1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (truncate_pagecache) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 * 108 * (code doesn't rely on that order, so you could switch it around) 109 * ->tasklist_lock (memory_failure, collect_procs_ao) 110 * ->i_mmap_lock 111 */ 112 113 /* 114 * Remove a page from the page cache and free it. Caller has to make 115 * sure the page is locked and that nobody else uses it - or that usage 116 * is safe. The caller must hold the mapping's tree_lock. 117 */ 118 void __remove_from_page_cache(struct page *page) 119 { 120 struct address_space *mapping = page->mapping; 121 122 radix_tree_delete(&mapping->page_tree, page->index); 123 page->mapping = NULL; 124 mapping->nrpages--; 125 __dec_zone_page_state(page, NR_FILE_PAGES); 126 if (PageSwapBacked(page)) 127 __dec_zone_page_state(page, NR_SHMEM); 128 BUG_ON(page_mapped(page)); 129 130 /* 131 * Some filesystems seem to re-dirty the page even after 132 * the VM has canceled the dirty bit (eg ext3 journaling). 133 * 134 * Fix it up by doing a final dirty accounting check after 135 * having removed the page entirely. 136 */ 137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 138 dec_zone_page_state(page, NR_FILE_DIRTY); 139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 140 } 141 } 142 143 void remove_from_page_cache(struct page *page) 144 { 145 struct address_space *mapping = page->mapping; 146 147 BUG_ON(!PageLocked(page)); 148 149 spin_lock_irq(&mapping->tree_lock); 150 __remove_from_page_cache(page); 151 spin_unlock_irq(&mapping->tree_lock); 152 mem_cgroup_uncharge_cache_page(page); 153 } 154 EXPORT_SYMBOL(remove_from_page_cache); 155 156 static int sync_page(void *word) 157 { 158 struct address_space *mapping; 159 struct page *page; 160 161 page = container_of((unsigned long *)word, struct page, flags); 162 163 /* 164 * page_mapping() is being called without PG_locked held. 165 * Some knowledge of the state and use of the page is used to 166 * reduce the requirements down to a memory barrier. 167 * The danger here is of a stale page_mapping() return value 168 * indicating a struct address_space different from the one it's 169 * associated with when it is associated with one. 170 * After smp_mb(), it's either the correct page_mapping() for 171 * the page, or an old page_mapping() and the page's own 172 * page_mapping() has gone NULL. 173 * The ->sync_page() address_space operation must tolerate 174 * page_mapping() going NULL. By an amazing coincidence, 175 * this comes about because none of the users of the page 176 * in the ->sync_page() methods make essential use of the 177 * page_mapping(), merely passing the page down to the backing 178 * device's unplug functions when it's non-NULL, which in turn 179 * ignore it for all cases but swap, where only page_private(page) is 180 * of interest. When page_mapping() does go NULL, the entire 181 * call stack gracefully ignores the page and returns. 182 * -- wli 183 */ 184 smp_mb(); 185 mapping = page_mapping(page); 186 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 187 mapping->a_ops->sync_page(page); 188 io_schedule(); 189 return 0; 190 } 191 192 static int sync_page_killable(void *word) 193 { 194 sync_page(word); 195 return fatal_signal_pending(current) ? -EINTR : 0; 196 } 197 198 /** 199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 200 * @mapping: address space structure to write 201 * @start: offset in bytes where the range starts 202 * @end: offset in bytes where the range ends (inclusive) 203 * @sync_mode: enable synchronous operation 204 * 205 * Start writeback against all of a mapping's dirty pages that lie 206 * within the byte offsets <start, end> inclusive. 207 * 208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 209 * opposed to a regular memory cleansing writeback. The difference between 210 * these two operations is that if a dirty page/buffer is encountered, it must 211 * be waited upon, and not just skipped over. 212 */ 213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 214 loff_t end, int sync_mode) 215 { 216 int ret; 217 struct writeback_control wbc = { 218 .sync_mode = sync_mode, 219 .nr_to_write = LONG_MAX, 220 .range_start = start, 221 .range_end = end, 222 }; 223 224 if (!mapping_cap_writeback_dirty(mapping)) 225 return 0; 226 227 ret = do_writepages(mapping, &wbc); 228 return ret; 229 } 230 231 static inline int __filemap_fdatawrite(struct address_space *mapping, 232 int sync_mode) 233 { 234 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 235 } 236 237 int filemap_fdatawrite(struct address_space *mapping) 238 { 239 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 240 } 241 EXPORT_SYMBOL(filemap_fdatawrite); 242 243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 244 loff_t end) 245 { 246 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 247 } 248 EXPORT_SYMBOL(filemap_fdatawrite_range); 249 250 /** 251 * filemap_flush - mostly a non-blocking flush 252 * @mapping: target address_space 253 * 254 * This is a mostly non-blocking flush. Not suitable for data-integrity 255 * purposes - I/O may not be started against all dirty pages. 256 */ 257 int filemap_flush(struct address_space *mapping) 258 { 259 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 260 } 261 EXPORT_SYMBOL(filemap_flush); 262 263 /** 264 * filemap_fdatawait_range - wait for writeback to complete 265 * @mapping: address space structure to wait for 266 * @start_byte: offset in bytes where the range starts 267 * @end_byte: offset in bytes where the range ends (inclusive) 268 * 269 * Walk the list of under-writeback pages of the given address space 270 * in the given range and wait for all of them. 271 */ 272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 273 loff_t end_byte) 274 { 275 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 276 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 277 struct pagevec pvec; 278 int nr_pages; 279 int ret = 0; 280 281 if (end_byte < start_byte) 282 return 0; 283 284 pagevec_init(&pvec, 0); 285 while ((index <= end) && 286 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 287 PAGECACHE_TAG_WRITEBACK, 288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 289 unsigned i; 290 291 for (i = 0; i < nr_pages; i++) { 292 struct page *page = pvec.pages[i]; 293 294 /* until radix tree lookup accepts end_index */ 295 if (page->index > end) 296 continue; 297 298 wait_on_page_writeback(page); 299 if (PageError(page)) 300 ret = -EIO; 301 } 302 pagevec_release(&pvec); 303 cond_resched(); 304 } 305 306 /* Check for outstanding write errors */ 307 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 308 ret = -ENOSPC; 309 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 310 ret = -EIO; 311 312 return ret; 313 } 314 EXPORT_SYMBOL(filemap_fdatawait_range); 315 316 /** 317 * filemap_fdatawait - wait for all under-writeback pages to complete 318 * @mapping: address space structure to wait for 319 * 320 * Walk the list of under-writeback pages of the given address space 321 * and wait for all of them. 322 */ 323 int filemap_fdatawait(struct address_space *mapping) 324 { 325 loff_t i_size = i_size_read(mapping->host); 326 327 if (i_size == 0) 328 return 0; 329 330 return filemap_fdatawait_range(mapping, 0, i_size - 1); 331 } 332 EXPORT_SYMBOL(filemap_fdatawait); 333 334 int filemap_write_and_wait(struct address_space *mapping) 335 { 336 int err = 0; 337 338 if (mapping->nrpages) { 339 err = filemap_fdatawrite(mapping); 340 /* 341 * Even if the above returned error, the pages may be 342 * written partially (e.g. -ENOSPC), so we wait for it. 343 * But the -EIO is special case, it may indicate the worst 344 * thing (e.g. bug) happened, so we avoid waiting for it. 345 */ 346 if (err != -EIO) { 347 int err2 = filemap_fdatawait(mapping); 348 if (!err) 349 err = err2; 350 } 351 } 352 return err; 353 } 354 EXPORT_SYMBOL(filemap_write_and_wait); 355 356 /** 357 * filemap_write_and_wait_range - write out & wait on a file range 358 * @mapping: the address_space for the pages 359 * @lstart: offset in bytes where the range starts 360 * @lend: offset in bytes where the range ends (inclusive) 361 * 362 * Write out and wait upon file offsets lstart->lend, inclusive. 363 * 364 * Note that `lend' is inclusive (describes the last byte to be written) so 365 * that this function can be used to write to the very end-of-file (end = -1). 366 */ 367 int filemap_write_and_wait_range(struct address_space *mapping, 368 loff_t lstart, loff_t lend) 369 { 370 int err = 0; 371 372 if (mapping->nrpages) { 373 err = __filemap_fdatawrite_range(mapping, lstart, lend, 374 WB_SYNC_ALL); 375 /* See comment of filemap_write_and_wait() */ 376 if (err != -EIO) { 377 int err2 = filemap_fdatawait_range(mapping, 378 lstart, lend); 379 if (!err) 380 err = err2; 381 } 382 } 383 return err; 384 } 385 EXPORT_SYMBOL(filemap_write_and_wait_range); 386 387 /** 388 * add_to_page_cache_locked - add a locked page to the pagecache 389 * @page: page to add 390 * @mapping: the page's address_space 391 * @offset: page index 392 * @gfp_mask: page allocation mode 393 * 394 * This function is used to add a page to the pagecache. It must be locked. 395 * This function does not add the page to the LRU. The caller must do that. 396 */ 397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 398 pgoff_t offset, gfp_t gfp_mask) 399 { 400 int error; 401 402 VM_BUG_ON(!PageLocked(page)); 403 404 error = mem_cgroup_cache_charge(page, current->mm, 405 gfp_mask & GFP_RECLAIM_MASK); 406 if (error) 407 goto out; 408 409 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 410 if (error == 0) { 411 page_cache_get(page); 412 page->mapping = mapping; 413 page->index = offset; 414 415 spin_lock_irq(&mapping->tree_lock); 416 error = radix_tree_insert(&mapping->page_tree, offset, page); 417 if (likely(!error)) { 418 mapping->nrpages++; 419 __inc_zone_page_state(page, NR_FILE_PAGES); 420 if (PageSwapBacked(page)) 421 __inc_zone_page_state(page, NR_SHMEM); 422 spin_unlock_irq(&mapping->tree_lock); 423 } else { 424 page->mapping = NULL; 425 spin_unlock_irq(&mapping->tree_lock); 426 mem_cgroup_uncharge_cache_page(page); 427 page_cache_release(page); 428 } 429 radix_tree_preload_end(); 430 } else 431 mem_cgroup_uncharge_cache_page(page); 432 out: 433 return error; 434 } 435 EXPORT_SYMBOL(add_to_page_cache_locked); 436 437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int ret; 441 442 /* 443 * Splice_read and readahead add shmem/tmpfs pages into the page cache 444 * before shmem_readpage has a chance to mark them as SwapBacked: they 445 * need to go on the anon lru below, and mem_cgroup_cache_charge 446 * (called in add_to_page_cache) needs to know where they're going too. 447 */ 448 if (mapping_cap_swap_backed(mapping)) 449 SetPageSwapBacked(page); 450 451 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 452 if (ret == 0) { 453 if (page_is_file_cache(page)) 454 lru_cache_add_file(page); 455 else 456 lru_cache_add_anon(page); 457 } 458 return ret; 459 } 460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 461 462 #ifdef CONFIG_NUMA 463 struct page *__page_cache_alloc(gfp_t gfp) 464 { 465 int n; 466 struct page *page; 467 468 if (cpuset_do_page_mem_spread()) { 469 get_mems_allowed(); 470 n = cpuset_mem_spread_node(); 471 page = alloc_pages_exact_node(n, gfp, 0); 472 put_mems_allowed(); 473 return page; 474 } 475 return alloc_pages(gfp, 0); 476 } 477 EXPORT_SYMBOL(__page_cache_alloc); 478 #endif 479 480 static int __sleep_on_page_lock(void *word) 481 { 482 io_schedule(); 483 return 0; 484 } 485 486 /* 487 * In order to wait for pages to become available there must be 488 * waitqueues associated with pages. By using a hash table of 489 * waitqueues where the bucket discipline is to maintain all 490 * waiters on the same queue and wake all when any of the pages 491 * become available, and for the woken contexts to check to be 492 * sure the appropriate page became available, this saves space 493 * at a cost of "thundering herd" phenomena during rare hash 494 * collisions. 495 */ 496 static wait_queue_head_t *page_waitqueue(struct page *page) 497 { 498 const struct zone *zone = page_zone(page); 499 500 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 501 } 502 503 static inline void wake_up_page(struct page *page, int bit) 504 { 505 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 506 } 507 508 void wait_on_page_bit(struct page *page, int bit_nr) 509 { 510 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 511 512 if (test_bit(bit_nr, &page->flags)) 513 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 514 TASK_UNINTERRUPTIBLE); 515 } 516 EXPORT_SYMBOL(wait_on_page_bit); 517 518 /** 519 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 520 * @page: Page defining the wait queue of interest 521 * @waiter: Waiter to add to the queue 522 * 523 * Add an arbitrary @waiter to the wait queue for the nominated @page. 524 */ 525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 526 { 527 wait_queue_head_t *q = page_waitqueue(page); 528 unsigned long flags; 529 530 spin_lock_irqsave(&q->lock, flags); 531 __add_wait_queue(q, waiter); 532 spin_unlock_irqrestore(&q->lock, flags); 533 } 534 EXPORT_SYMBOL_GPL(add_page_wait_queue); 535 536 /** 537 * unlock_page - unlock a locked page 538 * @page: the page 539 * 540 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 541 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 542 * mechananism between PageLocked pages and PageWriteback pages is shared. 543 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 544 * 545 * The mb is necessary to enforce ordering between the clear_bit and the read 546 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 547 */ 548 void unlock_page(struct page *page) 549 { 550 VM_BUG_ON(!PageLocked(page)); 551 clear_bit_unlock(PG_locked, &page->flags); 552 smp_mb__after_clear_bit(); 553 wake_up_page(page, PG_locked); 554 } 555 EXPORT_SYMBOL(unlock_page); 556 557 /** 558 * end_page_writeback - end writeback against a page 559 * @page: the page 560 */ 561 void end_page_writeback(struct page *page) 562 { 563 if (TestClearPageReclaim(page)) 564 rotate_reclaimable_page(page); 565 566 if (!test_clear_page_writeback(page)) 567 BUG(); 568 569 smp_mb__after_clear_bit(); 570 wake_up_page(page, PG_writeback); 571 } 572 EXPORT_SYMBOL(end_page_writeback); 573 574 /** 575 * __lock_page - get a lock on the page, assuming we need to sleep to get it 576 * @page: the page to lock 577 * 578 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 579 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 580 * chances are that on the second loop, the block layer's plug list is empty, 581 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 582 */ 583 void __lock_page(struct page *page) 584 { 585 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 586 587 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 588 TASK_UNINTERRUPTIBLE); 589 } 590 EXPORT_SYMBOL(__lock_page); 591 592 int __lock_page_killable(struct page *page) 593 { 594 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 595 596 return __wait_on_bit_lock(page_waitqueue(page), &wait, 597 sync_page_killable, TASK_KILLABLE); 598 } 599 EXPORT_SYMBOL_GPL(__lock_page_killable); 600 601 /** 602 * __lock_page_nosync - get a lock on the page, without calling sync_page() 603 * @page: the page to lock 604 * 605 * Variant of lock_page that does not require the caller to hold a reference 606 * on the page's mapping. 607 */ 608 void __lock_page_nosync(struct page *page) 609 { 610 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 611 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 612 TASK_UNINTERRUPTIBLE); 613 } 614 615 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 616 unsigned int flags) 617 { 618 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) { 619 __lock_page(page); 620 return 1; 621 } else { 622 up_read(&mm->mmap_sem); 623 wait_on_page_locked(page); 624 return 0; 625 } 626 } 627 628 /** 629 * find_get_page - find and get a page reference 630 * @mapping: the address_space to search 631 * @offset: the page index 632 * 633 * Is there a pagecache struct page at the given (mapping, offset) tuple? 634 * If yes, increment its refcount and return it; if no, return NULL. 635 */ 636 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 637 { 638 void **pagep; 639 struct page *page; 640 641 rcu_read_lock(); 642 repeat: 643 page = NULL; 644 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 645 if (pagep) { 646 page = radix_tree_deref_slot(pagep); 647 if (unlikely(!page)) 648 goto out; 649 if (radix_tree_deref_retry(page)) 650 goto repeat; 651 652 if (!page_cache_get_speculative(page)) 653 goto repeat; 654 655 /* 656 * Has the page moved? 657 * This is part of the lockless pagecache protocol. See 658 * include/linux/pagemap.h for details. 659 */ 660 if (unlikely(page != *pagep)) { 661 page_cache_release(page); 662 goto repeat; 663 } 664 } 665 out: 666 rcu_read_unlock(); 667 668 return page; 669 } 670 EXPORT_SYMBOL(find_get_page); 671 672 /** 673 * find_lock_page - locate, pin and lock a pagecache page 674 * @mapping: the address_space to search 675 * @offset: the page index 676 * 677 * Locates the desired pagecache page, locks it, increments its reference 678 * count and returns its address. 679 * 680 * Returns zero if the page was not present. find_lock_page() may sleep. 681 */ 682 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 683 { 684 struct page *page; 685 686 repeat: 687 page = find_get_page(mapping, offset); 688 if (page) { 689 lock_page(page); 690 /* Has the page been truncated? */ 691 if (unlikely(page->mapping != mapping)) { 692 unlock_page(page); 693 page_cache_release(page); 694 goto repeat; 695 } 696 VM_BUG_ON(page->index != offset); 697 } 698 return page; 699 } 700 EXPORT_SYMBOL(find_lock_page); 701 702 /** 703 * find_or_create_page - locate or add a pagecache page 704 * @mapping: the page's address_space 705 * @index: the page's index into the mapping 706 * @gfp_mask: page allocation mode 707 * 708 * Locates a page in the pagecache. If the page is not present, a new page 709 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 710 * LRU list. The returned page is locked and has its reference count 711 * incremented. 712 * 713 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 714 * allocation! 715 * 716 * find_or_create_page() returns the desired page's address, or zero on 717 * memory exhaustion. 718 */ 719 struct page *find_or_create_page(struct address_space *mapping, 720 pgoff_t index, gfp_t gfp_mask) 721 { 722 struct page *page; 723 int err; 724 repeat: 725 page = find_lock_page(mapping, index); 726 if (!page) { 727 page = __page_cache_alloc(gfp_mask); 728 if (!page) 729 return NULL; 730 /* 731 * We want a regular kernel memory (not highmem or DMA etc) 732 * allocation for the radix tree nodes, but we need to honour 733 * the context-specific requirements the caller has asked for. 734 * GFP_RECLAIM_MASK collects those requirements. 735 */ 736 err = add_to_page_cache_lru(page, mapping, index, 737 (gfp_mask & GFP_RECLAIM_MASK)); 738 if (unlikely(err)) { 739 page_cache_release(page); 740 page = NULL; 741 if (err == -EEXIST) 742 goto repeat; 743 } 744 } 745 return page; 746 } 747 EXPORT_SYMBOL(find_or_create_page); 748 749 /** 750 * find_get_pages - gang pagecache lookup 751 * @mapping: The address_space to search 752 * @start: The starting page index 753 * @nr_pages: The maximum number of pages 754 * @pages: Where the resulting pages are placed 755 * 756 * find_get_pages() will search for and return a group of up to 757 * @nr_pages pages in the mapping. The pages are placed at @pages. 758 * find_get_pages() takes a reference against the returned pages. 759 * 760 * The search returns a group of mapping-contiguous pages with ascending 761 * indexes. There may be holes in the indices due to not-present pages. 762 * 763 * find_get_pages() returns the number of pages which were found. 764 */ 765 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 766 unsigned int nr_pages, struct page **pages) 767 { 768 unsigned int i; 769 unsigned int ret; 770 unsigned int nr_found; 771 772 rcu_read_lock(); 773 restart: 774 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 775 (void ***)pages, start, nr_pages); 776 ret = 0; 777 for (i = 0; i < nr_found; i++) { 778 struct page *page; 779 repeat: 780 page = radix_tree_deref_slot((void **)pages[i]); 781 if (unlikely(!page)) 782 continue; 783 if (radix_tree_deref_retry(page)) { 784 if (ret) 785 start = pages[ret-1]->index; 786 goto restart; 787 } 788 789 if (!page_cache_get_speculative(page)) 790 goto repeat; 791 792 /* Has the page moved? */ 793 if (unlikely(page != *((void **)pages[i]))) { 794 page_cache_release(page); 795 goto repeat; 796 } 797 798 pages[ret] = page; 799 ret++; 800 } 801 rcu_read_unlock(); 802 return ret; 803 } 804 805 /** 806 * find_get_pages_contig - gang contiguous pagecache lookup 807 * @mapping: The address_space to search 808 * @index: The starting page index 809 * @nr_pages: The maximum number of pages 810 * @pages: Where the resulting pages are placed 811 * 812 * find_get_pages_contig() works exactly like find_get_pages(), except 813 * that the returned number of pages are guaranteed to be contiguous. 814 * 815 * find_get_pages_contig() returns the number of pages which were found. 816 */ 817 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 818 unsigned int nr_pages, struct page **pages) 819 { 820 unsigned int i; 821 unsigned int ret; 822 unsigned int nr_found; 823 824 rcu_read_lock(); 825 restart: 826 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 827 (void ***)pages, index, nr_pages); 828 ret = 0; 829 for (i = 0; i < nr_found; i++) { 830 struct page *page; 831 repeat: 832 page = radix_tree_deref_slot((void **)pages[i]); 833 if (unlikely(!page)) 834 continue; 835 if (radix_tree_deref_retry(page)) 836 goto restart; 837 838 if (page->mapping == NULL || page->index != index) 839 break; 840 841 if (!page_cache_get_speculative(page)) 842 goto repeat; 843 844 /* Has the page moved? */ 845 if (unlikely(page != *((void **)pages[i]))) { 846 page_cache_release(page); 847 goto repeat; 848 } 849 850 pages[ret] = page; 851 ret++; 852 index++; 853 } 854 rcu_read_unlock(); 855 return ret; 856 } 857 EXPORT_SYMBOL(find_get_pages_contig); 858 859 /** 860 * find_get_pages_tag - find and return pages that match @tag 861 * @mapping: the address_space to search 862 * @index: the starting page index 863 * @tag: the tag index 864 * @nr_pages: the maximum number of pages 865 * @pages: where the resulting pages are placed 866 * 867 * Like find_get_pages, except we only return pages which are tagged with 868 * @tag. We update @index to index the next page for the traversal. 869 */ 870 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 871 int tag, unsigned int nr_pages, struct page **pages) 872 { 873 unsigned int i; 874 unsigned int ret; 875 unsigned int nr_found; 876 877 rcu_read_lock(); 878 restart: 879 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 880 (void ***)pages, *index, nr_pages, tag); 881 ret = 0; 882 for (i = 0; i < nr_found; i++) { 883 struct page *page; 884 repeat: 885 page = radix_tree_deref_slot((void **)pages[i]); 886 if (unlikely(!page)) 887 continue; 888 if (radix_tree_deref_retry(page)) 889 goto restart; 890 891 if (!page_cache_get_speculative(page)) 892 goto repeat; 893 894 /* Has the page moved? */ 895 if (unlikely(page != *((void **)pages[i]))) { 896 page_cache_release(page); 897 goto repeat; 898 } 899 900 pages[ret] = page; 901 ret++; 902 } 903 rcu_read_unlock(); 904 905 if (ret) 906 *index = pages[ret - 1]->index + 1; 907 908 return ret; 909 } 910 EXPORT_SYMBOL(find_get_pages_tag); 911 912 /** 913 * grab_cache_page_nowait - returns locked page at given index in given cache 914 * @mapping: target address_space 915 * @index: the page index 916 * 917 * Same as grab_cache_page(), but do not wait if the page is unavailable. 918 * This is intended for speculative data generators, where the data can 919 * be regenerated if the page couldn't be grabbed. This routine should 920 * be safe to call while holding the lock for another page. 921 * 922 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 923 * and deadlock against the caller's locked page. 924 */ 925 struct page * 926 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 927 { 928 struct page *page = find_get_page(mapping, index); 929 930 if (page) { 931 if (trylock_page(page)) 932 return page; 933 page_cache_release(page); 934 return NULL; 935 } 936 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 937 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 938 page_cache_release(page); 939 page = NULL; 940 } 941 return page; 942 } 943 EXPORT_SYMBOL(grab_cache_page_nowait); 944 945 /* 946 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 947 * a _large_ part of the i/o request. Imagine the worst scenario: 948 * 949 * ---R__________________________________________B__________ 950 * ^ reading here ^ bad block(assume 4k) 951 * 952 * read(R) => miss => readahead(R...B) => media error => frustrating retries 953 * => failing the whole request => read(R) => read(R+1) => 954 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 955 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 956 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 957 * 958 * It is going insane. Fix it by quickly scaling down the readahead size. 959 */ 960 static void shrink_readahead_size_eio(struct file *filp, 961 struct file_ra_state *ra) 962 { 963 ra->ra_pages /= 4; 964 } 965 966 /** 967 * do_generic_file_read - generic file read routine 968 * @filp: the file to read 969 * @ppos: current file position 970 * @desc: read_descriptor 971 * @actor: read method 972 * 973 * This is a generic file read routine, and uses the 974 * mapping->a_ops->readpage() function for the actual low-level stuff. 975 * 976 * This is really ugly. But the goto's actually try to clarify some 977 * of the logic when it comes to error handling etc. 978 */ 979 static void do_generic_file_read(struct file *filp, loff_t *ppos, 980 read_descriptor_t *desc, read_actor_t actor) 981 { 982 struct address_space *mapping = filp->f_mapping; 983 struct inode *inode = mapping->host; 984 struct file_ra_state *ra = &filp->f_ra; 985 pgoff_t index; 986 pgoff_t last_index; 987 pgoff_t prev_index; 988 unsigned long offset; /* offset into pagecache page */ 989 unsigned int prev_offset; 990 int error; 991 992 index = *ppos >> PAGE_CACHE_SHIFT; 993 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 994 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 995 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 996 offset = *ppos & ~PAGE_CACHE_MASK; 997 998 for (;;) { 999 struct page *page; 1000 pgoff_t end_index; 1001 loff_t isize; 1002 unsigned long nr, ret; 1003 1004 cond_resched(); 1005 find_page: 1006 page = find_get_page(mapping, index); 1007 if (!page) { 1008 page_cache_sync_readahead(mapping, 1009 ra, filp, 1010 index, last_index - index); 1011 page = find_get_page(mapping, index); 1012 if (unlikely(page == NULL)) 1013 goto no_cached_page; 1014 } 1015 if (PageReadahead(page)) { 1016 page_cache_async_readahead(mapping, 1017 ra, filp, page, 1018 index, last_index - index); 1019 } 1020 if (!PageUptodate(page)) { 1021 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1022 !mapping->a_ops->is_partially_uptodate) 1023 goto page_not_up_to_date; 1024 if (!trylock_page(page)) 1025 goto page_not_up_to_date; 1026 /* Did it get truncated before we got the lock? */ 1027 if (!page->mapping) 1028 goto page_not_up_to_date_locked; 1029 if (!mapping->a_ops->is_partially_uptodate(page, 1030 desc, offset)) 1031 goto page_not_up_to_date_locked; 1032 unlock_page(page); 1033 } 1034 page_ok: 1035 /* 1036 * i_size must be checked after we know the page is Uptodate. 1037 * 1038 * Checking i_size after the check allows us to calculate 1039 * the correct value for "nr", which means the zero-filled 1040 * part of the page is not copied back to userspace (unless 1041 * another truncate extends the file - this is desired though). 1042 */ 1043 1044 isize = i_size_read(inode); 1045 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1046 if (unlikely(!isize || index > end_index)) { 1047 page_cache_release(page); 1048 goto out; 1049 } 1050 1051 /* nr is the maximum number of bytes to copy from this page */ 1052 nr = PAGE_CACHE_SIZE; 1053 if (index == end_index) { 1054 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1055 if (nr <= offset) { 1056 page_cache_release(page); 1057 goto out; 1058 } 1059 } 1060 nr = nr - offset; 1061 1062 /* If users can be writing to this page using arbitrary 1063 * virtual addresses, take care about potential aliasing 1064 * before reading the page on the kernel side. 1065 */ 1066 if (mapping_writably_mapped(mapping)) 1067 flush_dcache_page(page); 1068 1069 /* 1070 * When a sequential read accesses a page several times, 1071 * only mark it as accessed the first time. 1072 */ 1073 if (prev_index != index || offset != prev_offset) 1074 mark_page_accessed(page); 1075 prev_index = index; 1076 1077 /* 1078 * Ok, we have the page, and it's up-to-date, so 1079 * now we can copy it to user space... 1080 * 1081 * The actor routine returns how many bytes were actually used.. 1082 * NOTE! This may not be the same as how much of a user buffer 1083 * we filled up (we may be padding etc), so we can only update 1084 * "pos" here (the actor routine has to update the user buffer 1085 * pointers and the remaining count). 1086 */ 1087 ret = actor(desc, page, offset, nr); 1088 offset += ret; 1089 index += offset >> PAGE_CACHE_SHIFT; 1090 offset &= ~PAGE_CACHE_MASK; 1091 prev_offset = offset; 1092 1093 page_cache_release(page); 1094 if (ret == nr && desc->count) 1095 continue; 1096 goto out; 1097 1098 page_not_up_to_date: 1099 /* Get exclusive access to the page ... */ 1100 error = lock_page_killable(page); 1101 if (unlikely(error)) 1102 goto readpage_error; 1103 1104 page_not_up_to_date_locked: 1105 /* Did it get truncated before we got the lock? */ 1106 if (!page->mapping) { 1107 unlock_page(page); 1108 page_cache_release(page); 1109 continue; 1110 } 1111 1112 /* Did somebody else fill it already? */ 1113 if (PageUptodate(page)) { 1114 unlock_page(page); 1115 goto page_ok; 1116 } 1117 1118 readpage: 1119 /* 1120 * A previous I/O error may have been due to temporary 1121 * failures, eg. multipath errors. 1122 * PG_error will be set again if readpage fails. 1123 */ 1124 ClearPageError(page); 1125 /* Start the actual read. The read will unlock the page. */ 1126 error = mapping->a_ops->readpage(filp, page); 1127 1128 if (unlikely(error)) { 1129 if (error == AOP_TRUNCATED_PAGE) { 1130 page_cache_release(page); 1131 goto find_page; 1132 } 1133 goto readpage_error; 1134 } 1135 1136 if (!PageUptodate(page)) { 1137 error = lock_page_killable(page); 1138 if (unlikely(error)) 1139 goto readpage_error; 1140 if (!PageUptodate(page)) { 1141 if (page->mapping == NULL) { 1142 /* 1143 * invalidate_mapping_pages got it 1144 */ 1145 unlock_page(page); 1146 page_cache_release(page); 1147 goto find_page; 1148 } 1149 unlock_page(page); 1150 shrink_readahead_size_eio(filp, ra); 1151 error = -EIO; 1152 goto readpage_error; 1153 } 1154 unlock_page(page); 1155 } 1156 1157 goto page_ok; 1158 1159 readpage_error: 1160 /* UHHUH! A synchronous read error occurred. Report it */ 1161 desc->error = error; 1162 page_cache_release(page); 1163 goto out; 1164 1165 no_cached_page: 1166 /* 1167 * Ok, it wasn't cached, so we need to create a new 1168 * page.. 1169 */ 1170 page = page_cache_alloc_cold(mapping); 1171 if (!page) { 1172 desc->error = -ENOMEM; 1173 goto out; 1174 } 1175 error = add_to_page_cache_lru(page, mapping, 1176 index, GFP_KERNEL); 1177 if (error) { 1178 page_cache_release(page); 1179 if (error == -EEXIST) 1180 goto find_page; 1181 desc->error = error; 1182 goto out; 1183 } 1184 goto readpage; 1185 } 1186 1187 out: 1188 ra->prev_pos = prev_index; 1189 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1190 ra->prev_pos |= prev_offset; 1191 1192 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1193 file_accessed(filp); 1194 } 1195 1196 int file_read_actor(read_descriptor_t *desc, struct page *page, 1197 unsigned long offset, unsigned long size) 1198 { 1199 char *kaddr; 1200 unsigned long left, count = desc->count; 1201 1202 if (size > count) 1203 size = count; 1204 1205 /* 1206 * Faults on the destination of a read are common, so do it before 1207 * taking the kmap. 1208 */ 1209 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1210 kaddr = kmap_atomic(page, KM_USER0); 1211 left = __copy_to_user_inatomic(desc->arg.buf, 1212 kaddr + offset, size); 1213 kunmap_atomic(kaddr, KM_USER0); 1214 if (left == 0) 1215 goto success; 1216 } 1217 1218 /* Do it the slow way */ 1219 kaddr = kmap(page); 1220 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1221 kunmap(page); 1222 1223 if (left) { 1224 size -= left; 1225 desc->error = -EFAULT; 1226 } 1227 success: 1228 desc->count = count - size; 1229 desc->written += size; 1230 desc->arg.buf += size; 1231 return size; 1232 } 1233 1234 /* 1235 * Performs necessary checks before doing a write 1236 * @iov: io vector request 1237 * @nr_segs: number of segments in the iovec 1238 * @count: number of bytes to write 1239 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1240 * 1241 * Adjust number of segments and amount of bytes to write (nr_segs should be 1242 * properly initialized first). Returns appropriate error code that caller 1243 * should return or zero in case that write should be allowed. 1244 */ 1245 int generic_segment_checks(const struct iovec *iov, 1246 unsigned long *nr_segs, size_t *count, int access_flags) 1247 { 1248 unsigned long seg; 1249 size_t cnt = 0; 1250 for (seg = 0; seg < *nr_segs; seg++) { 1251 const struct iovec *iv = &iov[seg]; 1252 1253 /* 1254 * If any segment has a negative length, or the cumulative 1255 * length ever wraps negative then return -EINVAL. 1256 */ 1257 cnt += iv->iov_len; 1258 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1259 return -EINVAL; 1260 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1261 continue; 1262 if (seg == 0) 1263 return -EFAULT; 1264 *nr_segs = seg; 1265 cnt -= iv->iov_len; /* This segment is no good */ 1266 break; 1267 } 1268 *count = cnt; 1269 return 0; 1270 } 1271 EXPORT_SYMBOL(generic_segment_checks); 1272 1273 /** 1274 * generic_file_aio_read - generic filesystem read routine 1275 * @iocb: kernel I/O control block 1276 * @iov: io vector request 1277 * @nr_segs: number of segments in the iovec 1278 * @pos: current file position 1279 * 1280 * This is the "read()" routine for all filesystems 1281 * that can use the page cache directly. 1282 */ 1283 ssize_t 1284 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1285 unsigned long nr_segs, loff_t pos) 1286 { 1287 struct file *filp = iocb->ki_filp; 1288 ssize_t retval; 1289 unsigned long seg = 0; 1290 size_t count; 1291 loff_t *ppos = &iocb->ki_pos; 1292 1293 count = 0; 1294 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1295 if (retval) 1296 return retval; 1297 1298 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1299 if (filp->f_flags & O_DIRECT) { 1300 loff_t size; 1301 struct address_space *mapping; 1302 struct inode *inode; 1303 1304 mapping = filp->f_mapping; 1305 inode = mapping->host; 1306 if (!count) 1307 goto out; /* skip atime */ 1308 size = i_size_read(inode); 1309 if (pos < size) { 1310 retval = filemap_write_and_wait_range(mapping, pos, 1311 pos + iov_length(iov, nr_segs) - 1); 1312 if (!retval) { 1313 retval = mapping->a_ops->direct_IO(READ, iocb, 1314 iov, pos, nr_segs); 1315 } 1316 if (retval > 0) { 1317 *ppos = pos + retval; 1318 count -= retval; 1319 } 1320 1321 /* 1322 * Btrfs can have a short DIO read if we encounter 1323 * compressed extents, so if there was an error, or if 1324 * we've already read everything we wanted to, or if 1325 * there was a short read because we hit EOF, go ahead 1326 * and return. Otherwise fallthrough to buffered io for 1327 * the rest of the read. 1328 */ 1329 if (retval < 0 || !count || *ppos >= size) { 1330 file_accessed(filp); 1331 goto out; 1332 } 1333 } 1334 } 1335 1336 count = retval; 1337 for (seg = 0; seg < nr_segs; seg++) { 1338 read_descriptor_t desc; 1339 loff_t offset = 0; 1340 1341 /* 1342 * If we did a short DIO read we need to skip the section of the 1343 * iov that we've already read data into. 1344 */ 1345 if (count) { 1346 if (count > iov[seg].iov_len) { 1347 count -= iov[seg].iov_len; 1348 continue; 1349 } 1350 offset = count; 1351 count = 0; 1352 } 1353 1354 desc.written = 0; 1355 desc.arg.buf = iov[seg].iov_base + offset; 1356 desc.count = iov[seg].iov_len - offset; 1357 if (desc.count == 0) 1358 continue; 1359 desc.error = 0; 1360 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1361 retval += desc.written; 1362 if (desc.error) { 1363 retval = retval ?: desc.error; 1364 break; 1365 } 1366 if (desc.count > 0) 1367 break; 1368 } 1369 out: 1370 return retval; 1371 } 1372 EXPORT_SYMBOL(generic_file_aio_read); 1373 1374 static ssize_t 1375 do_readahead(struct address_space *mapping, struct file *filp, 1376 pgoff_t index, unsigned long nr) 1377 { 1378 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1379 return -EINVAL; 1380 1381 force_page_cache_readahead(mapping, filp, index, nr); 1382 return 0; 1383 } 1384 1385 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1386 { 1387 ssize_t ret; 1388 struct file *file; 1389 1390 ret = -EBADF; 1391 file = fget(fd); 1392 if (file) { 1393 if (file->f_mode & FMODE_READ) { 1394 struct address_space *mapping = file->f_mapping; 1395 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1396 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1397 unsigned long len = end - start + 1; 1398 ret = do_readahead(mapping, file, start, len); 1399 } 1400 fput(file); 1401 } 1402 return ret; 1403 } 1404 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1405 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1406 { 1407 return SYSC_readahead((int) fd, offset, (size_t) count); 1408 } 1409 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1410 #endif 1411 1412 #ifdef CONFIG_MMU 1413 /** 1414 * page_cache_read - adds requested page to the page cache if not already there 1415 * @file: file to read 1416 * @offset: page index 1417 * 1418 * This adds the requested page to the page cache if it isn't already there, 1419 * and schedules an I/O to read in its contents from disk. 1420 */ 1421 static int page_cache_read(struct file *file, pgoff_t offset) 1422 { 1423 struct address_space *mapping = file->f_mapping; 1424 struct page *page; 1425 int ret; 1426 1427 do { 1428 page = page_cache_alloc_cold(mapping); 1429 if (!page) 1430 return -ENOMEM; 1431 1432 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1433 if (ret == 0) 1434 ret = mapping->a_ops->readpage(file, page); 1435 else if (ret == -EEXIST) 1436 ret = 0; /* losing race to add is OK */ 1437 1438 page_cache_release(page); 1439 1440 } while (ret == AOP_TRUNCATED_PAGE); 1441 1442 return ret; 1443 } 1444 1445 #define MMAP_LOTSAMISS (100) 1446 1447 /* 1448 * Synchronous readahead happens when we don't even find 1449 * a page in the page cache at all. 1450 */ 1451 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1452 struct file_ra_state *ra, 1453 struct file *file, 1454 pgoff_t offset) 1455 { 1456 unsigned long ra_pages; 1457 struct address_space *mapping = file->f_mapping; 1458 1459 /* If we don't want any read-ahead, don't bother */ 1460 if (VM_RandomReadHint(vma)) 1461 return; 1462 1463 if (VM_SequentialReadHint(vma) || 1464 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1465 page_cache_sync_readahead(mapping, ra, file, offset, 1466 ra->ra_pages); 1467 return; 1468 } 1469 1470 if (ra->mmap_miss < INT_MAX) 1471 ra->mmap_miss++; 1472 1473 /* 1474 * Do we miss much more than hit in this file? If so, 1475 * stop bothering with read-ahead. It will only hurt. 1476 */ 1477 if (ra->mmap_miss > MMAP_LOTSAMISS) 1478 return; 1479 1480 /* 1481 * mmap read-around 1482 */ 1483 ra_pages = max_sane_readahead(ra->ra_pages); 1484 if (ra_pages) { 1485 ra->start = max_t(long, 0, offset - ra_pages/2); 1486 ra->size = ra_pages; 1487 ra->async_size = 0; 1488 ra_submit(ra, mapping, file); 1489 } 1490 } 1491 1492 /* 1493 * Asynchronous readahead happens when we find the page and PG_readahead, 1494 * so we want to possibly extend the readahead further.. 1495 */ 1496 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1497 struct file_ra_state *ra, 1498 struct file *file, 1499 struct page *page, 1500 pgoff_t offset) 1501 { 1502 struct address_space *mapping = file->f_mapping; 1503 1504 /* If we don't want any read-ahead, don't bother */ 1505 if (VM_RandomReadHint(vma)) 1506 return; 1507 if (ra->mmap_miss > 0) 1508 ra->mmap_miss--; 1509 if (PageReadahead(page)) 1510 page_cache_async_readahead(mapping, ra, file, 1511 page, offset, ra->ra_pages); 1512 } 1513 1514 /** 1515 * filemap_fault - read in file data for page fault handling 1516 * @vma: vma in which the fault was taken 1517 * @vmf: struct vm_fault containing details of the fault 1518 * 1519 * filemap_fault() is invoked via the vma operations vector for a 1520 * mapped memory region to read in file data during a page fault. 1521 * 1522 * The goto's are kind of ugly, but this streamlines the normal case of having 1523 * it in the page cache, and handles the special cases reasonably without 1524 * having a lot of duplicated code. 1525 */ 1526 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1527 { 1528 int error; 1529 struct file *file = vma->vm_file; 1530 struct address_space *mapping = file->f_mapping; 1531 struct file_ra_state *ra = &file->f_ra; 1532 struct inode *inode = mapping->host; 1533 pgoff_t offset = vmf->pgoff; 1534 struct page *page; 1535 pgoff_t size; 1536 int ret = 0; 1537 1538 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1539 if (offset >= size) 1540 return VM_FAULT_SIGBUS; 1541 1542 /* 1543 * Do we have something in the page cache already? 1544 */ 1545 page = find_get_page(mapping, offset); 1546 if (likely(page)) { 1547 /* 1548 * We found the page, so try async readahead before 1549 * waiting for the lock. 1550 */ 1551 do_async_mmap_readahead(vma, ra, file, page, offset); 1552 } else { 1553 /* No page in the page cache at all */ 1554 do_sync_mmap_readahead(vma, ra, file, offset); 1555 count_vm_event(PGMAJFAULT); 1556 ret = VM_FAULT_MAJOR; 1557 retry_find: 1558 page = find_get_page(mapping, offset); 1559 if (!page) 1560 goto no_cached_page; 1561 } 1562 1563 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1564 page_cache_release(page); 1565 return ret | VM_FAULT_RETRY; 1566 } 1567 1568 /* Did it get truncated? */ 1569 if (unlikely(page->mapping != mapping)) { 1570 unlock_page(page); 1571 put_page(page); 1572 goto retry_find; 1573 } 1574 VM_BUG_ON(page->index != offset); 1575 1576 /* 1577 * We have a locked page in the page cache, now we need to check 1578 * that it's up-to-date. If not, it is going to be due to an error. 1579 */ 1580 if (unlikely(!PageUptodate(page))) 1581 goto page_not_uptodate; 1582 1583 /* 1584 * Found the page and have a reference on it. 1585 * We must recheck i_size under page lock. 1586 */ 1587 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1588 if (unlikely(offset >= size)) { 1589 unlock_page(page); 1590 page_cache_release(page); 1591 return VM_FAULT_SIGBUS; 1592 } 1593 1594 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1595 vmf->page = page; 1596 return ret | VM_FAULT_LOCKED; 1597 1598 no_cached_page: 1599 /* 1600 * We're only likely to ever get here if MADV_RANDOM is in 1601 * effect. 1602 */ 1603 error = page_cache_read(file, offset); 1604 1605 /* 1606 * The page we want has now been added to the page cache. 1607 * In the unlikely event that someone removed it in the 1608 * meantime, we'll just come back here and read it again. 1609 */ 1610 if (error >= 0) 1611 goto retry_find; 1612 1613 /* 1614 * An error return from page_cache_read can result if the 1615 * system is low on memory, or a problem occurs while trying 1616 * to schedule I/O. 1617 */ 1618 if (error == -ENOMEM) 1619 return VM_FAULT_OOM; 1620 return VM_FAULT_SIGBUS; 1621 1622 page_not_uptodate: 1623 /* 1624 * Umm, take care of errors if the page isn't up-to-date. 1625 * Try to re-read it _once_. We do this synchronously, 1626 * because there really aren't any performance issues here 1627 * and we need to check for errors. 1628 */ 1629 ClearPageError(page); 1630 error = mapping->a_ops->readpage(file, page); 1631 if (!error) { 1632 wait_on_page_locked(page); 1633 if (!PageUptodate(page)) 1634 error = -EIO; 1635 } 1636 page_cache_release(page); 1637 1638 if (!error || error == AOP_TRUNCATED_PAGE) 1639 goto retry_find; 1640 1641 /* Things didn't work out. Return zero to tell the mm layer so. */ 1642 shrink_readahead_size_eio(file, ra); 1643 return VM_FAULT_SIGBUS; 1644 } 1645 EXPORT_SYMBOL(filemap_fault); 1646 1647 const struct vm_operations_struct generic_file_vm_ops = { 1648 .fault = filemap_fault, 1649 }; 1650 1651 /* This is used for a general mmap of a disk file */ 1652 1653 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1654 { 1655 struct address_space *mapping = file->f_mapping; 1656 1657 if (!mapping->a_ops->readpage) 1658 return -ENOEXEC; 1659 file_accessed(file); 1660 vma->vm_ops = &generic_file_vm_ops; 1661 vma->vm_flags |= VM_CAN_NONLINEAR; 1662 return 0; 1663 } 1664 1665 /* 1666 * This is for filesystems which do not implement ->writepage. 1667 */ 1668 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1669 { 1670 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1671 return -EINVAL; 1672 return generic_file_mmap(file, vma); 1673 } 1674 #else 1675 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1676 { 1677 return -ENOSYS; 1678 } 1679 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1680 { 1681 return -ENOSYS; 1682 } 1683 #endif /* CONFIG_MMU */ 1684 1685 EXPORT_SYMBOL(generic_file_mmap); 1686 EXPORT_SYMBOL(generic_file_readonly_mmap); 1687 1688 static struct page *__read_cache_page(struct address_space *mapping, 1689 pgoff_t index, 1690 int (*filler)(void *,struct page*), 1691 void *data, 1692 gfp_t gfp) 1693 { 1694 struct page *page; 1695 int err; 1696 repeat: 1697 page = find_get_page(mapping, index); 1698 if (!page) { 1699 page = __page_cache_alloc(gfp | __GFP_COLD); 1700 if (!page) 1701 return ERR_PTR(-ENOMEM); 1702 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1703 if (unlikely(err)) { 1704 page_cache_release(page); 1705 if (err == -EEXIST) 1706 goto repeat; 1707 /* Presumably ENOMEM for radix tree node */ 1708 return ERR_PTR(err); 1709 } 1710 err = filler(data, page); 1711 if (err < 0) { 1712 page_cache_release(page); 1713 page = ERR_PTR(err); 1714 } 1715 } 1716 return page; 1717 } 1718 1719 static struct page *do_read_cache_page(struct address_space *mapping, 1720 pgoff_t index, 1721 int (*filler)(void *,struct page*), 1722 void *data, 1723 gfp_t gfp) 1724 1725 { 1726 struct page *page; 1727 int err; 1728 1729 retry: 1730 page = __read_cache_page(mapping, index, filler, data, gfp); 1731 if (IS_ERR(page)) 1732 return page; 1733 if (PageUptodate(page)) 1734 goto out; 1735 1736 lock_page(page); 1737 if (!page->mapping) { 1738 unlock_page(page); 1739 page_cache_release(page); 1740 goto retry; 1741 } 1742 if (PageUptodate(page)) { 1743 unlock_page(page); 1744 goto out; 1745 } 1746 err = filler(data, page); 1747 if (err < 0) { 1748 page_cache_release(page); 1749 return ERR_PTR(err); 1750 } 1751 out: 1752 mark_page_accessed(page); 1753 return page; 1754 } 1755 1756 /** 1757 * read_cache_page_async - read into page cache, fill it if needed 1758 * @mapping: the page's address_space 1759 * @index: the page index 1760 * @filler: function to perform the read 1761 * @data: destination for read data 1762 * 1763 * Same as read_cache_page, but don't wait for page to become unlocked 1764 * after submitting it to the filler. 1765 * 1766 * Read into the page cache. If a page already exists, and PageUptodate() is 1767 * not set, try to fill the page but don't wait for it to become unlocked. 1768 * 1769 * If the page does not get brought uptodate, return -EIO. 1770 */ 1771 struct page *read_cache_page_async(struct address_space *mapping, 1772 pgoff_t index, 1773 int (*filler)(void *,struct page*), 1774 void *data) 1775 { 1776 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 1777 } 1778 EXPORT_SYMBOL(read_cache_page_async); 1779 1780 static struct page *wait_on_page_read(struct page *page) 1781 { 1782 if (!IS_ERR(page)) { 1783 wait_on_page_locked(page); 1784 if (!PageUptodate(page)) { 1785 page_cache_release(page); 1786 page = ERR_PTR(-EIO); 1787 } 1788 } 1789 return page; 1790 } 1791 1792 /** 1793 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 1794 * @mapping: the page's address_space 1795 * @index: the page index 1796 * @gfp: the page allocator flags to use if allocating 1797 * 1798 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 1799 * any new page allocations done using the specified allocation flags. Note 1800 * that the Radix tree operations will still use GFP_KERNEL, so you can't 1801 * expect to do this atomically or anything like that - but you can pass in 1802 * other page requirements. 1803 * 1804 * If the page does not get brought uptodate, return -EIO. 1805 */ 1806 struct page *read_cache_page_gfp(struct address_space *mapping, 1807 pgoff_t index, 1808 gfp_t gfp) 1809 { 1810 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 1811 1812 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp)); 1813 } 1814 EXPORT_SYMBOL(read_cache_page_gfp); 1815 1816 /** 1817 * read_cache_page - read into page cache, fill it if needed 1818 * @mapping: the page's address_space 1819 * @index: the page index 1820 * @filler: function to perform the read 1821 * @data: destination for read data 1822 * 1823 * Read into the page cache. If a page already exists, and PageUptodate() is 1824 * not set, try to fill the page then wait for it to become unlocked. 1825 * 1826 * If the page does not get brought uptodate, return -EIO. 1827 */ 1828 struct page *read_cache_page(struct address_space *mapping, 1829 pgoff_t index, 1830 int (*filler)(void *,struct page*), 1831 void *data) 1832 { 1833 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data)); 1834 } 1835 EXPORT_SYMBOL(read_cache_page); 1836 1837 /* 1838 * The logic we want is 1839 * 1840 * if suid or (sgid and xgrp) 1841 * remove privs 1842 */ 1843 int should_remove_suid(struct dentry *dentry) 1844 { 1845 mode_t mode = dentry->d_inode->i_mode; 1846 int kill = 0; 1847 1848 /* suid always must be killed */ 1849 if (unlikely(mode & S_ISUID)) 1850 kill = ATTR_KILL_SUID; 1851 1852 /* 1853 * sgid without any exec bits is just a mandatory locking mark; leave 1854 * it alone. If some exec bits are set, it's a real sgid; kill it. 1855 */ 1856 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1857 kill |= ATTR_KILL_SGID; 1858 1859 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1860 return kill; 1861 1862 return 0; 1863 } 1864 EXPORT_SYMBOL(should_remove_suid); 1865 1866 static int __remove_suid(struct dentry *dentry, int kill) 1867 { 1868 struct iattr newattrs; 1869 1870 newattrs.ia_valid = ATTR_FORCE | kill; 1871 return notify_change(dentry, &newattrs); 1872 } 1873 1874 int file_remove_suid(struct file *file) 1875 { 1876 struct dentry *dentry = file->f_path.dentry; 1877 int killsuid = should_remove_suid(dentry); 1878 int killpriv = security_inode_need_killpriv(dentry); 1879 int error = 0; 1880 1881 if (killpriv < 0) 1882 return killpriv; 1883 if (killpriv) 1884 error = security_inode_killpriv(dentry); 1885 if (!error && killsuid) 1886 error = __remove_suid(dentry, killsuid); 1887 1888 return error; 1889 } 1890 EXPORT_SYMBOL(file_remove_suid); 1891 1892 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1893 const struct iovec *iov, size_t base, size_t bytes) 1894 { 1895 size_t copied = 0, left = 0; 1896 1897 while (bytes) { 1898 char __user *buf = iov->iov_base + base; 1899 int copy = min(bytes, iov->iov_len - base); 1900 1901 base = 0; 1902 left = __copy_from_user_inatomic(vaddr, buf, copy); 1903 copied += copy; 1904 bytes -= copy; 1905 vaddr += copy; 1906 iov++; 1907 1908 if (unlikely(left)) 1909 break; 1910 } 1911 return copied - left; 1912 } 1913 1914 /* 1915 * Copy as much as we can into the page and return the number of bytes which 1916 * were successfully copied. If a fault is encountered then return the number of 1917 * bytes which were copied. 1918 */ 1919 size_t iov_iter_copy_from_user_atomic(struct page *page, 1920 struct iov_iter *i, unsigned long offset, size_t bytes) 1921 { 1922 char *kaddr; 1923 size_t copied; 1924 1925 BUG_ON(!in_atomic()); 1926 kaddr = kmap_atomic(page, KM_USER0); 1927 if (likely(i->nr_segs == 1)) { 1928 int left; 1929 char __user *buf = i->iov->iov_base + i->iov_offset; 1930 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1931 copied = bytes - left; 1932 } else { 1933 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1934 i->iov, i->iov_offset, bytes); 1935 } 1936 kunmap_atomic(kaddr, KM_USER0); 1937 1938 return copied; 1939 } 1940 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1941 1942 /* 1943 * This has the same sideeffects and return value as 1944 * iov_iter_copy_from_user_atomic(). 1945 * The difference is that it attempts to resolve faults. 1946 * Page must not be locked. 1947 */ 1948 size_t iov_iter_copy_from_user(struct page *page, 1949 struct iov_iter *i, unsigned long offset, size_t bytes) 1950 { 1951 char *kaddr; 1952 size_t copied; 1953 1954 kaddr = kmap(page); 1955 if (likely(i->nr_segs == 1)) { 1956 int left; 1957 char __user *buf = i->iov->iov_base + i->iov_offset; 1958 left = __copy_from_user(kaddr + offset, buf, bytes); 1959 copied = bytes - left; 1960 } else { 1961 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1962 i->iov, i->iov_offset, bytes); 1963 } 1964 kunmap(page); 1965 return copied; 1966 } 1967 EXPORT_SYMBOL(iov_iter_copy_from_user); 1968 1969 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1970 { 1971 BUG_ON(i->count < bytes); 1972 1973 if (likely(i->nr_segs == 1)) { 1974 i->iov_offset += bytes; 1975 i->count -= bytes; 1976 } else { 1977 const struct iovec *iov = i->iov; 1978 size_t base = i->iov_offset; 1979 1980 /* 1981 * The !iov->iov_len check ensures we skip over unlikely 1982 * zero-length segments (without overruning the iovec). 1983 */ 1984 while (bytes || unlikely(i->count && !iov->iov_len)) { 1985 int copy; 1986 1987 copy = min(bytes, iov->iov_len - base); 1988 BUG_ON(!i->count || i->count < copy); 1989 i->count -= copy; 1990 bytes -= copy; 1991 base += copy; 1992 if (iov->iov_len == base) { 1993 iov++; 1994 base = 0; 1995 } 1996 } 1997 i->iov = iov; 1998 i->iov_offset = base; 1999 } 2000 } 2001 EXPORT_SYMBOL(iov_iter_advance); 2002 2003 /* 2004 * Fault in the first iovec of the given iov_iter, to a maximum length 2005 * of bytes. Returns 0 on success, or non-zero if the memory could not be 2006 * accessed (ie. because it is an invalid address). 2007 * 2008 * writev-intensive code may want this to prefault several iovecs -- that 2009 * would be possible (callers must not rely on the fact that _only_ the 2010 * first iovec will be faulted with the current implementation). 2011 */ 2012 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 2013 { 2014 char __user *buf = i->iov->iov_base + i->iov_offset; 2015 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 2016 return fault_in_pages_readable(buf, bytes); 2017 } 2018 EXPORT_SYMBOL(iov_iter_fault_in_readable); 2019 2020 /* 2021 * Return the count of just the current iov_iter segment. 2022 */ 2023 size_t iov_iter_single_seg_count(struct iov_iter *i) 2024 { 2025 const struct iovec *iov = i->iov; 2026 if (i->nr_segs == 1) 2027 return i->count; 2028 else 2029 return min(i->count, iov->iov_len - i->iov_offset); 2030 } 2031 EXPORT_SYMBOL(iov_iter_single_seg_count); 2032 2033 /* 2034 * Performs necessary checks before doing a write 2035 * 2036 * Can adjust writing position or amount of bytes to write. 2037 * Returns appropriate error code that caller should return or 2038 * zero in case that write should be allowed. 2039 */ 2040 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2041 { 2042 struct inode *inode = file->f_mapping->host; 2043 unsigned long limit = rlimit(RLIMIT_FSIZE); 2044 2045 if (unlikely(*pos < 0)) 2046 return -EINVAL; 2047 2048 if (!isblk) { 2049 /* FIXME: this is for backwards compatibility with 2.4 */ 2050 if (file->f_flags & O_APPEND) 2051 *pos = i_size_read(inode); 2052 2053 if (limit != RLIM_INFINITY) { 2054 if (*pos >= limit) { 2055 send_sig(SIGXFSZ, current, 0); 2056 return -EFBIG; 2057 } 2058 if (*count > limit - (typeof(limit))*pos) { 2059 *count = limit - (typeof(limit))*pos; 2060 } 2061 } 2062 } 2063 2064 /* 2065 * LFS rule 2066 */ 2067 if (unlikely(*pos + *count > MAX_NON_LFS && 2068 !(file->f_flags & O_LARGEFILE))) { 2069 if (*pos >= MAX_NON_LFS) { 2070 return -EFBIG; 2071 } 2072 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2073 *count = MAX_NON_LFS - (unsigned long)*pos; 2074 } 2075 } 2076 2077 /* 2078 * Are we about to exceed the fs block limit ? 2079 * 2080 * If we have written data it becomes a short write. If we have 2081 * exceeded without writing data we send a signal and return EFBIG. 2082 * Linus frestrict idea will clean these up nicely.. 2083 */ 2084 if (likely(!isblk)) { 2085 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2086 if (*count || *pos > inode->i_sb->s_maxbytes) { 2087 return -EFBIG; 2088 } 2089 /* zero-length writes at ->s_maxbytes are OK */ 2090 } 2091 2092 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2093 *count = inode->i_sb->s_maxbytes - *pos; 2094 } else { 2095 #ifdef CONFIG_BLOCK 2096 loff_t isize; 2097 if (bdev_read_only(I_BDEV(inode))) 2098 return -EPERM; 2099 isize = i_size_read(inode); 2100 if (*pos >= isize) { 2101 if (*count || *pos > isize) 2102 return -ENOSPC; 2103 } 2104 2105 if (*pos + *count > isize) 2106 *count = isize - *pos; 2107 #else 2108 return -EPERM; 2109 #endif 2110 } 2111 return 0; 2112 } 2113 EXPORT_SYMBOL(generic_write_checks); 2114 2115 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2116 loff_t pos, unsigned len, unsigned flags, 2117 struct page **pagep, void **fsdata) 2118 { 2119 const struct address_space_operations *aops = mapping->a_ops; 2120 2121 return aops->write_begin(file, mapping, pos, len, flags, 2122 pagep, fsdata); 2123 } 2124 EXPORT_SYMBOL(pagecache_write_begin); 2125 2126 int pagecache_write_end(struct file *file, struct address_space *mapping, 2127 loff_t pos, unsigned len, unsigned copied, 2128 struct page *page, void *fsdata) 2129 { 2130 const struct address_space_operations *aops = mapping->a_ops; 2131 2132 mark_page_accessed(page); 2133 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2134 } 2135 EXPORT_SYMBOL(pagecache_write_end); 2136 2137 ssize_t 2138 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2139 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2140 size_t count, size_t ocount) 2141 { 2142 struct file *file = iocb->ki_filp; 2143 struct address_space *mapping = file->f_mapping; 2144 struct inode *inode = mapping->host; 2145 ssize_t written; 2146 size_t write_len; 2147 pgoff_t end; 2148 2149 if (count != ocount) 2150 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2151 2152 write_len = iov_length(iov, *nr_segs); 2153 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2154 2155 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2156 if (written) 2157 goto out; 2158 2159 /* 2160 * After a write we want buffered reads to be sure to go to disk to get 2161 * the new data. We invalidate clean cached page from the region we're 2162 * about to write. We do this *before* the write so that we can return 2163 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2164 */ 2165 if (mapping->nrpages) { 2166 written = invalidate_inode_pages2_range(mapping, 2167 pos >> PAGE_CACHE_SHIFT, end); 2168 /* 2169 * If a page can not be invalidated, return 0 to fall back 2170 * to buffered write. 2171 */ 2172 if (written) { 2173 if (written == -EBUSY) 2174 return 0; 2175 goto out; 2176 } 2177 } 2178 2179 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2180 2181 /* 2182 * Finally, try again to invalidate clean pages which might have been 2183 * cached by non-direct readahead, or faulted in by get_user_pages() 2184 * if the source of the write was an mmap'ed region of the file 2185 * we're writing. Either one is a pretty crazy thing to do, 2186 * so we don't support it 100%. If this invalidation 2187 * fails, tough, the write still worked... 2188 */ 2189 if (mapping->nrpages) { 2190 invalidate_inode_pages2_range(mapping, 2191 pos >> PAGE_CACHE_SHIFT, end); 2192 } 2193 2194 if (written > 0) { 2195 pos += written; 2196 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2197 i_size_write(inode, pos); 2198 mark_inode_dirty(inode); 2199 } 2200 *ppos = pos; 2201 } 2202 out: 2203 return written; 2204 } 2205 EXPORT_SYMBOL(generic_file_direct_write); 2206 2207 /* 2208 * Find or create a page at the given pagecache position. Return the locked 2209 * page. This function is specifically for buffered writes. 2210 */ 2211 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2212 pgoff_t index, unsigned flags) 2213 { 2214 int status; 2215 struct page *page; 2216 gfp_t gfp_notmask = 0; 2217 if (flags & AOP_FLAG_NOFS) 2218 gfp_notmask = __GFP_FS; 2219 repeat: 2220 page = find_lock_page(mapping, index); 2221 if (likely(page)) 2222 return page; 2223 2224 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2225 if (!page) 2226 return NULL; 2227 status = add_to_page_cache_lru(page, mapping, index, 2228 GFP_KERNEL & ~gfp_notmask); 2229 if (unlikely(status)) { 2230 page_cache_release(page); 2231 if (status == -EEXIST) 2232 goto repeat; 2233 return NULL; 2234 } 2235 return page; 2236 } 2237 EXPORT_SYMBOL(grab_cache_page_write_begin); 2238 2239 static ssize_t generic_perform_write(struct file *file, 2240 struct iov_iter *i, loff_t pos) 2241 { 2242 struct address_space *mapping = file->f_mapping; 2243 const struct address_space_operations *a_ops = mapping->a_ops; 2244 long status = 0; 2245 ssize_t written = 0; 2246 unsigned int flags = 0; 2247 2248 /* 2249 * Copies from kernel address space cannot fail (NFSD is a big user). 2250 */ 2251 if (segment_eq(get_fs(), KERNEL_DS)) 2252 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2253 2254 do { 2255 struct page *page; 2256 unsigned long offset; /* Offset into pagecache page */ 2257 unsigned long bytes; /* Bytes to write to page */ 2258 size_t copied; /* Bytes copied from user */ 2259 void *fsdata; 2260 2261 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2262 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2263 iov_iter_count(i)); 2264 2265 again: 2266 2267 /* 2268 * Bring in the user page that we will copy from _first_. 2269 * Otherwise there's a nasty deadlock on copying from the 2270 * same page as we're writing to, without it being marked 2271 * up-to-date. 2272 * 2273 * Not only is this an optimisation, but it is also required 2274 * to check that the address is actually valid, when atomic 2275 * usercopies are used, below. 2276 */ 2277 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2278 status = -EFAULT; 2279 break; 2280 } 2281 2282 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2283 &page, &fsdata); 2284 if (unlikely(status)) 2285 break; 2286 2287 if (mapping_writably_mapped(mapping)) 2288 flush_dcache_page(page); 2289 2290 pagefault_disable(); 2291 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2292 pagefault_enable(); 2293 flush_dcache_page(page); 2294 2295 mark_page_accessed(page); 2296 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2297 page, fsdata); 2298 if (unlikely(status < 0)) 2299 break; 2300 copied = status; 2301 2302 cond_resched(); 2303 2304 iov_iter_advance(i, copied); 2305 if (unlikely(copied == 0)) { 2306 /* 2307 * If we were unable to copy any data at all, we must 2308 * fall back to a single segment length write. 2309 * 2310 * If we didn't fallback here, we could livelock 2311 * because not all segments in the iov can be copied at 2312 * once without a pagefault. 2313 */ 2314 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2315 iov_iter_single_seg_count(i)); 2316 goto again; 2317 } 2318 pos += copied; 2319 written += copied; 2320 2321 balance_dirty_pages_ratelimited(mapping); 2322 2323 } while (iov_iter_count(i)); 2324 2325 return written ? written : status; 2326 } 2327 2328 ssize_t 2329 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2330 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2331 size_t count, ssize_t written) 2332 { 2333 struct file *file = iocb->ki_filp; 2334 ssize_t status; 2335 struct iov_iter i; 2336 2337 iov_iter_init(&i, iov, nr_segs, count, written); 2338 status = generic_perform_write(file, &i, pos); 2339 2340 if (likely(status >= 0)) { 2341 written += status; 2342 *ppos = pos + status; 2343 } 2344 2345 return written ? written : status; 2346 } 2347 EXPORT_SYMBOL(generic_file_buffered_write); 2348 2349 /** 2350 * __generic_file_aio_write - write data to a file 2351 * @iocb: IO state structure (file, offset, etc.) 2352 * @iov: vector with data to write 2353 * @nr_segs: number of segments in the vector 2354 * @ppos: position where to write 2355 * 2356 * This function does all the work needed for actually writing data to a 2357 * file. It does all basic checks, removes SUID from the file, updates 2358 * modification times and calls proper subroutines depending on whether we 2359 * do direct IO or a standard buffered write. 2360 * 2361 * It expects i_mutex to be grabbed unless we work on a block device or similar 2362 * object which does not need locking at all. 2363 * 2364 * This function does *not* take care of syncing data in case of O_SYNC write. 2365 * A caller has to handle it. This is mainly due to the fact that we want to 2366 * avoid syncing under i_mutex. 2367 */ 2368 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2369 unsigned long nr_segs, loff_t *ppos) 2370 { 2371 struct file *file = iocb->ki_filp; 2372 struct address_space * mapping = file->f_mapping; 2373 size_t ocount; /* original count */ 2374 size_t count; /* after file limit checks */ 2375 struct inode *inode = mapping->host; 2376 loff_t pos; 2377 ssize_t written; 2378 ssize_t err; 2379 2380 ocount = 0; 2381 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2382 if (err) 2383 return err; 2384 2385 count = ocount; 2386 pos = *ppos; 2387 2388 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2389 2390 /* We can write back this queue in page reclaim */ 2391 current->backing_dev_info = mapping->backing_dev_info; 2392 written = 0; 2393 2394 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2395 if (err) 2396 goto out; 2397 2398 if (count == 0) 2399 goto out; 2400 2401 err = file_remove_suid(file); 2402 if (err) 2403 goto out; 2404 2405 file_update_time(file); 2406 2407 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2408 if (unlikely(file->f_flags & O_DIRECT)) { 2409 loff_t endbyte; 2410 ssize_t written_buffered; 2411 2412 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2413 ppos, count, ocount); 2414 if (written < 0 || written == count) 2415 goto out; 2416 /* 2417 * direct-io write to a hole: fall through to buffered I/O 2418 * for completing the rest of the request. 2419 */ 2420 pos += written; 2421 count -= written; 2422 written_buffered = generic_file_buffered_write(iocb, iov, 2423 nr_segs, pos, ppos, count, 2424 written); 2425 /* 2426 * If generic_file_buffered_write() retuned a synchronous error 2427 * then we want to return the number of bytes which were 2428 * direct-written, or the error code if that was zero. Note 2429 * that this differs from normal direct-io semantics, which 2430 * will return -EFOO even if some bytes were written. 2431 */ 2432 if (written_buffered < 0) { 2433 err = written_buffered; 2434 goto out; 2435 } 2436 2437 /* 2438 * We need to ensure that the page cache pages are written to 2439 * disk and invalidated to preserve the expected O_DIRECT 2440 * semantics. 2441 */ 2442 endbyte = pos + written_buffered - written - 1; 2443 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2444 if (err == 0) { 2445 written = written_buffered; 2446 invalidate_mapping_pages(mapping, 2447 pos >> PAGE_CACHE_SHIFT, 2448 endbyte >> PAGE_CACHE_SHIFT); 2449 } else { 2450 /* 2451 * We don't know how much we wrote, so just return 2452 * the number of bytes which were direct-written 2453 */ 2454 } 2455 } else { 2456 written = generic_file_buffered_write(iocb, iov, nr_segs, 2457 pos, ppos, count, written); 2458 } 2459 out: 2460 current->backing_dev_info = NULL; 2461 return written ? written : err; 2462 } 2463 EXPORT_SYMBOL(__generic_file_aio_write); 2464 2465 /** 2466 * generic_file_aio_write - write data to a file 2467 * @iocb: IO state structure 2468 * @iov: vector with data to write 2469 * @nr_segs: number of segments in the vector 2470 * @pos: position in file where to write 2471 * 2472 * This is a wrapper around __generic_file_aio_write() to be used by most 2473 * filesystems. It takes care of syncing the file in case of O_SYNC file 2474 * and acquires i_mutex as needed. 2475 */ 2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2477 unsigned long nr_segs, loff_t pos) 2478 { 2479 struct file *file = iocb->ki_filp; 2480 struct inode *inode = file->f_mapping->host; 2481 ssize_t ret; 2482 2483 BUG_ON(iocb->ki_pos != pos); 2484 2485 mutex_lock(&inode->i_mutex); 2486 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2487 mutex_unlock(&inode->i_mutex); 2488 2489 if (ret > 0 || ret == -EIOCBQUEUED) { 2490 ssize_t err; 2491 2492 err = generic_write_sync(file, pos, ret); 2493 if (err < 0 && ret > 0) 2494 ret = err; 2495 } 2496 return ret; 2497 } 2498 EXPORT_SYMBOL(generic_file_aio_write); 2499 2500 /** 2501 * try_to_release_page() - release old fs-specific metadata on a page 2502 * 2503 * @page: the page which the kernel is trying to free 2504 * @gfp_mask: memory allocation flags (and I/O mode) 2505 * 2506 * The address_space is to try to release any data against the page 2507 * (presumably at page->private). If the release was successful, return `1'. 2508 * Otherwise return zero. 2509 * 2510 * This may also be called if PG_fscache is set on a page, indicating that the 2511 * page is known to the local caching routines. 2512 * 2513 * The @gfp_mask argument specifies whether I/O may be performed to release 2514 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2515 * 2516 */ 2517 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2518 { 2519 struct address_space * const mapping = page->mapping; 2520 2521 BUG_ON(!PageLocked(page)); 2522 if (PageWriteback(page)) 2523 return 0; 2524 2525 if (mapping && mapping->a_ops->releasepage) 2526 return mapping->a_ops->releasepage(page, gfp_mask); 2527 return try_to_free_buffers(page); 2528 } 2529 2530 EXPORT_SYMBOL(try_to_release_page); 2531