xref: /linux/mm/filemap.c (revision 308d3165d8b2b98d3dc3d97d6662062735daea67)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
99  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static int page_cache_tree_insert(struct address_space *mapping,
114 				  struct page *page, void **shadowp)
115 {
116 	struct radix_tree_node *node;
117 	void **slot;
118 	int error;
119 
120 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
121 				    &node, &slot);
122 	if (error)
123 		return error;
124 	if (*slot) {
125 		void *p;
126 
127 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
128 		if (!radix_tree_exceptional_entry(p))
129 			return -EEXIST;
130 
131 		mapping->nrexceptional--;
132 		if (!dax_mapping(mapping)) {
133 			if (shadowp)
134 				*shadowp = p;
135 		} else {
136 			/* DAX can replace empty locked entry with a hole */
137 			WARN_ON_ONCE(p !=
138 				dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
139 			/* Wakeup waiters for exceptional entry lock */
140 			dax_wake_mapping_entry_waiter(mapping, page->index, p,
141 						      false);
142 		}
143 	}
144 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
145 			     workingset_update_node, mapping);
146 	mapping->nrpages++;
147 	return 0;
148 }
149 
150 static void page_cache_tree_delete(struct address_space *mapping,
151 				   struct page *page, void *shadow)
152 {
153 	int i, nr;
154 
155 	/* hugetlb pages are represented by one entry in the radix tree */
156 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
157 
158 	VM_BUG_ON_PAGE(!PageLocked(page), page);
159 	VM_BUG_ON_PAGE(PageTail(page), page);
160 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
161 
162 	for (i = 0; i < nr; i++) {
163 		struct radix_tree_node *node;
164 		void **slot;
165 
166 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
167 				    &node, &slot);
168 
169 		VM_BUG_ON_PAGE(!node && nr != 1, page);
170 
171 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
172 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
173 				     workingset_update_node, mapping);
174 	}
175 
176 	if (shadow) {
177 		mapping->nrexceptional += nr;
178 		/*
179 		 * Make sure the nrexceptional update is committed before
180 		 * the nrpages update so that final truncate racing
181 		 * with reclaim does not see both counters 0 at the
182 		 * same time and miss a shadow entry.
183 		 */
184 		smp_wmb();
185 	}
186 	mapping->nrpages -= nr;
187 }
188 
189 /*
190  * Delete a page from the page cache and free it. Caller has to make
191  * sure the page is locked and that nobody else uses it - or that usage
192  * is safe.  The caller must hold the mapping's tree_lock.
193  */
194 void __delete_from_page_cache(struct page *page, void *shadow)
195 {
196 	struct address_space *mapping = page->mapping;
197 	int nr = hpage_nr_pages(page);
198 
199 	trace_mm_filemap_delete_from_page_cache(page);
200 	/*
201 	 * if we're uptodate, flush out into the cleancache, otherwise
202 	 * invalidate any existing cleancache entries.  We can't leave
203 	 * stale data around in the cleancache once our page is gone
204 	 */
205 	if (PageUptodate(page) && PageMappedToDisk(page))
206 		cleancache_put_page(page);
207 	else
208 		cleancache_invalidate_page(mapping, page);
209 
210 	VM_BUG_ON_PAGE(PageTail(page), page);
211 	VM_BUG_ON_PAGE(page_mapped(page), page);
212 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
213 		int mapcount;
214 
215 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
216 			 current->comm, page_to_pfn(page));
217 		dump_page(page, "still mapped when deleted");
218 		dump_stack();
219 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
220 
221 		mapcount = page_mapcount(page);
222 		if (mapping_exiting(mapping) &&
223 		    page_count(page) >= mapcount + 2) {
224 			/*
225 			 * All vmas have already been torn down, so it's
226 			 * a good bet that actually the page is unmapped,
227 			 * and we'd prefer not to leak it: if we're wrong,
228 			 * some other bad page check should catch it later.
229 			 */
230 			page_mapcount_reset(page);
231 			page_ref_sub(page, mapcount);
232 		}
233 	}
234 
235 	page_cache_tree_delete(mapping, page, shadow);
236 
237 	page->mapping = NULL;
238 	/* Leave page->index set: truncation lookup relies upon it */
239 
240 	/* hugetlb pages do not participate in page cache accounting. */
241 	if (!PageHuge(page))
242 		__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
243 	if (PageSwapBacked(page)) {
244 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
245 		if (PageTransHuge(page))
246 			__dec_node_page_state(page, NR_SHMEM_THPS);
247 	} else {
248 		VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
249 	}
250 
251 	/*
252 	 * At this point page must be either written or cleaned by truncate.
253 	 * Dirty page here signals a bug and loss of unwritten data.
254 	 *
255 	 * This fixes dirty accounting after removing the page entirely but
256 	 * leaves PageDirty set: it has no effect for truncated page and
257 	 * anyway will be cleared before returning page into buddy allocator.
258 	 */
259 	if (WARN_ON_ONCE(PageDirty(page)))
260 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
261 }
262 
263 /**
264  * delete_from_page_cache - delete page from page cache
265  * @page: the page which the kernel is trying to remove from page cache
266  *
267  * This must be called only on pages that have been verified to be in the page
268  * cache and locked.  It will never put the page into the free list, the caller
269  * has a reference on the page.
270  */
271 void delete_from_page_cache(struct page *page)
272 {
273 	struct address_space *mapping = page_mapping(page);
274 	unsigned long flags;
275 	void (*freepage)(struct page *);
276 
277 	BUG_ON(!PageLocked(page));
278 
279 	freepage = mapping->a_ops->freepage;
280 
281 	spin_lock_irqsave(&mapping->tree_lock, flags);
282 	__delete_from_page_cache(page, NULL);
283 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
284 
285 	if (freepage)
286 		freepage(page);
287 
288 	if (PageTransHuge(page) && !PageHuge(page)) {
289 		page_ref_sub(page, HPAGE_PMD_NR);
290 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
291 	} else {
292 		put_page(page);
293 	}
294 }
295 EXPORT_SYMBOL(delete_from_page_cache);
296 
297 int filemap_check_errors(struct address_space *mapping)
298 {
299 	int ret = 0;
300 	/* Check for outstanding write errors */
301 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
302 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_bit(AS_EIO, &mapping->flags) &&
305 	    test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 	return ret;
308 }
309 EXPORT_SYMBOL(filemap_check_errors);
310 
311 /**
312  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
313  * @mapping:	address space structure to write
314  * @start:	offset in bytes where the range starts
315  * @end:	offset in bytes where the range ends (inclusive)
316  * @sync_mode:	enable synchronous operation
317  *
318  * Start writeback against all of a mapping's dirty pages that lie
319  * within the byte offsets <start, end> inclusive.
320  *
321  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
322  * opposed to a regular memory cleansing writeback.  The difference between
323  * these two operations is that if a dirty page/buffer is encountered, it must
324  * be waited upon, and not just skipped over.
325  */
326 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
327 				loff_t end, int sync_mode)
328 {
329 	int ret;
330 	struct writeback_control wbc = {
331 		.sync_mode = sync_mode,
332 		.nr_to_write = LONG_MAX,
333 		.range_start = start,
334 		.range_end = end,
335 	};
336 
337 	if (!mapping_cap_writeback_dirty(mapping))
338 		return 0;
339 
340 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
341 	ret = do_writepages(mapping, &wbc);
342 	wbc_detach_inode(&wbc);
343 	return ret;
344 }
345 
346 static inline int __filemap_fdatawrite(struct address_space *mapping,
347 	int sync_mode)
348 {
349 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
350 }
351 
352 int filemap_fdatawrite(struct address_space *mapping)
353 {
354 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
355 }
356 EXPORT_SYMBOL(filemap_fdatawrite);
357 
358 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
359 				loff_t end)
360 {
361 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
362 }
363 EXPORT_SYMBOL(filemap_fdatawrite_range);
364 
365 /**
366  * filemap_flush - mostly a non-blocking flush
367  * @mapping:	target address_space
368  *
369  * This is a mostly non-blocking flush.  Not suitable for data-integrity
370  * purposes - I/O may not be started against all dirty pages.
371  */
372 int filemap_flush(struct address_space *mapping)
373 {
374 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
375 }
376 EXPORT_SYMBOL(filemap_flush);
377 
378 static int __filemap_fdatawait_range(struct address_space *mapping,
379 				     loff_t start_byte, loff_t end_byte)
380 {
381 	pgoff_t index = start_byte >> PAGE_SHIFT;
382 	pgoff_t end = end_byte >> PAGE_SHIFT;
383 	struct pagevec pvec;
384 	int nr_pages;
385 	int ret = 0;
386 
387 	if (end_byte < start_byte)
388 		goto out;
389 
390 	pagevec_init(&pvec, 0);
391 	while ((index <= end) &&
392 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
393 			PAGECACHE_TAG_WRITEBACK,
394 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
395 		unsigned i;
396 
397 		for (i = 0; i < nr_pages; i++) {
398 			struct page *page = pvec.pages[i];
399 
400 			/* until radix tree lookup accepts end_index */
401 			if (page->index > end)
402 				continue;
403 
404 			wait_on_page_writeback(page);
405 			if (TestClearPageError(page))
406 				ret = -EIO;
407 		}
408 		pagevec_release(&pvec);
409 		cond_resched();
410 	}
411 out:
412 	return ret;
413 }
414 
415 /**
416  * filemap_fdatawait_range - wait for writeback to complete
417  * @mapping:		address space structure to wait for
418  * @start_byte:		offset in bytes where the range starts
419  * @end_byte:		offset in bytes where the range ends (inclusive)
420  *
421  * Walk the list of under-writeback pages of the given address space
422  * in the given range and wait for all of them.  Check error status of
423  * the address space and return it.
424  *
425  * Since the error status of the address space is cleared by this function,
426  * callers are responsible for checking the return value and handling and/or
427  * reporting the error.
428  */
429 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
430 			    loff_t end_byte)
431 {
432 	int ret, ret2;
433 
434 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
435 	ret2 = filemap_check_errors(mapping);
436 	if (!ret)
437 		ret = ret2;
438 
439 	return ret;
440 }
441 EXPORT_SYMBOL(filemap_fdatawait_range);
442 
443 /**
444  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
445  * @mapping: address space structure to wait for
446  *
447  * Walk the list of under-writeback pages of the given address space
448  * and wait for all of them.  Unlike filemap_fdatawait(), this function
449  * does not clear error status of the address space.
450  *
451  * Use this function if callers don't handle errors themselves.  Expected
452  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
453  * fsfreeze(8)
454  */
455 void filemap_fdatawait_keep_errors(struct address_space *mapping)
456 {
457 	loff_t i_size = i_size_read(mapping->host);
458 
459 	if (i_size == 0)
460 		return;
461 
462 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
463 }
464 
465 /**
466  * filemap_fdatawait - wait for all under-writeback pages to complete
467  * @mapping: address space structure to wait for
468  *
469  * Walk the list of under-writeback pages of the given address space
470  * and wait for all of them.  Check error status of the address space
471  * and return it.
472  *
473  * Since the error status of the address space is cleared by this function,
474  * callers are responsible for checking the return value and handling and/or
475  * reporting the error.
476  */
477 int filemap_fdatawait(struct address_space *mapping)
478 {
479 	loff_t i_size = i_size_read(mapping->host);
480 
481 	if (i_size == 0)
482 		return 0;
483 
484 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
485 }
486 EXPORT_SYMBOL(filemap_fdatawait);
487 
488 int filemap_write_and_wait(struct address_space *mapping)
489 {
490 	int err = 0;
491 
492 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
493 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
494 		err = filemap_fdatawrite(mapping);
495 		/*
496 		 * Even if the above returned error, the pages may be
497 		 * written partially (e.g. -ENOSPC), so we wait for it.
498 		 * But the -EIO is special case, it may indicate the worst
499 		 * thing (e.g. bug) happened, so we avoid waiting for it.
500 		 */
501 		if (err != -EIO) {
502 			int err2 = filemap_fdatawait(mapping);
503 			if (!err)
504 				err = err2;
505 		}
506 	} else {
507 		err = filemap_check_errors(mapping);
508 	}
509 	return err;
510 }
511 EXPORT_SYMBOL(filemap_write_and_wait);
512 
513 /**
514  * filemap_write_and_wait_range - write out & wait on a file range
515  * @mapping:	the address_space for the pages
516  * @lstart:	offset in bytes where the range starts
517  * @lend:	offset in bytes where the range ends (inclusive)
518  *
519  * Write out and wait upon file offsets lstart->lend, inclusive.
520  *
521  * Note that `lend' is inclusive (describes the last byte to be written) so
522  * that this function can be used to write to the very end-of-file (end = -1).
523  */
524 int filemap_write_and_wait_range(struct address_space *mapping,
525 				 loff_t lstart, loff_t lend)
526 {
527 	int err = 0;
528 
529 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
530 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
531 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
532 						 WB_SYNC_ALL);
533 		/* See comment of filemap_write_and_wait() */
534 		if (err != -EIO) {
535 			int err2 = filemap_fdatawait_range(mapping,
536 						lstart, lend);
537 			if (!err)
538 				err = err2;
539 		}
540 	} else {
541 		err = filemap_check_errors(mapping);
542 	}
543 	return err;
544 }
545 EXPORT_SYMBOL(filemap_write_and_wait_range);
546 
547 /**
548  * replace_page_cache_page - replace a pagecache page with a new one
549  * @old:	page to be replaced
550  * @new:	page to replace with
551  * @gfp_mask:	allocation mode
552  *
553  * This function replaces a page in the pagecache with a new one.  On
554  * success it acquires the pagecache reference for the new page and
555  * drops it for the old page.  Both the old and new pages must be
556  * locked.  This function does not add the new page to the LRU, the
557  * caller must do that.
558  *
559  * The remove + add is atomic.  The only way this function can fail is
560  * memory allocation failure.
561  */
562 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
563 {
564 	int error;
565 
566 	VM_BUG_ON_PAGE(!PageLocked(old), old);
567 	VM_BUG_ON_PAGE(!PageLocked(new), new);
568 	VM_BUG_ON_PAGE(new->mapping, new);
569 
570 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
571 	if (!error) {
572 		struct address_space *mapping = old->mapping;
573 		void (*freepage)(struct page *);
574 		unsigned long flags;
575 
576 		pgoff_t offset = old->index;
577 		freepage = mapping->a_ops->freepage;
578 
579 		get_page(new);
580 		new->mapping = mapping;
581 		new->index = offset;
582 
583 		spin_lock_irqsave(&mapping->tree_lock, flags);
584 		__delete_from_page_cache(old, NULL);
585 		error = page_cache_tree_insert(mapping, new, NULL);
586 		BUG_ON(error);
587 
588 		/*
589 		 * hugetlb pages do not participate in page cache accounting.
590 		 */
591 		if (!PageHuge(new))
592 			__inc_node_page_state(new, NR_FILE_PAGES);
593 		if (PageSwapBacked(new))
594 			__inc_node_page_state(new, NR_SHMEM);
595 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
596 		mem_cgroup_migrate(old, new);
597 		radix_tree_preload_end();
598 		if (freepage)
599 			freepage(old);
600 		put_page(old);
601 	}
602 
603 	return error;
604 }
605 EXPORT_SYMBOL_GPL(replace_page_cache_page);
606 
607 static int __add_to_page_cache_locked(struct page *page,
608 				      struct address_space *mapping,
609 				      pgoff_t offset, gfp_t gfp_mask,
610 				      void **shadowp)
611 {
612 	int huge = PageHuge(page);
613 	struct mem_cgroup *memcg;
614 	int error;
615 
616 	VM_BUG_ON_PAGE(!PageLocked(page), page);
617 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
618 
619 	if (!huge) {
620 		error = mem_cgroup_try_charge(page, current->mm,
621 					      gfp_mask, &memcg, false);
622 		if (error)
623 			return error;
624 	}
625 
626 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
627 	if (error) {
628 		if (!huge)
629 			mem_cgroup_cancel_charge(page, memcg, false);
630 		return error;
631 	}
632 
633 	get_page(page);
634 	page->mapping = mapping;
635 	page->index = offset;
636 
637 	spin_lock_irq(&mapping->tree_lock);
638 	error = page_cache_tree_insert(mapping, page, shadowp);
639 	radix_tree_preload_end();
640 	if (unlikely(error))
641 		goto err_insert;
642 
643 	/* hugetlb pages do not participate in page cache accounting. */
644 	if (!huge)
645 		__inc_node_page_state(page, NR_FILE_PAGES);
646 	spin_unlock_irq(&mapping->tree_lock);
647 	if (!huge)
648 		mem_cgroup_commit_charge(page, memcg, false, false);
649 	trace_mm_filemap_add_to_page_cache(page);
650 	return 0;
651 err_insert:
652 	page->mapping = NULL;
653 	/* Leave page->index set: truncation relies upon it */
654 	spin_unlock_irq(&mapping->tree_lock);
655 	if (!huge)
656 		mem_cgroup_cancel_charge(page, memcg, false);
657 	put_page(page);
658 	return error;
659 }
660 
661 /**
662  * add_to_page_cache_locked - add a locked page to the pagecache
663  * @page:	page to add
664  * @mapping:	the page's address_space
665  * @offset:	page index
666  * @gfp_mask:	page allocation mode
667  *
668  * This function is used to add a page to the pagecache. It must be locked.
669  * This function does not add the page to the LRU.  The caller must do that.
670  */
671 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
672 		pgoff_t offset, gfp_t gfp_mask)
673 {
674 	return __add_to_page_cache_locked(page, mapping, offset,
675 					  gfp_mask, NULL);
676 }
677 EXPORT_SYMBOL(add_to_page_cache_locked);
678 
679 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
680 				pgoff_t offset, gfp_t gfp_mask)
681 {
682 	void *shadow = NULL;
683 	int ret;
684 
685 	__SetPageLocked(page);
686 	ret = __add_to_page_cache_locked(page, mapping, offset,
687 					 gfp_mask, &shadow);
688 	if (unlikely(ret))
689 		__ClearPageLocked(page);
690 	else {
691 		/*
692 		 * The page might have been evicted from cache only
693 		 * recently, in which case it should be activated like
694 		 * any other repeatedly accessed page.
695 		 * The exception is pages getting rewritten; evicting other
696 		 * data from the working set, only to cache data that will
697 		 * get overwritten with something else, is a waste of memory.
698 		 */
699 		if (!(gfp_mask & __GFP_WRITE) &&
700 		    shadow && workingset_refault(shadow)) {
701 			SetPageActive(page);
702 			workingset_activation(page);
703 		} else
704 			ClearPageActive(page);
705 		lru_cache_add(page);
706 	}
707 	return ret;
708 }
709 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
710 
711 #ifdef CONFIG_NUMA
712 struct page *__page_cache_alloc(gfp_t gfp)
713 {
714 	int n;
715 	struct page *page;
716 
717 	if (cpuset_do_page_mem_spread()) {
718 		unsigned int cpuset_mems_cookie;
719 		do {
720 			cpuset_mems_cookie = read_mems_allowed_begin();
721 			n = cpuset_mem_spread_node();
722 			page = __alloc_pages_node(n, gfp, 0);
723 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
724 
725 		return page;
726 	}
727 	return alloc_pages(gfp, 0);
728 }
729 EXPORT_SYMBOL(__page_cache_alloc);
730 #endif
731 
732 /*
733  * In order to wait for pages to become available there must be
734  * waitqueues associated with pages. By using a hash table of
735  * waitqueues where the bucket discipline is to maintain all
736  * waiters on the same queue and wake all when any of the pages
737  * become available, and for the woken contexts to check to be
738  * sure the appropriate page became available, this saves space
739  * at a cost of "thundering herd" phenomena during rare hash
740  * collisions.
741  */
742 wait_queue_head_t *page_waitqueue(struct page *page)
743 {
744 	return bit_waitqueue(page, 0);
745 }
746 EXPORT_SYMBOL(page_waitqueue);
747 
748 void wait_on_page_bit(struct page *page, int bit_nr)
749 {
750 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
751 
752 	if (test_bit(bit_nr, &page->flags))
753 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
754 							TASK_UNINTERRUPTIBLE);
755 }
756 EXPORT_SYMBOL(wait_on_page_bit);
757 
758 int wait_on_page_bit_killable(struct page *page, int bit_nr)
759 {
760 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
761 
762 	if (!test_bit(bit_nr, &page->flags))
763 		return 0;
764 
765 	return __wait_on_bit(page_waitqueue(page), &wait,
766 			     bit_wait_io, TASK_KILLABLE);
767 }
768 
769 int wait_on_page_bit_killable_timeout(struct page *page,
770 				       int bit_nr, unsigned long timeout)
771 {
772 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
773 
774 	wait.key.timeout = jiffies + timeout;
775 	if (!test_bit(bit_nr, &page->flags))
776 		return 0;
777 	return __wait_on_bit(page_waitqueue(page), &wait,
778 			     bit_wait_io_timeout, TASK_KILLABLE);
779 }
780 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
781 
782 /**
783  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
784  * @page: Page defining the wait queue of interest
785  * @waiter: Waiter to add to the queue
786  *
787  * Add an arbitrary @waiter to the wait queue for the nominated @page.
788  */
789 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
790 {
791 	wait_queue_head_t *q = page_waitqueue(page);
792 	unsigned long flags;
793 
794 	spin_lock_irqsave(&q->lock, flags);
795 	__add_wait_queue(q, waiter);
796 	spin_unlock_irqrestore(&q->lock, flags);
797 }
798 EXPORT_SYMBOL_GPL(add_page_wait_queue);
799 
800 /**
801  * unlock_page - unlock a locked page
802  * @page: the page
803  *
804  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
805  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
806  * mechanism between PageLocked pages and PageWriteback pages is shared.
807  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
808  *
809  * The mb is necessary to enforce ordering between the clear_bit and the read
810  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
811  */
812 void unlock_page(struct page *page)
813 {
814 	page = compound_head(page);
815 	VM_BUG_ON_PAGE(!PageLocked(page), page);
816 	clear_bit_unlock(PG_locked, &page->flags);
817 	smp_mb__after_atomic();
818 	wake_up_page(page, PG_locked);
819 }
820 EXPORT_SYMBOL(unlock_page);
821 
822 /**
823  * end_page_writeback - end writeback against a page
824  * @page: the page
825  */
826 void end_page_writeback(struct page *page)
827 {
828 	/*
829 	 * TestClearPageReclaim could be used here but it is an atomic
830 	 * operation and overkill in this particular case. Failing to
831 	 * shuffle a page marked for immediate reclaim is too mild to
832 	 * justify taking an atomic operation penalty at the end of
833 	 * ever page writeback.
834 	 */
835 	if (PageReclaim(page)) {
836 		ClearPageReclaim(page);
837 		rotate_reclaimable_page(page);
838 	}
839 
840 	if (!test_clear_page_writeback(page))
841 		BUG();
842 
843 	smp_mb__after_atomic();
844 	wake_up_page(page, PG_writeback);
845 }
846 EXPORT_SYMBOL(end_page_writeback);
847 
848 /*
849  * After completing I/O on a page, call this routine to update the page
850  * flags appropriately
851  */
852 void page_endio(struct page *page, bool is_write, int err)
853 {
854 	if (!is_write) {
855 		if (!err) {
856 			SetPageUptodate(page);
857 		} else {
858 			ClearPageUptodate(page);
859 			SetPageError(page);
860 		}
861 		unlock_page(page);
862 	} else {
863 		if (err) {
864 			SetPageError(page);
865 			if (page->mapping)
866 				mapping_set_error(page->mapping, err);
867 		}
868 		end_page_writeback(page);
869 	}
870 }
871 EXPORT_SYMBOL_GPL(page_endio);
872 
873 /**
874  * __lock_page - get a lock on the page, assuming we need to sleep to get it
875  * @page: the page to lock
876  */
877 void __lock_page(struct page *page)
878 {
879 	struct page *page_head = compound_head(page);
880 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
881 
882 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
883 							TASK_UNINTERRUPTIBLE);
884 }
885 EXPORT_SYMBOL(__lock_page);
886 
887 int __lock_page_killable(struct page *page)
888 {
889 	struct page *page_head = compound_head(page);
890 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
891 
892 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
893 					bit_wait_io, TASK_KILLABLE);
894 }
895 EXPORT_SYMBOL_GPL(__lock_page_killable);
896 
897 /*
898  * Return values:
899  * 1 - page is locked; mmap_sem is still held.
900  * 0 - page is not locked.
901  *     mmap_sem has been released (up_read()), unless flags had both
902  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
903  *     which case mmap_sem is still held.
904  *
905  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
906  * with the page locked and the mmap_sem unperturbed.
907  */
908 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
909 			 unsigned int flags)
910 {
911 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
912 		/*
913 		 * CAUTION! In this case, mmap_sem is not released
914 		 * even though return 0.
915 		 */
916 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
917 			return 0;
918 
919 		up_read(&mm->mmap_sem);
920 		if (flags & FAULT_FLAG_KILLABLE)
921 			wait_on_page_locked_killable(page);
922 		else
923 			wait_on_page_locked(page);
924 		return 0;
925 	} else {
926 		if (flags & FAULT_FLAG_KILLABLE) {
927 			int ret;
928 
929 			ret = __lock_page_killable(page);
930 			if (ret) {
931 				up_read(&mm->mmap_sem);
932 				return 0;
933 			}
934 		} else
935 			__lock_page(page);
936 		return 1;
937 	}
938 }
939 
940 /**
941  * page_cache_next_hole - find the next hole (not-present entry)
942  * @mapping: mapping
943  * @index: index
944  * @max_scan: maximum range to search
945  *
946  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
947  * lowest indexed hole.
948  *
949  * Returns: the index of the hole if found, otherwise returns an index
950  * outside of the set specified (in which case 'return - index >=
951  * max_scan' will be true). In rare cases of index wrap-around, 0 will
952  * be returned.
953  *
954  * page_cache_next_hole may be called under rcu_read_lock. However,
955  * like radix_tree_gang_lookup, this will not atomically search a
956  * snapshot of the tree at a single point in time. For example, if a
957  * hole is created at index 5, then subsequently a hole is created at
958  * index 10, page_cache_next_hole covering both indexes may return 10
959  * if called under rcu_read_lock.
960  */
961 pgoff_t page_cache_next_hole(struct address_space *mapping,
962 			     pgoff_t index, unsigned long max_scan)
963 {
964 	unsigned long i;
965 
966 	for (i = 0; i < max_scan; i++) {
967 		struct page *page;
968 
969 		page = radix_tree_lookup(&mapping->page_tree, index);
970 		if (!page || radix_tree_exceptional_entry(page))
971 			break;
972 		index++;
973 		if (index == 0)
974 			break;
975 	}
976 
977 	return index;
978 }
979 EXPORT_SYMBOL(page_cache_next_hole);
980 
981 /**
982  * page_cache_prev_hole - find the prev hole (not-present entry)
983  * @mapping: mapping
984  * @index: index
985  * @max_scan: maximum range to search
986  *
987  * Search backwards in the range [max(index-max_scan+1, 0), index] for
988  * the first hole.
989  *
990  * Returns: the index of the hole if found, otherwise returns an index
991  * outside of the set specified (in which case 'index - return >=
992  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
993  * will be returned.
994  *
995  * page_cache_prev_hole may be called under rcu_read_lock. However,
996  * like radix_tree_gang_lookup, this will not atomically search a
997  * snapshot of the tree at a single point in time. For example, if a
998  * hole is created at index 10, then subsequently a hole is created at
999  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1000  * called under rcu_read_lock.
1001  */
1002 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1003 			     pgoff_t index, unsigned long max_scan)
1004 {
1005 	unsigned long i;
1006 
1007 	for (i = 0; i < max_scan; i++) {
1008 		struct page *page;
1009 
1010 		page = radix_tree_lookup(&mapping->page_tree, index);
1011 		if (!page || radix_tree_exceptional_entry(page))
1012 			break;
1013 		index--;
1014 		if (index == ULONG_MAX)
1015 			break;
1016 	}
1017 
1018 	return index;
1019 }
1020 EXPORT_SYMBOL(page_cache_prev_hole);
1021 
1022 /**
1023  * find_get_entry - find and get a page cache entry
1024  * @mapping: the address_space to search
1025  * @offset: the page cache index
1026  *
1027  * Looks up the page cache slot at @mapping & @offset.  If there is a
1028  * page cache page, it is returned with an increased refcount.
1029  *
1030  * If the slot holds a shadow entry of a previously evicted page, or a
1031  * swap entry from shmem/tmpfs, it is returned.
1032  *
1033  * Otherwise, %NULL is returned.
1034  */
1035 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1036 {
1037 	void **pagep;
1038 	struct page *head, *page;
1039 
1040 	rcu_read_lock();
1041 repeat:
1042 	page = NULL;
1043 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1044 	if (pagep) {
1045 		page = radix_tree_deref_slot(pagep);
1046 		if (unlikely(!page))
1047 			goto out;
1048 		if (radix_tree_exception(page)) {
1049 			if (radix_tree_deref_retry(page))
1050 				goto repeat;
1051 			/*
1052 			 * A shadow entry of a recently evicted page,
1053 			 * or a swap entry from shmem/tmpfs.  Return
1054 			 * it without attempting to raise page count.
1055 			 */
1056 			goto out;
1057 		}
1058 
1059 		head = compound_head(page);
1060 		if (!page_cache_get_speculative(head))
1061 			goto repeat;
1062 
1063 		/* The page was split under us? */
1064 		if (compound_head(page) != head) {
1065 			put_page(head);
1066 			goto repeat;
1067 		}
1068 
1069 		/*
1070 		 * Has the page moved?
1071 		 * This is part of the lockless pagecache protocol. See
1072 		 * include/linux/pagemap.h for details.
1073 		 */
1074 		if (unlikely(page != *pagep)) {
1075 			put_page(head);
1076 			goto repeat;
1077 		}
1078 	}
1079 out:
1080 	rcu_read_unlock();
1081 
1082 	return page;
1083 }
1084 EXPORT_SYMBOL(find_get_entry);
1085 
1086 /**
1087  * find_lock_entry - locate, pin and lock a page cache entry
1088  * @mapping: the address_space to search
1089  * @offset: the page cache index
1090  *
1091  * Looks up the page cache slot at @mapping & @offset.  If there is a
1092  * page cache page, it is returned locked and with an increased
1093  * refcount.
1094  *
1095  * If the slot holds a shadow entry of a previously evicted page, or a
1096  * swap entry from shmem/tmpfs, it is returned.
1097  *
1098  * Otherwise, %NULL is returned.
1099  *
1100  * find_lock_entry() may sleep.
1101  */
1102 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1103 {
1104 	struct page *page;
1105 
1106 repeat:
1107 	page = find_get_entry(mapping, offset);
1108 	if (page && !radix_tree_exception(page)) {
1109 		lock_page(page);
1110 		/* Has the page been truncated? */
1111 		if (unlikely(page_mapping(page) != mapping)) {
1112 			unlock_page(page);
1113 			put_page(page);
1114 			goto repeat;
1115 		}
1116 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1117 	}
1118 	return page;
1119 }
1120 EXPORT_SYMBOL(find_lock_entry);
1121 
1122 /**
1123  * pagecache_get_page - find and get a page reference
1124  * @mapping: the address_space to search
1125  * @offset: the page index
1126  * @fgp_flags: PCG flags
1127  * @gfp_mask: gfp mask to use for the page cache data page allocation
1128  *
1129  * Looks up the page cache slot at @mapping & @offset.
1130  *
1131  * PCG flags modify how the page is returned.
1132  *
1133  * FGP_ACCESSED: the page will be marked accessed
1134  * FGP_LOCK: Page is return locked
1135  * FGP_CREAT: If page is not present then a new page is allocated using
1136  *		@gfp_mask and added to the page cache and the VM's LRU
1137  *		list. The page is returned locked and with an increased
1138  *		refcount. Otherwise, %NULL is returned.
1139  *
1140  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1141  * if the GFP flags specified for FGP_CREAT are atomic.
1142  *
1143  * If there is a page cache page, it is returned with an increased refcount.
1144  */
1145 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1146 	int fgp_flags, gfp_t gfp_mask)
1147 {
1148 	struct page *page;
1149 
1150 repeat:
1151 	page = find_get_entry(mapping, offset);
1152 	if (radix_tree_exceptional_entry(page))
1153 		page = NULL;
1154 	if (!page)
1155 		goto no_page;
1156 
1157 	if (fgp_flags & FGP_LOCK) {
1158 		if (fgp_flags & FGP_NOWAIT) {
1159 			if (!trylock_page(page)) {
1160 				put_page(page);
1161 				return NULL;
1162 			}
1163 		} else {
1164 			lock_page(page);
1165 		}
1166 
1167 		/* Has the page been truncated? */
1168 		if (unlikely(page->mapping != mapping)) {
1169 			unlock_page(page);
1170 			put_page(page);
1171 			goto repeat;
1172 		}
1173 		VM_BUG_ON_PAGE(page->index != offset, page);
1174 	}
1175 
1176 	if (page && (fgp_flags & FGP_ACCESSED))
1177 		mark_page_accessed(page);
1178 
1179 no_page:
1180 	if (!page && (fgp_flags & FGP_CREAT)) {
1181 		int err;
1182 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1183 			gfp_mask |= __GFP_WRITE;
1184 		if (fgp_flags & FGP_NOFS)
1185 			gfp_mask &= ~__GFP_FS;
1186 
1187 		page = __page_cache_alloc(gfp_mask);
1188 		if (!page)
1189 			return NULL;
1190 
1191 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1192 			fgp_flags |= FGP_LOCK;
1193 
1194 		/* Init accessed so avoid atomic mark_page_accessed later */
1195 		if (fgp_flags & FGP_ACCESSED)
1196 			__SetPageReferenced(page);
1197 
1198 		err = add_to_page_cache_lru(page, mapping, offset,
1199 				gfp_mask & GFP_RECLAIM_MASK);
1200 		if (unlikely(err)) {
1201 			put_page(page);
1202 			page = NULL;
1203 			if (err == -EEXIST)
1204 				goto repeat;
1205 		}
1206 	}
1207 
1208 	return page;
1209 }
1210 EXPORT_SYMBOL(pagecache_get_page);
1211 
1212 /**
1213  * find_get_entries - gang pagecache lookup
1214  * @mapping:	The address_space to search
1215  * @start:	The starting page cache index
1216  * @nr_entries:	The maximum number of entries
1217  * @entries:	Where the resulting entries are placed
1218  * @indices:	The cache indices corresponding to the entries in @entries
1219  *
1220  * find_get_entries() will search for and return a group of up to
1221  * @nr_entries entries in the mapping.  The entries are placed at
1222  * @entries.  find_get_entries() takes a reference against any actual
1223  * pages it returns.
1224  *
1225  * The search returns a group of mapping-contiguous page cache entries
1226  * with ascending indexes.  There may be holes in the indices due to
1227  * not-present pages.
1228  *
1229  * Any shadow entries of evicted pages, or swap entries from
1230  * shmem/tmpfs, are included in the returned array.
1231  *
1232  * find_get_entries() returns the number of pages and shadow entries
1233  * which were found.
1234  */
1235 unsigned find_get_entries(struct address_space *mapping,
1236 			  pgoff_t start, unsigned int nr_entries,
1237 			  struct page **entries, pgoff_t *indices)
1238 {
1239 	void **slot;
1240 	unsigned int ret = 0;
1241 	struct radix_tree_iter iter;
1242 
1243 	if (!nr_entries)
1244 		return 0;
1245 
1246 	rcu_read_lock();
1247 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1248 		struct page *head, *page;
1249 repeat:
1250 		page = radix_tree_deref_slot(slot);
1251 		if (unlikely(!page))
1252 			continue;
1253 		if (radix_tree_exception(page)) {
1254 			if (radix_tree_deref_retry(page)) {
1255 				slot = radix_tree_iter_retry(&iter);
1256 				continue;
1257 			}
1258 			/*
1259 			 * A shadow entry of a recently evicted page, a swap
1260 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1261 			 * without attempting to raise page count.
1262 			 */
1263 			goto export;
1264 		}
1265 
1266 		head = compound_head(page);
1267 		if (!page_cache_get_speculative(head))
1268 			goto repeat;
1269 
1270 		/* The page was split under us? */
1271 		if (compound_head(page) != head) {
1272 			put_page(head);
1273 			goto repeat;
1274 		}
1275 
1276 		/* Has the page moved? */
1277 		if (unlikely(page != *slot)) {
1278 			put_page(head);
1279 			goto repeat;
1280 		}
1281 export:
1282 		indices[ret] = iter.index;
1283 		entries[ret] = page;
1284 		if (++ret == nr_entries)
1285 			break;
1286 	}
1287 	rcu_read_unlock();
1288 	return ret;
1289 }
1290 
1291 /**
1292  * find_get_pages - gang pagecache lookup
1293  * @mapping:	The address_space to search
1294  * @start:	The starting page index
1295  * @nr_pages:	The maximum number of pages
1296  * @pages:	Where the resulting pages are placed
1297  *
1298  * find_get_pages() will search for and return a group of up to
1299  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1300  * find_get_pages() takes a reference against the returned pages.
1301  *
1302  * The search returns a group of mapping-contiguous pages with ascending
1303  * indexes.  There may be holes in the indices due to not-present pages.
1304  *
1305  * find_get_pages() returns the number of pages which were found.
1306  */
1307 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1308 			    unsigned int nr_pages, struct page **pages)
1309 {
1310 	struct radix_tree_iter iter;
1311 	void **slot;
1312 	unsigned ret = 0;
1313 
1314 	if (unlikely(!nr_pages))
1315 		return 0;
1316 
1317 	rcu_read_lock();
1318 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1319 		struct page *head, *page;
1320 repeat:
1321 		page = radix_tree_deref_slot(slot);
1322 		if (unlikely(!page))
1323 			continue;
1324 
1325 		if (radix_tree_exception(page)) {
1326 			if (radix_tree_deref_retry(page)) {
1327 				slot = radix_tree_iter_retry(&iter);
1328 				continue;
1329 			}
1330 			/*
1331 			 * A shadow entry of a recently evicted page,
1332 			 * or a swap entry from shmem/tmpfs.  Skip
1333 			 * over it.
1334 			 */
1335 			continue;
1336 		}
1337 
1338 		head = compound_head(page);
1339 		if (!page_cache_get_speculative(head))
1340 			goto repeat;
1341 
1342 		/* The page was split under us? */
1343 		if (compound_head(page) != head) {
1344 			put_page(head);
1345 			goto repeat;
1346 		}
1347 
1348 		/* Has the page moved? */
1349 		if (unlikely(page != *slot)) {
1350 			put_page(head);
1351 			goto repeat;
1352 		}
1353 
1354 		pages[ret] = page;
1355 		if (++ret == nr_pages)
1356 			break;
1357 	}
1358 
1359 	rcu_read_unlock();
1360 	return ret;
1361 }
1362 
1363 /**
1364  * find_get_pages_contig - gang contiguous pagecache lookup
1365  * @mapping:	The address_space to search
1366  * @index:	The starting page index
1367  * @nr_pages:	The maximum number of pages
1368  * @pages:	Where the resulting pages are placed
1369  *
1370  * find_get_pages_contig() works exactly like find_get_pages(), except
1371  * that the returned number of pages are guaranteed to be contiguous.
1372  *
1373  * find_get_pages_contig() returns the number of pages which were found.
1374  */
1375 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1376 			       unsigned int nr_pages, struct page **pages)
1377 {
1378 	struct radix_tree_iter iter;
1379 	void **slot;
1380 	unsigned int ret = 0;
1381 
1382 	if (unlikely(!nr_pages))
1383 		return 0;
1384 
1385 	rcu_read_lock();
1386 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1387 		struct page *head, *page;
1388 repeat:
1389 		page = radix_tree_deref_slot(slot);
1390 		/* The hole, there no reason to continue */
1391 		if (unlikely(!page))
1392 			break;
1393 
1394 		if (radix_tree_exception(page)) {
1395 			if (radix_tree_deref_retry(page)) {
1396 				slot = radix_tree_iter_retry(&iter);
1397 				continue;
1398 			}
1399 			/*
1400 			 * A shadow entry of a recently evicted page,
1401 			 * or a swap entry from shmem/tmpfs.  Stop
1402 			 * looking for contiguous pages.
1403 			 */
1404 			break;
1405 		}
1406 
1407 		head = compound_head(page);
1408 		if (!page_cache_get_speculative(head))
1409 			goto repeat;
1410 
1411 		/* The page was split under us? */
1412 		if (compound_head(page) != head) {
1413 			put_page(head);
1414 			goto repeat;
1415 		}
1416 
1417 		/* Has the page moved? */
1418 		if (unlikely(page != *slot)) {
1419 			put_page(head);
1420 			goto repeat;
1421 		}
1422 
1423 		/*
1424 		 * must check mapping and index after taking the ref.
1425 		 * otherwise we can get both false positives and false
1426 		 * negatives, which is just confusing to the caller.
1427 		 */
1428 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1429 			put_page(page);
1430 			break;
1431 		}
1432 
1433 		pages[ret] = page;
1434 		if (++ret == nr_pages)
1435 			break;
1436 	}
1437 	rcu_read_unlock();
1438 	return ret;
1439 }
1440 EXPORT_SYMBOL(find_get_pages_contig);
1441 
1442 /**
1443  * find_get_pages_tag - find and return pages that match @tag
1444  * @mapping:	the address_space to search
1445  * @index:	the starting page index
1446  * @tag:	the tag index
1447  * @nr_pages:	the maximum number of pages
1448  * @pages:	where the resulting pages are placed
1449  *
1450  * Like find_get_pages, except we only return pages which are tagged with
1451  * @tag.   We update @index to index the next page for the traversal.
1452  */
1453 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1454 			int tag, unsigned int nr_pages, struct page **pages)
1455 {
1456 	struct radix_tree_iter iter;
1457 	void **slot;
1458 	unsigned ret = 0;
1459 
1460 	if (unlikely(!nr_pages))
1461 		return 0;
1462 
1463 	rcu_read_lock();
1464 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465 				   &iter, *index, tag) {
1466 		struct page *head, *page;
1467 repeat:
1468 		page = radix_tree_deref_slot(slot);
1469 		if (unlikely(!page))
1470 			continue;
1471 
1472 		if (radix_tree_exception(page)) {
1473 			if (radix_tree_deref_retry(page)) {
1474 				slot = radix_tree_iter_retry(&iter);
1475 				continue;
1476 			}
1477 			/*
1478 			 * A shadow entry of a recently evicted page.
1479 			 *
1480 			 * Those entries should never be tagged, but
1481 			 * this tree walk is lockless and the tags are
1482 			 * looked up in bulk, one radix tree node at a
1483 			 * time, so there is a sizable window for page
1484 			 * reclaim to evict a page we saw tagged.
1485 			 *
1486 			 * Skip over it.
1487 			 */
1488 			continue;
1489 		}
1490 
1491 		head = compound_head(page);
1492 		if (!page_cache_get_speculative(head))
1493 			goto repeat;
1494 
1495 		/* The page was split under us? */
1496 		if (compound_head(page) != head) {
1497 			put_page(head);
1498 			goto repeat;
1499 		}
1500 
1501 		/* Has the page moved? */
1502 		if (unlikely(page != *slot)) {
1503 			put_page(head);
1504 			goto repeat;
1505 		}
1506 
1507 		pages[ret] = page;
1508 		if (++ret == nr_pages)
1509 			break;
1510 	}
1511 
1512 	rcu_read_unlock();
1513 
1514 	if (ret)
1515 		*index = pages[ret - 1]->index + 1;
1516 
1517 	return ret;
1518 }
1519 EXPORT_SYMBOL(find_get_pages_tag);
1520 
1521 /**
1522  * find_get_entries_tag - find and return entries that match @tag
1523  * @mapping:	the address_space to search
1524  * @start:	the starting page cache index
1525  * @tag:	the tag index
1526  * @nr_entries:	the maximum number of entries
1527  * @entries:	where the resulting entries are placed
1528  * @indices:	the cache indices corresponding to the entries in @entries
1529  *
1530  * Like find_get_entries, except we only return entries which are tagged with
1531  * @tag.
1532  */
1533 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1534 			int tag, unsigned int nr_entries,
1535 			struct page **entries, pgoff_t *indices)
1536 {
1537 	void **slot;
1538 	unsigned int ret = 0;
1539 	struct radix_tree_iter iter;
1540 
1541 	if (!nr_entries)
1542 		return 0;
1543 
1544 	rcu_read_lock();
1545 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1546 				   &iter, start, tag) {
1547 		struct page *head, *page;
1548 repeat:
1549 		page = radix_tree_deref_slot(slot);
1550 		if (unlikely(!page))
1551 			continue;
1552 		if (radix_tree_exception(page)) {
1553 			if (radix_tree_deref_retry(page)) {
1554 				slot = radix_tree_iter_retry(&iter);
1555 				continue;
1556 			}
1557 
1558 			/*
1559 			 * A shadow entry of a recently evicted page, a swap
1560 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1561 			 * without attempting to raise page count.
1562 			 */
1563 			goto export;
1564 		}
1565 
1566 		head = compound_head(page);
1567 		if (!page_cache_get_speculative(head))
1568 			goto repeat;
1569 
1570 		/* The page was split under us? */
1571 		if (compound_head(page) != head) {
1572 			put_page(head);
1573 			goto repeat;
1574 		}
1575 
1576 		/* Has the page moved? */
1577 		if (unlikely(page != *slot)) {
1578 			put_page(head);
1579 			goto repeat;
1580 		}
1581 export:
1582 		indices[ret] = iter.index;
1583 		entries[ret] = page;
1584 		if (++ret == nr_entries)
1585 			break;
1586 	}
1587 	rcu_read_unlock();
1588 	return ret;
1589 }
1590 EXPORT_SYMBOL(find_get_entries_tag);
1591 
1592 /*
1593  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1594  * a _large_ part of the i/o request. Imagine the worst scenario:
1595  *
1596  *      ---R__________________________________________B__________
1597  *         ^ reading here                             ^ bad block(assume 4k)
1598  *
1599  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1600  * => failing the whole request => read(R) => read(R+1) =>
1601  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1602  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1603  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1604  *
1605  * It is going insane. Fix it by quickly scaling down the readahead size.
1606  */
1607 static void shrink_readahead_size_eio(struct file *filp,
1608 					struct file_ra_state *ra)
1609 {
1610 	ra->ra_pages /= 4;
1611 }
1612 
1613 /**
1614  * do_generic_file_read - generic file read routine
1615  * @filp:	the file to read
1616  * @ppos:	current file position
1617  * @iter:	data destination
1618  * @written:	already copied
1619  *
1620  * This is a generic file read routine, and uses the
1621  * mapping->a_ops->readpage() function for the actual low-level stuff.
1622  *
1623  * This is really ugly. But the goto's actually try to clarify some
1624  * of the logic when it comes to error handling etc.
1625  */
1626 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1627 		struct iov_iter *iter, ssize_t written)
1628 {
1629 	struct address_space *mapping = filp->f_mapping;
1630 	struct inode *inode = mapping->host;
1631 	struct file_ra_state *ra = &filp->f_ra;
1632 	pgoff_t index;
1633 	pgoff_t last_index;
1634 	pgoff_t prev_index;
1635 	unsigned long offset;      /* offset into pagecache page */
1636 	unsigned int prev_offset;
1637 	int error = 0;
1638 
1639 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1640 		return 0;
1641 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1642 
1643 	index = *ppos >> PAGE_SHIFT;
1644 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1645 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1646 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1647 	offset = *ppos & ~PAGE_MASK;
1648 
1649 	for (;;) {
1650 		struct page *page;
1651 		pgoff_t end_index;
1652 		loff_t isize;
1653 		unsigned long nr, ret;
1654 
1655 		cond_resched();
1656 find_page:
1657 		page = find_get_page(mapping, index);
1658 		if (!page) {
1659 			page_cache_sync_readahead(mapping,
1660 					ra, filp,
1661 					index, last_index - index);
1662 			page = find_get_page(mapping, index);
1663 			if (unlikely(page == NULL))
1664 				goto no_cached_page;
1665 		}
1666 		if (PageReadahead(page)) {
1667 			page_cache_async_readahead(mapping,
1668 					ra, filp, page,
1669 					index, last_index - index);
1670 		}
1671 		if (!PageUptodate(page)) {
1672 			/*
1673 			 * See comment in do_read_cache_page on why
1674 			 * wait_on_page_locked is used to avoid unnecessarily
1675 			 * serialisations and why it's safe.
1676 			 */
1677 			error = wait_on_page_locked_killable(page);
1678 			if (unlikely(error))
1679 				goto readpage_error;
1680 			if (PageUptodate(page))
1681 				goto page_ok;
1682 
1683 			if (inode->i_blkbits == PAGE_SHIFT ||
1684 					!mapping->a_ops->is_partially_uptodate)
1685 				goto page_not_up_to_date;
1686 			/* pipes can't handle partially uptodate pages */
1687 			if (unlikely(iter->type & ITER_PIPE))
1688 				goto page_not_up_to_date;
1689 			if (!trylock_page(page))
1690 				goto page_not_up_to_date;
1691 			/* Did it get truncated before we got the lock? */
1692 			if (!page->mapping)
1693 				goto page_not_up_to_date_locked;
1694 			if (!mapping->a_ops->is_partially_uptodate(page,
1695 							offset, iter->count))
1696 				goto page_not_up_to_date_locked;
1697 			unlock_page(page);
1698 		}
1699 page_ok:
1700 		/*
1701 		 * i_size must be checked after we know the page is Uptodate.
1702 		 *
1703 		 * Checking i_size after the check allows us to calculate
1704 		 * the correct value for "nr", which means the zero-filled
1705 		 * part of the page is not copied back to userspace (unless
1706 		 * another truncate extends the file - this is desired though).
1707 		 */
1708 
1709 		isize = i_size_read(inode);
1710 		end_index = (isize - 1) >> PAGE_SHIFT;
1711 		if (unlikely(!isize || index > end_index)) {
1712 			put_page(page);
1713 			goto out;
1714 		}
1715 
1716 		/* nr is the maximum number of bytes to copy from this page */
1717 		nr = PAGE_SIZE;
1718 		if (index == end_index) {
1719 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1720 			if (nr <= offset) {
1721 				put_page(page);
1722 				goto out;
1723 			}
1724 		}
1725 		nr = nr - offset;
1726 
1727 		/* If users can be writing to this page using arbitrary
1728 		 * virtual addresses, take care about potential aliasing
1729 		 * before reading the page on the kernel side.
1730 		 */
1731 		if (mapping_writably_mapped(mapping))
1732 			flush_dcache_page(page);
1733 
1734 		/*
1735 		 * When a sequential read accesses a page several times,
1736 		 * only mark it as accessed the first time.
1737 		 */
1738 		if (prev_index != index || offset != prev_offset)
1739 			mark_page_accessed(page);
1740 		prev_index = index;
1741 
1742 		/*
1743 		 * Ok, we have the page, and it's up-to-date, so
1744 		 * now we can copy it to user space...
1745 		 */
1746 
1747 		ret = copy_page_to_iter(page, offset, nr, iter);
1748 		offset += ret;
1749 		index += offset >> PAGE_SHIFT;
1750 		offset &= ~PAGE_MASK;
1751 		prev_offset = offset;
1752 
1753 		put_page(page);
1754 		written += ret;
1755 		if (!iov_iter_count(iter))
1756 			goto out;
1757 		if (ret < nr) {
1758 			error = -EFAULT;
1759 			goto out;
1760 		}
1761 		continue;
1762 
1763 page_not_up_to_date:
1764 		/* Get exclusive access to the page ... */
1765 		error = lock_page_killable(page);
1766 		if (unlikely(error))
1767 			goto readpage_error;
1768 
1769 page_not_up_to_date_locked:
1770 		/* Did it get truncated before we got the lock? */
1771 		if (!page->mapping) {
1772 			unlock_page(page);
1773 			put_page(page);
1774 			continue;
1775 		}
1776 
1777 		/* Did somebody else fill it already? */
1778 		if (PageUptodate(page)) {
1779 			unlock_page(page);
1780 			goto page_ok;
1781 		}
1782 
1783 readpage:
1784 		/*
1785 		 * A previous I/O error may have been due to temporary
1786 		 * failures, eg. multipath errors.
1787 		 * PG_error will be set again if readpage fails.
1788 		 */
1789 		ClearPageError(page);
1790 		/* Start the actual read. The read will unlock the page. */
1791 		error = mapping->a_ops->readpage(filp, page);
1792 
1793 		if (unlikely(error)) {
1794 			if (error == AOP_TRUNCATED_PAGE) {
1795 				put_page(page);
1796 				error = 0;
1797 				goto find_page;
1798 			}
1799 			goto readpage_error;
1800 		}
1801 
1802 		if (!PageUptodate(page)) {
1803 			error = lock_page_killable(page);
1804 			if (unlikely(error))
1805 				goto readpage_error;
1806 			if (!PageUptodate(page)) {
1807 				if (page->mapping == NULL) {
1808 					/*
1809 					 * invalidate_mapping_pages got it
1810 					 */
1811 					unlock_page(page);
1812 					put_page(page);
1813 					goto find_page;
1814 				}
1815 				unlock_page(page);
1816 				shrink_readahead_size_eio(filp, ra);
1817 				error = -EIO;
1818 				goto readpage_error;
1819 			}
1820 			unlock_page(page);
1821 		}
1822 
1823 		goto page_ok;
1824 
1825 readpage_error:
1826 		/* UHHUH! A synchronous read error occurred. Report it */
1827 		put_page(page);
1828 		goto out;
1829 
1830 no_cached_page:
1831 		/*
1832 		 * Ok, it wasn't cached, so we need to create a new
1833 		 * page..
1834 		 */
1835 		page = page_cache_alloc_cold(mapping);
1836 		if (!page) {
1837 			error = -ENOMEM;
1838 			goto out;
1839 		}
1840 		error = add_to_page_cache_lru(page, mapping, index,
1841 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1842 		if (error) {
1843 			put_page(page);
1844 			if (error == -EEXIST) {
1845 				error = 0;
1846 				goto find_page;
1847 			}
1848 			goto out;
1849 		}
1850 		goto readpage;
1851 	}
1852 
1853 out:
1854 	ra->prev_pos = prev_index;
1855 	ra->prev_pos <<= PAGE_SHIFT;
1856 	ra->prev_pos |= prev_offset;
1857 
1858 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1859 	file_accessed(filp);
1860 	return written ? written : error;
1861 }
1862 
1863 /**
1864  * generic_file_read_iter - generic filesystem read routine
1865  * @iocb:	kernel I/O control block
1866  * @iter:	destination for the data read
1867  *
1868  * This is the "read_iter()" routine for all filesystems
1869  * that can use the page cache directly.
1870  */
1871 ssize_t
1872 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1873 {
1874 	struct file *file = iocb->ki_filp;
1875 	ssize_t retval = 0;
1876 	size_t count = iov_iter_count(iter);
1877 
1878 	if (!count)
1879 		goto out; /* skip atime */
1880 
1881 	if (iocb->ki_flags & IOCB_DIRECT) {
1882 		struct address_space *mapping = file->f_mapping;
1883 		struct inode *inode = mapping->host;
1884 		struct iov_iter data = *iter;
1885 		loff_t size;
1886 
1887 		size = i_size_read(inode);
1888 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1889 					iocb->ki_pos + count - 1);
1890 		if (retval < 0)
1891 			goto out;
1892 
1893 		file_accessed(file);
1894 
1895 		retval = mapping->a_ops->direct_IO(iocb, &data);
1896 		if (retval >= 0) {
1897 			iocb->ki_pos += retval;
1898 			iov_iter_advance(iter, retval);
1899 		}
1900 
1901 		/*
1902 		 * Btrfs can have a short DIO read if we encounter
1903 		 * compressed extents, so if there was an error, or if
1904 		 * we've already read everything we wanted to, or if
1905 		 * there was a short read because we hit EOF, go ahead
1906 		 * and return.  Otherwise fallthrough to buffered io for
1907 		 * the rest of the read.  Buffered reads will not work for
1908 		 * DAX files, so don't bother trying.
1909 		 */
1910 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1911 		    IS_DAX(inode))
1912 			goto out;
1913 	}
1914 
1915 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1916 out:
1917 	return retval;
1918 }
1919 EXPORT_SYMBOL(generic_file_read_iter);
1920 
1921 #ifdef CONFIG_MMU
1922 /**
1923  * page_cache_read - adds requested page to the page cache if not already there
1924  * @file:	file to read
1925  * @offset:	page index
1926  * @gfp_mask:	memory allocation flags
1927  *
1928  * This adds the requested page to the page cache if it isn't already there,
1929  * and schedules an I/O to read in its contents from disk.
1930  */
1931 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1932 {
1933 	struct address_space *mapping = file->f_mapping;
1934 	struct page *page;
1935 	int ret;
1936 
1937 	do {
1938 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1939 		if (!page)
1940 			return -ENOMEM;
1941 
1942 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1943 		if (ret == 0)
1944 			ret = mapping->a_ops->readpage(file, page);
1945 		else if (ret == -EEXIST)
1946 			ret = 0; /* losing race to add is OK */
1947 
1948 		put_page(page);
1949 
1950 	} while (ret == AOP_TRUNCATED_PAGE);
1951 
1952 	return ret;
1953 }
1954 
1955 #define MMAP_LOTSAMISS  (100)
1956 
1957 /*
1958  * Synchronous readahead happens when we don't even find
1959  * a page in the page cache at all.
1960  */
1961 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1962 				   struct file_ra_state *ra,
1963 				   struct file *file,
1964 				   pgoff_t offset)
1965 {
1966 	struct address_space *mapping = file->f_mapping;
1967 
1968 	/* If we don't want any read-ahead, don't bother */
1969 	if (vma->vm_flags & VM_RAND_READ)
1970 		return;
1971 	if (!ra->ra_pages)
1972 		return;
1973 
1974 	if (vma->vm_flags & VM_SEQ_READ) {
1975 		page_cache_sync_readahead(mapping, ra, file, offset,
1976 					  ra->ra_pages);
1977 		return;
1978 	}
1979 
1980 	/* Avoid banging the cache line if not needed */
1981 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1982 		ra->mmap_miss++;
1983 
1984 	/*
1985 	 * Do we miss much more than hit in this file? If so,
1986 	 * stop bothering with read-ahead. It will only hurt.
1987 	 */
1988 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1989 		return;
1990 
1991 	/*
1992 	 * mmap read-around
1993 	 */
1994 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1995 	ra->size = ra->ra_pages;
1996 	ra->async_size = ra->ra_pages / 4;
1997 	ra_submit(ra, mapping, file);
1998 }
1999 
2000 /*
2001  * Asynchronous readahead happens when we find the page and PG_readahead,
2002  * so we want to possibly extend the readahead further..
2003  */
2004 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2005 				    struct file_ra_state *ra,
2006 				    struct file *file,
2007 				    struct page *page,
2008 				    pgoff_t offset)
2009 {
2010 	struct address_space *mapping = file->f_mapping;
2011 
2012 	/* If we don't want any read-ahead, don't bother */
2013 	if (vma->vm_flags & VM_RAND_READ)
2014 		return;
2015 	if (ra->mmap_miss > 0)
2016 		ra->mmap_miss--;
2017 	if (PageReadahead(page))
2018 		page_cache_async_readahead(mapping, ra, file,
2019 					   page, offset, ra->ra_pages);
2020 }
2021 
2022 /**
2023  * filemap_fault - read in file data for page fault handling
2024  * @vma:	vma in which the fault was taken
2025  * @vmf:	struct vm_fault containing details of the fault
2026  *
2027  * filemap_fault() is invoked via the vma operations vector for a
2028  * mapped memory region to read in file data during a page fault.
2029  *
2030  * The goto's are kind of ugly, but this streamlines the normal case of having
2031  * it in the page cache, and handles the special cases reasonably without
2032  * having a lot of duplicated code.
2033  *
2034  * vma->vm_mm->mmap_sem must be held on entry.
2035  *
2036  * If our return value has VM_FAULT_RETRY set, it's because
2037  * lock_page_or_retry() returned 0.
2038  * The mmap_sem has usually been released in this case.
2039  * See __lock_page_or_retry() for the exception.
2040  *
2041  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2042  * has not been released.
2043  *
2044  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2045  */
2046 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2047 {
2048 	int error;
2049 	struct file *file = vma->vm_file;
2050 	struct address_space *mapping = file->f_mapping;
2051 	struct file_ra_state *ra = &file->f_ra;
2052 	struct inode *inode = mapping->host;
2053 	pgoff_t offset = vmf->pgoff;
2054 	struct page *page;
2055 	loff_t size;
2056 	int ret = 0;
2057 
2058 	size = round_up(i_size_read(inode), PAGE_SIZE);
2059 	if (offset >= size >> PAGE_SHIFT)
2060 		return VM_FAULT_SIGBUS;
2061 
2062 	/*
2063 	 * Do we have something in the page cache already?
2064 	 */
2065 	page = find_get_page(mapping, offset);
2066 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2067 		/*
2068 		 * We found the page, so try async readahead before
2069 		 * waiting for the lock.
2070 		 */
2071 		do_async_mmap_readahead(vma, ra, file, page, offset);
2072 	} else if (!page) {
2073 		/* No page in the page cache at all */
2074 		do_sync_mmap_readahead(vma, ra, file, offset);
2075 		count_vm_event(PGMAJFAULT);
2076 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2077 		ret = VM_FAULT_MAJOR;
2078 retry_find:
2079 		page = find_get_page(mapping, offset);
2080 		if (!page)
2081 			goto no_cached_page;
2082 	}
2083 
2084 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2085 		put_page(page);
2086 		return ret | VM_FAULT_RETRY;
2087 	}
2088 
2089 	/* Did it get truncated? */
2090 	if (unlikely(page->mapping != mapping)) {
2091 		unlock_page(page);
2092 		put_page(page);
2093 		goto retry_find;
2094 	}
2095 	VM_BUG_ON_PAGE(page->index != offset, page);
2096 
2097 	/*
2098 	 * We have a locked page in the page cache, now we need to check
2099 	 * that it's up-to-date. If not, it is going to be due to an error.
2100 	 */
2101 	if (unlikely(!PageUptodate(page)))
2102 		goto page_not_uptodate;
2103 
2104 	/*
2105 	 * Found the page and have a reference on it.
2106 	 * We must recheck i_size under page lock.
2107 	 */
2108 	size = round_up(i_size_read(inode), PAGE_SIZE);
2109 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2110 		unlock_page(page);
2111 		put_page(page);
2112 		return VM_FAULT_SIGBUS;
2113 	}
2114 
2115 	vmf->page = page;
2116 	return ret | VM_FAULT_LOCKED;
2117 
2118 no_cached_page:
2119 	/*
2120 	 * We're only likely to ever get here if MADV_RANDOM is in
2121 	 * effect.
2122 	 */
2123 	error = page_cache_read(file, offset, vmf->gfp_mask);
2124 
2125 	/*
2126 	 * The page we want has now been added to the page cache.
2127 	 * In the unlikely event that someone removed it in the
2128 	 * meantime, we'll just come back here and read it again.
2129 	 */
2130 	if (error >= 0)
2131 		goto retry_find;
2132 
2133 	/*
2134 	 * An error return from page_cache_read can result if the
2135 	 * system is low on memory, or a problem occurs while trying
2136 	 * to schedule I/O.
2137 	 */
2138 	if (error == -ENOMEM)
2139 		return VM_FAULT_OOM;
2140 	return VM_FAULT_SIGBUS;
2141 
2142 page_not_uptodate:
2143 	/*
2144 	 * Umm, take care of errors if the page isn't up-to-date.
2145 	 * Try to re-read it _once_. We do this synchronously,
2146 	 * because there really aren't any performance issues here
2147 	 * and we need to check for errors.
2148 	 */
2149 	ClearPageError(page);
2150 	error = mapping->a_ops->readpage(file, page);
2151 	if (!error) {
2152 		wait_on_page_locked(page);
2153 		if (!PageUptodate(page))
2154 			error = -EIO;
2155 	}
2156 	put_page(page);
2157 
2158 	if (!error || error == AOP_TRUNCATED_PAGE)
2159 		goto retry_find;
2160 
2161 	/* Things didn't work out. Return zero to tell the mm layer so. */
2162 	shrink_readahead_size_eio(file, ra);
2163 	return VM_FAULT_SIGBUS;
2164 }
2165 EXPORT_SYMBOL(filemap_fault);
2166 
2167 void filemap_map_pages(struct vm_fault *vmf,
2168 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2169 {
2170 	struct radix_tree_iter iter;
2171 	void **slot;
2172 	struct file *file = vmf->vma->vm_file;
2173 	struct address_space *mapping = file->f_mapping;
2174 	pgoff_t last_pgoff = start_pgoff;
2175 	loff_t size;
2176 	struct page *head, *page;
2177 
2178 	rcu_read_lock();
2179 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2180 			start_pgoff) {
2181 		if (iter.index > end_pgoff)
2182 			break;
2183 repeat:
2184 		page = radix_tree_deref_slot(slot);
2185 		if (unlikely(!page))
2186 			goto next;
2187 		if (radix_tree_exception(page)) {
2188 			if (radix_tree_deref_retry(page)) {
2189 				slot = radix_tree_iter_retry(&iter);
2190 				continue;
2191 			}
2192 			goto next;
2193 		}
2194 
2195 		head = compound_head(page);
2196 		if (!page_cache_get_speculative(head))
2197 			goto repeat;
2198 
2199 		/* The page was split under us? */
2200 		if (compound_head(page) != head) {
2201 			put_page(head);
2202 			goto repeat;
2203 		}
2204 
2205 		/* Has the page moved? */
2206 		if (unlikely(page != *slot)) {
2207 			put_page(head);
2208 			goto repeat;
2209 		}
2210 
2211 		if (!PageUptodate(page) ||
2212 				PageReadahead(page) ||
2213 				PageHWPoison(page))
2214 			goto skip;
2215 		if (!trylock_page(page))
2216 			goto skip;
2217 
2218 		if (page->mapping != mapping || !PageUptodate(page))
2219 			goto unlock;
2220 
2221 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2222 		if (page->index >= size >> PAGE_SHIFT)
2223 			goto unlock;
2224 
2225 		if (file->f_ra.mmap_miss > 0)
2226 			file->f_ra.mmap_miss--;
2227 
2228 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2229 		if (vmf->pte)
2230 			vmf->pte += iter.index - last_pgoff;
2231 		last_pgoff = iter.index;
2232 		if (alloc_set_pte(vmf, NULL, page))
2233 			goto unlock;
2234 		unlock_page(page);
2235 		goto next;
2236 unlock:
2237 		unlock_page(page);
2238 skip:
2239 		put_page(page);
2240 next:
2241 		/* Huge page is mapped? No need to proceed. */
2242 		if (pmd_trans_huge(*vmf->pmd))
2243 			break;
2244 		if (iter.index == end_pgoff)
2245 			break;
2246 	}
2247 	rcu_read_unlock();
2248 }
2249 EXPORT_SYMBOL(filemap_map_pages);
2250 
2251 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2252 {
2253 	struct page *page = vmf->page;
2254 	struct inode *inode = file_inode(vma->vm_file);
2255 	int ret = VM_FAULT_LOCKED;
2256 
2257 	sb_start_pagefault(inode->i_sb);
2258 	file_update_time(vma->vm_file);
2259 	lock_page(page);
2260 	if (page->mapping != inode->i_mapping) {
2261 		unlock_page(page);
2262 		ret = VM_FAULT_NOPAGE;
2263 		goto out;
2264 	}
2265 	/*
2266 	 * We mark the page dirty already here so that when freeze is in
2267 	 * progress, we are guaranteed that writeback during freezing will
2268 	 * see the dirty page and writeprotect it again.
2269 	 */
2270 	set_page_dirty(page);
2271 	wait_for_stable_page(page);
2272 out:
2273 	sb_end_pagefault(inode->i_sb);
2274 	return ret;
2275 }
2276 EXPORT_SYMBOL(filemap_page_mkwrite);
2277 
2278 const struct vm_operations_struct generic_file_vm_ops = {
2279 	.fault		= filemap_fault,
2280 	.map_pages	= filemap_map_pages,
2281 	.page_mkwrite	= filemap_page_mkwrite,
2282 };
2283 
2284 /* This is used for a general mmap of a disk file */
2285 
2286 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2287 {
2288 	struct address_space *mapping = file->f_mapping;
2289 
2290 	if (!mapping->a_ops->readpage)
2291 		return -ENOEXEC;
2292 	file_accessed(file);
2293 	vma->vm_ops = &generic_file_vm_ops;
2294 	return 0;
2295 }
2296 
2297 /*
2298  * This is for filesystems which do not implement ->writepage.
2299  */
2300 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2301 {
2302 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2303 		return -EINVAL;
2304 	return generic_file_mmap(file, vma);
2305 }
2306 #else
2307 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2308 {
2309 	return -ENOSYS;
2310 }
2311 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2312 {
2313 	return -ENOSYS;
2314 }
2315 #endif /* CONFIG_MMU */
2316 
2317 EXPORT_SYMBOL(generic_file_mmap);
2318 EXPORT_SYMBOL(generic_file_readonly_mmap);
2319 
2320 static struct page *wait_on_page_read(struct page *page)
2321 {
2322 	if (!IS_ERR(page)) {
2323 		wait_on_page_locked(page);
2324 		if (!PageUptodate(page)) {
2325 			put_page(page);
2326 			page = ERR_PTR(-EIO);
2327 		}
2328 	}
2329 	return page;
2330 }
2331 
2332 static struct page *do_read_cache_page(struct address_space *mapping,
2333 				pgoff_t index,
2334 				int (*filler)(void *, struct page *),
2335 				void *data,
2336 				gfp_t gfp)
2337 {
2338 	struct page *page;
2339 	int err;
2340 repeat:
2341 	page = find_get_page(mapping, index);
2342 	if (!page) {
2343 		page = __page_cache_alloc(gfp | __GFP_COLD);
2344 		if (!page)
2345 			return ERR_PTR(-ENOMEM);
2346 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2347 		if (unlikely(err)) {
2348 			put_page(page);
2349 			if (err == -EEXIST)
2350 				goto repeat;
2351 			/* Presumably ENOMEM for radix tree node */
2352 			return ERR_PTR(err);
2353 		}
2354 
2355 filler:
2356 		err = filler(data, page);
2357 		if (err < 0) {
2358 			put_page(page);
2359 			return ERR_PTR(err);
2360 		}
2361 
2362 		page = wait_on_page_read(page);
2363 		if (IS_ERR(page))
2364 			return page;
2365 		goto out;
2366 	}
2367 	if (PageUptodate(page))
2368 		goto out;
2369 
2370 	/*
2371 	 * Page is not up to date and may be locked due one of the following
2372 	 * case a: Page is being filled and the page lock is held
2373 	 * case b: Read/write error clearing the page uptodate status
2374 	 * case c: Truncation in progress (page locked)
2375 	 * case d: Reclaim in progress
2376 	 *
2377 	 * Case a, the page will be up to date when the page is unlocked.
2378 	 *    There is no need to serialise on the page lock here as the page
2379 	 *    is pinned so the lock gives no additional protection. Even if the
2380 	 *    the page is truncated, the data is still valid if PageUptodate as
2381 	 *    it's a race vs truncate race.
2382 	 * Case b, the page will not be up to date
2383 	 * Case c, the page may be truncated but in itself, the data may still
2384 	 *    be valid after IO completes as it's a read vs truncate race. The
2385 	 *    operation must restart if the page is not uptodate on unlock but
2386 	 *    otherwise serialising on page lock to stabilise the mapping gives
2387 	 *    no additional guarantees to the caller as the page lock is
2388 	 *    released before return.
2389 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2390 	 *    will be a race with remove_mapping that determines if the mapping
2391 	 *    is valid on unlock but otherwise the data is valid and there is
2392 	 *    no need to serialise with page lock.
2393 	 *
2394 	 * As the page lock gives no additional guarantee, we optimistically
2395 	 * wait on the page to be unlocked and check if it's up to date and
2396 	 * use the page if it is. Otherwise, the page lock is required to
2397 	 * distinguish between the different cases. The motivation is that we
2398 	 * avoid spurious serialisations and wakeups when multiple processes
2399 	 * wait on the same page for IO to complete.
2400 	 */
2401 	wait_on_page_locked(page);
2402 	if (PageUptodate(page))
2403 		goto out;
2404 
2405 	/* Distinguish between all the cases under the safety of the lock */
2406 	lock_page(page);
2407 
2408 	/* Case c or d, restart the operation */
2409 	if (!page->mapping) {
2410 		unlock_page(page);
2411 		put_page(page);
2412 		goto repeat;
2413 	}
2414 
2415 	/* Someone else locked and filled the page in a very small window */
2416 	if (PageUptodate(page)) {
2417 		unlock_page(page);
2418 		goto out;
2419 	}
2420 	goto filler;
2421 
2422 out:
2423 	mark_page_accessed(page);
2424 	return page;
2425 }
2426 
2427 /**
2428  * read_cache_page - read into page cache, fill it if needed
2429  * @mapping:	the page's address_space
2430  * @index:	the page index
2431  * @filler:	function to perform the read
2432  * @data:	first arg to filler(data, page) function, often left as NULL
2433  *
2434  * Read into the page cache. If a page already exists, and PageUptodate() is
2435  * not set, try to fill the page and wait for it to become unlocked.
2436  *
2437  * If the page does not get brought uptodate, return -EIO.
2438  */
2439 struct page *read_cache_page(struct address_space *mapping,
2440 				pgoff_t index,
2441 				int (*filler)(void *, struct page *),
2442 				void *data)
2443 {
2444 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2445 }
2446 EXPORT_SYMBOL(read_cache_page);
2447 
2448 /**
2449  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2450  * @mapping:	the page's address_space
2451  * @index:	the page index
2452  * @gfp:	the page allocator flags to use if allocating
2453  *
2454  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2455  * any new page allocations done using the specified allocation flags.
2456  *
2457  * If the page does not get brought uptodate, return -EIO.
2458  */
2459 struct page *read_cache_page_gfp(struct address_space *mapping,
2460 				pgoff_t index,
2461 				gfp_t gfp)
2462 {
2463 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2464 
2465 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2466 }
2467 EXPORT_SYMBOL(read_cache_page_gfp);
2468 
2469 /*
2470  * Performs necessary checks before doing a write
2471  *
2472  * Can adjust writing position or amount of bytes to write.
2473  * Returns appropriate error code that caller should return or
2474  * zero in case that write should be allowed.
2475  */
2476 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2477 {
2478 	struct file *file = iocb->ki_filp;
2479 	struct inode *inode = file->f_mapping->host;
2480 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2481 	loff_t pos;
2482 
2483 	if (!iov_iter_count(from))
2484 		return 0;
2485 
2486 	/* FIXME: this is for backwards compatibility with 2.4 */
2487 	if (iocb->ki_flags & IOCB_APPEND)
2488 		iocb->ki_pos = i_size_read(inode);
2489 
2490 	pos = iocb->ki_pos;
2491 
2492 	if (limit != RLIM_INFINITY) {
2493 		if (iocb->ki_pos >= limit) {
2494 			send_sig(SIGXFSZ, current, 0);
2495 			return -EFBIG;
2496 		}
2497 		iov_iter_truncate(from, limit - (unsigned long)pos);
2498 	}
2499 
2500 	/*
2501 	 * LFS rule
2502 	 */
2503 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2504 				!(file->f_flags & O_LARGEFILE))) {
2505 		if (pos >= MAX_NON_LFS)
2506 			return -EFBIG;
2507 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2508 	}
2509 
2510 	/*
2511 	 * Are we about to exceed the fs block limit ?
2512 	 *
2513 	 * If we have written data it becomes a short write.  If we have
2514 	 * exceeded without writing data we send a signal and return EFBIG.
2515 	 * Linus frestrict idea will clean these up nicely..
2516 	 */
2517 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2518 		return -EFBIG;
2519 
2520 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2521 	return iov_iter_count(from);
2522 }
2523 EXPORT_SYMBOL(generic_write_checks);
2524 
2525 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2526 				loff_t pos, unsigned len, unsigned flags,
2527 				struct page **pagep, void **fsdata)
2528 {
2529 	const struct address_space_operations *aops = mapping->a_ops;
2530 
2531 	return aops->write_begin(file, mapping, pos, len, flags,
2532 							pagep, fsdata);
2533 }
2534 EXPORT_SYMBOL(pagecache_write_begin);
2535 
2536 int pagecache_write_end(struct file *file, struct address_space *mapping,
2537 				loff_t pos, unsigned len, unsigned copied,
2538 				struct page *page, void *fsdata)
2539 {
2540 	const struct address_space_operations *aops = mapping->a_ops;
2541 
2542 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2543 }
2544 EXPORT_SYMBOL(pagecache_write_end);
2545 
2546 ssize_t
2547 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2548 {
2549 	struct file	*file = iocb->ki_filp;
2550 	struct address_space *mapping = file->f_mapping;
2551 	struct inode	*inode = mapping->host;
2552 	loff_t		pos = iocb->ki_pos;
2553 	ssize_t		written;
2554 	size_t		write_len;
2555 	pgoff_t		end;
2556 	struct iov_iter data;
2557 
2558 	write_len = iov_iter_count(from);
2559 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2560 
2561 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2562 	if (written)
2563 		goto out;
2564 
2565 	/*
2566 	 * After a write we want buffered reads to be sure to go to disk to get
2567 	 * the new data.  We invalidate clean cached page from the region we're
2568 	 * about to write.  We do this *before* the write so that we can return
2569 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2570 	 */
2571 	if (mapping->nrpages) {
2572 		written = invalidate_inode_pages2_range(mapping,
2573 					pos >> PAGE_SHIFT, end);
2574 		/*
2575 		 * If a page can not be invalidated, return 0 to fall back
2576 		 * to buffered write.
2577 		 */
2578 		if (written) {
2579 			if (written == -EBUSY)
2580 				return 0;
2581 			goto out;
2582 		}
2583 	}
2584 
2585 	data = *from;
2586 	written = mapping->a_ops->direct_IO(iocb, &data);
2587 
2588 	/*
2589 	 * Finally, try again to invalidate clean pages which might have been
2590 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2591 	 * if the source of the write was an mmap'ed region of the file
2592 	 * we're writing.  Either one is a pretty crazy thing to do,
2593 	 * so we don't support it 100%.  If this invalidation
2594 	 * fails, tough, the write still worked...
2595 	 */
2596 	if (mapping->nrpages) {
2597 		invalidate_inode_pages2_range(mapping,
2598 					      pos >> PAGE_SHIFT, end);
2599 	}
2600 
2601 	if (written > 0) {
2602 		pos += written;
2603 		iov_iter_advance(from, written);
2604 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2605 			i_size_write(inode, pos);
2606 			mark_inode_dirty(inode);
2607 		}
2608 		iocb->ki_pos = pos;
2609 	}
2610 out:
2611 	return written;
2612 }
2613 EXPORT_SYMBOL(generic_file_direct_write);
2614 
2615 /*
2616  * Find or create a page at the given pagecache position. Return the locked
2617  * page. This function is specifically for buffered writes.
2618  */
2619 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2620 					pgoff_t index, unsigned flags)
2621 {
2622 	struct page *page;
2623 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2624 
2625 	if (flags & AOP_FLAG_NOFS)
2626 		fgp_flags |= FGP_NOFS;
2627 
2628 	page = pagecache_get_page(mapping, index, fgp_flags,
2629 			mapping_gfp_mask(mapping));
2630 	if (page)
2631 		wait_for_stable_page(page);
2632 
2633 	return page;
2634 }
2635 EXPORT_SYMBOL(grab_cache_page_write_begin);
2636 
2637 ssize_t generic_perform_write(struct file *file,
2638 				struct iov_iter *i, loff_t pos)
2639 {
2640 	struct address_space *mapping = file->f_mapping;
2641 	const struct address_space_operations *a_ops = mapping->a_ops;
2642 	long status = 0;
2643 	ssize_t written = 0;
2644 	unsigned int flags = 0;
2645 
2646 	/*
2647 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2648 	 */
2649 	if (!iter_is_iovec(i))
2650 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2651 
2652 	do {
2653 		struct page *page;
2654 		unsigned long offset;	/* Offset into pagecache page */
2655 		unsigned long bytes;	/* Bytes to write to page */
2656 		size_t copied;		/* Bytes copied from user */
2657 		void *fsdata;
2658 
2659 		offset = (pos & (PAGE_SIZE - 1));
2660 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2661 						iov_iter_count(i));
2662 
2663 again:
2664 		/*
2665 		 * Bring in the user page that we will copy from _first_.
2666 		 * Otherwise there's a nasty deadlock on copying from the
2667 		 * same page as we're writing to, without it being marked
2668 		 * up-to-date.
2669 		 *
2670 		 * Not only is this an optimisation, but it is also required
2671 		 * to check that the address is actually valid, when atomic
2672 		 * usercopies are used, below.
2673 		 */
2674 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2675 			status = -EFAULT;
2676 			break;
2677 		}
2678 
2679 		if (fatal_signal_pending(current)) {
2680 			status = -EINTR;
2681 			break;
2682 		}
2683 
2684 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2685 						&page, &fsdata);
2686 		if (unlikely(status < 0))
2687 			break;
2688 
2689 		if (mapping_writably_mapped(mapping))
2690 			flush_dcache_page(page);
2691 
2692 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2693 		flush_dcache_page(page);
2694 
2695 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2696 						page, fsdata);
2697 		if (unlikely(status < 0))
2698 			break;
2699 		copied = status;
2700 
2701 		cond_resched();
2702 
2703 		iov_iter_advance(i, copied);
2704 		if (unlikely(copied == 0)) {
2705 			/*
2706 			 * If we were unable to copy any data at all, we must
2707 			 * fall back to a single segment length write.
2708 			 *
2709 			 * If we didn't fallback here, we could livelock
2710 			 * because not all segments in the iov can be copied at
2711 			 * once without a pagefault.
2712 			 */
2713 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2714 						iov_iter_single_seg_count(i));
2715 			goto again;
2716 		}
2717 		pos += copied;
2718 		written += copied;
2719 
2720 		balance_dirty_pages_ratelimited(mapping);
2721 	} while (iov_iter_count(i));
2722 
2723 	return written ? written : status;
2724 }
2725 EXPORT_SYMBOL(generic_perform_write);
2726 
2727 /**
2728  * __generic_file_write_iter - write data to a file
2729  * @iocb:	IO state structure (file, offset, etc.)
2730  * @from:	iov_iter with data to write
2731  *
2732  * This function does all the work needed for actually writing data to a
2733  * file. It does all basic checks, removes SUID from the file, updates
2734  * modification times and calls proper subroutines depending on whether we
2735  * do direct IO or a standard buffered write.
2736  *
2737  * It expects i_mutex to be grabbed unless we work on a block device or similar
2738  * object which does not need locking at all.
2739  *
2740  * This function does *not* take care of syncing data in case of O_SYNC write.
2741  * A caller has to handle it. This is mainly due to the fact that we want to
2742  * avoid syncing under i_mutex.
2743  */
2744 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2745 {
2746 	struct file *file = iocb->ki_filp;
2747 	struct address_space * mapping = file->f_mapping;
2748 	struct inode 	*inode = mapping->host;
2749 	ssize_t		written = 0;
2750 	ssize_t		err;
2751 	ssize_t		status;
2752 
2753 	/* We can write back this queue in page reclaim */
2754 	current->backing_dev_info = inode_to_bdi(inode);
2755 	err = file_remove_privs(file);
2756 	if (err)
2757 		goto out;
2758 
2759 	err = file_update_time(file);
2760 	if (err)
2761 		goto out;
2762 
2763 	if (iocb->ki_flags & IOCB_DIRECT) {
2764 		loff_t pos, endbyte;
2765 
2766 		written = generic_file_direct_write(iocb, from);
2767 		/*
2768 		 * If the write stopped short of completing, fall back to
2769 		 * buffered writes.  Some filesystems do this for writes to
2770 		 * holes, for example.  For DAX files, a buffered write will
2771 		 * not succeed (even if it did, DAX does not handle dirty
2772 		 * page-cache pages correctly).
2773 		 */
2774 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2775 			goto out;
2776 
2777 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2778 		/*
2779 		 * If generic_perform_write() returned a synchronous error
2780 		 * then we want to return the number of bytes which were
2781 		 * direct-written, or the error code if that was zero.  Note
2782 		 * that this differs from normal direct-io semantics, which
2783 		 * will return -EFOO even if some bytes were written.
2784 		 */
2785 		if (unlikely(status < 0)) {
2786 			err = status;
2787 			goto out;
2788 		}
2789 		/*
2790 		 * We need to ensure that the page cache pages are written to
2791 		 * disk and invalidated to preserve the expected O_DIRECT
2792 		 * semantics.
2793 		 */
2794 		endbyte = pos + status - 1;
2795 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2796 		if (err == 0) {
2797 			iocb->ki_pos = endbyte + 1;
2798 			written += status;
2799 			invalidate_mapping_pages(mapping,
2800 						 pos >> PAGE_SHIFT,
2801 						 endbyte >> PAGE_SHIFT);
2802 		} else {
2803 			/*
2804 			 * We don't know how much we wrote, so just return
2805 			 * the number of bytes which were direct-written
2806 			 */
2807 		}
2808 	} else {
2809 		written = generic_perform_write(file, from, iocb->ki_pos);
2810 		if (likely(written > 0))
2811 			iocb->ki_pos += written;
2812 	}
2813 out:
2814 	current->backing_dev_info = NULL;
2815 	return written ? written : err;
2816 }
2817 EXPORT_SYMBOL(__generic_file_write_iter);
2818 
2819 /**
2820  * generic_file_write_iter - write data to a file
2821  * @iocb:	IO state structure
2822  * @from:	iov_iter with data to write
2823  *
2824  * This is a wrapper around __generic_file_write_iter() to be used by most
2825  * filesystems. It takes care of syncing the file in case of O_SYNC file
2826  * and acquires i_mutex as needed.
2827  */
2828 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2829 {
2830 	struct file *file = iocb->ki_filp;
2831 	struct inode *inode = file->f_mapping->host;
2832 	ssize_t ret;
2833 
2834 	inode_lock(inode);
2835 	ret = generic_write_checks(iocb, from);
2836 	if (ret > 0)
2837 		ret = __generic_file_write_iter(iocb, from);
2838 	inode_unlock(inode);
2839 
2840 	if (ret > 0)
2841 		ret = generic_write_sync(iocb, ret);
2842 	return ret;
2843 }
2844 EXPORT_SYMBOL(generic_file_write_iter);
2845 
2846 /**
2847  * try_to_release_page() - release old fs-specific metadata on a page
2848  *
2849  * @page: the page which the kernel is trying to free
2850  * @gfp_mask: memory allocation flags (and I/O mode)
2851  *
2852  * The address_space is to try to release any data against the page
2853  * (presumably at page->private).  If the release was successful, return `1'.
2854  * Otherwise return zero.
2855  *
2856  * This may also be called if PG_fscache is set on a page, indicating that the
2857  * page is known to the local caching routines.
2858  *
2859  * The @gfp_mask argument specifies whether I/O may be performed to release
2860  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2861  *
2862  */
2863 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2864 {
2865 	struct address_space * const mapping = page->mapping;
2866 
2867 	BUG_ON(!PageLocked(page));
2868 	if (PageWriteback(page))
2869 		return 0;
2870 
2871 	if (mapping && mapping->a_ops->releasepage)
2872 		return mapping->a_ops->releasepage(page, gfp_mask);
2873 	return try_to_free_buffers(page);
2874 }
2875 
2876 EXPORT_SYMBOL(try_to_release_page);
2877