xref: /linux/mm/filemap.c (revision 455f9726244cb5de2b6a99f540743ba155633cc8)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_mutex		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_mutex		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_mutex
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_mutex
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
104  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
105  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
106  *
107  * ->i_mmap_mutex
108  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
109  */
110 
111 static void page_cache_tree_delete(struct address_space *mapping,
112 				   struct page *page, void *shadow)
113 {
114 	struct radix_tree_node *node;
115 	unsigned long index;
116 	unsigned int offset;
117 	unsigned int tag;
118 	void **slot;
119 
120 	VM_BUG_ON(!PageLocked(page));
121 
122 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123 
124 	if (shadow) {
125 		mapping->nrshadows++;
126 		/*
127 		 * Make sure the nrshadows update is committed before
128 		 * the nrpages update so that final truncate racing
129 		 * with reclaim does not see both counters 0 at the
130 		 * same time and miss a shadow entry.
131 		 */
132 		smp_wmb();
133 	}
134 	mapping->nrpages--;
135 
136 	if (!node) {
137 		/* Clear direct pointer tags in root node */
138 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 		radix_tree_replace_slot(slot, shadow);
140 		return;
141 	}
142 
143 	/* Clear tree tags for the removed page */
144 	index = page->index;
145 	offset = index & RADIX_TREE_MAP_MASK;
146 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 		if (test_bit(offset, node->tags[tag]))
148 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 	}
150 
151 	/* Delete page, swap shadow entry */
152 	radix_tree_replace_slot(slot, shadow);
153 	workingset_node_pages_dec(node);
154 	if (shadow)
155 		workingset_node_shadows_inc(node);
156 	else
157 		if (__radix_tree_delete_node(&mapping->page_tree, node))
158 			return;
159 
160 	/*
161 	 * Track node that only contains shadow entries.
162 	 *
163 	 * Avoid acquiring the list_lru lock if already tracked.  The
164 	 * list_empty() test is safe as node->private_list is
165 	 * protected by mapping->tree_lock.
166 	 */
167 	if (!workingset_node_pages(node) &&
168 	    list_empty(&node->private_list)) {
169 		node->private_data = mapping;
170 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 	}
172 }
173 
174 /*
175  * Delete a page from the page cache and free it. Caller has to make
176  * sure the page is locked and that nobody else uses it - or that usage
177  * is safe.  The caller must hold the mapping's tree_lock.
178  */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 	struct address_space *mapping = page->mapping;
182 
183 	trace_mm_filemap_delete_from_page_cache(page);
184 	/*
185 	 * if we're uptodate, flush out into the cleancache, otherwise
186 	 * invalidate any existing cleancache entries.  We can't leave
187 	 * stale data around in the cleancache once our page is gone
188 	 */
189 	if (PageUptodate(page) && PageMappedToDisk(page))
190 		cleancache_put_page(page);
191 	else
192 		cleancache_invalidate_page(mapping, page);
193 
194 	page_cache_tree_delete(mapping, page, shadow);
195 
196 	page->mapping = NULL;
197 	/* Leave page->index set: truncation lookup relies upon it */
198 
199 	__dec_zone_page_state(page, NR_FILE_PAGES);
200 	if (PageSwapBacked(page))
201 		__dec_zone_page_state(page, NR_SHMEM);
202 	BUG_ON(page_mapped(page));
203 
204 	/*
205 	 * Some filesystems seem to re-dirty the page even after
206 	 * the VM has canceled the dirty bit (eg ext3 journaling).
207 	 *
208 	 * Fix it up by doing a final dirty accounting check after
209 	 * having removed the page entirely.
210 	 */
211 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 		dec_zone_page_state(page, NR_FILE_DIRTY);
213 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 	}
215 }
216 
217 /**
218  * delete_from_page_cache - delete page from page cache
219  * @page: the page which the kernel is trying to remove from page cache
220  *
221  * This must be called only on pages that have been verified to be in the page
222  * cache and locked.  It will never put the page into the free list, the caller
223  * has a reference on the page.
224  */
225 void delete_from_page_cache(struct page *page)
226 {
227 	struct address_space *mapping = page->mapping;
228 	void (*freepage)(struct page *);
229 
230 	BUG_ON(!PageLocked(page));
231 
232 	freepage = mapping->a_ops->freepage;
233 	spin_lock_irq(&mapping->tree_lock);
234 	__delete_from_page_cache(page, NULL);
235 	spin_unlock_irq(&mapping->tree_lock);
236 	mem_cgroup_uncharge_cache_page(page);
237 
238 	if (freepage)
239 		freepage(page);
240 	page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243 
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 	int ret = 0;
247 	/* Check for outstanding write errors */
248 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 		ret = -ENOSPC;
251 	if (test_bit(AS_EIO, &mapping->flags) &&
252 	    test_and_clear_bit(AS_EIO, &mapping->flags))
253 		ret = -EIO;
254 	return ret;
255 }
256 
257 /**
258  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259  * @mapping:	address space structure to write
260  * @start:	offset in bytes where the range starts
261  * @end:	offset in bytes where the range ends (inclusive)
262  * @sync_mode:	enable synchronous operation
263  *
264  * Start writeback against all of a mapping's dirty pages that lie
265  * within the byte offsets <start, end> inclusive.
266  *
267  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268  * opposed to a regular memory cleansing writeback.  The difference between
269  * these two operations is that if a dirty page/buffer is encountered, it must
270  * be waited upon, and not just skipped over.
271  */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 				loff_t end, int sync_mode)
274 {
275 	int ret;
276 	struct writeback_control wbc = {
277 		.sync_mode = sync_mode,
278 		.nr_to_write = LONG_MAX,
279 		.range_start = start,
280 		.range_end = end,
281 	};
282 
283 	if (!mapping_cap_writeback_dirty(mapping))
284 		return 0;
285 
286 	ret = do_writepages(mapping, &wbc);
287 	return ret;
288 }
289 
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 	int sync_mode)
292 {
293 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295 
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301 
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 				loff_t end)
304 {
305 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308 
309 /**
310  * filemap_flush - mostly a non-blocking flush
311  * @mapping:	target address_space
312  *
313  * This is a mostly non-blocking flush.  Not suitable for data-integrity
314  * purposes - I/O may not be started against all dirty pages.
315  */
316 int filemap_flush(struct address_space *mapping)
317 {
318 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321 
322 /**
323  * filemap_fdatawait_range - wait for writeback to complete
324  * @mapping:		address space structure to wait for
325  * @start_byte:		offset in bytes where the range starts
326  * @end_byte:		offset in bytes where the range ends (inclusive)
327  *
328  * Walk the list of under-writeback pages of the given address space
329  * in the given range and wait for all of them.
330  */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 			    loff_t end_byte)
333 {
334 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 	struct pagevec pvec;
337 	int nr_pages;
338 	int ret2, ret = 0;
339 
340 	if (end_byte < start_byte)
341 		goto out;
342 
343 	pagevec_init(&pvec, 0);
344 	while ((index <= end) &&
345 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 			PAGECACHE_TAG_WRITEBACK,
347 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 		unsigned i;
349 
350 		for (i = 0; i < nr_pages; i++) {
351 			struct page *page = pvec.pages[i];
352 
353 			/* until radix tree lookup accepts end_index */
354 			if (page->index > end)
355 				continue;
356 
357 			wait_on_page_writeback(page);
358 			if (TestClearPageError(page))
359 				ret = -EIO;
360 		}
361 		pagevec_release(&pvec);
362 		cond_resched();
363 	}
364 out:
365 	ret2 = filemap_check_errors(mapping);
366 	if (!ret)
367 		ret = ret2;
368 
369 	return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372 
373 /**
374  * filemap_fdatawait - wait for all under-writeback pages to complete
375  * @mapping: address space structure to wait for
376  *
377  * Walk the list of under-writeback pages of the given address space
378  * and wait for all of them.
379  */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 	loff_t i_size = i_size_read(mapping->host);
383 
384 	if (i_size == 0)
385 		return 0;
386 
387 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	} else {
409 		err = filemap_check_errors(mapping);
410 	}
411 	return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414 
415 /**
416  * filemap_write_and_wait_range - write out & wait on a file range
417  * @mapping:	the address_space for the pages
418  * @lstart:	offset in bytes where the range starts
419  * @lend:	offset in bytes where the range ends (inclusive)
420  *
421  * Write out and wait upon file offsets lstart->lend, inclusive.
422  *
423  * Note that `lend' is inclusive (describes the last byte to be written) so
424  * that this function can be used to write to the very end-of-file (end = -1).
425  */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 				 loff_t lstart, loff_t lend)
428 {
429 	int err = 0;
430 
431 	if (mapping->nrpages) {
432 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 						 WB_SYNC_ALL);
434 		/* See comment of filemap_write_and_wait() */
435 		if (err != -EIO) {
436 			int err2 = filemap_fdatawait_range(mapping,
437 						lstart, lend);
438 			if (!err)
439 				err = err2;
440 		}
441 	} else {
442 		err = filemap_check_errors(mapping);
443 	}
444 	return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447 
448 /**
449  * replace_page_cache_page - replace a pagecache page with a new one
450  * @old:	page to be replaced
451  * @new:	page to replace with
452  * @gfp_mask:	allocation mode
453  *
454  * This function replaces a page in the pagecache with a new one.  On
455  * success it acquires the pagecache reference for the new page and
456  * drops it for the old page.  Both the old and new pages must be
457  * locked.  This function does not add the new page to the LRU, the
458  * caller must do that.
459  *
460  * The remove + add is atomic.  The only way this function can fail is
461  * memory allocation failure.
462  */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 	int error;
466 
467 	VM_BUG_ON_PAGE(!PageLocked(old), old);
468 	VM_BUG_ON_PAGE(!PageLocked(new), new);
469 	VM_BUG_ON_PAGE(new->mapping, new);
470 
471 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 	if (!error) {
473 		struct address_space *mapping = old->mapping;
474 		void (*freepage)(struct page *);
475 
476 		pgoff_t offset = old->index;
477 		freepage = mapping->a_ops->freepage;
478 
479 		page_cache_get(new);
480 		new->mapping = mapping;
481 		new->index = offset;
482 
483 		spin_lock_irq(&mapping->tree_lock);
484 		__delete_from_page_cache(old, NULL);
485 		error = radix_tree_insert(&mapping->page_tree, offset, new);
486 		BUG_ON(error);
487 		mapping->nrpages++;
488 		__inc_zone_page_state(new, NR_FILE_PAGES);
489 		if (PageSwapBacked(new))
490 			__inc_zone_page_state(new, NR_SHMEM);
491 		spin_unlock_irq(&mapping->tree_lock);
492 		/* mem_cgroup codes must not be called under tree_lock */
493 		mem_cgroup_replace_page_cache(old, new);
494 		radix_tree_preload_end();
495 		if (freepage)
496 			freepage(old);
497 		page_cache_release(old);
498 	}
499 
500 	return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503 
504 static int page_cache_tree_insert(struct address_space *mapping,
505 				  struct page *page, void **shadowp)
506 {
507 	struct radix_tree_node *node;
508 	void **slot;
509 	int error;
510 
511 	error = __radix_tree_create(&mapping->page_tree, page->index,
512 				    &node, &slot);
513 	if (error)
514 		return error;
515 	if (*slot) {
516 		void *p;
517 
518 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519 		if (!radix_tree_exceptional_entry(p))
520 			return -EEXIST;
521 		if (shadowp)
522 			*shadowp = p;
523 		mapping->nrshadows--;
524 		if (node)
525 			workingset_node_shadows_dec(node);
526 	}
527 	radix_tree_replace_slot(slot, page);
528 	mapping->nrpages++;
529 	if (node) {
530 		workingset_node_pages_inc(node);
531 		/*
532 		 * Don't track node that contains actual pages.
533 		 *
534 		 * Avoid acquiring the list_lru lock if already
535 		 * untracked.  The list_empty() test is safe as
536 		 * node->private_list is protected by
537 		 * mapping->tree_lock.
538 		 */
539 		if (!list_empty(&node->private_list))
540 			list_lru_del(&workingset_shadow_nodes,
541 				     &node->private_list);
542 	}
543 	return 0;
544 }
545 
546 static int __add_to_page_cache_locked(struct page *page,
547 				      struct address_space *mapping,
548 				      pgoff_t offset, gfp_t gfp_mask,
549 				      void **shadowp)
550 {
551 	int error;
552 
553 	VM_BUG_ON_PAGE(!PageLocked(page), page);
554 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555 
556 	error = mem_cgroup_charge_file(page, current->mm,
557 					gfp_mask & GFP_RECLAIM_MASK);
558 	if (error)
559 		return error;
560 
561 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562 	if (error) {
563 		mem_cgroup_uncharge_cache_page(page);
564 		return error;
565 	}
566 
567 	page_cache_get(page);
568 	page->mapping = mapping;
569 	page->index = offset;
570 
571 	spin_lock_irq(&mapping->tree_lock);
572 	error = page_cache_tree_insert(mapping, page, shadowp);
573 	radix_tree_preload_end();
574 	if (unlikely(error))
575 		goto err_insert;
576 	__inc_zone_page_state(page, NR_FILE_PAGES);
577 	spin_unlock_irq(&mapping->tree_lock);
578 	trace_mm_filemap_add_to_page_cache(page);
579 	return 0;
580 err_insert:
581 	page->mapping = NULL;
582 	/* Leave page->index set: truncation relies upon it */
583 	spin_unlock_irq(&mapping->tree_lock);
584 	mem_cgroup_uncharge_cache_page(page);
585 	page_cache_release(page);
586 	return error;
587 }
588 
589 /**
590  * add_to_page_cache_locked - add a locked page to the pagecache
591  * @page:	page to add
592  * @mapping:	the page's address_space
593  * @offset:	page index
594  * @gfp_mask:	page allocation mode
595  *
596  * This function is used to add a page to the pagecache. It must be locked.
597  * This function does not add the page to the LRU.  The caller must do that.
598  */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600 		pgoff_t offset, gfp_t gfp_mask)
601 {
602 	return __add_to_page_cache_locked(page, mapping, offset,
603 					  gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606 
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608 				pgoff_t offset, gfp_t gfp_mask)
609 {
610 	void *shadow = NULL;
611 	int ret;
612 
613 	__set_page_locked(page);
614 	ret = __add_to_page_cache_locked(page, mapping, offset,
615 					 gfp_mask, &shadow);
616 	if (unlikely(ret))
617 		__clear_page_locked(page);
618 	else {
619 		/*
620 		 * The page might have been evicted from cache only
621 		 * recently, in which case it should be activated like
622 		 * any other repeatedly accessed page.
623 		 */
624 		if (shadow && workingset_refault(shadow)) {
625 			SetPageActive(page);
626 			workingset_activation(page);
627 		} else
628 			ClearPageActive(page);
629 		lru_cache_add(page);
630 	}
631 	return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634 
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638 	int n;
639 	struct page *page;
640 
641 	if (cpuset_do_page_mem_spread()) {
642 		unsigned int cpuset_mems_cookie;
643 		do {
644 			cpuset_mems_cookie = read_mems_allowed_begin();
645 			n = cpuset_mem_spread_node();
646 			page = alloc_pages_exact_node(n, gfp, 0);
647 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648 
649 		return page;
650 	}
651 	return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655 
656 /*
657  * In order to wait for pages to become available there must be
658  * waitqueues associated with pages. By using a hash table of
659  * waitqueues where the bucket discipline is to maintain all
660  * waiters on the same queue and wake all when any of the pages
661  * become available, and for the woken contexts to check to be
662  * sure the appropriate page became available, this saves space
663  * at a cost of "thundering herd" phenomena during rare hash
664  * collisions.
665  */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668 	const struct zone *zone = page_zone(page);
669 
670 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672 
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677 
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681 
682 	if (test_bit(bit_nr, &page->flags))
683 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684 							TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687 
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691 
692 	if (!test_bit(bit_nr, &page->flags))
693 		return 0;
694 
695 	return __wait_on_bit(page_waitqueue(page), &wait,
696 			     bit_wait_io, TASK_KILLABLE);
697 }
698 
699 /**
700  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701  * @page: Page defining the wait queue of interest
702  * @waiter: Waiter to add to the queue
703  *
704  * Add an arbitrary @waiter to the wait queue for the nominated @page.
705  */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708 	wait_queue_head_t *q = page_waitqueue(page);
709 	unsigned long flags;
710 
711 	spin_lock_irqsave(&q->lock, flags);
712 	__add_wait_queue(q, waiter);
713 	spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716 
717 /**
718  * unlock_page - unlock a locked page
719  * @page: the page
720  *
721  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723  * mechananism between PageLocked pages and PageWriteback pages is shared.
724  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725  *
726  * The mb is necessary to enforce ordering between the clear_bit and the read
727  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728  */
729 void unlock_page(struct page *page)
730 {
731 	VM_BUG_ON_PAGE(!PageLocked(page), page);
732 	clear_bit_unlock(PG_locked, &page->flags);
733 	smp_mb__after_atomic();
734 	wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737 
738 /**
739  * end_page_writeback - end writeback against a page
740  * @page: the page
741  */
742 void end_page_writeback(struct page *page)
743 {
744 	/*
745 	 * TestClearPageReclaim could be used here but it is an atomic
746 	 * operation and overkill in this particular case. Failing to
747 	 * shuffle a page marked for immediate reclaim is too mild to
748 	 * justify taking an atomic operation penalty at the end of
749 	 * ever page writeback.
750 	 */
751 	if (PageReclaim(page)) {
752 		ClearPageReclaim(page);
753 		rotate_reclaimable_page(page);
754 	}
755 
756 	if (!test_clear_page_writeback(page))
757 		BUG();
758 
759 	smp_mb__after_atomic();
760 	wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763 
764 /*
765  * After completing I/O on a page, call this routine to update the page
766  * flags appropriately
767  */
768 void page_endio(struct page *page, int rw, int err)
769 {
770 	if (rw == READ) {
771 		if (!err) {
772 			SetPageUptodate(page);
773 		} else {
774 			ClearPageUptodate(page);
775 			SetPageError(page);
776 		}
777 		unlock_page(page);
778 	} else { /* rw == WRITE */
779 		if (err) {
780 			SetPageError(page);
781 			if (page->mapping)
782 				mapping_set_error(page->mapping, err);
783 		}
784 		end_page_writeback(page);
785 	}
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788 
789 /**
790  * __lock_page - get a lock on the page, assuming we need to sleep to get it
791  * @page: the page to lock
792  */
793 void __lock_page(struct page *page)
794 {
795 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796 
797 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798 							TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801 
802 int __lock_page_killable(struct page *page)
803 {
804 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805 
806 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
807 					bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810 
811 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
812 			 unsigned int flags)
813 {
814 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
815 		/*
816 		 * CAUTION! In this case, mmap_sem is not released
817 		 * even though return 0.
818 		 */
819 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
820 			return 0;
821 
822 		up_read(&mm->mmap_sem);
823 		if (flags & FAULT_FLAG_KILLABLE)
824 			wait_on_page_locked_killable(page);
825 		else
826 			wait_on_page_locked(page);
827 		return 0;
828 	} else {
829 		if (flags & FAULT_FLAG_KILLABLE) {
830 			int ret;
831 
832 			ret = __lock_page_killable(page);
833 			if (ret) {
834 				up_read(&mm->mmap_sem);
835 				return 0;
836 			}
837 		} else
838 			__lock_page(page);
839 		return 1;
840 	}
841 }
842 
843 /**
844  * page_cache_next_hole - find the next hole (not-present entry)
845  * @mapping: mapping
846  * @index: index
847  * @max_scan: maximum range to search
848  *
849  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
850  * lowest indexed hole.
851  *
852  * Returns: the index of the hole if found, otherwise returns an index
853  * outside of the set specified (in which case 'return - index >=
854  * max_scan' will be true). In rare cases of index wrap-around, 0 will
855  * be returned.
856  *
857  * page_cache_next_hole may be called under rcu_read_lock. However,
858  * like radix_tree_gang_lookup, this will not atomically search a
859  * snapshot of the tree at a single point in time. For example, if a
860  * hole is created at index 5, then subsequently a hole is created at
861  * index 10, page_cache_next_hole covering both indexes may return 10
862  * if called under rcu_read_lock.
863  */
864 pgoff_t page_cache_next_hole(struct address_space *mapping,
865 			     pgoff_t index, unsigned long max_scan)
866 {
867 	unsigned long i;
868 
869 	for (i = 0; i < max_scan; i++) {
870 		struct page *page;
871 
872 		page = radix_tree_lookup(&mapping->page_tree, index);
873 		if (!page || radix_tree_exceptional_entry(page))
874 			break;
875 		index++;
876 		if (index == 0)
877 			break;
878 	}
879 
880 	return index;
881 }
882 EXPORT_SYMBOL(page_cache_next_hole);
883 
884 /**
885  * page_cache_prev_hole - find the prev hole (not-present entry)
886  * @mapping: mapping
887  * @index: index
888  * @max_scan: maximum range to search
889  *
890  * Search backwards in the range [max(index-max_scan+1, 0), index] for
891  * the first hole.
892  *
893  * Returns: the index of the hole if found, otherwise returns an index
894  * outside of the set specified (in which case 'index - return >=
895  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
896  * will be returned.
897  *
898  * page_cache_prev_hole may be called under rcu_read_lock. However,
899  * like radix_tree_gang_lookup, this will not atomically search a
900  * snapshot of the tree at a single point in time. For example, if a
901  * hole is created at index 10, then subsequently a hole is created at
902  * index 5, page_cache_prev_hole covering both indexes may return 5 if
903  * called under rcu_read_lock.
904  */
905 pgoff_t page_cache_prev_hole(struct address_space *mapping,
906 			     pgoff_t index, unsigned long max_scan)
907 {
908 	unsigned long i;
909 
910 	for (i = 0; i < max_scan; i++) {
911 		struct page *page;
912 
913 		page = radix_tree_lookup(&mapping->page_tree, index);
914 		if (!page || radix_tree_exceptional_entry(page))
915 			break;
916 		index--;
917 		if (index == ULONG_MAX)
918 			break;
919 	}
920 
921 	return index;
922 }
923 EXPORT_SYMBOL(page_cache_prev_hole);
924 
925 /**
926  * find_get_entry - find and get a page cache entry
927  * @mapping: the address_space to search
928  * @offset: the page cache index
929  *
930  * Looks up the page cache slot at @mapping & @offset.  If there is a
931  * page cache page, it is returned with an increased refcount.
932  *
933  * If the slot holds a shadow entry of a previously evicted page, or a
934  * swap entry from shmem/tmpfs, it is returned.
935  *
936  * Otherwise, %NULL is returned.
937  */
938 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
939 {
940 	void **pagep;
941 	struct page *page;
942 
943 	rcu_read_lock();
944 repeat:
945 	page = NULL;
946 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
947 	if (pagep) {
948 		page = radix_tree_deref_slot(pagep);
949 		if (unlikely(!page))
950 			goto out;
951 		if (radix_tree_exception(page)) {
952 			if (radix_tree_deref_retry(page))
953 				goto repeat;
954 			/*
955 			 * A shadow entry of a recently evicted page,
956 			 * or a swap entry from shmem/tmpfs.  Return
957 			 * it without attempting to raise page count.
958 			 */
959 			goto out;
960 		}
961 		if (!page_cache_get_speculative(page))
962 			goto repeat;
963 
964 		/*
965 		 * Has the page moved?
966 		 * This is part of the lockless pagecache protocol. See
967 		 * include/linux/pagemap.h for details.
968 		 */
969 		if (unlikely(page != *pagep)) {
970 			page_cache_release(page);
971 			goto repeat;
972 		}
973 	}
974 out:
975 	rcu_read_unlock();
976 
977 	return page;
978 }
979 EXPORT_SYMBOL(find_get_entry);
980 
981 /**
982  * find_lock_entry - locate, pin and lock a page cache entry
983  * @mapping: the address_space to search
984  * @offset: the page cache index
985  *
986  * Looks up the page cache slot at @mapping & @offset.  If there is a
987  * page cache page, it is returned locked and with an increased
988  * refcount.
989  *
990  * If the slot holds a shadow entry of a previously evicted page, or a
991  * swap entry from shmem/tmpfs, it is returned.
992  *
993  * Otherwise, %NULL is returned.
994  *
995  * find_lock_entry() may sleep.
996  */
997 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
998 {
999 	struct page *page;
1000 
1001 repeat:
1002 	page = find_get_entry(mapping, offset);
1003 	if (page && !radix_tree_exception(page)) {
1004 		lock_page(page);
1005 		/* Has the page been truncated? */
1006 		if (unlikely(page->mapping != mapping)) {
1007 			unlock_page(page);
1008 			page_cache_release(page);
1009 			goto repeat;
1010 		}
1011 		VM_BUG_ON_PAGE(page->index != offset, page);
1012 	}
1013 	return page;
1014 }
1015 EXPORT_SYMBOL(find_lock_entry);
1016 
1017 /**
1018  * pagecache_get_page - find and get a page reference
1019  * @mapping: the address_space to search
1020  * @offset: the page index
1021  * @fgp_flags: PCG flags
1022  * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1023  * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1024  *
1025  * Looks up the page cache slot at @mapping & @offset.
1026  *
1027  * PCG flags modify how the page is returned.
1028  *
1029  * FGP_ACCESSED: the page will be marked accessed
1030  * FGP_LOCK: Page is return locked
1031  * FGP_CREAT: If page is not present then a new page is allocated using
1032  *		@cache_gfp_mask and added to the page cache and the VM's LRU
1033  *		list. If radix tree nodes are allocated during page cache
1034  *		insertion then @radix_gfp_mask is used. The page is returned
1035  *		locked and with an increased refcount. Otherwise, %NULL is
1036  *		returned.
1037  *
1038  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1039  * if the GFP flags specified for FGP_CREAT are atomic.
1040  *
1041  * If there is a page cache page, it is returned with an increased refcount.
1042  */
1043 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1044 	int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1045 {
1046 	struct page *page;
1047 
1048 repeat:
1049 	page = find_get_entry(mapping, offset);
1050 	if (radix_tree_exceptional_entry(page))
1051 		page = NULL;
1052 	if (!page)
1053 		goto no_page;
1054 
1055 	if (fgp_flags & FGP_LOCK) {
1056 		if (fgp_flags & FGP_NOWAIT) {
1057 			if (!trylock_page(page)) {
1058 				page_cache_release(page);
1059 				return NULL;
1060 			}
1061 		} else {
1062 			lock_page(page);
1063 		}
1064 
1065 		/* Has the page been truncated? */
1066 		if (unlikely(page->mapping != mapping)) {
1067 			unlock_page(page);
1068 			page_cache_release(page);
1069 			goto repeat;
1070 		}
1071 		VM_BUG_ON_PAGE(page->index != offset, page);
1072 	}
1073 
1074 	if (page && (fgp_flags & FGP_ACCESSED))
1075 		mark_page_accessed(page);
1076 
1077 no_page:
1078 	if (!page && (fgp_flags & FGP_CREAT)) {
1079 		int err;
1080 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1081 			cache_gfp_mask |= __GFP_WRITE;
1082 		if (fgp_flags & FGP_NOFS) {
1083 			cache_gfp_mask &= ~__GFP_FS;
1084 			radix_gfp_mask &= ~__GFP_FS;
1085 		}
1086 
1087 		page = __page_cache_alloc(cache_gfp_mask);
1088 		if (!page)
1089 			return NULL;
1090 
1091 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1092 			fgp_flags |= FGP_LOCK;
1093 
1094 		/* Init accessed so avoit atomic mark_page_accessed later */
1095 		if (fgp_flags & FGP_ACCESSED)
1096 			init_page_accessed(page);
1097 
1098 		err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1099 		if (unlikely(err)) {
1100 			page_cache_release(page);
1101 			page = NULL;
1102 			if (err == -EEXIST)
1103 				goto repeat;
1104 		}
1105 	}
1106 
1107 	return page;
1108 }
1109 EXPORT_SYMBOL(pagecache_get_page);
1110 
1111 /**
1112  * find_get_entries - gang pagecache lookup
1113  * @mapping:	The address_space to search
1114  * @start:	The starting page cache index
1115  * @nr_entries:	The maximum number of entries
1116  * @entries:	Where the resulting entries are placed
1117  * @indices:	The cache indices corresponding to the entries in @entries
1118  *
1119  * find_get_entries() will search for and return a group of up to
1120  * @nr_entries entries in the mapping.  The entries are placed at
1121  * @entries.  find_get_entries() takes a reference against any actual
1122  * pages it returns.
1123  *
1124  * The search returns a group of mapping-contiguous page cache entries
1125  * with ascending indexes.  There may be holes in the indices due to
1126  * not-present pages.
1127  *
1128  * Any shadow entries of evicted pages, or swap entries from
1129  * shmem/tmpfs, are included in the returned array.
1130  *
1131  * find_get_entries() returns the number of pages and shadow entries
1132  * which were found.
1133  */
1134 unsigned find_get_entries(struct address_space *mapping,
1135 			  pgoff_t start, unsigned int nr_entries,
1136 			  struct page **entries, pgoff_t *indices)
1137 {
1138 	void **slot;
1139 	unsigned int ret = 0;
1140 	struct radix_tree_iter iter;
1141 
1142 	if (!nr_entries)
1143 		return 0;
1144 
1145 	rcu_read_lock();
1146 restart:
1147 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1148 		struct page *page;
1149 repeat:
1150 		page = radix_tree_deref_slot(slot);
1151 		if (unlikely(!page))
1152 			continue;
1153 		if (radix_tree_exception(page)) {
1154 			if (radix_tree_deref_retry(page))
1155 				goto restart;
1156 			/*
1157 			 * A shadow entry of a recently evicted page,
1158 			 * or a swap entry from shmem/tmpfs.  Return
1159 			 * it without attempting to raise page count.
1160 			 */
1161 			goto export;
1162 		}
1163 		if (!page_cache_get_speculative(page))
1164 			goto repeat;
1165 
1166 		/* Has the page moved? */
1167 		if (unlikely(page != *slot)) {
1168 			page_cache_release(page);
1169 			goto repeat;
1170 		}
1171 export:
1172 		indices[ret] = iter.index;
1173 		entries[ret] = page;
1174 		if (++ret == nr_entries)
1175 			break;
1176 	}
1177 	rcu_read_unlock();
1178 	return ret;
1179 }
1180 
1181 /**
1182  * find_get_pages - gang pagecache lookup
1183  * @mapping:	The address_space to search
1184  * @start:	The starting page index
1185  * @nr_pages:	The maximum number of pages
1186  * @pages:	Where the resulting pages are placed
1187  *
1188  * find_get_pages() will search for and return a group of up to
1189  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1190  * find_get_pages() takes a reference against the returned pages.
1191  *
1192  * The search returns a group of mapping-contiguous pages with ascending
1193  * indexes.  There may be holes in the indices due to not-present pages.
1194  *
1195  * find_get_pages() returns the number of pages which were found.
1196  */
1197 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1198 			    unsigned int nr_pages, struct page **pages)
1199 {
1200 	struct radix_tree_iter iter;
1201 	void **slot;
1202 	unsigned ret = 0;
1203 
1204 	if (unlikely(!nr_pages))
1205 		return 0;
1206 
1207 	rcu_read_lock();
1208 restart:
1209 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1210 		struct page *page;
1211 repeat:
1212 		page = radix_tree_deref_slot(slot);
1213 		if (unlikely(!page))
1214 			continue;
1215 
1216 		if (radix_tree_exception(page)) {
1217 			if (radix_tree_deref_retry(page)) {
1218 				/*
1219 				 * Transient condition which can only trigger
1220 				 * when entry at index 0 moves out of or back
1221 				 * to root: none yet gotten, safe to restart.
1222 				 */
1223 				WARN_ON(iter.index);
1224 				goto restart;
1225 			}
1226 			/*
1227 			 * A shadow entry of a recently evicted page,
1228 			 * or a swap entry from shmem/tmpfs.  Skip
1229 			 * over it.
1230 			 */
1231 			continue;
1232 		}
1233 
1234 		if (!page_cache_get_speculative(page))
1235 			goto repeat;
1236 
1237 		/* Has the page moved? */
1238 		if (unlikely(page != *slot)) {
1239 			page_cache_release(page);
1240 			goto repeat;
1241 		}
1242 
1243 		pages[ret] = page;
1244 		if (++ret == nr_pages)
1245 			break;
1246 	}
1247 
1248 	rcu_read_unlock();
1249 	return ret;
1250 }
1251 
1252 /**
1253  * find_get_pages_contig - gang contiguous pagecache lookup
1254  * @mapping:	The address_space to search
1255  * @index:	The starting page index
1256  * @nr_pages:	The maximum number of pages
1257  * @pages:	Where the resulting pages are placed
1258  *
1259  * find_get_pages_contig() works exactly like find_get_pages(), except
1260  * that the returned number of pages are guaranteed to be contiguous.
1261  *
1262  * find_get_pages_contig() returns the number of pages which were found.
1263  */
1264 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1265 			       unsigned int nr_pages, struct page **pages)
1266 {
1267 	struct radix_tree_iter iter;
1268 	void **slot;
1269 	unsigned int ret = 0;
1270 
1271 	if (unlikely(!nr_pages))
1272 		return 0;
1273 
1274 	rcu_read_lock();
1275 restart:
1276 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1277 		struct page *page;
1278 repeat:
1279 		page = radix_tree_deref_slot(slot);
1280 		/* The hole, there no reason to continue */
1281 		if (unlikely(!page))
1282 			break;
1283 
1284 		if (radix_tree_exception(page)) {
1285 			if (radix_tree_deref_retry(page)) {
1286 				/*
1287 				 * Transient condition which can only trigger
1288 				 * when entry at index 0 moves out of or back
1289 				 * to root: none yet gotten, safe to restart.
1290 				 */
1291 				goto restart;
1292 			}
1293 			/*
1294 			 * A shadow entry of a recently evicted page,
1295 			 * or a swap entry from shmem/tmpfs.  Stop
1296 			 * looking for contiguous pages.
1297 			 */
1298 			break;
1299 		}
1300 
1301 		if (!page_cache_get_speculative(page))
1302 			goto repeat;
1303 
1304 		/* Has the page moved? */
1305 		if (unlikely(page != *slot)) {
1306 			page_cache_release(page);
1307 			goto repeat;
1308 		}
1309 
1310 		/*
1311 		 * must check mapping and index after taking the ref.
1312 		 * otherwise we can get both false positives and false
1313 		 * negatives, which is just confusing to the caller.
1314 		 */
1315 		if (page->mapping == NULL || page->index != iter.index) {
1316 			page_cache_release(page);
1317 			break;
1318 		}
1319 
1320 		pages[ret] = page;
1321 		if (++ret == nr_pages)
1322 			break;
1323 	}
1324 	rcu_read_unlock();
1325 	return ret;
1326 }
1327 EXPORT_SYMBOL(find_get_pages_contig);
1328 
1329 /**
1330  * find_get_pages_tag - find and return pages that match @tag
1331  * @mapping:	the address_space to search
1332  * @index:	the starting page index
1333  * @tag:	the tag index
1334  * @nr_pages:	the maximum number of pages
1335  * @pages:	where the resulting pages are placed
1336  *
1337  * Like find_get_pages, except we only return pages which are tagged with
1338  * @tag.   We update @index to index the next page for the traversal.
1339  */
1340 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1341 			int tag, unsigned int nr_pages, struct page **pages)
1342 {
1343 	struct radix_tree_iter iter;
1344 	void **slot;
1345 	unsigned ret = 0;
1346 
1347 	if (unlikely(!nr_pages))
1348 		return 0;
1349 
1350 	rcu_read_lock();
1351 restart:
1352 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1353 				   &iter, *index, tag) {
1354 		struct page *page;
1355 repeat:
1356 		page = radix_tree_deref_slot(slot);
1357 		if (unlikely(!page))
1358 			continue;
1359 
1360 		if (radix_tree_exception(page)) {
1361 			if (radix_tree_deref_retry(page)) {
1362 				/*
1363 				 * Transient condition which can only trigger
1364 				 * when entry at index 0 moves out of or back
1365 				 * to root: none yet gotten, safe to restart.
1366 				 */
1367 				goto restart;
1368 			}
1369 			/*
1370 			 * A shadow entry of a recently evicted page.
1371 			 *
1372 			 * Those entries should never be tagged, but
1373 			 * this tree walk is lockless and the tags are
1374 			 * looked up in bulk, one radix tree node at a
1375 			 * time, so there is a sizable window for page
1376 			 * reclaim to evict a page we saw tagged.
1377 			 *
1378 			 * Skip over it.
1379 			 */
1380 			continue;
1381 		}
1382 
1383 		if (!page_cache_get_speculative(page))
1384 			goto repeat;
1385 
1386 		/* Has the page moved? */
1387 		if (unlikely(page != *slot)) {
1388 			page_cache_release(page);
1389 			goto repeat;
1390 		}
1391 
1392 		pages[ret] = page;
1393 		if (++ret == nr_pages)
1394 			break;
1395 	}
1396 
1397 	rcu_read_unlock();
1398 
1399 	if (ret)
1400 		*index = pages[ret - 1]->index + 1;
1401 
1402 	return ret;
1403 }
1404 EXPORT_SYMBOL(find_get_pages_tag);
1405 
1406 /*
1407  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408  * a _large_ part of the i/o request. Imagine the worst scenario:
1409  *
1410  *      ---R__________________________________________B__________
1411  *         ^ reading here                             ^ bad block(assume 4k)
1412  *
1413  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414  * => failing the whole request => read(R) => read(R+1) =>
1415  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418  *
1419  * It is going insane. Fix it by quickly scaling down the readahead size.
1420  */
1421 static void shrink_readahead_size_eio(struct file *filp,
1422 					struct file_ra_state *ra)
1423 {
1424 	ra->ra_pages /= 4;
1425 }
1426 
1427 /**
1428  * do_generic_file_read - generic file read routine
1429  * @filp:	the file to read
1430  * @ppos:	current file position
1431  * @iter:	data destination
1432  * @written:	already copied
1433  *
1434  * This is a generic file read routine, and uses the
1435  * mapping->a_ops->readpage() function for the actual low-level stuff.
1436  *
1437  * This is really ugly. But the goto's actually try to clarify some
1438  * of the logic when it comes to error handling etc.
1439  */
1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1441 		struct iov_iter *iter, ssize_t written)
1442 {
1443 	struct address_space *mapping = filp->f_mapping;
1444 	struct inode *inode = mapping->host;
1445 	struct file_ra_state *ra = &filp->f_ra;
1446 	pgoff_t index;
1447 	pgoff_t last_index;
1448 	pgoff_t prev_index;
1449 	unsigned long offset;      /* offset into pagecache page */
1450 	unsigned int prev_offset;
1451 	int error = 0;
1452 
1453 	index = *ppos >> PAGE_CACHE_SHIFT;
1454 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1455 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1456 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1457 	offset = *ppos & ~PAGE_CACHE_MASK;
1458 
1459 	for (;;) {
1460 		struct page *page;
1461 		pgoff_t end_index;
1462 		loff_t isize;
1463 		unsigned long nr, ret;
1464 
1465 		cond_resched();
1466 find_page:
1467 		page = find_get_page(mapping, index);
1468 		if (!page) {
1469 			page_cache_sync_readahead(mapping,
1470 					ra, filp,
1471 					index, last_index - index);
1472 			page = find_get_page(mapping, index);
1473 			if (unlikely(page == NULL))
1474 				goto no_cached_page;
1475 		}
1476 		if (PageReadahead(page)) {
1477 			page_cache_async_readahead(mapping,
1478 					ra, filp, page,
1479 					index, last_index - index);
1480 		}
1481 		if (!PageUptodate(page)) {
1482 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1483 					!mapping->a_ops->is_partially_uptodate)
1484 				goto page_not_up_to_date;
1485 			if (!trylock_page(page))
1486 				goto page_not_up_to_date;
1487 			/* Did it get truncated before we got the lock? */
1488 			if (!page->mapping)
1489 				goto page_not_up_to_date_locked;
1490 			if (!mapping->a_ops->is_partially_uptodate(page,
1491 							offset, iter->count))
1492 				goto page_not_up_to_date_locked;
1493 			unlock_page(page);
1494 		}
1495 page_ok:
1496 		/*
1497 		 * i_size must be checked after we know the page is Uptodate.
1498 		 *
1499 		 * Checking i_size after the check allows us to calculate
1500 		 * the correct value for "nr", which means the zero-filled
1501 		 * part of the page is not copied back to userspace (unless
1502 		 * another truncate extends the file - this is desired though).
1503 		 */
1504 
1505 		isize = i_size_read(inode);
1506 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1507 		if (unlikely(!isize || index > end_index)) {
1508 			page_cache_release(page);
1509 			goto out;
1510 		}
1511 
1512 		/* nr is the maximum number of bytes to copy from this page */
1513 		nr = PAGE_CACHE_SIZE;
1514 		if (index == end_index) {
1515 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1516 			if (nr <= offset) {
1517 				page_cache_release(page);
1518 				goto out;
1519 			}
1520 		}
1521 		nr = nr - offset;
1522 
1523 		/* If users can be writing to this page using arbitrary
1524 		 * virtual addresses, take care about potential aliasing
1525 		 * before reading the page on the kernel side.
1526 		 */
1527 		if (mapping_writably_mapped(mapping))
1528 			flush_dcache_page(page);
1529 
1530 		/*
1531 		 * When a sequential read accesses a page several times,
1532 		 * only mark it as accessed the first time.
1533 		 */
1534 		if (prev_index != index || offset != prev_offset)
1535 			mark_page_accessed(page);
1536 		prev_index = index;
1537 
1538 		/*
1539 		 * Ok, we have the page, and it's up-to-date, so
1540 		 * now we can copy it to user space...
1541 		 */
1542 
1543 		ret = copy_page_to_iter(page, offset, nr, iter);
1544 		offset += ret;
1545 		index += offset >> PAGE_CACHE_SHIFT;
1546 		offset &= ~PAGE_CACHE_MASK;
1547 		prev_offset = offset;
1548 
1549 		page_cache_release(page);
1550 		written += ret;
1551 		if (!iov_iter_count(iter))
1552 			goto out;
1553 		if (ret < nr) {
1554 			error = -EFAULT;
1555 			goto out;
1556 		}
1557 		continue;
1558 
1559 page_not_up_to_date:
1560 		/* Get exclusive access to the page ... */
1561 		error = lock_page_killable(page);
1562 		if (unlikely(error))
1563 			goto readpage_error;
1564 
1565 page_not_up_to_date_locked:
1566 		/* Did it get truncated before we got the lock? */
1567 		if (!page->mapping) {
1568 			unlock_page(page);
1569 			page_cache_release(page);
1570 			continue;
1571 		}
1572 
1573 		/* Did somebody else fill it already? */
1574 		if (PageUptodate(page)) {
1575 			unlock_page(page);
1576 			goto page_ok;
1577 		}
1578 
1579 readpage:
1580 		/*
1581 		 * A previous I/O error may have been due to temporary
1582 		 * failures, eg. multipath errors.
1583 		 * PG_error will be set again if readpage fails.
1584 		 */
1585 		ClearPageError(page);
1586 		/* Start the actual read. The read will unlock the page. */
1587 		error = mapping->a_ops->readpage(filp, page);
1588 
1589 		if (unlikely(error)) {
1590 			if (error == AOP_TRUNCATED_PAGE) {
1591 				page_cache_release(page);
1592 				error = 0;
1593 				goto find_page;
1594 			}
1595 			goto readpage_error;
1596 		}
1597 
1598 		if (!PageUptodate(page)) {
1599 			error = lock_page_killable(page);
1600 			if (unlikely(error))
1601 				goto readpage_error;
1602 			if (!PageUptodate(page)) {
1603 				if (page->mapping == NULL) {
1604 					/*
1605 					 * invalidate_mapping_pages got it
1606 					 */
1607 					unlock_page(page);
1608 					page_cache_release(page);
1609 					goto find_page;
1610 				}
1611 				unlock_page(page);
1612 				shrink_readahead_size_eio(filp, ra);
1613 				error = -EIO;
1614 				goto readpage_error;
1615 			}
1616 			unlock_page(page);
1617 		}
1618 
1619 		goto page_ok;
1620 
1621 readpage_error:
1622 		/* UHHUH! A synchronous read error occurred. Report it */
1623 		page_cache_release(page);
1624 		goto out;
1625 
1626 no_cached_page:
1627 		/*
1628 		 * Ok, it wasn't cached, so we need to create a new
1629 		 * page..
1630 		 */
1631 		page = page_cache_alloc_cold(mapping);
1632 		if (!page) {
1633 			error = -ENOMEM;
1634 			goto out;
1635 		}
1636 		error = add_to_page_cache_lru(page, mapping,
1637 						index, GFP_KERNEL);
1638 		if (error) {
1639 			page_cache_release(page);
1640 			if (error == -EEXIST) {
1641 				error = 0;
1642 				goto find_page;
1643 			}
1644 			goto out;
1645 		}
1646 		goto readpage;
1647 	}
1648 
1649 out:
1650 	ra->prev_pos = prev_index;
1651 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1652 	ra->prev_pos |= prev_offset;
1653 
1654 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1655 	file_accessed(filp);
1656 	return written ? written : error;
1657 }
1658 
1659 /**
1660  * generic_file_read_iter - generic filesystem read routine
1661  * @iocb:	kernel I/O control block
1662  * @iter:	destination for the data read
1663  *
1664  * This is the "read_iter()" routine for all filesystems
1665  * that can use the page cache directly.
1666  */
1667 ssize_t
1668 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1669 {
1670 	struct file *file = iocb->ki_filp;
1671 	ssize_t retval = 0;
1672 	loff_t *ppos = &iocb->ki_pos;
1673 	loff_t pos = *ppos;
1674 
1675 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1676 	if (file->f_flags & O_DIRECT) {
1677 		struct address_space *mapping = file->f_mapping;
1678 		struct inode *inode = mapping->host;
1679 		size_t count = iov_iter_count(iter);
1680 		loff_t size;
1681 
1682 		if (!count)
1683 			goto out; /* skip atime */
1684 		size = i_size_read(inode);
1685 		retval = filemap_write_and_wait_range(mapping, pos,
1686 					pos + count - 1);
1687 		if (!retval) {
1688 			struct iov_iter data = *iter;
1689 			retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1690 		}
1691 
1692 		if (retval > 0) {
1693 			*ppos = pos + retval;
1694 			iov_iter_advance(iter, retval);
1695 		}
1696 
1697 		/*
1698 		 * Btrfs can have a short DIO read if we encounter
1699 		 * compressed extents, so if there was an error, or if
1700 		 * we've already read everything we wanted to, or if
1701 		 * there was a short read because we hit EOF, go ahead
1702 		 * and return.  Otherwise fallthrough to buffered io for
1703 		 * the rest of the read.
1704 		 */
1705 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1706 			file_accessed(file);
1707 			goto out;
1708 		}
1709 	}
1710 
1711 	retval = do_generic_file_read(file, ppos, iter, retval);
1712 out:
1713 	return retval;
1714 }
1715 EXPORT_SYMBOL(generic_file_read_iter);
1716 
1717 #ifdef CONFIG_MMU
1718 /**
1719  * page_cache_read - adds requested page to the page cache if not already there
1720  * @file:	file to read
1721  * @offset:	page index
1722  *
1723  * This adds the requested page to the page cache if it isn't already there,
1724  * and schedules an I/O to read in its contents from disk.
1725  */
1726 static int page_cache_read(struct file *file, pgoff_t offset)
1727 {
1728 	struct address_space *mapping = file->f_mapping;
1729 	struct page *page;
1730 	int ret;
1731 
1732 	do {
1733 		page = page_cache_alloc_cold(mapping);
1734 		if (!page)
1735 			return -ENOMEM;
1736 
1737 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1738 		if (ret == 0)
1739 			ret = mapping->a_ops->readpage(file, page);
1740 		else if (ret == -EEXIST)
1741 			ret = 0; /* losing race to add is OK */
1742 
1743 		page_cache_release(page);
1744 
1745 	} while (ret == AOP_TRUNCATED_PAGE);
1746 
1747 	return ret;
1748 }
1749 
1750 #define MMAP_LOTSAMISS  (100)
1751 
1752 /*
1753  * Synchronous readahead happens when we don't even find
1754  * a page in the page cache at all.
1755  */
1756 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1757 				   struct file_ra_state *ra,
1758 				   struct file *file,
1759 				   pgoff_t offset)
1760 {
1761 	unsigned long ra_pages;
1762 	struct address_space *mapping = file->f_mapping;
1763 
1764 	/* If we don't want any read-ahead, don't bother */
1765 	if (vma->vm_flags & VM_RAND_READ)
1766 		return;
1767 	if (!ra->ra_pages)
1768 		return;
1769 
1770 	if (vma->vm_flags & VM_SEQ_READ) {
1771 		page_cache_sync_readahead(mapping, ra, file, offset,
1772 					  ra->ra_pages);
1773 		return;
1774 	}
1775 
1776 	/* Avoid banging the cache line if not needed */
1777 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1778 		ra->mmap_miss++;
1779 
1780 	/*
1781 	 * Do we miss much more than hit in this file? If so,
1782 	 * stop bothering with read-ahead. It will only hurt.
1783 	 */
1784 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1785 		return;
1786 
1787 	/*
1788 	 * mmap read-around
1789 	 */
1790 	ra_pages = max_sane_readahead(ra->ra_pages);
1791 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1792 	ra->size = ra_pages;
1793 	ra->async_size = ra_pages / 4;
1794 	ra_submit(ra, mapping, file);
1795 }
1796 
1797 /*
1798  * Asynchronous readahead happens when we find the page and PG_readahead,
1799  * so we want to possibly extend the readahead further..
1800  */
1801 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1802 				    struct file_ra_state *ra,
1803 				    struct file *file,
1804 				    struct page *page,
1805 				    pgoff_t offset)
1806 {
1807 	struct address_space *mapping = file->f_mapping;
1808 
1809 	/* If we don't want any read-ahead, don't bother */
1810 	if (vma->vm_flags & VM_RAND_READ)
1811 		return;
1812 	if (ra->mmap_miss > 0)
1813 		ra->mmap_miss--;
1814 	if (PageReadahead(page))
1815 		page_cache_async_readahead(mapping, ra, file,
1816 					   page, offset, ra->ra_pages);
1817 }
1818 
1819 /**
1820  * filemap_fault - read in file data for page fault handling
1821  * @vma:	vma in which the fault was taken
1822  * @vmf:	struct vm_fault containing details of the fault
1823  *
1824  * filemap_fault() is invoked via the vma operations vector for a
1825  * mapped memory region to read in file data during a page fault.
1826  *
1827  * The goto's are kind of ugly, but this streamlines the normal case of having
1828  * it in the page cache, and handles the special cases reasonably without
1829  * having a lot of duplicated code.
1830  */
1831 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1832 {
1833 	int error;
1834 	struct file *file = vma->vm_file;
1835 	struct address_space *mapping = file->f_mapping;
1836 	struct file_ra_state *ra = &file->f_ra;
1837 	struct inode *inode = mapping->host;
1838 	pgoff_t offset = vmf->pgoff;
1839 	struct page *page;
1840 	loff_t size;
1841 	int ret = 0;
1842 
1843 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1844 	if (offset >= size >> PAGE_CACHE_SHIFT)
1845 		return VM_FAULT_SIGBUS;
1846 
1847 	/*
1848 	 * Do we have something in the page cache already?
1849 	 */
1850 	page = find_get_page(mapping, offset);
1851 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1852 		/*
1853 		 * We found the page, so try async readahead before
1854 		 * waiting for the lock.
1855 		 */
1856 		do_async_mmap_readahead(vma, ra, file, page, offset);
1857 	} else if (!page) {
1858 		/* No page in the page cache at all */
1859 		do_sync_mmap_readahead(vma, ra, file, offset);
1860 		count_vm_event(PGMAJFAULT);
1861 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1862 		ret = VM_FAULT_MAJOR;
1863 retry_find:
1864 		page = find_get_page(mapping, offset);
1865 		if (!page)
1866 			goto no_cached_page;
1867 	}
1868 
1869 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1870 		page_cache_release(page);
1871 		return ret | VM_FAULT_RETRY;
1872 	}
1873 
1874 	/* Did it get truncated? */
1875 	if (unlikely(page->mapping != mapping)) {
1876 		unlock_page(page);
1877 		put_page(page);
1878 		goto retry_find;
1879 	}
1880 	VM_BUG_ON_PAGE(page->index != offset, page);
1881 
1882 	/*
1883 	 * We have a locked page in the page cache, now we need to check
1884 	 * that it's up-to-date. If not, it is going to be due to an error.
1885 	 */
1886 	if (unlikely(!PageUptodate(page)))
1887 		goto page_not_uptodate;
1888 
1889 	/*
1890 	 * Found the page and have a reference on it.
1891 	 * We must recheck i_size under page lock.
1892 	 */
1893 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1894 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1895 		unlock_page(page);
1896 		page_cache_release(page);
1897 		return VM_FAULT_SIGBUS;
1898 	}
1899 
1900 	vmf->page = page;
1901 	return ret | VM_FAULT_LOCKED;
1902 
1903 no_cached_page:
1904 	/*
1905 	 * We're only likely to ever get here if MADV_RANDOM is in
1906 	 * effect.
1907 	 */
1908 	error = page_cache_read(file, offset);
1909 
1910 	/*
1911 	 * The page we want has now been added to the page cache.
1912 	 * In the unlikely event that someone removed it in the
1913 	 * meantime, we'll just come back here and read it again.
1914 	 */
1915 	if (error >= 0)
1916 		goto retry_find;
1917 
1918 	/*
1919 	 * An error return from page_cache_read can result if the
1920 	 * system is low on memory, or a problem occurs while trying
1921 	 * to schedule I/O.
1922 	 */
1923 	if (error == -ENOMEM)
1924 		return VM_FAULT_OOM;
1925 	return VM_FAULT_SIGBUS;
1926 
1927 page_not_uptodate:
1928 	/*
1929 	 * Umm, take care of errors if the page isn't up-to-date.
1930 	 * Try to re-read it _once_. We do this synchronously,
1931 	 * because there really aren't any performance issues here
1932 	 * and we need to check for errors.
1933 	 */
1934 	ClearPageError(page);
1935 	error = mapping->a_ops->readpage(file, page);
1936 	if (!error) {
1937 		wait_on_page_locked(page);
1938 		if (!PageUptodate(page))
1939 			error = -EIO;
1940 	}
1941 	page_cache_release(page);
1942 
1943 	if (!error || error == AOP_TRUNCATED_PAGE)
1944 		goto retry_find;
1945 
1946 	/* Things didn't work out. Return zero to tell the mm layer so. */
1947 	shrink_readahead_size_eio(file, ra);
1948 	return VM_FAULT_SIGBUS;
1949 }
1950 EXPORT_SYMBOL(filemap_fault);
1951 
1952 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1953 {
1954 	struct radix_tree_iter iter;
1955 	void **slot;
1956 	struct file *file = vma->vm_file;
1957 	struct address_space *mapping = file->f_mapping;
1958 	loff_t size;
1959 	struct page *page;
1960 	unsigned long address = (unsigned long) vmf->virtual_address;
1961 	unsigned long addr;
1962 	pte_t *pte;
1963 
1964 	rcu_read_lock();
1965 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1966 		if (iter.index > vmf->max_pgoff)
1967 			break;
1968 repeat:
1969 		page = radix_tree_deref_slot(slot);
1970 		if (unlikely(!page))
1971 			goto next;
1972 		if (radix_tree_exception(page)) {
1973 			if (radix_tree_deref_retry(page))
1974 				break;
1975 			else
1976 				goto next;
1977 		}
1978 
1979 		if (!page_cache_get_speculative(page))
1980 			goto repeat;
1981 
1982 		/* Has the page moved? */
1983 		if (unlikely(page != *slot)) {
1984 			page_cache_release(page);
1985 			goto repeat;
1986 		}
1987 
1988 		if (!PageUptodate(page) ||
1989 				PageReadahead(page) ||
1990 				PageHWPoison(page))
1991 			goto skip;
1992 		if (!trylock_page(page))
1993 			goto skip;
1994 
1995 		if (page->mapping != mapping || !PageUptodate(page))
1996 			goto unlock;
1997 
1998 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
1999 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2000 			goto unlock;
2001 
2002 		pte = vmf->pte + page->index - vmf->pgoff;
2003 		if (!pte_none(*pte))
2004 			goto unlock;
2005 
2006 		if (file->f_ra.mmap_miss > 0)
2007 			file->f_ra.mmap_miss--;
2008 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2009 		do_set_pte(vma, addr, page, pte, false, false);
2010 		unlock_page(page);
2011 		goto next;
2012 unlock:
2013 		unlock_page(page);
2014 skip:
2015 		page_cache_release(page);
2016 next:
2017 		if (iter.index == vmf->max_pgoff)
2018 			break;
2019 	}
2020 	rcu_read_unlock();
2021 }
2022 EXPORT_SYMBOL(filemap_map_pages);
2023 
2024 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2025 {
2026 	struct page *page = vmf->page;
2027 	struct inode *inode = file_inode(vma->vm_file);
2028 	int ret = VM_FAULT_LOCKED;
2029 
2030 	sb_start_pagefault(inode->i_sb);
2031 	file_update_time(vma->vm_file);
2032 	lock_page(page);
2033 	if (page->mapping != inode->i_mapping) {
2034 		unlock_page(page);
2035 		ret = VM_FAULT_NOPAGE;
2036 		goto out;
2037 	}
2038 	/*
2039 	 * We mark the page dirty already here so that when freeze is in
2040 	 * progress, we are guaranteed that writeback during freezing will
2041 	 * see the dirty page and writeprotect it again.
2042 	 */
2043 	set_page_dirty(page);
2044 	wait_for_stable_page(page);
2045 out:
2046 	sb_end_pagefault(inode->i_sb);
2047 	return ret;
2048 }
2049 EXPORT_SYMBOL(filemap_page_mkwrite);
2050 
2051 const struct vm_operations_struct generic_file_vm_ops = {
2052 	.fault		= filemap_fault,
2053 	.map_pages	= filemap_map_pages,
2054 	.page_mkwrite	= filemap_page_mkwrite,
2055 	.remap_pages	= generic_file_remap_pages,
2056 };
2057 
2058 /* This is used for a general mmap of a disk file */
2059 
2060 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2061 {
2062 	struct address_space *mapping = file->f_mapping;
2063 
2064 	if (!mapping->a_ops->readpage)
2065 		return -ENOEXEC;
2066 	file_accessed(file);
2067 	vma->vm_ops = &generic_file_vm_ops;
2068 	return 0;
2069 }
2070 
2071 /*
2072  * This is for filesystems which do not implement ->writepage.
2073  */
2074 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2075 {
2076 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2077 		return -EINVAL;
2078 	return generic_file_mmap(file, vma);
2079 }
2080 #else
2081 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2082 {
2083 	return -ENOSYS;
2084 }
2085 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2086 {
2087 	return -ENOSYS;
2088 }
2089 #endif /* CONFIG_MMU */
2090 
2091 EXPORT_SYMBOL(generic_file_mmap);
2092 EXPORT_SYMBOL(generic_file_readonly_mmap);
2093 
2094 static struct page *wait_on_page_read(struct page *page)
2095 {
2096 	if (!IS_ERR(page)) {
2097 		wait_on_page_locked(page);
2098 		if (!PageUptodate(page)) {
2099 			page_cache_release(page);
2100 			page = ERR_PTR(-EIO);
2101 		}
2102 	}
2103 	return page;
2104 }
2105 
2106 static struct page *__read_cache_page(struct address_space *mapping,
2107 				pgoff_t index,
2108 				int (*filler)(void *, struct page *),
2109 				void *data,
2110 				gfp_t gfp)
2111 {
2112 	struct page *page;
2113 	int err;
2114 repeat:
2115 	page = find_get_page(mapping, index);
2116 	if (!page) {
2117 		page = __page_cache_alloc(gfp | __GFP_COLD);
2118 		if (!page)
2119 			return ERR_PTR(-ENOMEM);
2120 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2121 		if (unlikely(err)) {
2122 			page_cache_release(page);
2123 			if (err == -EEXIST)
2124 				goto repeat;
2125 			/* Presumably ENOMEM for radix tree node */
2126 			return ERR_PTR(err);
2127 		}
2128 		err = filler(data, page);
2129 		if (err < 0) {
2130 			page_cache_release(page);
2131 			page = ERR_PTR(err);
2132 		} else {
2133 			page = wait_on_page_read(page);
2134 		}
2135 	}
2136 	return page;
2137 }
2138 
2139 static struct page *do_read_cache_page(struct address_space *mapping,
2140 				pgoff_t index,
2141 				int (*filler)(void *, struct page *),
2142 				void *data,
2143 				gfp_t gfp)
2144 
2145 {
2146 	struct page *page;
2147 	int err;
2148 
2149 retry:
2150 	page = __read_cache_page(mapping, index, filler, data, gfp);
2151 	if (IS_ERR(page))
2152 		return page;
2153 	if (PageUptodate(page))
2154 		goto out;
2155 
2156 	lock_page(page);
2157 	if (!page->mapping) {
2158 		unlock_page(page);
2159 		page_cache_release(page);
2160 		goto retry;
2161 	}
2162 	if (PageUptodate(page)) {
2163 		unlock_page(page);
2164 		goto out;
2165 	}
2166 	err = filler(data, page);
2167 	if (err < 0) {
2168 		page_cache_release(page);
2169 		return ERR_PTR(err);
2170 	} else {
2171 		page = wait_on_page_read(page);
2172 		if (IS_ERR(page))
2173 			return page;
2174 	}
2175 out:
2176 	mark_page_accessed(page);
2177 	return page;
2178 }
2179 
2180 /**
2181  * read_cache_page - read into page cache, fill it if needed
2182  * @mapping:	the page's address_space
2183  * @index:	the page index
2184  * @filler:	function to perform the read
2185  * @data:	first arg to filler(data, page) function, often left as NULL
2186  *
2187  * Read into the page cache. If a page already exists, and PageUptodate() is
2188  * not set, try to fill the page and wait for it to become unlocked.
2189  *
2190  * If the page does not get brought uptodate, return -EIO.
2191  */
2192 struct page *read_cache_page(struct address_space *mapping,
2193 				pgoff_t index,
2194 				int (*filler)(void *, struct page *),
2195 				void *data)
2196 {
2197 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2198 }
2199 EXPORT_SYMBOL(read_cache_page);
2200 
2201 /**
2202  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2203  * @mapping:	the page's address_space
2204  * @index:	the page index
2205  * @gfp:	the page allocator flags to use if allocating
2206  *
2207  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2208  * any new page allocations done using the specified allocation flags.
2209  *
2210  * If the page does not get brought uptodate, return -EIO.
2211  */
2212 struct page *read_cache_page_gfp(struct address_space *mapping,
2213 				pgoff_t index,
2214 				gfp_t gfp)
2215 {
2216 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2217 
2218 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2219 }
2220 EXPORT_SYMBOL(read_cache_page_gfp);
2221 
2222 /*
2223  * Performs necessary checks before doing a write
2224  *
2225  * Can adjust writing position or amount of bytes to write.
2226  * Returns appropriate error code that caller should return or
2227  * zero in case that write should be allowed.
2228  */
2229 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2230 {
2231 	struct inode *inode = file->f_mapping->host;
2232 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2233 
2234         if (unlikely(*pos < 0))
2235                 return -EINVAL;
2236 
2237 	if (!isblk) {
2238 		/* FIXME: this is for backwards compatibility with 2.4 */
2239 		if (file->f_flags & O_APPEND)
2240                         *pos = i_size_read(inode);
2241 
2242 		if (limit != RLIM_INFINITY) {
2243 			if (*pos >= limit) {
2244 				send_sig(SIGXFSZ, current, 0);
2245 				return -EFBIG;
2246 			}
2247 			if (*count > limit - (typeof(limit))*pos) {
2248 				*count = limit - (typeof(limit))*pos;
2249 			}
2250 		}
2251 	}
2252 
2253 	/*
2254 	 * LFS rule
2255 	 */
2256 	if (unlikely(*pos + *count > MAX_NON_LFS &&
2257 				!(file->f_flags & O_LARGEFILE))) {
2258 		if (*pos >= MAX_NON_LFS) {
2259 			return -EFBIG;
2260 		}
2261 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2262 			*count = MAX_NON_LFS - (unsigned long)*pos;
2263 		}
2264 	}
2265 
2266 	/*
2267 	 * Are we about to exceed the fs block limit ?
2268 	 *
2269 	 * If we have written data it becomes a short write.  If we have
2270 	 * exceeded without writing data we send a signal and return EFBIG.
2271 	 * Linus frestrict idea will clean these up nicely..
2272 	 */
2273 	if (likely(!isblk)) {
2274 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2275 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2276 				return -EFBIG;
2277 			}
2278 			/* zero-length writes at ->s_maxbytes are OK */
2279 		}
2280 
2281 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2282 			*count = inode->i_sb->s_maxbytes - *pos;
2283 	} else {
2284 #ifdef CONFIG_BLOCK
2285 		loff_t isize;
2286 		if (bdev_read_only(I_BDEV(inode)))
2287 			return -EPERM;
2288 		isize = i_size_read(inode);
2289 		if (*pos >= isize) {
2290 			if (*count || *pos > isize)
2291 				return -ENOSPC;
2292 		}
2293 
2294 		if (*pos + *count > isize)
2295 			*count = isize - *pos;
2296 #else
2297 		return -EPERM;
2298 #endif
2299 	}
2300 	return 0;
2301 }
2302 EXPORT_SYMBOL(generic_write_checks);
2303 
2304 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2305 				loff_t pos, unsigned len, unsigned flags,
2306 				struct page **pagep, void **fsdata)
2307 {
2308 	const struct address_space_operations *aops = mapping->a_ops;
2309 
2310 	return aops->write_begin(file, mapping, pos, len, flags,
2311 							pagep, fsdata);
2312 }
2313 EXPORT_SYMBOL(pagecache_write_begin);
2314 
2315 int pagecache_write_end(struct file *file, struct address_space *mapping,
2316 				loff_t pos, unsigned len, unsigned copied,
2317 				struct page *page, void *fsdata)
2318 {
2319 	const struct address_space_operations *aops = mapping->a_ops;
2320 
2321 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2322 }
2323 EXPORT_SYMBOL(pagecache_write_end);
2324 
2325 ssize_t
2326 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2327 {
2328 	struct file	*file = iocb->ki_filp;
2329 	struct address_space *mapping = file->f_mapping;
2330 	struct inode	*inode = mapping->host;
2331 	ssize_t		written;
2332 	size_t		write_len;
2333 	pgoff_t		end;
2334 	struct iov_iter data;
2335 
2336 	write_len = iov_iter_count(from);
2337 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2338 
2339 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2340 	if (written)
2341 		goto out;
2342 
2343 	/*
2344 	 * After a write we want buffered reads to be sure to go to disk to get
2345 	 * the new data.  We invalidate clean cached page from the region we're
2346 	 * about to write.  We do this *before* the write so that we can return
2347 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2348 	 */
2349 	if (mapping->nrpages) {
2350 		written = invalidate_inode_pages2_range(mapping,
2351 					pos >> PAGE_CACHE_SHIFT, end);
2352 		/*
2353 		 * If a page can not be invalidated, return 0 to fall back
2354 		 * to buffered write.
2355 		 */
2356 		if (written) {
2357 			if (written == -EBUSY)
2358 				return 0;
2359 			goto out;
2360 		}
2361 	}
2362 
2363 	data = *from;
2364 	written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2365 
2366 	/*
2367 	 * Finally, try again to invalidate clean pages which might have been
2368 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2369 	 * if the source of the write was an mmap'ed region of the file
2370 	 * we're writing.  Either one is a pretty crazy thing to do,
2371 	 * so we don't support it 100%.  If this invalidation
2372 	 * fails, tough, the write still worked...
2373 	 */
2374 	if (mapping->nrpages) {
2375 		invalidate_inode_pages2_range(mapping,
2376 					      pos >> PAGE_CACHE_SHIFT, end);
2377 	}
2378 
2379 	if (written > 0) {
2380 		pos += written;
2381 		iov_iter_advance(from, written);
2382 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2383 			i_size_write(inode, pos);
2384 			mark_inode_dirty(inode);
2385 		}
2386 		iocb->ki_pos = pos;
2387 	}
2388 out:
2389 	return written;
2390 }
2391 EXPORT_SYMBOL(generic_file_direct_write);
2392 
2393 /*
2394  * Find or create a page at the given pagecache position. Return the locked
2395  * page. This function is specifically for buffered writes.
2396  */
2397 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2398 					pgoff_t index, unsigned flags)
2399 {
2400 	struct page *page;
2401 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2402 
2403 	if (flags & AOP_FLAG_NOFS)
2404 		fgp_flags |= FGP_NOFS;
2405 
2406 	page = pagecache_get_page(mapping, index, fgp_flags,
2407 			mapping_gfp_mask(mapping),
2408 			GFP_KERNEL);
2409 	if (page)
2410 		wait_for_stable_page(page);
2411 
2412 	return page;
2413 }
2414 EXPORT_SYMBOL(grab_cache_page_write_begin);
2415 
2416 ssize_t generic_perform_write(struct file *file,
2417 				struct iov_iter *i, loff_t pos)
2418 {
2419 	struct address_space *mapping = file->f_mapping;
2420 	const struct address_space_operations *a_ops = mapping->a_ops;
2421 	long status = 0;
2422 	ssize_t written = 0;
2423 	unsigned int flags = 0;
2424 
2425 	/*
2426 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2427 	 */
2428 	if (segment_eq(get_fs(), KERNEL_DS))
2429 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2430 
2431 	do {
2432 		struct page *page;
2433 		unsigned long offset;	/* Offset into pagecache page */
2434 		unsigned long bytes;	/* Bytes to write to page */
2435 		size_t copied;		/* Bytes copied from user */
2436 		void *fsdata;
2437 
2438 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2439 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2440 						iov_iter_count(i));
2441 
2442 again:
2443 		/*
2444 		 * Bring in the user page that we will copy from _first_.
2445 		 * Otherwise there's a nasty deadlock on copying from the
2446 		 * same page as we're writing to, without it being marked
2447 		 * up-to-date.
2448 		 *
2449 		 * Not only is this an optimisation, but it is also required
2450 		 * to check that the address is actually valid, when atomic
2451 		 * usercopies are used, below.
2452 		 */
2453 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2454 			status = -EFAULT;
2455 			break;
2456 		}
2457 
2458 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2459 						&page, &fsdata);
2460 		if (unlikely(status < 0))
2461 			break;
2462 
2463 		if (mapping_writably_mapped(mapping))
2464 			flush_dcache_page(page);
2465 
2466 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2467 		flush_dcache_page(page);
2468 
2469 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2470 						page, fsdata);
2471 		if (unlikely(status < 0))
2472 			break;
2473 		copied = status;
2474 
2475 		cond_resched();
2476 
2477 		iov_iter_advance(i, copied);
2478 		if (unlikely(copied == 0)) {
2479 			/*
2480 			 * If we were unable to copy any data at all, we must
2481 			 * fall back to a single segment length write.
2482 			 *
2483 			 * If we didn't fallback here, we could livelock
2484 			 * because not all segments in the iov can be copied at
2485 			 * once without a pagefault.
2486 			 */
2487 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2488 						iov_iter_single_seg_count(i));
2489 			goto again;
2490 		}
2491 		pos += copied;
2492 		written += copied;
2493 
2494 		balance_dirty_pages_ratelimited(mapping);
2495 		if (fatal_signal_pending(current)) {
2496 			status = -EINTR;
2497 			break;
2498 		}
2499 	} while (iov_iter_count(i));
2500 
2501 	return written ? written : status;
2502 }
2503 EXPORT_SYMBOL(generic_perform_write);
2504 
2505 /**
2506  * __generic_file_write_iter - write data to a file
2507  * @iocb:	IO state structure (file, offset, etc.)
2508  * @from:	iov_iter with data to write
2509  *
2510  * This function does all the work needed for actually writing data to a
2511  * file. It does all basic checks, removes SUID from the file, updates
2512  * modification times and calls proper subroutines depending on whether we
2513  * do direct IO or a standard buffered write.
2514  *
2515  * It expects i_mutex to be grabbed unless we work on a block device or similar
2516  * object which does not need locking at all.
2517  *
2518  * This function does *not* take care of syncing data in case of O_SYNC write.
2519  * A caller has to handle it. This is mainly due to the fact that we want to
2520  * avoid syncing under i_mutex.
2521  */
2522 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2523 {
2524 	struct file *file = iocb->ki_filp;
2525 	struct address_space * mapping = file->f_mapping;
2526 	struct inode 	*inode = mapping->host;
2527 	loff_t		pos = iocb->ki_pos;
2528 	ssize_t		written = 0;
2529 	ssize_t		err;
2530 	ssize_t		status;
2531 	size_t		count = iov_iter_count(from);
2532 
2533 	/* We can write back this queue in page reclaim */
2534 	current->backing_dev_info = mapping->backing_dev_info;
2535 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536 	if (err)
2537 		goto out;
2538 
2539 	if (count == 0)
2540 		goto out;
2541 
2542 	iov_iter_truncate(from, count);
2543 
2544 	err = file_remove_suid(file);
2545 	if (err)
2546 		goto out;
2547 
2548 	err = file_update_time(file);
2549 	if (err)
2550 		goto out;
2551 
2552 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2553 	if (unlikely(file->f_flags & O_DIRECT)) {
2554 		loff_t endbyte;
2555 
2556 		written = generic_file_direct_write(iocb, from, pos);
2557 		if (written < 0 || written == count)
2558 			goto out;
2559 
2560 		/*
2561 		 * direct-io write to a hole: fall through to buffered I/O
2562 		 * for completing the rest of the request.
2563 		 */
2564 		pos += written;
2565 		count -= written;
2566 
2567 		status = generic_perform_write(file, from, pos);
2568 		/*
2569 		 * If generic_perform_write() returned a synchronous error
2570 		 * then we want to return the number of bytes which were
2571 		 * direct-written, or the error code if that was zero.  Note
2572 		 * that this differs from normal direct-io semantics, which
2573 		 * will return -EFOO even if some bytes were written.
2574 		 */
2575 		if (unlikely(status < 0) && !written) {
2576 			err = status;
2577 			goto out;
2578 		}
2579 		iocb->ki_pos = pos + status;
2580 		/*
2581 		 * We need to ensure that the page cache pages are written to
2582 		 * disk and invalidated to preserve the expected O_DIRECT
2583 		 * semantics.
2584 		 */
2585 		endbyte = pos + status - 1;
2586 		err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2587 		if (err == 0) {
2588 			written += status;
2589 			invalidate_mapping_pages(mapping,
2590 						 pos >> PAGE_CACHE_SHIFT,
2591 						 endbyte >> PAGE_CACHE_SHIFT);
2592 		} else {
2593 			/*
2594 			 * We don't know how much we wrote, so just return
2595 			 * the number of bytes which were direct-written
2596 			 */
2597 		}
2598 	} else {
2599 		written = generic_perform_write(file, from, pos);
2600 		if (likely(written >= 0))
2601 			iocb->ki_pos = pos + written;
2602 	}
2603 out:
2604 	current->backing_dev_info = NULL;
2605 	return written ? written : err;
2606 }
2607 EXPORT_SYMBOL(__generic_file_write_iter);
2608 
2609 /**
2610  * generic_file_write_iter - write data to a file
2611  * @iocb:	IO state structure
2612  * @from:	iov_iter with data to write
2613  *
2614  * This is a wrapper around __generic_file_write_iter() to be used by most
2615  * filesystems. It takes care of syncing the file in case of O_SYNC file
2616  * and acquires i_mutex as needed.
2617  */
2618 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2619 {
2620 	struct file *file = iocb->ki_filp;
2621 	struct inode *inode = file->f_mapping->host;
2622 	ssize_t ret;
2623 
2624 	mutex_lock(&inode->i_mutex);
2625 	ret = __generic_file_write_iter(iocb, from);
2626 	mutex_unlock(&inode->i_mutex);
2627 
2628 	if (ret > 0) {
2629 		ssize_t err;
2630 
2631 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2632 		if (err < 0)
2633 			ret = err;
2634 	}
2635 	return ret;
2636 }
2637 EXPORT_SYMBOL(generic_file_write_iter);
2638 
2639 /**
2640  * try_to_release_page() - release old fs-specific metadata on a page
2641  *
2642  * @page: the page which the kernel is trying to free
2643  * @gfp_mask: memory allocation flags (and I/O mode)
2644  *
2645  * The address_space is to try to release any data against the page
2646  * (presumably at page->private).  If the release was successful, return `1'.
2647  * Otherwise return zero.
2648  *
2649  * This may also be called if PG_fscache is set on a page, indicating that the
2650  * page is known to the local caching routines.
2651  *
2652  * The @gfp_mask argument specifies whether I/O may be performed to release
2653  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2654  *
2655  */
2656 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2657 {
2658 	struct address_space * const mapping = page->mapping;
2659 
2660 	BUG_ON(!PageLocked(page));
2661 	if (PageWriteback(page))
2662 		return 0;
2663 
2664 	if (mapping && mapping->a_ops->releasepage)
2665 		return mapping->a_ops->releasepage(page, gfp_mask);
2666 	return try_to_free_buffers(page);
2667 }
2668 
2669 EXPORT_SYMBOL(try_to_release_page);
2670