1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <asm/pgalloc.h> 50 #include <asm/tlbflush.h> 51 #include "internal.h" 52 53 #define CREATE_TRACE_POINTS 54 #include <trace/events/filemap.h> 55 56 /* 57 * FIXME: remove all knowledge of the buffer layer from the core VM 58 */ 59 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 60 61 #include <asm/mman.h> 62 63 #include "swap.h" 64 65 /* 66 * Shared mappings implemented 30.11.1994. It's not fully working yet, 67 * though. 68 * 69 * Shared mappings now work. 15.8.1995 Bruno. 70 * 71 * finished 'unifying' the page and buffer cache and SMP-threaded the 72 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 73 * 74 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 75 */ 76 77 /* 78 * Lock ordering: 79 * 80 * ->i_mmap_rwsem (truncate_pagecache) 81 * ->private_lock (__free_pte->block_dirty_folio) 82 * ->swap_lock (exclusive_swap_page, others) 83 * ->i_pages lock 84 * 85 * ->i_rwsem 86 * ->invalidate_lock (acquired by fs in truncate path) 87 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 88 * 89 * ->mmap_lock 90 * ->i_mmap_rwsem 91 * ->page_table_lock or pte_lock (various, mainly in memory.c) 92 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 93 * 94 * ->mmap_lock 95 * ->invalidate_lock (filemap_fault) 96 * ->lock_page (filemap_fault, access_process_vm) 97 * 98 * ->i_rwsem (generic_perform_write) 99 * ->mmap_lock (fault_in_readable->do_page_fault) 100 * 101 * bdi->wb.list_lock 102 * sb_lock (fs/fs-writeback.c) 103 * ->i_pages lock (__sync_single_inode) 104 * 105 * ->i_mmap_rwsem 106 * ->anon_vma.lock (vma_merge) 107 * 108 * ->anon_vma.lock 109 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 110 * 111 * ->page_table_lock or pte_lock 112 * ->swap_lock (try_to_unmap_one) 113 * ->private_lock (try_to_unmap_one) 114 * ->i_pages lock (try_to_unmap_one) 115 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 116 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 117 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 118 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 119 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void mapping_set_update(struct xa_state *xas, 128 struct address_space *mapping) 129 { 130 if (dax_mapping(mapping) || shmem_mapping(mapping)) 131 return; 132 xas_set_update(xas, workingset_update_node); 133 xas_set_lru(xas, &shadow_nodes); 134 } 135 136 static void page_cache_delete(struct address_space *mapping, 137 struct folio *folio, void *shadow) 138 { 139 XA_STATE(xas, &mapping->i_pages, folio->index); 140 long nr = 1; 141 142 mapping_set_update(&xas, mapping); 143 144 xas_set_order(&xas, folio->index, folio_order(folio)); 145 nr = folio_nr_pages(folio); 146 147 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 148 149 xas_store(&xas, shadow); 150 xas_init_marks(&xas); 151 152 folio->mapping = NULL; 153 /* Leave page->index set: truncation lookup relies upon it */ 154 mapping->nrpages -= nr; 155 } 156 157 static void filemap_unaccount_folio(struct address_space *mapping, 158 struct folio *folio) 159 { 160 long nr; 161 162 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 163 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 164 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 165 current->comm, folio_pfn(folio)); 166 dump_page(&folio->page, "still mapped when deleted"); 167 dump_stack(); 168 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 169 170 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 171 int mapcount = folio_mapcount(folio); 172 173 if (folio_ref_count(folio) >= mapcount + 2) { 174 /* 175 * All vmas have already been torn down, so it's 176 * a good bet that actually the page is unmapped 177 * and we'd rather not leak it: if we're wrong, 178 * another bad page check should catch it later. 179 */ 180 atomic_set(&folio->_mapcount, -1); 181 folio_ref_sub(folio, mapcount); 182 } 183 } 184 } 185 186 /* hugetlb folios do not participate in page cache accounting. */ 187 if (folio_test_hugetlb(folio)) 188 return; 189 190 nr = folio_nr_pages(folio); 191 192 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 193 if (folio_test_swapbacked(folio)) { 194 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 195 if (folio_test_pmd_mappable(folio)) 196 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 197 } else if (folio_test_pmd_mappable(folio)) { 198 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 199 filemap_nr_thps_dec(mapping); 200 } 201 202 /* 203 * At this point folio must be either written or cleaned by 204 * truncate. Dirty folio here signals a bug and loss of 205 * unwritten data - on ordinary filesystems. 206 * 207 * But it's harmless on in-memory filesystems like tmpfs; and can 208 * occur when a driver which did get_user_pages() sets page dirty 209 * before putting it, while the inode is being finally evicted. 210 * 211 * Below fixes dirty accounting after removing the folio entirely 212 * but leaves the dirty flag set: it has no effect for truncated 213 * folio and anyway will be cleared before returning folio to 214 * buddy allocator. 215 */ 216 if (WARN_ON_ONCE(folio_test_dirty(folio) && 217 mapping_can_writeback(mapping))) 218 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 219 } 220 221 /* 222 * Delete a page from the page cache and free it. Caller has to make 223 * sure the page is locked and that nobody else uses it - or that usage 224 * is safe. The caller must hold the i_pages lock. 225 */ 226 void __filemap_remove_folio(struct folio *folio, void *shadow) 227 { 228 struct address_space *mapping = folio->mapping; 229 230 trace_mm_filemap_delete_from_page_cache(folio); 231 filemap_unaccount_folio(mapping, folio); 232 page_cache_delete(mapping, folio, shadow); 233 } 234 235 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 236 { 237 void (*free_folio)(struct folio *); 238 int refs = 1; 239 240 free_folio = mapping->a_ops->free_folio; 241 if (free_folio) 242 free_folio(folio); 243 244 if (folio_test_large(folio)) 245 refs = folio_nr_pages(folio); 246 folio_put_refs(folio, refs); 247 } 248 249 /** 250 * filemap_remove_folio - Remove folio from page cache. 251 * @folio: The folio. 252 * 253 * This must be called only on folios that are locked and have been 254 * verified to be in the page cache. It will never put the folio into 255 * the free list because the caller has a reference on the page. 256 */ 257 void filemap_remove_folio(struct folio *folio) 258 { 259 struct address_space *mapping = folio->mapping; 260 261 BUG_ON(!folio_test_locked(folio)); 262 spin_lock(&mapping->host->i_lock); 263 xa_lock_irq(&mapping->i_pages); 264 __filemap_remove_folio(folio, NULL); 265 xa_unlock_irq(&mapping->i_pages); 266 if (mapping_shrinkable(mapping)) 267 inode_add_lru(mapping->host); 268 spin_unlock(&mapping->host->i_lock); 269 270 filemap_free_folio(mapping, folio); 271 } 272 273 /* 274 * page_cache_delete_batch - delete several folios from page cache 275 * @mapping: the mapping to which folios belong 276 * @fbatch: batch of folios to delete 277 * 278 * The function walks over mapping->i_pages and removes folios passed in 279 * @fbatch from the mapping. The function expects @fbatch to be sorted 280 * by page index and is optimised for it to be dense. 281 * It tolerates holes in @fbatch (mapping entries at those indices are not 282 * modified). 283 * 284 * The function expects the i_pages lock to be held. 285 */ 286 static void page_cache_delete_batch(struct address_space *mapping, 287 struct folio_batch *fbatch) 288 { 289 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 290 long total_pages = 0; 291 int i = 0; 292 struct folio *folio; 293 294 mapping_set_update(&xas, mapping); 295 xas_for_each(&xas, folio, ULONG_MAX) { 296 if (i >= folio_batch_count(fbatch)) 297 break; 298 299 /* A swap/dax/shadow entry got inserted? Skip it. */ 300 if (xa_is_value(folio)) 301 continue; 302 /* 303 * A page got inserted in our range? Skip it. We have our 304 * pages locked so they are protected from being removed. 305 * If we see a page whose index is higher than ours, it 306 * means our page has been removed, which shouldn't be 307 * possible because we're holding the PageLock. 308 */ 309 if (folio != fbatch->folios[i]) { 310 VM_BUG_ON_FOLIO(folio->index > 311 fbatch->folios[i]->index, folio); 312 continue; 313 } 314 315 WARN_ON_ONCE(!folio_test_locked(folio)); 316 317 folio->mapping = NULL; 318 /* Leave folio->index set: truncation lookup relies on it */ 319 320 i++; 321 xas_store(&xas, NULL); 322 total_pages += folio_nr_pages(folio); 323 } 324 mapping->nrpages -= total_pages; 325 } 326 327 void delete_from_page_cache_batch(struct address_space *mapping, 328 struct folio_batch *fbatch) 329 { 330 int i; 331 332 if (!folio_batch_count(fbatch)) 333 return; 334 335 spin_lock(&mapping->host->i_lock); 336 xa_lock_irq(&mapping->i_pages); 337 for (i = 0; i < folio_batch_count(fbatch); i++) { 338 struct folio *folio = fbatch->folios[i]; 339 340 trace_mm_filemap_delete_from_page_cache(folio); 341 filemap_unaccount_folio(mapping, folio); 342 } 343 page_cache_delete_batch(mapping, fbatch); 344 xa_unlock_irq(&mapping->i_pages); 345 if (mapping_shrinkable(mapping)) 346 inode_add_lru(mapping->host); 347 spin_unlock(&mapping->host->i_lock); 348 349 for (i = 0; i < folio_batch_count(fbatch); i++) 350 filemap_free_folio(mapping, fbatch->folios[i]); 351 } 352 353 int filemap_check_errors(struct address_space *mapping) 354 { 355 int ret = 0; 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_ENOSPC, &mapping->flags) && 358 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 359 ret = -ENOSPC; 360 if (test_bit(AS_EIO, &mapping->flags) && 361 test_and_clear_bit(AS_EIO, &mapping->flags)) 362 ret = -EIO; 363 return ret; 364 } 365 EXPORT_SYMBOL(filemap_check_errors); 366 367 static int filemap_check_and_keep_errors(struct address_space *mapping) 368 { 369 /* Check for outstanding write errors */ 370 if (test_bit(AS_EIO, &mapping->flags)) 371 return -EIO; 372 if (test_bit(AS_ENOSPC, &mapping->flags)) 373 return -ENOSPC; 374 return 0; 375 } 376 377 /** 378 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 379 * @mapping: address space structure to write 380 * @wbc: the writeback_control controlling the writeout 381 * 382 * Call writepages on the mapping using the provided wbc to control the 383 * writeout. 384 * 385 * Return: %0 on success, negative error code otherwise. 386 */ 387 int filemap_fdatawrite_wbc(struct address_space *mapping, 388 struct writeback_control *wbc) 389 { 390 int ret; 391 392 if (!mapping_can_writeback(mapping) || 393 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 394 return 0; 395 396 wbc_attach_fdatawrite_inode(wbc, mapping->host); 397 ret = do_writepages(mapping, wbc); 398 wbc_detach_inode(wbc); 399 return ret; 400 } 401 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 402 403 /** 404 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 405 * @mapping: address space structure to write 406 * @start: offset in bytes where the range starts 407 * @end: offset in bytes where the range ends (inclusive) 408 * @sync_mode: enable synchronous operation 409 * 410 * Start writeback against all of a mapping's dirty pages that lie 411 * within the byte offsets <start, end> inclusive. 412 * 413 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 414 * opposed to a regular memory cleansing writeback. The difference between 415 * these two operations is that if a dirty page/buffer is encountered, it must 416 * be waited upon, and not just skipped over. 417 * 418 * Return: %0 on success, negative error code otherwise. 419 */ 420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 421 loff_t end, int sync_mode) 422 { 423 struct writeback_control wbc = { 424 .sync_mode = sync_mode, 425 .nr_to_write = LONG_MAX, 426 .range_start = start, 427 .range_end = end, 428 }; 429 430 return filemap_fdatawrite_wbc(mapping, &wbc); 431 } 432 433 static inline int __filemap_fdatawrite(struct address_space *mapping, 434 int sync_mode) 435 { 436 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 437 } 438 439 int filemap_fdatawrite(struct address_space *mapping) 440 { 441 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 442 } 443 EXPORT_SYMBOL(filemap_fdatawrite); 444 445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 446 loff_t end) 447 { 448 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 449 } 450 EXPORT_SYMBOL(filemap_fdatawrite_range); 451 452 /** 453 * filemap_flush - mostly a non-blocking flush 454 * @mapping: target address_space 455 * 456 * This is a mostly non-blocking flush. Not suitable for data-integrity 457 * purposes - I/O may not be started against all dirty pages. 458 * 459 * Return: %0 on success, negative error code otherwise. 460 */ 461 int filemap_flush(struct address_space *mapping) 462 { 463 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 464 } 465 EXPORT_SYMBOL(filemap_flush); 466 467 /** 468 * filemap_range_has_page - check if a page exists in range. 469 * @mapping: address space within which to check 470 * @start_byte: offset in bytes where the range starts 471 * @end_byte: offset in bytes where the range ends (inclusive) 472 * 473 * Find at least one page in the range supplied, usually used to check if 474 * direct writing in this range will trigger a writeback. 475 * 476 * Return: %true if at least one page exists in the specified range, 477 * %false otherwise. 478 */ 479 bool filemap_range_has_page(struct address_space *mapping, 480 loff_t start_byte, loff_t end_byte) 481 { 482 struct folio *folio; 483 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 484 pgoff_t max = end_byte >> PAGE_SHIFT; 485 486 if (end_byte < start_byte) 487 return false; 488 489 rcu_read_lock(); 490 for (;;) { 491 folio = xas_find(&xas, max); 492 if (xas_retry(&xas, folio)) 493 continue; 494 /* Shadow entries don't count */ 495 if (xa_is_value(folio)) 496 continue; 497 /* 498 * We don't need to try to pin this page; we're about to 499 * release the RCU lock anyway. It is enough to know that 500 * there was a page here recently. 501 */ 502 break; 503 } 504 rcu_read_unlock(); 505 506 return folio != NULL; 507 } 508 EXPORT_SYMBOL(filemap_range_has_page); 509 510 static void __filemap_fdatawait_range(struct address_space *mapping, 511 loff_t start_byte, loff_t end_byte) 512 { 513 pgoff_t index = start_byte >> PAGE_SHIFT; 514 pgoff_t end = end_byte >> PAGE_SHIFT; 515 struct folio_batch fbatch; 516 unsigned nr_folios; 517 518 folio_batch_init(&fbatch); 519 520 while (index <= end) { 521 unsigned i; 522 523 nr_folios = filemap_get_folios_tag(mapping, &index, end, 524 PAGECACHE_TAG_WRITEBACK, &fbatch); 525 526 if (!nr_folios) 527 break; 528 529 for (i = 0; i < nr_folios; i++) { 530 struct folio *folio = fbatch.folios[i]; 531 532 folio_wait_writeback(folio); 533 folio_clear_error(folio); 534 } 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 } 539 540 /** 541 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 546 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 549 * 550 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 553 * 554 * Return: error status of the address space. 555 */ 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 558 { 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 570 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status of the address space. 573 * 574 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 577 */ 578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_byte) 580 { 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(mapping); 583 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 586 /** 587 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 592 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 596 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 599 * 600 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 604 struct address_space *mapping = file->f_mapping; 605 606 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(file); 608 } 609 EXPORT_SYMBOL(file_fdatawait_range); 610 611 /** 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait for 614 * 615 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address space. 618 * 619 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 622 * 623 * Return: error status of the address space. 624 */ 625 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(mapping); 629 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 632 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 635 return mapping->nrpages; 636 } 637 638 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; 644 645 if (end_byte < start_byte) 646 return false; 647 648 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { 650 if (xas_retry(&xas, folio)) 651 continue; 652 if (xa_is_value(folio)) 653 continue; 654 if (folio_test_dirty(folio) || folio_test_locked(folio) || 655 folio_test_writeback(folio)) 656 break; 657 } 658 rcu_read_unlock(); 659 return folio != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0, err2; 680 681 if (lend < lstart) 682 return 0; 683 684 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 WB_SYNC_ALL); 687 /* 688 * Even if the above returned error, the pages may be 689 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 693 if (err != -EIO) 694 __filemap_fdatawait_range(mapping, lstart, lend); 695 } 696 err2 = filemap_check_errors(mapping); 697 if (!err) 698 err = err2; 699 return err; 700 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 703 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 705 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 707 trace_filemap_set_wb_err(mapping, eseq); 708 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 710 711 /** 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance wb_err to current one 714 * @file: struct file on which the error is being reported 715 * 716 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't been any). 719 * 720 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all caught up. 722 * 723 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file descriptor. 732 * 733 * Return: %0 on success, negative error code otherwise. 734 */ 735 int file_check_and_advance_wb_err(struct file *file) 736 { 737 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file->f_mapping; 740 741 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 746 err = errseq_check_and_advance(&mapping->wb_err, 747 &file->f_wb_err); 748 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 750 } 751 752 /* 753 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had on these flags. 756 */ 757 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 760 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 763 /** 764 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the range ends (inclusive) 768 * 769 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 771 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to the very end-of-file (end = -1). 773 * 774 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 777 * Return: %0 on success, negative error code otherwise. 778 */ 779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 781 int err = 0, err2; 782 struct address_space *mapping = file->f_mapping; 783 784 if (lend < lstart) 785 return 0; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_folio - replace a pagecache folio with a new one 803 * @old: folio to be replaced 804 * @new: folio to replace with 805 * 806 * This function replaces a folio in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new folio and 808 * drops it for the old folio. Both the old and new folios must be 809 * locked. This function does not add the new folio to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_folio(struct folio *old, struct folio *new) 815 { 816 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offset); 820 821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); 824 825 folio_get(new); 826 new->mapping = mapping; 827 new->index = offset; 828 829 mem_cgroup_replace_folio(old, new); 830 831 xas_lock_irq(&xas); 832 xas_store(&xas, new); 833 834 old->mapping = NULL; 835 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) 837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) 839 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) 841 __lruvec_stat_sub_folio(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) 843 __lruvec_stat_add_folio(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 845 if (free_folio) 846 free_folio(old); 847 folio_put(old); 848 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 850 851 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, index); 855 void *alloced_shadow = NULL; 856 int alloced_order = 0; 857 bool huge; 858 long nr; 859 860 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 862 mapping_set_update(&xas, mapping); 863 864 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 865 xas_set_order(&xas, index, folio_order(folio)); 866 huge = folio_test_hugetlb(folio); 867 nr = folio_nr_pages(folio); 868 869 gfp &= GFP_RECLAIM_MASK; 870 folio_ref_add(folio, nr); 871 folio->mapping = mapping; 872 folio->index = xas.xa_index; 873 874 for (;;) { 875 int order = -1, split_order = 0; 876 void *entry, *old = NULL; 877 878 xas_lock_irq(&xas); 879 xas_for_each_conflict(&xas, entry) { 880 old = entry; 881 if (!xa_is_value(entry)) { 882 xas_set_err(&xas, -EEXIST); 883 goto unlock; 884 } 885 /* 886 * If a larger entry exists, 887 * it will be the first and only entry iterated. 888 */ 889 if (order == -1) 890 order = xas_get_order(&xas); 891 } 892 893 /* entry may have changed before we re-acquire the lock */ 894 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 895 xas_destroy(&xas); 896 alloced_order = 0; 897 } 898 899 if (old) { 900 if (order > 0 && order > folio_order(folio)) { 901 /* How to handle large swap entries? */ 902 BUG_ON(shmem_mapping(mapping)); 903 if (!alloced_order) { 904 split_order = order; 905 goto unlock; 906 } 907 xas_split(&xas, old, order); 908 xas_reset(&xas); 909 } 910 if (shadowp) 911 *shadowp = old; 912 } 913 914 xas_store(&xas, folio); 915 if (xas_error(&xas)) 916 goto unlock; 917 918 mapping->nrpages += nr; 919 920 /* hugetlb pages do not participate in page cache accounting */ 921 if (!huge) { 922 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 923 if (folio_test_pmd_mappable(folio)) 924 __lruvec_stat_mod_folio(folio, 925 NR_FILE_THPS, nr); 926 } 927 928 unlock: 929 xas_unlock_irq(&xas); 930 931 /* split needed, alloc here and retry. */ 932 if (split_order) { 933 xas_split_alloc(&xas, old, split_order, gfp); 934 if (xas_error(&xas)) 935 goto error; 936 alloced_shadow = old; 937 alloced_order = split_order; 938 xas_reset(&xas); 939 continue; 940 } 941 942 if (!xas_nomem(&xas, gfp)) 943 break; 944 } 945 946 if (xas_error(&xas)) 947 goto error; 948 949 trace_mm_filemap_add_to_page_cache(folio); 950 return 0; 951 error: 952 folio->mapping = NULL; 953 /* Leave page->index set: truncation relies upon it */ 954 folio_put_refs(folio, nr); 955 return xas_error(&xas); 956 } 957 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 958 959 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 960 pgoff_t index, gfp_t gfp) 961 { 962 void *shadow = NULL; 963 int ret; 964 965 ret = mem_cgroup_charge(folio, NULL, gfp); 966 if (ret) 967 return ret; 968 969 __folio_set_locked(folio); 970 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 971 if (unlikely(ret)) { 972 mem_cgroup_uncharge(folio); 973 __folio_clear_locked(folio); 974 } else { 975 /* 976 * The folio might have been evicted from cache only 977 * recently, in which case it should be activated like 978 * any other repeatedly accessed folio. 979 * The exception is folios getting rewritten; evicting other 980 * data from the working set, only to cache data that will 981 * get overwritten with something else, is a waste of memory. 982 */ 983 WARN_ON_ONCE(folio_test_active(folio)); 984 if (!(gfp & __GFP_WRITE) && shadow) 985 workingset_refault(folio, shadow); 986 folio_add_lru(folio); 987 } 988 return ret; 989 } 990 EXPORT_SYMBOL_GPL(filemap_add_folio); 991 992 #ifdef CONFIG_NUMA 993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 994 { 995 int n; 996 struct folio *folio; 997 998 if (cpuset_do_page_mem_spread()) { 999 unsigned int cpuset_mems_cookie; 1000 do { 1001 cpuset_mems_cookie = read_mems_allowed_begin(); 1002 n = cpuset_mem_spread_node(); 1003 folio = __folio_alloc_node_noprof(gfp, order, n); 1004 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1005 1006 return folio; 1007 } 1008 return folio_alloc_noprof(gfp, order); 1009 } 1010 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1011 #endif 1012 1013 /* 1014 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1015 * 1016 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1017 * 1018 * @mapping1: the first mapping to lock 1019 * @mapping2: the second mapping to lock 1020 */ 1021 void filemap_invalidate_lock_two(struct address_space *mapping1, 1022 struct address_space *mapping2) 1023 { 1024 if (mapping1 > mapping2) 1025 swap(mapping1, mapping2); 1026 if (mapping1) 1027 down_write(&mapping1->invalidate_lock); 1028 if (mapping2 && mapping1 != mapping2) 1029 down_write_nested(&mapping2->invalidate_lock, 1); 1030 } 1031 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1032 1033 /* 1034 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1035 * 1036 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1037 * 1038 * @mapping1: the first mapping to unlock 1039 * @mapping2: the second mapping to unlock 1040 */ 1041 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1042 struct address_space *mapping2) 1043 { 1044 if (mapping1) 1045 up_write(&mapping1->invalidate_lock); 1046 if (mapping2 && mapping1 != mapping2) 1047 up_write(&mapping2->invalidate_lock); 1048 } 1049 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1050 1051 /* 1052 * In order to wait for pages to become available there must be 1053 * waitqueues associated with pages. By using a hash table of 1054 * waitqueues where the bucket discipline is to maintain all 1055 * waiters on the same queue and wake all when any of the pages 1056 * become available, and for the woken contexts to check to be 1057 * sure the appropriate page became available, this saves space 1058 * at a cost of "thundering herd" phenomena during rare hash 1059 * collisions. 1060 */ 1061 #define PAGE_WAIT_TABLE_BITS 8 1062 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1063 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1064 1065 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1066 { 1067 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1068 } 1069 1070 void __init pagecache_init(void) 1071 { 1072 int i; 1073 1074 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1075 init_waitqueue_head(&folio_wait_table[i]); 1076 1077 page_writeback_init(); 1078 } 1079 1080 /* 1081 * The page wait code treats the "wait->flags" somewhat unusually, because 1082 * we have multiple different kinds of waits, not just the usual "exclusive" 1083 * one. 1084 * 1085 * We have: 1086 * 1087 * (a) no special bits set: 1088 * 1089 * We're just waiting for the bit to be released, and when a waker 1090 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1091 * and remove it from the wait queue. 1092 * 1093 * Simple and straightforward. 1094 * 1095 * (b) WQ_FLAG_EXCLUSIVE: 1096 * 1097 * The waiter is waiting to get the lock, and only one waiter should 1098 * be woken up to avoid any thundering herd behavior. We'll set the 1099 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1100 * 1101 * This is the traditional exclusive wait. 1102 * 1103 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1104 * 1105 * The waiter is waiting to get the bit, and additionally wants the 1106 * lock to be transferred to it for fair lock behavior. If the lock 1107 * cannot be taken, we stop walking the wait queue without waking 1108 * the waiter. 1109 * 1110 * This is the "fair lock handoff" case, and in addition to setting 1111 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1112 * that it now has the lock. 1113 */ 1114 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1115 { 1116 unsigned int flags; 1117 struct wait_page_key *key = arg; 1118 struct wait_page_queue *wait_page 1119 = container_of(wait, struct wait_page_queue, wait); 1120 1121 if (!wake_page_match(wait_page, key)) 1122 return 0; 1123 1124 /* 1125 * If it's a lock handoff wait, we get the bit for it, and 1126 * stop walking (and do not wake it up) if we can't. 1127 */ 1128 flags = wait->flags; 1129 if (flags & WQ_FLAG_EXCLUSIVE) { 1130 if (test_bit(key->bit_nr, &key->folio->flags)) 1131 return -1; 1132 if (flags & WQ_FLAG_CUSTOM) { 1133 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1134 return -1; 1135 flags |= WQ_FLAG_DONE; 1136 } 1137 } 1138 1139 /* 1140 * We are holding the wait-queue lock, but the waiter that 1141 * is waiting for this will be checking the flags without 1142 * any locking. 1143 * 1144 * So update the flags atomically, and wake up the waiter 1145 * afterwards to avoid any races. This store-release pairs 1146 * with the load-acquire in folio_wait_bit_common(). 1147 */ 1148 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1149 wake_up_state(wait->private, mode); 1150 1151 /* 1152 * Ok, we have successfully done what we're waiting for, 1153 * and we can unconditionally remove the wait entry. 1154 * 1155 * Note that this pairs with the "finish_wait()" in the 1156 * waiter, and has to be the absolute last thing we do. 1157 * After this list_del_init(&wait->entry) the wait entry 1158 * might be de-allocated and the process might even have 1159 * exited. 1160 */ 1161 list_del_init_careful(&wait->entry); 1162 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1163 } 1164 1165 static void folio_wake_bit(struct folio *folio, int bit_nr) 1166 { 1167 wait_queue_head_t *q = folio_waitqueue(folio); 1168 struct wait_page_key key; 1169 unsigned long flags; 1170 1171 key.folio = folio; 1172 key.bit_nr = bit_nr; 1173 key.page_match = 0; 1174 1175 spin_lock_irqsave(&q->lock, flags); 1176 __wake_up_locked_key(q, TASK_NORMAL, &key); 1177 1178 /* 1179 * It's possible to miss clearing waiters here, when we woke our page 1180 * waiters, but the hashed waitqueue has waiters for other pages on it. 1181 * That's okay, it's a rare case. The next waker will clear it. 1182 * 1183 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1184 * other), the flag may be cleared in the course of freeing the page; 1185 * but that is not required for correctness. 1186 */ 1187 if (!waitqueue_active(q) || !key.page_match) 1188 folio_clear_waiters(folio); 1189 1190 spin_unlock_irqrestore(&q->lock, flags); 1191 } 1192 1193 /* 1194 * A choice of three behaviors for folio_wait_bit_common(): 1195 */ 1196 enum behavior { 1197 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1198 * __folio_lock() waiting on then setting PG_locked. 1199 */ 1200 SHARED, /* Hold ref to page and check the bit when woken, like 1201 * folio_wait_writeback() waiting on PG_writeback. 1202 */ 1203 DROP, /* Drop ref to page before wait, no check when woken, 1204 * like folio_put_wait_locked() on PG_locked. 1205 */ 1206 }; 1207 1208 /* 1209 * Attempt to check (or get) the folio flag, and mark us done 1210 * if successful. 1211 */ 1212 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1213 struct wait_queue_entry *wait) 1214 { 1215 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1216 if (test_and_set_bit(bit_nr, &folio->flags)) 1217 return false; 1218 } else if (test_bit(bit_nr, &folio->flags)) 1219 return false; 1220 1221 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1222 return true; 1223 } 1224 1225 /* How many times do we accept lock stealing from under a waiter? */ 1226 int sysctl_page_lock_unfairness = 5; 1227 1228 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1229 int state, enum behavior behavior) 1230 { 1231 wait_queue_head_t *q = folio_waitqueue(folio); 1232 int unfairness = sysctl_page_lock_unfairness; 1233 struct wait_page_queue wait_page; 1234 wait_queue_entry_t *wait = &wait_page.wait; 1235 bool thrashing = false; 1236 unsigned long pflags; 1237 bool in_thrashing; 1238 1239 if (bit_nr == PG_locked && 1240 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1241 delayacct_thrashing_start(&in_thrashing); 1242 psi_memstall_enter(&pflags); 1243 thrashing = true; 1244 } 1245 1246 init_wait(wait); 1247 wait->func = wake_page_function; 1248 wait_page.folio = folio; 1249 wait_page.bit_nr = bit_nr; 1250 1251 repeat: 1252 wait->flags = 0; 1253 if (behavior == EXCLUSIVE) { 1254 wait->flags = WQ_FLAG_EXCLUSIVE; 1255 if (--unfairness < 0) 1256 wait->flags |= WQ_FLAG_CUSTOM; 1257 } 1258 1259 /* 1260 * Do one last check whether we can get the 1261 * page bit synchronously. 1262 * 1263 * Do the folio_set_waiters() marking before that 1264 * to let any waker we _just_ missed know they 1265 * need to wake us up (otherwise they'll never 1266 * even go to the slow case that looks at the 1267 * page queue), and add ourselves to the wait 1268 * queue if we need to sleep. 1269 * 1270 * This part needs to be done under the queue 1271 * lock to avoid races. 1272 */ 1273 spin_lock_irq(&q->lock); 1274 folio_set_waiters(folio); 1275 if (!folio_trylock_flag(folio, bit_nr, wait)) 1276 __add_wait_queue_entry_tail(q, wait); 1277 spin_unlock_irq(&q->lock); 1278 1279 /* 1280 * From now on, all the logic will be based on 1281 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1282 * see whether the page bit testing has already 1283 * been done by the wake function. 1284 * 1285 * We can drop our reference to the folio. 1286 */ 1287 if (behavior == DROP) 1288 folio_put(folio); 1289 1290 /* 1291 * Note that until the "finish_wait()", or until 1292 * we see the WQ_FLAG_WOKEN flag, we need to 1293 * be very careful with the 'wait->flags', because 1294 * we may race with a waker that sets them. 1295 */ 1296 for (;;) { 1297 unsigned int flags; 1298 1299 set_current_state(state); 1300 1301 /* Loop until we've been woken or interrupted */ 1302 flags = smp_load_acquire(&wait->flags); 1303 if (!(flags & WQ_FLAG_WOKEN)) { 1304 if (signal_pending_state(state, current)) 1305 break; 1306 1307 io_schedule(); 1308 continue; 1309 } 1310 1311 /* If we were non-exclusive, we're done */ 1312 if (behavior != EXCLUSIVE) 1313 break; 1314 1315 /* If the waker got the lock for us, we're done */ 1316 if (flags & WQ_FLAG_DONE) 1317 break; 1318 1319 /* 1320 * Otherwise, if we're getting the lock, we need to 1321 * try to get it ourselves. 1322 * 1323 * And if that fails, we'll have to retry this all. 1324 */ 1325 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1326 goto repeat; 1327 1328 wait->flags |= WQ_FLAG_DONE; 1329 break; 1330 } 1331 1332 /* 1333 * If a signal happened, this 'finish_wait()' may remove the last 1334 * waiter from the wait-queues, but the folio waiters bit will remain 1335 * set. That's ok. The next wakeup will take care of it, and trying 1336 * to do it here would be difficult and prone to races. 1337 */ 1338 finish_wait(q, wait); 1339 1340 if (thrashing) { 1341 delayacct_thrashing_end(&in_thrashing); 1342 psi_memstall_leave(&pflags); 1343 } 1344 1345 /* 1346 * NOTE! The wait->flags weren't stable until we've done the 1347 * 'finish_wait()', and we could have exited the loop above due 1348 * to a signal, and had a wakeup event happen after the signal 1349 * test but before the 'finish_wait()'. 1350 * 1351 * So only after the finish_wait() can we reliably determine 1352 * if we got woken up or not, so we can now figure out the final 1353 * return value based on that state without races. 1354 * 1355 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1356 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1357 */ 1358 if (behavior == EXCLUSIVE) 1359 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1360 1361 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1362 } 1363 1364 #ifdef CONFIG_MIGRATION 1365 /** 1366 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1367 * @entry: migration swap entry. 1368 * @ptl: already locked ptl. This function will drop the lock. 1369 * 1370 * Wait for a migration entry referencing the given page to be removed. This is 1371 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1372 * this can be called without taking a reference on the page. Instead this 1373 * should be called while holding the ptl for the migration entry referencing 1374 * the page. 1375 * 1376 * Returns after unlocking the ptl. 1377 * 1378 * This follows the same logic as folio_wait_bit_common() so see the comments 1379 * there. 1380 */ 1381 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1382 __releases(ptl) 1383 { 1384 struct wait_page_queue wait_page; 1385 wait_queue_entry_t *wait = &wait_page.wait; 1386 bool thrashing = false; 1387 unsigned long pflags; 1388 bool in_thrashing; 1389 wait_queue_head_t *q; 1390 struct folio *folio = pfn_swap_entry_folio(entry); 1391 1392 q = folio_waitqueue(folio); 1393 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1394 delayacct_thrashing_start(&in_thrashing); 1395 psi_memstall_enter(&pflags); 1396 thrashing = true; 1397 } 1398 1399 init_wait(wait); 1400 wait->func = wake_page_function; 1401 wait_page.folio = folio; 1402 wait_page.bit_nr = PG_locked; 1403 wait->flags = 0; 1404 1405 spin_lock_irq(&q->lock); 1406 folio_set_waiters(folio); 1407 if (!folio_trylock_flag(folio, PG_locked, wait)) 1408 __add_wait_queue_entry_tail(q, wait); 1409 spin_unlock_irq(&q->lock); 1410 1411 /* 1412 * If a migration entry exists for the page the migration path must hold 1413 * a valid reference to the page, and it must take the ptl to remove the 1414 * migration entry. So the page is valid until the ptl is dropped. 1415 */ 1416 spin_unlock(ptl); 1417 1418 for (;;) { 1419 unsigned int flags; 1420 1421 set_current_state(TASK_UNINTERRUPTIBLE); 1422 1423 /* Loop until we've been woken or interrupted */ 1424 flags = smp_load_acquire(&wait->flags); 1425 if (!(flags & WQ_FLAG_WOKEN)) { 1426 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1427 break; 1428 1429 io_schedule(); 1430 continue; 1431 } 1432 break; 1433 } 1434 1435 finish_wait(q, wait); 1436 1437 if (thrashing) { 1438 delayacct_thrashing_end(&in_thrashing); 1439 psi_memstall_leave(&pflags); 1440 } 1441 } 1442 #endif 1443 1444 void folio_wait_bit(struct folio *folio, int bit_nr) 1445 { 1446 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1447 } 1448 EXPORT_SYMBOL(folio_wait_bit); 1449 1450 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1451 { 1452 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1453 } 1454 EXPORT_SYMBOL(folio_wait_bit_killable); 1455 1456 /** 1457 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1458 * @folio: The folio to wait for. 1459 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1460 * 1461 * The caller should hold a reference on @folio. They expect the page to 1462 * become unlocked relatively soon, but do not wish to hold up migration 1463 * (for example) by holding the reference while waiting for the folio to 1464 * come unlocked. After this function returns, the caller should not 1465 * dereference @folio. 1466 * 1467 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1468 */ 1469 static int folio_put_wait_locked(struct folio *folio, int state) 1470 { 1471 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1472 } 1473 1474 /** 1475 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1476 * @folio: Folio defining the wait queue of interest 1477 * @waiter: Waiter to add to the queue 1478 * 1479 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1480 */ 1481 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1482 { 1483 wait_queue_head_t *q = folio_waitqueue(folio); 1484 unsigned long flags; 1485 1486 spin_lock_irqsave(&q->lock, flags); 1487 __add_wait_queue_entry_tail(q, waiter); 1488 folio_set_waiters(folio); 1489 spin_unlock_irqrestore(&q->lock, flags); 1490 } 1491 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1492 1493 /** 1494 * folio_unlock - Unlock a locked folio. 1495 * @folio: The folio. 1496 * 1497 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1498 * 1499 * Context: May be called from interrupt or process context. May not be 1500 * called from NMI context. 1501 */ 1502 void folio_unlock(struct folio *folio) 1503 { 1504 /* Bit 7 allows x86 to check the byte's sign bit */ 1505 BUILD_BUG_ON(PG_waiters != 7); 1506 BUILD_BUG_ON(PG_locked > 7); 1507 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1508 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1509 folio_wake_bit(folio, PG_locked); 1510 } 1511 EXPORT_SYMBOL(folio_unlock); 1512 1513 /** 1514 * folio_end_read - End read on a folio. 1515 * @folio: The folio. 1516 * @success: True if all reads completed successfully. 1517 * 1518 * When all reads against a folio have completed, filesystems should 1519 * call this function to let the pagecache know that no more reads 1520 * are outstanding. This will unlock the folio and wake up any thread 1521 * sleeping on the lock. The folio will also be marked uptodate if all 1522 * reads succeeded. 1523 * 1524 * Context: May be called from interrupt or process context. May not be 1525 * called from NMI context. 1526 */ 1527 void folio_end_read(struct folio *folio, bool success) 1528 { 1529 unsigned long mask = 1 << PG_locked; 1530 1531 /* Must be in bottom byte for x86 to work */ 1532 BUILD_BUG_ON(PG_uptodate > 7); 1533 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1534 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1535 1536 if (likely(success)) 1537 mask |= 1 << PG_uptodate; 1538 if (folio_xor_flags_has_waiters(folio, mask)) 1539 folio_wake_bit(folio, PG_locked); 1540 } 1541 EXPORT_SYMBOL(folio_end_read); 1542 1543 /** 1544 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1545 * @folio: The folio. 1546 * 1547 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1548 * it. The folio reference held for PG_private_2 being set is released. 1549 * 1550 * This is, for example, used when a netfs folio is being written to a local 1551 * disk cache, thereby allowing writes to the cache for the same folio to be 1552 * serialised. 1553 */ 1554 void folio_end_private_2(struct folio *folio) 1555 { 1556 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1557 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1558 folio_wake_bit(folio, PG_private_2); 1559 folio_put(folio); 1560 } 1561 EXPORT_SYMBOL(folio_end_private_2); 1562 1563 /** 1564 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1565 * @folio: The folio to wait on. 1566 * 1567 * Wait for PG_private_2 to be cleared on a folio. 1568 */ 1569 void folio_wait_private_2(struct folio *folio) 1570 { 1571 while (folio_test_private_2(folio)) 1572 folio_wait_bit(folio, PG_private_2); 1573 } 1574 EXPORT_SYMBOL(folio_wait_private_2); 1575 1576 /** 1577 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1578 * @folio: The folio to wait on. 1579 * 1580 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1581 * received by the calling task. 1582 * 1583 * Return: 1584 * - 0 if successful. 1585 * - -EINTR if a fatal signal was encountered. 1586 */ 1587 int folio_wait_private_2_killable(struct folio *folio) 1588 { 1589 int ret = 0; 1590 1591 while (folio_test_private_2(folio)) { 1592 ret = folio_wait_bit_killable(folio, PG_private_2); 1593 if (ret < 0) 1594 break; 1595 } 1596 1597 return ret; 1598 } 1599 EXPORT_SYMBOL(folio_wait_private_2_killable); 1600 1601 /** 1602 * folio_end_writeback - End writeback against a folio. 1603 * @folio: The folio. 1604 * 1605 * The folio must actually be under writeback. 1606 * 1607 * Context: May be called from process or interrupt context. 1608 */ 1609 void folio_end_writeback(struct folio *folio) 1610 { 1611 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1612 1613 /* 1614 * folio_test_clear_reclaim() could be used here but it is an 1615 * atomic operation and overkill in this particular case. Failing 1616 * to shuffle a folio marked for immediate reclaim is too mild 1617 * a gain to justify taking an atomic operation penalty at the 1618 * end of every folio writeback. 1619 */ 1620 if (folio_test_reclaim(folio)) { 1621 folio_clear_reclaim(folio); 1622 folio_rotate_reclaimable(folio); 1623 } 1624 1625 /* 1626 * Writeback does not hold a folio reference of its own, relying 1627 * on truncation to wait for the clearing of PG_writeback. 1628 * But here we must make sure that the folio is not freed and 1629 * reused before the folio_wake_bit(). 1630 */ 1631 folio_get(folio); 1632 if (__folio_end_writeback(folio)) 1633 folio_wake_bit(folio, PG_writeback); 1634 acct_reclaim_writeback(folio); 1635 folio_put(folio); 1636 } 1637 EXPORT_SYMBOL(folio_end_writeback); 1638 1639 /** 1640 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1641 * @folio: The folio to lock 1642 */ 1643 void __folio_lock(struct folio *folio) 1644 { 1645 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1646 EXCLUSIVE); 1647 } 1648 EXPORT_SYMBOL(__folio_lock); 1649 1650 int __folio_lock_killable(struct folio *folio) 1651 { 1652 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1653 EXCLUSIVE); 1654 } 1655 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1656 1657 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1658 { 1659 struct wait_queue_head *q = folio_waitqueue(folio); 1660 int ret; 1661 1662 wait->folio = folio; 1663 wait->bit_nr = PG_locked; 1664 1665 spin_lock_irq(&q->lock); 1666 __add_wait_queue_entry_tail(q, &wait->wait); 1667 folio_set_waiters(folio); 1668 ret = !folio_trylock(folio); 1669 /* 1670 * If we were successful now, we know we're still on the 1671 * waitqueue as we're still under the lock. This means it's 1672 * safe to remove and return success, we know the callback 1673 * isn't going to trigger. 1674 */ 1675 if (!ret) 1676 __remove_wait_queue(q, &wait->wait); 1677 else 1678 ret = -EIOCBQUEUED; 1679 spin_unlock_irq(&q->lock); 1680 return ret; 1681 } 1682 1683 /* 1684 * Return values: 1685 * 0 - folio is locked. 1686 * non-zero - folio is not locked. 1687 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1688 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1689 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1690 * 1691 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1692 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1693 */ 1694 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1695 { 1696 unsigned int flags = vmf->flags; 1697 1698 if (fault_flag_allow_retry_first(flags)) { 1699 /* 1700 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1701 * released even though returning VM_FAULT_RETRY. 1702 */ 1703 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1704 return VM_FAULT_RETRY; 1705 1706 release_fault_lock(vmf); 1707 if (flags & FAULT_FLAG_KILLABLE) 1708 folio_wait_locked_killable(folio); 1709 else 1710 folio_wait_locked(folio); 1711 return VM_FAULT_RETRY; 1712 } 1713 if (flags & FAULT_FLAG_KILLABLE) { 1714 bool ret; 1715 1716 ret = __folio_lock_killable(folio); 1717 if (ret) { 1718 release_fault_lock(vmf); 1719 return VM_FAULT_RETRY; 1720 } 1721 } else { 1722 __folio_lock(folio); 1723 } 1724 1725 return 0; 1726 } 1727 1728 /** 1729 * page_cache_next_miss() - Find the next gap in the page cache. 1730 * @mapping: Mapping. 1731 * @index: Index. 1732 * @max_scan: Maximum range to search. 1733 * 1734 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1735 * gap with the lowest index. 1736 * 1737 * This function may be called under the rcu_read_lock. However, this will 1738 * not atomically search a snapshot of the cache at a single point in time. 1739 * For example, if a gap is created at index 5, then subsequently a gap is 1740 * created at index 10, page_cache_next_miss covering both indices may 1741 * return 10 if called under the rcu_read_lock. 1742 * 1743 * Return: The index of the gap if found, otherwise an index outside the 1744 * range specified (in which case 'return - index >= max_scan' will be true). 1745 * In the rare case of index wrap-around, 0 will be returned. 1746 */ 1747 pgoff_t page_cache_next_miss(struct address_space *mapping, 1748 pgoff_t index, unsigned long max_scan) 1749 { 1750 XA_STATE(xas, &mapping->i_pages, index); 1751 1752 while (max_scan--) { 1753 void *entry = xas_next(&xas); 1754 if (!entry || xa_is_value(entry)) 1755 return xas.xa_index; 1756 if (xas.xa_index == 0) 1757 return 0; 1758 } 1759 1760 return index + max_scan; 1761 } 1762 EXPORT_SYMBOL(page_cache_next_miss); 1763 1764 /** 1765 * page_cache_prev_miss() - Find the previous gap in the page cache. 1766 * @mapping: Mapping. 1767 * @index: Index. 1768 * @max_scan: Maximum range to search. 1769 * 1770 * Search the range [max(index - max_scan + 1, 0), index] for the 1771 * gap with the highest index. 1772 * 1773 * This function may be called under the rcu_read_lock. However, this will 1774 * not atomically search a snapshot of the cache at a single point in time. 1775 * For example, if a gap is created at index 10, then subsequently a gap is 1776 * created at index 5, page_cache_prev_miss() covering both indices may 1777 * return 5 if called under the rcu_read_lock. 1778 * 1779 * Return: The index of the gap if found, otherwise an index outside the 1780 * range specified (in which case 'index - return >= max_scan' will be true). 1781 * In the rare case of wrap-around, ULONG_MAX will be returned. 1782 */ 1783 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1784 pgoff_t index, unsigned long max_scan) 1785 { 1786 XA_STATE(xas, &mapping->i_pages, index); 1787 1788 while (max_scan--) { 1789 void *entry = xas_prev(&xas); 1790 if (!entry || xa_is_value(entry)) 1791 break; 1792 if (xas.xa_index == ULONG_MAX) 1793 break; 1794 } 1795 1796 return xas.xa_index; 1797 } 1798 EXPORT_SYMBOL(page_cache_prev_miss); 1799 1800 /* 1801 * Lockless page cache protocol: 1802 * On the lookup side: 1803 * 1. Load the folio from i_pages 1804 * 2. Increment the refcount if it's not zero 1805 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1806 * 1807 * On the removal side: 1808 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1809 * B. Remove the page from i_pages 1810 * C. Return the page to the page allocator 1811 * 1812 * This means that any page may have its reference count temporarily 1813 * increased by a speculative page cache (or GUP-fast) lookup as it can 1814 * be allocated by another user before the RCU grace period expires. 1815 * Because the refcount temporarily acquired here may end up being the 1816 * last refcount on the page, any page allocation must be freeable by 1817 * folio_put(). 1818 */ 1819 1820 /* 1821 * filemap_get_entry - Get a page cache entry. 1822 * @mapping: the address_space to search 1823 * @index: The page cache index. 1824 * 1825 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1826 * it is returned with an increased refcount. If it is a shadow entry 1827 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1828 * it is returned without further action. 1829 * 1830 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1831 */ 1832 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1833 { 1834 XA_STATE(xas, &mapping->i_pages, index); 1835 struct folio *folio; 1836 1837 rcu_read_lock(); 1838 repeat: 1839 xas_reset(&xas); 1840 folio = xas_load(&xas); 1841 if (xas_retry(&xas, folio)) 1842 goto repeat; 1843 /* 1844 * A shadow entry of a recently evicted page, or a swap entry from 1845 * shmem/tmpfs. Return it without attempting to raise page count. 1846 */ 1847 if (!folio || xa_is_value(folio)) 1848 goto out; 1849 1850 if (!folio_try_get(folio)) 1851 goto repeat; 1852 1853 if (unlikely(folio != xas_reload(&xas))) { 1854 folio_put(folio); 1855 goto repeat; 1856 } 1857 out: 1858 rcu_read_unlock(); 1859 1860 return folio; 1861 } 1862 1863 /** 1864 * __filemap_get_folio - Find and get a reference to a folio. 1865 * @mapping: The address_space to search. 1866 * @index: The page index. 1867 * @fgp_flags: %FGP flags modify how the folio is returned. 1868 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1869 * 1870 * Looks up the page cache entry at @mapping & @index. 1871 * 1872 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1873 * if the %GFP flags specified for %FGP_CREAT are atomic. 1874 * 1875 * If this function returns a folio, it is returned with an increased refcount. 1876 * 1877 * Return: The found folio or an ERR_PTR() otherwise. 1878 */ 1879 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1880 fgf_t fgp_flags, gfp_t gfp) 1881 { 1882 struct folio *folio; 1883 1884 repeat: 1885 folio = filemap_get_entry(mapping, index); 1886 if (xa_is_value(folio)) 1887 folio = NULL; 1888 if (!folio) 1889 goto no_page; 1890 1891 if (fgp_flags & FGP_LOCK) { 1892 if (fgp_flags & FGP_NOWAIT) { 1893 if (!folio_trylock(folio)) { 1894 folio_put(folio); 1895 return ERR_PTR(-EAGAIN); 1896 } 1897 } else { 1898 folio_lock(folio); 1899 } 1900 1901 /* Has the page been truncated? */ 1902 if (unlikely(folio->mapping != mapping)) { 1903 folio_unlock(folio); 1904 folio_put(folio); 1905 goto repeat; 1906 } 1907 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1908 } 1909 1910 if (fgp_flags & FGP_ACCESSED) 1911 folio_mark_accessed(folio); 1912 else if (fgp_flags & FGP_WRITE) { 1913 /* Clear idle flag for buffer write */ 1914 if (folio_test_idle(folio)) 1915 folio_clear_idle(folio); 1916 } 1917 1918 if (fgp_flags & FGP_STABLE) 1919 folio_wait_stable(folio); 1920 no_page: 1921 if (!folio && (fgp_flags & FGP_CREAT)) { 1922 unsigned order = FGF_GET_ORDER(fgp_flags); 1923 int err; 1924 1925 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1926 gfp |= __GFP_WRITE; 1927 if (fgp_flags & FGP_NOFS) 1928 gfp &= ~__GFP_FS; 1929 if (fgp_flags & FGP_NOWAIT) { 1930 gfp &= ~GFP_KERNEL; 1931 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1932 } 1933 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1934 fgp_flags |= FGP_LOCK; 1935 1936 if (!mapping_large_folio_support(mapping)) 1937 order = 0; 1938 if (order > MAX_PAGECACHE_ORDER) 1939 order = MAX_PAGECACHE_ORDER; 1940 /* If we're not aligned, allocate a smaller folio */ 1941 if (index & ((1UL << order) - 1)) 1942 order = __ffs(index); 1943 1944 do { 1945 gfp_t alloc_gfp = gfp; 1946 1947 err = -ENOMEM; 1948 if (order > 0) 1949 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1950 folio = filemap_alloc_folio(alloc_gfp, order); 1951 if (!folio) 1952 continue; 1953 1954 /* Init accessed so avoid atomic mark_page_accessed later */ 1955 if (fgp_flags & FGP_ACCESSED) 1956 __folio_set_referenced(folio); 1957 1958 err = filemap_add_folio(mapping, folio, index, gfp); 1959 if (!err) 1960 break; 1961 folio_put(folio); 1962 folio = NULL; 1963 } while (order-- > 0); 1964 1965 if (err == -EEXIST) 1966 goto repeat; 1967 if (err) 1968 return ERR_PTR(err); 1969 /* 1970 * filemap_add_folio locks the page, and for mmap 1971 * we expect an unlocked page. 1972 */ 1973 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1974 folio_unlock(folio); 1975 } 1976 1977 if (!folio) 1978 return ERR_PTR(-ENOENT); 1979 return folio; 1980 } 1981 EXPORT_SYMBOL(__filemap_get_folio); 1982 1983 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1984 xa_mark_t mark) 1985 { 1986 struct folio *folio; 1987 1988 retry: 1989 if (mark == XA_PRESENT) 1990 folio = xas_find(xas, max); 1991 else 1992 folio = xas_find_marked(xas, max, mark); 1993 1994 if (xas_retry(xas, folio)) 1995 goto retry; 1996 /* 1997 * A shadow entry of a recently evicted page, a swap 1998 * entry from shmem/tmpfs or a DAX entry. Return it 1999 * without attempting to raise page count. 2000 */ 2001 if (!folio || xa_is_value(folio)) 2002 return folio; 2003 2004 if (!folio_try_get(folio)) 2005 goto reset; 2006 2007 if (unlikely(folio != xas_reload(xas))) { 2008 folio_put(folio); 2009 goto reset; 2010 } 2011 2012 return folio; 2013 reset: 2014 xas_reset(xas); 2015 goto retry; 2016 } 2017 2018 /** 2019 * find_get_entries - gang pagecache lookup 2020 * @mapping: The address_space to search 2021 * @start: The starting page cache index 2022 * @end: The final page index (inclusive). 2023 * @fbatch: Where the resulting entries are placed. 2024 * @indices: The cache indices corresponding to the entries in @entries 2025 * 2026 * find_get_entries() will search for and return a batch of entries in 2027 * the mapping. The entries are placed in @fbatch. find_get_entries() 2028 * takes a reference on any actual folios it returns. 2029 * 2030 * The entries have ascending indexes. The indices may not be consecutive 2031 * due to not-present entries or large folios. 2032 * 2033 * Any shadow entries of evicted folios, or swap entries from 2034 * shmem/tmpfs, are included in the returned array. 2035 * 2036 * Return: The number of entries which were found. 2037 */ 2038 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2039 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2040 { 2041 XA_STATE(xas, &mapping->i_pages, *start); 2042 struct folio *folio; 2043 2044 rcu_read_lock(); 2045 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2046 indices[fbatch->nr] = xas.xa_index; 2047 if (!folio_batch_add(fbatch, folio)) 2048 break; 2049 } 2050 rcu_read_unlock(); 2051 2052 if (folio_batch_count(fbatch)) { 2053 unsigned long nr = 1; 2054 int idx = folio_batch_count(fbatch) - 1; 2055 2056 folio = fbatch->folios[idx]; 2057 if (!xa_is_value(folio)) 2058 nr = folio_nr_pages(folio); 2059 *start = indices[idx] + nr; 2060 } 2061 return folio_batch_count(fbatch); 2062 } 2063 2064 /** 2065 * find_lock_entries - Find a batch of pagecache entries. 2066 * @mapping: The address_space to search. 2067 * @start: The starting page cache index. 2068 * @end: The final page index (inclusive). 2069 * @fbatch: Where the resulting entries are placed. 2070 * @indices: The cache indices of the entries in @fbatch. 2071 * 2072 * find_lock_entries() will return a batch of entries from @mapping. 2073 * Swap, shadow and DAX entries are included. Folios are returned 2074 * locked and with an incremented refcount. Folios which are locked 2075 * by somebody else or under writeback are skipped. Folios which are 2076 * partially outside the range are not returned. 2077 * 2078 * The entries have ascending indexes. The indices may not be consecutive 2079 * due to not-present entries, large folios, folios which could not be 2080 * locked or folios under writeback. 2081 * 2082 * Return: The number of entries which were found. 2083 */ 2084 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2086 { 2087 XA_STATE(xas, &mapping->i_pages, *start); 2088 struct folio *folio; 2089 2090 rcu_read_lock(); 2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2092 if (!xa_is_value(folio)) { 2093 if (folio->index < *start) 2094 goto put; 2095 if (folio_next_index(folio) - 1 > end) 2096 goto put; 2097 if (!folio_trylock(folio)) 2098 goto put; 2099 if (folio->mapping != mapping || 2100 folio_test_writeback(folio)) 2101 goto unlock; 2102 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2103 folio); 2104 } 2105 indices[fbatch->nr] = xas.xa_index; 2106 if (!folio_batch_add(fbatch, folio)) 2107 break; 2108 continue; 2109 unlock: 2110 folio_unlock(folio); 2111 put: 2112 folio_put(folio); 2113 } 2114 rcu_read_unlock(); 2115 2116 if (folio_batch_count(fbatch)) { 2117 unsigned long nr = 1; 2118 int idx = folio_batch_count(fbatch) - 1; 2119 2120 folio = fbatch->folios[idx]; 2121 if (!xa_is_value(folio)) 2122 nr = folio_nr_pages(folio); 2123 *start = indices[idx] + nr; 2124 } 2125 return folio_batch_count(fbatch); 2126 } 2127 2128 /** 2129 * filemap_get_folios - Get a batch of folios 2130 * @mapping: The address_space to search 2131 * @start: The starting page index 2132 * @end: The final page index (inclusive) 2133 * @fbatch: The batch to fill. 2134 * 2135 * Search for and return a batch of folios in the mapping starting at 2136 * index @start and up to index @end (inclusive). The folios are returned 2137 * in @fbatch with an elevated reference count. 2138 * 2139 * Return: The number of folios which were found. 2140 * We also update @start to index the next folio for the traversal. 2141 */ 2142 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2143 pgoff_t end, struct folio_batch *fbatch) 2144 { 2145 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2146 } 2147 EXPORT_SYMBOL(filemap_get_folios); 2148 2149 /** 2150 * filemap_get_folios_contig - Get a batch of contiguous folios 2151 * @mapping: The address_space to search 2152 * @start: The starting page index 2153 * @end: The final page index (inclusive) 2154 * @fbatch: The batch to fill 2155 * 2156 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2157 * except the returned folios are guaranteed to be contiguous. This may 2158 * not return all contiguous folios if the batch gets filled up. 2159 * 2160 * Return: The number of folios found. 2161 * Also update @start to be positioned for traversal of the next folio. 2162 */ 2163 2164 unsigned filemap_get_folios_contig(struct address_space *mapping, 2165 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2166 { 2167 XA_STATE(xas, &mapping->i_pages, *start); 2168 unsigned long nr; 2169 struct folio *folio; 2170 2171 rcu_read_lock(); 2172 2173 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2174 folio = xas_next(&xas)) { 2175 if (xas_retry(&xas, folio)) 2176 continue; 2177 /* 2178 * If the entry has been swapped out, we can stop looking. 2179 * No current caller is looking for DAX entries. 2180 */ 2181 if (xa_is_value(folio)) 2182 goto update_start; 2183 2184 if (!folio_try_get(folio)) 2185 goto retry; 2186 2187 if (unlikely(folio != xas_reload(&xas))) 2188 goto put_folio; 2189 2190 if (!folio_batch_add(fbatch, folio)) { 2191 nr = folio_nr_pages(folio); 2192 *start = folio->index + nr; 2193 goto out; 2194 } 2195 continue; 2196 put_folio: 2197 folio_put(folio); 2198 2199 retry: 2200 xas_reset(&xas); 2201 } 2202 2203 update_start: 2204 nr = folio_batch_count(fbatch); 2205 2206 if (nr) { 2207 folio = fbatch->folios[nr - 1]; 2208 *start = folio_next_index(folio); 2209 } 2210 out: 2211 rcu_read_unlock(); 2212 return folio_batch_count(fbatch); 2213 } 2214 EXPORT_SYMBOL(filemap_get_folios_contig); 2215 2216 /** 2217 * filemap_get_folios_tag - Get a batch of folios matching @tag 2218 * @mapping: The address_space to search 2219 * @start: The starting page index 2220 * @end: The final page index (inclusive) 2221 * @tag: The tag index 2222 * @fbatch: The batch to fill 2223 * 2224 * The first folio may start before @start; if it does, it will contain 2225 * @start. The final folio may extend beyond @end; if it does, it will 2226 * contain @end. The folios have ascending indices. There may be gaps 2227 * between the folios if there are indices which have no folio in the 2228 * page cache. If folios are added to or removed from the page cache 2229 * while this is running, they may or may not be found by this call. 2230 * Only returns folios that are tagged with @tag. 2231 * 2232 * Return: The number of folios found. 2233 * Also update @start to index the next folio for traversal. 2234 */ 2235 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2236 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2237 { 2238 XA_STATE(xas, &mapping->i_pages, *start); 2239 struct folio *folio; 2240 2241 rcu_read_lock(); 2242 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2243 /* 2244 * Shadow entries should never be tagged, but this iteration 2245 * is lockless so there is a window for page reclaim to evict 2246 * a page we saw tagged. Skip over it. 2247 */ 2248 if (xa_is_value(folio)) 2249 continue; 2250 if (!folio_batch_add(fbatch, folio)) { 2251 unsigned long nr = folio_nr_pages(folio); 2252 *start = folio->index + nr; 2253 goto out; 2254 } 2255 } 2256 /* 2257 * We come here when there is no page beyond @end. We take care to not 2258 * overflow the index @start as it confuses some of the callers. This 2259 * breaks the iteration when there is a page at index -1 but that is 2260 * already broke anyway. 2261 */ 2262 if (end == (pgoff_t)-1) 2263 *start = (pgoff_t)-1; 2264 else 2265 *start = end + 1; 2266 out: 2267 rcu_read_unlock(); 2268 2269 return folio_batch_count(fbatch); 2270 } 2271 EXPORT_SYMBOL(filemap_get_folios_tag); 2272 2273 /* 2274 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2275 * a _large_ part of the i/o request. Imagine the worst scenario: 2276 * 2277 * ---R__________________________________________B__________ 2278 * ^ reading here ^ bad block(assume 4k) 2279 * 2280 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2281 * => failing the whole request => read(R) => read(R+1) => 2282 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2283 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2284 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2285 * 2286 * It is going insane. Fix it by quickly scaling down the readahead size. 2287 */ 2288 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2289 { 2290 ra->ra_pages /= 4; 2291 } 2292 2293 /* 2294 * filemap_get_read_batch - Get a batch of folios for read 2295 * 2296 * Get a batch of folios which represent a contiguous range of bytes in 2297 * the file. No exceptional entries will be returned. If @index is in 2298 * the middle of a folio, the entire folio will be returned. The last 2299 * folio in the batch may have the readahead flag set or the uptodate flag 2300 * clear so that the caller can take the appropriate action. 2301 */ 2302 static void filemap_get_read_batch(struct address_space *mapping, 2303 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2304 { 2305 XA_STATE(xas, &mapping->i_pages, index); 2306 struct folio *folio; 2307 2308 rcu_read_lock(); 2309 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2310 if (xas_retry(&xas, folio)) 2311 continue; 2312 if (xas.xa_index > max || xa_is_value(folio)) 2313 break; 2314 if (xa_is_sibling(folio)) 2315 break; 2316 if (!folio_try_get(folio)) 2317 goto retry; 2318 2319 if (unlikely(folio != xas_reload(&xas))) 2320 goto put_folio; 2321 2322 if (!folio_batch_add(fbatch, folio)) 2323 break; 2324 if (!folio_test_uptodate(folio)) 2325 break; 2326 if (folio_test_readahead(folio)) 2327 break; 2328 xas_advance(&xas, folio_next_index(folio) - 1); 2329 continue; 2330 put_folio: 2331 folio_put(folio); 2332 retry: 2333 xas_reset(&xas); 2334 } 2335 rcu_read_unlock(); 2336 } 2337 2338 static int filemap_read_folio(struct file *file, filler_t filler, 2339 struct folio *folio) 2340 { 2341 bool workingset = folio_test_workingset(folio); 2342 unsigned long pflags; 2343 int error; 2344 2345 /* 2346 * A previous I/O error may have been due to temporary failures, 2347 * eg. multipath errors. PG_error will be set again if read_folio 2348 * fails. 2349 */ 2350 folio_clear_error(folio); 2351 2352 /* Start the actual read. The read will unlock the page. */ 2353 if (unlikely(workingset)) 2354 psi_memstall_enter(&pflags); 2355 error = filler(file, folio); 2356 if (unlikely(workingset)) 2357 psi_memstall_leave(&pflags); 2358 if (error) 2359 return error; 2360 2361 error = folio_wait_locked_killable(folio); 2362 if (error) 2363 return error; 2364 if (folio_test_uptodate(folio)) 2365 return 0; 2366 if (file) 2367 shrink_readahead_size_eio(&file->f_ra); 2368 return -EIO; 2369 } 2370 2371 static bool filemap_range_uptodate(struct address_space *mapping, 2372 loff_t pos, size_t count, struct folio *folio, 2373 bool need_uptodate) 2374 { 2375 if (folio_test_uptodate(folio)) 2376 return true; 2377 /* pipes can't handle partially uptodate pages */ 2378 if (need_uptodate) 2379 return false; 2380 if (!mapping->a_ops->is_partially_uptodate) 2381 return false; 2382 if (mapping->host->i_blkbits >= folio_shift(folio)) 2383 return false; 2384 2385 if (folio_pos(folio) > pos) { 2386 count -= folio_pos(folio) - pos; 2387 pos = 0; 2388 } else { 2389 pos -= folio_pos(folio); 2390 } 2391 2392 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2393 } 2394 2395 static int filemap_update_page(struct kiocb *iocb, 2396 struct address_space *mapping, size_t count, 2397 struct folio *folio, bool need_uptodate) 2398 { 2399 int error; 2400 2401 if (iocb->ki_flags & IOCB_NOWAIT) { 2402 if (!filemap_invalidate_trylock_shared(mapping)) 2403 return -EAGAIN; 2404 } else { 2405 filemap_invalidate_lock_shared(mapping); 2406 } 2407 2408 if (!folio_trylock(folio)) { 2409 error = -EAGAIN; 2410 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2411 goto unlock_mapping; 2412 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2413 filemap_invalidate_unlock_shared(mapping); 2414 /* 2415 * This is where we usually end up waiting for a 2416 * previously submitted readahead to finish. 2417 */ 2418 folio_put_wait_locked(folio, TASK_KILLABLE); 2419 return AOP_TRUNCATED_PAGE; 2420 } 2421 error = __folio_lock_async(folio, iocb->ki_waitq); 2422 if (error) 2423 goto unlock_mapping; 2424 } 2425 2426 error = AOP_TRUNCATED_PAGE; 2427 if (!folio->mapping) 2428 goto unlock; 2429 2430 error = 0; 2431 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2432 need_uptodate)) 2433 goto unlock; 2434 2435 error = -EAGAIN; 2436 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2437 goto unlock; 2438 2439 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2440 folio); 2441 goto unlock_mapping; 2442 unlock: 2443 folio_unlock(folio); 2444 unlock_mapping: 2445 filemap_invalidate_unlock_shared(mapping); 2446 if (error == AOP_TRUNCATED_PAGE) 2447 folio_put(folio); 2448 return error; 2449 } 2450 2451 static int filemap_create_folio(struct file *file, 2452 struct address_space *mapping, pgoff_t index, 2453 struct folio_batch *fbatch) 2454 { 2455 struct folio *folio; 2456 int error; 2457 2458 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2459 if (!folio) 2460 return -ENOMEM; 2461 2462 /* 2463 * Protect against truncate / hole punch. Grabbing invalidate_lock 2464 * here assures we cannot instantiate and bring uptodate new 2465 * pagecache folios after evicting page cache during truncate 2466 * and before actually freeing blocks. Note that we could 2467 * release invalidate_lock after inserting the folio into 2468 * the page cache as the locked folio would then be enough to 2469 * synchronize with hole punching. But there are code paths 2470 * such as filemap_update_page() filling in partially uptodate 2471 * pages or ->readahead() that need to hold invalidate_lock 2472 * while mapping blocks for IO so let's hold the lock here as 2473 * well to keep locking rules simple. 2474 */ 2475 filemap_invalidate_lock_shared(mapping); 2476 error = filemap_add_folio(mapping, folio, index, 2477 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2478 if (error == -EEXIST) 2479 error = AOP_TRUNCATED_PAGE; 2480 if (error) 2481 goto error; 2482 2483 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2484 if (error) 2485 goto error; 2486 2487 filemap_invalidate_unlock_shared(mapping); 2488 folio_batch_add(fbatch, folio); 2489 return 0; 2490 error: 2491 filemap_invalidate_unlock_shared(mapping); 2492 folio_put(folio); 2493 return error; 2494 } 2495 2496 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2497 struct address_space *mapping, struct folio *folio, 2498 pgoff_t last_index) 2499 { 2500 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2501 2502 if (iocb->ki_flags & IOCB_NOIO) 2503 return -EAGAIN; 2504 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2505 return 0; 2506 } 2507 2508 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2509 struct folio_batch *fbatch, bool need_uptodate) 2510 { 2511 struct file *filp = iocb->ki_filp; 2512 struct address_space *mapping = filp->f_mapping; 2513 struct file_ra_state *ra = &filp->f_ra; 2514 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2515 pgoff_t last_index; 2516 struct folio *folio; 2517 int err = 0; 2518 2519 /* "last_index" is the index of the page beyond the end of the read */ 2520 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2521 retry: 2522 if (fatal_signal_pending(current)) 2523 return -EINTR; 2524 2525 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2526 if (!folio_batch_count(fbatch)) { 2527 if (iocb->ki_flags & IOCB_NOIO) 2528 return -EAGAIN; 2529 page_cache_sync_readahead(mapping, ra, filp, index, 2530 last_index - index); 2531 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2532 } 2533 if (!folio_batch_count(fbatch)) { 2534 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2535 return -EAGAIN; 2536 err = filemap_create_folio(filp, mapping, 2537 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2538 if (err == AOP_TRUNCATED_PAGE) 2539 goto retry; 2540 return err; 2541 } 2542 2543 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2544 if (folio_test_readahead(folio)) { 2545 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2546 if (err) 2547 goto err; 2548 } 2549 if (!folio_test_uptodate(folio)) { 2550 if ((iocb->ki_flags & IOCB_WAITQ) && 2551 folio_batch_count(fbatch) > 1) 2552 iocb->ki_flags |= IOCB_NOWAIT; 2553 err = filemap_update_page(iocb, mapping, count, folio, 2554 need_uptodate); 2555 if (err) 2556 goto err; 2557 } 2558 2559 return 0; 2560 err: 2561 if (err < 0) 2562 folio_put(folio); 2563 if (likely(--fbatch->nr)) 2564 return 0; 2565 if (err == AOP_TRUNCATED_PAGE) 2566 goto retry; 2567 return err; 2568 } 2569 2570 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2571 { 2572 unsigned int shift = folio_shift(folio); 2573 2574 return (pos1 >> shift == pos2 >> shift); 2575 } 2576 2577 /** 2578 * filemap_read - Read data from the page cache. 2579 * @iocb: The iocb to read. 2580 * @iter: Destination for the data. 2581 * @already_read: Number of bytes already read by the caller. 2582 * 2583 * Copies data from the page cache. If the data is not currently present, 2584 * uses the readahead and read_folio address_space operations to fetch it. 2585 * 2586 * Return: Total number of bytes copied, including those already read by 2587 * the caller. If an error happens before any bytes are copied, returns 2588 * a negative error number. 2589 */ 2590 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2591 ssize_t already_read) 2592 { 2593 struct file *filp = iocb->ki_filp; 2594 struct file_ra_state *ra = &filp->f_ra; 2595 struct address_space *mapping = filp->f_mapping; 2596 struct inode *inode = mapping->host; 2597 struct folio_batch fbatch; 2598 int i, error = 0; 2599 bool writably_mapped; 2600 loff_t isize, end_offset; 2601 loff_t last_pos = ra->prev_pos; 2602 2603 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2604 return 0; 2605 if (unlikely(!iov_iter_count(iter))) 2606 return 0; 2607 2608 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2609 folio_batch_init(&fbatch); 2610 2611 do { 2612 cond_resched(); 2613 2614 /* 2615 * If we've already successfully copied some data, then we 2616 * can no longer safely return -EIOCBQUEUED. Hence mark 2617 * an async read NOWAIT at that point. 2618 */ 2619 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2620 iocb->ki_flags |= IOCB_NOWAIT; 2621 2622 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2623 break; 2624 2625 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2626 if (error < 0) 2627 break; 2628 2629 /* 2630 * i_size must be checked after we know the pages are Uptodate. 2631 * 2632 * Checking i_size after the check allows us to calculate 2633 * the correct value for "nr", which means the zero-filled 2634 * part of the page is not copied back to userspace (unless 2635 * another truncate extends the file - this is desired though). 2636 */ 2637 isize = i_size_read(inode); 2638 if (unlikely(iocb->ki_pos >= isize)) 2639 goto put_folios; 2640 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2641 2642 /* 2643 * Once we start copying data, we don't want to be touching any 2644 * cachelines that might be contended: 2645 */ 2646 writably_mapped = mapping_writably_mapped(mapping); 2647 2648 /* 2649 * When a read accesses the same folio several times, only 2650 * mark it as accessed the first time. 2651 */ 2652 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2653 fbatch.folios[0])) 2654 folio_mark_accessed(fbatch.folios[0]); 2655 2656 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2657 struct folio *folio = fbatch.folios[i]; 2658 size_t fsize = folio_size(folio); 2659 size_t offset = iocb->ki_pos & (fsize - 1); 2660 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2661 fsize - offset); 2662 size_t copied; 2663 2664 if (end_offset < folio_pos(folio)) 2665 break; 2666 if (i > 0) 2667 folio_mark_accessed(folio); 2668 /* 2669 * If users can be writing to this folio using arbitrary 2670 * virtual addresses, take care of potential aliasing 2671 * before reading the folio on the kernel side. 2672 */ 2673 if (writably_mapped) 2674 flush_dcache_folio(folio); 2675 2676 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2677 2678 already_read += copied; 2679 iocb->ki_pos += copied; 2680 last_pos = iocb->ki_pos; 2681 2682 if (copied < bytes) { 2683 error = -EFAULT; 2684 break; 2685 } 2686 } 2687 put_folios: 2688 for (i = 0; i < folio_batch_count(&fbatch); i++) 2689 folio_put(fbatch.folios[i]); 2690 folio_batch_init(&fbatch); 2691 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2692 2693 file_accessed(filp); 2694 ra->prev_pos = last_pos; 2695 return already_read ? already_read : error; 2696 } 2697 EXPORT_SYMBOL_GPL(filemap_read); 2698 2699 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2700 { 2701 struct address_space *mapping = iocb->ki_filp->f_mapping; 2702 loff_t pos = iocb->ki_pos; 2703 loff_t end = pos + count - 1; 2704 2705 if (iocb->ki_flags & IOCB_NOWAIT) { 2706 if (filemap_range_needs_writeback(mapping, pos, end)) 2707 return -EAGAIN; 2708 return 0; 2709 } 2710 2711 return filemap_write_and_wait_range(mapping, pos, end); 2712 } 2713 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2714 2715 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2716 { 2717 struct address_space *mapping = iocb->ki_filp->f_mapping; 2718 loff_t pos = iocb->ki_pos; 2719 loff_t end = pos + count - 1; 2720 int ret; 2721 2722 if (iocb->ki_flags & IOCB_NOWAIT) { 2723 /* we could block if there are any pages in the range */ 2724 if (filemap_range_has_page(mapping, pos, end)) 2725 return -EAGAIN; 2726 } else { 2727 ret = filemap_write_and_wait_range(mapping, pos, end); 2728 if (ret) 2729 return ret; 2730 } 2731 2732 /* 2733 * After a write we want buffered reads to be sure to go to disk to get 2734 * the new data. We invalidate clean cached page from the region we're 2735 * about to write. We do this *before* the write so that we can return 2736 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2737 */ 2738 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2739 end >> PAGE_SHIFT); 2740 } 2741 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2742 2743 /** 2744 * generic_file_read_iter - generic filesystem read routine 2745 * @iocb: kernel I/O control block 2746 * @iter: destination for the data read 2747 * 2748 * This is the "read_iter()" routine for all filesystems 2749 * that can use the page cache directly. 2750 * 2751 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2752 * be returned when no data can be read without waiting for I/O requests 2753 * to complete; it doesn't prevent readahead. 2754 * 2755 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2756 * requests shall be made for the read or for readahead. When no data 2757 * can be read, -EAGAIN shall be returned. When readahead would be 2758 * triggered, a partial, possibly empty read shall be returned. 2759 * 2760 * Return: 2761 * * number of bytes copied, even for partial reads 2762 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2763 */ 2764 ssize_t 2765 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2766 { 2767 size_t count = iov_iter_count(iter); 2768 ssize_t retval = 0; 2769 2770 if (!count) 2771 return 0; /* skip atime */ 2772 2773 if (iocb->ki_flags & IOCB_DIRECT) { 2774 struct file *file = iocb->ki_filp; 2775 struct address_space *mapping = file->f_mapping; 2776 struct inode *inode = mapping->host; 2777 2778 retval = kiocb_write_and_wait(iocb, count); 2779 if (retval < 0) 2780 return retval; 2781 file_accessed(file); 2782 2783 retval = mapping->a_ops->direct_IO(iocb, iter); 2784 if (retval >= 0) { 2785 iocb->ki_pos += retval; 2786 count -= retval; 2787 } 2788 if (retval != -EIOCBQUEUED) 2789 iov_iter_revert(iter, count - iov_iter_count(iter)); 2790 2791 /* 2792 * Btrfs can have a short DIO read if we encounter 2793 * compressed extents, so if there was an error, or if 2794 * we've already read everything we wanted to, or if 2795 * there was a short read because we hit EOF, go ahead 2796 * and return. Otherwise fallthrough to buffered io for 2797 * the rest of the read. Buffered reads will not work for 2798 * DAX files, so don't bother trying. 2799 */ 2800 if (retval < 0 || !count || IS_DAX(inode)) 2801 return retval; 2802 if (iocb->ki_pos >= i_size_read(inode)) 2803 return retval; 2804 } 2805 2806 return filemap_read(iocb, iter, retval); 2807 } 2808 EXPORT_SYMBOL(generic_file_read_iter); 2809 2810 /* 2811 * Splice subpages from a folio into a pipe. 2812 */ 2813 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2814 struct folio *folio, loff_t fpos, size_t size) 2815 { 2816 struct page *page; 2817 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2818 2819 page = folio_page(folio, offset / PAGE_SIZE); 2820 size = min(size, folio_size(folio) - offset); 2821 offset %= PAGE_SIZE; 2822 2823 while (spliced < size && 2824 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2825 struct pipe_buffer *buf = pipe_head_buf(pipe); 2826 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2827 2828 *buf = (struct pipe_buffer) { 2829 .ops = &page_cache_pipe_buf_ops, 2830 .page = page, 2831 .offset = offset, 2832 .len = part, 2833 }; 2834 folio_get(folio); 2835 pipe->head++; 2836 page++; 2837 spliced += part; 2838 offset = 0; 2839 } 2840 2841 return spliced; 2842 } 2843 2844 /** 2845 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2846 * @in: The file to read from 2847 * @ppos: Pointer to the file position to read from 2848 * @pipe: The pipe to splice into 2849 * @len: The amount to splice 2850 * @flags: The SPLICE_F_* flags 2851 * 2852 * This function gets folios from a file's pagecache and splices them into the 2853 * pipe. Readahead will be called as necessary to fill more folios. This may 2854 * be used for blockdevs also. 2855 * 2856 * Return: On success, the number of bytes read will be returned and *@ppos 2857 * will be updated if appropriate; 0 will be returned if there is no more data 2858 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2859 * other negative error code will be returned on error. A short read may occur 2860 * if the pipe has insufficient space, we reach the end of the data or we hit a 2861 * hole. 2862 */ 2863 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2864 struct pipe_inode_info *pipe, 2865 size_t len, unsigned int flags) 2866 { 2867 struct folio_batch fbatch; 2868 struct kiocb iocb; 2869 size_t total_spliced = 0, used, npages; 2870 loff_t isize, end_offset; 2871 bool writably_mapped; 2872 int i, error = 0; 2873 2874 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2875 return 0; 2876 2877 init_sync_kiocb(&iocb, in); 2878 iocb.ki_pos = *ppos; 2879 2880 /* Work out how much data we can actually add into the pipe */ 2881 used = pipe_occupancy(pipe->head, pipe->tail); 2882 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2883 len = min_t(size_t, len, npages * PAGE_SIZE); 2884 2885 folio_batch_init(&fbatch); 2886 2887 do { 2888 cond_resched(); 2889 2890 if (*ppos >= i_size_read(in->f_mapping->host)) 2891 break; 2892 2893 iocb.ki_pos = *ppos; 2894 error = filemap_get_pages(&iocb, len, &fbatch, true); 2895 if (error < 0) 2896 break; 2897 2898 /* 2899 * i_size must be checked after we know the pages are Uptodate. 2900 * 2901 * Checking i_size after the check allows us to calculate 2902 * the correct value for "nr", which means the zero-filled 2903 * part of the page is not copied back to userspace (unless 2904 * another truncate extends the file - this is desired though). 2905 */ 2906 isize = i_size_read(in->f_mapping->host); 2907 if (unlikely(*ppos >= isize)) 2908 break; 2909 end_offset = min_t(loff_t, isize, *ppos + len); 2910 2911 /* 2912 * Once we start copying data, we don't want to be touching any 2913 * cachelines that might be contended: 2914 */ 2915 writably_mapped = mapping_writably_mapped(in->f_mapping); 2916 2917 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2918 struct folio *folio = fbatch.folios[i]; 2919 size_t n; 2920 2921 if (folio_pos(folio) >= end_offset) 2922 goto out; 2923 folio_mark_accessed(folio); 2924 2925 /* 2926 * If users can be writing to this folio using arbitrary 2927 * virtual addresses, take care of potential aliasing 2928 * before reading the folio on the kernel side. 2929 */ 2930 if (writably_mapped) 2931 flush_dcache_folio(folio); 2932 2933 n = min_t(loff_t, len, isize - *ppos); 2934 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2935 if (!n) 2936 goto out; 2937 len -= n; 2938 total_spliced += n; 2939 *ppos += n; 2940 in->f_ra.prev_pos = *ppos; 2941 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2942 goto out; 2943 } 2944 2945 folio_batch_release(&fbatch); 2946 } while (len); 2947 2948 out: 2949 folio_batch_release(&fbatch); 2950 file_accessed(in); 2951 2952 return total_spliced ? total_spliced : error; 2953 } 2954 EXPORT_SYMBOL(filemap_splice_read); 2955 2956 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2957 struct address_space *mapping, struct folio *folio, 2958 loff_t start, loff_t end, bool seek_data) 2959 { 2960 const struct address_space_operations *ops = mapping->a_ops; 2961 size_t offset, bsz = i_blocksize(mapping->host); 2962 2963 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2964 return seek_data ? start : end; 2965 if (!ops->is_partially_uptodate) 2966 return seek_data ? end : start; 2967 2968 xas_pause(xas); 2969 rcu_read_unlock(); 2970 folio_lock(folio); 2971 if (unlikely(folio->mapping != mapping)) 2972 goto unlock; 2973 2974 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2975 2976 do { 2977 if (ops->is_partially_uptodate(folio, offset, bsz) == 2978 seek_data) 2979 break; 2980 start = (start + bsz) & ~(bsz - 1); 2981 offset += bsz; 2982 } while (offset < folio_size(folio)); 2983 unlock: 2984 folio_unlock(folio); 2985 rcu_read_lock(); 2986 return start; 2987 } 2988 2989 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2990 { 2991 if (xa_is_value(folio)) 2992 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2993 return folio_size(folio); 2994 } 2995 2996 /** 2997 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2998 * @mapping: Address space to search. 2999 * @start: First byte to consider. 3000 * @end: Limit of search (exclusive). 3001 * @whence: Either SEEK_HOLE or SEEK_DATA. 3002 * 3003 * If the page cache knows which blocks contain holes and which blocks 3004 * contain data, your filesystem can use this function to implement 3005 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3006 * entirely memory-based such as tmpfs, and filesystems which support 3007 * unwritten extents. 3008 * 3009 * Return: The requested offset on success, or -ENXIO if @whence specifies 3010 * SEEK_DATA and there is no data after @start. There is an implicit hole 3011 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3012 * and @end contain data. 3013 */ 3014 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3015 loff_t end, int whence) 3016 { 3017 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3018 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3019 bool seek_data = (whence == SEEK_DATA); 3020 struct folio *folio; 3021 3022 if (end <= start) 3023 return -ENXIO; 3024 3025 rcu_read_lock(); 3026 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3027 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3028 size_t seek_size; 3029 3030 if (start < pos) { 3031 if (!seek_data) 3032 goto unlock; 3033 start = pos; 3034 } 3035 3036 seek_size = seek_folio_size(&xas, folio); 3037 pos = round_up((u64)pos + 1, seek_size); 3038 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3039 seek_data); 3040 if (start < pos) 3041 goto unlock; 3042 if (start >= end) 3043 break; 3044 if (seek_size > PAGE_SIZE) 3045 xas_set(&xas, pos >> PAGE_SHIFT); 3046 if (!xa_is_value(folio)) 3047 folio_put(folio); 3048 } 3049 if (seek_data) 3050 start = -ENXIO; 3051 unlock: 3052 rcu_read_unlock(); 3053 if (folio && !xa_is_value(folio)) 3054 folio_put(folio); 3055 if (start > end) 3056 return end; 3057 return start; 3058 } 3059 3060 #ifdef CONFIG_MMU 3061 #define MMAP_LOTSAMISS (100) 3062 /* 3063 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3064 * @vmf - the vm_fault for this fault. 3065 * @folio - the folio to lock. 3066 * @fpin - the pointer to the file we may pin (or is already pinned). 3067 * 3068 * This works similar to lock_folio_or_retry in that it can drop the 3069 * mmap_lock. It differs in that it actually returns the folio locked 3070 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3071 * to drop the mmap_lock then fpin will point to the pinned file and 3072 * needs to be fput()'ed at a later point. 3073 */ 3074 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3075 struct file **fpin) 3076 { 3077 if (folio_trylock(folio)) 3078 return 1; 3079 3080 /* 3081 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3082 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3083 * is supposed to work. We have way too many special cases.. 3084 */ 3085 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3086 return 0; 3087 3088 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3089 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3090 if (__folio_lock_killable(folio)) { 3091 /* 3092 * We didn't have the right flags to drop the 3093 * fault lock, but all fault_handlers only check 3094 * for fatal signals if we return VM_FAULT_RETRY, 3095 * so we need to drop the fault lock here and 3096 * return 0 if we don't have a fpin. 3097 */ 3098 if (*fpin == NULL) 3099 release_fault_lock(vmf); 3100 return 0; 3101 } 3102 } else 3103 __folio_lock(folio); 3104 3105 return 1; 3106 } 3107 3108 /* 3109 * Synchronous readahead happens when we don't even find a page in the page 3110 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3111 * to drop the mmap sem we return the file that was pinned in order for us to do 3112 * that. If we didn't pin a file then we return NULL. The file that is 3113 * returned needs to be fput()'ed when we're done with it. 3114 */ 3115 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3116 { 3117 struct file *file = vmf->vma->vm_file; 3118 struct file_ra_state *ra = &file->f_ra; 3119 struct address_space *mapping = file->f_mapping; 3120 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3121 struct file *fpin = NULL; 3122 unsigned long vm_flags = vmf->vma->vm_flags; 3123 unsigned int mmap_miss; 3124 3125 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3126 /* Use the readahead code, even if readahead is disabled */ 3127 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3128 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3129 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3130 ra->size = HPAGE_PMD_NR; 3131 /* 3132 * Fetch two PMD folios, so we get the chance to actually 3133 * readahead, unless we've been told not to. 3134 */ 3135 if (!(vm_flags & VM_RAND_READ)) 3136 ra->size *= 2; 3137 ra->async_size = HPAGE_PMD_NR; 3138 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3139 return fpin; 3140 } 3141 #endif 3142 3143 /* If we don't want any read-ahead, don't bother */ 3144 if (vm_flags & VM_RAND_READ) 3145 return fpin; 3146 if (!ra->ra_pages) 3147 return fpin; 3148 3149 if (vm_flags & VM_SEQ_READ) { 3150 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3151 page_cache_sync_ra(&ractl, ra->ra_pages); 3152 return fpin; 3153 } 3154 3155 /* Avoid banging the cache line if not needed */ 3156 mmap_miss = READ_ONCE(ra->mmap_miss); 3157 if (mmap_miss < MMAP_LOTSAMISS * 10) 3158 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3159 3160 /* 3161 * Do we miss much more than hit in this file? If so, 3162 * stop bothering with read-ahead. It will only hurt. 3163 */ 3164 if (mmap_miss > MMAP_LOTSAMISS) 3165 return fpin; 3166 3167 /* 3168 * mmap read-around 3169 */ 3170 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3171 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3172 ra->size = ra->ra_pages; 3173 ra->async_size = ra->ra_pages / 4; 3174 ractl._index = ra->start; 3175 page_cache_ra_order(&ractl, ra, 0); 3176 return fpin; 3177 } 3178 3179 /* 3180 * Asynchronous readahead happens when we find the page and PG_readahead, 3181 * so we want to possibly extend the readahead further. We return the file that 3182 * was pinned if we have to drop the mmap_lock in order to do IO. 3183 */ 3184 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3185 struct folio *folio) 3186 { 3187 struct file *file = vmf->vma->vm_file; 3188 struct file_ra_state *ra = &file->f_ra; 3189 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3190 struct file *fpin = NULL; 3191 unsigned int mmap_miss; 3192 3193 /* If we don't want any read-ahead, don't bother */ 3194 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3195 return fpin; 3196 3197 mmap_miss = READ_ONCE(ra->mmap_miss); 3198 if (mmap_miss) 3199 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3200 3201 if (folio_test_readahead(folio)) { 3202 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3203 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3204 } 3205 return fpin; 3206 } 3207 3208 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3209 { 3210 struct vm_area_struct *vma = vmf->vma; 3211 vm_fault_t ret = 0; 3212 pte_t *ptep; 3213 3214 /* 3215 * We might have COW'ed a pagecache folio and might now have an mlocked 3216 * anon folio mapped. The original pagecache folio is not mlocked and 3217 * might have been evicted. During a read+clear/modify/write update of 3218 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3219 * temporarily clear the PTE under PT lock and might detect it here as 3220 * "none" when not holding the PT lock. 3221 * 3222 * Not rechecking the PTE under PT lock could result in an unexpected 3223 * major fault in an mlock'ed region. Recheck only for this special 3224 * scenario while holding the PT lock, to not degrade non-mlocked 3225 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3226 * the number of times we hold PT lock. 3227 */ 3228 if (!(vma->vm_flags & VM_LOCKED)) 3229 return 0; 3230 3231 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3232 return 0; 3233 3234 ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3235 &vmf->ptl); 3236 if (unlikely(!ptep)) 3237 return VM_FAULT_NOPAGE; 3238 3239 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3240 ret = VM_FAULT_NOPAGE; 3241 } else { 3242 spin_lock(vmf->ptl); 3243 if (unlikely(!pte_none(ptep_get(ptep)))) 3244 ret = VM_FAULT_NOPAGE; 3245 spin_unlock(vmf->ptl); 3246 } 3247 pte_unmap(ptep); 3248 return ret; 3249 } 3250 3251 /** 3252 * filemap_fault - read in file data for page fault handling 3253 * @vmf: struct vm_fault containing details of the fault 3254 * 3255 * filemap_fault() is invoked via the vma operations vector for a 3256 * mapped memory region to read in file data during a page fault. 3257 * 3258 * The goto's are kind of ugly, but this streamlines the normal case of having 3259 * it in the page cache, and handles the special cases reasonably without 3260 * having a lot of duplicated code. 3261 * 3262 * vma->vm_mm->mmap_lock must be held on entry. 3263 * 3264 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3265 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3266 * 3267 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3268 * has not been released. 3269 * 3270 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3271 * 3272 * Return: bitwise-OR of %VM_FAULT_ codes. 3273 */ 3274 vm_fault_t filemap_fault(struct vm_fault *vmf) 3275 { 3276 int error; 3277 struct file *file = vmf->vma->vm_file; 3278 struct file *fpin = NULL; 3279 struct address_space *mapping = file->f_mapping; 3280 struct inode *inode = mapping->host; 3281 pgoff_t max_idx, index = vmf->pgoff; 3282 struct folio *folio; 3283 vm_fault_t ret = 0; 3284 bool mapping_locked = false; 3285 3286 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3287 if (unlikely(index >= max_idx)) 3288 return VM_FAULT_SIGBUS; 3289 3290 /* 3291 * Do we have something in the page cache already? 3292 */ 3293 folio = filemap_get_folio(mapping, index); 3294 if (likely(!IS_ERR(folio))) { 3295 /* 3296 * We found the page, so try async readahead before waiting for 3297 * the lock. 3298 */ 3299 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3300 fpin = do_async_mmap_readahead(vmf, folio); 3301 if (unlikely(!folio_test_uptodate(folio))) { 3302 filemap_invalidate_lock_shared(mapping); 3303 mapping_locked = true; 3304 } 3305 } else { 3306 ret = filemap_fault_recheck_pte_none(vmf); 3307 if (unlikely(ret)) 3308 return ret; 3309 3310 /* No page in the page cache at all */ 3311 count_vm_event(PGMAJFAULT); 3312 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3313 ret = VM_FAULT_MAJOR; 3314 fpin = do_sync_mmap_readahead(vmf); 3315 retry_find: 3316 /* 3317 * See comment in filemap_create_folio() why we need 3318 * invalidate_lock 3319 */ 3320 if (!mapping_locked) { 3321 filemap_invalidate_lock_shared(mapping); 3322 mapping_locked = true; 3323 } 3324 folio = __filemap_get_folio(mapping, index, 3325 FGP_CREAT|FGP_FOR_MMAP, 3326 vmf->gfp_mask); 3327 if (IS_ERR(folio)) { 3328 if (fpin) 3329 goto out_retry; 3330 filemap_invalidate_unlock_shared(mapping); 3331 return VM_FAULT_OOM; 3332 } 3333 } 3334 3335 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3336 goto out_retry; 3337 3338 /* Did it get truncated? */ 3339 if (unlikely(folio->mapping != mapping)) { 3340 folio_unlock(folio); 3341 folio_put(folio); 3342 goto retry_find; 3343 } 3344 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3345 3346 /* 3347 * We have a locked folio in the page cache, now we need to check 3348 * that it's up-to-date. If not, it is going to be due to an error, 3349 * or because readahead was otherwise unable to retrieve it. 3350 */ 3351 if (unlikely(!folio_test_uptodate(folio))) { 3352 /* 3353 * If the invalidate lock is not held, the folio was in cache 3354 * and uptodate and now it is not. Strange but possible since we 3355 * didn't hold the page lock all the time. Let's drop 3356 * everything, get the invalidate lock and try again. 3357 */ 3358 if (!mapping_locked) { 3359 folio_unlock(folio); 3360 folio_put(folio); 3361 goto retry_find; 3362 } 3363 3364 /* 3365 * OK, the folio is really not uptodate. This can be because the 3366 * VMA has the VM_RAND_READ flag set, or because an error 3367 * arose. Let's read it in directly. 3368 */ 3369 goto page_not_uptodate; 3370 } 3371 3372 /* 3373 * We've made it this far and we had to drop our mmap_lock, now is the 3374 * time to return to the upper layer and have it re-find the vma and 3375 * redo the fault. 3376 */ 3377 if (fpin) { 3378 folio_unlock(folio); 3379 goto out_retry; 3380 } 3381 if (mapping_locked) 3382 filemap_invalidate_unlock_shared(mapping); 3383 3384 /* 3385 * Found the page and have a reference on it. 3386 * We must recheck i_size under page lock. 3387 */ 3388 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3389 if (unlikely(index >= max_idx)) { 3390 folio_unlock(folio); 3391 folio_put(folio); 3392 return VM_FAULT_SIGBUS; 3393 } 3394 3395 vmf->page = folio_file_page(folio, index); 3396 return ret | VM_FAULT_LOCKED; 3397 3398 page_not_uptodate: 3399 /* 3400 * Umm, take care of errors if the page isn't up-to-date. 3401 * Try to re-read it _once_. We do this synchronously, 3402 * because there really aren't any performance issues here 3403 * and we need to check for errors. 3404 */ 3405 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3406 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3407 if (fpin) 3408 goto out_retry; 3409 folio_put(folio); 3410 3411 if (!error || error == AOP_TRUNCATED_PAGE) 3412 goto retry_find; 3413 filemap_invalidate_unlock_shared(mapping); 3414 3415 return VM_FAULT_SIGBUS; 3416 3417 out_retry: 3418 /* 3419 * We dropped the mmap_lock, we need to return to the fault handler to 3420 * re-find the vma and come back and find our hopefully still populated 3421 * page. 3422 */ 3423 if (!IS_ERR(folio)) 3424 folio_put(folio); 3425 if (mapping_locked) 3426 filemap_invalidate_unlock_shared(mapping); 3427 if (fpin) 3428 fput(fpin); 3429 return ret | VM_FAULT_RETRY; 3430 } 3431 EXPORT_SYMBOL(filemap_fault); 3432 3433 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3434 pgoff_t start) 3435 { 3436 struct mm_struct *mm = vmf->vma->vm_mm; 3437 3438 /* Huge page is mapped? No need to proceed. */ 3439 if (pmd_trans_huge(*vmf->pmd)) { 3440 folio_unlock(folio); 3441 folio_put(folio); 3442 return true; 3443 } 3444 3445 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3446 struct page *page = folio_file_page(folio, start); 3447 vm_fault_t ret = do_set_pmd(vmf, page); 3448 if (!ret) { 3449 /* The page is mapped successfully, reference consumed. */ 3450 folio_unlock(folio); 3451 return true; 3452 } 3453 } 3454 3455 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3456 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3457 3458 return false; 3459 } 3460 3461 static struct folio *next_uptodate_folio(struct xa_state *xas, 3462 struct address_space *mapping, pgoff_t end_pgoff) 3463 { 3464 struct folio *folio = xas_next_entry(xas, end_pgoff); 3465 unsigned long max_idx; 3466 3467 do { 3468 if (!folio) 3469 return NULL; 3470 if (xas_retry(xas, folio)) 3471 continue; 3472 if (xa_is_value(folio)) 3473 continue; 3474 if (folio_test_locked(folio)) 3475 continue; 3476 if (!folio_try_get(folio)) 3477 continue; 3478 /* Has the page moved or been split? */ 3479 if (unlikely(folio != xas_reload(xas))) 3480 goto skip; 3481 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3482 goto skip; 3483 if (!folio_trylock(folio)) 3484 goto skip; 3485 if (folio->mapping != mapping) 3486 goto unlock; 3487 if (!folio_test_uptodate(folio)) 3488 goto unlock; 3489 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3490 if (xas->xa_index >= max_idx) 3491 goto unlock; 3492 return folio; 3493 unlock: 3494 folio_unlock(folio); 3495 skip: 3496 folio_put(folio); 3497 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3498 3499 return NULL; 3500 } 3501 3502 /* 3503 * Map page range [start_page, start_page + nr_pages) of folio. 3504 * start_page is gotten from start by folio_page(folio, start) 3505 */ 3506 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3507 struct folio *folio, unsigned long start, 3508 unsigned long addr, unsigned int nr_pages, 3509 unsigned long *rss, unsigned int *mmap_miss) 3510 { 3511 vm_fault_t ret = 0; 3512 struct page *page = folio_page(folio, start); 3513 unsigned int count = 0; 3514 pte_t *old_ptep = vmf->pte; 3515 3516 do { 3517 if (PageHWPoison(page + count)) 3518 goto skip; 3519 3520 /* 3521 * If there are too many folios that are recently evicted 3522 * in a file, they will probably continue to be evicted. 3523 * In such situation, read-ahead is only a waste of IO. 3524 * Don't decrease mmap_miss in this scenario to make sure 3525 * we can stop read-ahead. 3526 */ 3527 if (!folio_test_workingset(folio)) 3528 (*mmap_miss)++; 3529 3530 /* 3531 * NOTE: If there're PTE markers, we'll leave them to be 3532 * handled in the specific fault path, and it'll prohibit the 3533 * fault-around logic. 3534 */ 3535 if (!pte_none(ptep_get(&vmf->pte[count]))) 3536 goto skip; 3537 3538 count++; 3539 continue; 3540 skip: 3541 if (count) { 3542 set_pte_range(vmf, folio, page, count, addr); 3543 *rss += count; 3544 folio_ref_add(folio, count); 3545 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3546 ret = VM_FAULT_NOPAGE; 3547 } 3548 3549 count++; 3550 page += count; 3551 vmf->pte += count; 3552 addr += count * PAGE_SIZE; 3553 count = 0; 3554 } while (--nr_pages > 0); 3555 3556 if (count) { 3557 set_pte_range(vmf, folio, page, count, addr); 3558 *rss += count; 3559 folio_ref_add(folio, count); 3560 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3561 ret = VM_FAULT_NOPAGE; 3562 } 3563 3564 vmf->pte = old_ptep; 3565 3566 return ret; 3567 } 3568 3569 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3570 struct folio *folio, unsigned long addr, 3571 unsigned long *rss, unsigned int *mmap_miss) 3572 { 3573 vm_fault_t ret = 0; 3574 struct page *page = &folio->page; 3575 3576 if (PageHWPoison(page)) 3577 return ret; 3578 3579 /* See comment of filemap_map_folio_range() */ 3580 if (!folio_test_workingset(folio)) 3581 (*mmap_miss)++; 3582 3583 /* 3584 * NOTE: If there're PTE markers, we'll leave them to be 3585 * handled in the specific fault path, and it'll prohibit 3586 * the fault-around logic. 3587 */ 3588 if (!pte_none(ptep_get(vmf->pte))) 3589 return ret; 3590 3591 if (vmf->address == addr) 3592 ret = VM_FAULT_NOPAGE; 3593 3594 set_pte_range(vmf, folio, page, 1, addr); 3595 (*rss)++; 3596 folio_ref_inc(folio); 3597 3598 return ret; 3599 } 3600 3601 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3602 pgoff_t start_pgoff, pgoff_t end_pgoff) 3603 { 3604 struct vm_area_struct *vma = vmf->vma; 3605 struct file *file = vma->vm_file; 3606 struct address_space *mapping = file->f_mapping; 3607 pgoff_t last_pgoff = start_pgoff; 3608 unsigned long addr; 3609 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3610 struct folio *folio; 3611 vm_fault_t ret = 0; 3612 unsigned long rss = 0; 3613 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3614 3615 rcu_read_lock(); 3616 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3617 if (!folio) 3618 goto out; 3619 3620 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3621 ret = VM_FAULT_NOPAGE; 3622 goto out; 3623 } 3624 3625 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3626 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3627 if (!vmf->pte) { 3628 folio_unlock(folio); 3629 folio_put(folio); 3630 goto out; 3631 } 3632 3633 folio_type = mm_counter_file(folio); 3634 do { 3635 unsigned long end; 3636 3637 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3638 vmf->pte += xas.xa_index - last_pgoff; 3639 last_pgoff = xas.xa_index; 3640 end = folio_next_index(folio) - 1; 3641 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3642 3643 if (!folio_test_large(folio)) 3644 ret |= filemap_map_order0_folio(vmf, 3645 folio, addr, &rss, &mmap_miss); 3646 else 3647 ret |= filemap_map_folio_range(vmf, folio, 3648 xas.xa_index - folio->index, addr, 3649 nr_pages, &rss, &mmap_miss); 3650 3651 folio_unlock(folio); 3652 folio_put(folio); 3653 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3654 add_mm_counter(vma->vm_mm, folio_type, rss); 3655 pte_unmap_unlock(vmf->pte, vmf->ptl); 3656 out: 3657 rcu_read_unlock(); 3658 3659 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3660 if (mmap_miss >= mmap_miss_saved) 3661 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3662 else 3663 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3664 3665 return ret; 3666 } 3667 EXPORT_SYMBOL(filemap_map_pages); 3668 3669 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3670 { 3671 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3672 struct folio *folio = page_folio(vmf->page); 3673 vm_fault_t ret = VM_FAULT_LOCKED; 3674 3675 sb_start_pagefault(mapping->host->i_sb); 3676 file_update_time(vmf->vma->vm_file); 3677 folio_lock(folio); 3678 if (folio->mapping != mapping) { 3679 folio_unlock(folio); 3680 ret = VM_FAULT_NOPAGE; 3681 goto out; 3682 } 3683 /* 3684 * We mark the folio dirty already here so that when freeze is in 3685 * progress, we are guaranteed that writeback during freezing will 3686 * see the dirty folio and writeprotect it again. 3687 */ 3688 folio_mark_dirty(folio); 3689 folio_wait_stable(folio); 3690 out: 3691 sb_end_pagefault(mapping->host->i_sb); 3692 return ret; 3693 } 3694 3695 const struct vm_operations_struct generic_file_vm_ops = { 3696 .fault = filemap_fault, 3697 .map_pages = filemap_map_pages, 3698 .page_mkwrite = filemap_page_mkwrite, 3699 }; 3700 3701 /* This is used for a general mmap of a disk file */ 3702 3703 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3704 { 3705 struct address_space *mapping = file->f_mapping; 3706 3707 if (!mapping->a_ops->read_folio) 3708 return -ENOEXEC; 3709 file_accessed(file); 3710 vma->vm_ops = &generic_file_vm_ops; 3711 return 0; 3712 } 3713 3714 /* 3715 * This is for filesystems which do not implement ->writepage. 3716 */ 3717 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3718 { 3719 if (vma_is_shared_maywrite(vma)) 3720 return -EINVAL; 3721 return generic_file_mmap(file, vma); 3722 } 3723 #else 3724 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3725 { 3726 return VM_FAULT_SIGBUS; 3727 } 3728 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3729 { 3730 return -ENOSYS; 3731 } 3732 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3733 { 3734 return -ENOSYS; 3735 } 3736 #endif /* CONFIG_MMU */ 3737 3738 EXPORT_SYMBOL(filemap_page_mkwrite); 3739 EXPORT_SYMBOL(generic_file_mmap); 3740 EXPORT_SYMBOL(generic_file_readonly_mmap); 3741 3742 static struct folio *do_read_cache_folio(struct address_space *mapping, 3743 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3744 { 3745 struct folio *folio; 3746 int err; 3747 3748 if (!filler) 3749 filler = mapping->a_ops->read_folio; 3750 repeat: 3751 folio = filemap_get_folio(mapping, index); 3752 if (IS_ERR(folio)) { 3753 folio = filemap_alloc_folio(gfp, 0); 3754 if (!folio) 3755 return ERR_PTR(-ENOMEM); 3756 err = filemap_add_folio(mapping, folio, index, gfp); 3757 if (unlikely(err)) { 3758 folio_put(folio); 3759 if (err == -EEXIST) 3760 goto repeat; 3761 /* Presumably ENOMEM for xarray node */ 3762 return ERR_PTR(err); 3763 } 3764 3765 goto filler; 3766 } 3767 if (folio_test_uptodate(folio)) 3768 goto out; 3769 3770 if (!folio_trylock(folio)) { 3771 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3772 goto repeat; 3773 } 3774 3775 /* Folio was truncated from mapping */ 3776 if (!folio->mapping) { 3777 folio_unlock(folio); 3778 folio_put(folio); 3779 goto repeat; 3780 } 3781 3782 /* Someone else locked and filled the page in a very small window */ 3783 if (folio_test_uptodate(folio)) { 3784 folio_unlock(folio); 3785 goto out; 3786 } 3787 3788 filler: 3789 err = filemap_read_folio(file, filler, folio); 3790 if (err) { 3791 folio_put(folio); 3792 if (err == AOP_TRUNCATED_PAGE) 3793 goto repeat; 3794 return ERR_PTR(err); 3795 } 3796 3797 out: 3798 folio_mark_accessed(folio); 3799 return folio; 3800 } 3801 3802 /** 3803 * read_cache_folio - Read into page cache, fill it if needed. 3804 * @mapping: The address_space to read from. 3805 * @index: The index to read. 3806 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3807 * @file: Passed to filler function, may be NULL if not required. 3808 * 3809 * Read one page into the page cache. If it succeeds, the folio returned 3810 * will contain @index, but it may not be the first page of the folio. 3811 * 3812 * If the filler function returns an error, it will be returned to the 3813 * caller. 3814 * 3815 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3816 * Return: An uptodate folio on success, ERR_PTR() on failure. 3817 */ 3818 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3819 filler_t filler, struct file *file) 3820 { 3821 return do_read_cache_folio(mapping, index, filler, file, 3822 mapping_gfp_mask(mapping)); 3823 } 3824 EXPORT_SYMBOL(read_cache_folio); 3825 3826 /** 3827 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3828 * @mapping: The address_space for the folio. 3829 * @index: The index that the allocated folio will contain. 3830 * @gfp: The page allocator flags to use if allocating. 3831 * 3832 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3833 * any new memory allocations done using the specified allocation flags. 3834 * 3835 * The most likely error from this function is EIO, but ENOMEM is 3836 * possible and so is EINTR. If ->read_folio returns another error, 3837 * that will be returned to the caller. 3838 * 3839 * The function expects mapping->invalidate_lock to be already held. 3840 * 3841 * Return: Uptodate folio on success, ERR_PTR() on failure. 3842 */ 3843 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3844 pgoff_t index, gfp_t gfp) 3845 { 3846 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3847 } 3848 EXPORT_SYMBOL(mapping_read_folio_gfp); 3849 3850 static struct page *do_read_cache_page(struct address_space *mapping, 3851 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3852 { 3853 struct folio *folio; 3854 3855 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3856 if (IS_ERR(folio)) 3857 return &folio->page; 3858 return folio_file_page(folio, index); 3859 } 3860 3861 struct page *read_cache_page(struct address_space *mapping, 3862 pgoff_t index, filler_t *filler, struct file *file) 3863 { 3864 return do_read_cache_page(mapping, index, filler, file, 3865 mapping_gfp_mask(mapping)); 3866 } 3867 EXPORT_SYMBOL(read_cache_page); 3868 3869 /** 3870 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3871 * @mapping: the page's address_space 3872 * @index: the page index 3873 * @gfp: the page allocator flags to use if allocating 3874 * 3875 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3876 * any new page allocations done using the specified allocation flags. 3877 * 3878 * If the page does not get brought uptodate, return -EIO. 3879 * 3880 * The function expects mapping->invalidate_lock to be already held. 3881 * 3882 * Return: up to date page on success, ERR_PTR() on failure. 3883 */ 3884 struct page *read_cache_page_gfp(struct address_space *mapping, 3885 pgoff_t index, 3886 gfp_t gfp) 3887 { 3888 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3889 } 3890 EXPORT_SYMBOL(read_cache_page_gfp); 3891 3892 /* 3893 * Warn about a page cache invalidation failure during a direct I/O write. 3894 */ 3895 static void dio_warn_stale_pagecache(struct file *filp) 3896 { 3897 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3898 char pathname[128]; 3899 char *path; 3900 3901 errseq_set(&filp->f_mapping->wb_err, -EIO); 3902 if (__ratelimit(&_rs)) { 3903 path = file_path(filp, pathname, sizeof(pathname)); 3904 if (IS_ERR(path)) 3905 path = "(unknown)"; 3906 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3907 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3908 current->comm); 3909 } 3910 } 3911 3912 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3913 { 3914 struct address_space *mapping = iocb->ki_filp->f_mapping; 3915 3916 if (mapping->nrpages && 3917 invalidate_inode_pages2_range(mapping, 3918 iocb->ki_pos >> PAGE_SHIFT, 3919 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3920 dio_warn_stale_pagecache(iocb->ki_filp); 3921 } 3922 3923 ssize_t 3924 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3925 { 3926 struct address_space *mapping = iocb->ki_filp->f_mapping; 3927 size_t write_len = iov_iter_count(from); 3928 ssize_t written; 3929 3930 /* 3931 * If a page can not be invalidated, return 0 to fall back 3932 * to buffered write. 3933 */ 3934 written = kiocb_invalidate_pages(iocb, write_len); 3935 if (written) { 3936 if (written == -EBUSY) 3937 return 0; 3938 return written; 3939 } 3940 3941 written = mapping->a_ops->direct_IO(iocb, from); 3942 3943 /* 3944 * Finally, try again to invalidate clean pages which might have been 3945 * cached by non-direct readahead, or faulted in by get_user_pages() 3946 * if the source of the write was an mmap'ed region of the file 3947 * we're writing. Either one is a pretty crazy thing to do, 3948 * so we don't support it 100%. If this invalidation 3949 * fails, tough, the write still worked... 3950 * 3951 * Most of the time we do not need this since dio_complete() will do 3952 * the invalidation for us. However there are some file systems that 3953 * do not end up with dio_complete() being called, so let's not break 3954 * them by removing it completely. 3955 * 3956 * Noticeable example is a blkdev_direct_IO(). 3957 * 3958 * Skip invalidation for async writes or if mapping has no pages. 3959 */ 3960 if (written > 0) { 3961 struct inode *inode = mapping->host; 3962 loff_t pos = iocb->ki_pos; 3963 3964 kiocb_invalidate_post_direct_write(iocb, written); 3965 pos += written; 3966 write_len -= written; 3967 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3968 i_size_write(inode, pos); 3969 mark_inode_dirty(inode); 3970 } 3971 iocb->ki_pos = pos; 3972 } 3973 if (written != -EIOCBQUEUED) 3974 iov_iter_revert(from, write_len - iov_iter_count(from)); 3975 return written; 3976 } 3977 EXPORT_SYMBOL(generic_file_direct_write); 3978 3979 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3980 { 3981 struct file *file = iocb->ki_filp; 3982 loff_t pos = iocb->ki_pos; 3983 struct address_space *mapping = file->f_mapping; 3984 const struct address_space_operations *a_ops = mapping->a_ops; 3985 size_t chunk = mapping_max_folio_size(mapping); 3986 long status = 0; 3987 ssize_t written = 0; 3988 3989 do { 3990 struct folio *folio; 3991 size_t offset; /* Offset into folio */ 3992 size_t bytes; /* Bytes to write to folio */ 3993 size_t copied; /* Bytes copied from user */ 3994 void *fsdata = NULL; 3995 3996 bytes = iov_iter_count(i); 3997 retry: 3998 offset = pos & (chunk - 1); 3999 bytes = min(chunk - offset, bytes); 4000 balance_dirty_pages_ratelimited(mapping); 4001 4002 /* 4003 * Bring in the user page that we will copy from _first_. 4004 * Otherwise there's a nasty deadlock on copying from the 4005 * same page as we're writing to, without it being marked 4006 * up-to-date. 4007 */ 4008 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4009 status = -EFAULT; 4010 break; 4011 } 4012 4013 if (fatal_signal_pending(current)) { 4014 status = -EINTR; 4015 break; 4016 } 4017 4018 status = a_ops->write_begin(file, mapping, pos, bytes, 4019 &folio, &fsdata); 4020 if (unlikely(status < 0)) 4021 break; 4022 4023 offset = offset_in_folio(folio, pos); 4024 if (bytes > folio_size(folio) - offset) 4025 bytes = folio_size(folio) - offset; 4026 4027 if (mapping_writably_mapped(mapping)) 4028 flush_dcache_folio(folio); 4029 4030 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4031 flush_dcache_folio(folio); 4032 4033 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4034 folio, fsdata); 4035 if (unlikely(status != copied)) { 4036 iov_iter_revert(i, copied - max(status, 0L)); 4037 if (unlikely(status < 0)) 4038 break; 4039 } 4040 cond_resched(); 4041 4042 if (unlikely(status == 0)) { 4043 /* 4044 * A short copy made ->write_end() reject the 4045 * thing entirely. Might be memory poisoning 4046 * halfway through, might be a race with munmap, 4047 * might be severe memory pressure. 4048 */ 4049 if (chunk > PAGE_SIZE) 4050 chunk /= 2; 4051 if (copied) { 4052 bytes = copied; 4053 goto retry; 4054 } 4055 } else { 4056 pos += status; 4057 written += status; 4058 } 4059 } while (iov_iter_count(i)); 4060 4061 if (!written) 4062 return status; 4063 iocb->ki_pos += written; 4064 return written; 4065 } 4066 EXPORT_SYMBOL(generic_perform_write); 4067 4068 /** 4069 * __generic_file_write_iter - write data to a file 4070 * @iocb: IO state structure (file, offset, etc.) 4071 * @from: iov_iter with data to write 4072 * 4073 * This function does all the work needed for actually writing data to a 4074 * file. It does all basic checks, removes SUID from the file, updates 4075 * modification times and calls proper subroutines depending on whether we 4076 * do direct IO or a standard buffered write. 4077 * 4078 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4079 * object which does not need locking at all. 4080 * 4081 * This function does *not* take care of syncing data in case of O_SYNC write. 4082 * A caller has to handle it. This is mainly due to the fact that we want to 4083 * avoid syncing under i_rwsem. 4084 * 4085 * Return: 4086 * * number of bytes written, even for truncated writes 4087 * * negative error code if no data has been written at all 4088 */ 4089 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4090 { 4091 struct file *file = iocb->ki_filp; 4092 struct address_space *mapping = file->f_mapping; 4093 struct inode *inode = mapping->host; 4094 ssize_t ret; 4095 4096 ret = file_remove_privs(file); 4097 if (ret) 4098 return ret; 4099 4100 ret = file_update_time(file); 4101 if (ret) 4102 return ret; 4103 4104 if (iocb->ki_flags & IOCB_DIRECT) { 4105 ret = generic_file_direct_write(iocb, from); 4106 /* 4107 * If the write stopped short of completing, fall back to 4108 * buffered writes. Some filesystems do this for writes to 4109 * holes, for example. For DAX files, a buffered write will 4110 * not succeed (even if it did, DAX does not handle dirty 4111 * page-cache pages correctly). 4112 */ 4113 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4114 return ret; 4115 return direct_write_fallback(iocb, from, ret, 4116 generic_perform_write(iocb, from)); 4117 } 4118 4119 return generic_perform_write(iocb, from); 4120 } 4121 EXPORT_SYMBOL(__generic_file_write_iter); 4122 4123 /** 4124 * generic_file_write_iter - write data to a file 4125 * @iocb: IO state structure 4126 * @from: iov_iter with data to write 4127 * 4128 * This is a wrapper around __generic_file_write_iter() to be used by most 4129 * filesystems. It takes care of syncing the file in case of O_SYNC file 4130 * and acquires i_rwsem as needed. 4131 * Return: 4132 * * negative error code if no data has been written at all of 4133 * vfs_fsync_range() failed for a synchronous write 4134 * * number of bytes written, even for truncated writes 4135 */ 4136 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4137 { 4138 struct file *file = iocb->ki_filp; 4139 struct inode *inode = file->f_mapping->host; 4140 ssize_t ret; 4141 4142 inode_lock(inode); 4143 ret = generic_write_checks(iocb, from); 4144 if (ret > 0) 4145 ret = __generic_file_write_iter(iocb, from); 4146 inode_unlock(inode); 4147 4148 if (ret > 0) 4149 ret = generic_write_sync(iocb, ret); 4150 return ret; 4151 } 4152 EXPORT_SYMBOL(generic_file_write_iter); 4153 4154 /** 4155 * filemap_release_folio() - Release fs-specific metadata on a folio. 4156 * @folio: The folio which the kernel is trying to free. 4157 * @gfp: Memory allocation flags (and I/O mode). 4158 * 4159 * The address_space is trying to release any data attached to a folio 4160 * (presumably at folio->private). 4161 * 4162 * This will also be called if the private_2 flag is set on a page, 4163 * indicating that the folio has other metadata associated with it. 4164 * 4165 * The @gfp argument specifies whether I/O may be performed to release 4166 * this page (__GFP_IO), and whether the call may block 4167 * (__GFP_RECLAIM & __GFP_FS). 4168 * 4169 * Return: %true if the release was successful, otherwise %false. 4170 */ 4171 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4172 { 4173 struct address_space * const mapping = folio->mapping; 4174 4175 BUG_ON(!folio_test_locked(folio)); 4176 if (!folio_needs_release(folio)) 4177 return true; 4178 if (folio_test_writeback(folio)) 4179 return false; 4180 4181 if (mapping && mapping->a_ops->release_folio) 4182 return mapping->a_ops->release_folio(folio, gfp); 4183 return try_to_free_buffers(folio); 4184 } 4185 EXPORT_SYMBOL(filemap_release_folio); 4186 4187 /** 4188 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4189 * @inode: The inode to flush 4190 * @flush: Set to write back rather than simply invalidate. 4191 * @start: First byte to in range. 4192 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4193 * onwards. 4194 * 4195 * Invalidate all the folios on an inode that contribute to the specified 4196 * range, possibly writing them back first. Whilst the operation is 4197 * undertaken, the invalidate lock is held to prevent new folios from being 4198 * installed. 4199 */ 4200 int filemap_invalidate_inode(struct inode *inode, bool flush, 4201 loff_t start, loff_t end) 4202 { 4203 struct address_space *mapping = inode->i_mapping; 4204 pgoff_t first = start >> PAGE_SHIFT; 4205 pgoff_t last = end >> PAGE_SHIFT; 4206 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4207 4208 if (!mapping || !mapping->nrpages || end < start) 4209 goto out; 4210 4211 /* Prevent new folios from being added to the inode. */ 4212 filemap_invalidate_lock(mapping); 4213 4214 if (!mapping->nrpages) 4215 goto unlock; 4216 4217 unmap_mapping_pages(mapping, first, nr, false); 4218 4219 /* Write back the data if we're asked to. */ 4220 if (flush) { 4221 struct writeback_control wbc = { 4222 .sync_mode = WB_SYNC_ALL, 4223 .nr_to_write = LONG_MAX, 4224 .range_start = start, 4225 .range_end = end, 4226 }; 4227 4228 filemap_fdatawrite_wbc(mapping, &wbc); 4229 } 4230 4231 /* Wait for writeback to complete on all folios and discard. */ 4232 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4233 4234 unlock: 4235 filemap_invalidate_unlock(mapping); 4236 out: 4237 return filemap_check_errors(mapping); 4238 } 4239 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4240 4241 #ifdef CONFIG_CACHESTAT_SYSCALL 4242 /** 4243 * filemap_cachestat() - compute the page cache statistics of a mapping 4244 * @mapping: The mapping to compute the statistics for. 4245 * @first_index: The starting page cache index. 4246 * @last_index: The final page index (inclusive). 4247 * @cs: the cachestat struct to write the result to. 4248 * 4249 * This will query the page cache statistics of a mapping in the 4250 * page range of [first_index, last_index] (inclusive). The statistics 4251 * queried include: number of dirty pages, number of pages marked for 4252 * writeback, and the number of (recently) evicted pages. 4253 */ 4254 static void filemap_cachestat(struct address_space *mapping, 4255 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4256 { 4257 XA_STATE(xas, &mapping->i_pages, first_index); 4258 struct folio *folio; 4259 4260 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4261 mem_cgroup_flush_stats_ratelimited(NULL); 4262 4263 rcu_read_lock(); 4264 xas_for_each(&xas, folio, last_index) { 4265 int order; 4266 unsigned long nr_pages; 4267 pgoff_t folio_first_index, folio_last_index; 4268 4269 /* 4270 * Don't deref the folio. It is not pinned, and might 4271 * get freed (and reused) underneath us. 4272 * 4273 * We *could* pin it, but that would be expensive for 4274 * what should be a fast and lightweight syscall. 4275 * 4276 * Instead, derive all information of interest from 4277 * the rcu-protected xarray. 4278 */ 4279 4280 if (xas_retry(&xas, folio)) 4281 continue; 4282 4283 order = xa_get_order(xas.xa, xas.xa_index); 4284 nr_pages = 1 << order; 4285 folio_first_index = round_down(xas.xa_index, 1 << order); 4286 folio_last_index = folio_first_index + nr_pages - 1; 4287 4288 /* Folios might straddle the range boundaries, only count covered pages */ 4289 if (folio_first_index < first_index) 4290 nr_pages -= first_index - folio_first_index; 4291 4292 if (folio_last_index > last_index) 4293 nr_pages -= folio_last_index - last_index; 4294 4295 if (xa_is_value(folio)) { 4296 /* page is evicted */ 4297 void *shadow = (void *)folio; 4298 bool workingset; /* not used */ 4299 4300 cs->nr_evicted += nr_pages; 4301 4302 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4303 if (shmem_mapping(mapping)) { 4304 /* shmem file - in swap cache */ 4305 swp_entry_t swp = radix_to_swp_entry(folio); 4306 4307 /* swapin error results in poisoned entry */ 4308 if (non_swap_entry(swp)) 4309 goto resched; 4310 4311 /* 4312 * Getting a swap entry from the shmem 4313 * inode means we beat 4314 * shmem_unuse(). rcu_read_lock() 4315 * ensures swapoff waits for us before 4316 * freeing the swapper space. However, 4317 * we can race with swapping and 4318 * invalidation, so there might not be 4319 * a shadow in the swapcache (yet). 4320 */ 4321 shadow = get_shadow_from_swap_cache(swp); 4322 if (!shadow) 4323 goto resched; 4324 } 4325 #endif 4326 if (workingset_test_recent(shadow, true, &workingset, false)) 4327 cs->nr_recently_evicted += nr_pages; 4328 4329 goto resched; 4330 } 4331 4332 /* page is in cache */ 4333 cs->nr_cache += nr_pages; 4334 4335 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4336 cs->nr_dirty += nr_pages; 4337 4338 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4339 cs->nr_writeback += nr_pages; 4340 4341 resched: 4342 if (need_resched()) { 4343 xas_pause(&xas); 4344 cond_resched_rcu(); 4345 } 4346 } 4347 rcu_read_unlock(); 4348 } 4349 4350 /* 4351 * The cachestat(2) system call. 4352 * 4353 * cachestat() returns the page cache statistics of a file in the 4354 * bytes range specified by `off` and `len`: number of cached pages, 4355 * number of dirty pages, number of pages marked for writeback, 4356 * number of evicted pages, and number of recently evicted pages. 4357 * 4358 * An evicted page is a page that is previously in the page cache 4359 * but has been evicted since. A page is recently evicted if its last 4360 * eviction was recent enough that its reentry to the cache would 4361 * indicate that it is actively being used by the system, and that 4362 * there is memory pressure on the system. 4363 * 4364 * `off` and `len` must be non-negative integers. If `len` > 0, 4365 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4366 * we will query in the range from `off` to the end of the file. 4367 * 4368 * The `flags` argument is unused for now, but is included for future 4369 * extensibility. User should pass 0 (i.e no flag specified). 4370 * 4371 * Currently, hugetlbfs is not supported. 4372 * 4373 * Because the status of a page can change after cachestat() checks it 4374 * but before it returns to the application, the returned values may 4375 * contain stale information. 4376 * 4377 * return values: 4378 * zero - success 4379 * -EFAULT - cstat or cstat_range points to an illegal address 4380 * -EINVAL - invalid flags 4381 * -EBADF - invalid file descriptor 4382 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4383 */ 4384 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4385 struct cachestat_range __user *, cstat_range, 4386 struct cachestat __user *, cstat, unsigned int, flags) 4387 { 4388 struct fd f = fdget(fd); 4389 struct address_space *mapping; 4390 struct cachestat_range csr; 4391 struct cachestat cs; 4392 pgoff_t first_index, last_index; 4393 4394 if (!f.file) 4395 return -EBADF; 4396 4397 if (copy_from_user(&csr, cstat_range, 4398 sizeof(struct cachestat_range))) { 4399 fdput(f); 4400 return -EFAULT; 4401 } 4402 4403 /* hugetlbfs is not supported */ 4404 if (is_file_hugepages(f.file)) { 4405 fdput(f); 4406 return -EOPNOTSUPP; 4407 } 4408 4409 if (flags != 0) { 4410 fdput(f); 4411 return -EINVAL; 4412 } 4413 4414 first_index = csr.off >> PAGE_SHIFT; 4415 last_index = 4416 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4417 memset(&cs, 0, sizeof(struct cachestat)); 4418 mapping = f.file->f_mapping; 4419 filemap_cachestat(mapping, first_index, last_index, &cs); 4420 fdput(f); 4421 4422 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4423 return -EFAULT; 4424 4425 return 0; 4426 } 4427 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4428