1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include <linux/rmap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/filemap.h> 41 42 /* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47 #include <asm/mman.h> 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_mutex (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_mutex (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_mutex 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_mutex 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_mutex 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111 static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113 { 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172 } 173 174 /* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179 void __delete_from_page_cache(struct page *page, void *shadow) 180 { 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * Some filesystems seem to re-dirty the page even after 206 * the VM has canceled the dirty bit (eg ext3 journaling). 207 * 208 * Fix it up by doing a final dirty accounting check after 209 * having removed the page entirely. 210 */ 211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 212 dec_zone_page_state(page, NR_FILE_DIRTY); 213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 214 } 215 } 216 217 /** 218 * delete_from_page_cache - delete page from page cache 219 * @page: the page which the kernel is trying to remove from page cache 220 * 221 * This must be called only on pages that have been verified to be in the page 222 * cache and locked. It will never put the page into the free list, the caller 223 * has a reference on the page. 224 */ 225 void delete_from_page_cache(struct page *page) 226 { 227 struct address_space *mapping = page->mapping; 228 void (*freepage)(struct page *); 229 230 BUG_ON(!PageLocked(page)); 231 232 freepage = mapping->a_ops->freepage; 233 spin_lock_irq(&mapping->tree_lock); 234 __delete_from_page_cache(page, NULL); 235 spin_unlock_irq(&mapping->tree_lock); 236 mem_cgroup_uncharge_cache_page(page); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int filemap_check_errors(struct address_space *mapping) 245 { 246 int ret = 0; 247 /* Check for outstanding write errors */ 248 if (test_bit(AS_ENOSPC, &mapping->flags) && 249 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 250 ret = -ENOSPC; 251 if (test_bit(AS_EIO, &mapping->flags) && 252 test_and_clear_bit(AS_EIO, &mapping->flags)) 253 ret = -EIO; 254 return ret; 255 } 256 257 /** 258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 259 * @mapping: address space structure to write 260 * @start: offset in bytes where the range starts 261 * @end: offset in bytes where the range ends (inclusive) 262 * @sync_mode: enable synchronous operation 263 * 264 * Start writeback against all of a mapping's dirty pages that lie 265 * within the byte offsets <start, end> inclusive. 266 * 267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 268 * opposed to a regular memory cleansing writeback. The difference between 269 * these two operations is that if a dirty page/buffer is encountered, it must 270 * be waited upon, and not just skipped over. 271 */ 272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 273 loff_t end, int sync_mode) 274 { 275 int ret; 276 struct writeback_control wbc = { 277 .sync_mode = sync_mode, 278 .nr_to_write = LONG_MAX, 279 .range_start = start, 280 .range_end = end, 281 }; 282 283 if (!mapping_cap_writeback_dirty(mapping)) 284 return 0; 285 286 ret = do_writepages(mapping, &wbc); 287 return ret; 288 } 289 290 static inline int __filemap_fdatawrite(struct address_space *mapping, 291 int sync_mode) 292 { 293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 294 } 295 296 int filemap_fdatawrite(struct address_space *mapping) 297 { 298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 299 } 300 EXPORT_SYMBOL(filemap_fdatawrite); 301 302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 303 loff_t end) 304 { 305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 306 } 307 EXPORT_SYMBOL(filemap_fdatawrite_range); 308 309 /** 310 * filemap_flush - mostly a non-blocking flush 311 * @mapping: target address_space 312 * 313 * This is a mostly non-blocking flush. Not suitable for data-integrity 314 * purposes - I/O may not be started against all dirty pages. 315 */ 316 int filemap_flush(struct address_space *mapping) 317 { 318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 319 } 320 EXPORT_SYMBOL(filemap_flush); 321 322 /** 323 * filemap_fdatawait_range - wait for writeback to complete 324 * @mapping: address space structure to wait for 325 * @start_byte: offset in bytes where the range starts 326 * @end_byte: offset in bytes where the range ends (inclusive) 327 * 328 * Walk the list of under-writeback pages of the given address space 329 * in the given range and wait for all of them. 330 */ 331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 332 loff_t end_byte) 333 { 334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 336 struct pagevec pvec; 337 int nr_pages; 338 int ret2, ret = 0; 339 340 if (end_byte < start_byte) 341 goto out; 342 343 pagevec_init(&pvec, 0); 344 while ((index <= end) && 345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 346 PAGECACHE_TAG_WRITEBACK, 347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 348 unsigned i; 349 350 for (i = 0; i < nr_pages; i++) { 351 struct page *page = pvec.pages[i]; 352 353 /* until radix tree lookup accepts end_index */ 354 if (page->index > end) 355 continue; 356 357 wait_on_page_writeback(page); 358 if (TestClearPageError(page)) 359 ret = -EIO; 360 } 361 pagevec_release(&pvec); 362 cond_resched(); 363 } 364 out: 365 ret2 = filemap_check_errors(mapping); 366 if (!ret) 367 ret = ret2; 368 369 return ret; 370 } 371 EXPORT_SYMBOL(filemap_fdatawait_range); 372 373 /** 374 * filemap_fdatawait - wait for all under-writeback pages to complete 375 * @mapping: address space structure to wait for 376 * 377 * Walk the list of under-writeback pages of the given address space 378 * and wait for all of them. 379 */ 380 int filemap_fdatawait(struct address_space *mapping) 381 { 382 loff_t i_size = i_size_read(mapping->host); 383 384 if (i_size == 0) 385 return 0; 386 387 return filemap_fdatawait_range(mapping, 0, i_size - 1); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } else { 409 err = filemap_check_errors(mapping); 410 } 411 return err; 412 } 413 EXPORT_SYMBOL(filemap_write_and_wait); 414 415 /** 416 * filemap_write_and_wait_range - write out & wait on a file range 417 * @mapping: the address_space for the pages 418 * @lstart: offset in bytes where the range starts 419 * @lend: offset in bytes where the range ends (inclusive) 420 * 421 * Write out and wait upon file offsets lstart->lend, inclusive. 422 * 423 * Note that `lend' is inclusive (describes the last byte to be written) so 424 * that this function can be used to write to the very end-of-file (end = -1). 425 */ 426 int filemap_write_and_wait_range(struct address_space *mapping, 427 loff_t lstart, loff_t lend) 428 { 429 int err = 0; 430 431 if (mapping->nrpages) { 432 err = __filemap_fdatawrite_range(mapping, lstart, lend, 433 WB_SYNC_ALL); 434 /* See comment of filemap_write_and_wait() */ 435 if (err != -EIO) { 436 int err2 = filemap_fdatawait_range(mapping, 437 lstart, lend); 438 if (!err) 439 err = err2; 440 } 441 } else { 442 err = filemap_check_errors(mapping); 443 } 444 return err; 445 } 446 EXPORT_SYMBOL(filemap_write_and_wait_range); 447 448 /** 449 * replace_page_cache_page - replace a pagecache page with a new one 450 * @old: page to be replaced 451 * @new: page to replace with 452 * @gfp_mask: allocation mode 453 * 454 * This function replaces a page in the pagecache with a new one. On 455 * success it acquires the pagecache reference for the new page and 456 * drops it for the old page. Both the old and new pages must be 457 * locked. This function does not add the new page to the LRU, the 458 * caller must do that. 459 * 460 * The remove + add is atomic. The only way this function can fail is 461 * memory allocation failure. 462 */ 463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 464 { 465 int error; 466 467 VM_BUG_ON_PAGE(!PageLocked(old), old); 468 VM_BUG_ON_PAGE(!PageLocked(new), new); 469 VM_BUG_ON_PAGE(new->mapping, new); 470 471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 472 if (!error) { 473 struct address_space *mapping = old->mapping; 474 void (*freepage)(struct page *); 475 476 pgoff_t offset = old->index; 477 freepage = mapping->a_ops->freepage; 478 479 page_cache_get(new); 480 new->mapping = mapping; 481 new->index = offset; 482 483 spin_lock_irq(&mapping->tree_lock); 484 __delete_from_page_cache(old, NULL); 485 error = radix_tree_insert(&mapping->page_tree, offset, new); 486 BUG_ON(error); 487 mapping->nrpages++; 488 __inc_zone_page_state(new, NR_FILE_PAGES); 489 if (PageSwapBacked(new)) 490 __inc_zone_page_state(new, NR_SHMEM); 491 spin_unlock_irq(&mapping->tree_lock); 492 /* mem_cgroup codes must not be called under tree_lock */ 493 mem_cgroup_replace_page_cache(old, new); 494 radix_tree_preload_end(); 495 if (freepage) 496 freepage(old); 497 page_cache_release(old); 498 } 499 500 return error; 501 } 502 EXPORT_SYMBOL_GPL(replace_page_cache_page); 503 504 static int page_cache_tree_insert(struct address_space *mapping, 505 struct page *page, void **shadowp) 506 { 507 struct radix_tree_node *node; 508 void **slot; 509 int error; 510 511 error = __radix_tree_create(&mapping->page_tree, page->index, 512 &node, &slot); 513 if (error) 514 return error; 515 if (*slot) { 516 void *p; 517 518 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 519 if (!radix_tree_exceptional_entry(p)) 520 return -EEXIST; 521 if (shadowp) 522 *shadowp = p; 523 mapping->nrshadows--; 524 if (node) 525 workingset_node_shadows_dec(node); 526 } 527 radix_tree_replace_slot(slot, page); 528 mapping->nrpages++; 529 if (node) { 530 workingset_node_pages_inc(node); 531 /* 532 * Don't track node that contains actual pages. 533 * 534 * Avoid acquiring the list_lru lock if already 535 * untracked. The list_empty() test is safe as 536 * node->private_list is protected by 537 * mapping->tree_lock. 538 */ 539 if (!list_empty(&node->private_list)) 540 list_lru_del(&workingset_shadow_nodes, 541 &node->private_list); 542 } 543 return 0; 544 } 545 546 static int __add_to_page_cache_locked(struct page *page, 547 struct address_space *mapping, 548 pgoff_t offset, gfp_t gfp_mask, 549 void **shadowp) 550 { 551 int error; 552 553 VM_BUG_ON_PAGE(!PageLocked(page), page); 554 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 555 556 error = mem_cgroup_charge_file(page, current->mm, 557 gfp_mask & GFP_RECLAIM_MASK); 558 if (error) 559 return error; 560 561 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 562 if (error) { 563 mem_cgroup_uncharge_cache_page(page); 564 return error; 565 } 566 567 page_cache_get(page); 568 page->mapping = mapping; 569 page->index = offset; 570 571 spin_lock_irq(&mapping->tree_lock); 572 error = page_cache_tree_insert(mapping, page, shadowp); 573 radix_tree_preload_end(); 574 if (unlikely(error)) 575 goto err_insert; 576 __inc_zone_page_state(page, NR_FILE_PAGES); 577 spin_unlock_irq(&mapping->tree_lock); 578 trace_mm_filemap_add_to_page_cache(page); 579 return 0; 580 err_insert: 581 page->mapping = NULL; 582 /* Leave page->index set: truncation relies upon it */ 583 spin_unlock_irq(&mapping->tree_lock); 584 mem_cgroup_uncharge_cache_page(page); 585 page_cache_release(page); 586 return error; 587 } 588 589 /** 590 * add_to_page_cache_locked - add a locked page to the pagecache 591 * @page: page to add 592 * @mapping: the page's address_space 593 * @offset: page index 594 * @gfp_mask: page allocation mode 595 * 596 * This function is used to add a page to the pagecache. It must be locked. 597 * This function does not add the page to the LRU. The caller must do that. 598 */ 599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 600 pgoff_t offset, gfp_t gfp_mask) 601 { 602 return __add_to_page_cache_locked(page, mapping, offset, 603 gfp_mask, NULL); 604 } 605 EXPORT_SYMBOL(add_to_page_cache_locked); 606 607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 608 pgoff_t offset, gfp_t gfp_mask) 609 { 610 void *shadow = NULL; 611 int ret; 612 613 __set_page_locked(page); 614 ret = __add_to_page_cache_locked(page, mapping, offset, 615 gfp_mask, &shadow); 616 if (unlikely(ret)) 617 __clear_page_locked(page); 618 else { 619 /* 620 * The page might have been evicted from cache only 621 * recently, in which case it should be activated like 622 * any other repeatedly accessed page. 623 */ 624 if (shadow && workingset_refault(shadow)) { 625 SetPageActive(page); 626 workingset_activation(page); 627 } else 628 ClearPageActive(page); 629 lru_cache_add(page); 630 } 631 return ret; 632 } 633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 634 635 #ifdef CONFIG_NUMA 636 struct page *__page_cache_alloc(gfp_t gfp) 637 { 638 int n; 639 struct page *page; 640 641 if (cpuset_do_page_mem_spread()) { 642 unsigned int cpuset_mems_cookie; 643 do { 644 cpuset_mems_cookie = read_mems_allowed_begin(); 645 n = cpuset_mem_spread_node(); 646 page = alloc_pages_exact_node(n, gfp, 0); 647 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 648 649 return page; 650 } 651 return alloc_pages(gfp, 0); 652 } 653 EXPORT_SYMBOL(__page_cache_alloc); 654 #endif 655 656 /* 657 * In order to wait for pages to become available there must be 658 * waitqueues associated with pages. By using a hash table of 659 * waitqueues where the bucket discipline is to maintain all 660 * waiters on the same queue and wake all when any of the pages 661 * become available, and for the woken contexts to check to be 662 * sure the appropriate page became available, this saves space 663 * at a cost of "thundering herd" phenomena during rare hash 664 * collisions. 665 */ 666 static wait_queue_head_t *page_waitqueue(struct page *page) 667 { 668 const struct zone *zone = page_zone(page); 669 670 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 671 } 672 673 static inline void wake_up_page(struct page *page, int bit) 674 { 675 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 676 } 677 678 void wait_on_page_bit(struct page *page, int bit_nr) 679 { 680 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 681 682 if (test_bit(bit_nr, &page->flags)) 683 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 684 TASK_UNINTERRUPTIBLE); 685 } 686 EXPORT_SYMBOL(wait_on_page_bit); 687 688 int wait_on_page_bit_killable(struct page *page, int bit_nr) 689 { 690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 691 692 if (!test_bit(bit_nr, &page->flags)) 693 return 0; 694 695 return __wait_on_bit(page_waitqueue(page), &wait, 696 bit_wait_io, TASK_KILLABLE); 697 } 698 699 /** 700 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 701 * @page: Page defining the wait queue of interest 702 * @waiter: Waiter to add to the queue 703 * 704 * Add an arbitrary @waiter to the wait queue for the nominated @page. 705 */ 706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 707 { 708 wait_queue_head_t *q = page_waitqueue(page); 709 unsigned long flags; 710 711 spin_lock_irqsave(&q->lock, flags); 712 __add_wait_queue(q, waiter); 713 spin_unlock_irqrestore(&q->lock, flags); 714 } 715 EXPORT_SYMBOL_GPL(add_page_wait_queue); 716 717 /** 718 * unlock_page - unlock a locked page 719 * @page: the page 720 * 721 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 722 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 723 * mechananism between PageLocked pages and PageWriteback pages is shared. 724 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 725 * 726 * The mb is necessary to enforce ordering between the clear_bit and the read 727 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 728 */ 729 void unlock_page(struct page *page) 730 { 731 VM_BUG_ON_PAGE(!PageLocked(page), page); 732 clear_bit_unlock(PG_locked, &page->flags); 733 smp_mb__after_atomic(); 734 wake_up_page(page, PG_locked); 735 } 736 EXPORT_SYMBOL(unlock_page); 737 738 /** 739 * end_page_writeback - end writeback against a page 740 * @page: the page 741 */ 742 void end_page_writeback(struct page *page) 743 { 744 /* 745 * TestClearPageReclaim could be used here but it is an atomic 746 * operation and overkill in this particular case. Failing to 747 * shuffle a page marked for immediate reclaim is too mild to 748 * justify taking an atomic operation penalty at the end of 749 * ever page writeback. 750 */ 751 if (PageReclaim(page)) { 752 ClearPageReclaim(page); 753 rotate_reclaimable_page(page); 754 } 755 756 if (!test_clear_page_writeback(page)) 757 BUG(); 758 759 smp_mb__after_atomic(); 760 wake_up_page(page, PG_writeback); 761 } 762 EXPORT_SYMBOL(end_page_writeback); 763 764 /* 765 * After completing I/O on a page, call this routine to update the page 766 * flags appropriately 767 */ 768 void page_endio(struct page *page, int rw, int err) 769 { 770 if (rw == READ) { 771 if (!err) { 772 SetPageUptodate(page); 773 } else { 774 ClearPageUptodate(page); 775 SetPageError(page); 776 } 777 unlock_page(page); 778 } else { /* rw == WRITE */ 779 if (err) { 780 SetPageError(page); 781 if (page->mapping) 782 mapping_set_error(page->mapping, err); 783 } 784 end_page_writeback(page); 785 } 786 } 787 EXPORT_SYMBOL_GPL(page_endio); 788 789 /** 790 * __lock_page - get a lock on the page, assuming we need to sleep to get it 791 * @page: the page to lock 792 */ 793 void __lock_page(struct page *page) 794 { 795 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 796 797 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io, 798 TASK_UNINTERRUPTIBLE); 799 } 800 EXPORT_SYMBOL(__lock_page); 801 802 int __lock_page_killable(struct page *page) 803 { 804 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 805 806 return __wait_on_bit_lock(page_waitqueue(page), &wait, 807 bit_wait_io, TASK_KILLABLE); 808 } 809 EXPORT_SYMBOL_GPL(__lock_page_killable); 810 811 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 812 unsigned int flags) 813 { 814 if (flags & FAULT_FLAG_ALLOW_RETRY) { 815 /* 816 * CAUTION! In this case, mmap_sem is not released 817 * even though return 0. 818 */ 819 if (flags & FAULT_FLAG_RETRY_NOWAIT) 820 return 0; 821 822 up_read(&mm->mmap_sem); 823 if (flags & FAULT_FLAG_KILLABLE) 824 wait_on_page_locked_killable(page); 825 else 826 wait_on_page_locked(page); 827 return 0; 828 } else { 829 if (flags & FAULT_FLAG_KILLABLE) { 830 int ret; 831 832 ret = __lock_page_killable(page); 833 if (ret) { 834 up_read(&mm->mmap_sem); 835 return 0; 836 } 837 } else 838 __lock_page(page); 839 return 1; 840 } 841 } 842 843 /** 844 * page_cache_next_hole - find the next hole (not-present entry) 845 * @mapping: mapping 846 * @index: index 847 * @max_scan: maximum range to search 848 * 849 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 850 * lowest indexed hole. 851 * 852 * Returns: the index of the hole if found, otherwise returns an index 853 * outside of the set specified (in which case 'return - index >= 854 * max_scan' will be true). In rare cases of index wrap-around, 0 will 855 * be returned. 856 * 857 * page_cache_next_hole may be called under rcu_read_lock. However, 858 * like radix_tree_gang_lookup, this will not atomically search a 859 * snapshot of the tree at a single point in time. For example, if a 860 * hole is created at index 5, then subsequently a hole is created at 861 * index 10, page_cache_next_hole covering both indexes may return 10 862 * if called under rcu_read_lock. 863 */ 864 pgoff_t page_cache_next_hole(struct address_space *mapping, 865 pgoff_t index, unsigned long max_scan) 866 { 867 unsigned long i; 868 869 for (i = 0; i < max_scan; i++) { 870 struct page *page; 871 872 page = radix_tree_lookup(&mapping->page_tree, index); 873 if (!page || radix_tree_exceptional_entry(page)) 874 break; 875 index++; 876 if (index == 0) 877 break; 878 } 879 880 return index; 881 } 882 EXPORT_SYMBOL(page_cache_next_hole); 883 884 /** 885 * page_cache_prev_hole - find the prev hole (not-present entry) 886 * @mapping: mapping 887 * @index: index 888 * @max_scan: maximum range to search 889 * 890 * Search backwards in the range [max(index-max_scan+1, 0), index] for 891 * the first hole. 892 * 893 * Returns: the index of the hole if found, otherwise returns an index 894 * outside of the set specified (in which case 'index - return >= 895 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 896 * will be returned. 897 * 898 * page_cache_prev_hole may be called under rcu_read_lock. However, 899 * like radix_tree_gang_lookup, this will not atomically search a 900 * snapshot of the tree at a single point in time. For example, if a 901 * hole is created at index 10, then subsequently a hole is created at 902 * index 5, page_cache_prev_hole covering both indexes may return 5 if 903 * called under rcu_read_lock. 904 */ 905 pgoff_t page_cache_prev_hole(struct address_space *mapping, 906 pgoff_t index, unsigned long max_scan) 907 { 908 unsigned long i; 909 910 for (i = 0; i < max_scan; i++) { 911 struct page *page; 912 913 page = radix_tree_lookup(&mapping->page_tree, index); 914 if (!page || radix_tree_exceptional_entry(page)) 915 break; 916 index--; 917 if (index == ULONG_MAX) 918 break; 919 } 920 921 return index; 922 } 923 EXPORT_SYMBOL(page_cache_prev_hole); 924 925 /** 926 * find_get_entry - find and get a page cache entry 927 * @mapping: the address_space to search 928 * @offset: the page cache index 929 * 930 * Looks up the page cache slot at @mapping & @offset. If there is a 931 * page cache page, it is returned with an increased refcount. 932 * 933 * If the slot holds a shadow entry of a previously evicted page, or a 934 * swap entry from shmem/tmpfs, it is returned. 935 * 936 * Otherwise, %NULL is returned. 937 */ 938 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 939 { 940 void **pagep; 941 struct page *page; 942 943 rcu_read_lock(); 944 repeat: 945 page = NULL; 946 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 947 if (pagep) { 948 page = radix_tree_deref_slot(pagep); 949 if (unlikely(!page)) 950 goto out; 951 if (radix_tree_exception(page)) { 952 if (radix_tree_deref_retry(page)) 953 goto repeat; 954 /* 955 * A shadow entry of a recently evicted page, 956 * or a swap entry from shmem/tmpfs. Return 957 * it without attempting to raise page count. 958 */ 959 goto out; 960 } 961 if (!page_cache_get_speculative(page)) 962 goto repeat; 963 964 /* 965 * Has the page moved? 966 * This is part of the lockless pagecache protocol. See 967 * include/linux/pagemap.h for details. 968 */ 969 if (unlikely(page != *pagep)) { 970 page_cache_release(page); 971 goto repeat; 972 } 973 } 974 out: 975 rcu_read_unlock(); 976 977 return page; 978 } 979 EXPORT_SYMBOL(find_get_entry); 980 981 /** 982 * find_lock_entry - locate, pin and lock a page cache entry 983 * @mapping: the address_space to search 984 * @offset: the page cache index 985 * 986 * Looks up the page cache slot at @mapping & @offset. If there is a 987 * page cache page, it is returned locked and with an increased 988 * refcount. 989 * 990 * If the slot holds a shadow entry of a previously evicted page, or a 991 * swap entry from shmem/tmpfs, it is returned. 992 * 993 * Otherwise, %NULL is returned. 994 * 995 * find_lock_entry() may sleep. 996 */ 997 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 998 { 999 struct page *page; 1000 1001 repeat: 1002 page = find_get_entry(mapping, offset); 1003 if (page && !radix_tree_exception(page)) { 1004 lock_page(page); 1005 /* Has the page been truncated? */ 1006 if (unlikely(page->mapping != mapping)) { 1007 unlock_page(page); 1008 page_cache_release(page); 1009 goto repeat; 1010 } 1011 VM_BUG_ON_PAGE(page->index != offset, page); 1012 } 1013 return page; 1014 } 1015 EXPORT_SYMBOL(find_lock_entry); 1016 1017 /** 1018 * pagecache_get_page - find and get a page reference 1019 * @mapping: the address_space to search 1020 * @offset: the page index 1021 * @fgp_flags: PCG flags 1022 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation 1023 * @radix_gfp_mask: gfp mask to use for radix tree node allocation 1024 * 1025 * Looks up the page cache slot at @mapping & @offset. 1026 * 1027 * PCG flags modify how the page is returned. 1028 * 1029 * FGP_ACCESSED: the page will be marked accessed 1030 * FGP_LOCK: Page is return locked 1031 * FGP_CREAT: If page is not present then a new page is allocated using 1032 * @cache_gfp_mask and added to the page cache and the VM's LRU 1033 * list. If radix tree nodes are allocated during page cache 1034 * insertion then @radix_gfp_mask is used. The page is returned 1035 * locked and with an increased refcount. Otherwise, %NULL is 1036 * returned. 1037 * 1038 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1039 * if the GFP flags specified for FGP_CREAT are atomic. 1040 * 1041 * If there is a page cache page, it is returned with an increased refcount. 1042 */ 1043 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1044 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask) 1045 { 1046 struct page *page; 1047 1048 repeat: 1049 page = find_get_entry(mapping, offset); 1050 if (radix_tree_exceptional_entry(page)) 1051 page = NULL; 1052 if (!page) 1053 goto no_page; 1054 1055 if (fgp_flags & FGP_LOCK) { 1056 if (fgp_flags & FGP_NOWAIT) { 1057 if (!trylock_page(page)) { 1058 page_cache_release(page); 1059 return NULL; 1060 } 1061 } else { 1062 lock_page(page); 1063 } 1064 1065 /* Has the page been truncated? */ 1066 if (unlikely(page->mapping != mapping)) { 1067 unlock_page(page); 1068 page_cache_release(page); 1069 goto repeat; 1070 } 1071 VM_BUG_ON_PAGE(page->index != offset, page); 1072 } 1073 1074 if (page && (fgp_flags & FGP_ACCESSED)) 1075 mark_page_accessed(page); 1076 1077 no_page: 1078 if (!page && (fgp_flags & FGP_CREAT)) { 1079 int err; 1080 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1081 cache_gfp_mask |= __GFP_WRITE; 1082 if (fgp_flags & FGP_NOFS) { 1083 cache_gfp_mask &= ~__GFP_FS; 1084 radix_gfp_mask &= ~__GFP_FS; 1085 } 1086 1087 page = __page_cache_alloc(cache_gfp_mask); 1088 if (!page) 1089 return NULL; 1090 1091 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1092 fgp_flags |= FGP_LOCK; 1093 1094 /* Init accessed so avoit atomic mark_page_accessed later */ 1095 if (fgp_flags & FGP_ACCESSED) 1096 init_page_accessed(page); 1097 1098 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask); 1099 if (unlikely(err)) { 1100 page_cache_release(page); 1101 page = NULL; 1102 if (err == -EEXIST) 1103 goto repeat; 1104 } 1105 } 1106 1107 return page; 1108 } 1109 EXPORT_SYMBOL(pagecache_get_page); 1110 1111 /** 1112 * find_get_entries - gang pagecache lookup 1113 * @mapping: The address_space to search 1114 * @start: The starting page cache index 1115 * @nr_entries: The maximum number of entries 1116 * @entries: Where the resulting entries are placed 1117 * @indices: The cache indices corresponding to the entries in @entries 1118 * 1119 * find_get_entries() will search for and return a group of up to 1120 * @nr_entries entries in the mapping. The entries are placed at 1121 * @entries. find_get_entries() takes a reference against any actual 1122 * pages it returns. 1123 * 1124 * The search returns a group of mapping-contiguous page cache entries 1125 * with ascending indexes. There may be holes in the indices due to 1126 * not-present pages. 1127 * 1128 * Any shadow entries of evicted pages, or swap entries from 1129 * shmem/tmpfs, are included in the returned array. 1130 * 1131 * find_get_entries() returns the number of pages and shadow entries 1132 * which were found. 1133 */ 1134 unsigned find_get_entries(struct address_space *mapping, 1135 pgoff_t start, unsigned int nr_entries, 1136 struct page **entries, pgoff_t *indices) 1137 { 1138 void **slot; 1139 unsigned int ret = 0; 1140 struct radix_tree_iter iter; 1141 1142 if (!nr_entries) 1143 return 0; 1144 1145 rcu_read_lock(); 1146 restart: 1147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1148 struct page *page; 1149 repeat: 1150 page = radix_tree_deref_slot(slot); 1151 if (unlikely(!page)) 1152 continue; 1153 if (radix_tree_exception(page)) { 1154 if (radix_tree_deref_retry(page)) 1155 goto restart; 1156 /* 1157 * A shadow entry of a recently evicted page, 1158 * or a swap entry from shmem/tmpfs. Return 1159 * it without attempting to raise page count. 1160 */ 1161 goto export; 1162 } 1163 if (!page_cache_get_speculative(page)) 1164 goto repeat; 1165 1166 /* Has the page moved? */ 1167 if (unlikely(page != *slot)) { 1168 page_cache_release(page); 1169 goto repeat; 1170 } 1171 export: 1172 indices[ret] = iter.index; 1173 entries[ret] = page; 1174 if (++ret == nr_entries) 1175 break; 1176 } 1177 rcu_read_unlock(); 1178 return ret; 1179 } 1180 1181 /** 1182 * find_get_pages - gang pagecache lookup 1183 * @mapping: The address_space to search 1184 * @start: The starting page index 1185 * @nr_pages: The maximum number of pages 1186 * @pages: Where the resulting pages are placed 1187 * 1188 * find_get_pages() will search for and return a group of up to 1189 * @nr_pages pages in the mapping. The pages are placed at @pages. 1190 * find_get_pages() takes a reference against the returned pages. 1191 * 1192 * The search returns a group of mapping-contiguous pages with ascending 1193 * indexes. There may be holes in the indices due to not-present pages. 1194 * 1195 * find_get_pages() returns the number of pages which were found. 1196 */ 1197 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1198 unsigned int nr_pages, struct page **pages) 1199 { 1200 struct radix_tree_iter iter; 1201 void **slot; 1202 unsigned ret = 0; 1203 1204 if (unlikely(!nr_pages)) 1205 return 0; 1206 1207 rcu_read_lock(); 1208 restart: 1209 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1210 struct page *page; 1211 repeat: 1212 page = radix_tree_deref_slot(slot); 1213 if (unlikely(!page)) 1214 continue; 1215 1216 if (radix_tree_exception(page)) { 1217 if (radix_tree_deref_retry(page)) { 1218 /* 1219 * Transient condition which can only trigger 1220 * when entry at index 0 moves out of or back 1221 * to root: none yet gotten, safe to restart. 1222 */ 1223 WARN_ON(iter.index); 1224 goto restart; 1225 } 1226 /* 1227 * A shadow entry of a recently evicted page, 1228 * or a swap entry from shmem/tmpfs. Skip 1229 * over it. 1230 */ 1231 continue; 1232 } 1233 1234 if (!page_cache_get_speculative(page)) 1235 goto repeat; 1236 1237 /* Has the page moved? */ 1238 if (unlikely(page != *slot)) { 1239 page_cache_release(page); 1240 goto repeat; 1241 } 1242 1243 pages[ret] = page; 1244 if (++ret == nr_pages) 1245 break; 1246 } 1247 1248 rcu_read_unlock(); 1249 return ret; 1250 } 1251 1252 /** 1253 * find_get_pages_contig - gang contiguous pagecache lookup 1254 * @mapping: The address_space to search 1255 * @index: The starting page index 1256 * @nr_pages: The maximum number of pages 1257 * @pages: Where the resulting pages are placed 1258 * 1259 * find_get_pages_contig() works exactly like find_get_pages(), except 1260 * that the returned number of pages are guaranteed to be contiguous. 1261 * 1262 * find_get_pages_contig() returns the number of pages which were found. 1263 */ 1264 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1265 unsigned int nr_pages, struct page **pages) 1266 { 1267 struct radix_tree_iter iter; 1268 void **slot; 1269 unsigned int ret = 0; 1270 1271 if (unlikely(!nr_pages)) 1272 return 0; 1273 1274 rcu_read_lock(); 1275 restart: 1276 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1277 struct page *page; 1278 repeat: 1279 page = radix_tree_deref_slot(slot); 1280 /* The hole, there no reason to continue */ 1281 if (unlikely(!page)) 1282 break; 1283 1284 if (radix_tree_exception(page)) { 1285 if (radix_tree_deref_retry(page)) { 1286 /* 1287 * Transient condition which can only trigger 1288 * when entry at index 0 moves out of or back 1289 * to root: none yet gotten, safe to restart. 1290 */ 1291 goto restart; 1292 } 1293 /* 1294 * A shadow entry of a recently evicted page, 1295 * or a swap entry from shmem/tmpfs. Stop 1296 * looking for contiguous pages. 1297 */ 1298 break; 1299 } 1300 1301 if (!page_cache_get_speculative(page)) 1302 goto repeat; 1303 1304 /* Has the page moved? */ 1305 if (unlikely(page != *slot)) { 1306 page_cache_release(page); 1307 goto repeat; 1308 } 1309 1310 /* 1311 * must check mapping and index after taking the ref. 1312 * otherwise we can get both false positives and false 1313 * negatives, which is just confusing to the caller. 1314 */ 1315 if (page->mapping == NULL || page->index != iter.index) { 1316 page_cache_release(page); 1317 break; 1318 } 1319 1320 pages[ret] = page; 1321 if (++ret == nr_pages) 1322 break; 1323 } 1324 rcu_read_unlock(); 1325 return ret; 1326 } 1327 EXPORT_SYMBOL(find_get_pages_contig); 1328 1329 /** 1330 * find_get_pages_tag - find and return pages that match @tag 1331 * @mapping: the address_space to search 1332 * @index: the starting page index 1333 * @tag: the tag index 1334 * @nr_pages: the maximum number of pages 1335 * @pages: where the resulting pages are placed 1336 * 1337 * Like find_get_pages, except we only return pages which are tagged with 1338 * @tag. We update @index to index the next page for the traversal. 1339 */ 1340 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1341 int tag, unsigned int nr_pages, struct page **pages) 1342 { 1343 struct radix_tree_iter iter; 1344 void **slot; 1345 unsigned ret = 0; 1346 1347 if (unlikely(!nr_pages)) 1348 return 0; 1349 1350 rcu_read_lock(); 1351 restart: 1352 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1353 &iter, *index, tag) { 1354 struct page *page; 1355 repeat: 1356 page = radix_tree_deref_slot(slot); 1357 if (unlikely(!page)) 1358 continue; 1359 1360 if (radix_tree_exception(page)) { 1361 if (radix_tree_deref_retry(page)) { 1362 /* 1363 * Transient condition which can only trigger 1364 * when entry at index 0 moves out of or back 1365 * to root: none yet gotten, safe to restart. 1366 */ 1367 goto restart; 1368 } 1369 /* 1370 * A shadow entry of a recently evicted page. 1371 * 1372 * Those entries should never be tagged, but 1373 * this tree walk is lockless and the tags are 1374 * looked up in bulk, one radix tree node at a 1375 * time, so there is a sizable window for page 1376 * reclaim to evict a page we saw tagged. 1377 * 1378 * Skip over it. 1379 */ 1380 continue; 1381 } 1382 1383 if (!page_cache_get_speculative(page)) 1384 goto repeat; 1385 1386 /* Has the page moved? */ 1387 if (unlikely(page != *slot)) { 1388 page_cache_release(page); 1389 goto repeat; 1390 } 1391 1392 pages[ret] = page; 1393 if (++ret == nr_pages) 1394 break; 1395 } 1396 1397 rcu_read_unlock(); 1398 1399 if (ret) 1400 *index = pages[ret - 1]->index + 1; 1401 1402 return ret; 1403 } 1404 EXPORT_SYMBOL(find_get_pages_tag); 1405 1406 /* 1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1408 * a _large_ part of the i/o request. Imagine the worst scenario: 1409 * 1410 * ---R__________________________________________B__________ 1411 * ^ reading here ^ bad block(assume 4k) 1412 * 1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1414 * => failing the whole request => read(R) => read(R+1) => 1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1418 * 1419 * It is going insane. Fix it by quickly scaling down the readahead size. 1420 */ 1421 static void shrink_readahead_size_eio(struct file *filp, 1422 struct file_ra_state *ra) 1423 { 1424 ra->ra_pages /= 4; 1425 } 1426 1427 /** 1428 * do_generic_file_read - generic file read routine 1429 * @filp: the file to read 1430 * @ppos: current file position 1431 * @iter: data destination 1432 * @written: already copied 1433 * 1434 * This is a generic file read routine, and uses the 1435 * mapping->a_ops->readpage() function for the actual low-level stuff. 1436 * 1437 * This is really ugly. But the goto's actually try to clarify some 1438 * of the logic when it comes to error handling etc. 1439 */ 1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1441 struct iov_iter *iter, ssize_t written) 1442 { 1443 struct address_space *mapping = filp->f_mapping; 1444 struct inode *inode = mapping->host; 1445 struct file_ra_state *ra = &filp->f_ra; 1446 pgoff_t index; 1447 pgoff_t last_index; 1448 pgoff_t prev_index; 1449 unsigned long offset; /* offset into pagecache page */ 1450 unsigned int prev_offset; 1451 int error = 0; 1452 1453 index = *ppos >> PAGE_CACHE_SHIFT; 1454 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1455 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1456 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1457 offset = *ppos & ~PAGE_CACHE_MASK; 1458 1459 for (;;) { 1460 struct page *page; 1461 pgoff_t end_index; 1462 loff_t isize; 1463 unsigned long nr, ret; 1464 1465 cond_resched(); 1466 find_page: 1467 page = find_get_page(mapping, index); 1468 if (!page) { 1469 page_cache_sync_readahead(mapping, 1470 ra, filp, 1471 index, last_index - index); 1472 page = find_get_page(mapping, index); 1473 if (unlikely(page == NULL)) 1474 goto no_cached_page; 1475 } 1476 if (PageReadahead(page)) { 1477 page_cache_async_readahead(mapping, 1478 ra, filp, page, 1479 index, last_index - index); 1480 } 1481 if (!PageUptodate(page)) { 1482 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1483 !mapping->a_ops->is_partially_uptodate) 1484 goto page_not_up_to_date; 1485 if (!trylock_page(page)) 1486 goto page_not_up_to_date; 1487 /* Did it get truncated before we got the lock? */ 1488 if (!page->mapping) 1489 goto page_not_up_to_date_locked; 1490 if (!mapping->a_ops->is_partially_uptodate(page, 1491 offset, iter->count)) 1492 goto page_not_up_to_date_locked; 1493 unlock_page(page); 1494 } 1495 page_ok: 1496 /* 1497 * i_size must be checked after we know the page is Uptodate. 1498 * 1499 * Checking i_size after the check allows us to calculate 1500 * the correct value for "nr", which means the zero-filled 1501 * part of the page is not copied back to userspace (unless 1502 * another truncate extends the file - this is desired though). 1503 */ 1504 1505 isize = i_size_read(inode); 1506 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1507 if (unlikely(!isize || index > end_index)) { 1508 page_cache_release(page); 1509 goto out; 1510 } 1511 1512 /* nr is the maximum number of bytes to copy from this page */ 1513 nr = PAGE_CACHE_SIZE; 1514 if (index == end_index) { 1515 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1516 if (nr <= offset) { 1517 page_cache_release(page); 1518 goto out; 1519 } 1520 } 1521 nr = nr - offset; 1522 1523 /* If users can be writing to this page using arbitrary 1524 * virtual addresses, take care about potential aliasing 1525 * before reading the page on the kernel side. 1526 */ 1527 if (mapping_writably_mapped(mapping)) 1528 flush_dcache_page(page); 1529 1530 /* 1531 * When a sequential read accesses a page several times, 1532 * only mark it as accessed the first time. 1533 */ 1534 if (prev_index != index || offset != prev_offset) 1535 mark_page_accessed(page); 1536 prev_index = index; 1537 1538 /* 1539 * Ok, we have the page, and it's up-to-date, so 1540 * now we can copy it to user space... 1541 */ 1542 1543 ret = copy_page_to_iter(page, offset, nr, iter); 1544 offset += ret; 1545 index += offset >> PAGE_CACHE_SHIFT; 1546 offset &= ~PAGE_CACHE_MASK; 1547 prev_offset = offset; 1548 1549 page_cache_release(page); 1550 written += ret; 1551 if (!iov_iter_count(iter)) 1552 goto out; 1553 if (ret < nr) { 1554 error = -EFAULT; 1555 goto out; 1556 } 1557 continue; 1558 1559 page_not_up_to_date: 1560 /* Get exclusive access to the page ... */ 1561 error = lock_page_killable(page); 1562 if (unlikely(error)) 1563 goto readpage_error; 1564 1565 page_not_up_to_date_locked: 1566 /* Did it get truncated before we got the lock? */ 1567 if (!page->mapping) { 1568 unlock_page(page); 1569 page_cache_release(page); 1570 continue; 1571 } 1572 1573 /* Did somebody else fill it already? */ 1574 if (PageUptodate(page)) { 1575 unlock_page(page); 1576 goto page_ok; 1577 } 1578 1579 readpage: 1580 /* 1581 * A previous I/O error may have been due to temporary 1582 * failures, eg. multipath errors. 1583 * PG_error will be set again if readpage fails. 1584 */ 1585 ClearPageError(page); 1586 /* Start the actual read. The read will unlock the page. */ 1587 error = mapping->a_ops->readpage(filp, page); 1588 1589 if (unlikely(error)) { 1590 if (error == AOP_TRUNCATED_PAGE) { 1591 page_cache_release(page); 1592 error = 0; 1593 goto find_page; 1594 } 1595 goto readpage_error; 1596 } 1597 1598 if (!PageUptodate(page)) { 1599 error = lock_page_killable(page); 1600 if (unlikely(error)) 1601 goto readpage_error; 1602 if (!PageUptodate(page)) { 1603 if (page->mapping == NULL) { 1604 /* 1605 * invalidate_mapping_pages got it 1606 */ 1607 unlock_page(page); 1608 page_cache_release(page); 1609 goto find_page; 1610 } 1611 unlock_page(page); 1612 shrink_readahead_size_eio(filp, ra); 1613 error = -EIO; 1614 goto readpage_error; 1615 } 1616 unlock_page(page); 1617 } 1618 1619 goto page_ok; 1620 1621 readpage_error: 1622 /* UHHUH! A synchronous read error occurred. Report it */ 1623 page_cache_release(page); 1624 goto out; 1625 1626 no_cached_page: 1627 /* 1628 * Ok, it wasn't cached, so we need to create a new 1629 * page.. 1630 */ 1631 page = page_cache_alloc_cold(mapping); 1632 if (!page) { 1633 error = -ENOMEM; 1634 goto out; 1635 } 1636 error = add_to_page_cache_lru(page, mapping, 1637 index, GFP_KERNEL); 1638 if (error) { 1639 page_cache_release(page); 1640 if (error == -EEXIST) { 1641 error = 0; 1642 goto find_page; 1643 } 1644 goto out; 1645 } 1646 goto readpage; 1647 } 1648 1649 out: 1650 ra->prev_pos = prev_index; 1651 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1652 ra->prev_pos |= prev_offset; 1653 1654 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1655 file_accessed(filp); 1656 return written ? written : error; 1657 } 1658 1659 /** 1660 * generic_file_read_iter - generic filesystem read routine 1661 * @iocb: kernel I/O control block 1662 * @iter: destination for the data read 1663 * 1664 * This is the "read_iter()" routine for all filesystems 1665 * that can use the page cache directly. 1666 */ 1667 ssize_t 1668 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1669 { 1670 struct file *file = iocb->ki_filp; 1671 ssize_t retval = 0; 1672 loff_t *ppos = &iocb->ki_pos; 1673 loff_t pos = *ppos; 1674 1675 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1676 if (file->f_flags & O_DIRECT) { 1677 struct address_space *mapping = file->f_mapping; 1678 struct inode *inode = mapping->host; 1679 size_t count = iov_iter_count(iter); 1680 loff_t size; 1681 1682 if (!count) 1683 goto out; /* skip atime */ 1684 size = i_size_read(inode); 1685 retval = filemap_write_and_wait_range(mapping, pos, 1686 pos + count - 1); 1687 if (!retval) { 1688 struct iov_iter data = *iter; 1689 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos); 1690 } 1691 1692 if (retval > 0) { 1693 *ppos = pos + retval; 1694 iov_iter_advance(iter, retval); 1695 } 1696 1697 /* 1698 * Btrfs can have a short DIO read if we encounter 1699 * compressed extents, so if there was an error, or if 1700 * we've already read everything we wanted to, or if 1701 * there was a short read because we hit EOF, go ahead 1702 * and return. Otherwise fallthrough to buffered io for 1703 * the rest of the read. 1704 */ 1705 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) { 1706 file_accessed(file); 1707 goto out; 1708 } 1709 } 1710 1711 retval = do_generic_file_read(file, ppos, iter, retval); 1712 out: 1713 return retval; 1714 } 1715 EXPORT_SYMBOL(generic_file_read_iter); 1716 1717 #ifdef CONFIG_MMU 1718 /** 1719 * page_cache_read - adds requested page to the page cache if not already there 1720 * @file: file to read 1721 * @offset: page index 1722 * 1723 * This adds the requested page to the page cache if it isn't already there, 1724 * and schedules an I/O to read in its contents from disk. 1725 */ 1726 static int page_cache_read(struct file *file, pgoff_t offset) 1727 { 1728 struct address_space *mapping = file->f_mapping; 1729 struct page *page; 1730 int ret; 1731 1732 do { 1733 page = page_cache_alloc_cold(mapping); 1734 if (!page) 1735 return -ENOMEM; 1736 1737 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1738 if (ret == 0) 1739 ret = mapping->a_ops->readpage(file, page); 1740 else if (ret == -EEXIST) 1741 ret = 0; /* losing race to add is OK */ 1742 1743 page_cache_release(page); 1744 1745 } while (ret == AOP_TRUNCATED_PAGE); 1746 1747 return ret; 1748 } 1749 1750 #define MMAP_LOTSAMISS (100) 1751 1752 /* 1753 * Synchronous readahead happens when we don't even find 1754 * a page in the page cache at all. 1755 */ 1756 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1757 struct file_ra_state *ra, 1758 struct file *file, 1759 pgoff_t offset) 1760 { 1761 unsigned long ra_pages; 1762 struct address_space *mapping = file->f_mapping; 1763 1764 /* If we don't want any read-ahead, don't bother */ 1765 if (vma->vm_flags & VM_RAND_READ) 1766 return; 1767 if (!ra->ra_pages) 1768 return; 1769 1770 if (vma->vm_flags & VM_SEQ_READ) { 1771 page_cache_sync_readahead(mapping, ra, file, offset, 1772 ra->ra_pages); 1773 return; 1774 } 1775 1776 /* Avoid banging the cache line if not needed */ 1777 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1778 ra->mmap_miss++; 1779 1780 /* 1781 * Do we miss much more than hit in this file? If so, 1782 * stop bothering with read-ahead. It will only hurt. 1783 */ 1784 if (ra->mmap_miss > MMAP_LOTSAMISS) 1785 return; 1786 1787 /* 1788 * mmap read-around 1789 */ 1790 ra_pages = max_sane_readahead(ra->ra_pages); 1791 ra->start = max_t(long, 0, offset - ra_pages / 2); 1792 ra->size = ra_pages; 1793 ra->async_size = ra_pages / 4; 1794 ra_submit(ra, mapping, file); 1795 } 1796 1797 /* 1798 * Asynchronous readahead happens when we find the page and PG_readahead, 1799 * so we want to possibly extend the readahead further.. 1800 */ 1801 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1802 struct file_ra_state *ra, 1803 struct file *file, 1804 struct page *page, 1805 pgoff_t offset) 1806 { 1807 struct address_space *mapping = file->f_mapping; 1808 1809 /* If we don't want any read-ahead, don't bother */ 1810 if (vma->vm_flags & VM_RAND_READ) 1811 return; 1812 if (ra->mmap_miss > 0) 1813 ra->mmap_miss--; 1814 if (PageReadahead(page)) 1815 page_cache_async_readahead(mapping, ra, file, 1816 page, offset, ra->ra_pages); 1817 } 1818 1819 /** 1820 * filemap_fault - read in file data for page fault handling 1821 * @vma: vma in which the fault was taken 1822 * @vmf: struct vm_fault containing details of the fault 1823 * 1824 * filemap_fault() is invoked via the vma operations vector for a 1825 * mapped memory region to read in file data during a page fault. 1826 * 1827 * The goto's are kind of ugly, but this streamlines the normal case of having 1828 * it in the page cache, and handles the special cases reasonably without 1829 * having a lot of duplicated code. 1830 */ 1831 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1832 { 1833 int error; 1834 struct file *file = vma->vm_file; 1835 struct address_space *mapping = file->f_mapping; 1836 struct file_ra_state *ra = &file->f_ra; 1837 struct inode *inode = mapping->host; 1838 pgoff_t offset = vmf->pgoff; 1839 struct page *page; 1840 loff_t size; 1841 int ret = 0; 1842 1843 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1844 if (offset >= size >> PAGE_CACHE_SHIFT) 1845 return VM_FAULT_SIGBUS; 1846 1847 /* 1848 * Do we have something in the page cache already? 1849 */ 1850 page = find_get_page(mapping, offset); 1851 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1852 /* 1853 * We found the page, so try async readahead before 1854 * waiting for the lock. 1855 */ 1856 do_async_mmap_readahead(vma, ra, file, page, offset); 1857 } else if (!page) { 1858 /* No page in the page cache at all */ 1859 do_sync_mmap_readahead(vma, ra, file, offset); 1860 count_vm_event(PGMAJFAULT); 1861 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1862 ret = VM_FAULT_MAJOR; 1863 retry_find: 1864 page = find_get_page(mapping, offset); 1865 if (!page) 1866 goto no_cached_page; 1867 } 1868 1869 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1870 page_cache_release(page); 1871 return ret | VM_FAULT_RETRY; 1872 } 1873 1874 /* Did it get truncated? */ 1875 if (unlikely(page->mapping != mapping)) { 1876 unlock_page(page); 1877 put_page(page); 1878 goto retry_find; 1879 } 1880 VM_BUG_ON_PAGE(page->index != offset, page); 1881 1882 /* 1883 * We have a locked page in the page cache, now we need to check 1884 * that it's up-to-date. If not, it is going to be due to an error. 1885 */ 1886 if (unlikely(!PageUptodate(page))) 1887 goto page_not_uptodate; 1888 1889 /* 1890 * Found the page and have a reference on it. 1891 * We must recheck i_size under page lock. 1892 */ 1893 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1894 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1895 unlock_page(page); 1896 page_cache_release(page); 1897 return VM_FAULT_SIGBUS; 1898 } 1899 1900 vmf->page = page; 1901 return ret | VM_FAULT_LOCKED; 1902 1903 no_cached_page: 1904 /* 1905 * We're only likely to ever get here if MADV_RANDOM is in 1906 * effect. 1907 */ 1908 error = page_cache_read(file, offset); 1909 1910 /* 1911 * The page we want has now been added to the page cache. 1912 * In the unlikely event that someone removed it in the 1913 * meantime, we'll just come back here and read it again. 1914 */ 1915 if (error >= 0) 1916 goto retry_find; 1917 1918 /* 1919 * An error return from page_cache_read can result if the 1920 * system is low on memory, or a problem occurs while trying 1921 * to schedule I/O. 1922 */ 1923 if (error == -ENOMEM) 1924 return VM_FAULT_OOM; 1925 return VM_FAULT_SIGBUS; 1926 1927 page_not_uptodate: 1928 /* 1929 * Umm, take care of errors if the page isn't up-to-date. 1930 * Try to re-read it _once_. We do this synchronously, 1931 * because there really aren't any performance issues here 1932 * and we need to check for errors. 1933 */ 1934 ClearPageError(page); 1935 error = mapping->a_ops->readpage(file, page); 1936 if (!error) { 1937 wait_on_page_locked(page); 1938 if (!PageUptodate(page)) 1939 error = -EIO; 1940 } 1941 page_cache_release(page); 1942 1943 if (!error || error == AOP_TRUNCATED_PAGE) 1944 goto retry_find; 1945 1946 /* Things didn't work out. Return zero to tell the mm layer so. */ 1947 shrink_readahead_size_eio(file, ra); 1948 return VM_FAULT_SIGBUS; 1949 } 1950 EXPORT_SYMBOL(filemap_fault); 1951 1952 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 1953 { 1954 struct radix_tree_iter iter; 1955 void **slot; 1956 struct file *file = vma->vm_file; 1957 struct address_space *mapping = file->f_mapping; 1958 loff_t size; 1959 struct page *page; 1960 unsigned long address = (unsigned long) vmf->virtual_address; 1961 unsigned long addr; 1962 pte_t *pte; 1963 1964 rcu_read_lock(); 1965 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 1966 if (iter.index > vmf->max_pgoff) 1967 break; 1968 repeat: 1969 page = radix_tree_deref_slot(slot); 1970 if (unlikely(!page)) 1971 goto next; 1972 if (radix_tree_exception(page)) { 1973 if (radix_tree_deref_retry(page)) 1974 break; 1975 else 1976 goto next; 1977 } 1978 1979 if (!page_cache_get_speculative(page)) 1980 goto repeat; 1981 1982 /* Has the page moved? */ 1983 if (unlikely(page != *slot)) { 1984 page_cache_release(page); 1985 goto repeat; 1986 } 1987 1988 if (!PageUptodate(page) || 1989 PageReadahead(page) || 1990 PageHWPoison(page)) 1991 goto skip; 1992 if (!trylock_page(page)) 1993 goto skip; 1994 1995 if (page->mapping != mapping || !PageUptodate(page)) 1996 goto unlock; 1997 1998 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 1999 if (page->index >= size >> PAGE_CACHE_SHIFT) 2000 goto unlock; 2001 2002 pte = vmf->pte + page->index - vmf->pgoff; 2003 if (!pte_none(*pte)) 2004 goto unlock; 2005 2006 if (file->f_ra.mmap_miss > 0) 2007 file->f_ra.mmap_miss--; 2008 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2009 do_set_pte(vma, addr, page, pte, false, false); 2010 unlock_page(page); 2011 goto next; 2012 unlock: 2013 unlock_page(page); 2014 skip: 2015 page_cache_release(page); 2016 next: 2017 if (iter.index == vmf->max_pgoff) 2018 break; 2019 } 2020 rcu_read_unlock(); 2021 } 2022 EXPORT_SYMBOL(filemap_map_pages); 2023 2024 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2025 { 2026 struct page *page = vmf->page; 2027 struct inode *inode = file_inode(vma->vm_file); 2028 int ret = VM_FAULT_LOCKED; 2029 2030 sb_start_pagefault(inode->i_sb); 2031 file_update_time(vma->vm_file); 2032 lock_page(page); 2033 if (page->mapping != inode->i_mapping) { 2034 unlock_page(page); 2035 ret = VM_FAULT_NOPAGE; 2036 goto out; 2037 } 2038 /* 2039 * We mark the page dirty already here so that when freeze is in 2040 * progress, we are guaranteed that writeback during freezing will 2041 * see the dirty page and writeprotect it again. 2042 */ 2043 set_page_dirty(page); 2044 wait_for_stable_page(page); 2045 out: 2046 sb_end_pagefault(inode->i_sb); 2047 return ret; 2048 } 2049 EXPORT_SYMBOL(filemap_page_mkwrite); 2050 2051 const struct vm_operations_struct generic_file_vm_ops = { 2052 .fault = filemap_fault, 2053 .map_pages = filemap_map_pages, 2054 .page_mkwrite = filemap_page_mkwrite, 2055 .remap_pages = generic_file_remap_pages, 2056 }; 2057 2058 /* This is used for a general mmap of a disk file */ 2059 2060 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2061 { 2062 struct address_space *mapping = file->f_mapping; 2063 2064 if (!mapping->a_ops->readpage) 2065 return -ENOEXEC; 2066 file_accessed(file); 2067 vma->vm_ops = &generic_file_vm_ops; 2068 return 0; 2069 } 2070 2071 /* 2072 * This is for filesystems which do not implement ->writepage. 2073 */ 2074 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2075 { 2076 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2077 return -EINVAL; 2078 return generic_file_mmap(file, vma); 2079 } 2080 #else 2081 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2082 { 2083 return -ENOSYS; 2084 } 2085 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2086 { 2087 return -ENOSYS; 2088 } 2089 #endif /* CONFIG_MMU */ 2090 2091 EXPORT_SYMBOL(generic_file_mmap); 2092 EXPORT_SYMBOL(generic_file_readonly_mmap); 2093 2094 static struct page *wait_on_page_read(struct page *page) 2095 { 2096 if (!IS_ERR(page)) { 2097 wait_on_page_locked(page); 2098 if (!PageUptodate(page)) { 2099 page_cache_release(page); 2100 page = ERR_PTR(-EIO); 2101 } 2102 } 2103 return page; 2104 } 2105 2106 static struct page *__read_cache_page(struct address_space *mapping, 2107 pgoff_t index, 2108 int (*filler)(void *, struct page *), 2109 void *data, 2110 gfp_t gfp) 2111 { 2112 struct page *page; 2113 int err; 2114 repeat: 2115 page = find_get_page(mapping, index); 2116 if (!page) { 2117 page = __page_cache_alloc(gfp | __GFP_COLD); 2118 if (!page) 2119 return ERR_PTR(-ENOMEM); 2120 err = add_to_page_cache_lru(page, mapping, index, gfp); 2121 if (unlikely(err)) { 2122 page_cache_release(page); 2123 if (err == -EEXIST) 2124 goto repeat; 2125 /* Presumably ENOMEM for radix tree node */ 2126 return ERR_PTR(err); 2127 } 2128 err = filler(data, page); 2129 if (err < 0) { 2130 page_cache_release(page); 2131 page = ERR_PTR(err); 2132 } else { 2133 page = wait_on_page_read(page); 2134 } 2135 } 2136 return page; 2137 } 2138 2139 static struct page *do_read_cache_page(struct address_space *mapping, 2140 pgoff_t index, 2141 int (*filler)(void *, struct page *), 2142 void *data, 2143 gfp_t gfp) 2144 2145 { 2146 struct page *page; 2147 int err; 2148 2149 retry: 2150 page = __read_cache_page(mapping, index, filler, data, gfp); 2151 if (IS_ERR(page)) 2152 return page; 2153 if (PageUptodate(page)) 2154 goto out; 2155 2156 lock_page(page); 2157 if (!page->mapping) { 2158 unlock_page(page); 2159 page_cache_release(page); 2160 goto retry; 2161 } 2162 if (PageUptodate(page)) { 2163 unlock_page(page); 2164 goto out; 2165 } 2166 err = filler(data, page); 2167 if (err < 0) { 2168 page_cache_release(page); 2169 return ERR_PTR(err); 2170 } else { 2171 page = wait_on_page_read(page); 2172 if (IS_ERR(page)) 2173 return page; 2174 } 2175 out: 2176 mark_page_accessed(page); 2177 return page; 2178 } 2179 2180 /** 2181 * read_cache_page - read into page cache, fill it if needed 2182 * @mapping: the page's address_space 2183 * @index: the page index 2184 * @filler: function to perform the read 2185 * @data: first arg to filler(data, page) function, often left as NULL 2186 * 2187 * Read into the page cache. If a page already exists, and PageUptodate() is 2188 * not set, try to fill the page and wait for it to become unlocked. 2189 * 2190 * If the page does not get brought uptodate, return -EIO. 2191 */ 2192 struct page *read_cache_page(struct address_space *mapping, 2193 pgoff_t index, 2194 int (*filler)(void *, struct page *), 2195 void *data) 2196 { 2197 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2198 } 2199 EXPORT_SYMBOL(read_cache_page); 2200 2201 /** 2202 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2203 * @mapping: the page's address_space 2204 * @index: the page index 2205 * @gfp: the page allocator flags to use if allocating 2206 * 2207 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2208 * any new page allocations done using the specified allocation flags. 2209 * 2210 * If the page does not get brought uptodate, return -EIO. 2211 */ 2212 struct page *read_cache_page_gfp(struct address_space *mapping, 2213 pgoff_t index, 2214 gfp_t gfp) 2215 { 2216 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2217 2218 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2219 } 2220 EXPORT_SYMBOL(read_cache_page_gfp); 2221 2222 /* 2223 * Performs necessary checks before doing a write 2224 * 2225 * Can adjust writing position or amount of bytes to write. 2226 * Returns appropriate error code that caller should return or 2227 * zero in case that write should be allowed. 2228 */ 2229 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2230 { 2231 struct inode *inode = file->f_mapping->host; 2232 unsigned long limit = rlimit(RLIMIT_FSIZE); 2233 2234 if (unlikely(*pos < 0)) 2235 return -EINVAL; 2236 2237 if (!isblk) { 2238 /* FIXME: this is for backwards compatibility with 2.4 */ 2239 if (file->f_flags & O_APPEND) 2240 *pos = i_size_read(inode); 2241 2242 if (limit != RLIM_INFINITY) { 2243 if (*pos >= limit) { 2244 send_sig(SIGXFSZ, current, 0); 2245 return -EFBIG; 2246 } 2247 if (*count > limit - (typeof(limit))*pos) { 2248 *count = limit - (typeof(limit))*pos; 2249 } 2250 } 2251 } 2252 2253 /* 2254 * LFS rule 2255 */ 2256 if (unlikely(*pos + *count > MAX_NON_LFS && 2257 !(file->f_flags & O_LARGEFILE))) { 2258 if (*pos >= MAX_NON_LFS) { 2259 return -EFBIG; 2260 } 2261 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2262 *count = MAX_NON_LFS - (unsigned long)*pos; 2263 } 2264 } 2265 2266 /* 2267 * Are we about to exceed the fs block limit ? 2268 * 2269 * If we have written data it becomes a short write. If we have 2270 * exceeded without writing data we send a signal and return EFBIG. 2271 * Linus frestrict idea will clean these up nicely.. 2272 */ 2273 if (likely(!isblk)) { 2274 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2275 if (*count || *pos > inode->i_sb->s_maxbytes) { 2276 return -EFBIG; 2277 } 2278 /* zero-length writes at ->s_maxbytes are OK */ 2279 } 2280 2281 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2282 *count = inode->i_sb->s_maxbytes - *pos; 2283 } else { 2284 #ifdef CONFIG_BLOCK 2285 loff_t isize; 2286 if (bdev_read_only(I_BDEV(inode))) 2287 return -EPERM; 2288 isize = i_size_read(inode); 2289 if (*pos >= isize) { 2290 if (*count || *pos > isize) 2291 return -ENOSPC; 2292 } 2293 2294 if (*pos + *count > isize) 2295 *count = isize - *pos; 2296 #else 2297 return -EPERM; 2298 #endif 2299 } 2300 return 0; 2301 } 2302 EXPORT_SYMBOL(generic_write_checks); 2303 2304 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2305 loff_t pos, unsigned len, unsigned flags, 2306 struct page **pagep, void **fsdata) 2307 { 2308 const struct address_space_operations *aops = mapping->a_ops; 2309 2310 return aops->write_begin(file, mapping, pos, len, flags, 2311 pagep, fsdata); 2312 } 2313 EXPORT_SYMBOL(pagecache_write_begin); 2314 2315 int pagecache_write_end(struct file *file, struct address_space *mapping, 2316 loff_t pos, unsigned len, unsigned copied, 2317 struct page *page, void *fsdata) 2318 { 2319 const struct address_space_operations *aops = mapping->a_ops; 2320 2321 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2322 } 2323 EXPORT_SYMBOL(pagecache_write_end); 2324 2325 ssize_t 2326 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2327 { 2328 struct file *file = iocb->ki_filp; 2329 struct address_space *mapping = file->f_mapping; 2330 struct inode *inode = mapping->host; 2331 ssize_t written; 2332 size_t write_len; 2333 pgoff_t end; 2334 struct iov_iter data; 2335 2336 write_len = iov_iter_count(from); 2337 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2338 2339 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2340 if (written) 2341 goto out; 2342 2343 /* 2344 * After a write we want buffered reads to be sure to go to disk to get 2345 * the new data. We invalidate clean cached page from the region we're 2346 * about to write. We do this *before* the write so that we can return 2347 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2348 */ 2349 if (mapping->nrpages) { 2350 written = invalidate_inode_pages2_range(mapping, 2351 pos >> PAGE_CACHE_SHIFT, end); 2352 /* 2353 * If a page can not be invalidated, return 0 to fall back 2354 * to buffered write. 2355 */ 2356 if (written) { 2357 if (written == -EBUSY) 2358 return 0; 2359 goto out; 2360 } 2361 } 2362 2363 data = *from; 2364 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos); 2365 2366 /* 2367 * Finally, try again to invalidate clean pages which might have been 2368 * cached by non-direct readahead, or faulted in by get_user_pages() 2369 * if the source of the write was an mmap'ed region of the file 2370 * we're writing. Either one is a pretty crazy thing to do, 2371 * so we don't support it 100%. If this invalidation 2372 * fails, tough, the write still worked... 2373 */ 2374 if (mapping->nrpages) { 2375 invalidate_inode_pages2_range(mapping, 2376 pos >> PAGE_CACHE_SHIFT, end); 2377 } 2378 2379 if (written > 0) { 2380 pos += written; 2381 iov_iter_advance(from, written); 2382 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2383 i_size_write(inode, pos); 2384 mark_inode_dirty(inode); 2385 } 2386 iocb->ki_pos = pos; 2387 } 2388 out: 2389 return written; 2390 } 2391 EXPORT_SYMBOL(generic_file_direct_write); 2392 2393 /* 2394 * Find or create a page at the given pagecache position. Return the locked 2395 * page. This function is specifically for buffered writes. 2396 */ 2397 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2398 pgoff_t index, unsigned flags) 2399 { 2400 struct page *page; 2401 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2402 2403 if (flags & AOP_FLAG_NOFS) 2404 fgp_flags |= FGP_NOFS; 2405 2406 page = pagecache_get_page(mapping, index, fgp_flags, 2407 mapping_gfp_mask(mapping), 2408 GFP_KERNEL); 2409 if (page) 2410 wait_for_stable_page(page); 2411 2412 return page; 2413 } 2414 EXPORT_SYMBOL(grab_cache_page_write_begin); 2415 2416 ssize_t generic_perform_write(struct file *file, 2417 struct iov_iter *i, loff_t pos) 2418 { 2419 struct address_space *mapping = file->f_mapping; 2420 const struct address_space_operations *a_ops = mapping->a_ops; 2421 long status = 0; 2422 ssize_t written = 0; 2423 unsigned int flags = 0; 2424 2425 /* 2426 * Copies from kernel address space cannot fail (NFSD is a big user). 2427 */ 2428 if (segment_eq(get_fs(), KERNEL_DS)) 2429 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2430 2431 do { 2432 struct page *page; 2433 unsigned long offset; /* Offset into pagecache page */ 2434 unsigned long bytes; /* Bytes to write to page */ 2435 size_t copied; /* Bytes copied from user */ 2436 void *fsdata; 2437 2438 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2439 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2440 iov_iter_count(i)); 2441 2442 again: 2443 /* 2444 * Bring in the user page that we will copy from _first_. 2445 * Otherwise there's a nasty deadlock on copying from the 2446 * same page as we're writing to, without it being marked 2447 * up-to-date. 2448 * 2449 * Not only is this an optimisation, but it is also required 2450 * to check that the address is actually valid, when atomic 2451 * usercopies are used, below. 2452 */ 2453 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2454 status = -EFAULT; 2455 break; 2456 } 2457 2458 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2459 &page, &fsdata); 2460 if (unlikely(status < 0)) 2461 break; 2462 2463 if (mapping_writably_mapped(mapping)) 2464 flush_dcache_page(page); 2465 2466 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2467 flush_dcache_page(page); 2468 2469 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2470 page, fsdata); 2471 if (unlikely(status < 0)) 2472 break; 2473 copied = status; 2474 2475 cond_resched(); 2476 2477 iov_iter_advance(i, copied); 2478 if (unlikely(copied == 0)) { 2479 /* 2480 * If we were unable to copy any data at all, we must 2481 * fall back to a single segment length write. 2482 * 2483 * If we didn't fallback here, we could livelock 2484 * because not all segments in the iov can be copied at 2485 * once without a pagefault. 2486 */ 2487 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2488 iov_iter_single_seg_count(i)); 2489 goto again; 2490 } 2491 pos += copied; 2492 written += copied; 2493 2494 balance_dirty_pages_ratelimited(mapping); 2495 if (fatal_signal_pending(current)) { 2496 status = -EINTR; 2497 break; 2498 } 2499 } while (iov_iter_count(i)); 2500 2501 return written ? written : status; 2502 } 2503 EXPORT_SYMBOL(generic_perform_write); 2504 2505 /** 2506 * __generic_file_write_iter - write data to a file 2507 * @iocb: IO state structure (file, offset, etc.) 2508 * @from: iov_iter with data to write 2509 * 2510 * This function does all the work needed for actually writing data to a 2511 * file. It does all basic checks, removes SUID from the file, updates 2512 * modification times and calls proper subroutines depending on whether we 2513 * do direct IO or a standard buffered write. 2514 * 2515 * It expects i_mutex to be grabbed unless we work on a block device or similar 2516 * object which does not need locking at all. 2517 * 2518 * This function does *not* take care of syncing data in case of O_SYNC write. 2519 * A caller has to handle it. This is mainly due to the fact that we want to 2520 * avoid syncing under i_mutex. 2521 */ 2522 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2523 { 2524 struct file *file = iocb->ki_filp; 2525 struct address_space * mapping = file->f_mapping; 2526 struct inode *inode = mapping->host; 2527 loff_t pos = iocb->ki_pos; 2528 ssize_t written = 0; 2529 ssize_t err; 2530 ssize_t status; 2531 size_t count = iov_iter_count(from); 2532 2533 /* We can write back this queue in page reclaim */ 2534 current->backing_dev_info = mapping->backing_dev_info; 2535 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2536 if (err) 2537 goto out; 2538 2539 if (count == 0) 2540 goto out; 2541 2542 iov_iter_truncate(from, count); 2543 2544 err = file_remove_suid(file); 2545 if (err) 2546 goto out; 2547 2548 err = file_update_time(file); 2549 if (err) 2550 goto out; 2551 2552 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2553 if (unlikely(file->f_flags & O_DIRECT)) { 2554 loff_t endbyte; 2555 2556 written = generic_file_direct_write(iocb, from, pos); 2557 if (written < 0 || written == count) 2558 goto out; 2559 2560 /* 2561 * direct-io write to a hole: fall through to buffered I/O 2562 * for completing the rest of the request. 2563 */ 2564 pos += written; 2565 count -= written; 2566 2567 status = generic_perform_write(file, from, pos); 2568 /* 2569 * If generic_perform_write() returned a synchronous error 2570 * then we want to return the number of bytes which were 2571 * direct-written, or the error code if that was zero. Note 2572 * that this differs from normal direct-io semantics, which 2573 * will return -EFOO even if some bytes were written. 2574 */ 2575 if (unlikely(status < 0) && !written) { 2576 err = status; 2577 goto out; 2578 } 2579 iocb->ki_pos = pos + status; 2580 /* 2581 * We need to ensure that the page cache pages are written to 2582 * disk and invalidated to preserve the expected O_DIRECT 2583 * semantics. 2584 */ 2585 endbyte = pos + status - 1; 2586 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2587 if (err == 0) { 2588 written += status; 2589 invalidate_mapping_pages(mapping, 2590 pos >> PAGE_CACHE_SHIFT, 2591 endbyte >> PAGE_CACHE_SHIFT); 2592 } else { 2593 /* 2594 * We don't know how much we wrote, so just return 2595 * the number of bytes which were direct-written 2596 */ 2597 } 2598 } else { 2599 written = generic_perform_write(file, from, pos); 2600 if (likely(written >= 0)) 2601 iocb->ki_pos = pos + written; 2602 } 2603 out: 2604 current->backing_dev_info = NULL; 2605 return written ? written : err; 2606 } 2607 EXPORT_SYMBOL(__generic_file_write_iter); 2608 2609 /** 2610 * generic_file_write_iter - write data to a file 2611 * @iocb: IO state structure 2612 * @from: iov_iter with data to write 2613 * 2614 * This is a wrapper around __generic_file_write_iter() to be used by most 2615 * filesystems. It takes care of syncing the file in case of O_SYNC file 2616 * and acquires i_mutex as needed. 2617 */ 2618 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2619 { 2620 struct file *file = iocb->ki_filp; 2621 struct inode *inode = file->f_mapping->host; 2622 ssize_t ret; 2623 2624 mutex_lock(&inode->i_mutex); 2625 ret = __generic_file_write_iter(iocb, from); 2626 mutex_unlock(&inode->i_mutex); 2627 2628 if (ret > 0) { 2629 ssize_t err; 2630 2631 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2632 if (err < 0) 2633 ret = err; 2634 } 2635 return ret; 2636 } 2637 EXPORT_SYMBOL(generic_file_write_iter); 2638 2639 /** 2640 * try_to_release_page() - release old fs-specific metadata on a page 2641 * 2642 * @page: the page which the kernel is trying to free 2643 * @gfp_mask: memory allocation flags (and I/O mode) 2644 * 2645 * The address_space is to try to release any data against the page 2646 * (presumably at page->private). If the release was successful, return `1'. 2647 * Otherwise return zero. 2648 * 2649 * This may also be called if PG_fscache is set on a page, indicating that the 2650 * page is known to the local caching routines. 2651 * 2652 * The @gfp_mask argument specifies whether I/O may be performed to release 2653 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2654 * 2655 */ 2656 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2657 { 2658 struct address_space * const mapping = page->mapping; 2659 2660 BUG_ON(!PageLocked(page)); 2661 if (PageWriteback(page)) 2662 return 0; 2663 2664 if (mapping && mapping->a_ops->releasepage) 2665 return mapping->a_ops->releasepage(page, gfp_mask); 2666 return try_to_free_buffers(page); 2667 } 2668 2669 EXPORT_SYMBOL(try_to_release_page); 2670