
617  *
618  * Use this function if callers don't handle errors themselves.  Expected
619  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
620  * fsfreeze(8)
621  *
622  * Return: error status of the address space.
623  */
624 int filemap_fdatawait_keep_errors(struct address_space *mapping)
625 {
626 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
627 	return filemap_check_and_keep_errors(mapping);
628 }
629 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
630 
631 /* Returns true if writeback might be needed or already in progress. */
632 static bool mapping_needs_writeback(struct address_space *mapping)
633 {
634 	return mapping->nrpages;
635 }
636 
637 bool filemap_range_has_writeback(struct address_space *mapping,
638 				 loff_t start_byte, loff_t end_byte)
639 {
640 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
641 	pgoff_t max = end_byte >> PAGE_SHIFT;
642 	struct folio *folio;
643 
644 	if (end_byte < start_byte)
645 		return false;
646 
647 	rcu_read_lock();
648 	xas_for_each(&xas, folio, max) {
649 		if (xas_retry(&xas, folio))
650 			continue;
651 		if (xa_is_value(folio))
652 			continue;
653 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
654 				folio_test_writeback(folio))
655 			break;
656 	}
657 	rcu_read_unlock();
658 	return folio != NULL;
659 }
660 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
661 
662 /**
663  * filemap_write_and_wait_range - write out & wait on a file range
664  * @mapping:	the address_space for the pages
665  * @lstart:	offset in bytes where the range starts
666  * @lend:	offset in bytes where the range ends (inclusive)
667  *
668  * Write out and wait upon file offsets lstart->lend, inclusive.
669  *
670  * Note that @lend is inclusive (describes the last byte to be written) so
671  * that this function can be used to write to the very end-of-file (end = -1).
672  *
673  * Return: error status of the address space.
674  */
675 int filemap_write_and_wait_range(struct address_space *mapping,
676 				 loff_t lstart, loff_t lend)
677 {
678 	int err = 0, err2;
679 
680 	if (lend < lstart)
681 		return 0;
682 
683 	if (mapping_needs_writeback(mapping)) {
684 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
685 						 WB_SYNC_ALL);
686 		/*
687 		 * Even if the above returned error, the pages may be
688 		 * written partially (e.g. -ENOSPC), so we wait for it.
689 		 * But the -EIO is special case, it may indicate the worst
690 		 * thing (e.g. bug) happened, so we avoid waiting for it.
691 		 */
692 		if (err != -EIO)
693 			__filemap_fdatawait_range(mapping, lstart, lend);
694 	}
695 	err2 = filemap_check_errors(mapping);
696 	if (!err)
697 		err = err2;
698 	return err;
699 }
700 EXPORT_SYMBOL(filemap_write_and_wait_range);
701 
702 void __filemap_set_wb_err(struct address_space *mapping, int err)
703 {
704 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
705 
706 	trace_filemap_set_wb_err(mapping, eseq);
707 }
708 EXPORT_SYMBOL(__filemap_set_wb_err);
709 
710 /**
711  * file_check_and_advance_wb_err - report wb error (if any) that was previously
712  * 				   and advance wb_err to current one
713  * @file: struct file on which the error is being reported
714  *
715  * When userland calls fsync (or something like nfsd does the equivalent), we
716  * want to report any writeback errors that occurred since the last fsync (or
717  * since the file was opened if there haven't been any).
718  *
719  * Grab the wb_err from the mapping. If it matches what we have in the file,
720  * then just quickly return 0. The file is all caught up.
721  *
722  * If it doesn't match, then take the mapping value, set the "seen" flag in
723  * it and try to swap it into place. If it works, or another task beat us
724  * to it with the new value, then update the f_wb_err and return the error
725  * portion. The error at this point must be reported via proper channels
726  * (a'la fsync, or NFS COMMIT operation, etc.).
727  *
728  * While we handle mapping->wb_err with atomic operations, the f_wb_err
729  * value is protected by the f_lock since we must ensure that it reflects
730  * the latest value swapped in for this file descriptor.
731  *
732  * Return: %0 on success, negative error code otherwise.
733  */
734 int file_check_and_advance_wb_err(struct file *file)
735 {
736 	int err = 0;
737 	errseq_t old = READ_ONCE(file->f_wb_err);
738 	struct address_space *mapping = file->f_mapping;
739 
740 	/* Locklessly handle the common case where nothing has changed */
741 	if (errseq_check(&mapping->wb_err, old)) {
742 		/* Something changed, must use slow path */
743 		spin_lock(&file->f_lock);
744 		old = file->f_wb_err;
745 		err = errseq_check_and_advance(&mapping->wb_err,
746 						&file->f_wb_err);
747 		trace_file_check_and_advance_wb_err(file, old);
748 		spin_unlock(&file->f_lock);
749 	}
750 
751 	/*
752 	 * We're mostly using this function as a drop in replacement for
753 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
754 	 * that the legacy code would have had on these flags.
755 	 */
756 	clear_bit(AS_EIO, &mapping->flags);
757 	clear_bit(AS_ENOSPC, &mapping->flags);
758 	return err;
759 }
760 EXPORT_SYMBOL(file_check_and_advance_wb_err);
761 
762 /**
763  * file_write_and_wait_range - write out & wait on a file range
764  * @file:	file pointing to address_space with pages
765  * @lstart:	offset in bytes where the range starts
766  * @lend:	offset in bytes where the range ends (inclusive)
767  *
768  * Write out and wait upon file offsets lstart->lend, inclusive.
769  *
770  * Note that @lend is inclusive (describes the last byte to be written) so
771  * that this function can be used to write to the very end-of-file (end = -1).
772  *
773  * After writing out and waiting on the data, we check and advance the
774  * f_wb_err cursor to the latest value, and return any errors detected there.
775  *
776  * Return: %0 on success, negative error code otherwise.
777  */
778 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
779 {
780 	int err = 0, err2;
781 	struct address_space *mapping = file->f_mapping;
782 
783 	if (lend < lstart)
784 		return 0;
785 
786 	if (mapping_needs_writeback(mapping)) {
787 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
788 						 WB_SYNC_ALL);
789 		/* See comment of filemap_write_and_wait() */
790 		if (err != -EIO)
791 			__filemap_fdatawait_range(mapping, lstart, lend);
792 	}
793 	err2 = file_check_and_advance_wb_err(file);
794 	if (!err)
795 		err = err2;
796 	return err;
797 }
798 EXPORT_SYMBOL(file_write_and_wait_range);
799 
800 /**
801  * replace_page_cache_folio - replace a pagecache folio with a new one
802  * @old:	folio to be replaced
803  * @new:	folio to replace with
804  *
805  * This function replaces a folio in the pagecache with a new one.  On
806  * success it acquires the pagecache reference for the new folio and
807  * drops it for the old folio.  Both the old and new folios must be
808  * locked.  This function does not add the new folio to the LRU, the
809  * caller must do that.
810  *
811  * The remove + add is atomic.  This function cannot fail.
812  */
813 void replace_page_cache_folio(struct folio *old, struct folio *new)
814 {
815 	struct address_space *mapping = old->mapping;
816 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
817 	pgoff_t offset = old->index;
818 	XA_STATE(xas, &mapping->i_pages, offset);
819 
820 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
821 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
822 	VM_BUG_ON_FOLIO(new->mapping, new);
823 
824 	folio_get(new);
825 	new->mapping = mapping;
826 	new->index = offset;
827 
828 	mem_cgroup_replace_folio(old, new);
829 
830 	xas_lock_irq(&xas);
831 	xas_store(&xas, new);
832 
833 	old->mapping = NULL;
834 	/* hugetlb pages do not participate in page cache accounting. */
835 	if (!folio_test_hugetlb(old))
836 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
837 	if (!folio_test_hugetlb(new))
838 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
839 	if (folio_test_swapbacked(old))
840 		__lruvec_stat_sub_folio(old, NR_SHMEM);
841 	if (folio_test_swapbacked(new))
842 		__lruvec_stat_add_folio(new, NR_SHMEM);
843 	xas_unlock_irq(&xas);
844 	if (free_folio)
845 		free_folio(old);
846 	folio_put(old);
847 }
848 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
849 
850 noinline int __filemap_add_folio(struct address_space *mapping,
851 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
852 {
853 	XA_STATE(xas, &mapping->i_pages, index);
854 	void *alloced_shadow = NULL;
855 	int alloced_order = 0;
856 	bool huge;
857 	long nr;
858 
859 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
860 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
861 	mapping_set_update(&xas, mapping);
862 
863 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
864 	xas_set_order(&xas, index, folio_order(folio));
865 	huge = folio_test_hugetlb(folio);
866 	nr = folio_nr_pages(folio);
867 
868 	gfp &= GFP_RECLAIM_MASK;
869 	folio_ref_add(folio, nr);
870 	folio->mapping = mapping;
871 	folio->index = xas.xa_index;
872 
873 	for (;;) {
874 		int order = -1, split_order = 0;
875 		void *entry, *old = NULL;
876 
877 		xas_lock_irq(&xas);
878 		xas_for_each_conflict(&xas, entry) {
879 			old = entry;
880 			if (!xa_is_value(entry)) {
881 				xas_set_err(&xas, -EEXIST);
882 				goto unlock;
883 			}
884 			/*
885 			 * If a larger entry exists,
886 			 * it will be the first and only entry iterated.
887 			 */
888 			if (order == -1)
889 				order = xas_get_order(&xas);
890 		}
891 
892 		/* entry may have changed before we re-acquire the lock */
893 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
894 			xas_destroy(&xas);
895 			alloced_order = 0;
896 		}
897 
898 		if (old) {
899 			if (order > 0 && order > folio_order(folio)) {
900 				/* How to handle large swap entries? */
901 				BUG_ON(shmem_mapping(mapping));
902 				if (!alloced_order) {
903 					split_order = order;
904 					goto unlock;
905 				}
906 				xas_split(&xas, old, order);
907 				xas_reset(&xas);
908 			}
909 			if (shadowp)
910 				*shadowp = old;
911 		}
912 
913 		xas_store(&xas, folio);
914 		if (xas_error(&xas))
915 			goto unlock;
916 
917 		mapping->nrpages += nr;
918 
919 		/* hugetlb pages do not participate in page cache accounting */
920 		if (!huge) {
921 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
922 			if (folio_test_pmd_mappable(folio))
923 				__lruvec_stat_mod_folio(folio,
924 						NR_FILE_THPS, nr);
925 		}
926 
927 unlock:
928 		xas_unlock_irq(&xas);
929 
930 		/* split needed, alloc here and retry. */
931 		if (split_order) {
932 			xas_split_alloc(&xas, old, split_order, gfp);
933 			if (xas_error(&xas))
934 				goto error;
935 			alloced_shadow = old;
936 			alloced_order = split_order;
937 			xas_reset(&xas);
938 			continue;
939 		}
940 
941 		if (!xas_nomem(&xas, gfp))
942 			break;
943 	}
944 
945 	if (xas_error(&xas))
946 		goto error;
947 
948 	trace_mm_filemap_add_to_page_cache(folio);
949 	return 0;
950 error:
951 	folio->mapping = NULL;
952 	/* Leave page->index set: truncation relies upon it */
953 	folio_put_refs(folio, nr);
954 	return xas_error(&xas);
955 }
956 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
957 
958 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
959 				pgoff_t index, gfp_t gfp)
960 {
961 	void *shadow = NULL;
962 	int ret;
963 
964 	ret = mem_cgroup_charge(folio, NULL, gfp);
965 	if (ret)
966 		return ret;
967 
968 	__folio_set_locked(folio);
969 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
970 	if (unlikely(ret)) {
971 		mem_cgroup_uncharge(folio);
972 		__folio_clear_locked(folio);
973 	} else {
974 		/*
975 		 * The folio might have been evicted from cache only
976 		 * recently, in which case it should be activated like
977 		 * any other repeatedly accessed folio.
978 		 * The exception is folios getting rewritten; evicting other
979 		 * data from the working set, only to cache data that will
980 		 * get overwritten with something else, is a waste of memory.
981 		 */
982 		WARN_ON_ONCE(folio_test_active(folio));
983 		if (!(gfp & __GFP_WRITE) && shadow)
984 			workingset_refault(folio, shadow);
985 		folio_add_lru(folio);
986 	}
987 	return ret;
988 }
989 EXPORT_SYMBOL_GPL(filemap_add_folio);
990 
991 #ifdef CONFIG_NUMA
992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
993 {
994 	int n;
995 	struct folio *folio;
996 
997 	if (cpuset_do_page_mem_spread()) {
998 		unsigned int cpuset_mems_cookie;
999 		do {
1000 			cpuset_mems_cookie = read_mems_allowed_begin();
1001 			n = cpuset_mem_spread_node();
1002 			folio = __folio_alloc_node_noprof(gfp, order, n);
1003 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1004 
1005 		return folio;
1006 	}
1007 	return folio_alloc_noprof(gfp, order);
1008 }
1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1010 #endif
1011 
1012 /*
1013  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1014  *
1015  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1016  *
1017  * @mapping1: the first mapping to lock
1018  * @mapping2: the second mapping to lock
1019  */
1020 void filemap_invalidate_lock_two(struct address_space *mapping1,
1021 				 struct address_space *mapping2)
1022 {
1023 	if (mapping1 > mapping2)
1024 		swap(mapping1, mapping2);
1025 	if (mapping1)
1026 		down_write(&mapping1->invalidate_lock);
1027 	if (mapping2 && mapping1 != mapping2)
1028 		down_write_nested(&mapping2->invalidate_lock, 1);
1029 }
1030 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1031 
1032 /*
1033  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1034  *
1035  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1036  *
1037  * @mapping1: the first mapping to unlock
1038  * @mapping2: the second mapping to unlock
1039  */
1040 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1041 				   struct address_space *mapping2)
1042 {
1043 	if (mapping1)
1044 		up_write(&mapping1->invalidate_lock);
1045 	if (mapping2 && mapping1 != mapping2)
1046 		up_write(&mapping2->invalidate_lock);
1047 }
1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1049 
1050 /*
1051  * In order to wait for pages to become available there must be
1052  * waitqueues associated with pages. By using a hash table of
1053  * waitqueues where the bucket discipline is to maintain all
1054  * waiters on the same queue and wake all when any of the pages
1055  * become available, and for the woken contexts to check to be
1056  * sure the appropriate page became available, this saves space
1057  * at a cost of "thundering herd" phenomena during rare hash
1058  * collisions.
1059  */
1060 #define PAGE_WAIT_TABLE_BITS 8
1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1063 
1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1065 {
1066 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1067 }
1068 
1069 void __init pagecache_init(void)
1070 {
1071 	int i;
1072 
1073 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1074 		init_waitqueue_head(&folio_wait_table[i]);
1075 
1076 	page_writeback_init();
1077 }
1078 
1079 /*
1080  * The page wait code treats the "wait->flags" somewhat unusually, because
1081  * we have multiple different kinds of waits, not just the usual "exclusive"
1082  * one.
1083  *
1084  * We have:
1085  *
1086  *  (a) no special bits set:
1087  *
1088  *	We're just waiting for the bit to be released, and when a waker
1089  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1090  *	and remove it from the wait queue.
1091  *
1092  *	Simple and straightforward.
1093  *
1094  *  (b) WQ_FLAG_EXCLUSIVE:
1095  *
1096  *	The waiter is waiting to get the lock, and only one waiter should
1097  *	be woken up to avoid any thundering herd behavior. We'll set the
1098  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1099  *
1100  *	This is the traditional exclusive wait.
1101  *
1102  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1103  *
1104  *	The waiter is waiting to get the bit, and additionally wants the
1105  *	lock to be transferred to it for fair lock behavior. If the lock
1106  *	cannot be taken, we stop walking the wait queue without waking
1107  *	the waiter.
1108  *
1109  *	This is the "fair lock handoff" case, and in addition to setting
1110  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1111  *	that it now has the lock.
1112  */
1113 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1114 {
1115 	unsigned int flags;
1116 	struct wait_page_key *key = arg;
1117 	struct wait_page_queue *wait_page
1118 		= container_of(wait, struct wait_page_queue, wait);
1119 
1120 	if (!wake_page_match(wait_page, key))
1121 		return 0;
1122 
1123 	/*
1124 	 * If it's a lock handoff wait, we get the bit for it, and
1125 	 * stop walking (and do not wake it up) if we can't.
1126 	 */
1127 	flags = wait->flags;
1128 	if (flags & WQ_FLAG_EXCLUSIVE) {
1129 		if (test_bit(key->bit_nr, &key->folio->flags))
1130 			return -1;
1131 		if (flags & WQ_FLAG_CUSTOM) {
1132 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1133 				return -1;
1134 			flags |= WQ_FLAG_DONE;
1135 		}
1136 	}
1137 
1138 	/*
1139 	 * We are holding the wait-queue lock, but the waiter that
1140 	 * is waiting for this will be checking the flags without
1141 	 * any locking.
1142 	 *
1143 	 * So update the flags atomically, and wake up the waiter
1144 	 * afterwards to avoid any races. This store-release pairs
1145 	 * with the load-acquire in folio_wait_bit_common().
1146 	 */
1147 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1148 	wake_up_state(wait->private, mode);
1149 
1150 	/*
1151 	 * Ok, we have successfully done what we're waiting for,
1152 	 * and we can unconditionally remove the wait entry.
1153 	 *
1154 	 * Note that this pairs with the "finish_wait()" in the
1155 	 * waiter, and has to be the absolute last thing we do.
1156 	 * After this list_del_init(&wait->entry) the wait entry
1157 	 * might be de-allocated and the process might even have
1158 	 * exited.
1159 	 */
1160 	list_del_init_careful(&wait->entry);
1161 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1162 }
1163 
1164 static void folio_wake_bit(struct folio *folio, int bit_nr)
1165 {
1166 	wait_queue_head_t *q = folio_waitqueue(folio);
1167 	struct wait_page_key key;
1168 	unsigned long flags;
1169 
1170 	key.folio = folio;
1171 	key.bit_nr = bit_nr;
1172 	key.page_match = 0;
1173 
1174 	spin_lock_irqsave(&q->lock, flags);
1175 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1176 
1177 	/*
1178 	 * It's possible to miss clearing waiters here, when we woke our page
1179 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1180 	 * That's okay, it's a rare case. The next waker will clear it.
1181 	 *
1182 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1183 	 * other), the flag may be cleared in the course of freeing the page;
1184 	 * but that is not required for correctness.
1185 	 */
1186 	if (!waitqueue_active(q) || !key.page_match)
1187 		folio_clear_waiters(folio);
1188 
1189 	spin_unlock_irqrestore(&q->lock, flags);
1190 }
1191 
1192 /*
1193  * A choice of three behaviors for folio_wait_bit_common():
1194  */
1195 enum behavior {
1196 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1197 			 * __folio_lock() waiting on then setting PG_locked.
1198 			 */
1199 	SHARED,		/* Hold ref to page and check the bit when woken, like
1200 			 * folio_wait_writeback() waiting on PG_writeback.
1201 			 */
1202 	DROP,		/* Drop ref to page before wait, no check when woken,
1203 			 * like folio_put_wait_locked() on PG_locked.
1204 			 */
1205 };
1206 
1207 /*
1208  * Attempt to check (or get) the folio flag, and mark us done
1209  * if successful.
1210  */
1211 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1212 					struct wait_queue_entry *wait)
1213 {
1214 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1215 		if (test_and_set_bit(bit_nr, &folio->flags))
1216 			return false;
1217 	} else if (test_bit(bit_nr, &folio->flags))
1218 		return false;
1219 
1220 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1221 	return true;
1222 }
1223 
1224 /* How many times do we accept lock stealing from under a waiter? */
1225 int sysctl_page_lock_unfairness = 5;
1226 
1227 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1228 		int state, enum behavior behavior)
1229 {
1230 	wait_queue_head_t *q = folio_waitqueue(folio);
1231 	int unfairness = sysctl_page_lock_unfairness;
1232 	struct wait_page_queue wait_page;
1233 	wait_queue_entry_t *wait = &wait_page.wait;
1234 	bool thrashing = false;
1235 	unsigned long pflags;
1236 	bool in_thrashing;
1237 
1238 	if (bit_nr == PG_locked &&
1239 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1240 		delayacct_thrashing_start(&in_thrashing);
1241 		psi_memstall_enter(&pflags);
1242 		thrashing = true;
1243 	}
1244 
1245 	init_wait(wait);
1246 	wait->func = wake_page_function;
1247 	wait_page.folio = folio;
1248 	wait_page.bit_nr = bit_nr;
1249 
1250 repeat:
1251 	wait->flags = 0;
1252 	if (behavior == EXCLUSIVE) {
1253 		wait->flags = WQ_FLAG_EXCLUSIVE;
1254 		if (--unfairness < 0)
1255 			wait->flags |= WQ_FLAG_CUSTOM;
1256 	}
1257 
1258 	/*
1259 	 * Do one last check whether we can get the
1260 	 * page bit synchronously.
1261 	 *
1262 	 * Do the folio_set_waiters() marking before that
1263 	 * to let any waker we _just_ missed know they
1264 	 * need to wake us up (otherwise they'll never
1265 	 * even go to the slow case that looks at the
1266 	 * page queue), and add ourselves to the wait
1267 	 * queue if we need to sleep.
1268 	 *
1269 	 * This part needs to be done under the queue
1270 	 * lock to avoid races.
1271 	 */
1272 	spin_lock_irq(&q->lock);
1273 	folio_set_waiters(folio);
1274 	if (!folio_trylock_flag(folio, bit_nr, wait))
1275 		__add_wait_queue_entry_tail(q, wait);
1276 	spin_unlock_irq(&q->lock);
1277 
1278 	/*
1279 	 * From now on, all the logic will be based on
1280 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1281 	 * see whether the page bit testing has already
1282 	 * been done by the wake function.
1283 	 *
1284 	 * We can drop our reference to the folio.
1285 	 */
1286 	if (behavior == DROP)
1287 		folio_put(folio);
1288 
1289 	/*
1290 	 * Note that until the "finish_wait()", or until
1291 	 * we see the WQ_FLAG_WOKEN flag, we need to
1292 	 * be very careful with the 'wait->flags', because
1293 	 * we may race with a waker that sets them.
1294 	 */
1295 	for (;;) {
1296 		unsigned int flags;
1297 
1298 		set_current_state(state);
1299 
1300 		/* Loop until we've been woken or interrupted */
1301 		flags = smp_load_acquire(&wait->flags);
1302 		if (!(flags & WQ_FLAG_WOKEN)) {
1303 			if (signal_pending_state(state, current))
1304 				break;
1305 
1306 			io_schedule();
1307 			continue;
1308 		}
1309 
1310 		/* If we were non-exclusive, we're done */
1311 		if (behavior != EXCLUSIVE)
1312 			break;
1313 
1314 		/* If the waker got the lock for us, we're done */
1315 		if (flags & WQ_FLAG_DONE)
1316 			break;
1317 
1318 		/*
1319 		 * Otherwise, if we're getting the lock, we need to
1320 		 * try to get it ourselves.
1321 		 *
1322 		 * And if that fails, we'll have to retry this all.
1323 		 */
1324 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1325 			goto repeat;
1326 
1327 		wait->flags |= WQ_FLAG_DONE;
1328 		break;
1329 	}
1330 
1331 	/*
1332 	 * If a signal happened, this 'finish_wait()' may remove the last
1333 	 * waiter from the wait-queues, but the folio waiters bit will remain
1334 	 * set. That's ok. The next wakeup will take care of it, and trying
1335 	 * to do it here would be difficult and prone to races.
1336 	 */
1337 	finish_wait(q, wait);
1338 
1339 	if (thrashing) {
1340 		delayacct_thrashing_end(&in_thrashing);
1341 		psi_memstall_leave(&pflags);
1342 	}
1343 
1344 	/*
1345 	 * NOTE! The wait->flags weren't stable until we've done the
1346 	 * 'finish_wait()', and we could have exited the loop above due
1347 	 * to a signal, and had a wakeup event happen after the signal
1348 	 * test but before the 'finish_wait()'.
1349 	 *
1350 	 * So only after the finish_wait() can we reliably determine
1351 	 * if we got woken up or not, so we can now figure out the final
1352 	 * return value based on that state without races.
1353 	 *
1354 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1355 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1356 	 */
1357 	if (behavior == EXCLUSIVE)
1358 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1359 
1360 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1361 }
1362 
1363 #ifdef CONFIG_MIGRATION
1364 /**
1365  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1366  * @entry: migration swap entry.
1367  * @ptl: already locked ptl. This function will drop the lock.
1368  *
1369  * Wait for a migration entry referencing the given page to be removed. This is
1370  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1371  * this can be called without taking a reference on the page. Instead this
1372  * should be called while holding the ptl for the migration entry referencing
1373  * the page.
1374  *
1375  * Returns after unlocking the ptl.
1376  *
1377  * This follows the same logic as folio_wait_bit_common() so see the comments
1378  * there.
1379  */
1380 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1381 	__releases(ptl)
1382 {
1383 	struct wait_page_queue wait_page;
1384 	wait_queue_entry_t *wait = &wait_page.wait;
1385 	bool thrashing = false;
1386 	unsigned long pflags;
1387 	bool in_thrashing;
1388 	wait_queue_head_t *q;
1389 	struct folio *folio = pfn_swap_entry_folio(entry);
1390 
1391 	q = folio_waitqueue(folio);
1392 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1393 		delayacct_thrashing_start(&in_thrashing);
1394 		psi_memstall_enter(&pflags);
1395 		thrashing = true;
1396 	}
1397 
1398 	init_wait(wait);
1399 	wait->func = wake_page_function;
1400 	wait_page.folio = folio;
1401 	wait_page.bit_nr = PG_locked;
1402 	wait->flags = 0;
1403 
1404 	spin_lock_irq(&q->lock);
1405 	folio_set_waiters(folio);
1406 	if (!folio_trylock_flag(folio, PG_locked, wait))
1407 		__add_wait_queue_entry_tail(q, wait);
1408 	spin_unlock_irq(&q->lock);
1409 
1410 	/*
1411 	 * If a migration entry exists for the page the migration path must hold
1412 	 * a valid reference to the page, and it must take the ptl to remove the
1413 	 * migration entry. So the page is valid until the ptl is dropped.
1414 	 */
1415 	spin_unlock(ptl);
1416 
1417 	for (;;) {
1418 		unsigned int flags;
1419 
1420 		set_current_state(TASK_UNINTERRUPTIBLE);
1421 
1422 		/* Loop until we've been woken or interrupted */
1423 		flags = smp_load_acquire(&wait->flags);
1424 		if (!(flags & WQ_FLAG_WOKEN)) {
1425 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1426 				break;
1427 
1428 			io_schedule();
1429 			continue;
1430 		}
1431 		break;
1432 	}
1433 
1434 	finish_wait(q, wait);
1435 
1436 	if (thrashing) {
1437 		delayacct_thrashing_end(&in_thrashing);
1438 		psi_memstall_leave(&pflags);
1439 	}
1440 }
1441 #endif
1442 
1443 void folio_wait_bit(struct folio *folio, int bit_nr)
1444 {
1445 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1446 }
1447 EXPORT_SYMBOL(folio_wait_bit);
1448 
1449 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1450 {
1451 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1452 }
1453 EXPORT_SYMBOL(folio_wait_bit_killable);
1454 
1455 /**
1456  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1457  * @folio: The folio to wait for.
1458  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1459  *
1460  * The caller should hold a reference on @folio.  They expect the page to
1461  * become unlocked relatively soon, but do not wish to hold up migration
1462  * (for example) by holding the reference while waiting for the folio to
1463  * come unlocked.  After this function returns, the caller should not
1464  * dereference @folio.
1465  *
1466  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1467  */
1468 static int folio_put_wait_locked(struct folio *folio, int state)
1469 {
1470 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1471 }
1472 
1473 /**
1474  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1475  * @folio: Folio defining the wait queue of interest
1476  * @waiter: Waiter to add to the queue
1477  *
1478  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1479  */
1480 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1481 {
1482 	wait_queue_head_t *q = folio_waitqueue(folio);
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&q->lock, flags);
1486 	__add_wait_queue_entry_tail(q, waiter);
1487 	folio_set_waiters(folio);
1488 	spin_unlock_irqrestore(&q->lock, flags);
1489 }
1490 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1491 
1492 /**
1493  * folio_unlock - Unlock a locked folio.
1494  * @folio: The folio.
1495  *
1496  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1497  *
1498  * Context: May be called from interrupt or process context.  May not be
1499  * called from NMI context.
1500  */
1501 void folio_unlock(struct folio *folio)
1502 {
1503 	/* Bit 7 allows x86 to check the byte's sign bit */
1504 	BUILD_BUG_ON(PG_waiters != 7);
1505 	BUILD_BUG_ON(PG_locked > 7);
1506 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1507 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1508 		folio_wake_bit(folio, PG_locked);
1509 }
1510 EXPORT_SYMBOL(folio_unlock);
1511 
1512 /**
1513  * folio_end_read - End read on a folio.
1514  * @folio: The folio.
1515  * @success: True if all reads completed successfully.
1516  *
1517  * When all reads against a folio have completed, filesystems should
1518  * call this function to let the pagecache know that no more reads
1519  * are outstanding.  This will unlock the folio and wake up any thread
1520  * sleeping on the lock.  The folio will also be marked uptodate if all
1521  * reads succeeded.
1522  *
1523  * Context: May be called from interrupt or process context.  May not be
1524  * called from NMI context.
1525  */
1526 void folio_end_read(struct folio *folio, bool success)
1527 {
1528 	unsigned long mask = 1 << PG_locked;
1529 
1530 	/* Must be in bottom byte for x86 to work */
1531 	BUILD_BUG_ON(PG_uptodate > 7);
1532 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1533 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1534 
1535 	if (likely(success))
1536 		mask |= 1 << PG_uptodate;
1537 	if (folio_xor_flags_has_waiters(folio, mask))
1538 		folio_wake_bit(folio, PG_locked);
1539 }
1540 EXPORT_SYMBOL(folio_end_read);
1541 
1542 /**
1543  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1544  * @folio: The folio.
1545  *
1546  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1547  * it.  The folio reference held for PG_private_2 being set is released.
1548  *
1549  * This is, for example, used when a netfs folio is being written to a local
1550  * disk cache, thereby allowing writes to the cache for the same folio to be
1551  * serialised.
1552  */
1553 void folio_end_private_2(struct folio *folio)
1554 {
1555 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1556 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1557 	folio_wake_bit(folio, PG_private_2);
1558 	folio_put(folio);
1559 }
1560 EXPORT_SYMBOL(folio_end_private_2);
1561 
1562 /**
1563  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1564  * @folio: The folio to wait on.
1565  *
1566  * Wait for PG_private_2 to be cleared on a folio.
1567  */
1568 void folio_wait_private_2(struct folio *folio)
1569 {
1570 	while (folio_test_private_2(folio))
1571 		folio_wait_bit(folio, PG_private_2);
1572 }
1573 EXPORT_SYMBOL(folio_wait_private_2);
1574 
1575 /**
1576  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1577  * @folio: The folio to wait on.
1578  *
1579  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1580  * received by the calling task.
1581  *
1582  * Return:
1583  * - 0 if successful.
1584  * - -EINTR if a fatal signal was encountered.
1585  */
1586 int folio_wait_private_2_killable(struct folio *folio)
1587 {
1588 	int ret = 0;
1589 
1590 	while (folio_test_private_2(folio)) {
1591 		ret = folio_wait_bit_killable(folio, PG_private_2);
1592 		if (ret < 0)
1593 			break;
1594 	}
1595 
1596 	return ret;
1597 }
1598 EXPORT_SYMBOL(folio_wait_private_2_killable);
1599 
1600 /**
1601  * folio_end_writeback - End writeback against a folio.
1602  * @folio: The folio.
1603  *
1604  * The folio must actually be under writeback.
1605  *
1606  * Context: May be called from process or interrupt context.
1607  */
1608 void folio_end_writeback(struct folio *folio)
1609 {
1610 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1611 
1612 	/*
1613 	 * folio_test_clear_reclaim() could be used here but it is an
1614 	 * atomic operation and overkill in this particular case. Failing
1615 	 * to shuffle a folio marked for immediate reclaim is too mild
1616 	 * a gain to justify taking an atomic operation penalty at the
1617 	 * end of every folio writeback.
1618 	 */
1619 	if (folio_test_reclaim(folio)) {
1620 		folio_clear_reclaim(folio);
1621 		folio_rotate_reclaimable(folio);
1622 	}
1623 
1624 	/*
1625 	 * Writeback does not hold a folio reference of its own, relying
1626 	 * on truncation to wait for the clearing of PG_writeback.
1627 	 * But here we must make sure that the folio is not freed and
1628 	 * reused before the folio_wake_bit().
1629 	 */
1630 	folio_get(folio);
1631 	if (__folio_end_writeback(folio))
1632 		folio_wake_bit(folio, PG_writeback);
1633 	acct_reclaim_writeback(folio);
1634 	folio_put(folio);
1635 }
1636 EXPORT_SYMBOL(folio_end_writeback);
1637 
1638 /**
1639  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1640  * @folio: The folio to lock
1641  */
1642 void __folio_lock(struct folio *folio)
1643 {
1644 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1645 				EXCLUSIVE);
1646 }
1647 EXPORT_SYMBOL(__folio_lock);
1648 
1649 int __folio_lock_killable(struct folio *folio)
1650 {
1651 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1652 					EXCLUSIVE);
1653 }
1654 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1655 
1656 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1657 {
1658 	struct wait_queue_head *q = folio_waitqueue(folio);
1659 	int ret;
1660 
1661 	wait->folio = folio;
1662 	wait->bit_nr = PG_locked;
1663 
1664 	spin_lock_irq(&q->lock);
1665 	__add_wait_queue_entry_tail(q, &wait->wait);
1666 	folio_set_waiters(folio);
1667 	ret = !folio_trylock(folio);
1668 	/*
1669 	 * If we were successful now, we know we're still on the
1670 	 * waitqueue as we're still under the lock. This means it's
1671 	 * safe to remove and return success, we know the callback
1672 	 * isn't going to trigger.
1673 	 */
1674 	if (!ret)
1675 		__remove_wait_queue(q, &wait->wait);
1676 	else
1677 		ret = -EIOCBQUEUED;
1678 	spin_unlock_irq(&q->lock);
1679 	return ret;
1680 }
1681 
1682 /*
1683  * Return values:
1684  * 0 - folio is locked.
1685  * non-zero - folio is not locked.
1686  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1687  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1688  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1689  *
1690  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1691  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1692  */
1693 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1694 {
1695 	unsigned int flags = vmf->flags;
1696 
1697 	if (fault_flag_allow_retry_first(flags)) {
1698 		/*
1699 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1700 		 * released even though returning VM_FAULT_RETRY.
1701 		 */
1702 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1703 			return VM_FAULT_RETRY;
1704 
1705 		release_fault_lock(vmf);
1706 		if (flags & FAULT_FLAG_KILLABLE)
1707 			folio_wait_locked_killable(folio);
1708 		else
1709 			folio_wait_locked(folio);
1710 		return VM_FAULT_RETRY;
1711 	}
1712 	if (flags & FAULT_FLAG_KILLABLE) {
1713 		bool ret;
1714 
1715 		ret = __folio_lock_killable(folio);
1716 		if (ret) {
1717 			release_fault_lock(vmf);
1718 			return VM_FAULT_RETRY;
1719 		}
1720 	} else {
1721 		__folio_lock(folio);
1722 	}
1723 
1724 	return 0;
1725 }
1726 
1727 /**
1728  * page_cache_next_miss() - Find the next gap in the page cache.
1729  * @mapping: Mapping.
1730  * @index: Index.
1731  * @max_scan: Maximum range to search.
1732  *
1733  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1734  * gap with the lowest index.
1735  *
1736  * This function may be called under the rcu_read_lock.  However, this will
1737  * not atomically search a snapshot of the cache at a single point in time.
1738  * For example, if a gap is created at index 5, then subsequently a gap is
1739  * created at index 10, page_cache_next_miss covering both indices may
1740  * return 10 if called under the rcu_read_lock.
1741  *
1742  * Return: The index of the gap if found, otherwise an index outside the
1743  * range specified (in which case 'return - index >= max_scan' will be true).
1744  * In the rare case of index wrap-around, 0 will be returned.
1745  */
1746 pgoff_t page_cache_next_miss(struct address_space *mapping,
1747 			     pgoff_t index, unsigned long max_scan)
1748 {
1749 	XA_STATE(xas, &mapping->i_pages, index);
1750 
1751 	while (max_scan--) {
1752 		void *entry = xas_next(&xas);
1753 		if (!entry || xa_is_value(entry))
1754 			return xas.xa_index;
1755 		if (xas.xa_index == 0)
1756 			return 0;
1757 	}
1758 
1759 	return index + max_scan;
1760 }
1761 EXPORT_SYMBOL(page_cache_next_miss);
1762 
1763 /**
1764  * page_cache_prev_miss() - Find the previous gap in the page cache.
1765  * @mapping: Mapping.
1766  * @index: Index.
1767  * @max_scan: Maximum range to search.
1768  *
1769  * Search the range [max(index - max_scan + 1, 0), index] for the
1770  * gap with the highest index.
1771  *
1772  * This function may be called under the rcu_read_lock.  However, this will
1773  * not atomically search a snapshot of the cache at a single point in time.
1774  * For example, if a gap is created at index 10, then subsequently a gap is
1775  * created at index 5, page_cache_prev_miss() covering both indices may
1776  * return 5 if called under the rcu_read_lock.
1777  *
1778  * Return: The index of the gap if found, otherwise an index outside the
1779  * range specified (in which case 'index - return >= max_scan' will be true).
1780  * In the rare case of wrap-around, ULONG_MAX will be returned.
1781  */
1782 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1783 			     pgoff_t index, unsigned long max_scan)
1784 {
1785 	XA_STATE(xas, &mapping->i_pages, index);
1786 
1787 	while (max_scan--) {
1788 		void *entry = xas_prev(&xas);
1789 		if (!entry || xa_is_value(entry))
1790 			break;
1791 		if (xas.xa_index == ULONG_MAX)
1792 			break;
1793 	}
1794 
1795 	return xas.xa_index;
1796 }
1797 EXPORT_SYMBOL(page_cache_prev_miss);
1798 
1799 /*
1800  * Lockless page cache protocol:
1801  * On the lookup side:
1802  * 1. Load the folio from i_pages
1803  * 2. Increment the refcount if it's not zero
1804  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1805  *
1806  * On the removal side:
1807  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1808  * B. Remove the page from i_pages
1809  * C. Return the page to the page allocator
1810  *
1811  * This means that any page may have its reference count temporarily
1812  * increased by a speculative page cache (or GUP-fast) lookup as it can
1813  * be allocated by another user before the RCU grace period expires.
1814  * Because the refcount temporarily acquired here may end up being the
1815  * last refcount on the page, any page allocation must be freeable by
1816  * folio_put().
1817  */
1818 
1819 /*
1820  * filemap_get_entry - Get a page cache entry.
1821  * @mapping: the address_space to search
1822  * @index: The page cache index.
1823  *
1824  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1825  * it is returned with an increased refcount.  If it is a shadow entry
1826  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1827  * it is returned without further action.
1828  *
1829  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1830  */
1831 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1832 {
1833 	XA_STATE(xas, &mapping->i_pages, index);
1834 	struct folio *folio;
1835 
1836 	rcu_read_lock();
1837 repeat:
1838 	xas_reset(&xas);
1839 	folio = xas_load(&xas);
1840 	if (xas_retry(&xas, folio))
1841 		goto repeat;
1842 	/*
1843 	 * A shadow entry of a recently evicted page, or a swap entry from
1844 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1845 	 */
1846 	if (!folio || xa_is_value(folio))
1847 		goto out;
1848 
1849 	if (!folio_try_get(folio))
1850 		goto repeat;
1851 
1852 	if (unlikely(folio != xas_reload(&xas))) {
1853 		folio_put(folio);
1854 		goto repeat;
1855 	}
1856 out:
1857 	rcu_read_unlock();
1858 
1859 	return folio;
1860 }
1861 
1862 /**
1863  * __filemap_get_folio - Find and get a reference to a folio.
1864  * @mapping: The address_space to search.
1865  * @index: The page index.
1866  * @fgp_flags: %FGP flags modify how the folio is returned.
1867  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1868  *
1869  * Looks up the page cache entry at @mapping & @index.
1870  *
1871  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1872  * if the %GFP flags specified for %FGP_CREAT are atomic.
1873  *
1874  * If this function returns a folio, it is returned with an increased refcount.
1875  *
1876  * Return: The found folio or an ERR_PTR() otherwise.
1877  */
1878 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1879 		fgf_t fgp_flags, gfp_t gfp)
1880 {
1881 	struct folio *folio;
1882 
1883 repeat:
1884 	folio = filemap_get_entry(mapping, index);
1885 	if (xa_is_value(folio))
1886 		folio = NULL;
1887 	if (!folio)
1888 		goto no_page;
1889 
1890 	if (fgp_flags & FGP_LOCK) {
1891 		if (fgp_flags & FGP_NOWAIT) {
1892 			if (!folio_trylock(folio)) {
1893 				folio_put(folio);
1894 				return ERR_PTR(-EAGAIN);
1895 			}
1896 		} else {
1897 			folio_lock(folio);
1898 		}
1899 
1900 		/* Has the page been truncated? */
1901 		if (unlikely(folio->mapping != mapping)) {
1902 			folio_unlock(folio);
1903 			folio_put(folio);
1904 			goto repeat;
1905 		}
1906 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1907 	}
1908 
1909 	if (fgp_flags & FGP_ACCESSED)
1910 		folio_mark_accessed(folio);
1911 	else if (fgp_flags & FGP_WRITE) {
1912 		/* Clear idle flag for buffer write */
1913 		if (folio_test_idle(folio))
1914 			folio_clear_idle(folio);
1915 	}
1916 
1917 	if (fgp_flags & FGP_STABLE)
1918 		folio_wait_stable(folio);
1919 no_page:
1920 	if (!folio && (fgp_flags & FGP_CREAT)) {
1921 		unsigned order = FGF_GET_ORDER(fgp_flags);
1922 		int err;
1923 
1924 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1925 			gfp |= __GFP_WRITE;
1926 		if (fgp_flags & FGP_NOFS)
1927 			gfp &= ~__GFP_FS;
1928 		if (fgp_flags & FGP_NOWAIT) {
1929 			gfp &= ~GFP_KERNEL;
1930 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1931 		}
1932 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1933 			fgp_flags |= FGP_LOCK;
1934 
1935 		if (!mapping_large_folio_support(mapping))
1936 			order = 0;
1937 		if (order > MAX_PAGECACHE_ORDER)
1938 			order = MAX_PAGECACHE_ORDER;
1939 		/* If we're not aligned, allocate a smaller folio */
1940 		if (index & ((1UL << order) - 1))
1941 			order = __ffs(index);
1942 
1943 		do {
1944 			gfp_t alloc_gfp = gfp;
1945 
1946 			err = -ENOMEM;
1947 			if (order > 0)
1948 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1949 			folio = filemap_alloc_folio(alloc_gfp, order);
1950 			if (!folio)
1951 				continue;
1952 
1953 			/* Init accessed so avoid atomic mark_page_accessed later */
1954 			if (fgp_flags & FGP_ACCESSED)
1955 				__folio_set_referenced(folio);
1956 
1957 			err = filemap_add_folio(mapping, folio, index, gfp);
1958 			if (!err)
1959 				break;
1960 			folio_put(folio);
1961 			folio = NULL;
1962 		} while (order-- > 0);
1963 
1964 		if (err == -EEXIST)
1965 			goto repeat;
1966 		if (err)
1967 			return ERR_PTR(err);
1968 		/*
1969 		 * filemap_add_folio locks the page, and for mmap
1970 		 * we expect an unlocked page.
1971 		 */
1972 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1973 			folio_unlock(folio);
1974 	}
1975 
1976 	if (!folio)
1977 		return ERR_PTR(-ENOENT);
1978 	return folio;
1979 }
1980 EXPORT_SYMBOL(__filemap_get_folio);
1981 
1982 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1983 		xa_mark_t mark)
1984 {
1985 	struct folio *folio;
1986 
1987 retry:
1988 	if (mark == XA_PRESENT)
1989 		folio = xas_find(xas, max);
1990 	else
1991 		folio = xas_find_marked(xas, max, mark);
1992 
1993 	if (xas_retry(xas, folio))
1994 		goto retry;
1995 	/*
1996 	 * A shadow entry of a recently evicted page, a swap
1997 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1998 	 * without attempting to raise page count.
1999 	 */
2000 	if (!folio || xa_is_value(folio))
2001 		return folio;
2002 
2003 	if (!folio_try_get(folio))
2004 		goto reset;
2005 
2006 	if (unlikely(folio != xas_reload(xas))) {
2007 		folio_put(folio);
2008 		goto reset;
2009 	}
2010 
2011 	return folio;
2012 reset:
2013 	xas_reset(xas);
2014 	goto retry;
2015 }
2016 
2017 /**
2018  * find_get_entries - gang pagecache lookup
2019  * @mapping:	The address_space to search
2020  * @start:	The starting page cache index
2021  * @end:	The final page index (inclusive).
2022  * @fbatch:	Where the resulting entries are placed.
2023  * @indices:	The cache indices corresponding to the entries in @entries
2024  *
2025  * find_get_entries() will search for and return a batch of entries in
2026  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2027  * takes a reference on any actual folios it returns.
2028  *
2029  * The entries have ascending indexes.  The indices may not be consecutive
2030  * due to not-present entries or large folios.
2031  *
2032  * Any shadow entries of evicted folios, or swap entries from
2033  * shmem/tmpfs, are included in the returned array.
2034  *
2035  * Return: The number of entries which were found.
2036  */
2037 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2038 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2039 {
2040 	XA_STATE(xas, &mapping->i_pages, *start);
2041 	struct folio *folio;
2042 
2043 	rcu_read_lock();
2044 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2045 		indices[fbatch->nr] = xas.xa_index;
2046 		if (!folio_batch_add(fbatch, folio))
2047 			break;
2048 	}
2049 	rcu_read_unlock();
2050 
2051 	if (folio_batch_count(fbatch)) {
2052 		unsigned long nr = 1;
2053 		int idx = folio_batch_count(fbatch) - 1;
2054 
2055 		folio = fbatch->folios[idx];
2056 		if (!xa_is_value(folio))
2057 			nr = folio_nr_pages(folio);
2058 		*start = indices[idx] + nr;
2059 	}
2060 	return folio_batch_count(fbatch);
2061 }
2062 
2063 /**
2064  * find_lock_entries - Find a batch of pagecache entries.
2065  * @mapping:	The address_space to search.
2066  * @start:	The starting page cache index.
2067  * @end:	The final page index (inclusive).
2068  * @fbatch:	Where the resulting entries are placed.
2069  * @indices:	The cache indices of the entries in @fbatch.
2070  *
2071  * find_lock_entries() will return a batch of entries from @mapping.
2072  * Swap, shadow and DAX entries are included.  Folios are returned
2073  * locked and with an incremented refcount.  Folios which are locked
2074  * by somebody else or under writeback are skipped.  Folios which are
2075  * partially outside the range are not returned.
2076  *
2077  * The entries have ascending indexes.  The indices may not be consecutive
2078  * due to not-present entries, large folios, folios which could not be
2079  * locked or folios under writeback.
2080  *
2081  * Return: The number of entries which were found.
2082  */
2083 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2084 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2085 {
2086 	XA_STATE(xas, &mapping->i_pages, *start);
2087 	struct folio *folio;
2088 
2089 	rcu_read_lock();
2090 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2091 		if (!xa_is_value(folio)) {
2092 			if (folio->index < *start)
2093 				goto put;
2094 			if (folio_next_index(folio) - 1 > end)
2095 				goto put;
2096 			if (!folio_trylock(folio))
2097 				goto put;
2098 			if (folio->mapping != mapping ||
2099 			    folio_test_writeback(folio))
2100 				goto unlock;
2101 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2102 					folio);
2103 		}
2104 		indices[fbatch->nr] = xas.xa_index;
2105 		if (!folio_batch_add(fbatch, folio))
2106 			break;
2107 		continue;
2108 unlock:
2109 		folio_unlock(folio);
2110 put:
2111 		folio_put(folio);
2112 	}
2113 	rcu_read_unlock();
2114 
2115 	if (folio_batch_count(fbatch)) {
2116 		unsigned long nr = 1;
2117 		int idx = folio_batch_count(fbatch) - 1;
2118 
2119 		folio = fbatch->folios[idx];
2120 		if (!xa_is_value(folio))
2121 			nr = folio_nr_pages(folio);
2122 		*start = indices[idx] + nr;
2123 	}
2124 	return folio_batch_count(fbatch);
2125 }
2126 
2127 /**
2128  * filemap_get_folios - Get a batch of folios
2129  * @mapping:	The address_space to search
2130  * @start:	The starting page index
2131  * @end:	The final page index (inclusive)
2132  * @fbatch:	The batch to fill.
2133  *
2134  * Search for and return a batch of folios in the mapping starting at
2135  * index @start and up to index @end (inclusive).  The folios are returned
2136  * in @fbatch with an elevated reference count.
2137  *
2138  * Return: The number of folios which were found.
2139  * We also update @start to index the next folio for the traversal.
2140  */
2141 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2142 		pgoff_t end, struct folio_batch *fbatch)
2143 {
2144 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2145 }
2146 EXPORT_SYMBOL(filemap_get_folios);
2147 
2148 /**
2149  * filemap_get_folios_contig - Get a batch of contiguous folios
2150  * @mapping:	The address_space to search
2151  * @start:	The starting page index
2152  * @end:	The final page index (inclusive)
2153  * @fbatch:	The batch to fill
2154  *
2155  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2156  * except the returned folios are guaranteed to be contiguous. This may
2157  * not return all contiguous folios if the batch gets filled up.
2158  *
2159  * Return: The number of folios found.
2160  * Also update @start to be positioned for traversal of the next folio.
2161  */
2162 
2163 unsigned filemap_get_folios_contig(struct address_space *mapping,
2164 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2165 {
2166 	XA_STATE(xas, &mapping->i_pages, *start);
2167 	unsigned long nr;
2168 	struct folio *folio;
2169 
2170 	rcu_read_lock();
2171 
2172 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2173 			folio = xas_next(&xas)) {
2174 		if (xas_retry(&xas, folio))
2175 			continue;
2176 		/*
2177 		 * If the entry has been swapped out, we can stop looking.
2178 		 * No current caller is looking for DAX entries.
2179 		 */
2180 		if (xa_is_value(folio))
2181 			goto update_start;
2182 
2183 		if (!folio_try_get(folio))
2184 			goto retry;
2185 
2186 		if (unlikely(folio != xas_reload(&xas)))
2187 			goto put_folio;
2188 
2189 		if (!folio_batch_add(fbatch, folio)) {
2190 			nr = folio_nr_pages(folio);
2191 			*start = folio->index + nr;
2192 			goto out;
2193 		}
2194 		continue;
2195 put_folio:
2196 		folio_put(folio);
2197 
2198 retry:
2199 		xas_reset(&xas);
2200 	}
2201 
2202 update_start:
2203 	nr = folio_batch_count(fbatch);
2204 
2205 	if (nr) {
2206 		folio = fbatch->folios[nr - 1];
2207 		*start = folio_next_index(folio);
2208 	}
2209 out:
2210 	rcu_read_unlock();
2211 	return folio_batch_count(fbatch);
2212 }
2213 EXPORT_SYMBOL(filemap_get_folios_contig);
2214 
2215 /**
2216  * filemap_get_folios_tag - Get a batch of folios matching @tag
2217  * @mapping:    The address_space to search
2218  * @start:      The starting page index
2219  * @end:        The final page index (inclusive)
2220  * @tag:        The tag index
2221  * @fbatch:     The batch to fill
2222  *
2223  * The first folio may start before @start; if it does, it will contain
2224  * @start.  The final folio may extend beyond @end; if it does, it will
2225  * contain @end.  The folios have ascending indices.  There may be gaps
2226  * between the folios if there are indices which have no folio in the
2227  * page cache.  If folios are added to or removed from the page cache
2228  * while this is running, they may or may not be found by this call.
2229  * Only returns folios that are tagged with @tag.
2230  *
2231  * Return: The number of folios found.
2232  * Also update @start to index the next folio for traversal.
2233  */
2234 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2235 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2236 {
2237 	XA_STATE(xas, &mapping->i_pages, *start);
2238 	struct folio *folio;
2239 
2240 	rcu_read_lock();
2241 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2242 		/*
2243 		 * Shadow entries should never be tagged, but this iteration
2244 		 * is lockless so there is a window for page reclaim to evict
2245 		 * a page we saw tagged. Skip over it.
2246 		 */
2247 		if (xa_is_value(folio))
2248 			continue;
2249 		if (!folio_batch_add(fbatch, folio)) {
2250 			unsigned long nr = folio_nr_pages(folio);
2251 			*start = folio->index + nr;
2252 			goto out;
2253 		}
2254 	}
2255 	/*
2256 	 * We come here when there is no page beyond @end. We take care to not
2257 	 * overflow the index @start as it confuses some of the callers. This
2258 	 * breaks the iteration when there is a page at index -1 but that is
2259 	 * already broke anyway.
2260 	 */
2261 	if (end == (pgoff_t)-1)
2262 		*start = (pgoff_t)-1;
2263 	else
2264 		*start = end + 1;
2265 out:
2266 	rcu_read_unlock();
2267 
2268 	return folio_batch_count(fbatch);
2269 }
2270 EXPORT_SYMBOL(filemap_get_folios_tag);
2271 
2272 /*
2273  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2274  * a _large_ part of the i/o request. Imagine the worst scenario:
2275  *
2276  *      ---R__________________________________________B__________
2277  *         ^ reading here                             ^ bad block(assume 4k)
2278  *
2279  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2280  * => failing the whole request => read(R) => read(R+1) =>
2281  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2282  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2283  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2284  *
2285  * It is going insane. Fix it by quickly scaling down the readahead size.
2286  */
2287 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2288 {
2289 	ra->ra_pages /= 4;
2290 }
2291 
2292 /*
2293  * filemap_get_read_batch - Get a batch of folios for read
2294  *
2295  * Get a batch of folios which represent a contiguous range of bytes in
2296  * the file.  No exceptional entries will be returned.  If @index is in
2297  * the middle of a folio, the entire folio will be returned.  The last
2298  * folio in the batch may have the readahead flag set or the uptodate flag
2299  * clear so that the caller can take the appropriate action.
2300  */
2301 static void filemap_get_read_batch(struct address_space *mapping,
2302 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2303 {
2304 	XA_STATE(xas, &mapping->i_pages, index);
2305 	struct folio *folio;
2306 
2307 	rcu_read_lock();
2308 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2309 		if (xas_retry(&xas, folio))
2310 			continue;
2311 		if (xas.xa_index > max || xa_is_value(folio))
2312 			break;
2313 		if (xa_is_sibling(folio))
2314 			break;
2315 		if (!folio_try_get(folio))
2316 			goto retry;
2317 
2318 		if (unlikely(folio != xas_reload(&xas)))
2319 			goto put_folio;
2320 
2321 		if (!folio_batch_add(fbatch, folio))
2322 			break;
2323 		if (!folio_test_uptodate(folio))
2324 			break;
2325 		if (folio_test_readahead(folio))
2326 			break;
2327 		xas_advance(&xas, folio_next_index(folio) - 1);
2328 		continue;
2329 put_folio:
2330 		folio_put(folio);
2331 retry:
2332 		xas_reset(&xas);
2333 	}
2334 	rcu_read_unlock();
2335 }
2336 
2337 static int filemap_read_folio(struct file *file, filler_t filler,
2338 		struct folio *folio)
2339 {
2340 	bool workingset = folio_test_workingset(folio);
2341 	unsigned long pflags;
2342 	int error;
2343 
2344 	/* Start the actual read. The read will unlock the page. */
2345 	if (unlikely(workingset))
2346 		psi_memstall_enter(&pflags);
2347 	error = filler(file, folio);
2348 	if (unlikely(workingset))
2349 		psi_memstall_leave(&pflags);
2350 	if (error)
2351 		return error;
2352 
2353 	error = folio_wait_locked_killable(folio);
2354 	if (error)
2355 		return error;
2356 	if (folio_test_uptodate(folio))
2357 		return 0;
2358 	if (file)
2359 		shrink_readahead_size_eio(&file->f_ra);
2360 	return -EIO;
2361 }
2362 
2363 static bool filemap_range_uptodate(struct address_space *mapping,
2364 		loff_t pos, size_t count, struct folio *folio,
2365 		bool need_uptodate)
2366 {
2367 	if (folio_test_uptodate(folio))
2368 		return true;
2369 	/* pipes can't handle partially uptodate pages */
2370 	if (need_uptodate)
2371 		return false;
2372 	if (!mapping->a_ops->is_partially_uptodate)
2373 		return false;
2374 	if (mapping->host->i_blkbits >= folio_shift(folio))
2375 		return false;
2376 
2377 	if (folio_pos(folio) > pos) {
2378 		count -= folio_pos(folio) - pos;
2379 		pos = 0;
2380 	} else {
2381 		pos -= folio_pos(folio);
2382 	}
2383 
2384 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2385 }
2386 
2387 static int filemap_update_page(struct kiocb *iocb,
2388 		struct address_space *mapping, size_t count,
2389 		struct folio *folio, bool need_uptodate)
2390 {
2391 	int error;
2392 
2393 	if (iocb->ki_flags & IOCB_NOWAIT) {
2394 		if (!filemap_invalidate_trylock_shared(mapping))
2395 			return -EAGAIN;
2396 	} else {
2397 		filemap_invalidate_lock_shared(mapping);
2398 	}
2399 
2400 	if (!folio_trylock(folio)) {
2401 		error = -EAGAIN;
2402 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2403 			goto unlock_mapping;
2404 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2405 			filemap_invalidate_unlock_shared(mapping);
2406 			/*
2407 			 * This is where we usually end up waiting for a
2408 			 * previously submitted readahead to finish.
2409 			 */
2410 			folio_put_wait_locked(folio, TASK_KILLABLE);
2411 			return AOP_TRUNCATED_PAGE;
2412 		}
2413 		error = __folio_lock_async(folio, iocb->ki_waitq);
2414 		if (error)
2415 			goto unlock_mapping;
2416 	}
2417 
2418 	error = AOP_TRUNCATED_PAGE;
2419 	if (!folio->mapping)
2420 		goto unlock;
2421 
2422 	error = 0;
2423 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2424 				   need_uptodate))
2425 		goto unlock;
2426 
2427 	error = -EAGAIN;
2428 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2429 		goto unlock;
2430 
2431 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2432 			folio);
2433 	goto unlock_mapping;
2434 unlock:
2435 	folio_unlock(folio);
2436 unlock_mapping:
2437 	filemap_invalidate_unlock_shared(mapping);
2438 	if (error == AOP_TRUNCATED_PAGE)
2439 		folio_put(folio);
2440 	return error;
2441 }
2442 
2443 static int filemap_create_folio(struct file *file,
2444 		struct address_space *mapping, pgoff_t index,
2445 		struct folio_batch *fbatch)
2446 {
2447 	struct folio *folio;
2448 	int error;
2449 
2450 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2451 	if (!folio)
2452 		return -ENOMEM;
2453 
2454 	/*
2455 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2456 	 * here assures we cannot instantiate and bring uptodate new
2457 	 * pagecache folios after evicting page cache during truncate
2458 	 * and before actually freeing blocks.	Note that we could
2459 	 * release invalidate_lock after inserting the folio into
2460 	 * the page cache as the locked folio would then be enough to
2461 	 * synchronize with hole punching. But there are code paths
2462 	 * such as filemap_update_page() filling in partially uptodate
2463 	 * pages or ->readahead() that need to hold invalidate_lock
2464 	 * while mapping blocks for IO so let's hold the lock here as
2465 	 * well to keep locking rules simple.
2466 	 */
2467 	filemap_invalidate_lock_shared(mapping);
2468 	error = filemap_add_folio(mapping, folio, index,
2469 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2470 	if (error == -EEXIST)
2471 		error = AOP_TRUNCATED_PAGE;
2472 	if (error)
2473 		goto error;
2474 
2475 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2476 	if (error)
2477 		goto error;
2478 
2479 	filemap_invalidate_unlock_shared(mapping);
2480 	folio_batch_add(fbatch, folio);
2481 	return 0;
2482 error:
2483 	filemap_invalidate_unlock_shared(mapping);
2484 	folio_put(folio);
2485 	return error;
2486 }
2487 
2488 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2489 		struct address_space *mapping, struct folio *folio,
2490 		pgoff_t last_index)
2491 {
2492 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2493 
2494 	if (iocb->ki_flags & IOCB_NOIO)
2495 		return -EAGAIN;
2496 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2497 	return 0;
2498 }
2499 
2500 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2501 		struct folio_batch *fbatch, bool need_uptodate)
2502 {
2503 	struct file *filp = iocb->ki_filp;
2504 	struct address_space *mapping = filp->f_mapping;
2505 	struct file_ra_state *ra = &filp->f_ra;
2506 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2507 	pgoff_t last_index;
2508 	struct folio *folio;
2509 	int err = 0;
2510 
2511 	/* "last_index" is the index of the page beyond the end of the read */
2512 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2513 retry:
2514 	if (fatal_signal_pending(current))
2515 		return -EINTR;
2516 
2517 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2518 	if (!folio_batch_count(fbatch)) {
2519 		if (iocb->ki_flags & IOCB_NOIO)
2520 			return -EAGAIN;
2521 		page_cache_sync_readahead(mapping, ra, filp, index,
2522 				last_index - index);
2523 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2524 	}
2525 	if (!folio_batch_count(fbatch)) {
2526 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2527 			return -EAGAIN;
2528 		err = filemap_create_folio(filp, mapping,
2529 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2530 		if (err == AOP_TRUNCATED_PAGE)
2531 			goto retry;
2532 		return err;
2533 	}
2534 
2535 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2536 	if (folio_test_readahead(folio)) {
2537 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2538 		if (err)
2539 			goto err;
2540 	}
2541 	if (!folio_test_uptodate(folio)) {
2542 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2543 		    folio_batch_count(fbatch) > 1)
2544 			iocb->ki_flags |= IOCB_NOWAIT;
2545 		err = filemap_update_page(iocb, mapping, count, folio,
2546 					  need_uptodate);
2547 		if (err)
2548 			goto err;
2549 	}
2550 
2551 	trace_mm_filemap_get_pages(mapping, index, last_index);
2552 	return 0;
2553 err:
2554 	if (err < 0)
2555 		folio_put(folio);
2556 	if (likely(--fbatch->nr))
2557 		return 0;
2558 	if (err == AOP_TRUNCATED_PAGE)
2559 		goto retry;
2560 	return err;
2561 }
2562 
2563 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2564 {
2565 	unsigned int shift = folio_shift(folio);
2566 
2567 	return (pos1 >> shift == pos2 >> shift);
2568 }
2569 
2570 /**
2571  * filemap_read - Read data from the page cache.
2572  * @iocb: The iocb to read.
2573  * @iter: Destination for the data.
2574  * @already_read: Number of bytes already read by the caller.
2575  *
2576  * Copies data from the page cache.  If the data is not currently present,
2577  * uses the readahead and read_folio address_space operations to fetch it.
2578  *
2579  * Return: Total number of bytes copied, including those already read by
2580  * the caller.  If an error happens before any bytes are copied, returns
2581  * a negative error number.
2582  */
2583 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2584 		ssize_t already_read)
2585 {
2586 	struct file *filp = iocb->ki_filp;
2587 	struct file_ra_state *ra = &filp->f_ra;
2588 	struct address_space *mapping = filp->f_mapping;
2589 	struct inode *inode = mapping->host;
2590 	struct folio_batch fbatch;
2591 	int i, error = 0;
2592 	bool writably_mapped;
2593 	loff_t isize, end_offset;
2594 	loff_t last_pos = ra->prev_pos;
2595 
2596 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2597 		return 0;
2598 	if (unlikely(!iov_iter_count(iter)))
2599 		return 0;
2600 
2601 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2602 	folio_batch_init(&fbatch);
2603 
2604 	do {
2605 		cond_resched();
2606 
2607 		/*
2608 		 * If we've already successfully copied some data, then we
2609 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2610 		 * an async read NOWAIT at that point.
2611 		 */
2612 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2613 			iocb->ki_flags |= IOCB_NOWAIT;
2614 
2615 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2616 			break;
2617 
2618 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2619 		if (error < 0)
2620 			break;
2621 
2622 		/*
2623 		 * i_size must be checked after we know the pages are Uptodate.
2624 		 *
2625 		 * Checking i_size after the check allows us to calculate
2626 		 * the correct value for "nr", which means the zero-filled
2627 		 * part of the page is not copied back to userspace (unless
2628 		 * another truncate extends the file - this is desired though).
2629 		 */
2630 		isize = i_size_read(inode);
2631 		if (unlikely(iocb->ki_pos >= isize))
2632 			goto put_folios;
2633 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2634 
2635 		/*
2636 		 * Once we start copying data, we don't want to be touching any
2637 		 * cachelines that might be contended:
2638 		 */
2639 		writably_mapped = mapping_writably_mapped(mapping);
2640 
2641 		/*
2642 		 * When a read accesses the same folio several times, only
2643 		 * mark it as accessed the first time.
2644 		 */
2645 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2646 				    fbatch.folios[0]))
2647 			folio_mark_accessed(fbatch.folios[0]);
2648 
2649 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2650 			struct folio *folio = fbatch.folios[i];
2651 			size_t fsize = folio_size(folio);
2652 			size_t offset = iocb->ki_pos & (fsize - 1);
2653 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2654 					     fsize - offset);
2655 			size_t copied;
2656 
2657 			if (end_offset < folio_pos(folio))
2658 				break;
2659 			if (i > 0)
2660 				folio_mark_accessed(folio);
2661 			/*
2662 			 * If users can be writing to this folio using arbitrary
2663 			 * virtual addresses, take care of potential aliasing
2664 			 * before reading the folio on the kernel side.
2665 			 */
2666 			if (writably_mapped)
2667 				flush_dcache_folio(folio);
2668 
2669 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2670 
2671 			already_read += copied;
2672 			iocb->ki_pos += copied;
2673 			last_pos = iocb->ki_pos;
2674 
2675 			if (copied < bytes) {
2676 				error = -EFAULT;
2677 				break;
2678 			}
2679 		}
2680 put_folios:
2681 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2682 			folio_put(fbatch.folios[i]);
2683 		folio_batch_init(&fbatch);
2684 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2685 
2686 	file_accessed(filp);
2687 	ra->prev_pos = last_pos;
2688 	return already_read ? already_read : error;
2689 }
2690 EXPORT_SYMBOL_GPL(filemap_read);
2691 
2692 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2693 {
2694 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2695 	loff_t pos = iocb->ki_pos;
2696 	loff_t end = pos + count - 1;
2697 
2698 	if (iocb->ki_flags & IOCB_NOWAIT) {
2699 		if (filemap_range_needs_writeback(mapping, pos, end))
2700 			return -EAGAIN;
2701 		return 0;
2702 	}
2703 
2704 	return filemap_write_and_wait_range(mapping, pos, end);
2705 }
2706 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2707 
2708 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2709 {
2710 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2711 	loff_t pos = iocb->ki_pos;
2712 	loff_t end = pos + count - 1;
2713 	int ret;
2714 
2715 	if (iocb->ki_flags & IOCB_NOWAIT) {
2716 		/* we could block if there are any pages in the range */
2717 		if (filemap_range_has_page(mapping, pos, end))
2718 			return -EAGAIN;
2719 	} else {
2720 		ret = filemap_write_and_wait_range(mapping, pos, end);
2721 		if (ret)
2722 			return ret;
2723 	}
2724 
2725 	/*
2726 	 * After a write we want buffered reads to be sure to go to disk to get
2727 	 * the new data.  We invalidate clean cached page from the region we're
2728 	 * about to write.  We do this *before* the write so that we can return
2729 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2730 	 */
2731 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2732 					     end >> PAGE_SHIFT);
2733 }
2734 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2735 
2736 /**
2737  * generic_file_read_iter - generic filesystem read routine
2738  * @iocb:	kernel I/O control block
2739  * @iter:	destination for the data read
2740  *
2741  * This is the "read_iter()" routine for all filesystems
2742  * that can use the page cache directly.
2743  *
2744  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2745  * be returned when no data can be read without waiting for I/O requests
2746  * to complete; it doesn't prevent readahead.
2747  *
2748  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2749  * requests shall be made for the read or for readahead.  When no data
2750  * can be read, -EAGAIN shall be returned.  When readahead would be
2751  * triggered, a partial, possibly empty read shall be returned.
2752  *
2753  * Return:
2754  * * number of bytes copied, even for partial reads
2755  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2756  */
2757 ssize_t
2758 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2759 {
2760 	size_t count = iov_iter_count(iter);
2761 	ssize_t retval = 0;
2762 
2763 	if (!count)
2764 		return 0; /* skip atime */
2765 
2766 	if (iocb->ki_flags & IOCB_DIRECT) {
2767 		struct file *file = iocb->ki_filp;
2768 		struct address_space *mapping = file->f_mapping;
2769 		struct inode *inode = mapping->host;
2770 
2771 		retval = kiocb_write_and_wait(iocb, count);
2772 		if (retval < 0)
2773 			return retval;
2774 		file_accessed(file);
2775 
2776 		retval = mapping->a_ops->direct_IO(iocb, iter);
2777 		if (retval >= 0) {
2778 			iocb->ki_pos += retval;
2779 			count -= retval;
2780 		}
2781 		if (retval != -EIOCBQUEUED)
2782 			iov_iter_revert(iter, count - iov_iter_count(iter));
2783 
2784 		/*
2785 		 * Btrfs can have a short DIO read if we encounter
2786 		 * compressed extents, so if there was an error, or if
2787 		 * we've already read everything we wanted to, or if
2788 		 * there was a short read because we hit EOF, go ahead
2789 		 * and return.  Otherwise fallthrough to buffered io for
2790 		 * the rest of the read.  Buffered reads will not work for
2791 		 * DAX files, so don't bother trying.
2792 		 */
2793 		if (retval < 0 || !count || IS_DAX(inode))
2794 			return retval;
2795 		if (iocb->ki_pos >= i_size_read(inode))
2796 			return retval;
2797 	}
2798 
2799 	return filemap_read(iocb, iter, retval);
2800 }
2801 EXPORT_SYMBOL(generic_file_read_iter);
2802 
2803 /*
2804  * Splice subpages from a folio into a pipe.
2805  */
2806 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2807 			      struct folio *folio, loff_t fpos, size_t size)
2808 {
2809 	struct page *page;
2810 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2811 
2812 	page = folio_page(folio, offset / PAGE_SIZE);
2813 	size = min(size, folio_size(folio) - offset);
2814 	offset %= PAGE_SIZE;
2815 
2816 	while (spliced < size &&
2817 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2818 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2819 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2820 
2821 		*buf = (struct pipe_buffer) {
2822 			.ops	= &page_cache_pipe_buf_ops,
2823 			.page	= page,
2824 			.offset	= offset,
2825 			.len	= part,
2826 		};
2827 		folio_get(folio);
2828 		pipe->head++;
2829 		page++;
2830 		spliced += part;
2831 		offset = 0;
2832 	}
2833 
2834 	return spliced;
2835 }
2836 
2837 /**
2838  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2839  * @in: The file to read from
2840  * @ppos: Pointer to the file position to read from
2841  * @pipe: The pipe to splice into
2842  * @len: The amount to splice
2843  * @flags: The SPLICE_F_* flags
2844  *
2845  * This function gets folios from a file's pagecache and splices them into the
2846  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2847  * be used for blockdevs also.
2848  *
2849  * Return: On success, the number of bytes read will be returned and *@ppos
2850  * will be updated if appropriate; 0 will be returned if there is no more data
2851  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2852  * other negative error code will be returned on error.  A short read may occur
2853  * if the pipe has insufficient space, we reach the end of the data or we hit a
2854  * hole.
2855  */
2856 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2857 			    struct pipe_inode_info *pipe,
2858 			    size_t len, unsigned int flags)
2859 {
2860 	struct folio_batch fbatch;
2861 	struct kiocb iocb;
2862 	size_t total_spliced = 0, used, npages;
2863 	loff_t isize, end_offset;
2864 	bool writably_mapped;
2865 	int i, error = 0;
2866 
2867 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2868 		return 0;
2869 
2870 	init_sync_kiocb(&iocb, in);
2871 	iocb.ki_pos = *ppos;
2872 
2873 	/* Work out how much data we can actually add into the pipe */
2874 	used = pipe_occupancy(pipe->head, pipe->tail);
2875 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2876 	len = min_t(size_t, len, npages * PAGE_SIZE);
2877 
2878 	folio_batch_init(&fbatch);
2879 
2880 	do {
2881 		cond_resched();
2882 
2883 		if (*ppos >= i_size_read(in->f_mapping->host))
2884 			break;
2885 
2886 		iocb.ki_pos = *ppos;
2887 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2888 		if (error < 0)
2889 			break;
2890 
2891 		/*
2892 		 * i_size must be checked after we know the pages are Uptodate.
2893 		 *
2894 		 * Checking i_size after the check allows us to calculate
2895 		 * the correct value for "nr", which means the zero-filled
2896 		 * part of the page is not copied back to userspace (unless
2897 		 * another truncate extends the file - this is desired though).
2898 		 */
2899 		isize = i_size_read(in->f_mapping->host);
2900 		if (unlikely(*ppos >= isize))
2901 			break;
2902 		end_offset = min_t(loff_t, isize, *ppos + len);
2903 
2904 		/*
2905 		 * Once we start copying data, we don't want to be touching any
2906 		 * cachelines that might be contended:
2907 		 */
2908 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2909 
2910 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2911 			struct folio *folio = fbatch.folios[i];
2912 			size_t n;
2913 
2914 			if (folio_pos(folio) >= end_offset)
2915 				goto out;
2916 			folio_mark_accessed(folio);
2917 
2918 			/*
2919 			 * If users can be writing to this folio using arbitrary
2920 			 * virtual addresses, take care of potential aliasing
2921 			 * before reading the folio on the kernel side.
2922 			 */
2923 			if (writably_mapped)
2924 				flush_dcache_folio(folio);
2925 
2926 			n = min_t(loff_t, len, isize - *ppos);
2927 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2928 			if (!n)
2929 				goto out;
2930 			len -= n;
2931 			total_spliced += n;
2932 			*ppos += n;
2933 			in->f_ra.prev_pos = *ppos;
2934 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2935 				goto out;
2936 		}
2937 
2938 		folio_batch_release(&fbatch);
2939 	} while (len);
2940 
2941 out:
2942 	folio_batch_release(&fbatch);
2943 	file_accessed(in);
2944 
2945 	return total_spliced ? total_spliced : error;
2946 }
2947 EXPORT_SYMBOL(filemap_splice_read);
2948 
2949 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2950 		struct address_space *mapping, struct folio *folio,
2951 		loff_t start, loff_t end, bool seek_data)
2952 {
2953 	const struct address_space_operations *ops = mapping->a_ops;
2954 	size_t offset, bsz = i_blocksize(mapping->host);
2955 
2956 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2957 		return seek_data ? start : end;
2958 	if (!ops->is_partially_uptodate)
2959 		return seek_data ? end : start;
2960 
2961 	xas_pause(xas);
2962 	rcu_read_unlock();
2963 	folio_lock(folio);
2964 	if (unlikely(folio->mapping != mapping))
2965 		goto unlock;
2966 
2967 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2968 
2969 	do {
2970 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2971 							seek_data)
2972 			break;
2973 		start = (start + bsz) & ~(bsz - 1);
2974 		offset += bsz;
2975 	} while (offset < folio_size(folio));
2976 unlock:
2977 	folio_unlock(folio);
2978 	rcu_read_lock();
2979 	return start;
2980 }
2981 
2982 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2983 {
2984 	if (xa_is_value(folio))
2985 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2986 	return folio_size(folio);
2987 }
2988 
2989 /**
2990  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2991  * @mapping: Address space to search.
2992  * @start: First byte to consider.
2993  * @end: Limit of search (exclusive).
2994  * @whence: Either SEEK_HOLE or SEEK_DATA.
2995  *
2996  * If the page cache knows which blocks contain holes and which blocks
2997  * contain data, your filesystem can use this function to implement
2998  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2999  * entirely memory-based such as tmpfs, and filesystems which support
3000  * unwritten extents.
3001  *
3002  * Return: The requested offset on success, or -ENXIO if @whence specifies
3003  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3004  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3005  * and @end contain data.
3006  */
3007 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3008 		loff_t end, int whence)
3009 {
3010 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3011 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3012 	bool seek_data = (whence == SEEK_DATA);
3013 	struct folio *folio;
3014 
3015 	if (end <= start)
3016 		return -ENXIO;
3017 
3018 	rcu_read_lock();
3019 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3020 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3021 		size_t seek_size;
3022 
3023 		if (start < pos) {
3024 			if (!seek_data)
3025 				goto unlock;
3026 			start = pos;
3027 		}
3028 
3029 		seek_size = seek_folio_size(&xas, folio);
3030 		pos = round_up((u64)pos + 1, seek_size);
3031 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3032 				seek_data);
3033 		if (start < pos)
3034 			goto unlock;
3035 		if (start >= end)
3036 			break;
3037 		if (seek_size > PAGE_SIZE)
3038 			xas_set(&xas, pos >> PAGE_SHIFT);
3039 		if (!xa_is_value(folio))
3040 			folio_put(folio);
3041 	}
3042 	if (seek_data)
3043 		start = -ENXIO;
3044 unlock:
3045 	rcu_read_unlock();
3046 	if (folio && !xa_is_value(folio))
3047 		folio_put(folio);
3048 	if (start > end)
3049 		return end;
3050 	return start;
3051 }
3052 
3053 #ifdef CONFIG_MMU
3054 #define MMAP_LOTSAMISS  (100)
3055 /*
3056  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3057  * @vmf - the vm_fault for this fault.
3058  * @folio - the folio to lock.
3059  * @fpin - the pointer to the file we may pin (or is already pinned).
3060  *
3061  * This works similar to lock_folio_or_retry in that it can drop the
3062  * mmap_lock.  It differs in that it actually returns the folio locked
3063  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3064  * to drop the mmap_lock then fpin will point to the pinned file and
3065  * needs to be fput()'ed at a later point.
3066  */
3067 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3068 				     struct file **fpin)
3069 {
3070 	if (folio_trylock(folio))
3071 		return 1;
3072 
3073 	/*
3074 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3075 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3076 	 * is supposed to work. We have way too many special cases..
3077 	 */
3078 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3079 		return 0;
3080 
3081 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3082 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3083 		if (__folio_lock_killable(folio)) {
3084 			/*
3085 			 * We didn't have the right flags to drop the
3086 			 * fault lock, but all fault_handlers only check
3087 			 * for fatal signals if we return VM_FAULT_RETRY,
3088 			 * so we need to drop the fault lock here and
3089 			 * return 0 if we don't have a fpin.
3090 			 */
3091 			if (*fpin == NULL)
3092 				release_fault_lock(vmf);
3093 			return 0;
3094 		}
3095 	} else
3096 		__folio_lock(folio);
3097 
3098 	return 1;
3099 }
3100 
3101 /*
3102  * Synchronous readahead happens when we don't even find a page in the page
3103  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3104  * to drop the mmap sem we return the file that was pinned in order for us to do
3105  * that.  If we didn't pin a file then we return NULL.  The file that is
3106  * returned needs to be fput()'ed when we're done with it.
3107  */
3108 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3109 {
3110 	struct file *file = vmf->vma->vm_file;
3111 	struct file_ra_state *ra = &file->f_ra;
3112 	struct address_space *mapping = file->f_mapping;
3113 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3114 	struct file *fpin = NULL;
3115 	unsigned long vm_flags = vmf->vma->vm_flags;
3116 	unsigned int mmap_miss;
3117 
3118 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3119 	/* Use the readahead code, even if readahead is disabled */
3120 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3121 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3122 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3123 		ra->size = HPAGE_PMD_NR;
3124 		/*
3125 		 * Fetch two PMD folios, so we get the chance to actually
3126 		 * readahead, unless we've been told not to.
3127 		 */
3128 		if (!(vm_flags & VM_RAND_READ))
3129 			ra->size *= 2;
3130 		ra->async_size = HPAGE_PMD_NR;
3131 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3132 		return fpin;
3133 	}
3134 #endif
3135 
3136 	/* If we don't want any read-ahead, don't bother */
3137 	if (vm_flags & VM_RAND_READ)
3138 		return fpin;
3139 	if (!ra->ra_pages)
3140 		return fpin;
3141 
3142 	if (vm_flags & VM_SEQ_READ) {
3143 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3144 		page_cache_sync_ra(&ractl, ra->ra_pages);
3145 		return fpin;
3146 	}
3147 
3148 	/* Avoid banging the cache line if not needed */
3149 	mmap_miss = READ_ONCE(ra->mmap_miss);
3150 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3151 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3152 
3153 	/*
3154 	 * Do we miss much more than hit in this file? If so,
3155 	 * stop bothering with read-ahead. It will only hurt.
3156 	 */
3157 	if (mmap_miss > MMAP_LOTSAMISS)
3158 		return fpin;
3159 
3160 	/*
3161 	 * mmap read-around
3162 	 */
3163 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3164 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3165 	ra->size = ra->ra_pages;
3166 	ra->async_size = ra->ra_pages / 4;
3167 	ractl._index = ra->start;
3168 	page_cache_ra_order(&ractl, ra, 0);
3169 	return fpin;
3170 }
3171 
3172 /*
3173  * Asynchronous readahead happens when we find the page and PG_readahead,
3174  * so we want to possibly extend the readahead further.  We return the file that
3175  * was pinned if we have to drop the mmap_lock in order to do IO.
3176  */
3177 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3178 					    struct folio *folio)
3179 {
3180 	struct file *file = vmf->vma->vm_file;
3181 	struct file_ra_state *ra = &file->f_ra;
3182 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3183 	struct file *fpin = NULL;
3184 	unsigned int mmap_miss;
3185 
3186 	/* If we don't want any read-ahead, don't bother */
3187 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3188 		return fpin;
3189 
3190 	mmap_miss = READ_ONCE(ra->mmap_miss);
3191 	if (mmap_miss)
3192 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3193 
3194 	if (folio_test_readahead(folio)) {
3195 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3196 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3197 	}
3198 	return fpin;
3199 }
3200 
3201 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3202 {
3203 	struct vm_area_struct *vma = vmf->vma;
3204 	vm_fault_t ret = 0;
3205 	pte_t *ptep;
3206 
3207 	/*
3208 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3209 	 * anon folio mapped. The original pagecache folio is not mlocked and
3210 	 * might have been evicted. During a read+clear/modify/write update of
3211 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3212 	 * temporarily clear the PTE under PT lock and might detect it here as
3213 	 * "none" when not holding the PT lock.
3214 	 *
3215 	 * Not rechecking the PTE under PT lock could result in an unexpected
3216 	 * major fault in an mlock'ed region. Recheck only for this special
3217 	 * scenario while holding the PT lock, to not degrade non-mlocked
3218 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3219 	 * the number of times we hold PT lock.
3220 	 */
3221 	if (!(vma->vm_flags & VM_LOCKED))
3222 		return 0;
3223 
3224 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3225 		return 0;
3226 
3227 	ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3228 				     &vmf->ptl);
3229 	if (unlikely(!ptep))
3230 		return VM_FAULT_NOPAGE;
3231 
3232 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3233 		ret = VM_FAULT_NOPAGE;
3234 	} else {
3235 		spin_lock(vmf->ptl);
3236 		if (unlikely(!pte_none(ptep_get(ptep))))
3237 			ret = VM_FAULT_NOPAGE;
3238 		spin_unlock(vmf->ptl);
3239 	}
3240 	pte_unmap(ptep);
3241 	return ret;
3242 }
3243 
3244 /**
3245  * filemap_fault - read in file data for page fault handling
3246  * @vmf:	struct vm_fault containing details of the fault
3247  *
3248  * filemap_fault() is invoked via the vma operations vector for a
3249  * mapped memory region to read in file data during a page fault.
3250  *
3251  * The goto's are kind of ugly, but this streamlines the normal case of having
3252  * it in the page cache, and handles the special cases reasonably without
3253  * having a lot of duplicated code.
3254  *
3255  * vma->vm_mm->mmap_lock must be held on entry.
3256  *
3257  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3258  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3259  *
3260  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3261  * has not been released.
3262  *
3263  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3264  *
3265  * Return: bitwise-OR of %VM_FAULT_ codes.
3266  */
3267 vm_fault_t filemap_fault(struct vm_fault *vmf)
3268 {
3269 	int error;
3270 	struct file *file = vmf->vma->vm_file;
3271 	struct file *fpin = NULL;
3272 	struct address_space *mapping = file->f_mapping;
3273 	struct inode *inode = mapping->host;
3274 	pgoff_t max_idx, index = vmf->pgoff;
3275 	struct folio *folio;
3276 	vm_fault_t ret = 0;
3277 	bool mapping_locked = false;
3278 
3279 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3280 	if (unlikely(index >= max_idx))
3281 		return VM_FAULT_SIGBUS;
3282 
3283 	trace_mm_filemap_fault(mapping, index);
3284 
3285 	/*
3286 	 * Do we have something in the page cache already?
3287 	 */
3288 	folio = filemap_get_folio(mapping, index);
3289 	if (likely(!IS_ERR(folio))) {
3290 		/*
3291 		 * We found the page, so try async readahead before waiting for
3292 		 * the lock.
3293 		 */
3294 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3295 			fpin = do_async_mmap_readahead(vmf, folio);
3296 		if (unlikely(!folio_test_uptodate(folio))) {
3297 			filemap_invalidate_lock_shared(mapping);
3298 			mapping_locked = true;
3299 		}
3300 	} else {
3301 		ret = filemap_fault_recheck_pte_none(vmf);
3302 		if (unlikely(ret))
3303 			return ret;
3304 
3305 		/* No page in the page cache at all */
3306 		count_vm_event(PGMAJFAULT);
3307 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3308 		ret = VM_FAULT_MAJOR;
3309 		fpin = do_sync_mmap_readahead(vmf);
3310 retry_find:
3311 		/*
3312 		 * See comment in filemap_create_folio() why we need
3313 		 * invalidate_lock
3314 		 */
3315 		if (!mapping_locked) {
3316 			filemap_invalidate_lock_shared(mapping);
3317 			mapping_locked = true;
3318 		}
3319 		folio = __filemap_get_folio(mapping, index,
3320 					  FGP_CREAT|FGP_FOR_MMAP,
3321 					  vmf->gfp_mask);
3322 		if (IS_ERR(folio)) {
3323 			if (fpin)
3324 				goto out_retry;
3325 			filemap_invalidate_unlock_shared(mapping);
3326 			return VM_FAULT_OOM;
3327 		}
3328 	}
3329 
3330 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3331 		goto out_retry;
3332 
3333 	/* Did it get truncated? */
3334 	if (unlikely(folio->mapping != mapping)) {
3335 		folio_unlock(folio);
3336 		folio_put(folio);
3337 		goto retry_find;
3338 	}
3339 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3340 
3341 	/*
3342 	 * We have a locked folio in the page cache, now we need to check
3343 	 * that it's up-to-date. If not, it is going to be due to an error,
3344 	 * or because readahead was otherwise unable to retrieve it.
3345 	 */
3346 	if (unlikely(!folio_test_uptodate(folio))) {
3347 		/*
3348 		 * If the invalidate lock is not held, the folio was in cache
3349 		 * and uptodate and now it is not. Strange but possible since we
3350 		 * didn't hold the page lock all the time. Let's drop
3351 		 * everything, get the invalidate lock and try again.
3352 		 */
3353 		if (!mapping_locked) {
3354 			folio_unlock(folio);
3355 			folio_put(folio);
3356 			goto retry_find;
3357 		}
3358 
3359 		/*
3360 		 * OK, the folio is really not uptodate. This can be because the
3361 		 * VMA has the VM_RAND_READ flag set, or because an error
3362 		 * arose. Let's read it in directly.
3363 		 */
3364 		goto page_not_uptodate;
3365 	}
3366 
3367 	/*
3368 	 * We've made it this far and we had to drop our mmap_lock, now is the
3369 	 * time to return to the upper layer and have it re-find the vma and
3370 	 * redo the fault.
3371 	 */
3372 	if (fpin) {
3373 		folio_unlock(folio);
3374 		goto out_retry;
3375 	}
3376 	if (mapping_locked)
3377 		filemap_invalidate_unlock_shared(mapping);
3378 
3379 	/*
3380 	 * Found the page and have a reference on it.
3381 	 * We must recheck i_size under page lock.
3382 	 */
3383 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3384 	if (unlikely(index >= max_idx)) {
3385 		folio_unlock(folio);
3386 		folio_put(folio);
3387 		return VM_FAULT_SIGBUS;
3388 	}
3389 
3390 	vmf->page = folio_file_page(folio, index);
3391 	return ret | VM_FAULT_LOCKED;
3392 
3393 page_not_uptodate:
3394 	/*
3395 	 * Umm, take care of errors if the page isn't up-to-date.
3396 	 * Try to re-read it _once_. We do this synchronously,
3397 	 * because there really aren't any performance issues here
3398 	 * and we need to check for errors.
3399 	 */
3400 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3401 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3402 	if (fpin)
3403 		goto out_retry;
3404 	folio_put(folio);
3405 
3406 	if (!error || error == AOP_TRUNCATED_PAGE)
3407 		goto retry_find;
3408 	filemap_invalidate_unlock_shared(mapping);
3409 
3410 	return VM_FAULT_SIGBUS;
3411 
3412 out_retry:
3413 	/*
3414 	 * We dropped the mmap_lock, we need to return to the fault handler to
3415 	 * re-find the vma and come back and find our hopefully still populated
3416 	 * page.
3417 	 */
3418 	if (!IS_ERR(folio))
3419 		folio_put(folio);
3420 	if (mapping_locked)
3421 		filemap_invalidate_unlock_shared(mapping);
3422 	if (fpin)
3423 		fput(fpin);
3424 	return ret | VM_FAULT_RETRY;
3425 }
3426 EXPORT_SYMBOL(filemap_fault);
3427 
3428 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3429 		pgoff_t start)
3430 {
3431 	struct mm_struct *mm = vmf->vma->vm_mm;
3432 
3433 	/* Huge page is mapped? No need to proceed. */
3434 	if (pmd_trans_huge(*vmf->pmd)) {
3435 		folio_unlock(folio);
3436 		folio_put(folio);
3437 		return true;
3438 	}
3439 
3440 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3441 		struct page *page = folio_file_page(folio, start);
3442 		vm_fault_t ret = do_set_pmd(vmf, page);
3443 		if (!ret) {
3444 			/* The page is mapped successfully, reference consumed. */
3445 			folio_unlock(folio);
3446 			return true;
3447 		}
3448 	}
3449 
3450 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3451 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3452 
3453 	return false;
3454 }
3455 
3456 static struct folio *next_uptodate_folio(struct xa_state *xas,
3457 		struct address_space *mapping, pgoff_t end_pgoff)
3458 {
3459 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3460 	unsigned long max_idx;
3461 
3462 	do {
3463 		if (!folio)
3464 			return NULL;
3465 		if (xas_retry(xas, folio))
3466 			continue;
3467 		if (xa_is_value(folio))
3468 			continue;
3469 		if (folio_test_locked(folio))
3470 			continue;
3471 		if (!folio_try_get(folio))
3472 			continue;
3473 		/* Has the page moved or been split? */
3474 		if (unlikely(folio != xas_reload(xas)))
3475 			goto skip;
3476 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3477 			goto skip;
3478 		if (!folio_trylock(folio))
3479 			goto skip;
3480 		if (folio->mapping != mapping)
3481 			goto unlock;
3482 		if (!folio_test_uptodate(folio))
3483 			goto unlock;
3484 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3485 		if (xas->xa_index >= max_idx)
3486 			goto unlock;
3487 		return folio;
3488 unlock:
3489 		folio_unlock(folio);
3490 skip:
3491 		folio_put(folio);
3492 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3493 
3494 	return NULL;
3495 }
3496 
3497 /*
3498  * Map page range [start_page, start_page + nr_pages) of folio.
3499  * start_page is gotten from start by folio_page(folio, start)
3500  */
3501 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3502 			struct folio *folio, unsigned long start,
3503 			unsigned long addr, unsigned int nr_pages,
3504 			unsigned long *rss, unsigned int *mmap_miss)
3505 {
3506 	vm_fault_t ret = 0;
3507 	struct page *page = folio_page(folio, start);
3508 	unsigned int count = 0;
3509 	pte_t *old_ptep = vmf->pte;
3510 
3511 	do {
3512 		if (PageHWPoison(page + count))
3513 			goto skip;
3514 
3515 		/*
3516 		 * If there are too many folios that are recently evicted
3517 		 * in a file, they will probably continue to be evicted.
3518 		 * In such situation, read-ahead is only a waste of IO.
3519 		 * Don't decrease mmap_miss in this scenario to make sure
3520 		 * we can stop read-ahead.
3521 		 */
3522 		if (!folio_test_workingset(folio))
3523 			(*mmap_miss)++;
3524 
3525 		/*
3526 		 * NOTE: If there're PTE markers, we'll leave them to be
3527 		 * handled in the specific fault path, and it'll prohibit the
3528 		 * fault-around logic.
3529 		 */
3530 		if (!pte_none(ptep_get(&vmf->pte[count])))
3531 			goto skip;
3532 
3533 		count++;
3534 		continue;
3535 skip:
3536 		if (count) {
3537 			set_pte_range(vmf, folio, page, count, addr);
3538 			*rss += count;
3539 			folio_ref_add(folio, count);
3540 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3541 				ret = VM_FAULT_NOPAGE;
3542 		}
3543 
3544 		count++;
3545 		page += count;
3546 		vmf->pte += count;
3547 		addr += count * PAGE_SIZE;
3548 		count = 0;
3549 	} while (--nr_pages > 0);
3550 
3551 	if (count) {
3552 		set_pte_range(vmf, folio, page, count, addr);
3553 		*rss += count;
3554 		folio_ref_add(folio, count);
3555 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3556 			ret = VM_FAULT_NOPAGE;
3557 	}
3558 
3559 	vmf->pte = old_ptep;
3560 
3561 	return ret;
3562 }
3563 
3564 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3565 		struct folio *folio, unsigned long addr,
3566 		unsigned long *rss, unsigned int *mmap_miss)
3567 {
3568 	vm_fault_t ret = 0;
3569 	struct page *page = &folio->page;
3570 
3571 	if (PageHWPoison(page))
3572 		return ret;
3573 
3574 	/* See comment of filemap_map_folio_range() */
3575 	if (!folio_test_workingset(folio))
3576 		(*mmap_miss)++;
3577 
3578 	/*
3579 	 * NOTE: If there're PTE markers, we'll leave them to be
3580 	 * handled in the specific fault path, and it'll prohibit
3581 	 * the fault-around logic.
3582 	 */
3583 	if (!pte_none(ptep_get(vmf->pte)))
3584 		return ret;
3585 
3586 	if (vmf->address == addr)
3587 		ret = VM_FAULT_NOPAGE;
3588 
3589 	set_pte_range(vmf, folio, page, 1, addr);
3590 	(*rss)++;
3591 	folio_ref_inc(folio);
3592 
3593 	return ret;
3594 }
3595 
3596 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3597 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3598 {
3599 	struct vm_area_struct *vma = vmf->vma;
3600 	struct file *file = vma->vm_file;
3601 	struct address_space *mapping = file->f_mapping;
3602 	pgoff_t last_pgoff = start_pgoff;
3603 	unsigned long addr;
3604 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3605 	struct folio *folio;
3606 	vm_fault_t ret = 0;
3607 	unsigned long rss = 0;
3608 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3609 
3610 	rcu_read_lock();
3611 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3612 	if (!folio)
3613 		goto out;
3614 
3615 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3616 		ret = VM_FAULT_NOPAGE;
3617 		goto out;
3618 	}
3619 
3620 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3621 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3622 	if (!vmf->pte) {
3623 		folio_unlock(folio);
3624 		folio_put(folio);
3625 		goto out;
3626 	}
3627 
3628 	folio_type = mm_counter_file(folio);
3629 	do {
3630 		unsigned long end;
3631 
3632 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3633 		vmf->pte += xas.xa_index - last_pgoff;
3634 		last_pgoff = xas.xa_index;
3635 		end = folio_next_index(folio) - 1;
3636 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3637 
3638 		if (!folio_test_large(folio))
3639 			ret |= filemap_map_order0_folio(vmf,
3640 					folio, addr, &rss, &mmap_miss);
3641 		else
3642 			ret |= filemap_map_folio_range(vmf, folio,
3643 					xas.xa_index - folio->index, addr,
3644 					nr_pages, &rss, &mmap_miss);
3645 
3646 		folio_unlock(folio);
3647 		folio_put(folio);
3648 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3649 	add_mm_counter(vma->vm_mm, folio_type, rss);
3650 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3651 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3652 out:
3653 	rcu_read_unlock();
3654 
3655 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3656 	if (mmap_miss >= mmap_miss_saved)
3657 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3658 	else
3659 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3660 
3661 	return ret;
3662 }
3663 EXPORT_SYMBOL(filemap_map_pages);
3664 
3665 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3666 {
3667 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3668 	struct folio *folio = page_folio(vmf->page);
3669 	vm_fault_t ret = VM_FAULT_LOCKED;
3670 
3671 	sb_start_pagefault(mapping->host->i_sb);
3672 	file_update_time(vmf->vma->vm_file);
3673 	folio_lock(folio);
3674 	if (folio->mapping != mapping) {
3675 		folio_unlock(folio);
3676 		ret = VM_FAULT_NOPAGE;
3677 		goto out;
3678 	}
3679 	/*
3680 	 * We mark the folio dirty already here so that when freeze is in
3681 	 * progress, we are guaranteed that writeback during freezing will
3682 	 * see the dirty folio and writeprotect it again.
3683 	 */
3684 	folio_mark_dirty(folio);
3685 	folio_wait_stable(folio);
3686 out:
3687 	sb_end_pagefault(mapping->host->i_sb);
3688 	return ret;
3689 }
3690 
3691 const struct vm_operations_struct generic_file_vm_ops = {
3692 	.fault		= filemap_fault,
3693 	.map_pages	= filemap_map_pages,
3694 	.page_mkwrite	= filemap_page_mkwrite,
3695 };
3696 
3697 /* This is used for a general mmap of a disk file */
3698 
3699 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3700 {
3701 	struct address_space *mapping = file->f_mapping;
3702 
3703 	if (!mapping->a_ops->read_folio)
3704 		return -ENOEXEC;
3705 	file_accessed(file);
3706 	vma->vm_ops = &generic_file_vm_ops;
3707 	return 0;
3708 }
3709 
3710 /*
3711  * This is for filesystems which do not implement ->writepage.
3712  */
3713 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3714 {
3715 	if (vma_is_shared_maywrite(vma))
3716 		return -EINVAL;
3717 	return generic_file_mmap(file, vma);
3718 }
3719 #else
3720 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3721 {
3722 	return VM_FAULT_SIGBUS;
3723 }
3724 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3725 {
3726 	return -ENOSYS;
3727 }
3728 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3729 {
3730 	return -ENOSYS;
3731 }
3732 #endif /* CONFIG_MMU */
3733 
3734 EXPORT_SYMBOL(filemap_page_mkwrite);
3735 EXPORT_SYMBOL(generic_file_mmap);
3736 EXPORT_SYMBOL(generic_file_readonly_mmap);
3737 
3738 static struct folio *do_read_cache_folio(struct address_space *mapping,
3739 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3740 {
3741 	struct folio *folio;
3742 	int err;
3743 
3744 	if (!filler)
3745 		filler = mapping->a_ops->read_folio;
3746 repeat:
3747 	folio = filemap_get_folio(mapping, index);
3748 	if (IS_ERR(folio)) {
3749 		folio = filemap_alloc_folio(gfp, 0);
3750 		if (!folio)
3751 			return ERR_PTR(-ENOMEM);
3752 		err = filemap_add_folio(mapping, folio, index, gfp);
3753 		if (unlikely(err)) {
3754 			folio_put(folio);
3755 			if (err == -EEXIST)
3756 				goto repeat;
3757 			/* Presumably ENOMEM for xarray node */
3758 			return ERR_PTR(err);
3759 		}
3760 
3761 		goto filler;
3762 	}
3763 	if (folio_test_uptodate(folio))
3764 		goto out;
3765 
3766 	if (!folio_trylock(folio)) {
3767 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3768 		goto repeat;
3769 	}
3770 
3771 	/* Folio was truncated from mapping */
3772 	if (!folio->mapping) {
3773 		folio_unlock(folio);
3774 		folio_put(folio);
3775 		goto repeat;
3776 	}
3777 
3778 	/* Someone else locked and filled the page in a very small window */
3779 	if (folio_test_uptodate(folio)) {
3780 		folio_unlock(folio);
3781 		goto out;
3782 	}
3783 
3784 filler:
3785 	err = filemap_read_folio(file, filler, folio);
3786 	if (err) {
3787 		folio_put(folio);
3788 		if (err == AOP_TRUNCATED_PAGE)
3789 			goto repeat;
3790 		return ERR_PTR(err);
3791 	}
3792 
3793 out:
3794 	folio_mark_accessed(folio);
3795 	return folio;
3796 }
3797 
3798 /**
3799  * read_cache_folio - Read into page cache, fill it if needed.
3800  * @mapping: The address_space to read from.
3801  * @index: The index to read.
3802  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3803  * @file: Passed to filler function, may be NULL if not required.
3804  *
3805  * Read one page into the page cache.  If it succeeds, the folio returned
3806  * will contain @index, but it may not be the first page of the folio.
3807  *
3808  * If the filler function returns an error, it will be returned to the
3809  * caller.
3810  *
3811  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3812  * Return: An uptodate folio on success, ERR_PTR() on failure.
3813  */
3814 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3815 		filler_t filler, struct file *file)
3816 {
3817 	return do_read_cache_folio(mapping, index, filler, file,
3818 			mapping_gfp_mask(mapping));
3819 }
3820 EXPORT_SYMBOL(read_cache_folio);
3821 
3822 /**
3823  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3824  * @mapping:	The address_space for the folio.
3825  * @index:	The index that the allocated folio will contain.
3826  * @gfp:	The page allocator flags to use if allocating.
3827  *
3828  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3829  * any new memory allocations done using the specified allocation flags.
3830  *
3831  * The most likely error from this function is EIO, but ENOMEM is
3832  * possible and so is EINTR.  If ->read_folio returns another error,
3833  * that will be returned to the caller.
3834  *
3835  * The function expects mapping->invalidate_lock to be already held.
3836  *
3837  * Return: Uptodate folio on success, ERR_PTR() on failure.
3838  */
3839 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3840 		pgoff_t index, gfp_t gfp)
3841 {
3842 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3843 }
3844 EXPORT_SYMBOL(mapping_read_folio_gfp);
3845 
3846 static struct page *do_read_cache_page(struct address_space *mapping,
3847 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3848 {
3849 	struct folio *folio;
3850 
3851 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3852 	if (IS_ERR(folio))
3853 		return &folio->page;
3854 	return folio_file_page(folio, index);
3855 }
3856 
3857 struct page *read_cache_page(struct address_space *mapping,
3858 			pgoff_t index, filler_t *filler, struct file *file)
3859 {
3860 	return do_read_cache_page(mapping, index, filler, file,
3861 			mapping_gfp_mask(mapping));
3862 }
3863 EXPORT_SYMBOL(read_cache_page);
3864 
3865 /**
3866  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3867  * @mapping:	the page's address_space
3868  * @index:	the page index
3869  * @gfp:	the page allocator flags to use if allocating
3870  *
3871  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3872  * any new page allocations done using the specified allocation flags.
3873  *
3874  * If the page does not get brought uptodate, return -EIO.
3875  *
3876  * The function expects mapping->invalidate_lock to be already held.
3877  *
3878  * Return: up to date page on success, ERR_PTR() on failure.
3879  */
3880 struct page *read_cache_page_gfp(struct address_space *mapping,
3881 				pgoff_t index,
3882 				gfp_t gfp)
3883 {
3884 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3885 }
3886 EXPORT_SYMBOL(read_cache_page_gfp);
3887 
3888 /*
3889  * Warn about a page cache invalidation failure during a direct I/O write.
3890  */
3891 static void dio_warn_stale_pagecache(struct file *filp)
3892 {
3893 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3894 	char pathname[128];
3895 	char *path;
3896 
3897 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3898 	if (__ratelimit(&_rs)) {
3899 		path = file_path(filp, pathname, sizeof(pathname));
3900 		if (IS_ERR(path))
3901 			path = "(unknown)";
3902 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3903 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3904 			current->comm);
3905 	}
3906 }
3907 
3908 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3909 {
3910 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3911 
3912 	if (mapping->nrpages &&
3913 	    invalidate_inode_pages2_range(mapping,
3914 			iocb->ki_pos >> PAGE_SHIFT,
3915 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3916 		dio_warn_stale_pagecache(iocb->ki_filp);
3917 }
3918 
3919 ssize_t
3920 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3921 {
3922 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3923 	size_t write_len = iov_iter_count(from);
3924 	ssize_t written;
3925 
3926 	/*
3927 	 * If a page can not be invalidated, return 0 to fall back
3928 	 * to buffered write.
3929 	 */
3930 	written = kiocb_invalidate_pages(iocb, write_len);
3931 	if (written) {
3932 		if (written == -EBUSY)
3933 			return 0;
3934 		return written;
3935 	}
3936 
3937 	written = mapping->a_ops->direct_IO(iocb, from);
3938 
3939 	/*
3940 	 * Finally, try again to invalidate clean pages which might have been
3941 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3942 	 * if the source of the write was an mmap'ed region of the file
3943 	 * we're writing.  Either one is a pretty crazy thing to do,
3944 	 * so we don't support it 100%.  If this invalidation
3945 	 * fails, tough, the write still worked...
3946 	 *
3947 	 * Most of the time we do not need this since dio_complete() will do
3948 	 * the invalidation for us. However there are some file systems that
3949 	 * do not end up with dio_complete() being called, so let's not break
3950 	 * them by removing it completely.
3951 	 *
3952 	 * Noticeable example is a blkdev_direct_IO().
3953 	 *
3954 	 * Skip invalidation for async writes or if mapping has no pages.
3955 	 */
3956 	if (written > 0) {
3957 		struct inode *inode = mapping->host;
3958 		loff_t pos = iocb->ki_pos;
3959 
3960 		kiocb_invalidate_post_direct_write(iocb, written);
3961 		pos += written;
3962 		write_len -= written;
3963 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3964 			i_size_write(inode, pos);
3965 			mark_inode_dirty(inode);
3966 		}
3967 		iocb->ki_pos = pos;
3968 	}
3969 	if (written != -EIOCBQUEUED)
3970 		iov_iter_revert(from, write_len - iov_iter_count(from));
3971 	return written;
3972 }
3973 EXPORT_SYMBOL(generic_file_direct_write);
3974 
3975 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3976 {
3977 	struct file *file = iocb->ki_filp;
3978 	loff_t pos = iocb->ki_pos;
3979 	struct address_space *mapping = file->f_mapping;
3980 	const struct address_space_operations *a_ops = mapping->a_ops;
3981 	size_t chunk = mapping_max_folio_size(mapping);
3982 	long status = 0;
3983 	ssize_t written = 0;
3984 
3985 	do {
3986 		struct page *page;
3987 		struct folio *folio;
3988 		size_t offset;		/* Offset into folio */
3989 		size_t bytes;		/* Bytes to write to folio */
3990 		size_t copied;		/* Bytes copied from user */
3991 		void *fsdata = NULL;
3992 
3993 		bytes = iov_iter_count(i);
3994 retry:
3995 		offset = pos & (chunk - 1);
3996 		bytes = min(chunk - offset, bytes);
3997 		balance_dirty_pages_ratelimited(mapping);
3998 
3999 		/*
4000 		 * Bring in the user page that we will copy from _first_.
4001 		 * Otherwise there's a nasty deadlock on copying from the
4002 		 * same page as we're writing to, without it being marked
4003 		 * up-to-date.
4004 		 */
4005 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4006 			status = -EFAULT;
4007 			break;
4008 		}
4009 
4010 		if (fatal_signal_pending(current)) {
4011 			status = -EINTR;
4012 			break;
4013 		}
4014 
4015 		status = a_ops->write_begin(file, mapping, pos, bytes,
4016 						&page, &fsdata);
4017 		if (unlikely(status < 0))
4018 			break;
4019 
4020 		folio = page_folio(page);
4021 		offset = offset_in_folio(folio, pos);
4022 		if (bytes > folio_size(folio) - offset)
4023 			bytes = folio_size(folio) - offset;
4024 
4025 		if (mapping_writably_mapped(mapping))
4026 			flush_dcache_folio(folio);
4027 
4028 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4029 		flush_dcache_folio(folio);
4030 
4031 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4032 						page, fsdata);
4033 		if (unlikely(status != copied)) {
4034 			iov_iter_revert(i, copied - max(status, 0L));
4035 			if (unlikely(status < 0))
4036 				break;
4037 		}
4038 		cond_resched();
4039 
4040 		if (unlikely(status == 0)) {
4041 			/*
4042 			 * A short copy made ->write_end() reject the
4043 			 * thing entirely.  Might be memory poisoning
4044 			 * halfway through, might be a race with munmap,
4045 			 * might be severe memory pressure.
4046 			 */
4047 			if (chunk > PAGE_SIZE)
4048 				chunk /= 2;
4049 			if (copied) {
4050 				bytes = copied;
4051 				goto retry;
4052 			}
4053 		} else {
4054 			pos += status;
4055 			written += status;
4056 		}
4057 	} while (iov_iter_count(i));
4058 
4059 	if (!written)
4060 		return status;
4061 	iocb->ki_pos += written;
4062 	return written;
4063 }
4064 EXPORT_SYMBOL(generic_perform_write);
4065 
4066 /**
4067  * __generic_file_write_iter - write data to a file
4068  * @iocb:	IO state structure (file, offset, etc.)
4069  * @from:	iov_iter with data to write
4070  *
4071  * This function does all the work needed for actually writing data to a
4072  * file. It does all basic checks, removes SUID from the file, updates
4073  * modification times and calls proper subroutines depending on whether we
4074  * do direct IO or a standard buffered write.
4075  *
4076  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4077  * object which does not need locking at all.
4078  *
4079  * This function does *not* take care of syncing data in case of O_SYNC write.
4080  * A caller has to handle it. This is mainly due to the fact that we want to
4081  * avoid syncing under i_rwsem.
4082  *
4083  * Return:
4084  * * number of bytes written, even for truncated writes
4085  * * negative error code if no data has been written at all
4086  */
4087 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4088 {
4089 	struct file *file = iocb->ki_filp;
4090 	struct address_space *mapping = file->f_mapping;
4091 	struct inode *inode = mapping->host;
4092 	ssize_t ret;
4093 
4094 	ret = file_remove_privs(file);
4095 	if (ret)
4096 		return ret;
4097 
4098 	ret = file_update_time(file);
4099 	if (ret)
4100 		return ret;
4101 
4102 	if (iocb->ki_flags & IOCB_DIRECT) {
4103 		ret = generic_file_direct_write(iocb, from);
4104 		/*
4105 		 * If the write stopped short of completing, fall back to
4106 		 * buffered writes.  Some filesystems do this for writes to
4107 		 * holes, for example.  For DAX files, a buffered write will
4108 		 * not succeed (even if it did, DAX does not handle dirty
4109 		 * page-cache pages correctly).
4110 		 */
4111 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4112 			return ret;
4113 		return direct_write_fallback(iocb, from, ret,
4114 				generic_perform_write(iocb, from));
4115 	}
4116 
4117 	return generic_perform_write(iocb, from);
4118 }
4119 EXPORT_SYMBOL(__generic_file_write_iter);
4120 
4121 /**
4122  * generic_file_write_iter - write data to a file
4123  * @iocb:	IO state structure
4124  * @from:	iov_iter with data to write
4125  *
4126  * This is a wrapper around __generic_file_write_iter() to be used by most
4127  * filesystems. It takes care of syncing the file in case of O_SYNC file
4128  * and acquires i_rwsem as needed.
4129  * Return:
4130  * * negative error code if no data has been written at all of
4131  *   vfs_fsync_range() failed for a synchronous write
4132  * * number of bytes written, even for truncated writes
4133  */
4134 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4135 {
4136 	struct file *file = iocb->ki_filp;
4137 	struct inode *inode = file->f_mapping->host;
4138 	ssize_t ret;
4139 
4140 	inode_lock(inode);
4141 	ret = generic_write_checks(iocb, from);
4142 	if (ret > 0)
4143 		ret = __generic_file_write_iter(iocb, from);
4144 	inode_unlock(inode);
4145 
4146 	if (ret > 0)
4147 		ret = generic_write_sync(iocb, ret);
4148 	return ret;
4149 }
4150 EXPORT_SYMBOL(generic_file_write_iter);
4151 
4152 /**
4153  * filemap_release_folio() - Release fs-specific metadata on a folio.
4154  * @folio: The folio which the kernel is trying to free.
4155  * @gfp: Memory allocation flags (and I/O mode).
4156  *
4157  * The address_space is trying to release any data attached to a folio
4158  * (presumably at folio->private).
4159  *
4160  * This will also be called if the private_2 flag is set on a page,
4161  * indicating that the folio has other metadata associated with it.
4162  *
4163  * The @gfp argument specifies whether I/O may be performed to release
4164  * this page (__GFP_IO), and whether the call may block
4165  * (__GFP_RECLAIM & __GFP_FS).
4166  *
4167  * Return: %true if the release was successful, otherwise %false.
4168  */
4169 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4170 {
4171 	struct address_space * const mapping = folio->mapping;
4172 
4173 	BUG_ON(!folio_test_locked(folio));
4174 	if (!folio_needs_release(folio))
4175 		return true;
4176 	if (folio_test_writeback(folio))
4177 		return false;
4178 
4179 	if (mapping && mapping->a_ops->release_folio)
4180 		return mapping->a_ops->release_folio(folio, gfp);
4181 	return try_to_free_buffers(folio);
4182 }
4183 EXPORT_SYMBOL(filemap_release_folio);
4184 
4185 /**
4186  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4187  * @inode: The inode to flush
4188  * @flush: Set to write back rather than simply invalidate.
4189  * @start: First byte to in range.
4190  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4191  *       onwards.
4192  *
4193  * Invalidate all the folios on an inode that contribute to the specified
4194  * range, possibly writing them back first.  Whilst the operation is
4195  * undertaken, the invalidate lock is held to prevent new folios from being
4196  * installed.
4197  */
4198 int filemap_invalidate_inode(struct inode *inode, bool flush,
4199 			     loff_t start, loff_t end)
4200 {
4201 	struct address_space *mapping = inode->i_mapping;
4202 	pgoff_t first = start >> PAGE_SHIFT;
4203 	pgoff_t last = end >> PAGE_SHIFT;
4204 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4205 
4206 	if (!mapping || !mapping->nrpages || end < start)
4207 		goto out;
4208 
4209 	/* Prevent new folios from being added to the inode. */
4210 	filemap_invalidate_lock(mapping);
4211 
4212 	if (!mapping->nrpages)
4213 		goto unlock;
4214 
4215 	unmap_mapping_pages(mapping, first, nr, false);
4216 
4217 	/* Write back the data if we're asked to. */
4218 	if (flush) {
4219 		struct writeback_control wbc = {
4220 			.sync_mode	= WB_SYNC_ALL,
4221 			.nr_to_write	= LONG_MAX,
4222 			.range_start	= start,
4223 			.range_end	= end,
4224 		};
4225 
4226 		filemap_fdatawrite_wbc(mapping, &wbc);
4227 	}
4228 
4229 	/* Wait for writeback to complete on all folios and discard. */
4230 	truncate_inode_pages_range(mapping, start, end);
4231 
4232 unlock:
4233 	filemap_invalidate_unlock(mapping);
4234 out:
4235 	return filemap_check_errors(mapping);
4236 }
4237 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4238 
4239 #ifdef CONFIG_CACHESTAT_SYSCALL
4240 /**
4241  * filemap_cachestat() - compute the page cache statistics of a mapping
4242  * @mapping:	The mapping to compute the statistics for.
4243  * @first_index:	The starting page cache index.
4244  * @last_index:	The final page index (inclusive).
4245  * @cs:	the cachestat struct to write the result to.
4246  *
4247  * This will query the page cache statistics of a mapping in the
4248  * page range of [first_index, last_index] (inclusive). The statistics
4249  * queried include: number of dirty pages, number of pages marked for
4250  * writeback, and the number of (recently) evicted pages.
4251  */
4252 static void filemap_cachestat(struct address_space *mapping,
4253 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4254 {
4255 	XA_STATE(xas, &mapping->i_pages, first_index);
4256 	struct folio *folio;
4257 
4258 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4259 	mem_cgroup_flush_stats_ratelimited(NULL);
4260 
4261 	rcu_read_lock();
4262 	xas_for_each(&xas, folio, last_index) {
4263 		int order;
4264 		unsigned long nr_pages;
4265 		pgoff_t folio_first_index, folio_last_index;
4266 
4267 		/*
4268 		 * Don't deref the folio. It is not pinned, and might
4269 		 * get freed (and reused) underneath us.
4270 		 *
4271 		 * We *could* pin it, but that would be expensive for
4272 		 * what should be a fast and lightweight syscall.
4273 		 *
4274 		 * Instead, derive all information of interest from
4275 		 * the rcu-protected xarray.
4276 		 */
4277 
4278 		if (xas_retry(&xas, folio))
4279 			continue;
4280 
4281 		order = xa_get_order(xas.xa, xas.xa_index);
4282 		nr_pages = 1 << order;
4283 		folio_first_index = round_down(xas.xa_index, 1 << order);
4284 		folio_last_index = folio_first_index + nr_pages - 1;
4285 
4286 		/* Folios might straddle the range boundaries, only count covered pages */
4287 		if (folio_first_index < first_index)
4288 			nr_pages -= first_index - folio_first_index;
4289 
4290 		if (folio_last_index > last_index)
4291 			nr_pages -= folio_last_index - last_index;
4292 
4293 		if (xa_is_value(folio)) {
4294 			/* page is evicted */
4295 			void *shadow = (void *)folio;
4296 			bool workingset; /* not used */
4297 
4298 			cs->nr_evicted += nr_pages;
4299 
4300 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4301 			if (shmem_mapping(mapping)) {
4302 				/* shmem file - in swap cache */
4303 				swp_entry_t swp = radix_to_swp_entry(folio);
4304 
4305 				/* swapin error results in poisoned entry */
4306 				if (non_swap_entry(swp))
4307 					goto resched;
4308 
4309 				/*
4310 				 * Getting a swap entry from the shmem
4311 				 * inode means we beat
4312 				 * shmem_unuse(). rcu_read_lock()
4313 				 * ensures swapoff waits for us before
4314 				 * freeing the swapper space. However,
4315 				 * we can race with swapping and
4316 				 * invalidation, so there might not be
4317 				 * a shadow in the swapcache (yet).
4318 				 */
4319 				shadow = get_shadow_from_swap_cache(swp);
4320 				if (!shadow)
4321 					goto resched;
4322 			}
4323 #endif
4324 			if (workingset_test_recent(shadow, true, &workingset, false))
4325 				cs->nr_recently_evicted += nr_pages;
4326 
4327 			goto resched;
4328 		}
4329 
4330 		/* page is in cache */
4331 		cs->nr_cache += nr_pages;
4332 
4333 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4334 			cs->nr_dirty += nr_pages;
4335 
4336 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4337 			cs->nr_writeback += nr_pages;
4338 
4339 resched:
4340 		if (need_resched()) {
4341 			xas_pause(&xas);
4342 			cond_resched_rcu();
4343 		}
4344 	}
4345 	rcu_read_unlock();
4346 }
4347 
4348 /*
4349  * The cachestat(2) system call.
4350  *
4351  * cachestat() returns the page cache statistics of a file in the
4352  * bytes range specified by `off` and `len`: number of cached pages,
4353  * number of dirty pages, number of pages marked for writeback,
4354  * number of evicted pages, and number of recently evicted pages.
4355  *
4356  * An evicted page is a page that is previously in the page cache
4357  * but has been evicted since. A page is recently evicted if its last
4358  * eviction was recent enough that its reentry to the cache would
4359  * indicate that it is actively being used by the system, and that
4360  * there is memory pressure on the system.
4361  *
4362  * `off` and `len` must be non-negative integers. If `len` > 0,
4363  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4364  * we will query in the range from `off` to the end of the file.
4365  *
4366  * The `flags` argument is unused for now, but is included for future
4367  * extensibility. User should pass 0 (i.e no flag specified).
4368  *
4369  * Currently, hugetlbfs is not supported.
4370  *
4371  * Because the status of a page can change after cachestat() checks it
4372  * but before it returns to the application, the returned values may
4373  * contain stale information.
4374  *
4375  * return values:
4376  *  zero        - success
4377  *  -EFAULT     - cstat or cstat_range points to an illegal address
4378  *  -EINVAL     - invalid flags
4379  *  -EBADF      - invalid file descriptor
4380  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4381  */
4382 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4383 		struct cachestat_range __user *, cstat_range,
4384 		struct cachestat __user *, cstat, unsigned int, flags)
4385 {
4386 	struct fd f = fdget(fd);
4387 	struct address_space *mapping;
4388 	struct cachestat_range csr;
4389 	struct cachestat cs;
4390 	pgoff_t first_index, last_index;
4391 
4392 	if (!f.file)
4393 		return -EBADF;
4394 
4395 	if (copy_from_user(&csr, cstat_range,
4396 			sizeof(struct cachestat_range))) {
4397 		fdput(f);
4398 		return -EFAULT;
4399 	}
4400 
4401 	/* hugetlbfs is not supported */
4402 	if (is_file_hugepages(f.file)) {
4403 		fdput(f);
4404 		return -EOPNOTSUPP;
4405 	}
4406 
4407 	if (flags != 0) {
4408 		fdput(f);
4409 		return -EINVAL;
4410 	}
4411 
4412 	first_index = csr.off >> PAGE_SHIFT;
4413 	last_index =
4414 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4415 	memset(&cs, 0, sizeof(struct cachestat));
4416 	mapping = f.file->f_mapping;
4417 	filemap_cachestat(mapping, first_index, last_index, &cs);
4418 	fdput(f);
4419 
4420 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4421 		return -EFAULT;
4422 
4423 	return 0;
4424 }
4425 #endif /* CONFIG_CACHESTAT_SYSCALL */
4426