xref: /linux/mm/filemap.c (revision 3da3cc1b5f47115b16b5ffeeb4bf09ec331b0164)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
46 
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
49 
50 /*
51  * FIXME: remove all knowledge of the buffer layer from the core VM
52  */
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
54 
55 #include <asm/mman.h>
56 
57 /*
58  * Shared mappings implemented 30.11.1994. It's not fully working yet,
59  * though.
60  *
61  * Shared mappings now work. 15.8.1995  Bruno.
62  *
63  * finished 'unifying' the page and buffer cache and SMP-threaded the
64  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
65  *
66  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
67  */
68 
69 /*
70  * Lock ordering:
71  *
72  *  ->i_mmap_rwsem		(truncate_pagecache)
73  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
74  *      ->swap_lock		(exclusive_swap_page, others)
75  *        ->i_pages lock
76  *
77  *  ->i_mutex
78  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
79  *
80  *  ->mmap_lock
81  *    ->i_mmap_rwsem
82  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
83  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
84  *
85  *  ->mmap_lock
86  *    ->lock_page		(access_process_vm)
87  *
88  *  ->i_mutex			(generic_perform_write)
89  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
90  *
91  *  bdi->wb.list_lock
92  *    sb_lock			(fs/fs-writeback.c)
93  *    ->i_pages lock		(__sync_single_inode)
94  *
95  *  ->i_mmap_rwsem
96  *    ->anon_vma.lock		(vma_adjust)
97  *
98  *  ->anon_vma.lock
99  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
100  *
101  *  ->page_table_lock or pte_lock
102  *    ->swap_lock		(try_to_unmap_one)
103  *    ->private_lock		(try_to_unmap_one)
104  *    ->i_pages lock		(try_to_unmap_one)
105  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
106  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
107  *    ->private_lock		(page_remove_rmap->set_page_dirty)
108  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
109  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
110  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
111  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
112  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
113  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
114  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
115  *
116  * ->i_mmap_rwsem
117  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
118  */
119 
120 static void page_cache_delete(struct address_space *mapping,
121 				   struct page *page, void *shadow)
122 {
123 	XA_STATE(xas, &mapping->i_pages, page->index);
124 	unsigned int nr = 1;
125 
126 	mapping_set_update(&xas, mapping);
127 
128 	/* hugetlb pages are represented by a single entry in the xarray */
129 	if (!PageHuge(page)) {
130 		xas_set_order(&xas, page->index, compound_order(page));
131 		nr = compound_nr(page);
132 	}
133 
134 	VM_BUG_ON_PAGE(!PageLocked(page), page);
135 	VM_BUG_ON_PAGE(PageTail(page), page);
136 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
137 
138 	xas_store(&xas, shadow);
139 	xas_init_marks(&xas);
140 
141 	page->mapping = NULL;
142 	/* Leave page->index set: truncation lookup relies upon it */
143 
144 	if (shadow) {
145 		mapping->nrexceptional += nr;
146 		/*
147 		 * Make sure the nrexceptional update is committed before
148 		 * the nrpages update so that final truncate racing
149 		 * with reclaim does not see both counters 0 at the
150 		 * same time and miss a shadow entry.
151 		 */
152 		smp_wmb();
153 	}
154 	mapping->nrpages -= nr;
155 }
156 
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 				      struct page *page)
159 {
160 	int nr;
161 
162 	/*
163 	 * if we're uptodate, flush out into the cleancache, otherwise
164 	 * invalidate any existing cleancache entries.  We can't leave
165 	 * stale data around in the cleancache once our page is gone
166 	 */
167 	if (PageUptodate(page) && PageMappedToDisk(page))
168 		cleancache_put_page(page);
169 	else
170 		cleancache_invalidate_page(mapping, page);
171 
172 	VM_BUG_ON_PAGE(PageTail(page), page);
173 	VM_BUG_ON_PAGE(page_mapped(page), page);
174 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 		int mapcount;
176 
177 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
178 			 current->comm, page_to_pfn(page));
179 		dump_page(page, "still mapped when deleted");
180 		dump_stack();
181 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
182 
183 		mapcount = page_mapcount(page);
184 		if (mapping_exiting(mapping) &&
185 		    page_count(page) >= mapcount + 2) {
186 			/*
187 			 * All vmas have already been torn down, so it's
188 			 * a good bet that actually the page is unmapped,
189 			 * and we'd prefer not to leak it: if we're wrong,
190 			 * some other bad page check should catch it later.
191 			 */
192 			page_mapcount_reset(page);
193 			page_ref_sub(page, mapcount);
194 		}
195 	}
196 
197 	/* hugetlb pages do not participate in page cache accounting. */
198 	if (PageHuge(page))
199 		return;
200 
201 	nr = thp_nr_pages(page);
202 
203 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 	if (PageSwapBacked(page)) {
205 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 		if (PageTransHuge(page))
207 			__dec_lruvec_page_state(page, NR_SHMEM_THPS);
208 	} else if (PageTransHuge(page)) {
209 		__dec_lruvec_page_state(page, NR_FILE_THPS);
210 		filemap_nr_thps_dec(mapping);
211 	}
212 
213 	/*
214 	 * At this point page must be either written or cleaned by
215 	 * truncate.  Dirty page here signals a bug and loss of
216 	 * unwritten data.
217 	 *
218 	 * This fixes dirty accounting after removing the page entirely
219 	 * but leaves PageDirty set: it has no effect for truncated
220 	 * page and anyway will be cleared before returning page into
221 	 * buddy allocator.
222 	 */
223 	if (WARN_ON_ONCE(PageDirty(page)))
224 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
225 }
226 
227 /*
228  * Delete a page from the page cache and free it. Caller has to make
229  * sure the page is locked and that nobody else uses it - or that usage
230  * is safe.  The caller must hold the i_pages lock.
231  */
232 void __delete_from_page_cache(struct page *page, void *shadow)
233 {
234 	struct address_space *mapping = page->mapping;
235 
236 	trace_mm_filemap_delete_from_page_cache(page);
237 
238 	unaccount_page_cache_page(mapping, page);
239 	page_cache_delete(mapping, page, shadow);
240 }
241 
242 static void page_cache_free_page(struct address_space *mapping,
243 				struct page *page)
244 {
245 	void (*freepage)(struct page *);
246 
247 	freepage = mapping->a_ops->freepage;
248 	if (freepage)
249 		freepage(page);
250 
251 	if (PageTransHuge(page) && !PageHuge(page)) {
252 		page_ref_sub(page, thp_nr_pages(page));
253 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 	} else {
255 		put_page(page);
256 	}
257 }
258 
259 /**
260  * delete_from_page_cache - delete page from page cache
261  * @page: the page which the kernel is trying to remove from page cache
262  *
263  * This must be called only on pages that have been verified to be in the page
264  * cache and locked.  It will never put the page into the free list, the caller
265  * has a reference on the page.
266  */
267 void delete_from_page_cache(struct page *page)
268 {
269 	struct address_space *mapping = page_mapping(page);
270 	unsigned long flags;
271 
272 	BUG_ON(!PageLocked(page));
273 	xa_lock_irqsave(&mapping->i_pages, flags);
274 	__delete_from_page_cache(page, NULL);
275 	xa_unlock_irqrestore(&mapping->i_pages, flags);
276 
277 	page_cache_free_page(mapping, page);
278 }
279 EXPORT_SYMBOL(delete_from_page_cache);
280 
281 /*
282  * page_cache_delete_batch - delete several pages from page cache
283  * @mapping: the mapping to which pages belong
284  * @pvec: pagevec with pages to delete
285  *
286  * The function walks over mapping->i_pages and removes pages passed in @pvec
287  * from the mapping. The function expects @pvec to be sorted by page index
288  * and is optimised for it to be dense.
289  * It tolerates holes in @pvec (mapping entries at those indices are not
290  * modified). The function expects only THP head pages to be present in the
291  * @pvec.
292  *
293  * The function expects the i_pages lock to be held.
294  */
295 static void page_cache_delete_batch(struct address_space *mapping,
296 			     struct pagevec *pvec)
297 {
298 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 	int total_pages = 0;
300 	int i = 0;
301 	struct page *page;
302 
303 	mapping_set_update(&xas, mapping);
304 	xas_for_each(&xas, page, ULONG_MAX) {
305 		if (i >= pagevec_count(pvec))
306 			break;
307 
308 		/* A swap/dax/shadow entry got inserted? Skip it. */
309 		if (xa_is_value(page))
310 			continue;
311 		/*
312 		 * A page got inserted in our range? Skip it. We have our
313 		 * pages locked so they are protected from being removed.
314 		 * If we see a page whose index is higher than ours, it
315 		 * means our page has been removed, which shouldn't be
316 		 * possible because we're holding the PageLock.
317 		 */
318 		if (page != pvec->pages[i]) {
319 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 					page);
321 			continue;
322 		}
323 
324 		WARN_ON_ONCE(!PageLocked(page));
325 
326 		if (page->index == xas.xa_index)
327 			page->mapping = NULL;
328 		/* Leave page->index set: truncation lookup relies on it */
329 
330 		/*
331 		 * Move to the next page in the vector if this is a regular
332 		 * page or the index is of the last sub-page of this compound
333 		 * page.
334 		 */
335 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 			i++;
337 		xas_store(&xas, NULL);
338 		total_pages++;
339 	}
340 	mapping->nrpages -= total_pages;
341 }
342 
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 				  struct pagevec *pvec)
345 {
346 	int i;
347 	unsigned long flags;
348 
349 	if (!pagevec_count(pvec))
350 		return;
351 
352 	xa_lock_irqsave(&mapping->i_pages, flags);
353 	for (i = 0; i < pagevec_count(pvec); i++) {
354 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
355 
356 		unaccount_page_cache_page(mapping, pvec->pages[i]);
357 	}
358 	page_cache_delete_batch(mapping, pvec);
359 	xa_unlock_irqrestore(&mapping->i_pages, flags);
360 
361 	for (i = 0; i < pagevec_count(pvec); i++)
362 		page_cache_free_page(mapping, pvec->pages[i]);
363 }
364 
365 int filemap_check_errors(struct address_space *mapping)
366 {
367 	int ret = 0;
368 	/* Check for outstanding write errors */
369 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 		ret = -ENOSPC;
372 	if (test_bit(AS_EIO, &mapping->flags) &&
373 	    test_and_clear_bit(AS_EIO, &mapping->flags))
374 		ret = -EIO;
375 	return ret;
376 }
377 EXPORT_SYMBOL(filemap_check_errors);
378 
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
380 {
381 	/* Check for outstanding write errors */
382 	if (test_bit(AS_EIO, &mapping->flags))
383 		return -EIO;
384 	if (test_bit(AS_ENOSPC, &mapping->flags))
385 		return -ENOSPC;
386 	return 0;
387 }
388 
389 /**
390  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391  * @mapping:	address space structure to write
392  * @start:	offset in bytes where the range starts
393  * @end:	offset in bytes where the range ends (inclusive)
394  * @sync_mode:	enable synchronous operation
395  *
396  * Start writeback against all of a mapping's dirty pages that lie
397  * within the byte offsets <start, end> inclusive.
398  *
399  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400  * opposed to a regular memory cleansing writeback.  The difference between
401  * these two operations is that if a dirty page/buffer is encountered, it must
402  * be waited upon, and not just skipped over.
403  *
404  * Return: %0 on success, negative error code otherwise.
405  */
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 				loff_t end, int sync_mode)
408 {
409 	int ret;
410 	struct writeback_control wbc = {
411 		.sync_mode = sync_mode,
412 		.nr_to_write = LONG_MAX,
413 		.range_start = start,
414 		.range_end = end,
415 	};
416 
417 	if (!mapping_can_writeback(mapping) ||
418 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 		return 0;
420 
421 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 	ret = do_writepages(mapping, &wbc);
423 	wbc_detach_inode(&wbc);
424 	return ret;
425 }
426 
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 	int sync_mode)
429 {
430 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
431 }
432 
433 int filemap_fdatawrite(struct address_space *mapping)
434 {
435 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
436 }
437 EXPORT_SYMBOL(filemap_fdatawrite);
438 
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 				loff_t end)
441 {
442 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
445 
446 /**
447  * filemap_flush - mostly a non-blocking flush
448  * @mapping:	target address_space
449  *
450  * This is a mostly non-blocking flush.  Not suitable for data-integrity
451  * purposes - I/O may not be started against all dirty pages.
452  *
453  * Return: %0 on success, negative error code otherwise.
454  */
455 int filemap_flush(struct address_space *mapping)
456 {
457 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
458 }
459 EXPORT_SYMBOL(filemap_flush);
460 
461 /**
462  * filemap_range_has_page - check if a page exists in range.
463  * @mapping:           address space within which to check
464  * @start_byte:        offset in bytes where the range starts
465  * @end_byte:          offset in bytes where the range ends (inclusive)
466  *
467  * Find at least one page in the range supplied, usually used to check if
468  * direct writing in this range will trigger a writeback.
469  *
470  * Return: %true if at least one page exists in the specified range,
471  * %false otherwise.
472  */
473 bool filemap_range_has_page(struct address_space *mapping,
474 			   loff_t start_byte, loff_t end_byte)
475 {
476 	struct page *page;
477 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 	pgoff_t max = end_byte >> PAGE_SHIFT;
479 
480 	if (end_byte < start_byte)
481 		return false;
482 
483 	rcu_read_lock();
484 	for (;;) {
485 		page = xas_find(&xas, max);
486 		if (xas_retry(&xas, page))
487 			continue;
488 		/* Shadow entries don't count */
489 		if (xa_is_value(page))
490 			continue;
491 		/*
492 		 * We don't need to try to pin this page; we're about to
493 		 * release the RCU lock anyway.  It is enough to know that
494 		 * there was a page here recently.
495 		 */
496 		break;
497 	}
498 	rcu_read_unlock();
499 
500 	return page != NULL;
501 }
502 EXPORT_SYMBOL(filemap_range_has_page);
503 
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 				     loff_t start_byte, loff_t end_byte)
506 {
507 	pgoff_t index = start_byte >> PAGE_SHIFT;
508 	pgoff_t end = end_byte >> PAGE_SHIFT;
509 	struct pagevec pvec;
510 	int nr_pages;
511 
512 	if (end_byte < start_byte)
513 		return;
514 
515 	pagevec_init(&pvec);
516 	while (index <= end) {
517 		unsigned i;
518 
519 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 				end, PAGECACHE_TAG_WRITEBACK);
521 		if (!nr_pages)
522 			break;
523 
524 		for (i = 0; i < nr_pages; i++) {
525 			struct page *page = pvec.pages[i];
526 
527 			wait_on_page_writeback(page);
528 			ClearPageError(page);
529 		}
530 		pagevec_release(&pvec);
531 		cond_resched();
532 	}
533 }
534 
535 /**
536  * filemap_fdatawait_range - wait for writeback to complete
537  * @mapping:		address space structure to wait for
538  * @start_byte:		offset in bytes where the range starts
539  * @end_byte:		offset in bytes where the range ends (inclusive)
540  *
541  * Walk the list of under-writeback pages of the given address space
542  * in the given range and wait for all of them.  Check error status of
543  * the address space and return it.
544  *
545  * Since the error status of the address space is cleared by this function,
546  * callers are responsible for checking the return value and handling and/or
547  * reporting the error.
548  *
549  * Return: error status of the address space.
550  */
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 			    loff_t end_byte)
553 {
554 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
555 	return filemap_check_errors(mapping);
556 }
557 EXPORT_SYMBOL(filemap_fdatawait_range);
558 
559 /**
560  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561  * @mapping:		address space structure to wait for
562  * @start_byte:		offset in bytes where the range starts
563  * @end_byte:		offset in bytes where the range ends (inclusive)
564  *
565  * Walk the list of under-writeback pages of the given address space in the
566  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
567  * this function does not clear error status of the address space.
568  *
569  * Use this function if callers don't handle errors themselves.  Expected
570  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571  * fsfreeze(8)
572  */
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 		loff_t start_byte, loff_t end_byte)
575 {
576 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
577 	return filemap_check_and_keep_errors(mapping);
578 }
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
580 
581 /**
582  * file_fdatawait_range - wait for writeback to complete
583  * @file:		file pointing to address space structure to wait for
584  * @start_byte:		offset in bytes where the range starts
585  * @end_byte:		offset in bytes where the range ends (inclusive)
586  *
587  * Walk the list of under-writeback pages of the address space that file
588  * refers to, in the given range and wait for all of them.  Check error
589  * status of the address space vs. the file->f_wb_err cursor and return it.
590  *
591  * Since the error status of the file is advanced by this function,
592  * callers are responsible for checking the return value and handling and/or
593  * reporting the error.
594  *
595  * Return: error status of the address space vs. the file->f_wb_err cursor.
596  */
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
598 {
599 	struct address_space *mapping = file->f_mapping;
600 
601 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
602 	return file_check_and_advance_wb_err(file);
603 }
604 EXPORT_SYMBOL(file_fdatawait_range);
605 
606 /**
607  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608  * @mapping: address space structure to wait for
609  *
610  * Walk the list of under-writeback pages of the given address space
611  * and wait for all of them.  Unlike filemap_fdatawait(), this function
612  * does not clear error status of the address space.
613  *
614  * Use this function if callers don't handle errors themselves.  Expected
615  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616  * fsfreeze(8)
617  *
618  * Return: error status of the address space.
619  */
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
621 {
622 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 	return filemap_check_and_keep_errors(mapping);
624 }
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
626 
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
629 {
630 	if (dax_mapping(mapping))
631 		return mapping->nrexceptional;
632 
633 	return mapping->nrpages;
634 }
635 
636 /**
637  * filemap_write_and_wait_range - write out & wait on a file range
638  * @mapping:	the address_space for the pages
639  * @lstart:	offset in bytes where the range starts
640  * @lend:	offset in bytes where the range ends (inclusive)
641  *
642  * Write out and wait upon file offsets lstart->lend, inclusive.
643  *
644  * Note that @lend is inclusive (describes the last byte to be written) so
645  * that this function can be used to write to the very end-of-file (end = -1).
646  *
647  * Return: error status of the address space.
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 				 loff_t lstart, loff_t lend)
651 {
652 	int err = 0;
653 
654 	if (mapping_needs_writeback(mapping)) {
655 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 						 WB_SYNC_ALL);
657 		/*
658 		 * Even if the above returned error, the pages may be
659 		 * written partially (e.g. -ENOSPC), so we wait for it.
660 		 * But the -EIO is special case, it may indicate the worst
661 		 * thing (e.g. bug) happened, so we avoid waiting for it.
662 		 */
663 		if (err != -EIO) {
664 			int err2 = filemap_fdatawait_range(mapping,
665 						lstart, lend);
666 			if (!err)
667 				err = err2;
668 		} else {
669 			/* Clear any previously stored errors */
670 			filemap_check_errors(mapping);
671 		}
672 	} else {
673 		err = filemap_check_errors(mapping);
674 	}
675 	return err;
676 }
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
678 
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
680 {
681 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
682 
683 	trace_filemap_set_wb_err(mapping, eseq);
684 }
685 EXPORT_SYMBOL(__filemap_set_wb_err);
686 
687 /**
688  * file_check_and_advance_wb_err - report wb error (if any) that was previously
689  * 				   and advance wb_err to current one
690  * @file: struct file on which the error is being reported
691  *
692  * When userland calls fsync (or something like nfsd does the equivalent), we
693  * want to report any writeback errors that occurred since the last fsync (or
694  * since the file was opened if there haven't been any).
695  *
696  * Grab the wb_err from the mapping. If it matches what we have in the file,
697  * then just quickly return 0. The file is all caught up.
698  *
699  * If it doesn't match, then take the mapping value, set the "seen" flag in
700  * it and try to swap it into place. If it works, or another task beat us
701  * to it with the new value, then update the f_wb_err and return the error
702  * portion. The error at this point must be reported via proper channels
703  * (a'la fsync, or NFS COMMIT operation, etc.).
704  *
705  * While we handle mapping->wb_err with atomic operations, the f_wb_err
706  * value is protected by the f_lock since we must ensure that it reflects
707  * the latest value swapped in for this file descriptor.
708  *
709  * Return: %0 on success, negative error code otherwise.
710  */
711 int file_check_and_advance_wb_err(struct file *file)
712 {
713 	int err = 0;
714 	errseq_t old = READ_ONCE(file->f_wb_err);
715 	struct address_space *mapping = file->f_mapping;
716 
717 	/* Locklessly handle the common case where nothing has changed */
718 	if (errseq_check(&mapping->wb_err, old)) {
719 		/* Something changed, must use slow path */
720 		spin_lock(&file->f_lock);
721 		old = file->f_wb_err;
722 		err = errseq_check_and_advance(&mapping->wb_err,
723 						&file->f_wb_err);
724 		trace_file_check_and_advance_wb_err(file, old);
725 		spin_unlock(&file->f_lock);
726 	}
727 
728 	/*
729 	 * We're mostly using this function as a drop in replacement for
730 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 	 * that the legacy code would have had on these flags.
732 	 */
733 	clear_bit(AS_EIO, &mapping->flags);
734 	clear_bit(AS_ENOSPC, &mapping->flags);
735 	return err;
736 }
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
738 
739 /**
740  * file_write_and_wait_range - write out & wait on a file range
741  * @file:	file pointing to address_space with pages
742  * @lstart:	offset in bytes where the range starts
743  * @lend:	offset in bytes where the range ends (inclusive)
744  *
745  * Write out and wait upon file offsets lstart->lend, inclusive.
746  *
747  * Note that @lend is inclusive (describes the last byte to be written) so
748  * that this function can be used to write to the very end-of-file (end = -1).
749  *
750  * After writing out and waiting on the data, we check and advance the
751  * f_wb_err cursor to the latest value, and return any errors detected there.
752  *
753  * Return: %0 on success, negative error code otherwise.
754  */
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
756 {
757 	int err = 0, err2;
758 	struct address_space *mapping = file->f_mapping;
759 
760 	if (mapping_needs_writeback(mapping)) {
761 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 						 WB_SYNC_ALL);
763 		/* See comment of filemap_write_and_wait() */
764 		if (err != -EIO)
765 			__filemap_fdatawait_range(mapping, lstart, lend);
766 	}
767 	err2 = file_check_and_advance_wb_err(file);
768 	if (!err)
769 		err = err2;
770 	return err;
771 }
772 EXPORT_SYMBOL(file_write_and_wait_range);
773 
774 /**
775  * replace_page_cache_page - replace a pagecache page with a new one
776  * @old:	page to be replaced
777  * @new:	page to replace with
778  * @gfp_mask:	allocation mode
779  *
780  * This function replaces a page in the pagecache with a new one.  On
781  * success it acquires the pagecache reference for the new page and
782  * drops it for the old page.  Both the old and new pages must be
783  * locked.  This function does not add the new page to the LRU, the
784  * caller must do that.
785  *
786  * The remove + add is atomic.  This function cannot fail.
787  *
788  * Return: %0
789  */
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
791 {
792 	struct address_space *mapping = old->mapping;
793 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 	pgoff_t offset = old->index;
795 	XA_STATE(xas, &mapping->i_pages, offset);
796 	unsigned long flags;
797 
798 	VM_BUG_ON_PAGE(!PageLocked(old), old);
799 	VM_BUG_ON_PAGE(!PageLocked(new), new);
800 	VM_BUG_ON_PAGE(new->mapping, new);
801 
802 	get_page(new);
803 	new->mapping = mapping;
804 	new->index = offset;
805 
806 	mem_cgroup_migrate(old, new);
807 
808 	xas_lock_irqsave(&xas, flags);
809 	xas_store(&xas, new);
810 
811 	old->mapping = NULL;
812 	/* hugetlb pages do not participate in page cache accounting. */
813 	if (!PageHuge(old))
814 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
815 	if (!PageHuge(new))
816 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
817 	if (PageSwapBacked(old))
818 		__dec_lruvec_page_state(old, NR_SHMEM);
819 	if (PageSwapBacked(new))
820 		__inc_lruvec_page_state(new, NR_SHMEM);
821 	xas_unlock_irqrestore(&xas, flags);
822 	if (freepage)
823 		freepage(old);
824 	put_page(old);
825 
826 	return 0;
827 }
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
829 
830 noinline int __add_to_page_cache_locked(struct page *page,
831 					struct address_space *mapping,
832 					pgoff_t offset, gfp_t gfp,
833 					void **shadowp)
834 {
835 	XA_STATE(xas, &mapping->i_pages, offset);
836 	int huge = PageHuge(page);
837 	int error;
838 	bool charged = false;
839 
840 	VM_BUG_ON_PAGE(!PageLocked(page), page);
841 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 	mapping_set_update(&xas, mapping);
843 
844 	get_page(page);
845 	page->mapping = mapping;
846 	page->index = offset;
847 
848 	if (!huge) {
849 		error = mem_cgroup_charge(page, current->mm, gfp);
850 		if (error)
851 			goto error;
852 		charged = true;
853 	}
854 
855 	gfp &= GFP_RECLAIM_MASK;
856 
857 	do {
858 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
859 		void *entry, *old = NULL;
860 
861 		if (order > thp_order(page))
862 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
863 					order, gfp);
864 		xas_lock_irq(&xas);
865 		xas_for_each_conflict(&xas, entry) {
866 			old = entry;
867 			if (!xa_is_value(entry)) {
868 				xas_set_err(&xas, -EEXIST);
869 				goto unlock;
870 			}
871 		}
872 
873 		if (old) {
874 			if (shadowp)
875 				*shadowp = old;
876 			/* entry may have been split before we acquired lock */
877 			order = xa_get_order(xas.xa, xas.xa_index);
878 			if (order > thp_order(page)) {
879 				xas_split(&xas, old, order);
880 				xas_reset(&xas);
881 			}
882 		}
883 
884 		xas_store(&xas, page);
885 		if (xas_error(&xas))
886 			goto unlock;
887 
888 		if (old)
889 			mapping->nrexceptional--;
890 		mapping->nrpages++;
891 
892 		/* hugetlb pages do not participate in page cache accounting */
893 		if (!huge)
894 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
895 unlock:
896 		xas_unlock_irq(&xas);
897 	} while (xas_nomem(&xas, gfp));
898 
899 	if (xas_error(&xas)) {
900 		error = xas_error(&xas);
901 		if (charged)
902 			mem_cgroup_uncharge(page);
903 		goto error;
904 	}
905 
906 	trace_mm_filemap_add_to_page_cache(page);
907 	return 0;
908 error:
909 	page->mapping = NULL;
910 	/* Leave page->index set: truncation relies upon it */
911 	put_page(page);
912 	return error;
913 }
914 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
915 
916 /**
917  * add_to_page_cache_locked - add a locked page to the pagecache
918  * @page:	page to add
919  * @mapping:	the page's address_space
920  * @offset:	page index
921  * @gfp_mask:	page allocation mode
922  *
923  * This function is used to add a page to the pagecache. It must be locked.
924  * This function does not add the page to the LRU.  The caller must do that.
925  *
926  * Return: %0 on success, negative error code otherwise.
927  */
928 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
929 		pgoff_t offset, gfp_t gfp_mask)
930 {
931 	return __add_to_page_cache_locked(page, mapping, offset,
932 					  gfp_mask, NULL);
933 }
934 EXPORT_SYMBOL(add_to_page_cache_locked);
935 
936 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
937 				pgoff_t offset, gfp_t gfp_mask)
938 {
939 	void *shadow = NULL;
940 	int ret;
941 
942 	__SetPageLocked(page);
943 	ret = __add_to_page_cache_locked(page, mapping, offset,
944 					 gfp_mask, &shadow);
945 	if (unlikely(ret))
946 		__ClearPageLocked(page);
947 	else {
948 		/*
949 		 * The page might have been evicted from cache only
950 		 * recently, in which case it should be activated like
951 		 * any other repeatedly accessed page.
952 		 * The exception is pages getting rewritten; evicting other
953 		 * data from the working set, only to cache data that will
954 		 * get overwritten with something else, is a waste of memory.
955 		 */
956 		WARN_ON_ONCE(PageActive(page));
957 		if (!(gfp_mask & __GFP_WRITE) && shadow)
958 			workingset_refault(page, shadow);
959 		lru_cache_add(page);
960 	}
961 	return ret;
962 }
963 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
964 
965 #ifdef CONFIG_NUMA
966 struct page *__page_cache_alloc(gfp_t gfp)
967 {
968 	int n;
969 	struct page *page;
970 
971 	if (cpuset_do_page_mem_spread()) {
972 		unsigned int cpuset_mems_cookie;
973 		do {
974 			cpuset_mems_cookie = read_mems_allowed_begin();
975 			n = cpuset_mem_spread_node();
976 			page = __alloc_pages_node(n, gfp, 0);
977 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
978 
979 		return page;
980 	}
981 	return alloc_pages(gfp, 0);
982 }
983 EXPORT_SYMBOL(__page_cache_alloc);
984 #endif
985 
986 /*
987  * In order to wait for pages to become available there must be
988  * waitqueues associated with pages. By using a hash table of
989  * waitqueues where the bucket discipline is to maintain all
990  * waiters on the same queue and wake all when any of the pages
991  * become available, and for the woken contexts to check to be
992  * sure the appropriate page became available, this saves space
993  * at a cost of "thundering herd" phenomena during rare hash
994  * collisions.
995  */
996 #define PAGE_WAIT_TABLE_BITS 8
997 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
998 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
999 
1000 static wait_queue_head_t *page_waitqueue(struct page *page)
1001 {
1002 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1003 }
1004 
1005 void __init pagecache_init(void)
1006 {
1007 	int i;
1008 
1009 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1010 		init_waitqueue_head(&page_wait_table[i]);
1011 
1012 	page_writeback_init();
1013 }
1014 
1015 /*
1016  * The page wait code treats the "wait->flags" somewhat unusually, because
1017  * we have multiple different kinds of waits, not just the usual "exclusive"
1018  * one.
1019  *
1020  * We have:
1021  *
1022  *  (a) no special bits set:
1023  *
1024  *	We're just waiting for the bit to be released, and when a waker
1025  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1026  *	and remove it from the wait queue.
1027  *
1028  *	Simple and straightforward.
1029  *
1030  *  (b) WQ_FLAG_EXCLUSIVE:
1031  *
1032  *	The waiter is waiting to get the lock, and only one waiter should
1033  *	be woken up to avoid any thundering herd behavior. We'll set the
1034  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1035  *
1036  *	This is the traditional exclusive wait.
1037  *
1038  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1039  *
1040  *	The waiter is waiting to get the bit, and additionally wants the
1041  *	lock to be transferred to it for fair lock behavior. If the lock
1042  *	cannot be taken, we stop walking the wait queue without waking
1043  *	the waiter.
1044  *
1045  *	This is the "fair lock handoff" case, and in addition to setting
1046  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1047  *	that it now has the lock.
1048  */
1049 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1050 {
1051 	unsigned int flags;
1052 	struct wait_page_key *key = arg;
1053 	struct wait_page_queue *wait_page
1054 		= container_of(wait, struct wait_page_queue, wait);
1055 
1056 	if (!wake_page_match(wait_page, key))
1057 		return 0;
1058 
1059 	/*
1060 	 * If it's a lock handoff wait, we get the bit for it, and
1061 	 * stop walking (and do not wake it up) if we can't.
1062 	 */
1063 	flags = wait->flags;
1064 	if (flags & WQ_FLAG_EXCLUSIVE) {
1065 		if (test_bit(key->bit_nr, &key->page->flags))
1066 			return -1;
1067 		if (flags & WQ_FLAG_CUSTOM) {
1068 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1069 				return -1;
1070 			flags |= WQ_FLAG_DONE;
1071 		}
1072 	}
1073 
1074 	/*
1075 	 * We are holding the wait-queue lock, but the waiter that
1076 	 * is waiting for this will be checking the flags without
1077 	 * any locking.
1078 	 *
1079 	 * So update the flags atomically, and wake up the waiter
1080 	 * afterwards to avoid any races. This store-release pairs
1081 	 * with the load-acquire in wait_on_page_bit_common().
1082 	 */
1083 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1084 	wake_up_state(wait->private, mode);
1085 
1086 	/*
1087 	 * Ok, we have successfully done what we're waiting for,
1088 	 * and we can unconditionally remove the wait entry.
1089 	 *
1090 	 * Note that this pairs with the "finish_wait()" in the
1091 	 * waiter, and has to be the absolute last thing we do.
1092 	 * After this list_del_init(&wait->entry) the wait entry
1093 	 * might be de-allocated and the process might even have
1094 	 * exited.
1095 	 */
1096 	list_del_init_careful(&wait->entry);
1097 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1098 }
1099 
1100 static void wake_up_page_bit(struct page *page, int bit_nr)
1101 {
1102 	wait_queue_head_t *q = page_waitqueue(page);
1103 	struct wait_page_key key;
1104 	unsigned long flags;
1105 	wait_queue_entry_t bookmark;
1106 
1107 	key.page = page;
1108 	key.bit_nr = bit_nr;
1109 	key.page_match = 0;
1110 
1111 	bookmark.flags = 0;
1112 	bookmark.private = NULL;
1113 	bookmark.func = NULL;
1114 	INIT_LIST_HEAD(&bookmark.entry);
1115 
1116 	spin_lock_irqsave(&q->lock, flags);
1117 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1118 
1119 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1120 		/*
1121 		 * Take a breather from holding the lock,
1122 		 * allow pages that finish wake up asynchronously
1123 		 * to acquire the lock and remove themselves
1124 		 * from wait queue
1125 		 */
1126 		spin_unlock_irqrestore(&q->lock, flags);
1127 		cpu_relax();
1128 		spin_lock_irqsave(&q->lock, flags);
1129 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1130 	}
1131 
1132 	/*
1133 	 * It is possible for other pages to have collided on the waitqueue
1134 	 * hash, so in that case check for a page match. That prevents a long-
1135 	 * term waiter
1136 	 *
1137 	 * It is still possible to miss a case here, when we woke page waiters
1138 	 * and removed them from the waitqueue, but there are still other
1139 	 * page waiters.
1140 	 */
1141 	if (!waitqueue_active(q) || !key.page_match) {
1142 		ClearPageWaiters(page);
1143 		/*
1144 		 * It's possible to miss clearing Waiters here, when we woke
1145 		 * our page waiters, but the hashed waitqueue has waiters for
1146 		 * other pages on it.
1147 		 *
1148 		 * That's okay, it's a rare case. The next waker will clear it.
1149 		 */
1150 	}
1151 	spin_unlock_irqrestore(&q->lock, flags);
1152 }
1153 
1154 static void wake_up_page(struct page *page, int bit)
1155 {
1156 	if (!PageWaiters(page))
1157 		return;
1158 	wake_up_page_bit(page, bit);
1159 }
1160 
1161 /*
1162  * A choice of three behaviors for wait_on_page_bit_common():
1163  */
1164 enum behavior {
1165 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1166 			 * __lock_page() waiting on then setting PG_locked.
1167 			 */
1168 	SHARED,		/* Hold ref to page and check the bit when woken, like
1169 			 * wait_on_page_writeback() waiting on PG_writeback.
1170 			 */
1171 	DROP,		/* Drop ref to page before wait, no check when woken,
1172 			 * like put_and_wait_on_page_locked() on PG_locked.
1173 			 */
1174 };
1175 
1176 /*
1177  * Attempt to check (or get) the page bit, and mark us done
1178  * if successful.
1179  */
1180 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1181 					struct wait_queue_entry *wait)
1182 {
1183 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1184 		if (test_and_set_bit(bit_nr, &page->flags))
1185 			return false;
1186 	} else if (test_bit(bit_nr, &page->flags))
1187 		return false;
1188 
1189 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1190 	return true;
1191 }
1192 
1193 /* How many times do we accept lock stealing from under a waiter? */
1194 int sysctl_page_lock_unfairness = 5;
1195 
1196 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1197 	struct page *page, int bit_nr, int state, enum behavior behavior)
1198 {
1199 	int unfairness = sysctl_page_lock_unfairness;
1200 	struct wait_page_queue wait_page;
1201 	wait_queue_entry_t *wait = &wait_page.wait;
1202 	bool thrashing = false;
1203 	bool delayacct = false;
1204 	unsigned long pflags;
1205 
1206 	if (bit_nr == PG_locked &&
1207 	    !PageUptodate(page) && PageWorkingset(page)) {
1208 		if (!PageSwapBacked(page)) {
1209 			delayacct_thrashing_start();
1210 			delayacct = true;
1211 		}
1212 		psi_memstall_enter(&pflags);
1213 		thrashing = true;
1214 	}
1215 
1216 	init_wait(wait);
1217 	wait->func = wake_page_function;
1218 	wait_page.page = page;
1219 	wait_page.bit_nr = bit_nr;
1220 
1221 repeat:
1222 	wait->flags = 0;
1223 	if (behavior == EXCLUSIVE) {
1224 		wait->flags = WQ_FLAG_EXCLUSIVE;
1225 		if (--unfairness < 0)
1226 			wait->flags |= WQ_FLAG_CUSTOM;
1227 	}
1228 
1229 	/*
1230 	 * Do one last check whether we can get the
1231 	 * page bit synchronously.
1232 	 *
1233 	 * Do the SetPageWaiters() marking before that
1234 	 * to let any waker we _just_ missed know they
1235 	 * need to wake us up (otherwise they'll never
1236 	 * even go to the slow case that looks at the
1237 	 * page queue), and add ourselves to the wait
1238 	 * queue if we need to sleep.
1239 	 *
1240 	 * This part needs to be done under the queue
1241 	 * lock to avoid races.
1242 	 */
1243 	spin_lock_irq(&q->lock);
1244 	SetPageWaiters(page);
1245 	if (!trylock_page_bit_common(page, bit_nr, wait))
1246 		__add_wait_queue_entry_tail(q, wait);
1247 	spin_unlock_irq(&q->lock);
1248 
1249 	/*
1250 	 * From now on, all the logic will be based on
1251 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1252 	 * see whether the page bit testing has already
1253 	 * been done by the wake function.
1254 	 *
1255 	 * We can drop our reference to the page.
1256 	 */
1257 	if (behavior == DROP)
1258 		put_page(page);
1259 
1260 	/*
1261 	 * Note that until the "finish_wait()", or until
1262 	 * we see the WQ_FLAG_WOKEN flag, we need to
1263 	 * be very careful with the 'wait->flags', because
1264 	 * we may race with a waker that sets them.
1265 	 */
1266 	for (;;) {
1267 		unsigned int flags;
1268 
1269 		set_current_state(state);
1270 
1271 		/* Loop until we've been woken or interrupted */
1272 		flags = smp_load_acquire(&wait->flags);
1273 		if (!(flags & WQ_FLAG_WOKEN)) {
1274 			if (signal_pending_state(state, current))
1275 				break;
1276 
1277 			io_schedule();
1278 			continue;
1279 		}
1280 
1281 		/* If we were non-exclusive, we're done */
1282 		if (behavior != EXCLUSIVE)
1283 			break;
1284 
1285 		/* If the waker got the lock for us, we're done */
1286 		if (flags & WQ_FLAG_DONE)
1287 			break;
1288 
1289 		/*
1290 		 * Otherwise, if we're getting the lock, we need to
1291 		 * try to get it ourselves.
1292 		 *
1293 		 * And if that fails, we'll have to retry this all.
1294 		 */
1295 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1296 			goto repeat;
1297 
1298 		wait->flags |= WQ_FLAG_DONE;
1299 		break;
1300 	}
1301 
1302 	/*
1303 	 * If a signal happened, this 'finish_wait()' may remove the last
1304 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1305 	 * set. That's ok. The next wakeup will take care of it, and trying
1306 	 * to do it here would be difficult and prone to races.
1307 	 */
1308 	finish_wait(q, wait);
1309 
1310 	if (thrashing) {
1311 		if (delayacct)
1312 			delayacct_thrashing_end();
1313 		psi_memstall_leave(&pflags);
1314 	}
1315 
1316 	/*
1317 	 * NOTE! The wait->flags weren't stable until we've done the
1318 	 * 'finish_wait()', and we could have exited the loop above due
1319 	 * to a signal, and had a wakeup event happen after the signal
1320 	 * test but before the 'finish_wait()'.
1321 	 *
1322 	 * So only after the finish_wait() can we reliably determine
1323 	 * if we got woken up or not, so we can now figure out the final
1324 	 * return value based on that state without races.
1325 	 *
1326 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1327 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1328 	 */
1329 	if (behavior == EXCLUSIVE)
1330 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1331 
1332 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1333 }
1334 
1335 void wait_on_page_bit(struct page *page, int bit_nr)
1336 {
1337 	wait_queue_head_t *q = page_waitqueue(page);
1338 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1339 }
1340 EXPORT_SYMBOL(wait_on_page_bit);
1341 
1342 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1343 {
1344 	wait_queue_head_t *q = page_waitqueue(page);
1345 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1346 }
1347 EXPORT_SYMBOL(wait_on_page_bit_killable);
1348 
1349 static int __wait_on_page_locked_async(struct page *page,
1350 				       struct wait_page_queue *wait, bool set)
1351 {
1352 	struct wait_queue_head *q = page_waitqueue(page);
1353 	int ret = 0;
1354 
1355 	wait->page = page;
1356 	wait->bit_nr = PG_locked;
1357 
1358 	spin_lock_irq(&q->lock);
1359 	__add_wait_queue_entry_tail(q, &wait->wait);
1360 	SetPageWaiters(page);
1361 	if (set)
1362 		ret = !trylock_page(page);
1363 	else
1364 		ret = PageLocked(page);
1365 	/*
1366 	 * If we were successful now, we know we're still on the
1367 	 * waitqueue as we're still under the lock. This means it's
1368 	 * safe to remove and return success, we know the callback
1369 	 * isn't going to trigger.
1370 	 */
1371 	if (!ret)
1372 		__remove_wait_queue(q, &wait->wait);
1373 	else
1374 		ret = -EIOCBQUEUED;
1375 	spin_unlock_irq(&q->lock);
1376 	return ret;
1377 }
1378 
1379 static int wait_on_page_locked_async(struct page *page,
1380 				     struct wait_page_queue *wait)
1381 {
1382 	if (!PageLocked(page))
1383 		return 0;
1384 	return __wait_on_page_locked_async(compound_head(page), wait, false);
1385 }
1386 
1387 /**
1388  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1389  * @page: The page to wait for.
1390  *
1391  * The caller should hold a reference on @page.  They expect the page to
1392  * become unlocked relatively soon, but do not wish to hold up migration
1393  * (for example) by holding the reference while waiting for the page to
1394  * come unlocked.  After this function returns, the caller should not
1395  * dereference @page.
1396  */
1397 void put_and_wait_on_page_locked(struct page *page)
1398 {
1399 	wait_queue_head_t *q;
1400 
1401 	page = compound_head(page);
1402 	q = page_waitqueue(page);
1403 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1404 }
1405 
1406 /**
1407  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1408  * @page: Page defining the wait queue of interest
1409  * @waiter: Waiter to add to the queue
1410  *
1411  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1412  */
1413 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1414 {
1415 	wait_queue_head_t *q = page_waitqueue(page);
1416 	unsigned long flags;
1417 
1418 	spin_lock_irqsave(&q->lock, flags);
1419 	__add_wait_queue_entry_tail(q, waiter);
1420 	SetPageWaiters(page);
1421 	spin_unlock_irqrestore(&q->lock, flags);
1422 }
1423 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1424 
1425 #ifndef clear_bit_unlock_is_negative_byte
1426 
1427 /*
1428  * PG_waiters is the high bit in the same byte as PG_lock.
1429  *
1430  * On x86 (and on many other architectures), we can clear PG_lock and
1431  * test the sign bit at the same time. But if the architecture does
1432  * not support that special operation, we just do this all by hand
1433  * instead.
1434  *
1435  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1436  * being cleared, but a memory barrier should be unnecessary since it is
1437  * in the same byte as PG_locked.
1438  */
1439 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1440 {
1441 	clear_bit_unlock(nr, mem);
1442 	/* smp_mb__after_atomic(); */
1443 	return test_bit(PG_waiters, mem);
1444 }
1445 
1446 #endif
1447 
1448 /**
1449  * unlock_page - unlock a locked page
1450  * @page: the page
1451  *
1452  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1453  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1454  * mechanism between PageLocked pages and PageWriteback pages is shared.
1455  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1456  *
1457  * Note that this depends on PG_waiters being the sign bit in the byte
1458  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1459  * clear the PG_locked bit and test PG_waiters at the same time fairly
1460  * portably (architectures that do LL/SC can test any bit, while x86 can
1461  * test the sign bit).
1462  */
1463 void unlock_page(struct page *page)
1464 {
1465 	BUILD_BUG_ON(PG_waiters != 7);
1466 	page = compound_head(page);
1467 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1468 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1469 		wake_up_page_bit(page, PG_locked);
1470 }
1471 EXPORT_SYMBOL(unlock_page);
1472 
1473 /**
1474  * end_page_writeback - end writeback against a page
1475  * @page: the page
1476  */
1477 void end_page_writeback(struct page *page)
1478 {
1479 	/*
1480 	 * TestClearPageReclaim could be used here but it is an atomic
1481 	 * operation and overkill in this particular case. Failing to
1482 	 * shuffle a page marked for immediate reclaim is too mild to
1483 	 * justify taking an atomic operation penalty at the end of
1484 	 * ever page writeback.
1485 	 */
1486 	if (PageReclaim(page)) {
1487 		ClearPageReclaim(page);
1488 		rotate_reclaimable_page(page);
1489 	}
1490 
1491 	/*
1492 	 * Writeback does not hold a page reference of its own, relying
1493 	 * on truncation to wait for the clearing of PG_writeback.
1494 	 * But here we must make sure that the page is not freed and
1495 	 * reused before the wake_up_page().
1496 	 */
1497 	get_page(page);
1498 	if (!test_clear_page_writeback(page))
1499 		BUG();
1500 
1501 	smp_mb__after_atomic();
1502 	wake_up_page(page, PG_writeback);
1503 	put_page(page);
1504 }
1505 EXPORT_SYMBOL(end_page_writeback);
1506 
1507 /*
1508  * After completing I/O on a page, call this routine to update the page
1509  * flags appropriately
1510  */
1511 void page_endio(struct page *page, bool is_write, int err)
1512 {
1513 	if (!is_write) {
1514 		if (!err) {
1515 			SetPageUptodate(page);
1516 		} else {
1517 			ClearPageUptodate(page);
1518 			SetPageError(page);
1519 		}
1520 		unlock_page(page);
1521 	} else {
1522 		if (err) {
1523 			struct address_space *mapping;
1524 
1525 			SetPageError(page);
1526 			mapping = page_mapping(page);
1527 			if (mapping)
1528 				mapping_set_error(mapping, err);
1529 		}
1530 		end_page_writeback(page);
1531 	}
1532 }
1533 EXPORT_SYMBOL_GPL(page_endio);
1534 
1535 /**
1536  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1537  * @__page: the page to lock
1538  */
1539 void __lock_page(struct page *__page)
1540 {
1541 	struct page *page = compound_head(__page);
1542 	wait_queue_head_t *q = page_waitqueue(page);
1543 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1544 				EXCLUSIVE);
1545 }
1546 EXPORT_SYMBOL(__lock_page);
1547 
1548 int __lock_page_killable(struct page *__page)
1549 {
1550 	struct page *page = compound_head(__page);
1551 	wait_queue_head_t *q = page_waitqueue(page);
1552 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1553 					EXCLUSIVE);
1554 }
1555 EXPORT_SYMBOL_GPL(__lock_page_killable);
1556 
1557 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1558 {
1559 	return __wait_on_page_locked_async(page, wait, true);
1560 }
1561 
1562 /*
1563  * Return values:
1564  * 1 - page is locked; mmap_lock is still held.
1565  * 0 - page is not locked.
1566  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1567  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1568  *     which case mmap_lock is still held.
1569  *
1570  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1571  * with the page locked and the mmap_lock unperturbed.
1572  */
1573 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1574 			 unsigned int flags)
1575 {
1576 	if (fault_flag_allow_retry_first(flags)) {
1577 		/*
1578 		 * CAUTION! In this case, mmap_lock is not released
1579 		 * even though return 0.
1580 		 */
1581 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1582 			return 0;
1583 
1584 		mmap_read_unlock(mm);
1585 		if (flags & FAULT_FLAG_KILLABLE)
1586 			wait_on_page_locked_killable(page);
1587 		else
1588 			wait_on_page_locked(page);
1589 		return 0;
1590 	}
1591 	if (flags & FAULT_FLAG_KILLABLE) {
1592 		int ret;
1593 
1594 		ret = __lock_page_killable(page);
1595 		if (ret) {
1596 			mmap_read_unlock(mm);
1597 			return 0;
1598 		}
1599 	} else {
1600 		__lock_page(page);
1601 	}
1602 	return 1;
1603 
1604 }
1605 
1606 /**
1607  * page_cache_next_miss() - Find the next gap in the page cache.
1608  * @mapping: Mapping.
1609  * @index: Index.
1610  * @max_scan: Maximum range to search.
1611  *
1612  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1613  * gap with the lowest index.
1614  *
1615  * This function may be called under the rcu_read_lock.  However, this will
1616  * not atomically search a snapshot of the cache at a single point in time.
1617  * For example, if a gap is created at index 5, then subsequently a gap is
1618  * created at index 10, page_cache_next_miss covering both indices may
1619  * return 10 if called under the rcu_read_lock.
1620  *
1621  * Return: The index of the gap if found, otherwise an index outside the
1622  * range specified (in which case 'return - index >= max_scan' will be true).
1623  * In the rare case of index wrap-around, 0 will be returned.
1624  */
1625 pgoff_t page_cache_next_miss(struct address_space *mapping,
1626 			     pgoff_t index, unsigned long max_scan)
1627 {
1628 	XA_STATE(xas, &mapping->i_pages, index);
1629 
1630 	while (max_scan--) {
1631 		void *entry = xas_next(&xas);
1632 		if (!entry || xa_is_value(entry))
1633 			break;
1634 		if (xas.xa_index == 0)
1635 			break;
1636 	}
1637 
1638 	return xas.xa_index;
1639 }
1640 EXPORT_SYMBOL(page_cache_next_miss);
1641 
1642 /**
1643  * page_cache_prev_miss() - Find the previous gap in the page cache.
1644  * @mapping: Mapping.
1645  * @index: Index.
1646  * @max_scan: Maximum range to search.
1647  *
1648  * Search the range [max(index - max_scan + 1, 0), index] for the
1649  * gap with the highest index.
1650  *
1651  * This function may be called under the rcu_read_lock.  However, this will
1652  * not atomically search a snapshot of the cache at a single point in time.
1653  * For example, if a gap is created at index 10, then subsequently a gap is
1654  * created at index 5, page_cache_prev_miss() covering both indices may
1655  * return 5 if called under the rcu_read_lock.
1656  *
1657  * Return: The index of the gap if found, otherwise an index outside the
1658  * range specified (in which case 'index - return >= max_scan' will be true).
1659  * In the rare case of wrap-around, ULONG_MAX will be returned.
1660  */
1661 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1662 			     pgoff_t index, unsigned long max_scan)
1663 {
1664 	XA_STATE(xas, &mapping->i_pages, index);
1665 
1666 	while (max_scan--) {
1667 		void *entry = xas_prev(&xas);
1668 		if (!entry || xa_is_value(entry))
1669 			break;
1670 		if (xas.xa_index == ULONG_MAX)
1671 			break;
1672 	}
1673 
1674 	return xas.xa_index;
1675 }
1676 EXPORT_SYMBOL(page_cache_prev_miss);
1677 
1678 /**
1679  * find_get_entry - find and get a page cache entry
1680  * @mapping: the address_space to search
1681  * @index: The page cache index.
1682  *
1683  * Looks up the page cache slot at @mapping & @offset.  If there is a
1684  * page cache page, the head page is returned with an increased refcount.
1685  *
1686  * If the slot holds a shadow entry of a previously evicted page, or a
1687  * swap entry from shmem/tmpfs, it is returned.
1688  *
1689  * Return: The head page or shadow entry, %NULL if nothing is found.
1690  */
1691 struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1692 {
1693 	XA_STATE(xas, &mapping->i_pages, index);
1694 	struct page *page;
1695 
1696 	rcu_read_lock();
1697 repeat:
1698 	xas_reset(&xas);
1699 	page = xas_load(&xas);
1700 	if (xas_retry(&xas, page))
1701 		goto repeat;
1702 	/*
1703 	 * A shadow entry of a recently evicted page, or a swap entry from
1704 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1705 	 */
1706 	if (!page || xa_is_value(page))
1707 		goto out;
1708 
1709 	if (!page_cache_get_speculative(page))
1710 		goto repeat;
1711 
1712 	/*
1713 	 * Has the page moved or been split?
1714 	 * This is part of the lockless pagecache protocol. See
1715 	 * include/linux/pagemap.h for details.
1716 	 */
1717 	if (unlikely(page != xas_reload(&xas))) {
1718 		put_page(page);
1719 		goto repeat;
1720 	}
1721 out:
1722 	rcu_read_unlock();
1723 
1724 	return page;
1725 }
1726 
1727 /**
1728  * find_lock_entry - Locate and lock a page cache entry.
1729  * @mapping: The address_space to search.
1730  * @index: The page cache index.
1731  *
1732  * Looks up the page at @mapping & @index.  If there is a page in the
1733  * cache, the head page is returned locked and with an increased refcount.
1734  *
1735  * If the slot holds a shadow entry of a previously evicted page, or a
1736  * swap entry from shmem/tmpfs, it is returned.
1737  *
1738  * Context: May sleep.
1739  * Return: The head page or shadow entry, %NULL if nothing is found.
1740  */
1741 struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1742 {
1743 	struct page *page;
1744 
1745 repeat:
1746 	page = find_get_entry(mapping, index);
1747 	if (page && !xa_is_value(page)) {
1748 		lock_page(page);
1749 		/* Has the page been truncated? */
1750 		if (unlikely(page->mapping != mapping)) {
1751 			unlock_page(page);
1752 			put_page(page);
1753 			goto repeat;
1754 		}
1755 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1756 	}
1757 	return page;
1758 }
1759 
1760 /**
1761  * pagecache_get_page - Find and get a reference to a page.
1762  * @mapping: The address_space to search.
1763  * @index: The page index.
1764  * @fgp_flags: %FGP flags modify how the page is returned.
1765  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1766  *
1767  * Looks up the page cache entry at @mapping & @index.
1768  *
1769  * @fgp_flags can be zero or more of these flags:
1770  *
1771  * * %FGP_ACCESSED - The page will be marked accessed.
1772  * * %FGP_LOCK - The page is returned locked.
1773  * * %FGP_HEAD - If the page is present and a THP, return the head page
1774  *   rather than the exact page specified by the index.
1775  * * %FGP_CREAT - If no page is present then a new page is allocated using
1776  *   @gfp_mask and added to the page cache and the VM's LRU list.
1777  *   The page is returned locked and with an increased refcount.
1778  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1779  *   page is already in cache.  If the page was allocated, unlock it before
1780  *   returning so the caller can do the same dance.
1781  * * %FGP_WRITE - The page will be written
1782  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1783  * * %FGP_NOWAIT - Don't get blocked by page lock
1784  *
1785  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1786  * if the %GFP flags specified for %FGP_CREAT are atomic.
1787  *
1788  * If there is a page cache page, it is returned with an increased refcount.
1789  *
1790  * Return: The found page or %NULL otherwise.
1791  */
1792 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1793 		int fgp_flags, gfp_t gfp_mask)
1794 {
1795 	struct page *page;
1796 
1797 repeat:
1798 	page = find_get_entry(mapping, index);
1799 	if (xa_is_value(page))
1800 		page = NULL;
1801 	if (!page)
1802 		goto no_page;
1803 
1804 	if (fgp_flags & FGP_LOCK) {
1805 		if (fgp_flags & FGP_NOWAIT) {
1806 			if (!trylock_page(page)) {
1807 				put_page(page);
1808 				return NULL;
1809 			}
1810 		} else {
1811 			lock_page(page);
1812 		}
1813 
1814 		/* Has the page been truncated? */
1815 		if (unlikely(page->mapping != mapping)) {
1816 			unlock_page(page);
1817 			put_page(page);
1818 			goto repeat;
1819 		}
1820 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1821 	}
1822 
1823 	if (fgp_flags & FGP_ACCESSED)
1824 		mark_page_accessed(page);
1825 	else if (fgp_flags & FGP_WRITE) {
1826 		/* Clear idle flag for buffer write */
1827 		if (page_is_idle(page))
1828 			clear_page_idle(page);
1829 	}
1830 	if (!(fgp_flags & FGP_HEAD))
1831 		page = find_subpage(page, index);
1832 
1833 no_page:
1834 	if (!page && (fgp_flags & FGP_CREAT)) {
1835 		int err;
1836 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1837 			gfp_mask |= __GFP_WRITE;
1838 		if (fgp_flags & FGP_NOFS)
1839 			gfp_mask &= ~__GFP_FS;
1840 
1841 		page = __page_cache_alloc(gfp_mask);
1842 		if (!page)
1843 			return NULL;
1844 
1845 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1846 			fgp_flags |= FGP_LOCK;
1847 
1848 		/* Init accessed so avoid atomic mark_page_accessed later */
1849 		if (fgp_flags & FGP_ACCESSED)
1850 			__SetPageReferenced(page);
1851 
1852 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1853 		if (unlikely(err)) {
1854 			put_page(page);
1855 			page = NULL;
1856 			if (err == -EEXIST)
1857 				goto repeat;
1858 		}
1859 
1860 		/*
1861 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1862 		 * an unlocked page.
1863 		 */
1864 		if (page && (fgp_flags & FGP_FOR_MMAP))
1865 			unlock_page(page);
1866 	}
1867 
1868 	return page;
1869 }
1870 EXPORT_SYMBOL(pagecache_get_page);
1871 
1872 /**
1873  * find_get_entries - gang pagecache lookup
1874  * @mapping:	The address_space to search
1875  * @start:	The starting page cache index
1876  * @nr_entries:	The maximum number of entries
1877  * @entries:	Where the resulting entries are placed
1878  * @indices:	The cache indices corresponding to the entries in @entries
1879  *
1880  * find_get_entries() will search for and return a group of up to
1881  * @nr_entries entries in the mapping.  The entries are placed at
1882  * @entries.  find_get_entries() takes a reference against any actual
1883  * pages it returns.
1884  *
1885  * The search returns a group of mapping-contiguous page cache entries
1886  * with ascending indexes.  There may be holes in the indices due to
1887  * not-present pages.
1888  *
1889  * Any shadow entries of evicted pages, or swap entries from
1890  * shmem/tmpfs, are included in the returned array.
1891  *
1892  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1893  * stops at that page: the caller is likely to have a better way to handle
1894  * the compound page as a whole, and then skip its extent, than repeatedly
1895  * calling find_get_entries() to return all its tails.
1896  *
1897  * Return: the number of pages and shadow entries which were found.
1898  */
1899 unsigned find_get_entries(struct address_space *mapping,
1900 			  pgoff_t start, unsigned int nr_entries,
1901 			  struct page **entries, pgoff_t *indices)
1902 {
1903 	XA_STATE(xas, &mapping->i_pages, start);
1904 	struct page *page;
1905 	unsigned int ret = 0;
1906 
1907 	if (!nr_entries)
1908 		return 0;
1909 
1910 	rcu_read_lock();
1911 	xas_for_each(&xas, page, ULONG_MAX) {
1912 		if (xas_retry(&xas, page))
1913 			continue;
1914 		/*
1915 		 * A shadow entry of a recently evicted page, a swap
1916 		 * entry from shmem/tmpfs or a DAX entry.  Return it
1917 		 * without attempting to raise page count.
1918 		 */
1919 		if (xa_is_value(page))
1920 			goto export;
1921 
1922 		if (!page_cache_get_speculative(page))
1923 			goto retry;
1924 
1925 		/* Has the page moved or been split? */
1926 		if (unlikely(page != xas_reload(&xas)))
1927 			goto put_page;
1928 
1929 		/*
1930 		 * Terminate early on finding a THP, to allow the caller to
1931 		 * handle it all at once; but continue if this is hugetlbfs.
1932 		 */
1933 		if (PageTransHuge(page) && !PageHuge(page)) {
1934 			page = find_subpage(page, xas.xa_index);
1935 			nr_entries = ret + 1;
1936 		}
1937 export:
1938 		indices[ret] = xas.xa_index;
1939 		entries[ret] = page;
1940 		if (++ret == nr_entries)
1941 			break;
1942 		continue;
1943 put_page:
1944 		put_page(page);
1945 retry:
1946 		xas_reset(&xas);
1947 	}
1948 	rcu_read_unlock();
1949 	return ret;
1950 }
1951 
1952 /**
1953  * find_get_pages_range - gang pagecache lookup
1954  * @mapping:	The address_space to search
1955  * @start:	The starting page index
1956  * @end:	The final page index (inclusive)
1957  * @nr_pages:	The maximum number of pages
1958  * @pages:	Where the resulting pages are placed
1959  *
1960  * find_get_pages_range() will search for and return a group of up to @nr_pages
1961  * pages in the mapping starting at index @start and up to index @end
1962  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1963  * a reference against the returned pages.
1964  *
1965  * The search returns a group of mapping-contiguous pages with ascending
1966  * indexes.  There may be holes in the indices due to not-present pages.
1967  * We also update @start to index the next page for the traversal.
1968  *
1969  * Return: the number of pages which were found. If this number is
1970  * smaller than @nr_pages, the end of specified range has been
1971  * reached.
1972  */
1973 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1974 			      pgoff_t end, unsigned int nr_pages,
1975 			      struct page **pages)
1976 {
1977 	XA_STATE(xas, &mapping->i_pages, *start);
1978 	struct page *page;
1979 	unsigned ret = 0;
1980 
1981 	if (unlikely(!nr_pages))
1982 		return 0;
1983 
1984 	rcu_read_lock();
1985 	xas_for_each(&xas, page, end) {
1986 		if (xas_retry(&xas, page))
1987 			continue;
1988 		/* Skip over shadow, swap and DAX entries */
1989 		if (xa_is_value(page))
1990 			continue;
1991 
1992 		if (!page_cache_get_speculative(page))
1993 			goto retry;
1994 
1995 		/* Has the page moved or been split? */
1996 		if (unlikely(page != xas_reload(&xas)))
1997 			goto put_page;
1998 
1999 		pages[ret] = find_subpage(page, xas.xa_index);
2000 		if (++ret == nr_pages) {
2001 			*start = xas.xa_index + 1;
2002 			goto out;
2003 		}
2004 		continue;
2005 put_page:
2006 		put_page(page);
2007 retry:
2008 		xas_reset(&xas);
2009 	}
2010 
2011 	/*
2012 	 * We come here when there is no page beyond @end. We take care to not
2013 	 * overflow the index @start as it confuses some of the callers. This
2014 	 * breaks the iteration when there is a page at index -1 but that is
2015 	 * already broken anyway.
2016 	 */
2017 	if (end == (pgoff_t)-1)
2018 		*start = (pgoff_t)-1;
2019 	else
2020 		*start = end + 1;
2021 out:
2022 	rcu_read_unlock();
2023 
2024 	return ret;
2025 }
2026 
2027 /**
2028  * find_get_pages_contig - gang contiguous pagecache lookup
2029  * @mapping:	The address_space to search
2030  * @index:	The starting page index
2031  * @nr_pages:	The maximum number of pages
2032  * @pages:	Where the resulting pages are placed
2033  *
2034  * find_get_pages_contig() works exactly like find_get_pages(), except
2035  * that the returned number of pages are guaranteed to be contiguous.
2036  *
2037  * Return: the number of pages which were found.
2038  */
2039 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2040 			       unsigned int nr_pages, struct page **pages)
2041 {
2042 	XA_STATE(xas, &mapping->i_pages, index);
2043 	struct page *page;
2044 	unsigned int ret = 0;
2045 
2046 	if (unlikely(!nr_pages))
2047 		return 0;
2048 
2049 	rcu_read_lock();
2050 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2051 		if (xas_retry(&xas, page))
2052 			continue;
2053 		/*
2054 		 * If the entry has been swapped out, we can stop looking.
2055 		 * No current caller is looking for DAX entries.
2056 		 */
2057 		if (xa_is_value(page))
2058 			break;
2059 
2060 		if (!page_cache_get_speculative(page))
2061 			goto retry;
2062 
2063 		/* Has the page moved or been split? */
2064 		if (unlikely(page != xas_reload(&xas)))
2065 			goto put_page;
2066 
2067 		pages[ret] = find_subpage(page, xas.xa_index);
2068 		if (++ret == nr_pages)
2069 			break;
2070 		continue;
2071 put_page:
2072 		put_page(page);
2073 retry:
2074 		xas_reset(&xas);
2075 	}
2076 	rcu_read_unlock();
2077 	return ret;
2078 }
2079 EXPORT_SYMBOL(find_get_pages_contig);
2080 
2081 /**
2082  * find_get_pages_range_tag - find and return pages in given range matching @tag
2083  * @mapping:	the address_space to search
2084  * @index:	the starting page index
2085  * @end:	The final page index (inclusive)
2086  * @tag:	the tag index
2087  * @nr_pages:	the maximum number of pages
2088  * @pages:	where the resulting pages are placed
2089  *
2090  * Like find_get_pages, except we only return pages which are tagged with
2091  * @tag.   We update @index to index the next page for the traversal.
2092  *
2093  * Return: the number of pages which were found.
2094  */
2095 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2096 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2097 			struct page **pages)
2098 {
2099 	XA_STATE(xas, &mapping->i_pages, *index);
2100 	struct page *page;
2101 	unsigned ret = 0;
2102 
2103 	if (unlikely(!nr_pages))
2104 		return 0;
2105 
2106 	rcu_read_lock();
2107 	xas_for_each_marked(&xas, page, end, tag) {
2108 		if (xas_retry(&xas, page))
2109 			continue;
2110 		/*
2111 		 * Shadow entries should never be tagged, but this iteration
2112 		 * is lockless so there is a window for page reclaim to evict
2113 		 * a page we saw tagged.  Skip over it.
2114 		 */
2115 		if (xa_is_value(page))
2116 			continue;
2117 
2118 		if (!page_cache_get_speculative(page))
2119 			goto retry;
2120 
2121 		/* Has the page moved or been split? */
2122 		if (unlikely(page != xas_reload(&xas)))
2123 			goto put_page;
2124 
2125 		pages[ret] = find_subpage(page, xas.xa_index);
2126 		if (++ret == nr_pages) {
2127 			*index = xas.xa_index + 1;
2128 			goto out;
2129 		}
2130 		continue;
2131 put_page:
2132 		put_page(page);
2133 retry:
2134 		xas_reset(&xas);
2135 	}
2136 
2137 	/*
2138 	 * We come here when we got to @end. We take care to not overflow the
2139 	 * index @index as it confuses some of the callers. This breaks the
2140 	 * iteration when there is a page at index -1 but that is already
2141 	 * broken anyway.
2142 	 */
2143 	if (end == (pgoff_t)-1)
2144 		*index = (pgoff_t)-1;
2145 	else
2146 		*index = end + 1;
2147 out:
2148 	rcu_read_unlock();
2149 
2150 	return ret;
2151 }
2152 EXPORT_SYMBOL(find_get_pages_range_tag);
2153 
2154 /*
2155  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2156  * a _large_ part of the i/o request. Imagine the worst scenario:
2157  *
2158  *      ---R__________________________________________B__________
2159  *         ^ reading here                             ^ bad block(assume 4k)
2160  *
2161  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2162  * => failing the whole request => read(R) => read(R+1) =>
2163  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2164  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2165  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2166  *
2167  * It is going insane. Fix it by quickly scaling down the readahead size.
2168  */
2169 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2170 {
2171 	ra->ra_pages /= 4;
2172 }
2173 
2174 static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
2175 {
2176 	if (iocb->ki_flags & IOCB_WAITQ)
2177 		return lock_page_async(page, iocb->ki_waitq);
2178 	else if (iocb->ki_flags & IOCB_NOWAIT)
2179 		return trylock_page(page) ? 0 : -EAGAIN;
2180 	else
2181 		return lock_page_killable(page);
2182 }
2183 
2184 static struct page *
2185 generic_file_buffered_read_readpage(struct kiocb *iocb,
2186 				    struct file *filp,
2187 				    struct address_space *mapping,
2188 				    struct page *page)
2189 {
2190 	struct file_ra_state *ra = &filp->f_ra;
2191 	int error;
2192 
2193 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2194 		unlock_page(page);
2195 		put_page(page);
2196 		return ERR_PTR(-EAGAIN);
2197 	}
2198 
2199 	/*
2200 	 * A previous I/O error may have been due to temporary
2201 	 * failures, eg. multipath errors.
2202 	 * PG_error will be set again if readpage fails.
2203 	 */
2204 	ClearPageError(page);
2205 	/* Start the actual read. The read will unlock the page. */
2206 	error = mapping->a_ops->readpage(filp, page);
2207 
2208 	if (unlikely(error)) {
2209 		put_page(page);
2210 		return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
2211 	}
2212 
2213 	if (!PageUptodate(page)) {
2214 		error = lock_page_for_iocb(iocb, page);
2215 		if (unlikely(error)) {
2216 			put_page(page);
2217 			return ERR_PTR(error);
2218 		}
2219 		if (!PageUptodate(page)) {
2220 			if (page->mapping == NULL) {
2221 				/*
2222 				 * invalidate_mapping_pages got it
2223 				 */
2224 				unlock_page(page);
2225 				put_page(page);
2226 				return NULL;
2227 			}
2228 			unlock_page(page);
2229 			shrink_readahead_size_eio(ra);
2230 			put_page(page);
2231 			return ERR_PTR(-EIO);
2232 		}
2233 		unlock_page(page);
2234 	}
2235 
2236 	return page;
2237 }
2238 
2239 static struct page *
2240 generic_file_buffered_read_pagenotuptodate(struct kiocb *iocb,
2241 					   struct file *filp,
2242 					   struct iov_iter *iter,
2243 					   struct page *page,
2244 					   loff_t pos, loff_t count)
2245 {
2246 	struct address_space *mapping = filp->f_mapping;
2247 	struct inode *inode = mapping->host;
2248 	int error;
2249 
2250 	/*
2251 	 * See comment in do_read_cache_page on why
2252 	 * wait_on_page_locked is used to avoid unnecessarily
2253 	 * serialisations and why it's safe.
2254 	 */
2255 	if (iocb->ki_flags & IOCB_WAITQ) {
2256 		error = wait_on_page_locked_async(page,
2257 						iocb->ki_waitq);
2258 	} else {
2259 		error = wait_on_page_locked_killable(page);
2260 	}
2261 	if (unlikely(error)) {
2262 		put_page(page);
2263 		return ERR_PTR(error);
2264 	}
2265 	if (PageUptodate(page))
2266 		return page;
2267 
2268 	if (inode->i_blkbits == PAGE_SHIFT ||
2269 			!mapping->a_ops->is_partially_uptodate)
2270 		goto page_not_up_to_date;
2271 	/* pipes can't handle partially uptodate pages */
2272 	if (unlikely(iov_iter_is_pipe(iter)))
2273 		goto page_not_up_to_date;
2274 	if (!trylock_page(page))
2275 		goto page_not_up_to_date;
2276 	/* Did it get truncated before we got the lock? */
2277 	if (!page->mapping)
2278 		goto page_not_up_to_date_locked;
2279 	if (!mapping->a_ops->is_partially_uptodate(page,
2280 				pos & ~PAGE_MASK, count))
2281 		goto page_not_up_to_date_locked;
2282 	unlock_page(page);
2283 	return page;
2284 
2285 page_not_up_to_date:
2286 	/* Get exclusive access to the page ... */
2287 	error = lock_page_for_iocb(iocb, page);
2288 	if (unlikely(error)) {
2289 		put_page(page);
2290 		return ERR_PTR(error);
2291 	}
2292 
2293 page_not_up_to_date_locked:
2294 	/* Did it get truncated before we got the lock? */
2295 	if (!page->mapping) {
2296 		unlock_page(page);
2297 		put_page(page);
2298 		return NULL;
2299 	}
2300 
2301 	/* Did somebody else fill it already? */
2302 	if (PageUptodate(page)) {
2303 		unlock_page(page);
2304 		return page;
2305 	}
2306 
2307 	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2308 }
2309 
2310 static struct page *
2311 generic_file_buffered_read_no_cached_page(struct kiocb *iocb,
2312 					  struct iov_iter *iter)
2313 {
2314 	struct file *filp = iocb->ki_filp;
2315 	struct address_space *mapping = filp->f_mapping;
2316 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2317 	struct page *page;
2318 	int error;
2319 
2320 	if (iocb->ki_flags & IOCB_NOIO)
2321 		return ERR_PTR(-EAGAIN);
2322 
2323 	/*
2324 	 * Ok, it wasn't cached, so we need to create a new
2325 	 * page..
2326 	 */
2327 	page = page_cache_alloc(mapping);
2328 	if (!page)
2329 		return ERR_PTR(-ENOMEM);
2330 
2331 	error = add_to_page_cache_lru(page, mapping, index,
2332 				      mapping_gfp_constraint(mapping, GFP_KERNEL));
2333 	if (error) {
2334 		put_page(page);
2335 		return error != -EEXIST ? ERR_PTR(error) : NULL;
2336 	}
2337 
2338 	return generic_file_buffered_read_readpage(iocb, filp, mapping, page);
2339 }
2340 
2341 static int generic_file_buffered_read_get_pages(struct kiocb *iocb,
2342 						struct iov_iter *iter,
2343 						struct page **pages,
2344 						unsigned int nr)
2345 {
2346 	struct file *filp = iocb->ki_filp;
2347 	struct address_space *mapping = filp->f_mapping;
2348 	struct file_ra_state *ra = &filp->f_ra;
2349 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2350 	pgoff_t last_index = (iocb->ki_pos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2351 	int i, j, nr_got, err = 0;
2352 
2353 	nr = min_t(unsigned long, last_index - index, nr);
2354 find_page:
2355 	if (fatal_signal_pending(current))
2356 		return -EINTR;
2357 
2358 	nr_got = find_get_pages_contig(mapping, index, nr, pages);
2359 	if (nr_got)
2360 		goto got_pages;
2361 
2362 	if (iocb->ki_flags & IOCB_NOIO)
2363 		return -EAGAIN;
2364 
2365 	page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2366 
2367 	nr_got = find_get_pages_contig(mapping, index, nr, pages);
2368 	if (nr_got)
2369 		goto got_pages;
2370 
2371 	pages[0] = generic_file_buffered_read_no_cached_page(iocb, iter);
2372 	err = PTR_ERR_OR_ZERO(pages[0]);
2373 	if (!IS_ERR_OR_NULL(pages[0]))
2374 		nr_got = 1;
2375 got_pages:
2376 	for (i = 0; i < nr_got; i++) {
2377 		struct page *page = pages[i];
2378 		pgoff_t pg_index = index + i;
2379 		loff_t pg_pos = max(iocb->ki_pos,
2380 				    (loff_t) pg_index << PAGE_SHIFT);
2381 		loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
2382 
2383 		if (PageReadahead(page)) {
2384 			if (iocb->ki_flags & IOCB_NOIO) {
2385 				for (j = i; j < nr_got; j++)
2386 					put_page(pages[j]);
2387 				nr_got = i;
2388 				err = -EAGAIN;
2389 				break;
2390 			}
2391 			page_cache_async_readahead(mapping, ra, filp, page,
2392 					pg_index, last_index - pg_index);
2393 		}
2394 
2395 		if (!PageUptodate(page)) {
2396 			if ((iocb->ki_flags & IOCB_NOWAIT) ||
2397 			    ((iocb->ki_flags & IOCB_WAITQ) && i)) {
2398 				for (j = i; j < nr_got; j++)
2399 					put_page(pages[j]);
2400 				nr_got = i;
2401 				err = -EAGAIN;
2402 				break;
2403 			}
2404 
2405 			page = generic_file_buffered_read_pagenotuptodate(iocb,
2406 					filp, iter, page, pg_pos, pg_count);
2407 			if (IS_ERR_OR_NULL(page)) {
2408 				for (j = i + 1; j < nr_got; j++)
2409 					put_page(pages[j]);
2410 				nr_got = i;
2411 				err = PTR_ERR_OR_ZERO(page);
2412 				break;
2413 			}
2414 		}
2415 	}
2416 
2417 	if (likely(nr_got))
2418 		return nr_got;
2419 	if (err)
2420 		return err;
2421 	/*
2422 	 * No pages and no error means we raced and should retry:
2423 	 */
2424 	goto find_page;
2425 }
2426 
2427 /**
2428  * generic_file_buffered_read - generic file read routine
2429  * @iocb:	the iocb to read
2430  * @iter:	data destination
2431  * @written:	already copied
2432  *
2433  * This is a generic file read routine, and uses the
2434  * mapping->a_ops->readpage() function for the actual low-level stuff.
2435  *
2436  * This is really ugly. But the goto's actually try to clarify some
2437  * of the logic when it comes to error handling etc.
2438  *
2439  * Return:
2440  * * total number of bytes copied, including those the were already @written
2441  * * negative error code if nothing was copied
2442  */
2443 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2444 		struct iov_iter *iter, ssize_t written)
2445 {
2446 	struct file *filp = iocb->ki_filp;
2447 	struct file_ra_state *ra = &filp->f_ra;
2448 	struct address_space *mapping = filp->f_mapping;
2449 	struct inode *inode = mapping->host;
2450 	struct page *pages_onstack[PAGEVEC_SIZE], **pages = NULL;
2451 	unsigned int nr_pages = min_t(unsigned int, 512,
2452 			((iocb->ki_pos + iter->count + PAGE_SIZE - 1) >> PAGE_SHIFT) -
2453 			(iocb->ki_pos >> PAGE_SHIFT));
2454 	int i, pg_nr, error = 0;
2455 	bool writably_mapped;
2456 	loff_t isize, end_offset;
2457 
2458 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2459 		return 0;
2460 	if (unlikely(!iov_iter_count(iter)))
2461 		return 0;
2462 
2463 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2464 
2465 	if (nr_pages > ARRAY_SIZE(pages_onstack))
2466 		pages = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
2467 
2468 	if (!pages) {
2469 		pages = pages_onstack;
2470 		nr_pages = min_t(unsigned int, nr_pages, ARRAY_SIZE(pages_onstack));
2471 	}
2472 
2473 	do {
2474 		cond_resched();
2475 
2476 		/*
2477 		 * If we've already successfully copied some data, then we
2478 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2479 		 * an async read NOWAIT at that point.
2480 		 */
2481 		if ((iocb->ki_flags & IOCB_WAITQ) && written)
2482 			iocb->ki_flags |= IOCB_NOWAIT;
2483 
2484 		i = 0;
2485 		pg_nr = generic_file_buffered_read_get_pages(iocb, iter,
2486 							     pages, nr_pages);
2487 		if (pg_nr < 0) {
2488 			error = pg_nr;
2489 			break;
2490 		}
2491 
2492 		/*
2493 		 * i_size must be checked after we know the pages are Uptodate.
2494 		 *
2495 		 * Checking i_size after the check allows us to calculate
2496 		 * the correct value for "nr", which means the zero-filled
2497 		 * part of the page is not copied back to userspace (unless
2498 		 * another truncate extends the file - this is desired though).
2499 		 */
2500 		isize = i_size_read(inode);
2501 		if (unlikely(iocb->ki_pos >= isize))
2502 			goto put_pages;
2503 
2504 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2505 
2506 		while ((iocb->ki_pos >> PAGE_SHIFT) + pg_nr >
2507 		       (end_offset + PAGE_SIZE - 1) >> PAGE_SHIFT)
2508 			put_page(pages[--pg_nr]);
2509 
2510 		/*
2511 		 * Once we start copying data, we don't want to be touching any
2512 		 * cachelines that might be contended:
2513 		 */
2514 		writably_mapped = mapping_writably_mapped(mapping);
2515 
2516 		/*
2517 		 * When a sequential read accesses a page several times, only
2518 		 * mark it as accessed the first time.
2519 		 */
2520 		if (iocb->ki_pos >> PAGE_SHIFT !=
2521 		    ra->prev_pos >> PAGE_SHIFT)
2522 			mark_page_accessed(pages[0]);
2523 		for (i = 1; i < pg_nr; i++)
2524 			mark_page_accessed(pages[i]);
2525 
2526 		for (i = 0; i < pg_nr; i++) {
2527 			unsigned int offset = iocb->ki_pos & ~PAGE_MASK;
2528 			unsigned int bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2529 						   PAGE_SIZE - offset);
2530 			unsigned int copied;
2531 
2532 			/*
2533 			 * If users can be writing to this page using arbitrary
2534 			 * virtual addresses, take care about potential aliasing
2535 			 * before reading the page on the kernel side.
2536 			 */
2537 			if (writably_mapped)
2538 				flush_dcache_page(pages[i]);
2539 
2540 			copied = copy_page_to_iter(pages[i], offset, bytes, iter);
2541 
2542 			written += copied;
2543 			iocb->ki_pos += copied;
2544 			ra->prev_pos = iocb->ki_pos;
2545 
2546 			if (copied < bytes) {
2547 				error = -EFAULT;
2548 				break;
2549 			}
2550 		}
2551 put_pages:
2552 		for (i = 0; i < pg_nr; i++)
2553 			put_page(pages[i]);
2554 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2555 
2556 	file_accessed(filp);
2557 
2558 	if (pages != pages_onstack)
2559 		kfree(pages);
2560 
2561 	return written ? written : error;
2562 }
2563 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2564 
2565 /**
2566  * generic_file_read_iter - generic filesystem read routine
2567  * @iocb:	kernel I/O control block
2568  * @iter:	destination for the data read
2569  *
2570  * This is the "read_iter()" routine for all filesystems
2571  * that can use the page cache directly.
2572  *
2573  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2574  * be returned when no data can be read without waiting for I/O requests
2575  * to complete; it doesn't prevent readahead.
2576  *
2577  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2578  * requests shall be made for the read or for readahead.  When no data
2579  * can be read, -EAGAIN shall be returned.  When readahead would be
2580  * triggered, a partial, possibly empty read shall be returned.
2581  *
2582  * Return:
2583  * * number of bytes copied, even for partial reads
2584  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2585  */
2586 ssize_t
2587 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2588 {
2589 	size_t count = iov_iter_count(iter);
2590 	ssize_t retval = 0;
2591 
2592 	if (!count)
2593 		goto out; /* skip atime */
2594 
2595 	if (iocb->ki_flags & IOCB_DIRECT) {
2596 		struct file *file = iocb->ki_filp;
2597 		struct address_space *mapping = file->f_mapping;
2598 		struct inode *inode = mapping->host;
2599 		loff_t size;
2600 
2601 		size = i_size_read(inode);
2602 		if (iocb->ki_flags & IOCB_NOWAIT) {
2603 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2604 						   iocb->ki_pos + count - 1))
2605 				return -EAGAIN;
2606 		} else {
2607 			retval = filemap_write_and_wait_range(mapping,
2608 						iocb->ki_pos,
2609 					        iocb->ki_pos + count - 1);
2610 			if (retval < 0)
2611 				goto out;
2612 		}
2613 
2614 		file_accessed(file);
2615 
2616 		retval = mapping->a_ops->direct_IO(iocb, iter);
2617 		if (retval >= 0) {
2618 			iocb->ki_pos += retval;
2619 			count -= retval;
2620 		}
2621 		iov_iter_revert(iter, count - iov_iter_count(iter));
2622 
2623 		/*
2624 		 * Btrfs can have a short DIO read if we encounter
2625 		 * compressed extents, so if there was an error, or if
2626 		 * we've already read everything we wanted to, or if
2627 		 * there was a short read because we hit EOF, go ahead
2628 		 * and return.  Otherwise fallthrough to buffered io for
2629 		 * the rest of the read.  Buffered reads will not work for
2630 		 * DAX files, so don't bother trying.
2631 		 */
2632 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2633 		    IS_DAX(inode))
2634 			goto out;
2635 	}
2636 
2637 	retval = generic_file_buffered_read(iocb, iter, retval);
2638 out:
2639 	return retval;
2640 }
2641 EXPORT_SYMBOL(generic_file_read_iter);
2642 
2643 #ifdef CONFIG_MMU
2644 #define MMAP_LOTSAMISS  (100)
2645 /*
2646  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2647  * @vmf - the vm_fault for this fault.
2648  * @page - the page to lock.
2649  * @fpin - the pointer to the file we may pin (or is already pinned).
2650  *
2651  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2652  * It differs in that it actually returns the page locked if it returns 1 and 0
2653  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2654  * will point to the pinned file and needs to be fput()'ed at a later point.
2655  */
2656 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2657 				     struct file **fpin)
2658 {
2659 	if (trylock_page(page))
2660 		return 1;
2661 
2662 	/*
2663 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2664 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2665 	 * is supposed to work. We have way too many special cases..
2666 	 */
2667 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2668 		return 0;
2669 
2670 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2671 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2672 		if (__lock_page_killable(page)) {
2673 			/*
2674 			 * We didn't have the right flags to drop the mmap_lock,
2675 			 * but all fault_handlers only check for fatal signals
2676 			 * if we return VM_FAULT_RETRY, so we need to drop the
2677 			 * mmap_lock here and return 0 if we don't have a fpin.
2678 			 */
2679 			if (*fpin == NULL)
2680 				mmap_read_unlock(vmf->vma->vm_mm);
2681 			return 0;
2682 		}
2683 	} else
2684 		__lock_page(page);
2685 	return 1;
2686 }
2687 
2688 
2689 /*
2690  * Synchronous readahead happens when we don't even find a page in the page
2691  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2692  * to drop the mmap sem we return the file that was pinned in order for us to do
2693  * that.  If we didn't pin a file then we return NULL.  The file that is
2694  * returned needs to be fput()'ed when we're done with it.
2695  */
2696 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2697 {
2698 	struct file *file = vmf->vma->vm_file;
2699 	struct file_ra_state *ra = &file->f_ra;
2700 	struct address_space *mapping = file->f_mapping;
2701 	DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
2702 	struct file *fpin = NULL;
2703 	unsigned int mmap_miss;
2704 
2705 	/* If we don't want any read-ahead, don't bother */
2706 	if (vmf->vma->vm_flags & VM_RAND_READ)
2707 		return fpin;
2708 	if (!ra->ra_pages)
2709 		return fpin;
2710 
2711 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2712 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2713 		page_cache_sync_ra(&ractl, ra, ra->ra_pages);
2714 		return fpin;
2715 	}
2716 
2717 	/* Avoid banging the cache line if not needed */
2718 	mmap_miss = READ_ONCE(ra->mmap_miss);
2719 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2720 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2721 
2722 	/*
2723 	 * Do we miss much more than hit in this file? If so,
2724 	 * stop bothering with read-ahead. It will only hurt.
2725 	 */
2726 	if (mmap_miss > MMAP_LOTSAMISS)
2727 		return fpin;
2728 
2729 	/*
2730 	 * mmap read-around
2731 	 */
2732 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2733 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2734 	ra->size = ra->ra_pages;
2735 	ra->async_size = ra->ra_pages / 4;
2736 	ractl._index = ra->start;
2737 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2738 	return fpin;
2739 }
2740 
2741 /*
2742  * Asynchronous readahead happens when we find the page and PG_readahead,
2743  * so we want to possibly extend the readahead further.  We return the file that
2744  * was pinned if we have to drop the mmap_lock in order to do IO.
2745  */
2746 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2747 					    struct page *page)
2748 {
2749 	struct file *file = vmf->vma->vm_file;
2750 	struct file_ra_state *ra = &file->f_ra;
2751 	struct address_space *mapping = file->f_mapping;
2752 	struct file *fpin = NULL;
2753 	unsigned int mmap_miss;
2754 	pgoff_t offset = vmf->pgoff;
2755 
2756 	/* If we don't want any read-ahead, don't bother */
2757 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2758 		return fpin;
2759 	mmap_miss = READ_ONCE(ra->mmap_miss);
2760 	if (mmap_miss)
2761 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2762 	if (PageReadahead(page)) {
2763 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2764 		page_cache_async_readahead(mapping, ra, file,
2765 					   page, offset, ra->ra_pages);
2766 	}
2767 	return fpin;
2768 }
2769 
2770 /**
2771  * filemap_fault - read in file data for page fault handling
2772  * @vmf:	struct vm_fault containing details of the fault
2773  *
2774  * filemap_fault() is invoked via the vma operations vector for a
2775  * mapped memory region to read in file data during a page fault.
2776  *
2777  * The goto's are kind of ugly, but this streamlines the normal case of having
2778  * it in the page cache, and handles the special cases reasonably without
2779  * having a lot of duplicated code.
2780  *
2781  * vma->vm_mm->mmap_lock must be held on entry.
2782  *
2783  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2784  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2785  *
2786  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2787  * has not been released.
2788  *
2789  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2790  *
2791  * Return: bitwise-OR of %VM_FAULT_ codes.
2792  */
2793 vm_fault_t filemap_fault(struct vm_fault *vmf)
2794 {
2795 	int error;
2796 	struct file *file = vmf->vma->vm_file;
2797 	struct file *fpin = NULL;
2798 	struct address_space *mapping = file->f_mapping;
2799 	struct file_ra_state *ra = &file->f_ra;
2800 	struct inode *inode = mapping->host;
2801 	pgoff_t offset = vmf->pgoff;
2802 	pgoff_t max_off;
2803 	struct page *page;
2804 	vm_fault_t ret = 0;
2805 
2806 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2807 	if (unlikely(offset >= max_off))
2808 		return VM_FAULT_SIGBUS;
2809 
2810 	/*
2811 	 * Do we have something in the page cache already?
2812 	 */
2813 	page = find_get_page(mapping, offset);
2814 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2815 		/*
2816 		 * We found the page, so try async readahead before
2817 		 * waiting for the lock.
2818 		 */
2819 		fpin = do_async_mmap_readahead(vmf, page);
2820 	} else if (!page) {
2821 		/* No page in the page cache at all */
2822 		count_vm_event(PGMAJFAULT);
2823 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2824 		ret = VM_FAULT_MAJOR;
2825 		fpin = do_sync_mmap_readahead(vmf);
2826 retry_find:
2827 		page = pagecache_get_page(mapping, offset,
2828 					  FGP_CREAT|FGP_FOR_MMAP,
2829 					  vmf->gfp_mask);
2830 		if (!page) {
2831 			if (fpin)
2832 				goto out_retry;
2833 			return VM_FAULT_OOM;
2834 		}
2835 	}
2836 
2837 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2838 		goto out_retry;
2839 
2840 	/* Did it get truncated? */
2841 	if (unlikely(compound_head(page)->mapping != mapping)) {
2842 		unlock_page(page);
2843 		put_page(page);
2844 		goto retry_find;
2845 	}
2846 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2847 
2848 	/*
2849 	 * We have a locked page in the page cache, now we need to check
2850 	 * that it's up-to-date. If not, it is going to be due to an error.
2851 	 */
2852 	if (unlikely(!PageUptodate(page)))
2853 		goto page_not_uptodate;
2854 
2855 	/*
2856 	 * We've made it this far and we had to drop our mmap_lock, now is the
2857 	 * time to return to the upper layer and have it re-find the vma and
2858 	 * redo the fault.
2859 	 */
2860 	if (fpin) {
2861 		unlock_page(page);
2862 		goto out_retry;
2863 	}
2864 
2865 	/*
2866 	 * Found the page and have a reference on it.
2867 	 * We must recheck i_size under page lock.
2868 	 */
2869 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2870 	if (unlikely(offset >= max_off)) {
2871 		unlock_page(page);
2872 		put_page(page);
2873 		return VM_FAULT_SIGBUS;
2874 	}
2875 
2876 	vmf->page = page;
2877 	return ret | VM_FAULT_LOCKED;
2878 
2879 page_not_uptodate:
2880 	/*
2881 	 * Umm, take care of errors if the page isn't up-to-date.
2882 	 * Try to re-read it _once_. We do this synchronously,
2883 	 * because there really aren't any performance issues here
2884 	 * and we need to check for errors.
2885 	 */
2886 	ClearPageError(page);
2887 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2888 	error = mapping->a_ops->readpage(file, page);
2889 	if (!error) {
2890 		wait_on_page_locked(page);
2891 		if (!PageUptodate(page))
2892 			error = -EIO;
2893 	}
2894 	if (fpin)
2895 		goto out_retry;
2896 	put_page(page);
2897 
2898 	if (!error || error == AOP_TRUNCATED_PAGE)
2899 		goto retry_find;
2900 
2901 	shrink_readahead_size_eio(ra);
2902 	return VM_FAULT_SIGBUS;
2903 
2904 out_retry:
2905 	/*
2906 	 * We dropped the mmap_lock, we need to return to the fault handler to
2907 	 * re-find the vma and come back and find our hopefully still populated
2908 	 * page.
2909 	 */
2910 	if (page)
2911 		put_page(page);
2912 	if (fpin)
2913 		fput(fpin);
2914 	return ret | VM_FAULT_RETRY;
2915 }
2916 EXPORT_SYMBOL(filemap_fault);
2917 
2918 void filemap_map_pages(struct vm_fault *vmf,
2919 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2920 {
2921 	struct file *file = vmf->vma->vm_file;
2922 	struct address_space *mapping = file->f_mapping;
2923 	pgoff_t last_pgoff = start_pgoff;
2924 	unsigned long max_idx;
2925 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
2926 	struct page *head, *page;
2927 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2928 
2929 	rcu_read_lock();
2930 	xas_for_each(&xas, head, end_pgoff) {
2931 		if (xas_retry(&xas, head))
2932 			continue;
2933 		if (xa_is_value(head))
2934 			goto next;
2935 
2936 		/*
2937 		 * Check for a locked page first, as a speculative
2938 		 * reference may adversely influence page migration.
2939 		 */
2940 		if (PageLocked(head))
2941 			goto next;
2942 		if (!page_cache_get_speculative(head))
2943 			goto next;
2944 
2945 		/* Has the page moved or been split? */
2946 		if (unlikely(head != xas_reload(&xas)))
2947 			goto skip;
2948 		page = find_subpage(head, xas.xa_index);
2949 
2950 		if (!PageUptodate(head) ||
2951 				PageReadahead(page) ||
2952 				PageHWPoison(page))
2953 			goto skip;
2954 		if (!trylock_page(head))
2955 			goto skip;
2956 
2957 		if (head->mapping != mapping || !PageUptodate(head))
2958 			goto unlock;
2959 
2960 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2961 		if (xas.xa_index >= max_idx)
2962 			goto unlock;
2963 
2964 		if (mmap_miss > 0)
2965 			mmap_miss--;
2966 
2967 		vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2968 		if (vmf->pte)
2969 			vmf->pte += xas.xa_index - last_pgoff;
2970 		last_pgoff = xas.xa_index;
2971 		if (alloc_set_pte(vmf, page))
2972 			goto unlock;
2973 		unlock_page(head);
2974 		goto next;
2975 unlock:
2976 		unlock_page(head);
2977 skip:
2978 		put_page(head);
2979 next:
2980 		/* Huge page is mapped? No need to proceed. */
2981 		if (pmd_trans_huge(*vmf->pmd))
2982 			break;
2983 	}
2984 	rcu_read_unlock();
2985 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2986 }
2987 EXPORT_SYMBOL(filemap_map_pages);
2988 
2989 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2990 {
2991 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
2992 	struct page *page = vmf->page;
2993 	vm_fault_t ret = VM_FAULT_LOCKED;
2994 
2995 	sb_start_pagefault(mapping->host->i_sb);
2996 	file_update_time(vmf->vma->vm_file);
2997 	lock_page(page);
2998 	if (page->mapping != mapping) {
2999 		unlock_page(page);
3000 		ret = VM_FAULT_NOPAGE;
3001 		goto out;
3002 	}
3003 	/*
3004 	 * We mark the page dirty already here so that when freeze is in
3005 	 * progress, we are guaranteed that writeback during freezing will
3006 	 * see the dirty page and writeprotect it again.
3007 	 */
3008 	set_page_dirty(page);
3009 	wait_for_stable_page(page);
3010 out:
3011 	sb_end_pagefault(mapping->host->i_sb);
3012 	return ret;
3013 }
3014 
3015 const struct vm_operations_struct generic_file_vm_ops = {
3016 	.fault		= filemap_fault,
3017 	.map_pages	= filemap_map_pages,
3018 	.page_mkwrite	= filemap_page_mkwrite,
3019 };
3020 
3021 /* This is used for a general mmap of a disk file */
3022 
3023 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3024 {
3025 	struct address_space *mapping = file->f_mapping;
3026 
3027 	if (!mapping->a_ops->readpage)
3028 		return -ENOEXEC;
3029 	file_accessed(file);
3030 	vma->vm_ops = &generic_file_vm_ops;
3031 	return 0;
3032 }
3033 
3034 /*
3035  * This is for filesystems which do not implement ->writepage.
3036  */
3037 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3038 {
3039 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3040 		return -EINVAL;
3041 	return generic_file_mmap(file, vma);
3042 }
3043 #else
3044 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3045 {
3046 	return VM_FAULT_SIGBUS;
3047 }
3048 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3049 {
3050 	return -ENOSYS;
3051 }
3052 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3053 {
3054 	return -ENOSYS;
3055 }
3056 #endif /* CONFIG_MMU */
3057 
3058 EXPORT_SYMBOL(filemap_page_mkwrite);
3059 EXPORT_SYMBOL(generic_file_mmap);
3060 EXPORT_SYMBOL(generic_file_readonly_mmap);
3061 
3062 static struct page *wait_on_page_read(struct page *page)
3063 {
3064 	if (!IS_ERR(page)) {
3065 		wait_on_page_locked(page);
3066 		if (!PageUptodate(page)) {
3067 			put_page(page);
3068 			page = ERR_PTR(-EIO);
3069 		}
3070 	}
3071 	return page;
3072 }
3073 
3074 static struct page *do_read_cache_page(struct address_space *mapping,
3075 				pgoff_t index,
3076 				int (*filler)(void *, struct page *),
3077 				void *data,
3078 				gfp_t gfp)
3079 {
3080 	struct page *page;
3081 	int err;
3082 repeat:
3083 	page = find_get_page(mapping, index);
3084 	if (!page) {
3085 		page = __page_cache_alloc(gfp);
3086 		if (!page)
3087 			return ERR_PTR(-ENOMEM);
3088 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3089 		if (unlikely(err)) {
3090 			put_page(page);
3091 			if (err == -EEXIST)
3092 				goto repeat;
3093 			/* Presumably ENOMEM for xarray node */
3094 			return ERR_PTR(err);
3095 		}
3096 
3097 filler:
3098 		if (filler)
3099 			err = filler(data, page);
3100 		else
3101 			err = mapping->a_ops->readpage(data, page);
3102 
3103 		if (err < 0) {
3104 			put_page(page);
3105 			return ERR_PTR(err);
3106 		}
3107 
3108 		page = wait_on_page_read(page);
3109 		if (IS_ERR(page))
3110 			return page;
3111 		goto out;
3112 	}
3113 	if (PageUptodate(page))
3114 		goto out;
3115 
3116 	/*
3117 	 * Page is not up to date and may be locked due to one of the following
3118 	 * case a: Page is being filled and the page lock is held
3119 	 * case b: Read/write error clearing the page uptodate status
3120 	 * case c: Truncation in progress (page locked)
3121 	 * case d: Reclaim in progress
3122 	 *
3123 	 * Case a, the page will be up to date when the page is unlocked.
3124 	 *    There is no need to serialise on the page lock here as the page
3125 	 *    is pinned so the lock gives no additional protection. Even if the
3126 	 *    page is truncated, the data is still valid if PageUptodate as
3127 	 *    it's a race vs truncate race.
3128 	 * Case b, the page will not be up to date
3129 	 * Case c, the page may be truncated but in itself, the data may still
3130 	 *    be valid after IO completes as it's a read vs truncate race. The
3131 	 *    operation must restart if the page is not uptodate on unlock but
3132 	 *    otherwise serialising on page lock to stabilise the mapping gives
3133 	 *    no additional guarantees to the caller as the page lock is
3134 	 *    released before return.
3135 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3136 	 *    will be a race with remove_mapping that determines if the mapping
3137 	 *    is valid on unlock but otherwise the data is valid and there is
3138 	 *    no need to serialise with page lock.
3139 	 *
3140 	 * As the page lock gives no additional guarantee, we optimistically
3141 	 * wait on the page to be unlocked and check if it's up to date and
3142 	 * use the page if it is. Otherwise, the page lock is required to
3143 	 * distinguish between the different cases. The motivation is that we
3144 	 * avoid spurious serialisations and wakeups when multiple processes
3145 	 * wait on the same page for IO to complete.
3146 	 */
3147 	wait_on_page_locked(page);
3148 	if (PageUptodate(page))
3149 		goto out;
3150 
3151 	/* Distinguish between all the cases under the safety of the lock */
3152 	lock_page(page);
3153 
3154 	/* Case c or d, restart the operation */
3155 	if (!page->mapping) {
3156 		unlock_page(page);
3157 		put_page(page);
3158 		goto repeat;
3159 	}
3160 
3161 	/* Someone else locked and filled the page in a very small window */
3162 	if (PageUptodate(page)) {
3163 		unlock_page(page);
3164 		goto out;
3165 	}
3166 
3167 	/*
3168 	 * A previous I/O error may have been due to temporary
3169 	 * failures.
3170 	 * Clear page error before actual read, PG_error will be
3171 	 * set again if read page fails.
3172 	 */
3173 	ClearPageError(page);
3174 	goto filler;
3175 
3176 out:
3177 	mark_page_accessed(page);
3178 	return page;
3179 }
3180 
3181 /**
3182  * read_cache_page - read into page cache, fill it if needed
3183  * @mapping:	the page's address_space
3184  * @index:	the page index
3185  * @filler:	function to perform the read
3186  * @data:	first arg to filler(data, page) function, often left as NULL
3187  *
3188  * Read into the page cache. If a page already exists, and PageUptodate() is
3189  * not set, try to fill the page and wait for it to become unlocked.
3190  *
3191  * If the page does not get brought uptodate, return -EIO.
3192  *
3193  * Return: up to date page on success, ERR_PTR() on failure.
3194  */
3195 struct page *read_cache_page(struct address_space *mapping,
3196 				pgoff_t index,
3197 				int (*filler)(void *, struct page *),
3198 				void *data)
3199 {
3200 	return do_read_cache_page(mapping, index, filler, data,
3201 			mapping_gfp_mask(mapping));
3202 }
3203 EXPORT_SYMBOL(read_cache_page);
3204 
3205 /**
3206  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3207  * @mapping:	the page's address_space
3208  * @index:	the page index
3209  * @gfp:	the page allocator flags to use if allocating
3210  *
3211  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3212  * any new page allocations done using the specified allocation flags.
3213  *
3214  * If the page does not get brought uptodate, return -EIO.
3215  *
3216  * Return: up to date page on success, ERR_PTR() on failure.
3217  */
3218 struct page *read_cache_page_gfp(struct address_space *mapping,
3219 				pgoff_t index,
3220 				gfp_t gfp)
3221 {
3222 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3223 }
3224 EXPORT_SYMBOL(read_cache_page_gfp);
3225 
3226 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3227 				loff_t pos, unsigned len, unsigned flags,
3228 				struct page **pagep, void **fsdata)
3229 {
3230 	const struct address_space_operations *aops = mapping->a_ops;
3231 
3232 	return aops->write_begin(file, mapping, pos, len, flags,
3233 							pagep, fsdata);
3234 }
3235 EXPORT_SYMBOL(pagecache_write_begin);
3236 
3237 int pagecache_write_end(struct file *file, struct address_space *mapping,
3238 				loff_t pos, unsigned len, unsigned copied,
3239 				struct page *page, void *fsdata)
3240 {
3241 	const struct address_space_operations *aops = mapping->a_ops;
3242 
3243 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3244 }
3245 EXPORT_SYMBOL(pagecache_write_end);
3246 
3247 /*
3248  * Warn about a page cache invalidation failure during a direct I/O write.
3249  */
3250 void dio_warn_stale_pagecache(struct file *filp)
3251 {
3252 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3253 	char pathname[128];
3254 	char *path;
3255 
3256 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3257 	if (__ratelimit(&_rs)) {
3258 		path = file_path(filp, pathname, sizeof(pathname));
3259 		if (IS_ERR(path))
3260 			path = "(unknown)";
3261 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3262 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3263 			current->comm);
3264 	}
3265 }
3266 
3267 ssize_t
3268 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3269 {
3270 	struct file	*file = iocb->ki_filp;
3271 	struct address_space *mapping = file->f_mapping;
3272 	struct inode	*inode = mapping->host;
3273 	loff_t		pos = iocb->ki_pos;
3274 	ssize_t		written;
3275 	size_t		write_len;
3276 	pgoff_t		end;
3277 
3278 	write_len = iov_iter_count(from);
3279 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3280 
3281 	if (iocb->ki_flags & IOCB_NOWAIT) {
3282 		/* If there are pages to writeback, return */
3283 		if (filemap_range_has_page(file->f_mapping, pos,
3284 					   pos + write_len - 1))
3285 			return -EAGAIN;
3286 	} else {
3287 		written = filemap_write_and_wait_range(mapping, pos,
3288 							pos + write_len - 1);
3289 		if (written)
3290 			goto out;
3291 	}
3292 
3293 	/*
3294 	 * After a write we want buffered reads to be sure to go to disk to get
3295 	 * the new data.  We invalidate clean cached page from the region we're
3296 	 * about to write.  We do this *before* the write so that we can return
3297 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3298 	 */
3299 	written = invalidate_inode_pages2_range(mapping,
3300 					pos >> PAGE_SHIFT, end);
3301 	/*
3302 	 * If a page can not be invalidated, return 0 to fall back
3303 	 * to buffered write.
3304 	 */
3305 	if (written) {
3306 		if (written == -EBUSY)
3307 			return 0;
3308 		goto out;
3309 	}
3310 
3311 	written = mapping->a_ops->direct_IO(iocb, from);
3312 
3313 	/*
3314 	 * Finally, try again to invalidate clean pages which might have been
3315 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3316 	 * if the source of the write was an mmap'ed region of the file
3317 	 * we're writing.  Either one is a pretty crazy thing to do,
3318 	 * so we don't support it 100%.  If this invalidation
3319 	 * fails, tough, the write still worked...
3320 	 *
3321 	 * Most of the time we do not need this since dio_complete() will do
3322 	 * the invalidation for us. However there are some file systems that
3323 	 * do not end up with dio_complete() being called, so let's not break
3324 	 * them by removing it completely.
3325 	 *
3326 	 * Noticeable example is a blkdev_direct_IO().
3327 	 *
3328 	 * Skip invalidation for async writes or if mapping has no pages.
3329 	 */
3330 	if (written > 0 && mapping->nrpages &&
3331 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3332 		dio_warn_stale_pagecache(file);
3333 
3334 	if (written > 0) {
3335 		pos += written;
3336 		write_len -= written;
3337 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3338 			i_size_write(inode, pos);
3339 			mark_inode_dirty(inode);
3340 		}
3341 		iocb->ki_pos = pos;
3342 	}
3343 	iov_iter_revert(from, write_len - iov_iter_count(from));
3344 out:
3345 	return written;
3346 }
3347 EXPORT_SYMBOL(generic_file_direct_write);
3348 
3349 /*
3350  * Find or create a page at the given pagecache position. Return the locked
3351  * page. This function is specifically for buffered writes.
3352  */
3353 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3354 					pgoff_t index, unsigned flags)
3355 {
3356 	struct page *page;
3357 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3358 
3359 	if (flags & AOP_FLAG_NOFS)
3360 		fgp_flags |= FGP_NOFS;
3361 
3362 	page = pagecache_get_page(mapping, index, fgp_flags,
3363 			mapping_gfp_mask(mapping));
3364 	if (page)
3365 		wait_for_stable_page(page);
3366 
3367 	return page;
3368 }
3369 EXPORT_SYMBOL(grab_cache_page_write_begin);
3370 
3371 ssize_t generic_perform_write(struct file *file,
3372 				struct iov_iter *i, loff_t pos)
3373 {
3374 	struct address_space *mapping = file->f_mapping;
3375 	const struct address_space_operations *a_ops = mapping->a_ops;
3376 	long status = 0;
3377 	ssize_t written = 0;
3378 	unsigned int flags = 0;
3379 
3380 	do {
3381 		struct page *page;
3382 		unsigned long offset;	/* Offset into pagecache page */
3383 		unsigned long bytes;	/* Bytes to write to page */
3384 		size_t copied;		/* Bytes copied from user */
3385 		void *fsdata;
3386 
3387 		offset = (pos & (PAGE_SIZE - 1));
3388 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3389 						iov_iter_count(i));
3390 
3391 again:
3392 		/*
3393 		 * Bring in the user page that we will copy from _first_.
3394 		 * Otherwise there's a nasty deadlock on copying from the
3395 		 * same page as we're writing to, without it being marked
3396 		 * up-to-date.
3397 		 *
3398 		 * Not only is this an optimisation, but it is also required
3399 		 * to check that the address is actually valid, when atomic
3400 		 * usercopies are used, below.
3401 		 */
3402 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3403 			status = -EFAULT;
3404 			break;
3405 		}
3406 
3407 		if (fatal_signal_pending(current)) {
3408 			status = -EINTR;
3409 			break;
3410 		}
3411 
3412 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3413 						&page, &fsdata);
3414 		if (unlikely(status < 0))
3415 			break;
3416 
3417 		if (mapping_writably_mapped(mapping))
3418 			flush_dcache_page(page);
3419 
3420 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3421 		flush_dcache_page(page);
3422 
3423 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3424 						page, fsdata);
3425 		if (unlikely(status < 0))
3426 			break;
3427 		copied = status;
3428 
3429 		cond_resched();
3430 
3431 		iov_iter_advance(i, copied);
3432 		if (unlikely(copied == 0)) {
3433 			/*
3434 			 * If we were unable to copy any data at all, we must
3435 			 * fall back to a single segment length write.
3436 			 *
3437 			 * If we didn't fallback here, we could livelock
3438 			 * because not all segments in the iov can be copied at
3439 			 * once without a pagefault.
3440 			 */
3441 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3442 						iov_iter_single_seg_count(i));
3443 			goto again;
3444 		}
3445 		pos += copied;
3446 		written += copied;
3447 
3448 		balance_dirty_pages_ratelimited(mapping);
3449 	} while (iov_iter_count(i));
3450 
3451 	return written ? written : status;
3452 }
3453 EXPORT_SYMBOL(generic_perform_write);
3454 
3455 /**
3456  * __generic_file_write_iter - write data to a file
3457  * @iocb:	IO state structure (file, offset, etc.)
3458  * @from:	iov_iter with data to write
3459  *
3460  * This function does all the work needed for actually writing data to a
3461  * file. It does all basic checks, removes SUID from the file, updates
3462  * modification times and calls proper subroutines depending on whether we
3463  * do direct IO or a standard buffered write.
3464  *
3465  * It expects i_mutex to be grabbed unless we work on a block device or similar
3466  * object which does not need locking at all.
3467  *
3468  * This function does *not* take care of syncing data in case of O_SYNC write.
3469  * A caller has to handle it. This is mainly due to the fact that we want to
3470  * avoid syncing under i_mutex.
3471  *
3472  * Return:
3473  * * number of bytes written, even for truncated writes
3474  * * negative error code if no data has been written at all
3475  */
3476 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3477 {
3478 	struct file *file = iocb->ki_filp;
3479 	struct address_space * mapping = file->f_mapping;
3480 	struct inode 	*inode = mapping->host;
3481 	ssize_t		written = 0;
3482 	ssize_t		err;
3483 	ssize_t		status;
3484 
3485 	/* We can write back this queue in page reclaim */
3486 	current->backing_dev_info = inode_to_bdi(inode);
3487 	err = file_remove_privs(file);
3488 	if (err)
3489 		goto out;
3490 
3491 	err = file_update_time(file);
3492 	if (err)
3493 		goto out;
3494 
3495 	if (iocb->ki_flags & IOCB_DIRECT) {
3496 		loff_t pos, endbyte;
3497 
3498 		written = generic_file_direct_write(iocb, from);
3499 		/*
3500 		 * If the write stopped short of completing, fall back to
3501 		 * buffered writes.  Some filesystems do this for writes to
3502 		 * holes, for example.  For DAX files, a buffered write will
3503 		 * not succeed (even if it did, DAX does not handle dirty
3504 		 * page-cache pages correctly).
3505 		 */
3506 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3507 			goto out;
3508 
3509 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3510 		/*
3511 		 * If generic_perform_write() returned a synchronous error
3512 		 * then we want to return the number of bytes which were
3513 		 * direct-written, or the error code if that was zero.  Note
3514 		 * that this differs from normal direct-io semantics, which
3515 		 * will return -EFOO even if some bytes were written.
3516 		 */
3517 		if (unlikely(status < 0)) {
3518 			err = status;
3519 			goto out;
3520 		}
3521 		/*
3522 		 * We need to ensure that the page cache pages are written to
3523 		 * disk and invalidated to preserve the expected O_DIRECT
3524 		 * semantics.
3525 		 */
3526 		endbyte = pos + status - 1;
3527 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3528 		if (err == 0) {
3529 			iocb->ki_pos = endbyte + 1;
3530 			written += status;
3531 			invalidate_mapping_pages(mapping,
3532 						 pos >> PAGE_SHIFT,
3533 						 endbyte >> PAGE_SHIFT);
3534 		} else {
3535 			/*
3536 			 * We don't know how much we wrote, so just return
3537 			 * the number of bytes which were direct-written
3538 			 */
3539 		}
3540 	} else {
3541 		written = generic_perform_write(file, from, iocb->ki_pos);
3542 		if (likely(written > 0))
3543 			iocb->ki_pos += written;
3544 	}
3545 out:
3546 	current->backing_dev_info = NULL;
3547 	return written ? written : err;
3548 }
3549 EXPORT_SYMBOL(__generic_file_write_iter);
3550 
3551 /**
3552  * generic_file_write_iter - write data to a file
3553  * @iocb:	IO state structure
3554  * @from:	iov_iter with data to write
3555  *
3556  * This is a wrapper around __generic_file_write_iter() to be used by most
3557  * filesystems. It takes care of syncing the file in case of O_SYNC file
3558  * and acquires i_mutex as needed.
3559  * Return:
3560  * * negative error code if no data has been written at all of
3561  *   vfs_fsync_range() failed for a synchronous write
3562  * * number of bytes written, even for truncated writes
3563  */
3564 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3565 {
3566 	struct file *file = iocb->ki_filp;
3567 	struct inode *inode = file->f_mapping->host;
3568 	ssize_t ret;
3569 
3570 	inode_lock(inode);
3571 	ret = generic_write_checks(iocb, from);
3572 	if (ret > 0)
3573 		ret = __generic_file_write_iter(iocb, from);
3574 	inode_unlock(inode);
3575 
3576 	if (ret > 0)
3577 		ret = generic_write_sync(iocb, ret);
3578 	return ret;
3579 }
3580 EXPORT_SYMBOL(generic_file_write_iter);
3581 
3582 /**
3583  * try_to_release_page() - release old fs-specific metadata on a page
3584  *
3585  * @page: the page which the kernel is trying to free
3586  * @gfp_mask: memory allocation flags (and I/O mode)
3587  *
3588  * The address_space is to try to release any data against the page
3589  * (presumably at page->private).
3590  *
3591  * This may also be called if PG_fscache is set on a page, indicating that the
3592  * page is known to the local caching routines.
3593  *
3594  * The @gfp_mask argument specifies whether I/O may be performed to release
3595  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3596  *
3597  * Return: %1 if the release was successful, otherwise return zero.
3598  */
3599 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3600 {
3601 	struct address_space * const mapping = page->mapping;
3602 
3603 	BUG_ON(!PageLocked(page));
3604 	if (PageWriteback(page))
3605 		return 0;
3606 
3607 	if (mapping && mapping->a_ops->releasepage)
3608 		return mapping->a_ops->releasepage(page, gfp_mask);
3609 	return try_to_free_buffers(page);
3610 }
3611 
3612 EXPORT_SYMBOL(try_to_release_page);
3613