xref: /linux/mm/filemap.c (revision 48c36c8f9a3e881953bb72deb55623a53795a684)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(truncate_pagecache)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  *
108  *  (code doesn't rely on that order, so you could switch it around)
109  *  ->tasklist_lock             (memory_failure, collect_procs_ao)
110  *    ->i_mmap_lock
111  */
112 
113 /*
114  * Remove a page from the page cache and free it. Caller has to make
115  * sure the page is locked and that nobody else uses it - or that usage
116  * is safe.  The caller must hold the mapping's tree_lock.
117  */
118 void __remove_from_page_cache(struct page *page)
119 {
120 	struct address_space *mapping = page->mapping;
121 
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	if (PageSwapBacked(page))
127 		__dec_zone_page_state(page, NR_SHMEM);
128 	BUG_ON(page_mapped(page));
129 
130 	/*
131 	 * Some filesystems seem to re-dirty the page even after
132 	 * the VM has canceled the dirty bit (eg ext3 journaling).
133 	 *
134 	 * Fix it up by doing a final dirty accounting check after
135 	 * having removed the page entirely.
136 	 */
137 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 		dec_zone_page_state(page, NR_FILE_DIRTY);
139 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 	}
141 }
142 
143 void remove_from_page_cache(struct page *page)
144 {
145 	struct address_space *mapping = page->mapping;
146 
147 	BUG_ON(!PageLocked(page));
148 
149 	spin_lock_irq(&mapping->tree_lock);
150 	__remove_from_page_cache(page);
151 	spin_unlock_irq(&mapping->tree_lock);
152 	mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155 
156 static int sync_page(void *word)
157 {
158 	struct address_space *mapping;
159 	struct page *page;
160 
161 	page = container_of((unsigned long *)word, struct page, flags);
162 
163 	/*
164 	 * page_mapping() is being called without PG_locked held.
165 	 * Some knowledge of the state and use of the page is used to
166 	 * reduce the requirements down to a memory barrier.
167 	 * The danger here is of a stale page_mapping() return value
168 	 * indicating a struct address_space different from the one it's
169 	 * associated with when it is associated with one.
170 	 * After smp_mb(), it's either the correct page_mapping() for
171 	 * the page, or an old page_mapping() and the page's own
172 	 * page_mapping() has gone NULL.
173 	 * The ->sync_page() address_space operation must tolerate
174 	 * page_mapping() going NULL. By an amazing coincidence,
175 	 * this comes about because none of the users of the page
176 	 * in the ->sync_page() methods make essential use of the
177 	 * page_mapping(), merely passing the page down to the backing
178 	 * device's unplug functions when it's non-NULL, which in turn
179 	 * ignore it for all cases but swap, where only page_private(page) is
180 	 * of interest. When page_mapping() does go NULL, the entire
181 	 * call stack gracefully ignores the page and returns.
182 	 * -- wli
183 	 */
184 	smp_mb();
185 	mapping = page_mapping(page);
186 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187 		mapping->a_ops->sync_page(page);
188 	io_schedule();
189 	return 0;
190 }
191 
192 static int sync_page_killable(void *word)
193 {
194 	sync_page(word);
195 	return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197 
198 /**
199  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200  * @mapping:	address space structure to write
201  * @start:	offset in bytes where the range starts
202  * @end:	offset in bytes where the range ends (inclusive)
203  * @sync_mode:	enable synchronous operation
204  *
205  * Start writeback against all of a mapping's dirty pages that lie
206  * within the byte offsets <start, end> inclusive.
207  *
208  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209  * opposed to a regular memory cleansing writeback.  The difference between
210  * these two operations is that if a dirty page/buffer is encountered, it must
211  * be waited upon, and not just skipped over.
212  */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214 				loff_t end, int sync_mode)
215 {
216 	int ret;
217 	struct writeback_control wbc = {
218 		.sync_mode = sync_mode,
219 		.nr_to_write = LONG_MAX,
220 		.range_start = start,
221 		.range_end = end,
222 	};
223 
224 	if (!mapping_cap_writeback_dirty(mapping))
225 		return 0;
226 
227 	ret = do_writepages(mapping, &wbc);
228 	return ret;
229 }
230 
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232 	int sync_mode)
233 {
234 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236 
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242 
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244 				loff_t end)
245 {
246 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249 
250 /**
251  * filemap_flush - mostly a non-blocking flush
252  * @mapping:	target address_space
253  *
254  * This is a mostly non-blocking flush.  Not suitable for data-integrity
255  * purposes - I/O may not be started against all dirty pages.
256  */
257 int filemap_flush(struct address_space *mapping)
258 {
259 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262 
263 /**
264  * filemap_fdatawait_range - wait for writeback to complete
265  * @mapping:		address space structure to wait for
266  * @start_byte:		offset in bytes where the range starts
267  * @end_byte:		offset in bytes where the range ends (inclusive)
268  *
269  * Walk the list of under-writeback pages of the given address space
270  * in the given range and wait for all of them.
271  */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273 			    loff_t end_byte)
274 {
275 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277 	struct pagevec pvec;
278 	int nr_pages;
279 	int ret = 0;
280 
281 	if (end_byte < start_byte)
282 		return 0;
283 
284 	pagevec_init(&pvec, 0);
285 	while ((index <= end) &&
286 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287 			PAGECACHE_TAG_WRITEBACK,
288 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289 		unsigned i;
290 
291 		for (i = 0; i < nr_pages; i++) {
292 			struct page *page = pvec.pages[i];
293 
294 			/* until radix tree lookup accepts end_index */
295 			if (page->index > end)
296 				continue;
297 
298 			wait_on_page_writeback(page);
299 			if (PageError(page))
300 				ret = -EIO;
301 		}
302 		pagevec_release(&pvec);
303 		cond_resched();
304 	}
305 
306 	/* Check for outstanding write errors */
307 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308 		ret = -ENOSPC;
309 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 		ret = -EIO;
311 
312 	return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315 
316 /**
317  * filemap_fdatawait - wait for all under-writeback pages to complete
318  * @mapping: address space structure to wait for
319  *
320  * Walk the list of under-writeback pages of the given address space
321  * and wait for all of them.
322  */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325 	loff_t i_size = i_size_read(mapping->host);
326 
327 	if (i_size == 0)
328 		return 0;
329 
330 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333 
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336 	int err = 0;
337 
338 	if (mapping->nrpages) {
339 		err = filemap_fdatawrite(mapping);
340 		/*
341 		 * Even if the above returned error, the pages may be
342 		 * written partially (e.g. -ENOSPC), so we wait for it.
343 		 * But the -EIO is special case, it may indicate the worst
344 		 * thing (e.g. bug) happened, so we avoid waiting for it.
345 		 */
346 		if (err != -EIO) {
347 			int err2 = filemap_fdatawait(mapping);
348 			if (!err)
349 				err = err2;
350 		}
351 	}
352 	return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355 
356 /**
357  * filemap_write_and_wait_range - write out & wait on a file range
358  * @mapping:	the address_space for the pages
359  * @lstart:	offset in bytes where the range starts
360  * @lend:	offset in bytes where the range ends (inclusive)
361  *
362  * Write out and wait upon file offsets lstart->lend, inclusive.
363  *
364  * Note that `lend' is inclusive (describes the last byte to be written) so
365  * that this function can be used to write to the very end-of-file (end = -1).
366  */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368 				 loff_t lstart, loff_t lend)
369 {
370 	int err = 0;
371 
372 	if (mapping->nrpages) {
373 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 						 WB_SYNC_ALL);
375 		/* See comment of filemap_write_and_wait() */
376 		if (err != -EIO) {
377 			int err2 = filemap_fdatawait_range(mapping,
378 						lstart, lend);
379 			if (!err)
380 				err = err2;
381 		}
382 	}
383 	return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386 
387 /**
388  * add_to_page_cache_locked - add a locked page to the pagecache
389  * @page:	page to add
390  * @mapping:	the page's address_space
391  * @offset:	page index
392  * @gfp_mask:	page allocation mode
393  *
394  * This function is used to add a page to the pagecache. It must be locked.
395  * This function does not add the page to the LRU.  The caller must do that.
396  */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398 		pgoff_t offset, gfp_t gfp_mask)
399 {
400 	int error;
401 
402 	VM_BUG_ON(!PageLocked(page));
403 
404 	error = mem_cgroup_cache_charge(page, current->mm,
405 					gfp_mask & GFP_RECLAIM_MASK);
406 	if (error)
407 		goto out;
408 
409 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410 	if (error == 0) {
411 		page_cache_get(page);
412 		page->mapping = mapping;
413 		page->index = offset;
414 
415 		spin_lock_irq(&mapping->tree_lock);
416 		error = radix_tree_insert(&mapping->page_tree, offset, page);
417 		if (likely(!error)) {
418 			mapping->nrpages++;
419 			__inc_zone_page_state(page, NR_FILE_PAGES);
420 			if (PageSwapBacked(page))
421 				__inc_zone_page_state(page, NR_SHMEM);
422 			spin_unlock_irq(&mapping->tree_lock);
423 		} else {
424 			page->mapping = NULL;
425 			spin_unlock_irq(&mapping->tree_lock);
426 			mem_cgroup_uncharge_cache_page(page);
427 			page_cache_release(page);
428 		}
429 		radix_tree_preload_end();
430 	} else
431 		mem_cgroup_uncharge_cache_page(page);
432 out:
433 	return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436 
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438 				pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int ret;
441 
442 	/*
443 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 	 * need to go on the anon lru below, and mem_cgroup_cache_charge
446 	 * (called in add_to_page_cache) needs to know where they're going too.
447 	 */
448 	if (mapping_cap_swap_backed(mapping))
449 		SetPageSwapBacked(page);
450 
451 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452 	if (ret == 0) {
453 		if (page_is_file_cache(page))
454 			lru_cache_add_file(page);
455 		else
456 			lru_cache_add_anon(page);
457 	}
458 	return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461 
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465 	int n;
466 	struct page *page;
467 
468 	if (cpuset_do_page_mem_spread()) {
469 		get_mems_allowed();
470 		n = cpuset_mem_spread_node();
471 		page = alloc_pages_exact_node(n, gfp, 0);
472 		put_mems_allowed();
473 		return page;
474 	}
475 	return alloc_pages(gfp, 0);
476 }
477 EXPORT_SYMBOL(__page_cache_alloc);
478 #endif
479 
480 static int __sleep_on_page_lock(void *word)
481 {
482 	io_schedule();
483 	return 0;
484 }
485 
486 /*
487  * In order to wait for pages to become available there must be
488  * waitqueues associated with pages. By using a hash table of
489  * waitqueues where the bucket discipline is to maintain all
490  * waiters on the same queue and wake all when any of the pages
491  * become available, and for the woken contexts to check to be
492  * sure the appropriate page became available, this saves space
493  * at a cost of "thundering herd" phenomena during rare hash
494  * collisions.
495  */
496 static wait_queue_head_t *page_waitqueue(struct page *page)
497 {
498 	const struct zone *zone = page_zone(page);
499 
500 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
501 }
502 
503 static inline void wake_up_page(struct page *page, int bit)
504 {
505 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
506 }
507 
508 void wait_on_page_bit(struct page *page, int bit_nr)
509 {
510 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
511 
512 	if (test_bit(bit_nr, &page->flags))
513 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
514 							TASK_UNINTERRUPTIBLE);
515 }
516 EXPORT_SYMBOL(wait_on_page_bit);
517 
518 /**
519  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
520  * @page: Page defining the wait queue of interest
521  * @waiter: Waiter to add to the queue
522  *
523  * Add an arbitrary @waiter to the wait queue for the nominated @page.
524  */
525 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
526 {
527 	wait_queue_head_t *q = page_waitqueue(page);
528 	unsigned long flags;
529 
530 	spin_lock_irqsave(&q->lock, flags);
531 	__add_wait_queue(q, waiter);
532 	spin_unlock_irqrestore(&q->lock, flags);
533 }
534 EXPORT_SYMBOL_GPL(add_page_wait_queue);
535 
536 /**
537  * unlock_page - unlock a locked page
538  * @page: the page
539  *
540  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
541  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
542  * mechananism between PageLocked pages and PageWriteback pages is shared.
543  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
544  *
545  * The mb is necessary to enforce ordering between the clear_bit and the read
546  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
547  */
548 void unlock_page(struct page *page)
549 {
550 	VM_BUG_ON(!PageLocked(page));
551 	clear_bit_unlock(PG_locked, &page->flags);
552 	smp_mb__after_clear_bit();
553 	wake_up_page(page, PG_locked);
554 }
555 EXPORT_SYMBOL(unlock_page);
556 
557 /**
558  * end_page_writeback - end writeback against a page
559  * @page: the page
560  */
561 void end_page_writeback(struct page *page)
562 {
563 	if (TestClearPageReclaim(page))
564 		rotate_reclaimable_page(page);
565 
566 	if (!test_clear_page_writeback(page))
567 		BUG();
568 
569 	smp_mb__after_clear_bit();
570 	wake_up_page(page, PG_writeback);
571 }
572 EXPORT_SYMBOL(end_page_writeback);
573 
574 /**
575  * __lock_page - get a lock on the page, assuming we need to sleep to get it
576  * @page: the page to lock
577  *
578  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
579  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
580  * chances are that on the second loop, the block layer's plug list is empty,
581  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
582  */
583 void __lock_page(struct page *page)
584 {
585 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
586 
587 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
588 							TASK_UNINTERRUPTIBLE);
589 }
590 EXPORT_SYMBOL(__lock_page);
591 
592 int __lock_page_killable(struct page *page)
593 {
594 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
595 
596 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
597 					sync_page_killable, TASK_KILLABLE);
598 }
599 EXPORT_SYMBOL_GPL(__lock_page_killable);
600 
601 /**
602  * __lock_page_nosync - get a lock on the page, without calling sync_page()
603  * @page: the page to lock
604  *
605  * Variant of lock_page that does not require the caller to hold a reference
606  * on the page's mapping.
607  */
608 void __lock_page_nosync(struct page *page)
609 {
610 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
611 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
612 							TASK_UNINTERRUPTIBLE);
613 }
614 
615 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
616 			 unsigned int flags)
617 {
618 	if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
619 		__lock_page(page);
620 		return 1;
621 	} else {
622 		up_read(&mm->mmap_sem);
623 		wait_on_page_locked(page);
624 		return 0;
625 	}
626 }
627 
628 /**
629  * find_get_page - find and get a page reference
630  * @mapping: the address_space to search
631  * @offset: the page index
632  *
633  * Is there a pagecache struct page at the given (mapping, offset) tuple?
634  * If yes, increment its refcount and return it; if no, return NULL.
635  */
636 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
637 {
638 	void **pagep;
639 	struct page *page;
640 
641 	rcu_read_lock();
642 repeat:
643 	page = NULL;
644 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
645 	if (pagep) {
646 		page = radix_tree_deref_slot(pagep);
647 		if (unlikely(!page))
648 			goto out;
649 		if (radix_tree_deref_retry(page))
650 			goto repeat;
651 
652 		if (!page_cache_get_speculative(page))
653 			goto repeat;
654 
655 		/*
656 		 * Has the page moved?
657 		 * This is part of the lockless pagecache protocol. See
658 		 * include/linux/pagemap.h for details.
659 		 */
660 		if (unlikely(page != *pagep)) {
661 			page_cache_release(page);
662 			goto repeat;
663 		}
664 	}
665 out:
666 	rcu_read_unlock();
667 
668 	return page;
669 }
670 EXPORT_SYMBOL(find_get_page);
671 
672 /**
673  * find_lock_page - locate, pin and lock a pagecache page
674  * @mapping: the address_space to search
675  * @offset: the page index
676  *
677  * Locates the desired pagecache page, locks it, increments its reference
678  * count and returns its address.
679  *
680  * Returns zero if the page was not present. find_lock_page() may sleep.
681  */
682 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
683 {
684 	struct page *page;
685 
686 repeat:
687 	page = find_get_page(mapping, offset);
688 	if (page) {
689 		lock_page(page);
690 		/* Has the page been truncated? */
691 		if (unlikely(page->mapping != mapping)) {
692 			unlock_page(page);
693 			page_cache_release(page);
694 			goto repeat;
695 		}
696 		VM_BUG_ON(page->index != offset);
697 	}
698 	return page;
699 }
700 EXPORT_SYMBOL(find_lock_page);
701 
702 /**
703  * find_or_create_page - locate or add a pagecache page
704  * @mapping: the page's address_space
705  * @index: the page's index into the mapping
706  * @gfp_mask: page allocation mode
707  *
708  * Locates a page in the pagecache.  If the page is not present, a new page
709  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
710  * LRU list.  The returned page is locked and has its reference count
711  * incremented.
712  *
713  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
714  * allocation!
715  *
716  * find_or_create_page() returns the desired page's address, or zero on
717  * memory exhaustion.
718  */
719 struct page *find_or_create_page(struct address_space *mapping,
720 		pgoff_t index, gfp_t gfp_mask)
721 {
722 	struct page *page;
723 	int err;
724 repeat:
725 	page = find_lock_page(mapping, index);
726 	if (!page) {
727 		page = __page_cache_alloc(gfp_mask);
728 		if (!page)
729 			return NULL;
730 		/*
731 		 * We want a regular kernel memory (not highmem or DMA etc)
732 		 * allocation for the radix tree nodes, but we need to honour
733 		 * the context-specific requirements the caller has asked for.
734 		 * GFP_RECLAIM_MASK collects those requirements.
735 		 */
736 		err = add_to_page_cache_lru(page, mapping, index,
737 			(gfp_mask & GFP_RECLAIM_MASK));
738 		if (unlikely(err)) {
739 			page_cache_release(page);
740 			page = NULL;
741 			if (err == -EEXIST)
742 				goto repeat;
743 		}
744 	}
745 	return page;
746 }
747 EXPORT_SYMBOL(find_or_create_page);
748 
749 /**
750  * find_get_pages - gang pagecache lookup
751  * @mapping:	The address_space to search
752  * @start:	The starting page index
753  * @nr_pages:	The maximum number of pages
754  * @pages:	Where the resulting pages are placed
755  *
756  * find_get_pages() will search for and return a group of up to
757  * @nr_pages pages in the mapping.  The pages are placed at @pages.
758  * find_get_pages() takes a reference against the returned pages.
759  *
760  * The search returns a group of mapping-contiguous pages with ascending
761  * indexes.  There may be holes in the indices due to not-present pages.
762  *
763  * find_get_pages() returns the number of pages which were found.
764  */
765 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
766 			    unsigned int nr_pages, struct page **pages)
767 {
768 	unsigned int i;
769 	unsigned int ret;
770 	unsigned int nr_found;
771 
772 	rcu_read_lock();
773 restart:
774 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
775 				(void ***)pages, start, nr_pages);
776 	ret = 0;
777 	for (i = 0; i < nr_found; i++) {
778 		struct page *page;
779 repeat:
780 		page = radix_tree_deref_slot((void **)pages[i]);
781 		if (unlikely(!page))
782 			continue;
783 		if (radix_tree_deref_retry(page)) {
784 			if (ret)
785 				start = pages[ret-1]->index;
786 			goto restart;
787 		}
788 
789 		if (!page_cache_get_speculative(page))
790 			goto repeat;
791 
792 		/* Has the page moved? */
793 		if (unlikely(page != *((void **)pages[i]))) {
794 			page_cache_release(page);
795 			goto repeat;
796 		}
797 
798 		pages[ret] = page;
799 		ret++;
800 	}
801 	rcu_read_unlock();
802 	return ret;
803 }
804 
805 /**
806  * find_get_pages_contig - gang contiguous pagecache lookup
807  * @mapping:	The address_space to search
808  * @index:	The starting page index
809  * @nr_pages:	The maximum number of pages
810  * @pages:	Where the resulting pages are placed
811  *
812  * find_get_pages_contig() works exactly like find_get_pages(), except
813  * that the returned number of pages are guaranteed to be contiguous.
814  *
815  * find_get_pages_contig() returns the number of pages which were found.
816  */
817 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
818 			       unsigned int nr_pages, struct page **pages)
819 {
820 	unsigned int i;
821 	unsigned int ret;
822 	unsigned int nr_found;
823 
824 	rcu_read_lock();
825 restart:
826 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
827 				(void ***)pages, index, nr_pages);
828 	ret = 0;
829 	for (i = 0; i < nr_found; i++) {
830 		struct page *page;
831 repeat:
832 		page = radix_tree_deref_slot((void **)pages[i]);
833 		if (unlikely(!page))
834 			continue;
835 		if (radix_tree_deref_retry(page))
836 			goto restart;
837 
838 		if (page->mapping == NULL || page->index != index)
839 			break;
840 
841 		if (!page_cache_get_speculative(page))
842 			goto repeat;
843 
844 		/* Has the page moved? */
845 		if (unlikely(page != *((void **)pages[i]))) {
846 			page_cache_release(page);
847 			goto repeat;
848 		}
849 
850 		pages[ret] = page;
851 		ret++;
852 		index++;
853 	}
854 	rcu_read_unlock();
855 	return ret;
856 }
857 EXPORT_SYMBOL(find_get_pages_contig);
858 
859 /**
860  * find_get_pages_tag - find and return pages that match @tag
861  * @mapping:	the address_space to search
862  * @index:	the starting page index
863  * @tag:	the tag index
864  * @nr_pages:	the maximum number of pages
865  * @pages:	where the resulting pages are placed
866  *
867  * Like find_get_pages, except we only return pages which are tagged with
868  * @tag.   We update @index to index the next page for the traversal.
869  */
870 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
871 			int tag, unsigned int nr_pages, struct page **pages)
872 {
873 	unsigned int i;
874 	unsigned int ret;
875 	unsigned int nr_found;
876 
877 	rcu_read_lock();
878 restart:
879 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
880 				(void ***)pages, *index, nr_pages, tag);
881 	ret = 0;
882 	for (i = 0; i < nr_found; i++) {
883 		struct page *page;
884 repeat:
885 		page = radix_tree_deref_slot((void **)pages[i]);
886 		if (unlikely(!page))
887 			continue;
888 		if (radix_tree_deref_retry(page))
889 			goto restart;
890 
891 		if (!page_cache_get_speculative(page))
892 			goto repeat;
893 
894 		/* Has the page moved? */
895 		if (unlikely(page != *((void **)pages[i]))) {
896 			page_cache_release(page);
897 			goto repeat;
898 		}
899 
900 		pages[ret] = page;
901 		ret++;
902 	}
903 	rcu_read_unlock();
904 
905 	if (ret)
906 		*index = pages[ret - 1]->index + 1;
907 
908 	return ret;
909 }
910 EXPORT_SYMBOL(find_get_pages_tag);
911 
912 /**
913  * grab_cache_page_nowait - returns locked page at given index in given cache
914  * @mapping: target address_space
915  * @index: the page index
916  *
917  * Same as grab_cache_page(), but do not wait if the page is unavailable.
918  * This is intended for speculative data generators, where the data can
919  * be regenerated if the page couldn't be grabbed.  This routine should
920  * be safe to call while holding the lock for another page.
921  *
922  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
923  * and deadlock against the caller's locked page.
924  */
925 struct page *
926 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
927 {
928 	struct page *page = find_get_page(mapping, index);
929 
930 	if (page) {
931 		if (trylock_page(page))
932 			return page;
933 		page_cache_release(page);
934 		return NULL;
935 	}
936 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
937 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
938 		page_cache_release(page);
939 		page = NULL;
940 	}
941 	return page;
942 }
943 EXPORT_SYMBOL(grab_cache_page_nowait);
944 
945 /*
946  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
947  * a _large_ part of the i/o request. Imagine the worst scenario:
948  *
949  *      ---R__________________________________________B__________
950  *         ^ reading here                             ^ bad block(assume 4k)
951  *
952  * read(R) => miss => readahead(R...B) => media error => frustrating retries
953  * => failing the whole request => read(R) => read(R+1) =>
954  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
955  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
956  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
957  *
958  * It is going insane. Fix it by quickly scaling down the readahead size.
959  */
960 static void shrink_readahead_size_eio(struct file *filp,
961 					struct file_ra_state *ra)
962 {
963 	ra->ra_pages /= 4;
964 }
965 
966 /**
967  * do_generic_file_read - generic file read routine
968  * @filp:	the file to read
969  * @ppos:	current file position
970  * @desc:	read_descriptor
971  * @actor:	read method
972  *
973  * This is a generic file read routine, and uses the
974  * mapping->a_ops->readpage() function for the actual low-level stuff.
975  *
976  * This is really ugly. But the goto's actually try to clarify some
977  * of the logic when it comes to error handling etc.
978  */
979 static void do_generic_file_read(struct file *filp, loff_t *ppos,
980 		read_descriptor_t *desc, read_actor_t actor)
981 {
982 	struct address_space *mapping = filp->f_mapping;
983 	struct inode *inode = mapping->host;
984 	struct file_ra_state *ra = &filp->f_ra;
985 	pgoff_t index;
986 	pgoff_t last_index;
987 	pgoff_t prev_index;
988 	unsigned long offset;      /* offset into pagecache page */
989 	unsigned int prev_offset;
990 	int error;
991 
992 	index = *ppos >> PAGE_CACHE_SHIFT;
993 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
994 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
995 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
996 	offset = *ppos & ~PAGE_CACHE_MASK;
997 
998 	for (;;) {
999 		struct page *page;
1000 		pgoff_t end_index;
1001 		loff_t isize;
1002 		unsigned long nr, ret;
1003 
1004 		cond_resched();
1005 find_page:
1006 		page = find_get_page(mapping, index);
1007 		if (!page) {
1008 			page_cache_sync_readahead(mapping,
1009 					ra, filp,
1010 					index, last_index - index);
1011 			page = find_get_page(mapping, index);
1012 			if (unlikely(page == NULL))
1013 				goto no_cached_page;
1014 		}
1015 		if (PageReadahead(page)) {
1016 			page_cache_async_readahead(mapping,
1017 					ra, filp, page,
1018 					index, last_index - index);
1019 		}
1020 		if (!PageUptodate(page)) {
1021 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1022 					!mapping->a_ops->is_partially_uptodate)
1023 				goto page_not_up_to_date;
1024 			if (!trylock_page(page))
1025 				goto page_not_up_to_date;
1026 			/* Did it get truncated before we got the lock? */
1027 			if (!page->mapping)
1028 				goto page_not_up_to_date_locked;
1029 			if (!mapping->a_ops->is_partially_uptodate(page,
1030 								desc, offset))
1031 				goto page_not_up_to_date_locked;
1032 			unlock_page(page);
1033 		}
1034 page_ok:
1035 		/*
1036 		 * i_size must be checked after we know the page is Uptodate.
1037 		 *
1038 		 * Checking i_size after the check allows us to calculate
1039 		 * the correct value for "nr", which means the zero-filled
1040 		 * part of the page is not copied back to userspace (unless
1041 		 * another truncate extends the file - this is desired though).
1042 		 */
1043 
1044 		isize = i_size_read(inode);
1045 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1046 		if (unlikely(!isize || index > end_index)) {
1047 			page_cache_release(page);
1048 			goto out;
1049 		}
1050 
1051 		/* nr is the maximum number of bytes to copy from this page */
1052 		nr = PAGE_CACHE_SIZE;
1053 		if (index == end_index) {
1054 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1055 			if (nr <= offset) {
1056 				page_cache_release(page);
1057 				goto out;
1058 			}
1059 		}
1060 		nr = nr - offset;
1061 
1062 		/* If users can be writing to this page using arbitrary
1063 		 * virtual addresses, take care about potential aliasing
1064 		 * before reading the page on the kernel side.
1065 		 */
1066 		if (mapping_writably_mapped(mapping))
1067 			flush_dcache_page(page);
1068 
1069 		/*
1070 		 * When a sequential read accesses a page several times,
1071 		 * only mark it as accessed the first time.
1072 		 */
1073 		if (prev_index != index || offset != prev_offset)
1074 			mark_page_accessed(page);
1075 		prev_index = index;
1076 
1077 		/*
1078 		 * Ok, we have the page, and it's up-to-date, so
1079 		 * now we can copy it to user space...
1080 		 *
1081 		 * The actor routine returns how many bytes were actually used..
1082 		 * NOTE! This may not be the same as how much of a user buffer
1083 		 * we filled up (we may be padding etc), so we can only update
1084 		 * "pos" here (the actor routine has to update the user buffer
1085 		 * pointers and the remaining count).
1086 		 */
1087 		ret = actor(desc, page, offset, nr);
1088 		offset += ret;
1089 		index += offset >> PAGE_CACHE_SHIFT;
1090 		offset &= ~PAGE_CACHE_MASK;
1091 		prev_offset = offset;
1092 
1093 		page_cache_release(page);
1094 		if (ret == nr && desc->count)
1095 			continue;
1096 		goto out;
1097 
1098 page_not_up_to_date:
1099 		/* Get exclusive access to the page ... */
1100 		error = lock_page_killable(page);
1101 		if (unlikely(error))
1102 			goto readpage_error;
1103 
1104 page_not_up_to_date_locked:
1105 		/* Did it get truncated before we got the lock? */
1106 		if (!page->mapping) {
1107 			unlock_page(page);
1108 			page_cache_release(page);
1109 			continue;
1110 		}
1111 
1112 		/* Did somebody else fill it already? */
1113 		if (PageUptodate(page)) {
1114 			unlock_page(page);
1115 			goto page_ok;
1116 		}
1117 
1118 readpage:
1119 		/*
1120 		 * A previous I/O error may have been due to temporary
1121 		 * failures, eg. multipath errors.
1122 		 * PG_error will be set again if readpage fails.
1123 		 */
1124 		ClearPageError(page);
1125 		/* Start the actual read. The read will unlock the page. */
1126 		error = mapping->a_ops->readpage(filp, page);
1127 
1128 		if (unlikely(error)) {
1129 			if (error == AOP_TRUNCATED_PAGE) {
1130 				page_cache_release(page);
1131 				goto find_page;
1132 			}
1133 			goto readpage_error;
1134 		}
1135 
1136 		if (!PageUptodate(page)) {
1137 			error = lock_page_killable(page);
1138 			if (unlikely(error))
1139 				goto readpage_error;
1140 			if (!PageUptodate(page)) {
1141 				if (page->mapping == NULL) {
1142 					/*
1143 					 * invalidate_mapping_pages got it
1144 					 */
1145 					unlock_page(page);
1146 					page_cache_release(page);
1147 					goto find_page;
1148 				}
1149 				unlock_page(page);
1150 				shrink_readahead_size_eio(filp, ra);
1151 				error = -EIO;
1152 				goto readpage_error;
1153 			}
1154 			unlock_page(page);
1155 		}
1156 
1157 		goto page_ok;
1158 
1159 readpage_error:
1160 		/* UHHUH! A synchronous read error occurred. Report it */
1161 		desc->error = error;
1162 		page_cache_release(page);
1163 		goto out;
1164 
1165 no_cached_page:
1166 		/*
1167 		 * Ok, it wasn't cached, so we need to create a new
1168 		 * page..
1169 		 */
1170 		page = page_cache_alloc_cold(mapping);
1171 		if (!page) {
1172 			desc->error = -ENOMEM;
1173 			goto out;
1174 		}
1175 		error = add_to_page_cache_lru(page, mapping,
1176 						index, GFP_KERNEL);
1177 		if (error) {
1178 			page_cache_release(page);
1179 			if (error == -EEXIST)
1180 				goto find_page;
1181 			desc->error = error;
1182 			goto out;
1183 		}
1184 		goto readpage;
1185 	}
1186 
1187 out:
1188 	ra->prev_pos = prev_index;
1189 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1190 	ra->prev_pos |= prev_offset;
1191 
1192 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1193 	file_accessed(filp);
1194 }
1195 
1196 int file_read_actor(read_descriptor_t *desc, struct page *page,
1197 			unsigned long offset, unsigned long size)
1198 {
1199 	char *kaddr;
1200 	unsigned long left, count = desc->count;
1201 
1202 	if (size > count)
1203 		size = count;
1204 
1205 	/*
1206 	 * Faults on the destination of a read are common, so do it before
1207 	 * taking the kmap.
1208 	 */
1209 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1210 		kaddr = kmap_atomic(page, KM_USER0);
1211 		left = __copy_to_user_inatomic(desc->arg.buf,
1212 						kaddr + offset, size);
1213 		kunmap_atomic(kaddr, KM_USER0);
1214 		if (left == 0)
1215 			goto success;
1216 	}
1217 
1218 	/* Do it the slow way */
1219 	kaddr = kmap(page);
1220 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1221 	kunmap(page);
1222 
1223 	if (left) {
1224 		size -= left;
1225 		desc->error = -EFAULT;
1226 	}
1227 success:
1228 	desc->count = count - size;
1229 	desc->written += size;
1230 	desc->arg.buf += size;
1231 	return size;
1232 }
1233 
1234 /*
1235  * Performs necessary checks before doing a write
1236  * @iov:	io vector request
1237  * @nr_segs:	number of segments in the iovec
1238  * @count:	number of bytes to write
1239  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1240  *
1241  * Adjust number of segments and amount of bytes to write (nr_segs should be
1242  * properly initialized first). Returns appropriate error code that caller
1243  * should return or zero in case that write should be allowed.
1244  */
1245 int generic_segment_checks(const struct iovec *iov,
1246 			unsigned long *nr_segs, size_t *count, int access_flags)
1247 {
1248 	unsigned long   seg;
1249 	size_t cnt = 0;
1250 	for (seg = 0; seg < *nr_segs; seg++) {
1251 		const struct iovec *iv = &iov[seg];
1252 
1253 		/*
1254 		 * If any segment has a negative length, or the cumulative
1255 		 * length ever wraps negative then return -EINVAL.
1256 		 */
1257 		cnt += iv->iov_len;
1258 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1259 			return -EINVAL;
1260 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1261 			continue;
1262 		if (seg == 0)
1263 			return -EFAULT;
1264 		*nr_segs = seg;
1265 		cnt -= iv->iov_len;	/* This segment is no good */
1266 		break;
1267 	}
1268 	*count = cnt;
1269 	return 0;
1270 }
1271 EXPORT_SYMBOL(generic_segment_checks);
1272 
1273 /**
1274  * generic_file_aio_read - generic filesystem read routine
1275  * @iocb:	kernel I/O control block
1276  * @iov:	io vector request
1277  * @nr_segs:	number of segments in the iovec
1278  * @pos:	current file position
1279  *
1280  * This is the "read()" routine for all filesystems
1281  * that can use the page cache directly.
1282  */
1283 ssize_t
1284 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1285 		unsigned long nr_segs, loff_t pos)
1286 {
1287 	struct file *filp = iocb->ki_filp;
1288 	ssize_t retval;
1289 	unsigned long seg = 0;
1290 	size_t count;
1291 	loff_t *ppos = &iocb->ki_pos;
1292 
1293 	count = 0;
1294 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1295 	if (retval)
1296 		return retval;
1297 
1298 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1299 	if (filp->f_flags & O_DIRECT) {
1300 		loff_t size;
1301 		struct address_space *mapping;
1302 		struct inode *inode;
1303 
1304 		mapping = filp->f_mapping;
1305 		inode = mapping->host;
1306 		if (!count)
1307 			goto out; /* skip atime */
1308 		size = i_size_read(inode);
1309 		if (pos < size) {
1310 			retval = filemap_write_and_wait_range(mapping, pos,
1311 					pos + iov_length(iov, nr_segs) - 1);
1312 			if (!retval) {
1313 				retval = mapping->a_ops->direct_IO(READ, iocb,
1314 							iov, pos, nr_segs);
1315 			}
1316 			if (retval > 0) {
1317 				*ppos = pos + retval;
1318 				count -= retval;
1319 			}
1320 
1321 			/*
1322 			 * Btrfs can have a short DIO read if we encounter
1323 			 * compressed extents, so if there was an error, or if
1324 			 * we've already read everything we wanted to, or if
1325 			 * there was a short read because we hit EOF, go ahead
1326 			 * and return.  Otherwise fallthrough to buffered io for
1327 			 * the rest of the read.
1328 			 */
1329 			if (retval < 0 || !count || *ppos >= size) {
1330 				file_accessed(filp);
1331 				goto out;
1332 			}
1333 		}
1334 	}
1335 
1336 	count = retval;
1337 	for (seg = 0; seg < nr_segs; seg++) {
1338 		read_descriptor_t desc;
1339 		loff_t offset = 0;
1340 
1341 		/*
1342 		 * If we did a short DIO read we need to skip the section of the
1343 		 * iov that we've already read data into.
1344 		 */
1345 		if (count) {
1346 			if (count > iov[seg].iov_len) {
1347 				count -= iov[seg].iov_len;
1348 				continue;
1349 			}
1350 			offset = count;
1351 			count = 0;
1352 		}
1353 
1354 		desc.written = 0;
1355 		desc.arg.buf = iov[seg].iov_base + offset;
1356 		desc.count = iov[seg].iov_len - offset;
1357 		if (desc.count == 0)
1358 			continue;
1359 		desc.error = 0;
1360 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1361 		retval += desc.written;
1362 		if (desc.error) {
1363 			retval = retval ?: desc.error;
1364 			break;
1365 		}
1366 		if (desc.count > 0)
1367 			break;
1368 	}
1369 out:
1370 	return retval;
1371 }
1372 EXPORT_SYMBOL(generic_file_aio_read);
1373 
1374 static ssize_t
1375 do_readahead(struct address_space *mapping, struct file *filp,
1376 	     pgoff_t index, unsigned long nr)
1377 {
1378 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1379 		return -EINVAL;
1380 
1381 	force_page_cache_readahead(mapping, filp, index, nr);
1382 	return 0;
1383 }
1384 
1385 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1386 {
1387 	ssize_t ret;
1388 	struct file *file;
1389 
1390 	ret = -EBADF;
1391 	file = fget(fd);
1392 	if (file) {
1393 		if (file->f_mode & FMODE_READ) {
1394 			struct address_space *mapping = file->f_mapping;
1395 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1396 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1397 			unsigned long len = end - start + 1;
1398 			ret = do_readahead(mapping, file, start, len);
1399 		}
1400 		fput(file);
1401 	}
1402 	return ret;
1403 }
1404 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1405 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1406 {
1407 	return SYSC_readahead((int) fd, offset, (size_t) count);
1408 }
1409 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1410 #endif
1411 
1412 #ifdef CONFIG_MMU
1413 /**
1414  * page_cache_read - adds requested page to the page cache if not already there
1415  * @file:	file to read
1416  * @offset:	page index
1417  *
1418  * This adds the requested page to the page cache if it isn't already there,
1419  * and schedules an I/O to read in its contents from disk.
1420  */
1421 static int page_cache_read(struct file *file, pgoff_t offset)
1422 {
1423 	struct address_space *mapping = file->f_mapping;
1424 	struct page *page;
1425 	int ret;
1426 
1427 	do {
1428 		page = page_cache_alloc_cold(mapping);
1429 		if (!page)
1430 			return -ENOMEM;
1431 
1432 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1433 		if (ret == 0)
1434 			ret = mapping->a_ops->readpage(file, page);
1435 		else if (ret == -EEXIST)
1436 			ret = 0; /* losing race to add is OK */
1437 
1438 		page_cache_release(page);
1439 
1440 	} while (ret == AOP_TRUNCATED_PAGE);
1441 
1442 	return ret;
1443 }
1444 
1445 #define MMAP_LOTSAMISS  (100)
1446 
1447 /*
1448  * Synchronous readahead happens when we don't even find
1449  * a page in the page cache at all.
1450  */
1451 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1452 				   struct file_ra_state *ra,
1453 				   struct file *file,
1454 				   pgoff_t offset)
1455 {
1456 	unsigned long ra_pages;
1457 	struct address_space *mapping = file->f_mapping;
1458 
1459 	/* If we don't want any read-ahead, don't bother */
1460 	if (VM_RandomReadHint(vma))
1461 		return;
1462 
1463 	if (VM_SequentialReadHint(vma) ||
1464 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1465 		page_cache_sync_readahead(mapping, ra, file, offset,
1466 					  ra->ra_pages);
1467 		return;
1468 	}
1469 
1470 	if (ra->mmap_miss < INT_MAX)
1471 		ra->mmap_miss++;
1472 
1473 	/*
1474 	 * Do we miss much more than hit in this file? If so,
1475 	 * stop bothering with read-ahead. It will only hurt.
1476 	 */
1477 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1478 		return;
1479 
1480 	/*
1481 	 * mmap read-around
1482 	 */
1483 	ra_pages = max_sane_readahead(ra->ra_pages);
1484 	if (ra_pages) {
1485 		ra->start = max_t(long, 0, offset - ra_pages/2);
1486 		ra->size = ra_pages;
1487 		ra->async_size = 0;
1488 		ra_submit(ra, mapping, file);
1489 	}
1490 }
1491 
1492 /*
1493  * Asynchronous readahead happens when we find the page and PG_readahead,
1494  * so we want to possibly extend the readahead further..
1495  */
1496 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1497 				    struct file_ra_state *ra,
1498 				    struct file *file,
1499 				    struct page *page,
1500 				    pgoff_t offset)
1501 {
1502 	struct address_space *mapping = file->f_mapping;
1503 
1504 	/* If we don't want any read-ahead, don't bother */
1505 	if (VM_RandomReadHint(vma))
1506 		return;
1507 	if (ra->mmap_miss > 0)
1508 		ra->mmap_miss--;
1509 	if (PageReadahead(page))
1510 		page_cache_async_readahead(mapping, ra, file,
1511 					   page, offset, ra->ra_pages);
1512 }
1513 
1514 /**
1515  * filemap_fault - read in file data for page fault handling
1516  * @vma:	vma in which the fault was taken
1517  * @vmf:	struct vm_fault containing details of the fault
1518  *
1519  * filemap_fault() is invoked via the vma operations vector for a
1520  * mapped memory region to read in file data during a page fault.
1521  *
1522  * The goto's are kind of ugly, but this streamlines the normal case of having
1523  * it in the page cache, and handles the special cases reasonably without
1524  * having a lot of duplicated code.
1525  */
1526 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1527 {
1528 	int error;
1529 	struct file *file = vma->vm_file;
1530 	struct address_space *mapping = file->f_mapping;
1531 	struct file_ra_state *ra = &file->f_ra;
1532 	struct inode *inode = mapping->host;
1533 	pgoff_t offset = vmf->pgoff;
1534 	struct page *page;
1535 	pgoff_t size;
1536 	int ret = 0;
1537 
1538 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1539 	if (offset >= size)
1540 		return VM_FAULT_SIGBUS;
1541 
1542 	/*
1543 	 * Do we have something in the page cache already?
1544 	 */
1545 	page = find_get_page(mapping, offset);
1546 	if (likely(page)) {
1547 		/*
1548 		 * We found the page, so try async readahead before
1549 		 * waiting for the lock.
1550 		 */
1551 		do_async_mmap_readahead(vma, ra, file, page, offset);
1552 	} else {
1553 		/* No page in the page cache at all */
1554 		do_sync_mmap_readahead(vma, ra, file, offset);
1555 		count_vm_event(PGMAJFAULT);
1556 		ret = VM_FAULT_MAJOR;
1557 retry_find:
1558 		page = find_get_page(mapping, offset);
1559 		if (!page)
1560 			goto no_cached_page;
1561 	}
1562 
1563 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1564 		page_cache_release(page);
1565 		return ret | VM_FAULT_RETRY;
1566 	}
1567 
1568 	/* Did it get truncated? */
1569 	if (unlikely(page->mapping != mapping)) {
1570 		unlock_page(page);
1571 		put_page(page);
1572 		goto retry_find;
1573 	}
1574 	VM_BUG_ON(page->index != offset);
1575 
1576 	/*
1577 	 * We have a locked page in the page cache, now we need to check
1578 	 * that it's up-to-date. If not, it is going to be due to an error.
1579 	 */
1580 	if (unlikely(!PageUptodate(page)))
1581 		goto page_not_uptodate;
1582 
1583 	/*
1584 	 * Found the page and have a reference on it.
1585 	 * We must recheck i_size under page lock.
1586 	 */
1587 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1588 	if (unlikely(offset >= size)) {
1589 		unlock_page(page);
1590 		page_cache_release(page);
1591 		return VM_FAULT_SIGBUS;
1592 	}
1593 
1594 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1595 	vmf->page = page;
1596 	return ret | VM_FAULT_LOCKED;
1597 
1598 no_cached_page:
1599 	/*
1600 	 * We're only likely to ever get here if MADV_RANDOM is in
1601 	 * effect.
1602 	 */
1603 	error = page_cache_read(file, offset);
1604 
1605 	/*
1606 	 * The page we want has now been added to the page cache.
1607 	 * In the unlikely event that someone removed it in the
1608 	 * meantime, we'll just come back here and read it again.
1609 	 */
1610 	if (error >= 0)
1611 		goto retry_find;
1612 
1613 	/*
1614 	 * An error return from page_cache_read can result if the
1615 	 * system is low on memory, or a problem occurs while trying
1616 	 * to schedule I/O.
1617 	 */
1618 	if (error == -ENOMEM)
1619 		return VM_FAULT_OOM;
1620 	return VM_FAULT_SIGBUS;
1621 
1622 page_not_uptodate:
1623 	/*
1624 	 * Umm, take care of errors if the page isn't up-to-date.
1625 	 * Try to re-read it _once_. We do this synchronously,
1626 	 * because there really aren't any performance issues here
1627 	 * and we need to check for errors.
1628 	 */
1629 	ClearPageError(page);
1630 	error = mapping->a_ops->readpage(file, page);
1631 	if (!error) {
1632 		wait_on_page_locked(page);
1633 		if (!PageUptodate(page))
1634 			error = -EIO;
1635 	}
1636 	page_cache_release(page);
1637 
1638 	if (!error || error == AOP_TRUNCATED_PAGE)
1639 		goto retry_find;
1640 
1641 	/* Things didn't work out. Return zero to tell the mm layer so. */
1642 	shrink_readahead_size_eio(file, ra);
1643 	return VM_FAULT_SIGBUS;
1644 }
1645 EXPORT_SYMBOL(filemap_fault);
1646 
1647 const struct vm_operations_struct generic_file_vm_ops = {
1648 	.fault		= filemap_fault,
1649 };
1650 
1651 /* This is used for a general mmap of a disk file */
1652 
1653 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1654 {
1655 	struct address_space *mapping = file->f_mapping;
1656 
1657 	if (!mapping->a_ops->readpage)
1658 		return -ENOEXEC;
1659 	file_accessed(file);
1660 	vma->vm_ops = &generic_file_vm_ops;
1661 	vma->vm_flags |= VM_CAN_NONLINEAR;
1662 	return 0;
1663 }
1664 
1665 /*
1666  * This is for filesystems which do not implement ->writepage.
1667  */
1668 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1669 {
1670 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1671 		return -EINVAL;
1672 	return generic_file_mmap(file, vma);
1673 }
1674 #else
1675 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1676 {
1677 	return -ENOSYS;
1678 }
1679 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1680 {
1681 	return -ENOSYS;
1682 }
1683 #endif /* CONFIG_MMU */
1684 
1685 EXPORT_SYMBOL(generic_file_mmap);
1686 EXPORT_SYMBOL(generic_file_readonly_mmap);
1687 
1688 static struct page *__read_cache_page(struct address_space *mapping,
1689 				pgoff_t index,
1690 				int (*filler)(void *,struct page*),
1691 				void *data,
1692 				gfp_t gfp)
1693 {
1694 	struct page *page;
1695 	int err;
1696 repeat:
1697 	page = find_get_page(mapping, index);
1698 	if (!page) {
1699 		page = __page_cache_alloc(gfp | __GFP_COLD);
1700 		if (!page)
1701 			return ERR_PTR(-ENOMEM);
1702 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1703 		if (unlikely(err)) {
1704 			page_cache_release(page);
1705 			if (err == -EEXIST)
1706 				goto repeat;
1707 			/* Presumably ENOMEM for radix tree node */
1708 			return ERR_PTR(err);
1709 		}
1710 		err = filler(data, page);
1711 		if (err < 0) {
1712 			page_cache_release(page);
1713 			page = ERR_PTR(err);
1714 		}
1715 	}
1716 	return page;
1717 }
1718 
1719 static struct page *do_read_cache_page(struct address_space *mapping,
1720 				pgoff_t index,
1721 				int (*filler)(void *,struct page*),
1722 				void *data,
1723 				gfp_t gfp)
1724 
1725 {
1726 	struct page *page;
1727 	int err;
1728 
1729 retry:
1730 	page = __read_cache_page(mapping, index, filler, data, gfp);
1731 	if (IS_ERR(page))
1732 		return page;
1733 	if (PageUptodate(page))
1734 		goto out;
1735 
1736 	lock_page(page);
1737 	if (!page->mapping) {
1738 		unlock_page(page);
1739 		page_cache_release(page);
1740 		goto retry;
1741 	}
1742 	if (PageUptodate(page)) {
1743 		unlock_page(page);
1744 		goto out;
1745 	}
1746 	err = filler(data, page);
1747 	if (err < 0) {
1748 		page_cache_release(page);
1749 		return ERR_PTR(err);
1750 	}
1751 out:
1752 	mark_page_accessed(page);
1753 	return page;
1754 }
1755 
1756 /**
1757  * read_cache_page_async - read into page cache, fill it if needed
1758  * @mapping:	the page's address_space
1759  * @index:	the page index
1760  * @filler:	function to perform the read
1761  * @data:	destination for read data
1762  *
1763  * Same as read_cache_page, but don't wait for page to become unlocked
1764  * after submitting it to the filler.
1765  *
1766  * Read into the page cache. If a page already exists, and PageUptodate() is
1767  * not set, try to fill the page but don't wait for it to become unlocked.
1768  *
1769  * If the page does not get brought uptodate, return -EIO.
1770  */
1771 struct page *read_cache_page_async(struct address_space *mapping,
1772 				pgoff_t index,
1773 				int (*filler)(void *,struct page*),
1774 				void *data)
1775 {
1776 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1777 }
1778 EXPORT_SYMBOL(read_cache_page_async);
1779 
1780 static struct page *wait_on_page_read(struct page *page)
1781 {
1782 	if (!IS_ERR(page)) {
1783 		wait_on_page_locked(page);
1784 		if (!PageUptodate(page)) {
1785 			page_cache_release(page);
1786 			page = ERR_PTR(-EIO);
1787 		}
1788 	}
1789 	return page;
1790 }
1791 
1792 /**
1793  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1794  * @mapping:	the page's address_space
1795  * @index:	the page index
1796  * @gfp:	the page allocator flags to use if allocating
1797  *
1798  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1799  * any new page allocations done using the specified allocation flags. Note
1800  * that the Radix tree operations will still use GFP_KERNEL, so you can't
1801  * expect to do this atomically or anything like that - but you can pass in
1802  * other page requirements.
1803  *
1804  * If the page does not get brought uptodate, return -EIO.
1805  */
1806 struct page *read_cache_page_gfp(struct address_space *mapping,
1807 				pgoff_t index,
1808 				gfp_t gfp)
1809 {
1810 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1811 
1812 	return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1813 }
1814 EXPORT_SYMBOL(read_cache_page_gfp);
1815 
1816 /**
1817  * read_cache_page - read into page cache, fill it if needed
1818  * @mapping:	the page's address_space
1819  * @index:	the page index
1820  * @filler:	function to perform the read
1821  * @data:	destination for read data
1822  *
1823  * Read into the page cache. If a page already exists, and PageUptodate() is
1824  * not set, try to fill the page then wait for it to become unlocked.
1825  *
1826  * If the page does not get brought uptodate, return -EIO.
1827  */
1828 struct page *read_cache_page(struct address_space *mapping,
1829 				pgoff_t index,
1830 				int (*filler)(void *,struct page*),
1831 				void *data)
1832 {
1833 	return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1834 }
1835 EXPORT_SYMBOL(read_cache_page);
1836 
1837 /*
1838  * The logic we want is
1839  *
1840  *	if suid or (sgid and xgrp)
1841  *		remove privs
1842  */
1843 int should_remove_suid(struct dentry *dentry)
1844 {
1845 	mode_t mode = dentry->d_inode->i_mode;
1846 	int kill = 0;
1847 
1848 	/* suid always must be killed */
1849 	if (unlikely(mode & S_ISUID))
1850 		kill = ATTR_KILL_SUID;
1851 
1852 	/*
1853 	 * sgid without any exec bits is just a mandatory locking mark; leave
1854 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1855 	 */
1856 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1857 		kill |= ATTR_KILL_SGID;
1858 
1859 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1860 		return kill;
1861 
1862 	return 0;
1863 }
1864 EXPORT_SYMBOL(should_remove_suid);
1865 
1866 static int __remove_suid(struct dentry *dentry, int kill)
1867 {
1868 	struct iattr newattrs;
1869 
1870 	newattrs.ia_valid = ATTR_FORCE | kill;
1871 	return notify_change(dentry, &newattrs);
1872 }
1873 
1874 int file_remove_suid(struct file *file)
1875 {
1876 	struct dentry *dentry = file->f_path.dentry;
1877 	int killsuid = should_remove_suid(dentry);
1878 	int killpriv = security_inode_need_killpriv(dentry);
1879 	int error = 0;
1880 
1881 	if (killpriv < 0)
1882 		return killpriv;
1883 	if (killpriv)
1884 		error = security_inode_killpriv(dentry);
1885 	if (!error && killsuid)
1886 		error = __remove_suid(dentry, killsuid);
1887 
1888 	return error;
1889 }
1890 EXPORT_SYMBOL(file_remove_suid);
1891 
1892 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1893 			const struct iovec *iov, size_t base, size_t bytes)
1894 {
1895 	size_t copied = 0, left = 0;
1896 
1897 	while (bytes) {
1898 		char __user *buf = iov->iov_base + base;
1899 		int copy = min(bytes, iov->iov_len - base);
1900 
1901 		base = 0;
1902 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1903 		copied += copy;
1904 		bytes -= copy;
1905 		vaddr += copy;
1906 		iov++;
1907 
1908 		if (unlikely(left))
1909 			break;
1910 	}
1911 	return copied - left;
1912 }
1913 
1914 /*
1915  * Copy as much as we can into the page and return the number of bytes which
1916  * were successfully copied.  If a fault is encountered then return the number of
1917  * bytes which were copied.
1918  */
1919 size_t iov_iter_copy_from_user_atomic(struct page *page,
1920 		struct iov_iter *i, unsigned long offset, size_t bytes)
1921 {
1922 	char *kaddr;
1923 	size_t copied;
1924 
1925 	BUG_ON(!in_atomic());
1926 	kaddr = kmap_atomic(page, KM_USER0);
1927 	if (likely(i->nr_segs == 1)) {
1928 		int left;
1929 		char __user *buf = i->iov->iov_base + i->iov_offset;
1930 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1931 		copied = bytes - left;
1932 	} else {
1933 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1934 						i->iov, i->iov_offset, bytes);
1935 	}
1936 	kunmap_atomic(kaddr, KM_USER0);
1937 
1938 	return copied;
1939 }
1940 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1941 
1942 /*
1943  * This has the same sideeffects and return value as
1944  * iov_iter_copy_from_user_atomic().
1945  * The difference is that it attempts to resolve faults.
1946  * Page must not be locked.
1947  */
1948 size_t iov_iter_copy_from_user(struct page *page,
1949 		struct iov_iter *i, unsigned long offset, size_t bytes)
1950 {
1951 	char *kaddr;
1952 	size_t copied;
1953 
1954 	kaddr = kmap(page);
1955 	if (likely(i->nr_segs == 1)) {
1956 		int left;
1957 		char __user *buf = i->iov->iov_base + i->iov_offset;
1958 		left = __copy_from_user(kaddr + offset, buf, bytes);
1959 		copied = bytes - left;
1960 	} else {
1961 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1962 						i->iov, i->iov_offset, bytes);
1963 	}
1964 	kunmap(page);
1965 	return copied;
1966 }
1967 EXPORT_SYMBOL(iov_iter_copy_from_user);
1968 
1969 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1970 {
1971 	BUG_ON(i->count < bytes);
1972 
1973 	if (likely(i->nr_segs == 1)) {
1974 		i->iov_offset += bytes;
1975 		i->count -= bytes;
1976 	} else {
1977 		const struct iovec *iov = i->iov;
1978 		size_t base = i->iov_offset;
1979 
1980 		/*
1981 		 * The !iov->iov_len check ensures we skip over unlikely
1982 		 * zero-length segments (without overruning the iovec).
1983 		 */
1984 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1985 			int copy;
1986 
1987 			copy = min(bytes, iov->iov_len - base);
1988 			BUG_ON(!i->count || i->count < copy);
1989 			i->count -= copy;
1990 			bytes -= copy;
1991 			base += copy;
1992 			if (iov->iov_len == base) {
1993 				iov++;
1994 				base = 0;
1995 			}
1996 		}
1997 		i->iov = iov;
1998 		i->iov_offset = base;
1999 	}
2000 }
2001 EXPORT_SYMBOL(iov_iter_advance);
2002 
2003 /*
2004  * Fault in the first iovec of the given iov_iter, to a maximum length
2005  * of bytes. Returns 0 on success, or non-zero if the memory could not be
2006  * accessed (ie. because it is an invalid address).
2007  *
2008  * writev-intensive code may want this to prefault several iovecs -- that
2009  * would be possible (callers must not rely on the fact that _only_ the
2010  * first iovec will be faulted with the current implementation).
2011  */
2012 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2013 {
2014 	char __user *buf = i->iov->iov_base + i->iov_offset;
2015 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2016 	return fault_in_pages_readable(buf, bytes);
2017 }
2018 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2019 
2020 /*
2021  * Return the count of just the current iov_iter segment.
2022  */
2023 size_t iov_iter_single_seg_count(struct iov_iter *i)
2024 {
2025 	const struct iovec *iov = i->iov;
2026 	if (i->nr_segs == 1)
2027 		return i->count;
2028 	else
2029 		return min(i->count, iov->iov_len - i->iov_offset);
2030 }
2031 EXPORT_SYMBOL(iov_iter_single_seg_count);
2032 
2033 /*
2034  * Performs necessary checks before doing a write
2035  *
2036  * Can adjust writing position or amount of bytes to write.
2037  * Returns appropriate error code that caller should return or
2038  * zero in case that write should be allowed.
2039  */
2040 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2041 {
2042 	struct inode *inode = file->f_mapping->host;
2043 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2044 
2045         if (unlikely(*pos < 0))
2046                 return -EINVAL;
2047 
2048 	if (!isblk) {
2049 		/* FIXME: this is for backwards compatibility with 2.4 */
2050 		if (file->f_flags & O_APPEND)
2051                         *pos = i_size_read(inode);
2052 
2053 		if (limit != RLIM_INFINITY) {
2054 			if (*pos >= limit) {
2055 				send_sig(SIGXFSZ, current, 0);
2056 				return -EFBIG;
2057 			}
2058 			if (*count > limit - (typeof(limit))*pos) {
2059 				*count = limit - (typeof(limit))*pos;
2060 			}
2061 		}
2062 	}
2063 
2064 	/*
2065 	 * LFS rule
2066 	 */
2067 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2068 				!(file->f_flags & O_LARGEFILE))) {
2069 		if (*pos >= MAX_NON_LFS) {
2070 			return -EFBIG;
2071 		}
2072 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2073 			*count = MAX_NON_LFS - (unsigned long)*pos;
2074 		}
2075 	}
2076 
2077 	/*
2078 	 * Are we about to exceed the fs block limit ?
2079 	 *
2080 	 * If we have written data it becomes a short write.  If we have
2081 	 * exceeded without writing data we send a signal and return EFBIG.
2082 	 * Linus frestrict idea will clean these up nicely..
2083 	 */
2084 	if (likely(!isblk)) {
2085 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2086 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2087 				return -EFBIG;
2088 			}
2089 			/* zero-length writes at ->s_maxbytes are OK */
2090 		}
2091 
2092 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2093 			*count = inode->i_sb->s_maxbytes - *pos;
2094 	} else {
2095 #ifdef CONFIG_BLOCK
2096 		loff_t isize;
2097 		if (bdev_read_only(I_BDEV(inode)))
2098 			return -EPERM;
2099 		isize = i_size_read(inode);
2100 		if (*pos >= isize) {
2101 			if (*count || *pos > isize)
2102 				return -ENOSPC;
2103 		}
2104 
2105 		if (*pos + *count > isize)
2106 			*count = isize - *pos;
2107 #else
2108 		return -EPERM;
2109 #endif
2110 	}
2111 	return 0;
2112 }
2113 EXPORT_SYMBOL(generic_write_checks);
2114 
2115 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2116 				loff_t pos, unsigned len, unsigned flags,
2117 				struct page **pagep, void **fsdata)
2118 {
2119 	const struct address_space_operations *aops = mapping->a_ops;
2120 
2121 	return aops->write_begin(file, mapping, pos, len, flags,
2122 							pagep, fsdata);
2123 }
2124 EXPORT_SYMBOL(pagecache_write_begin);
2125 
2126 int pagecache_write_end(struct file *file, struct address_space *mapping,
2127 				loff_t pos, unsigned len, unsigned copied,
2128 				struct page *page, void *fsdata)
2129 {
2130 	const struct address_space_operations *aops = mapping->a_ops;
2131 
2132 	mark_page_accessed(page);
2133 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2134 }
2135 EXPORT_SYMBOL(pagecache_write_end);
2136 
2137 ssize_t
2138 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2139 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2140 		size_t count, size_t ocount)
2141 {
2142 	struct file	*file = iocb->ki_filp;
2143 	struct address_space *mapping = file->f_mapping;
2144 	struct inode	*inode = mapping->host;
2145 	ssize_t		written;
2146 	size_t		write_len;
2147 	pgoff_t		end;
2148 
2149 	if (count != ocount)
2150 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2151 
2152 	write_len = iov_length(iov, *nr_segs);
2153 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2154 
2155 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2156 	if (written)
2157 		goto out;
2158 
2159 	/*
2160 	 * After a write we want buffered reads to be sure to go to disk to get
2161 	 * the new data.  We invalidate clean cached page from the region we're
2162 	 * about to write.  We do this *before* the write so that we can return
2163 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2164 	 */
2165 	if (mapping->nrpages) {
2166 		written = invalidate_inode_pages2_range(mapping,
2167 					pos >> PAGE_CACHE_SHIFT, end);
2168 		/*
2169 		 * If a page can not be invalidated, return 0 to fall back
2170 		 * to buffered write.
2171 		 */
2172 		if (written) {
2173 			if (written == -EBUSY)
2174 				return 0;
2175 			goto out;
2176 		}
2177 	}
2178 
2179 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2180 
2181 	/*
2182 	 * Finally, try again to invalidate clean pages which might have been
2183 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2184 	 * if the source of the write was an mmap'ed region of the file
2185 	 * we're writing.  Either one is a pretty crazy thing to do,
2186 	 * so we don't support it 100%.  If this invalidation
2187 	 * fails, tough, the write still worked...
2188 	 */
2189 	if (mapping->nrpages) {
2190 		invalidate_inode_pages2_range(mapping,
2191 					      pos >> PAGE_CACHE_SHIFT, end);
2192 	}
2193 
2194 	if (written > 0) {
2195 		pos += written;
2196 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2197 			i_size_write(inode, pos);
2198 			mark_inode_dirty(inode);
2199 		}
2200 		*ppos = pos;
2201 	}
2202 out:
2203 	return written;
2204 }
2205 EXPORT_SYMBOL(generic_file_direct_write);
2206 
2207 /*
2208  * Find or create a page at the given pagecache position. Return the locked
2209  * page. This function is specifically for buffered writes.
2210  */
2211 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2212 					pgoff_t index, unsigned flags)
2213 {
2214 	int status;
2215 	struct page *page;
2216 	gfp_t gfp_notmask = 0;
2217 	if (flags & AOP_FLAG_NOFS)
2218 		gfp_notmask = __GFP_FS;
2219 repeat:
2220 	page = find_lock_page(mapping, index);
2221 	if (likely(page))
2222 		return page;
2223 
2224 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2225 	if (!page)
2226 		return NULL;
2227 	status = add_to_page_cache_lru(page, mapping, index,
2228 						GFP_KERNEL & ~gfp_notmask);
2229 	if (unlikely(status)) {
2230 		page_cache_release(page);
2231 		if (status == -EEXIST)
2232 			goto repeat;
2233 		return NULL;
2234 	}
2235 	return page;
2236 }
2237 EXPORT_SYMBOL(grab_cache_page_write_begin);
2238 
2239 static ssize_t generic_perform_write(struct file *file,
2240 				struct iov_iter *i, loff_t pos)
2241 {
2242 	struct address_space *mapping = file->f_mapping;
2243 	const struct address_space_operations *a_ops = mapping->a_ops;
2244 	long status = 0;
2245 	ssize_t written = 0;
2246 	unsigned int flags = 0;
2247 
2248 	/*
2249 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2250 	 */
2251 	if (segment_eq(get_fs(), KERNEL_DS))
2252 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2253 
2254 	do {
2255 		struct page *page;
2256 		unsigned long offset;	/* Offset into pagecache page */
2257 		unsigned long bytes;	/* Bytes to write to page */
2258 		size_t copied;		/* Bytes copied from user */
2259 		void *fsdata;
2260 
2261 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2262 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2263 						iov_iter_count(i));
2264 
2265 again:
2266 
2267 		/*
2268 		 * Bring in the user page that we will copy from _first_.
2269 		 * Otherwise there's a nasty deadlock on copying from the
2270 		 * same page as we're writing to, without it being marked
2271 		 * up-to-date.
2272 		 *
2273 		 * Not only is this an optimisation, but it is also required
2274 		 * to check that the address is actually valid, when atomic
2275 		 * usercopies are used, below.
2276 		 */
2277 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2278 			status = -EFAULT;
2279 			break;
2280 		}
2281 
2282 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2283 						&page, &fsdata);
2284 		if (unlikely(status))
2285 			break;
2286 
2287 		if (mapping_writably_mapped(mapping))
2288 			flush_dcache_page(page);
2289 
2290 		pagefault_disable();
2291 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2292 		pagefault_enable();
2293 		flush_dcache_page(page);
2294 
2295 		mark_page_accessed(page);
2296 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2297 						page, fsdata);
2298 		if (unlikely(status < 0))
2299 			break;
2300 		copied = status;
2301 
2302 		cond_resched();
2303 
2304 		iov_iter_advance(i, copied);
2305 		if (unlikely(copied == 0)) {
2306 			/*
2307 			 * If we were unable to copy any data at all, we must
2308 			 * fall back to a single segment length write.
2309 			 *
2310 			 * If we didn't fallback here, we could livelock
2311 			 * because not all segments in the iov can be copied at
2312 			 * once without a pagefault.
2313 			 */
2314 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2315 						iov_iter_single_seg_count(i));
2316 			goto again;
2317 		}
2318 		pos += copied;
2319 		written += copied;
2320 
2321 		balance_dirty_pages_ratelimited(mapping);
2322 
2323 	} while (iov_iter_count(i));
2324 
2325 	return written ? written : status;
2326 }
2327 
2328 ssize_t
2329 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2330 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2331 		size_t count, ssize_t written)
2332 {
2333 	struct file *file = iocb->ki_filp;
2334 	ssize_t status;
2335 	struct iov_iter i;
2336 
2337 	iov_iter_init(&i, iov, nr_segs, count, written);
2338 	status = generic_perform_write(file, &i, pos);
2339 
2340 	if (likely(status >= 0)) {
2341 		written += status;
2342 		*ppos = pos + status;
2343   	}
2344 
2345 	return written ? written : status;
2346 }
2347 EXPORT_SYMBOL(generic_file_buffered_write);
2348 
2349 /**
2350  * __generic_file_aio_write - write data to a file
2351  * @iocb:	IO state structure (file, offset, etc.)
2352  * @iov:	vector with data to write
2353  * @nr_segs:	number of segments in the vector
2354  * @ppos:	position where to write
2355  *
2356  * This function does all the work needed for actually writing data to a
2357  * file. It does all basic checks, removes SUID from the file, updates
2358  * modification times and calls proper subroutines depending on whether we
2359  * do direct IO or a standard buffered write.
2360  *
2361  * It expects i_mutex to be grabbed unless we work on a block device or similar
2362  * object which does not need locking at all.
2363  *
2364  * This function does *not* take care of syncing data in case of O_SYNC write.
2365  * A caller has to handle it. This is mainly due to the fact that we want to
2366  * avoid syncing under i_mutex.
2367  */
2368 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2369 				 unsigned long nr_segs, loff_t *ppos)
2370 {
2371 	struct file *file = iocb->ki_filp;
2372 	struct address_space * mapping = file->f_mapping;
2373 	size_t ocount;		/* original count */
2374 	size_t count;		/* after file limit checks */
2375 	struct inode 	*inode = mapping->host;
2376 	loff_t		pos;
2377 	ssize_t		written;
2378 	ssize_t		err;
2379 
2380 	ocount = 0;
2381 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2382 	if (err)
2383 		return err;
2384 
2385 	count = ocount;
2386 	pos = *ppos;
2387 
2388 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2389 
2390 	/* We can write back this queue in page reclaim */
2391 	current->backing_dev_info = mapping->backing_dev_info;
2392 	written = 0;
2393 
2394 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2395 	if (err)
2396 		goto out;
2397 
2398 	if (count == 0)
2399 		goto out;
2400 
2401 	err = file_remove_suid(file);
2402 	if (err)
2403 		goto out;
2404 
2405 	file_update_time(file);
2406 
2407 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2408 	if (unlikely(file->f_flags & O_DIRECT)) {
2409 		loff_t endbyte;
2410 		ssize_t written_buffered;
2411 
2412 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2413 							ppos, count, ocount);
2414 		if (written < 0 || written == count)
2415 			goto out;
2416 		/*
2417 		 * direct-io write to a hole: fall through to buffered I/O
2418 		 * for completing the rest of the request.
2419 		 */
2420 		pos += written;
2421 		count -= written;
2422 		written_buffered = generic_file_buffered_write(iocb, iov,
2423 						nr_segs, pos, ppos, count,
2424 						written);
2425 		/*
2426 		 * If generic_file_buffered_write() retuned a synchronous error
2427 		 * then we want to return the number of bytes which were
2428 		 * direct-written, or the error code if that was zero.  Note
2429 		 * that this differs from normal direct-io semantics, which
2430 		 * will return -EFOO even if some bytes were written.
2431 		 */
2432 		if (written_buffered < 0) {
2433 			err = written_buffered;
2434 			goto out;
2435 		}
2436 
2437 		/*
2438 		 * We need to ensure that the page cache pages are written to
2439 		 * disk and invalidated to preserve the expected O_DIRECT
2440 		 * semantics.
2441 		 */
2442 		endbyte = pos + written_buffered - written - 1;
2443 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2444 		if (err == 0) {
2445 			written = written_buffered;
2446 			invalidate_mapping_pages(mapping,
2447 						 pos >> PAGE_CACHE_SHIFT,
2448 						 endbyte >> PAGE_CACHE_SHIFT);
2449 		} else {
2450 			/*
2451 			 * We don't know how much we wrote, so just return
2452 			 * the number of bytes which were direct-written
2453 			 */
2454 		}
2455 	} else {
2456 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2457 				pos, ppos, count, written);
2458 	}
2459 out:
2460 	current->backing_dev_info = NULL;
2461 	return written ? written : err;
2462 }
2463 EXPORT_SYMBOL(__generic_file_aio_write);
2464 
2465 /**
2466  * generic_file_aio_write - write data to a file
2467  * @iocb:	IO state structure
2468  * @iov:	vector with data to write
2469  * @nr_segs:	number of segments in the vector
2470  * @pos:	position in file where to write
2471  *
2472  * This is a wrapper around __generic_file_aio_write() to be used by most
2473  * filesystems. It takes care of syncing the file in case of O_SYNC file
2474  * and acquires i_mutex as needed.
2475  */
2476 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2477 		unsigned long nr_segs, loff_t pos)
2478 {
2479 	struct file *file = iocb->ki_filp;
2480 	struct inode *inode = file->f_mapping->host;
2481 	ssize_t ret;
2482 
2483 	BUG_ON(iocb->ki_pos != pos);
2484 
2485 	mutex_lock(&inode->i_mutex);
2486 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2487 	mutex_unlock(&inode->i_mutex);
2488 
2489 	if (ret > 0 || ret == -EIOCBQUEUED) {
2490 		ssize_t err;
2491 
2492 		err = generic_write_sync(file, pos, ret);
2493 		if (err < 0 && ret > 0)
2494 			ret = err;
2495 	}
2496 	return ret;
2497 }
2498 EXPORT_SYMBOL(generic_file_aio_write);
2499 
2500 /**
2501  * try_to_release_page() - release old fs-specific metadata on a page
2502  *
2503  * @page: the page which the kernel is trying to free
2504  * @gfp_mask: memory allocation flags (and I/O mode)
2505  *
2506  * The address_space is to try to release any data against the page
2507  * (presumably at page->private).  If the release was successful, return `1'.
2508  * Otherwise return zero.
2509  *
2510  * This may also be called if PG_fscache is set on a page, indicating that the
2511  * page is known to the local caching routines.
2512  *
2513  * The @gfp_mask argument specifies whether I/O may be performed to release
2514  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2515  *
2516  */
2517 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2518 {
2519 	struct address_space * const mapping = page->mapping;
2520 
2521 	BUG_ON(!PageLocked(page));
2522 	if (PageWriteback(page))
2523 		return 0;
2524 
2525 	if (mapping && mapping->a_ops->releasepage)
2526 		return mapping->a_ops->releasepage(page, gfp_mask);
2527 	return try_to_free_buffers(page);
2528 }
2529 
2530 EXPORT_SYMBOL(try_to_release_page);
2531