1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include "internal.h" 37 38 /* 39 * FIXME: remove all knowledge of the buffer layer from the core VM 40 */ 41 #include <linux/buffer_head.h> /* for generic_osync_inode */ 42 43 #include <asm/mman.h> 44 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (vmtruncate) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 */ 108 109 /* 110 * Remove a page from the page cache and free it. Caller has to make 111 * sure the page is locked and that nobody else uses it - or that usage 112 * is safe. The caller must hold the mapping's tree_lock. 113 */ 114 void __remove_from_page_cache(struct page *page) 115 { 116 struct address_space *mapping = page->mapping; 117 118 mem_cgroup_uncharge_cache_page(page); 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 BUG_ON(page_mapped(page)); 124 125 /* 126 * Some filesystems seem to re-dirty the page even after 127 * the VM has canceled the dirty bit (eg ext3 journaling). 128 * 129 * Fix it up by doing a final dirty accounting check after 130 * having removed the page entirely. 131 */ 132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 133 dec_zone_page_state(page, NR_FILE_DIRTY); 134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 135 } 136 } 137 138 void remove_from_page_cache(struct page *page) 139 { 140 struct address_space *mapping = page->mapping; 141 142 BUG_ON(!PageLocked(page)); 143 144 spin_lock_irq(&mapping->tree_lock); 145 __remove_from_page_cache(page); 146 spin_unlock_irq(&mapping->tree_lock); 147 } 148 149 static int sync_page(void *word) 150 { 151 struct address_space *mapping; 152 struct page *page; 153 154 page = container_of((unsigned long *)word, struct page, flags); 155 156 /* 157 * page_mapping() is being called without PG_locked held. 158 * Some knowledge of the state and use of the page is used to 159 * reduce the requirements down to a memory barrier. 160 * The danger here is of a stale page_mapping() return value 161 * indicating a struct address_space different from the one it's 162 * associated with when it is associated with one. 163 * After smp_mb(), it's either the correct page_mapping() for 164 * the page, or an old page_mapping() and the page's own 165 * page_mapping() has gone NULL. 166 * The ->sync_page() address_space operation must tolerate 167 * page_mapping() going NULL. By an amazing coincidence, 168 * this comes about because none of the users of the page 169 * in the ->sync_page() methods make essential use of the 170 * page_mapping(), merely passing the page down to the backing 171 * device's unplug functions when it's non-NULL, which in turn 172 * ignore it for all cases but swap, where only page_private(page) is 173 * of interest. When page_mapping() does go NULL, the entire 174 * call stack gracefully ignores the page and returns. 175 * -- wli 176 */ 177 smp_mb(); 178 mapping = page_mapping(page); 179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 180 mapping->a_ops->sync_page(page); 181 io_schedule(); 182 return 0; 183 } 184 185 static int sync_page_killable(void *word) 186 { 187 sync_page(word); 188 return fatal_signal_pending(current) ? -EINTR : 0; 189 } 190 191 /** 192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 193 * @mapping: address space structure to write 194 * @start: offset in bytes where the range starts 195 * @end: offset in bytes where the range ends (inclusive) 196 * @sync_mode: enable synchronous operation 197 * 198 * Start writeback against all of a mapping's dirty pages that lie 199 * within the byte offsets <start, end> inclusive. 200 * 201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 202 * opposed to a regular memory cleansing writeback. The difference between 203 * these two operations is that if a dirty page/buffer is encountered, it must 204 * be waited upon, and not just skipped over. 205 */ 206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 207 loff_t end, int sync_mode) 208 { 209 int ret; 210 struct writeback_control wbc = { 211 .sync_mode = sync_mode, 212 .nr_to_write = mapping->nrpages * 2, 213 .range_start = start, 214 .range_end = end, 215 }; 216 217 if (!mapping_cap_writeback_dirty(mapping)) 218 return 0; 219 220 ret = do_writepages(mapping, &wbc); 221 return ret; 222 } 223 224 static inline int __filemap_fdatawrite(struct address_space *mapping, 225 int sync_mode) 226 { 227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 228 } 229 230 int filemap_fdatawrite(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 233 } 234 EXPORT_SYMBOL(filemap_fdatawrite); 235 236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 237 loff_t end) 238 { 239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 240 } 241 EXPORT_SYMBOL(filemap_fdatawrite_range); 242 243 /** 244 * filemap_flush - mostly a non-blocking flush 245 * @mapping: target address_space 246 * 247 * This is a mostly non-blocking flush. Not suitable for data-integrity 248 * purposes - I/O may not be started against all dirty pages. 249 */ 250 int filemap_flush(struct address_space *mapping) 251 { 252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 253 } 254 EXPORT_SYMBOL(filemap_flush); 255 256 /** 257 * wait_on_page_writeback_range - wait for writeback to complete 258 * @mapping: target address_space 259 * @start: beginning page index 260 * @end: ending page index 261 * 262 * Wait for writeback to complete against pages indexed by start->end 263 * inclusive 264 */ 265 int wait_on_page_writeback_range(struct address_space *mapping, 266 pgoff_t start, pgoff_t end) 267 { 268 struct pagevec pvec; 269 int nr_pages; 270 int ret = 0; 271 pgoff_t index; 272 273 if (end < start) 274 return 0; 275 276 pagevec_init(&pvec, 0); 277 index = start; 278 while ((index <= end) && 279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 280 PAGECACHE_TAG_WRITEBACK, 281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 282 unsigned i; 283 284 for (i = 0; i < nr_pages; i++) { 285 struct page *page = pvec.pages[i]; 286 287 /* until radix tree lookup accepts end_index */ 288 if (page->index > end) 289 continue; 290 291 wait_on_page_writeback(page); 292 if (PageError(page)) 293 ret = -EIO; 294 } 295 pagevec_release(&pvec); 296 cond_resched(); 297 } 298 299 /* Check for outstanding write errors */ 300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 301 ret = -ENOSPC; 302 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 303 ret = -EIO; 304 305 return ret; 306 } 307 308 /** 309 * sync_page_range - write and wait on all pages in the passed range 310 * @inode: target inode 311 * @mapping: target address_space 312 * @pos: beginning offset in pages to write 313 * @count: number of bytes to write 314 * 315 * Write and wait upon all the pages in the passed range. This is a "data 316 * integrity" operation. It waits upon in-flight writeout before starting and 317 * waiting upon new writeout. If there was an IO error, return it. 318 * 319 * We need to re-take i_mutex during the generic_osync_inode list walk because 320 * it is otherwise livelockable. 321 */ 322 int sync_page_range(struct inode *inode, struct address_space *mapping, 323 loff_t pos, loff_t count) 324 { 325 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 327 int ret; 328 329 if (!mapping_cap_writeback_dirty(mapping) || !count) 330 return 0; 331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 332 if (ret == 0) { 333 mutex_lock(&inode->i_mutex); 334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 335 mutex_unlock(&inode->i_mutex); 336 } 337 if (ret == 0) 338 ret = wait_on_page_writeback_range(mapping, start, end); 339 return ret; 340 } 341 EXPORT_SYMBOL(sync_page_range); 342 343 /** 344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking 345 * @inode: target inode 346 * @mapping: target address_space 347 * @pos: beginning offset in pages to write 348 * @count: number of bytes to write 349 * 350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea 351 * as it forces O_SYNC writers to different parts of the same file 352 * to be serialised right until io completion. 353 */ 354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 355 loff_t pos, loff_t count) 356 { 357 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 359 int ret; 360 361 if (!mapping_cap_writeback_dirty(mapping) || !count) 362 return 0; 363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 364 if (ret == 0) 365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 366 if (ret == 0) 367 ret = wait_on_page_writeback_range(mapping, start, end); 368 return ret; 369 } 370 EXPORT_SYMBOL(sync_page_range_nolock); 371 372 /** 373 * filemap_fdatawait - wait for all under-writeback pages to complete 374 * @mapping: address space structure to wait for 375 * 376 * Walk the list of under-writeback pages of the given address space 377 * and wait for all of them. 378 */ 379 int filemap_fdatawait(struct address_space *mapping) 380 { 381 loff_t i_size = i_size_read(mapping->host); 382 383 if (i_size == 0) 384 return 0; 385 386 return wait_on_page_writeback_range(mapping, 0, 387 (i_size - 1) >> PAGE_CACHE_SHIFT); 388 } 389 EXPORT_SYMBOL(filemap_fdatawait); 390 391 int filemap_write_and_wait(struct address_space *mapping) 392 { 393 int err = 0; 394 395 if (mapping->nrpages) { 396 err = filemap_fdatawrite(mapping); 397 /* 398 * Even if the above returned error, the pages may be 399 * written partially (e.g. -ENOSPC), so we wait for it. 400 * But the -EIO is special case, it may indicate the worst 401 * thing (e.g. bug) happened, so we avoid waiting for it. 402 */ 403 if (err != -EIO) { 404 int err2 = filemap_fdatawait(mapping); 405 if (!err) 406 err = err2; 407 } 408 } 409 return err; 410 } 411 EXPORT_SYMBOL(filemap_write_and_wait); 412 413 /** 414 * filemap_write_and_wait_range - write out & wait on a file range 415 * @mapping: the address_space for the pages 416 * @lstart: offset in bytes where the range starts 417 * @lend: offset in bytes where the range ends (inclusive) 418 * 419 * Write out and wait upon file offsets lstart->lend, inclusive. 420 * 421 * Note that `lend' is inclusive (describes the last byte to be written) so 422 * that this function can be used to write to the very end-of-file (end = -1). 423 */ 424 int filemap_write_and_wait_range(struct address_space *mapping, 425 loff_t lstart, loff_t lend) 426 { 427 int err = 0; 428 429 if (mapping->nrpages) { 430 err = __filemap_fdatawrite_range(mapping, lstart, lend, 431 WB_SYNC_ALL); 432 /* See comment of filemap_write_and_wait() */ 433 if (err != -EIO) { 434 int err2 = wait_on_page_writeback_range(mapping, 435 lstart >> PAGE_CACHE_SHIFT, 436 lend >> PAGE_CACHE_SHIFT); 437 if (!err) 438 err = err2; 439 } 440 } 441 return err; 442 } 443 444 /** 445 * add_to_page_cache_locked - add a locked page to the pagecache 446 * @page: page to add 447 * @mapping: the page's address_space 448 * @offset: page index 449 * @gfp_mask: page allocation mode 450 * 451 * This function is used to add a page to the pagecache. It must be locked. 452 * This function does not add the page to the LRU. The caller must do that. 453 */ 454 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 455 pgoff_t offset, gfp_t gfp_mask) 456 { 457 int error; 458 459 VM_BUG_ON(!PageLocked(page)); 460 461 error = mem_cgroup_cache_charge(page, current->mm, 462 gfp_mask & ~__GFP_HIGHMEM); 463 if (error) 464 goto out; 465 466 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 467 if (error == 0) { 468 page_cache_get(page); 469 page->mapping = mapping; 470 page->index = offset; 471 472 spin_lock_irq(&mapping->tree_lock); 473 error = radix_tree_insert(&mapping->page_tree, offset, page); 474 if (likely(!error)) { 475 mapping->nrpages++; 476 __inc_zone_page_state(page, NR_FILE_PAGES); 477 } else { 478 page->mapping = NULL; 479 mem_cgroup_uncharge_cache_page(page); 480 page_cache_release(page); 481 } 482 483 spin_unlock_irq(&mapping->tree_lock); 484 radix_tree_preload_end(); 485 } else 486 mem_cgroup_uncharge_cache_page(page); 487 out: 488 return error; 489 } 490 EXPORT_SYMBOL(add_to_page_cache_locked); 491 492 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 493 pgoff_t offset, gfp_t gfp_mask) 494 { 495 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 496 if (ret == 0) 497 lru_cache_add(page); 498 return ret; 499 } 500 501 #ifdef CONFIG_NUMA 502 struct page *__page_cache_alloc(gfp_t gfp) 503 { 504 if (cpuset_do_page_mem_spread()) { 505 int n = cpuset_mem_spread_node(); 506 return alloc_pages_node(n, gfp, 0); 507 } 508 return alloc_pages(gfp, 0); 509 } 510 EXPORT_SYMBOL(__page_cache_alloc); 511 #endif 512 513 static int __sleep_on_page_lock(void *word) 514 { 515 io_schedule(); 516 return 0; 517 } 518 519 /* 520 * In order to wait for pages to become available there must be 521 * waitqueues associated with pages. By using a hash table of 522 * waitqueues where the bucket discipline is to maintain all 523 * waiters on the same queue and wake all when any of the pages 524 * become available, and for the woken contexts to check to be 525 * sure the appropriate page became available, this saves space 526 * at a cost of "thundering herd" phenomena during rare hash 527 * collisions. 528 */ 529 static wait_queue_head_t *page_waitqueue(struct page *page) 530 { 531 const struct zone *zone = page_zone(page); 532 533 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 534 } 535 536 static inline void wake_up_page(struct page *page, int bit) 537 { 538 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 539 } 540 541 void wait_on_page_bit(struct page *page, int bit_nr) 542 { 543 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 544 545 if (test_bit(bit_nr, &page->flags)) 546 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 547 TASK_UNINTERRUPTIBLE); 548 } 549 EXPORT_SYMBOL(wait_on_page_bit); 550 551 /** 552 * unlock_page - unlock a locked page 553 * @page: the page 554 * 555 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 556 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 557 * mechananism between PageLocked pages and PageWriteback pages is shared. 558 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 559 * 560 * The first mb is necessary to safely close the critical section opened by the 561 * test_and_set_bit() to lock the page; the second mb is necessary to enforce 562 * ordering between the clear_bit and the read of the waitqueue (to avoid SMP 563 * races with a parallel wait_on_page_locked()). 564 */ 565 void unlock_page(struct page *page) 566 { 567 smp_mb__before_clear_bit(); 568 if (!test_and_clear_bit(PG_locked, &page->flags)) 569 BUG(); 570 smp_mb__after_clear_bit(); 571 wake_up_page(page, PG_locked); 572 } 573 EXPORT_SYMBOL(unlock_page); 574 575 /** 576 * end_page_writeback - end writeback against a page 577 * @page: the page 578 */ 579 void end_page_writeback(struct page *page) 580 { 581 if (TestClearPageReclaim(page)) 582 rotate_reclaimable_page(page); 583 584 if (!test_clear_page_writeback(page)) 585 BUG(); 586 587 smp_mb__after_clear_bit(); 588 wake_up_page(page, PG_writeback); 589 } 590 EXPORT_SYMBOL(end_page_writeback); 591 592 /** 593 * __lock_page - get a lock on the page, assuming we need to sleep to get it 594 * @page: the page to lock 595 * 596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 598 * chances are that on the second loop, the block layer's plug list is empty, 599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 600 */ 601 void __lock_page(struct page *page) 602 { 603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 604 605 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 606 TASK_UNINTERRUPTIBLE); 607 } 608 EXPORT_SYMBOL(__lock_page); 609 610 int __lock_page_killable(struct page *page) 611 { 612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 613 614 return __wait_on_bit_lock(page_waitqueue(page), &wait, 615 sync_page_killable, TASK_KILLABLE); 616 } 617 618 /** 619 * __lock_page_nosync - get a lock on the page, without calling sync_page() 620 * @page: the page to lock 621 * 622 * Variant of lock_page that does not require the caller to hold a reference 623 * on the page's mapping. 624 */ 625 void __lock_page_nosync(struct page *page) 626 { 627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 628 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 629 TASK_UNINTERRUPTIBLE); 630 } 631 632 /** 633 * find_get_page - find and get a page reference 634 * @mapping: the address_space to search 635 * @offset: the page index 636 * 637 * Is there a pagecache struct page at the given (mapping, offset) tuple? 638 * If yes, increment its refcount and return it; if no, return NULL. 639 */ 640 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 641 { 642 void **pagep; 643 struct page *page; 644 645 rcu_read_lock(); 646 repeat: 647 page = NULL; 648 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 649 if (pagep) { 650 page = radix_tree_deref_slot(pagep); 651 if (unlikely(!page || page == RADIX_TREE_RETRY)) 652 goto repeat; 653 654 if (!page_cache_get_speculative(page)) 655 goto repeat; 656 657 /* 658 * Has the page moved? 659 * This is part of the lockless pagecache protocol. See 660 * include/linux/pagemap.h for details. 661 */ 662 if (unlikely(page != *pagep)) { 663 page_cache_release(page); 664 goto repeat; 665 } 666 } 667 rcu_read_unlock(); 668 669 return page; 670 } 671 EXPORT_SYMBOL(find_get_page); 672 673 /** 674 * find_lock_page - locate, pin and lock a pagecache page 675 * @mapping: the address_space to search 676 * @offset: the page index 677 * 678 * Locates the desired pagecache page, locks it, increments its reference 679 * count and returns its address. 680 * 681 * Returns zero if the page was not present. find_lock_page() may sleep. 682 */ 683 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 684 { 685 struct page *page; 686 687 repeat: 688 page = find_get_page(mapping, offset); 689 if (page) { 690 lock_page(page); 691 /* Has the page been truncated? */ 692 if (unlikely(page->mapping != mapping)) { 693 unlock_page(page); 694 page_cache_release(page); 695 goto repeat; 696 } 697 VM_BUG_ON(page->index != offset); 698 } 699 return page; 700 } 701 EXPORT_SYMBOL(find_lock_page); 702 703 /** 704 * find_or_create_page - locate or add a pagecache page 705 * @mapping: the page's address_space 706 * @index: the page's index into the mapping 707 * @gfp_mask: page allocation mode 708 * 709 * Locates a page in the pagecache. If the page is not present, a new page 710 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 711 * LRU list. The returned page is locked and has its reference count 712 * incremented. 713 * 714 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 715 * allocation! 716 * 717 * find_or_create_page() returns the desired page's address, or zero on 718 * memory exhaustion. 719 */ 720 struct page *find_or_create_page(struct address_space *mapping, 721 pgoff_t index, gfp_t gfp_mask) 722 { 723 struct page *page; 724 int err; 725 repeat: 726 page = find_lock_page(mapping, index); 727 if (!page) { 728 page = __page_cache_alloc(gfp_mask); 729 if (!page) 730 return NULL; 731 err = add_to_page_cache_lru(page, mapping, index, gfp_mask); 732 if (unlikely(err)) { 733 page_cache_release(page); 734 page = NULL; 735 if (err == -EEXIST) 736 goto repeat; 737 } 738 } 739 return page; 740 } 741 EXPORT_SYMBOL(find_or_create_page); 742 743 /** 744 * find_get_pages - gang pagecache lookup 745 * @mapping: The address_space to search 746 * @start: The starting page index 747 * @nr_pages: The maximum number of pages 748 * @pages: Where the resulting pages are placed 749 * 750 * find_get_pages() will search for and return a group of up to 751 * @nr_pages pages in the mapping. The pages are placed at @pages. 752 * find_get_pages() takes a reference against the returned pages. 753 * 754 * The search returns a group of mapping-contiguous pages with ascending 755 * indexes. There may be holes in the indices due to not-present pages. 756 * 757 * find_get_pages() returns the number of pages which were found. 758 */ 759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 760 unsigned int nr_pages, struct page **pages) 761 { 762 unsigned int i; 763 unsigned int ret; 764 unsigned int nr_found; 765 766 rcu_read_lock(); 767 restart: 768 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 769 (void ***)pages, start, nr_pages); 770 ret = 0; 771 for (i = 0; i < nr_found; i++) { 772 struct page *page; 773 repeat: 774 page = radix_tree_deref_slot((void **)pages[i]); 775 if (unlikely(!page)) 776 continue; 777 /* 778 * this can only trigger if nr_found == 1, making livelock 779 * a non issue. 780 */ 781 if (unlikely(page == RADIX_TREE_RETRY)) 782 goto restart; 783 784 if (!page_cache_get_speculative(page)) 785 goto repeat; 786 787 /* Has the page moved? */ 788 if (unlikely(page != *((void **)pages[i]))) { 789 page_cache_release(page); 790 goto repeat; 791 } 792 793 pages[ret] = page; 794 ret++; 795 } 796 rcu_read_unlock(); 797 return ret; 798 } 799 800 /** 801 * find_get_pages_contig - gang contiguous pagecache lookup 802 * @mapping: The address_space to search 803 * @index: The starting page index 804 * @nr_pages: The maximum number of pages 805 * @pages: Where the resulting pages are placed 806 * 807 * find_get_pages_contig() works exactly like find_get_pages(), except 808 * that the returned number of pages are guaranteed to be contiguous. 809 * 810 * find_get_pages_contig() returns the number of pages which were found. 811 */ 812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 813 unsigned int nr_pages, struct page **pages) 814 { 815 unsigned int i; 816 unsigned int ret; 817 unsigned int nr_found; 818 819 rcu_read_lock(); 820 restart: 821 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 822 (void ***)pages, index, nr_pages); 823 ret = 0; 824 for (i = 0; i < nr_found; i++) { 825 struct page *page; 826 repeat: 827 page = radix_tree_deref_slot((void **)pages[i]); 828 if (unlikely(!page)) 829 continue; 830 /* 831 * this can only trigger if nr_found == 1, making livelock 832 * a non issue. 833 */ 834 if (unlikely(page == RADIX_TREE_RETRY)) 835 goto restart; 836 837 if (page->mapping == NULL || page->index != index) 838 break; 839 840 if (!page_cache_get_speculative(page)) 841 goto repeat; 842 843 /* Has the page moved? */ 844 if (unlikely(page != *((void **)pages[i]))) { 845 page_cache_release(page); 846 goto repeat; 847 } 848 849 pages[ret] = page; 850 ret++; 851 index++; 852 } 853 rcu_read_unlock(); 854 return ret; 855 } 856 EXPORT_SYMBOL(find_get_pages_contig); 857 858 /** 859 * find_get_pages_tag - find and return pages that match @tag 860 * @mapping: the address_space to search 861 * @index: the starting page index 862 * @tag: the tag index 863 * @nr_pages: the maximum number of pages 864 * @pages: where the resulting pages are placed 865 * 866 * Like find_get_pages, except we only return pages which are tagged with 867 * @tag. We update @index to index the next page for the traversal. 868 */ 869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 870 int tag, unsigned int nr_pages, struct page **pages) 871 { 872 unsigned int i; 873 unsigned int ret; 874 unsigned int nr_found; 875 876 rcu_read_lock(); 877 restart: 878 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 879 (void ***)pages, *index, nr_pages, tag); 880 ret = 0; 881 for (i = 0; i < nr_found; i++) { 882 struct page *page; 883 repeat: 884 page = radix_tree_deref_slot((void **)pages[i]); 885 if (unlikely(!page)) 886 continue; 887 /* 888 * this can only trigger if nr_found == 1, making livelock 889 * a non issue. 890 */ 891 if (unlikely(page == RADIX_TREE_RETRY)) 892 goto restart; 893 894 if (!page_cache_get_speculative(page)) 895 goto repeat; 896 897 /* Has the page moved? */ 898 if (unlikely(page != *((void **)pages[i]))) { 899 page_cache_release(page); 900 goto repeat; 901 } 902 903 pages[ret] = page; 904 ret++; 905 } 906 rcu_read_unlock(); 907 908 if (ret) 909 *index = pages[ret - 1]->index + 1; 910 911 return ret; 912 } 913 EXPORT_SYMBOL(find_get_pages_tag); 914 915 /** 916 * grab_cache_page_nowait - returns locked page at given index in given cache 917 * @mapping: target address_space 918 * @index: the page index 919 * 920 * Same as grab_cache_page(), but do not wait if the page is unavailable. 921 * This is intended for speculative data generators, where the data can 922 * be regenerated if the page couldn't be grabbed. This routine should 923 * be safe to call while holding the lock for another page. 924 * 925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 926 * and deadlock against the caller's locked page. 927 */ 928 struct page * 929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 930 { 931 struct page *page = find_get_page(mapping, index); 932 933 if (page) { 934 if (trylock_page(page)) 935 return page; 936 page_cache_release(page); 937 return NULL; 938 } 939 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 940 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) { 941 page_cache_release(page); 942 page = NULL; 943 } 944 return page; 945 } 946 EXPORT_SYMBOL(grab_cache_page_nowait); 947 948 /* 949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 950 * a _large_ part of the i/o request. Imagine the worst scenario: 951 * 952 * ---R__________________________________________B__________ 953 * ^ reading here ^ bad block(assume 4k) 954 * 955 * read(R) => miss => readahead(R...B) => media error => frustrating retries 956 * => failing the whole request => read(R) => read(R+1) => 957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 960 * 961 * It is going insane. Fix it by quickly scaling down the readahead size. 962 */ 963 static void shrink_readahead_size_eio(struct file *filp, 964 struct file_ra_state *ra) 965 { 966 if (!ra->ra_pages) 967 return; 968 969 ra->ra_pages /= 4; 970 } 971 972 /** 973 * do_generic_file_read - generic file read routine 974 * @filp: the file to read 975 * @ppos: current file position 976 * @desc: read_descriptor 977 * @actor: read method 978 * 979 * This is a generic file read routine, and uses the 980 * mapping->a_ops->readpage() function for the actual low-level stuff. 981 * 982 * This is really ugly. But the goto's actually try to clarify some 983 * of the logic when it comes to error handling etc. 984 */ 985 static void do_generic_file_read(struct file *filp, loff_t *ppos, 986 read_descriptor_t *desc, read_actor_t actor) 987 { 988 struct address_space *mapping = filp->f_mapping; 989 struct inode *inode = mapping->host; 990 struct file_ra_state *ra = &filp->f_ra; 991 pgoff_t index; 992 pgoff_t last_index; 993 pgoff_t prev_index; 994 unsigned long offset; /* offset into pagecache page */ 995 unsigned int prev_offset; 996 int error; 997 998 index = *ppos >> PAGE_CACHE_SHIFT; 999 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1000 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1001 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1002 offset = *ppos & ~PAGE_CACHE_MASK; 1003 1004 for (;;) { 1005 struct page *page; 1006 pgoff_t end_index; 1007 loff_t isize; 1008 unsigned long nr, ret; 1009 1010 cond_resched(); 1011 find_page: 1012 page = find_get_page(mapping, index); 1013 if (!page) { 1014 page_cache_sync_readahead(mapping, 1015 ra, filp, 1016 index, last_index - index); 1017 page = find_get_page(mapping, index); 1018 if (unlikely(page == NULL)) 1019 goto no_cached_page; 1020 } 1021 if (PageReadahead(page)) { 1022 page_cache_async_readahead(mapping, 1023 ra, filp, page, 1024 index, last_index - index); 1025 } 1026 if (!PageUptodate(page)) { 1027 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1028 !mapping->a_ops->is_partially_uptodate) 1029 goto page_not_up_to_date; 1030 if (!trylock_page(page)) 1031 goto page_not_up_to_date; 1032 if (!mapping->a_ops->is_partially_uptodate(page, 1033 desc, offset)) 1034 goto page_not_up_to_date_locked; 1035 unlock_page(page); 1036 } 1037 page_ok: 1038 /* 1039 * i_size must be checked after we know the page is Uptodate. 1040 * 1041 * Checking i_size after the check allows us to calculate 1042 * the correct value for "nr", which means the zero-filled 1043 * part of the page is not copied back to userspace (unless 1044 * another truncate extends the file - this is desired though). 1045 */ 1046 1047 isize = i_size_read(inode); 1048 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1049 if (unlikely(!isize || index > end_index)) { 1050 page_cache_release(page); 1051 goto out; 1052 } 1053 1054 /* nr is the maximum number of bytes to copy from this page */ 1055 nr = PAGE_CACHE_SIZE; 1056 if (index == end_index) { 1057 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1058 if (nr <= offset) { 1059 page_cache_release(page); 1060 goto out; 1061 } 1062 } 1063 nr = nr - offset; 1064 1065 /* If users can be writing to this page using arbitrary 1066 * virtual addresses, take care about potential aliasing 1067 * before reading the page on the kernel side. 1068 */ 1069 if (mapping_writably_mapped(mapping)) 1070 flush_dcache_page(page); 1071 1072 /* 1073 * When a sequential read accesses a page several times, 1074 * only mark it as accessed the first time. 1075 */ 1076 if (prev_index != index || offset != prev_offset) 1077 mark_page_accessed(page); 1078 prev_index = index; 1079 1080 /* 1081 * Ok, we have the page, and it's up-to-date, so 1082 * now we can copy it to user space... 1083 * 1084 * The actor routine returns how many bytes were actually used.. 1085 * NOTE! This may not be the same as how much of a user buffer 1086 * we filled up (we may be padding etc), so we can only update 1087 * "pos" here (the actor routine has to update the user buffer 1088 * pointers and the remaining count). 1089 */ 1090 ret = actor(desc, page, offset, nr); 1091 offset += ret; 1092 index += offset >> PAGE_CACHE_SHIFT; 1093 offset &= ~PAGE_CACHE_MASK; 1094 prev_offset = offset; 1095 1096 page_cache_release(page); 1097 if (ret == nr && desc->count) 1098 continue; 1099 goto out; 1100 1101 page_not_up_to_date: 1102 /* Get exclusive access to the page ... */ 1103 if (lock_page_killable(page)) 1104 goto readpage_eio; 1105 1106 page_not_up_to_date_locked: 1107 /* Did it get truncated before we got the lock? */ 1108 if (!page->mapping) { 1109 unlock_page(page); 1110 page_cache_release(page); 1111 continue; 1112 } 1113 1114 /* Did somebody else fill it already? */ 1115 if (PageUptodate(page)) { 1116 unlock_page(page); 1117 goto page_ok; 1118 } 1119 1120 readpage: 1121 /* Start the actual read. The read will unlock the page. */ 1122 error = mapping->a_ops->readpage(filp, page); 1123 1124 if (unlikely(error)) { 1125 if (error == AOP_TRUNCATED_PAGE) { 1126 page_cache_release(page); 1127 goto find_page; 1128 } 1129 goto readpage_error; 1130 } 1131 1132 if (!PageUptodate(page)) { 1133 if (lock_page_killable(page)) 1134 goto readpage_eio; 1135 if (!PageUptodate(page)) { 1136 if (page->mapping == NULL) { 1137 /* 1138 * invalidate_inode_pages got it 1139 */ 1140 unlock_page(page); 1141 page_cache_release(page); 1142 goto find_page; 1143 } 1144 unlock_page(page); 1145 shrink_readahead_size_eio(filp, ra); 1146 goto readpage_eio; 1147 } 1148 unlock_page(page); 1149 } 1150 1151 goto page_ok; 1152 1153 readpage_eio: 1154 error = -EIO; 1155 readpage_error: 1156 /* UHHUH! A synchronous read error occurred. Report it */ 1157 desc->error = error; 1158 page_cache_release(page); 1159 goto out; 1160 1161 no_cached_page: 1162 /* 1163 * Ok, it wasn't cached, so we need to create a new 1164 * page.. 1165 */ 1166 page = page_cache_alloc_cold(mapping); 1167 if (!page) { 1168 desc->error = -ENOMEM; 1169 goto out; 1170 } 1171 error = add_to_page_cache_lru(page, mapping, 1172 index, GFP_KERNEL); 1173 if (error) { 1174 page_cache_release(page); 1175 if (error == -EEXIST) 1176 goto find_page; 1177 desc->error = error; 1178 goto out; 1179 } 1180 goto readpage; 1181 } 1182 1183 out: 1184 ra->prev_pos = prev_index; 1185 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1186 ra->prev_pos |= prev_offset; 1187 1188 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1189 if (filp) 1190 file_accessed(filp); 1191 } 1192 1193 int file_read_actor(read_descriptor_t *desc, struct page *page, 1194 unsigned long offset, unsigned long size) 1195 { 1196 char *kaddr; 1197 unsigned long left, count = desc->count; 1198 1199 if (size > count) 1200 size = count; 1201 1202 /* 1203 * Faults on the destination of a read are common, so do it before 1204 * taking the kmap. 1205 */ 1206 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1207 kaddr = kmap_atomic(page, KM_USER0); 1208 left = __copy_to_user_inatomic(desc->arg.buf, 1209 kaddr + offset, size); 1210 kunmap_atomic(kaddr, KM_USER0); 1211 if (left == 0) 1212 goto success; 1213 } 1214 1215 /* Do it the slow way */ 1216 kaddr = kmap(page); 1217 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1218 kunmap(page); 1219 1220 if (left) { 1221 size -= left; 1222 desc->error = -EFAULT; 1223 } 1224 success: 1225 desc->count = count - size; 1226 desc->written += size; 1227 desc->arg.buf += size; 1228 return size; 1229 } 1230 1231 /* 1232 * Performs necessary checks before doing a write 1233 * @iov: io vector request 1234 * @nr_segs: number of segments in the iovec 1235 * @count: number of bytes to write 1236 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1237 * 1238 * Adjust number of segments and amount of bytes to write (nr_segs should be 1239 * properly initialized first). Returns appropriate error code that caller 1240 * should return or zero in case that write should be allowed. 1241 */ 1242 int generic_segment_checks(const struct iovec *iov, 1243 unsigned long *nr_segs, size_t *count, int access_flags) 1244 { 1245 unsigned long seg; 1246 size_t cnt = 0; 1247 for (seg = 0; seg < *nr_segs; seg++) { 1248 const struct iovec *iv = &iov[seg]; 1249 1250 /* 1251 * If any segment has a negative length, or the cumulative 1252 * length ever wraps negative then return -EINVAL. 1253 */ 1254 cnt += iv->iov_len; 1255 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1256 return -EINVAL; 1257 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1258 continue; 1259 if (seg == 0) 1260 return -EFAULT; 1261 *nr_segs = seg; 1262 cnt -= iv->iov_len; /* This segment is no good */ 1263 break; 1264 } 1265 *count = cnt; 1266 return 0; 1267 } 1268 EXPORT_SYMBOL(generic_segment_checks); 1269 1270 /** 1271 * generic_file_aio_read - generic filesystem read routine 1272 * @iocb: kernel I/O control block 1273 * @iov: io vector request 1274 * @nr_segs: number of segments in the iovec 1275 * @pos: current file position 1276 * 1277 * This is the "read()" routine for all filesystems 1278 * that can use the page cache directly. 1279 */ 1280 ssize_t 1281 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1282 unsigned long nr_segs, loff_t pos) 1283 { 1284 struct file *filp = iocb->ki_filp; 1285 ssize_t retval; 1286 unsigned long seg; 1287 size_t count; 1288 loff_t *ppos = &iocb->ki_pos; 1289 1290 count = 0; 1291 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1292 if (retval) 1293 return retval; 1294 1295 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1296 if (filp->f_flags & O_DIRECT) { 1297 loff_t size; 1298 struct address_space *mapping; 1299 struct inode *inode; 1300 1301 mapping = filp->f_mapping; 1302 inode = mapping->host; 1303 if (!count) 1304 goto out; /* skip atime */ 1305 size = i_size_read(inode); 1306 if (pos < size) { 1307 retval = filemap_write_and_wait(mapping); 1308 if (!retval) { 1309 retval = mapping->a_ops->direct_IO(READ, iocb, 1310 iov, pos, nr_segs); 1311 } 1312 if (retval > 0) 1313 *ppos = pos + retval; 1314 if (retval) { 1315 file_accessed(filp); 1316 goto out; 1317 } 1318 } 1319 } 1320 1321 for (seg = 0; seg < nr_segs; seg++) { 1322 read_descriptor_t desc; 1323 1324 desc.written = 0; 1325 desc.arg.buf = iov[seg].iov_base; 1326 desc.count = iov[seg].iov_len; 1327 if (desc.count == 0) 1328 continue; 1329 desc.error = 0; 1330 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1331 retval += desc.written; 1332 if (desc.error) { 1333 retval = retval ?: desc.error; 1334 break; 1335 } 1336 if (desc.count > 0) 1337 break; 1338 } 1339 out: 1340 return retval; 1341 } 1342 EXPORT_SYMBOL(generic_file_aio_read); 1343 1344 static ssize_t 1345 do_readahead(struct address_space *mapping, struct file *filp, 1346 pgoff_t index, unsigned long nr) 1347 { 1348 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1349 return -EINVAL; 1350 1351 force_page_cache_readahead(mapping, filp, index, 1352 max_sane_readahead(nr)); 1353 return 0; 1354 } 1355 1356 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1357 { 1358 ssize_t ret; 1359 struct file *file; 1360 1361 ret = -EBADF; 1362 file = fget(fd); 1363 if (file) { 1364 if (file->f_mode & FMODE_READ) { 1365 struct address_space *mapping = file->f_mapping; 1366 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1367 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1368 unsigned long len = end - start + 1; 1369 ret = do_readahead(mapping, file, start, len); 1370 } 1371 fput(file); 1372 } 1373 return ret; 1374 } 1375 1376 #ifdef CONFIG_MMU 1377 /** 1378 * page_cache_read - adds requested page to the page cache if not already there 1379 * @file: file to read 1380 * @offset: page index 1381 * 1382 * This adds the requested page to the page cache if it isn't already there, 1383 * and schedules an I/O to read in its contents from disk. 1384 */ 1385 static int page_cache_read(struct file *file, pgoff_t offset) 1386 { 1387 struct address_space *mapping = file->f_mapping; 1388 struct page *page; 1389 int ret; 1390 1391 do { 1392 page = page_cache_alloc_cold(mapping); 1393 if (!page) 1394 return -ENOMEM; 1395 1396 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1397 if (ret == 0) 1398 ret = mapping->a_ops->readpage(file, page); 1399 else if (ret == -EEXIST) 1400 ret = 0; /* losing race to add is OK */ 1401 1402 page_cache_release(page); 1403 1404 } while (ret == AOP_TRUNCATED_PAGE); 1405 1406 return ret; 1407 } 1408 1409 #define MMAP_LOTSAMISS (100) 1410 1411 /** 1412 * filemap_fault - read in file data for page fault handling 1413 * @vma: vma in which the fault was taken 1414 * @vmf: struct vm_fault containing details of the fault 1415 * 1416 * filemap_fault() is invoked via the vma operations vector for a 1417 * mapped memory region to read in file data during a page fault. 1418 * 1419 * The goto's are kind of ugly, but this streamlines the normal case of having 1420 * it in the page cache, and handles the special cases reasonably without 1421 * having a lot of duplicated code. 1422 */ 1423 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1424 { 1425 int error; 1426 struct file *file = vma->vm_file; 1427 struct address_space *mapping = file->f_mapping; 1428 struct file_ra_state *ra = &file->f_ra; 1429 struct inode *inode = mapping->host; 1430 struct page *page; 1431 pgoff_t size; 1432 int did_readaround = 0; 1433 int ret = 0; 1434 1435 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1436 if (vmf->pgoff >= size) 1437 return VM_FAULT_SIGBUS; 1438 1439 /* If we don't want any read-ahead, don't bother */ 1440 if (VM_RandomReadHint(vma)) 1441 goto no_cached_page; 1442 1443 /* 1444 * Do we have something in the page cache already? 1445 */ 1446 retry_find: 1447 page = find_lock_page(mapping, vmf->pgoff); 1448 /* 1449 * For sequential accesses, we use the generic readahead logic. 1450 */ 1451 if (VM_SequentialReadHint(vma)) { 1452 if (!page) { 1453 page_cache_sync_readahead(mapping, ra, file, 1454 vmf->pgoff, 1); 1455 page = find_lock_page(mapping, vmf->pgoff); 1456 if (!page) 1457 goto no_cached_page; 1458 } 1459 if (PageReadahead(page)) { 1460 page_cache_async_readahead(mapping, ra, file, page, 1461 vmf->pgoff, 1); 1462 } 1463 } 1464 1465 if (!page) { 1466 unsigned long ra_pages; 1467 1468 ra->mmap_miss++; 1469 1470 /* 1471 * Do we miss much more than hit in this file? If so, 1472 * stop bothering with read-ahead. It will only hurt. 1473 */ 1474 if (ra->mmap_miss > MMAP_LOTSAMISS) 1475 goto no_cached_page; 1476 1477 /* 1478 * To keep the pgmajfault counter straight, we need to 1479 * check did_readaround, as this is an inner loop. 1480 */ 1481 if (!did_readaround) { 1482 ret = VM_FAULT_MAJOR; 1483 count_vm_event(PGMAJFAULT); 1484 } 1485 did_readaround = 1; 1486 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1487 if (ra_pages) { 1488 pgoff_t start = 0; 1489 1490 if (vmf->pgoff > ra_pages / 2) 1491 start = vmf->pgoff - ra_pages / 2; 1492 do_page_cache_readahead(mapping, file, start, ra_pages); 1493 } 1494 page = find_lock_page(mapping, vmf->pgoff); 1495 if (!page) 1496 goto no_cached_page; 1497 } 1498 1499 if (!did_readaround) 1500 ra->mmap_miss--; 1501 1502 /* 1503 * We have a locked page in the page cache, now we need to check 1504 * that it's up-to-date. If not, it is going to be due to an error. 1505 */ 1506 if (unlikely(!PageUptodate(page))) 1507 goto page_not_uptodate; 1508 1509 /* Must recheck i_size under page lock */ 1510 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1511 if (unlikely(vmf->pgoff >= size)) { 1512 unlock_page(page); 1513 page_cache_release(page); 1514 return VM_FAULT_SIGBUS; 1515 } 1516 1517 /* 1518 * Found the page and have a reference on it. 1519 */ 1520 mark_page_accessed(page); 1521 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT; 1522 vmf->page = page; 1523 return ret | VM_FAULT_LOCKED; 1524 1525 no_cached_page: 1526 /* 1527 * We're only likely to ever get here if MADV_RANDOM is in 1528 * effect. 1529 */ 1530 error = page_cache_read(file, vmf->pgoff); 1531 1532 /* 1533 * The page we want has now been added to the page cache. 1534 * In the unlikely event that someone removed it in the 1535 * meantime, we'll just come back here and read it again. 1536 */ 1537 if (error >= 0) 1538 goto retry_find; 1539 1540 /* 1541 * An error return from page_cache_read can result if the 1542 * system is low on memory, or a problem occurs while trying 1543 * to schedule I/O. 1544 */ 1545 if (error == -ENOMEM) 1546 return VM_FAULT_OOM; 1547 return VM_FAULT_SIGBUS; 1548 1549 page_not_uptodate: 1550 /* IO error path */ 1551 if (!did_readaround) { 1552 ret = VM_FAULT_MAJOR; 1553 count_vm_event(PGMAJFAULT); 1554 } 1555 1556 /* 1557 * Umm, take care of errors if the page isn't up-to-date. 1558 * Try to re-read it _once_. We do this synchronously, 1559 * because there really aren't any performance issues here 1560 * and we need to check for errors. 1561 */ 1562 ClearPageError(page); 1563 error = mapping->a_ops->readpage(file, page); 1564 if (!error) { 1565 wait_on_page_locked(page); 1566 if (!PageUptodate(page)) 1567 error = -EIO; 1568 } 1569 page_cache_release(page); 1570 1571 if (!error || error == AOP_TRUNCATED_PAGE) 1572 goto retry_find; 1573 1574 /* Things didn't work out. Return zero to tell the mm layer so. */ 1575 shrink_readahead_size_eio(file, ra); 1576 return VM_FAULT_SIGBUS; 1577 } 1578 EXPORT_SYMBOL(filemap_fault); 1579 1580 struct vm_operations_struct generic_file_vm_ops = { 1581 .fault = filemap_fault, 1582 }; 1583 1584 /* This is used for a general mmap of a disk file */ 1585 1586 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1587 { 1588 struct address_space *mapping = file->f_mapping; 1589 1590 if (!mapping->a_ops->readpage) 1591 return -ENOEXEC; 1592 file_accessed(file); 1593 vma->vm_ops = &generic_file_vm_ops; 1594 vma->vm_flags |= VM_CAN_NONLINEAR; 1595 return 0; 1596 } 1597 1598 /* 1599 * This is for filesystems which do not implement ->writepage. 1600 */ 1601 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1602 { 1603 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1604 return -EINVAL; 1605 return generic_file_mmap(file, vma); 1606 } 1607 #else 1608 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1609 { 1610 return -ENOSYS; 1611 } 1612 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1613 { 1614 return -ENOSYS; 1615 } 1616 #endif /* CONFIG_MMU */ 1617 1618 EXPORT_SYMBOL(generic_file_mmap); 1619 EXPORT_SYMBOL(generic_file_readonly_mmap); 1620 1621 static struct page *__read_cache_page(struct address_space *mapping, 1622 pgoff_t index, 1623 int (*filler)(void *,struct page*), 1624 void *data) 1625 { 1626 struct page *page; 1627 int err; 1628 repeat: 1629 page = find_get_page(mapping, index); 1630 if (!page) { 1631 page = page_cache_alloc_cold(mapping); 1632 if (!page) 1633 return ERR_PTR(-ENOMEM); 1634 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1635 if (unlikely(err)) { 1636 page_cache_release(page); 1637 if (err == -EEXIST) 1638 goto repeat; 1639 /* Presumably ENOMEM for radix tree node */ 1640 return ERR_PTR(err); 1641 } 1642 err = filler(data, page); 1643 if (err < 0) { 1644 page_cache_release(page); 1645 page = ERR_PTR(err); 1646 } 1647 } 1648 return page; 1649 } 1650 1651 /** 1652 * read_cache_page_async - read into page cache, fill it if needed 1653 * @mapping: the page's address_space 1654 * @index: the page index 1655 * @filler: function to perform the read 1656 * @data: destination for read data 1657 * 1658 * Same as read_cache_page, but don't wait for page to become unlocked 1659 * after submitting it to the filler. 1660 * 1661 * Read into the page cache. If a page already exists, and PageUptodate() is 1662 * not set, try to fill the page but don't wait for it to become unlocked. 1663 * 1664 * If the page does not get brought uptodate, return -EIO. 1665 */ 1666 struct page *read_cache_page_async(struct address_space *mapping, 1667 pgoff_t index, 1668 int (*filler)(void *,struct page*), 1669 void *data) 1670 { 1671 struct page *page; 1672 int err; 1673 1674 retry: 1675 page = __read_cache_page(mapping, index, filler, data); 1676 if (IS_ERR(page)) 1677 return page; 1678 if (PageUptodate(page)) 1679 goto out; 1680 1681 lock_page(page); 1682 if (!page->mapping) { 1683 unlock_page(page); 1684 page_cache_release(page); 1685 goto retry; 1686 } 1687 if (PageUptodate(page)) { 1688 unlock_page(page); 1689 goto out; 1690 } 1691 err = filler(data, page); 1692 if (err < 0) { 1693 page_cache_release(page); 1694 return ERR_PTR(err); 1695 } 1696 out: 1697 mark_page_accessed(page); 1698 return page; 1699 } 1700 EXPORT_SYMBOL(read_cache_page_async); 1701 1702 /** 1703 * read_cache_page - read into page cache, fill it if needed 1704 * @mapping: the page's address_space 1705 * @index: the page index 1706 * @filler: function to perform the read 1707 * @data: destination for read data 1708 * 1709 * Read into the page cache. If a page already exists, and PageUptodate() is 1710 * not set, try to fill the page then wait for it to become unlocked. 1711 * 1712 * If the page does not get brought uptodate, return -EIO. 1713 */ 1714 struct page *read_cache_page(struct address_space *mapping, 1715 pgoff_t index, 1716 int (*filler)(void *,struct page*), 1717 void *data) 1718 { 1719 struct page *page; 1720 1721 page = read_cache_page_async(mapping, index, filler, data); 1722 if (IS_ERR(page)) 1723 goto out; 1724 wait_on_page_locked(page); 1725 if (!PageUptodate(page)) { 1726 page_cache_release(page); 1727 page = ERR_PTR(-EIO); 1728 } 1729 out: 1730 return page; 1731 } 1732 EXPORT_SYMBOL(read_cache_page); 1733 1734 /* 1735 * The logic we want is 1736 * 1737 * if suid or (sgid and xgrp) 1738 * remove privs 1739 */ 1740 int should_remove_suid(struct dentry *dentry) 1741 { 1742 mode_t mode = dentry->d_inode->i_mode; 1743 int kill = 0; 1744 1745 /* suid always must be killed */ 1746 if (unlikely(mode & S_ISUID)) 1747 kill = ATTR_KILL_SUID; 1748 1749 /* 1750 * sgid without any exec bits is just a mandatory locking mark; leave 1751 * it alone. If some exec bits are set, it's a real sgid; kill it. 1752 */ 1753 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1754 kill |= ATTR_KILL_SGID; 1755 1756 if (unlikely(kill && !capable(CAP_FSETID))) 1757 return kill; 1758 1759 return 0; 1760 } 1761 EXPORT_SYMBOL(should_remove_suid); 1762 1763 static int __remove_suid(struct dentry *dentry, int kill) 1764 { 1765 struct iattr newattrs; 1766 1767 newattrs.ia_valid = ATTR_FORCE | kill; 1768 return notify_change(dentry, &newattrs); 1769 } 1770 1771 int file_remove_suid(struct file *file) 1772 { 1773 struct dentry *dentry = file->f_path.dentry; 1774 int killsuid = should_remove_suid(dentry); 1775 int killpriv = security_inode_need_killpriv(dentry); 1776 int error = 0; 1777 1778 if (killpriv < 0) 1779 return killpriv; 1780 if (killpriv) 1781 error = security_inode_killpriv(dentry); 1782 if (!error && killsuid) 1783 error = __remove_suid(dentry, killsuid); 1784 1785 return error; 1786 } 1787 EXPORT_SYMBOL(file_remove_suid); 1788 1789 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1790 const struct iovec *iov, size_t base, size_t bytes) 1791 { 1792 size_t copied = 0, left = 0; 1793 1794 while (bytes) { 1795 char __user *buf = iov->iov_base + base; 1796 int copy = min(bytes, iov->iov_len - base); 1797 1798 base = 0; 1799 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1800 copied += copy; 1801 bytes -= copy; 1802 vaddr += copy; 1803 iov++; 1804 1805 if (unlikely(left)) 1806 break; 1807 } 1808 return copied - left; 1809 } 1810 1811 /* 1812 * Copy as much as we can into the page and return the number of bytes which 1813 * were sucessfully copied. If a fault is encountered then return the number of 1814 * bytes which were copied. 1815 */ 1816 size_t iov_iter_copy_from_user_atomic(struct page *page, 1817 struct iov_iter *i, unsigned long offset, size_t bytes) 1818 { 1819 char *kaddr; 1820 size_t copied; 1821 1822 BUG_ON(!in_atomic()); 1823 kaddr = kmap_atomic(page, KM_USER0); 1824 if (likely(i->nr_segs == 1)) { 1825 int left; 1826 char __user *buf = i->iov->iov_base + i->iov_offset; 1827 left = __copy_from_user_inatomic_nocache(kaddr + offset, 1828 buf, bytes); 1829 copied = bytes - left; 1830 } else { 1831 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1832 i->iov, i->iov_offset, bytes); 1833 } 1834 kunmap_atomic(kaddr, KM_USER0); 1835 1836 return copied; 1837 } 1838 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1839 1840 /* 1841 * This has the same sideeffects and return value as 1842 * iov_iter_copy_from_user_atomic(). 1843 * The difference is that it attempts to resolve faults. 1844 * Page must not be locked. 1845 */ 1846 size_t iov_iter_copy_from_user(struct page *page, 1847 struct iov_iter *i, unsigned long offset, size_t bytes) 1848 { 1849 char *kaddr; 1850 size_t copied; 1851 1852 kaddr = kmap(page); 1853 if (likely(i->nr_segs == 1)) { 1854 int left; 1855 char __user *buf = i->iov->iov_base + i->iov_offset; 1856 left = __copy_from_user_nocache(kaddr + offset, buf, bytes); 1857 copied = bytes - left; 1858 } else { 1859 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1860 i->iov, i->iov_offset, bytes); 1861 } 1862 kunmap(page); 1863 return copied; 1864 } 1865 EXPORT_SYMBOL(iov_iter_copy_from_user); 1866 1867 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1868 { 1869 BUG_ON(i->count < bytes); 1870 1871 if (likely(i->nr_segs == 1)) { 1872 i->iov_offset += bytes; 1873 i->count -= bytes; 1874 } else { 1875 const struct iovec *iov = i->iov; 1876 size_t base = i->iov_offset; 1877 1878 /* 1879 * The !iov->iov_len check ensures we skip over unlikely 1880 * zero-length segments (without overruning the iovec). 1881 */ 1882 while (bytes || unlikely(i->count && !iov->iov_len)) { 1883 int copy; 1884 1885 copy = min(bytes, iov->iov_len - base); 1886 BUG_ON(!i->count || i->count < copy); 1887 i->count -= copy; 1888 bytes -= copy; 1889 base += copy; 1890 if (iov->iov_len == base) { 1891 iov++; 1892 base = 0; 1893 } 1894 } 1895 i->iov = iov; 1896 i->iov_offset = base; 1897 } 1898 } 1899 EXPORT_SYMBOL(iov_iter_advance); 1900 1901 /* 1902 * Fault in the first iovec of the given iov_iter, to a maximum length 1903 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1904 * accessed (ie. because it is an invalid address). 1905 * 1906 * writev-intensive code may want this to prefault several iovecs -- that 1907 * would be possible (callers must not rely on the fact that _only_ the 1908 * first iovec will be faulted with the current implementation). 1909 */ 1910 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1911 { 1912 char __user *buf = i->iov->iov_base + i->iov_offset; 1913 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1914 return fault_in_pages_readable(buf, bytes); 1915 } 1916 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1917 1918 /* 1919 * Return the count of just the current iov_iter segment. 1920 */ 1921 size_t iov_iter_single_seg_count(struct iov_iter *i) 1922 { 1923 const struct iovec *iov = i->iov; 1924 if (i->nr_segs == 1) 1925 return i->count; 1926 else 1927 return min(i->count, iov->iov_len - i->iov_offset); 1928 } 1929 EXPORT_SYMBOL(iov_iter_single_seg_count); 1930 1931 /* 1932 * Performs necessary checks before doing a write 1933 * 1934 * Can adjust writing position or amount of bytes to write. 1935 * Returns appropriate error code that caller should return or 1936 * zero in case that write should be allowed. 1937 */ 1938 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1939 { 1940 struct inode *inode = file->f_mapping->host; 1941 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1942 1943 if (unlikely(*pos < 0)) 1944 return -EINVAL; 1945 1946 if (!isblk) { 1947 /* FIXME: this is for backwards compatibility with 2.4 */ 1948 if (file->f_flags & O_APPEND) 1949 *pos = i_size_read(inode); 1950 1951 if (limit != RLIM_INFINITY) { 1952 if (*pos >= limit) { 1953 send_sig(SIGXFSZ, current, 0); 1954 return -EFBIG; 1955 } 1956 if (*count > limit - (typeof(limit))*pos) { 1957 *count = limit - (typeof(limit))*pos; 1958 } 1959 } 1960 } 1961 1962 /* 1963 * LFS rule 1964 */ 1965 if (unlikely(*pos + *count > MAX_NON_LFS && 1966 !(file->f_flags & O_LARGEFILE))) { 1967 if (*pos >= MAX_NON_LFS) { 1968 return -EFBIG; 1969 } 1970 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1971 *count = MAX_NON_LFS - (unsigned long)*pos; 1972 } 1973 } 1974 1975 /* 1976 * Are we about to exceed the fs block limit ? 1977 * 1978 * If we have written data it becomes a short write. If we have 1979 * exceeded without writing data we send a signal and return EFBIG. 1980 * Linus frestrict idea will clean these up nicely.. 1981 */ 1982 if (likely(!isblk)) { 1983 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1984 if (*count || *pos > inode->i_sb->s_maxbytes) { 1985 return -EFBIG; 1986 } 1987 /* zero-length writes at ->s_maxbytes are OK */ 1988 } 1989 1990 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 1991 *count = inode->i_sb->s_maxbytes - *pos; 1992 } else { 1993 #ifdef CONFIG_BLOCK 1994 loff_t isize; 1995 if (bdev_read_only(I_BDEV(inode))) 1996 return -EPERM; 1997 isize = i_size_read(inode); 1998 if (*pos >= isize) { 1999 if (*count || *pos > isize) 2000 return -ENOSPC; 2001 } 2002 2003 if (*pos + *count > isize) 2004 *count = isize - *pos; 2005 #else 2006 return -EPERM; 2007 #endif 2008 } 2009 return 0; 2010 } 2011 EXPORT_SYMBOL(generic_write_checks); 2012 2013 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2014 loff_t pos, unsigned len, unsigned flags, 2015 struct page **pagep, void **fsdata) 2016 { 2017 const struct address_space_operations *aops = mapping->a_ops; 2018 2019 if (aops->write_begin) { 2020 return aops->write_begin(file, mapping, pos, len, flags, 2021 pagep, fsdata); 2022 } else { 2023 int ret; 2024 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 2025 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 2026 struct inode *inode = mapping->host; 2027 struct page *page; 2028 again: 2029 page = __grab_cache_page(mapping, index); 2030 *pagep = page; 2031 if (!page) 2032 return -ENOMEM; 2033 2034 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) { 2035 /* 2036 * There is no way to resolve a short write situation 2037 * for a !Uptodate page (except by double copying in 2038 * the caller done by generic_perform_write_2copy). 2039 * 2040 * Instead, we have to bring it uptodate here. 2041 */ 2042 ret = aops->readpage(file, page); 2043 page_cache_release(page); 2044 if (ret) { 2045 if (ret == AOP_TRUNCATED_PAGE) 2046 goto again; 2047 return ret; 2048 } 2049 goto again; 2050 } 2051 2052 ret = aops->prepare_write(file, page, offset, offset+len); 2053 if (ret) { 2054 unlock_page(page); 2055 page_cache_release(page); 2056 if (pos + len > inode->i_size) 2057 vmtruncate(inode, inode->i_size); 2058 } 2059 return ret; 2060 } 2061 } 2062 EXPORT_SYMBOL(pagecache_write_begin); 2063 2064 int pagecache_write_end(struct file *file, struct address_space *mapping, 2065 loff_t pos, unsigned len, unsigned copied, 2066 struct page *page, void *fsdata) 2067 { 2068 const struct address_space_operations *aops = mapping->a_ops; 2069 int ret; 2070 2071 if (aops->write_end) { 2072 mark_page_accessed(page); 2073 ret = aops->write_end(file, mapping, pos, len, copied, 2074 page, fsdata); 2075 } else { 2076 unsigned offset = pos & (PAGE_CACHE_SIZE - 1); 2077 struct inode *inode = mapping->host; 2078 2079 flush_dcache_page(page); 2080 ret = aops->commit_write(file, page, offset, offset+len); 2081 unlock_page(page); 2082 mark_page_accessed(page); 2083 page_cache_release(page); 2084 2085 if (ret < 0) { 2086 if (pos + len > inode->i_size) 2087 vmtruncate(inode, inode->i_size); 2088 } else if (ret > 0) 2089 ret = min_t(size_t, copied, ret); 2090 else 2091 ret = copied; 2092 } 2093 2094 return ret; 2095 } 2096 EXPORT_SYMBOL(pagecache_write_end); 2097 2098 ssize_t 2099 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2100 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2101 size_t count, size_t ocount) 2102 { 2103 struct file *file = iocb->ki_filp; 2104 struct address_space *mapping = file->f_mapping; 2105 struct inode *inode = mapping->host; 2106 ssize_t written; 2107 size_t write_len; 2108 pgoff_t end; 2109 2110 if (count != ocount) 2111 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2112 2113 /* 2114 * Unmap all mmappings of the file up-front. 2115 * 2116 * This will cause any pte dirty bits to be propagated into the 2117 * pageframes for the subsequent filemap_write_and_wait(). 2118 */ 2119 write_len = iov_length(iov, *nr_segs); 2120 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2121 if (mapping_mapped(mapping)) 2122 unmap_mapping_range(mapping, pos, write_len, 0); 2123 2124 written = filemap_write_and_wait(mapping); 2125 if (written) 2126 goto out; 2127 2128 /* 2129 * After a write we want buffered reads to be sure to go to disk to get 2130 * the new data. We invalidate clean cached page from the region we're 2131 * about to write. We do this *before* the write so that we can return 2132 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2133 */ 2134 if (mapping->nrpages) { 2135 written = invalidate_inode_pages2_range(mapping, 2136 pos >> PAGE_CACHE_SHIFT, end); 2137 /* 2138 * If a page can not be invalidated, return 0 to fall back 2139 * to buffered write. 2140 */ 2141 if (written) { 2142 if (written == -EBUSY) 2143 return 0; 2144 goto out; 2145 } 2146 } 2147 2148 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2149 2150 /* 2151 * Finally, try again to invalidate clean pages which might have been 2152 * cached by non-direct readahead, or faulted in by get_user_pages() 2153 * if the source of the write was an mmap'ed region of the file 2154 * we're writing. Either one is a pretty crazy thing to do, 2155 * so we don't support it 100%. If this invalidation 2156 * fails, tough, the write still worked... 2157 */ 2158 if (mapping->nrpages) { 2159 invalidate_inode_pages2_range(mapping, 2160 pos >> PAGE_CACHE_SHIFT, end); 2161 } 2162 2163 if (written > 0) { 2164 loff_t end = pos + written; 2165 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2166 i_size_write(inode, end); 2167 mark_inode_dirty(inode); 2168 } 2169 *ppos = end; 2170 } 2171 2172 /* 2173 * Sync the fs metadata but not the minor inode changes and 2174 * of course not the data as we did direct DMA for the IO. 2175 * i_mutex is held, which protects generic_osync_inode() from 2176 * livelocking. AIO O_DIRECT ops attempt to sync metadata here. 2177 */ 2178 out: 2179 if ((written >= 0 || written == -EIOCBQUEUED) && 2180 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2181 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2182 if (err < 0) 2183 written = err; 2184 } 2185 return written; 2186 } 2187 EXPORT_SYMBOL(generic_file_direct_write); 2188 2189 /* 2190 * Find or create a page at the given pagecache position. Return the locked 2191 * page. This function is specifically for buffered writes. 2192 */ 2193 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index) 2194 { 2195 int status; 2196 struct page *page; 2197 repeat: 2198 page = find_lock_page(mapping, index); 2199 if (likely(page)) 2200 return page; 2201 2202 page = page_cache_alloc(mapping); 2203 if (!page) 2204 return NULL; 2205 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 2206 if (unlikely(status)) { 2207 page_cache_release(page); 2208 if (status == -EEXIST) 2209 goto repeat; 2210 return NULL; 2211 } 2212 return page; 2213 } 2214 EXPORT_SYMBOL(__grab_cache_page); 2215 2216 static ssize_t generic_perform_write_2copy(struct file *file, 2217 struct iov_iter *i, loff_t pos) 2218 { 2219 struct address_space *mapping = file->f_mapping; 2220 const struct address_space_operations *a_ops = mapping->a_ops; 2221 struct inode *inode = mapping->host; 2222 long status = 0; 2223 ssize_t written = 0; 2224 2225 do { 2226 struct page *src_page; 2227 struct page *page; 2228 pgoff_t index; /* Pagecache index for current page */ 2229 unsigned long offset; /* Offset into pagecache page */ 2230 unsigned long bytes; /* Bytes to write to page */ 2231 size_t copied; /* Bytes copied from user */ 2232 2233 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2234 index = pos >> PAGE_CACHE_SHIFT; 2235 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2236 iov_iter_count(i)); 2237 2238 /* 2239 * a non-NULL src_page indicates that we're doing the 2240 * copy via get_user_pages and kmap. 2241 */ 2242 src_page = NULL; 2243 2244 /* 2245 * Bring in the user page that we will copy from _first_. 2246 * Otherwise there's a nasty deadlock on copying from the 2247 * same page as we're writing to, without it being marked 2248 * up-to-date. 2249 * 2250 * Not only is this an optimisation, but it is also required 2251 * to check that the address is actually valid, when atomic 2252 * usercopies are used, below. 2253 */ 2254 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2255 status = -EFAULT; 2256 break; 2257 } 2258 2259 page = __grab_cache_page(mapping, index); 2260 if (!page) { 2261 status = -ENOMEM; 2262 break; 2263 } 2264 2265 /* 2266 * non-uptodate pages cannot cope with short copies, and we 2267 * cannot take a pagefault with the destination page locked. 2268 * So pin the source page to copy it. 2269 */ 2270 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) { 2271 unlock_page(page); 2272 2273 src_page = alloc_page(GFP_KERNEL); 2274 if (!src_page) { 2275 page_cache_release(page); 2276 status = -ENOMEM; 2277 break; 2278 } 2279 2280 /* 2281 * Cannot get_user_pages with a page locked for the 2282 * same reason as we can't take a page fault with a 2283 * page locked (as explained below). 2284 */ 2285 copied = iov_iter_copy_from_user(src_page, i, 2286 offset, bytes); 2287 if (unlikely(copied == 0)) { 2288 status = -EFAULT; 2289 page_cache_release(page); 2290 page_cache_release(src_page); 2291 break; 2292 } 2293 bytes = copied; 2294 2295 lock_page(page); 2296 /* 2297 * Can't handle the page going uptodate here, because 2298 * that means we would use non-atomic usercopies, which 2299 * zero out the tail of the page, which can cause 2300 * zeroes to become transiently visible. We could just 2301 * use a non-zeroing copy, but the APIs aren't too 2302 * consistent. 2303 */ 2304 if (unlikely(!page->mapping || PageUptodate(page))) { 2305 unlock_page(page); 2306 page_cache_release(page); 2307 page_cache_release(src_page); 2308 continue; 2309 } 2310 } 2311 2312 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2313 if (unlikely(status)) 2314 goto fs_write_aop_error; 2315 2316 if (!src_page) { 2317 /* 2318 * Must not enter the pagefault handler here, because 2319 * we hold the page lock, so we might recursively 2320 * deadlock on the same lock, or get an ABBA deadlock 2321 * against a different lock, or against the mmap_sem 2322 * (which nests outside the page lock). So increment 2323 * preempt count, and use _atomic usercopies. 2324 * 2325 * The page is uptodate so we are OK to encounter a 2326 * short copy: if unmodified parts of the page are 2327 * marked dirty and written out to disk, it doesn't 2328 * really matter. 2329 */ 2330 pagefault_disable(); 2331 copied = iov_iter_copy_from_user_atomic(page, i, 2332 offset, bytes); 2333 pagefault_enable(); 2334 } else { 2335 void *src, *dst; 2336 src = kmap_atomic(src_page, KM_USER0); 2337 dst = kmap_atomic(page, KM_USER1); 2338 memcpy(dst + offset, src + offset, bytes); 2339 kunmap_atomic(dst, KM_USER1); 2340 kunmap_atomic(src, KM_USER0); 2341 copied = bytes; 2342 } 2343 flush_dcache_page(page); 2344 2345 status = a_ops->commit_write(file, page, offset, offset+bytes); 2346 if (unlikely(status < 0)) 2347 goto fs_write_aop_error; 2348 if (unlikely(status > 0)) /* filesystem did partial write */ 2349 copied = min_t(size_t, copied, status); 2350 2351 unlock_page(page); 2352 mark_page_accessed(page); 2353 page_cache_release(page); 2354 if (src_page) 2355 page_cache_release(src_page); 2356 2357 iov_iter_advance(i, copied); 2358 pos += copied; 2359 written += copied; 2360 2361 balance_dirty_pages_ratelimited(mapping); 2362 cond_resched(); 2363 continue; 2364 2365 fs_write_aop_error: 2366 unlock_page(page); 2367 page_cache_release(page); 2368 if (src_page) 2369 page_cache_release(src_page); 2370 2371 /* 2372 * prepare_write() may have instantiated a few blocks 2373 * outside i_size. Trim these off again. Don't need 2374 * i_size_read because we hold i_mutex. 2375 */ 2376 if (pos + bytes > inode->i_size) 2377 vmtruncate(inode, inode->i_size); 2378 break; 2379 } while (iov_iter_count(i)); 2380 2381 return written ? written : status; 2382 } 2383 2384 static ssize_t generic_perform_write(struct file *file, 2385 struct iov_iter *i, loff_t pos) 2386 { 2387 struct address_space *mapping = file->f_mapping; 2388 const struct address_space_operations *a_ops = mapping->a_ops; 2389 long status = 0; 2390 ssize_t written = 0; 2391 unsigned int flags = 0; 2392 2393 /* 2394 * Copies from kernel address space cannot fail (NFSD is a big user). 2395 */ 2396 if (segment_eq(get_fs(), KERNEL_DS)) 2397 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2398 2399 do { 2400 struct page *page; 2401 pgoff_t index; /* Pagecache index for current page */ 2402 unsigned long offset; /* Offset into pagecache page */ 2403 unsigned long bytes; /* Bytes to write to page */ 2404 size_t copied; /* Bytes copied from user */ 2405 void *fsdata; 2406 2407 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2408 index = pos >> PAGE_CACHE_SHIFT; 2409 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2410 iov_iter_count(i)); 2411 2412 again: 2413 2414 /* 2415 * Bring in the user page that we will copy from _first_. 2416 * Otherwise there's a nasty deadlock on copying from the 2417 * same page as we're writing to, without it being marked 2418 * up-to-date. 2419 * 2420 * Not only is this an optimisation, but it is also required 2421 * to check that the address is actually valid, when atomic 2422 * usercopies are used, below. 2423 */ 2424 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2425 status = -EFAULT; 2426 break; 2427 } 2428 2429 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2430 &page, &fsdata); 2431 if (unlikely(status)) 2432 break; 2433 2434 pagefault_disable(); 2435 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2436 pagefault_enable(); 2437 flush_dcache_page(page); 2438 2439 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2440 page, fsdata); 2441 if (unlikely(status < 0)) 2442 break; 2443 copied = status; 2444 2445 cond_resched(); 2446 2447 iov_iter_advance(i, copied); 2448 if (unlikely(copied == 0)) { 2449 /* 2450 * If we were unable to copy any data at all, we must 2451 * fall back to a single segment length write. 2452 * 2453 * If we didn't fallback here, we could livelock 2454 * because not all segments in the iov can be copied at 2455 * once without a pagefault. 2456 */ 2457 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2458 iov_iter_single_seg_count(i)); 2459 goto again; 2460 } 2461 pos += copied; 2462 written += copied; 2463 2464 balance_dirty_pages_ratelimited(mapping); 2465 2466 } while (iov_iter_count(i)); 2467 2468 return written ? written : status; 2469 } 2470 2471 ssize_t 2472 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2473 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2474 size_t count, ssize_t written) 2475 { 2476 struct file *file = iocb->ki_filp; 2477 struct address_space *mapping = file->f_mapping; 2478 const struct address_space_operations *a_ops = mapping->a_ops; 2479 struct inode *inode = mapping->host; 2480 ssize_t status; 2481 struct iov_iter i; 2482 2483 iov_iter_init(&i, iov, nr_segs, count, written); 2484 if (a_ops->write_begin) 2485 status = generic_perform_write(file, &i, pos); 2486 else 2487 status = generic_perform_write_2copy(file, &i, pos); 2488 2489 if (likely(status >= 0)) { 2490 written += status; 2491 *ppos = pos + status; 2492 2493 /* 2494 * For now, when the user asks for O_SYNC, we'll actually give 2495 * O_DSYNC 2496 */ 2497 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2498 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2499 status = generic_osync_inode(inode, mapping, 2500 OSYNC_METADATA|OSYNC_DATA); 2501 } 2502 } 2503 2504 /* 2505 * If we get here for O_DIRECT writes then we must have fallen through 2506 * to buffered writes (block instantiation inside i_size). So we sync 2507 * the file data here, to try to honour O_DIRECT expectations. 2508 */ 2509 if (unlikely(file->f_flags & O_DIRECT) && written) 2510 status = filemap_write_and_wait(mapping); 2511 2512 return written ? written : status; 2513 } 2514 EXPORT_SYMBOL(generic_file_buffered_write); 2515 2516 static ssize_t 2517 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2518 unsigned long nr_segs, loff_t *ppos) 2519 { 2520 struct file *file = iocb->ki_filp; 2521 struct address_space * mapping = file->f_mapping; 2522 size_t ocount; /* original count */ 2523 size_t count; /* after file limit checks */ 2524 struct inode *inode = mapping->host; 2525 loff_t pos; 2526 ssize_t written; 2527 ssize_t err; 2528 2529 ocount = 0; 2530 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2531 if (err) 2532 return err; 2533 2534 count = ocount; 2535 pos = *ppos; 2536 2537 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2538 2539 /* We can write back this queue in page reclaim */ 2540 current->backing_dev_info = mapping->backing_dev_info; 2541 written = 0; 2542 2543 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2544 if (err) 2545 goto out; 2546 2547 if (count == 0) 2548 goto out; 2549 2550 err = file_remove_suid(file); 2551 if (err) 2552 goto out; 2553 2554 file_update_time(file); 2555 2556 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2557 if (unlikely(file->f_flags & O_DIRECT)) { 2558 loff_t endbyte; 2559 ssize_t written_buffered; 2560 2561 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2562 ppos, count, ocount); 2563 if (written < 0 || written == count) 2564 goto out; 2565 /* 2566 * direct-io write to a hole: fall through to buffered I/O 2567 * for completing the rest of the request. 2568 */ 2569 pos += written; 2570 count -= written; 2571 written_buffered = generic_file_buffered_write(iocb, iov, 2572 nr_segs, pos, ppos, count, 2573 written); 2574 /* 2575 * If generic_file_buffered_write() retuned a synchronous error 2576 * then we want to return the number of bytes which were 2577 * direct-written, or the error code if that was zero. Note 2578 * that this differs from normal direct-io semantics, which 2579 * will return -EFOO even if some bytes were written. 2580 */ 2581 if (written_buffered < 0) { 2582 err = written_buffered; 2583 goto out; 2584 } 2585 2586 /* 2587 * We need to ensure that the page cache pages are written to 2588 * disk and invalidated to preserve the expected O_DIRECT 2589 * semantics. 2590 */ 2591 endbyte = pos + written_buffered - written - 1; 2592 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2593 SYNC_FILE_RANGE_WAIT_BEFORE| 2594 SYNC_FILE_RANGE_WRITE| 2595 SYNC_FILE_RANGE_WAIT_AFTER); 2596 if (err == 0) { 2597 written = written_buffered; 2598 invalidate_mapping_pages(mapping, 2599 pos >> PAGE_CACHE_SHIFT, 2600 endbyte >> PAGE_CACHE_SHIFT); 2601 } else { 2602 /* 2603 * We don't know how much we wrote, so just return 2604 * the number of bytes which were direct-written 2605 */ 2606 } 2607 } else { 2608 written = generic_file_buffered_write(iocb, iov, nr_segs, 2609 pos, ppos, count, written); 2610 } 2611 out: 2612 current->backing_dev_info = NULL; 2613 return written ? written : err; 2614 } 2615 2616 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb, 2617 const struct iovec *iov, unsigned long nr_segs, loff_t pos) 2618 { 2619 struct file *file = iocb->ki_filp; 2620 struct address_space *mapping = file->f_mapping; 2621 struct inode *inode = mapping->host; 2622 ssize_t ret; 2623 2624 BUG_ON(iocb->ki_pos != pos); 2625 2626 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2627 &iocb->ki_pos); 2628 2629 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2630 ssize_t err; 2631 2632 err = sync_page_range_nolock(inode, mapping, pos, ret); 2633 if (err < 0) 2634 ret = err; 2635 } 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2639 2640 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2641 unsigned long nr_segs, loff_t pos) 2642 { 2643 struct file *file = iocb->ki_filp; 2644 struct address_space *mapping = file->f_mapping; 2645 struct inode *inode = mapping->host; 2646 ssize_t ret; 2647 2648 BUG_ON(iocb->ki_pos != pos); 2649 2650 mutex_lock(&inode->i_mutex); 2651 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, 2652 &iocb->ki_pos); 2653 mutex_unlock(&inode->i_mutex); 2654 2655 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2656 ssize_t err; 2657 2658 err = sync_page_range(inode, mapping, pos, ret); 2659 if (err < 0) 2660 ret = err; 2661 } 2662 return ret; 2663 } 2664 EXPORT_SYMBOL(generic_file_aio_write); 2665 2666 /** 2667 * try_to_release_page() - release old fs-specific metadata on a page 2668 * 2669 * @page: the page which the kernel is trying to free 2670 * @gfp_mask: memory allocation flags (and I/O mode) 2671 * 2672 * The address_space is to try to release any data against the page 2673 * (presumably at page->private). If the release was successful, return `1'. 2674 * Otherwise return zero. 2675 * 2676 * The @gfp_mask argument specifies whether I/O may be performed to release 2677 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2678 * 2679 */ 2680 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2681 { 2682 struct address_space * const mapping = page->mapping; 2683 2684 BUG_ON(!PageLocked(page)); 2685 if (PageWriteback(page)) 2686 return 0; 2687 2688 if (mapping && mapping->a_ops->releasepage) 2689 return mapping->a_ops->releasepage(page, gfp_mask); 2690 return try_to_free_buffers(page); 2691 } 2692 2693 EXPORT_SYMBOL(try_to_release_page); 2694