xref: /linux/mm/filemap.c (revision 303f8e2d02002dbe331cab7813ee091aead3cd39)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct page *page, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, page->index);
128 	unsigned int nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!PageHuge(page)) {
134 		xas_set_order(&xas, page->index, compound_order(page));
135 		nr = compound_nr(page);
136 	}
137 
138 	VM_BUG_ON_PAGE(!PageLocked(page), page);
139 	VM_BUG_ON_PAGE(PageTail(page), page);
140 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	page->mapping = NULL;
146 	/* Leave page->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void unaccount_page_cache_page(struct address_space *mapping,
151 				      struct page *page)
152 {
153 	int nr;
154 
155 	/*
156 	 * if we're uptodate, flush out into the cleancache, otherwise
157 	 * invalidate any existing cleancache entries.  We can't leave
158 	 * stale data around in the cleancache once our page is gone
159 	 */
160 	if (PageUptodate(page) && PageMappedToDisk(page))
161 		cleancache_put_page(page);
162 	else
163 		cleancache_invalidate_page(mapping, page);
164 
165 	VM_BUG_ON_PAGE(PageTail(page), page);
166 	VM_BUG_ON_PAGE(page_mapped(page), page);
167 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
168 		int mapcount;
169 
170 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
171 			 current->comm, page_to_pfn(page));
172 		dump_page(page, "still mapped when deleted");
173 		dump_stack();
174 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175 
176 		mapcount = page_mapcount(page);
177 		if (mapping_exiting(mapping) &&
178 		    page_count(page) >= mapcount + 2) {
179 			/*
180 			 * All vmas have already been torn down, so it's
181 			 * a good bet that actually the page is unmapped,
182 			 * and we'd prefer not to leak it: if we're wrong,
183 			 * some other bad page check should catch it later.
184 			 */
185 			page_mapcount_reset(page);
186 			page_ref_sub(page, mapcount);
187 		}
188 	}
189 
190 	/* hugetlb pages do not participate in page cache accounting. */
191 	if (PageHuge(page))
192 		return;
193 
194 	nr = thp_nr_pages(page);
195 
196 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
197 	if (PageSwapBacked(page)) {
198 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
199 		if (PageTransHuge(page))
200 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
201 	} else if (PageTransHuge(page)) {
202 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
203 		filemap_nr_thps_dec(mapping);
204 	}
205 
206 	/*
207 	 * At this point page must be either written or cleaned by
208 	 * truncate.  Dirty page here signals a bug and loss of
209 	 * unwritten data.
210 	 *
211 	 * This fixes dirty accounting after removing the page entirely
212 	 * but leaves PageDirty set: it has no effect for truncated
213 	 * page and anyway will be cleared before returning page into
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(PageDirty(page)))
217 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218 }
219 
220 /*
221  * Delete a page from the page cache and free it. Caller has to make
222  * sure the page is locked and that nobody else uses it - or that usage
223  * is safe.  The caller must hold the i_pages lock.
224  */
225 void __delete_from_page_cache(struct page *page, void *shadow)
226 {
227 	struct address_space *mapping = page->mapping;
228 
229 	trace_mm_filemap_delete_from_page_cache(page);
230 
231 	unaccount_page_cache_page(mapping, page);
232 	page_cache_delete(mapping, page, shadow);
233 }
234 
235 static void page_cache_free_page(struct address_space *mapping,
236 				struct page *page)
237 {
238 	void (*freepage)(struct page *);
239 
240 	freepage = mapping->a_ops->freepage;
241 	if (freepage)
242 		freepage(page);
243 
244 	if (PageTransHuge(page) && !PageHuge(page)) {
245 		page_ref_sub(page, thp_nr_pages(page));
246 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 	} else {
248 		put_page(page);
249 	}
250 }
251 
252 /**
253  * delete_from_page_cache - delete page from page cache
254  * @page: the page which the kernel is trying to remove from page cache
255  *
256  * This must be called only on pages that have been verified to be in the page
257  * cache and locked.  It will never put the page into the free list, the caller
258  * has a reference on the page.
259  */
260 void delete_from_page_cache(struct page *page)
261 {
262 	struct address_space *mapping = page_mapping(page);
263 
264 	BUG_ON(!PageLocked(page));
265 	spin_lock(&mapping->host->i_lock);
266 	xa_lock_irq(&mapping->i_pages);
267 	__delete_from_page_cache(page, NULL);
268 	xa_unlock_irq(&mapping->i_pages);
269 	if (mapping_shrinkable(mapping))
270 		inode_add_lru(mapping->host);
271 	spin_unlock(&mapping->host->i_lock);
272 
273 	page_cache_free_page(mapping, page);
274 }
275 EXPORT_SYMBOL(delete_from_page_cache);
276 
277 /*
278  * page_cache_delete_batch - delete several pages from page cache
279  * @mapping: the mapping to which pages belong
280  * @pvec: pagevec with pages to delete
281  *
282  * The function walks over mapping->i_pages and removes pages passed in @pvec
283  * from the mapping. The function expects @pvec to be sorted by page index
284  * and is optimised for it to be dense.
285  * It tolerates holes in @pvec (mapping entries at those indices are not
286  * modified). The function expects only THP head pages to be present in the
287  * @pvec.
288  *
289  * The function expects the i_pages lock to be held.
290  */
291 static void page_cache_delete_batch(struct address_space *mapping,
292 			     struct pagevec *pvec)
293 {
294 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
295 	int total_pages = 0;
296 	int i = 0;
297 	struct page *page;
298 
299 	mapping_set_update(&xas, mapping);
300 	xas_for_each(&xas, page, ULONG_MAX) {
301 		if (i >= pagevec_count(pvec))
302 			break;
303 
304 		/* A swap/dax/shadow entry got inserted? Skip it. */
305 		if (xa_is_value(page))
306 			continue;
307 		/*
308 		 * A page got inserted in our range? Skip it. We have our
309 		 * pages locked so they are protected from being removed.
310 		 * If we see a page whose index is higher than ours, it
311 		 * means our page has been removed, which shouldn't be
312 		 * possible because we're holding the PageLock.
313 		 */
314 		if (page != pvec->pages[i]) {
315 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
316 					page);
317 			continue;
318 		}
319 
320 		WARN_ON_ONCE(!PageLocked(page));
321 
322 		if (page->index == xas.xa_index)
323 			page->mapping = NULL;
324 		/* Leave page->index set: truncation lookup relies on it */
325 
326 		/*
327 		 * Move to the next page in the vector if this is a regular
328 		 * page or the index is of the last sub-page of this compound
329 		 * page.
330 		 */
331 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
332 			i++;
333 		xas_store(&xas, NULL);
334 		total_pages++;
335 	}
336 	mapping->nrpages -= total_pages;
337 }
338 
339 void delete_from_page_cache_batch(struct address_space *mapping,
340 				  struct pagevec *pvec)
341 {
342 	int i;
343 
344 	if (!pagevec_count(pvec))
345 		return;
346 
347 	spin_lock(&mapping->host->i_lock);
348 	xa_lock_irq(&mapping->i_pages);
349 	for (i = 0; i < pagevec_count(pvec); i++) {
350 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
351 
352 		unaccount_page_cache_page(mapping, pvec->pages[i]);
353 	}
354 	page_cache_delete_batch(mapping, pvec);
355 	xa_unlock_irq(&mapping->i_pages);
356 	if (mapping_shrinkable(mapping))
357 		inode_add_lru(mapping->host);
358 	spin_unlock(&mapping->host->i_lock);
359 
360 	for (i = 0; i < pagevec_count(pvec); i++)
361 		page_cache_free_page(mapping, pvec->pages[i]);
362 }
363 
364 int filemap_check_errors(struct address_space *mapping)
365 {
366 	int ret = 0;
367 	/* Check for outstanding write errors */
368 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
369 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
370 		ret = -ENOSPC;
371 	if (test_bit(AS_EIO, &mapping->flags) &&
372 	    test_and_clear_bit(AS_EIO, &mapping->flags))
373 		ret = -EIO;
374 	return ret;
375 }
376 EXPORT_SYMBOL(filemap_check_errors);
377 
378 static int filemap_check_and_keep_errors(struct address_space *mapping)
379 {
380 	/* Check for outstanding write errors */
381 	if (test_bit(AS_EIO, &mapping->flags))
382 		return -EIO;
383 	if (test_bit(AS_ENOSPC, &mapping->flags))
384 		return -ENOSPC;
385 	return 0;
386 }
387 
388 /**
389  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
390  * @mapping:	address space structure to write
391  * @wbc:	the writeback_control controlling the writeout
392  *
393  * Call writepages on the mapping using the provided wbc to control the
394  * writeout.
395  *
396  * Return: %0 on success, negative error code otherwise.
397  */
398 int filemap_fdatawrite_wbc(struct address_space *mapping,
399 			   struct writeback_control *wbc)
400 {
401 	int ret;
402 
403 	if (!mapping_can_writeback(mapping) ||
404 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
405 		return 0;
406 
407 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
408 	ret = do_writepages(mapping, wbc);
409 	wbc_detach_inode(wbc);
410 	return ret;
411 }
412 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
413 
414 /**
415  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
416  * @mapping:	address space structure to write
417  * @start:	offset in bytes where the range starts
418  * @end:	offset in bytes where the range ends (inclusive)
419  * @sync_mode:	enable synchronous operation
420  *
421  * Start writeback against all of a mapping's dirty pages that lie
422  * within the byte offsets <start, end> inclusive.
423  *
424  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
425  * opposed to a regular memory cleansing writeback.  The difference between
426  * these two operations is that if a dirty page/buffer is encountered, it must
427  * be waited upon, and not just skipped over.
428  *
429  * Return: %0 on success, negative error code otherwise.
430  */
431 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
432 				loff_t end, int sync_mode)
433 {
434 	struct writeback_control wbc = {
435 		.sync_mode = sync_mode,
436 		.nr_to_write = LONG_MAX,
437 		.range_start = start,
438 		.range_end = end,
439 	};
440 
441 	return filemap_fdatawrite_wbc(mapping, &wbc);
442 }
443 
444 static inline int __filemap_fdatawrite(struct address_space *mapping,
445 	int sync_mode)
446 {
447 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
448 }
449 
450 int filemap_fdatawrite(struct address_space *mapping)
451 {
452 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
453 }
454 EXPORT_SYMBOL(filemap_fdatawrite);
455 
456 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
457 				loff_t end)
458 {
459 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
460 }
461 EXPORT_SYMBOL(filemap_fdatawrite_range);
462 
463 /**
464  * filemap_flush - mostly a non-blocking flush
465  * @mapping:	target address_space
466  *
467  * This is a mostly non-blocking flush.  Not suitable for data-integrity
468  * purposes - I/O may not be started against all dirty pages.
469  *
470  * Return: %0 on success, negative error code otherwise.
471  */
472 int filemap_flush(struct address_space *mapping)
473 {
474 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
475 }
476 EXPORT_SYMBOL(filemap_flush);
477 
478 /**
479  * filemap_range_has_page - check if a page exists in range.
480  * @mapping:           address space within which to check
481  * @start_byte:        offset in bytes where the range starts
482  * @end_byte:          offset in bytes where the range ends (inclusive)
483  *
484  * Find at least one page in the range supplied, usually used to check if
485  * direct writing in this range will trigger a writeback.
486  *
487  * Return: %true if at least one page exists in the specified range,
488  * %false otherwise.
489  */
490 bool filemap_range_has_page(struct address_space *mapping,
491 			   loff_t start_byte, loff_t end_byte)
492 {
493 	struct page *page;
494 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
495 	pgoff_t max = end_byte >> PAGE_SHIFT;
496 
497 	if (end_byte < start_byte)
498 		return false;
499 
500 	rcu_read_lock();
501 	for (;;) {
502 		page = xas_find(&xas, max);
503 		if (xas_retry(&xas, page))
504 			continue;
505 		/* Shadow entries don't count */
506 		if (xa_is_value(page))
507 			continue;
508 		/*
509 		 * We don't need to try to pin this page; we're about to
510 		 * release the RCU lock anyway.  It is enough to know that
511 		 * there was a page here recently.
512 		 */
513 		break;
514 	}
515 	rcu_read_unlock();
516 
517 	return page != NULL;
518 }
519 EXPORT_SYMBOL(filemap_range_has_page);
520 
521 static void __filemap_fdatawait_range(struct address_space *mapping,
522 				     loff_t start_byte, loff_t end_byte)
523 {
524 	pgoff_t index = start_byte >> PAGE_SHIFT;
525 	pgoff_t end = end_byte >> PAGE_SHIFT;
526 	struct pagevec pvec;
527 	int nr_pages;
528 
529 	if (end_byte < start_byte)
530 		return;
531 
532 	pagevec_init(&pvec);
533 	while (index <= end) {
534 		unsigned i;
535 
536 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
537 				end, PAGECACHE_TAG_WRITEBACK);
538 		if (!nr_pages)
539 			break;
540 
541 		for (i = 0; i < nr_pages; i++) {
542 			struct page *page = pvec.pages[i];
543 
544 			wait_on_page_writeback(page);
545 			ClearPageError(page);
546 		}
547 		pagevec_release(&pvec);
548 		cond_resched();
549 	}
550 }
551 
552 /**
553  * filemap_fdatawait_range - wait for writeback to complete
554  * @mapping:		address space structure to wait for
555  * @start_byte:		offset in bytes where the range starts
556  * @end_byte:		offset in bytes where the range ends (inclusive)
557  *
558  * Walk the list of under-writeback pages of the given address space
559  * in the given range and wait for all of them.  Check error status of
560  * the address space and return it.
561  *
562  * Since the error status of the address space is cleared by this function,
563  * callers are responsible for checking the return value and handling and/or
564  * reporting the error.
565  *
566  * Return: error status of the address space.
567  */
568 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
569 			    loff_t end_byte)
570 {
571 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
572 	return filemap_check_errors(mapping);
573 }
574 EXPORT_SYMBOL(filemap_fdatawait_range);
575 
576 /**
577  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
578  * @mapping:		address space structure to wait for
579  * @start_byte:		offset in bytes where the range starts
580  * @end_byte:		offset in bytes where the range ends (inclusive)
581  *
582  * Walk the list of under-writeback pages of the given address space in the
583  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
584  * this function does not clear error status of the address space.
585  *
586  * Use this function if callers don't handle errors themselves.  Expected
587  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
588  * fsfreeze(8)
589  */
590 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
591 		loff_t start_byte, loff_t end_byte)
592 {
593 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
594 	return filemap_check_and_keep_errors(mapping);
595 }
596 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
597 
598 /**
599  * file_fdatawait_range - wait for writeback to complete
600  * @file:		file pointing to address space structure to wait for
601  * @start_byte:		offset in bytes where the range starts
602  * @end_byte:		offset in bytes where the range ends (inclusive)
603  *
604  * Walk the list of under-writeback pages of the address space that file
605  * refers to, in the given range and wait for all of them.  Check error
606  * status of the address space vs. the file->f_wb_err cursor and return it.
607  *
608  * Since the error status of the file is advanced by this function,
609  * callers are responsible for checking the return value and handling and/or
610  * reporting the error.
611  *
612  * Return: error status of the address space vs. the file->f_wb_err cursor.
613  */
614 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
615 {
616 	struct address_space *mapping = file->f_mapping;
617 
618 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
619 	return file_check_and_advance_wb_err(file);
620 }
621 EXPORT_SYMBOL(file_fdatawait_range);
622 
623 /**
624  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
625  * @mapping: address space structure to wait for
626  *
627  * Walk the list of under-writeback pages of the given address space
628  * and wait for all of them.  Unlike filemap_fdatawait(), this function
629  * does not clear error status of the address space.
630  *
631  * Use this function if callers don't handle errors themselves.  Expected
632  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
633  * fsfreeze(8)
634  *
635  * Return: error status of the address space.
636  */
637 int filemap_fdatawait_keep_errors(struct address_space *mapping)
638 {
639 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
640 	return filemap_check_and_keep_errors(mapping);
641 }
642 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
643 
644 /* Returns true if writeback might be needed or already in progress. */
645 static bool mapping_needs_writeback(struct address_space *mapping)
646 {
647 	return mapping->nrpages;
648 }
649 
650 static bool filemap_range_has_writeback(struct address_space *mapping,
651 					loff_t start_byte, loff_t end_byte)
652 {
653 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
654 	pgoff_t max = end_byte >> PAGE_SHIFT;
655 	struct page *page;
656 
657 	if (end_byte < start_byte)
658 		return false;
659 
660 	rcu_read_lock();
661 	xas_for_each(&xas, page, max) {
662 		if (xas_retry(&xas, page))
663 			continue;
664 		if (xa_is_value(page))
665 			continue;
666 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
667 			break;
668 	}
669 	rcu_read_unlock();
670 	return page != NULL;
671 
672 }
673 
674 /**
675  * filemap_range_needs_writeback - check if range potentially needs writeback
676  * @mapping:           address space within which to check
677  * @start_byte:        offset in bytes where the range starts
678  * @end_byte:          offset in bytes where the range ends (inclusive)
679  *
680  * Find at least one page in the range supplied, usually used to check if
681  * direct writing in this range will trigger a writeback. Used by O_DIRECT
682  * read/write with IOCB_NOWAIT, to see if the caller needs to do
683  * filemap_write_and_wait_range() before proceeding.
684  *
685  * Return: %true if the caller should do filemap_write_and_wait_range() before
686  * doing O_DIRECT to a page in this range, %false otherwise.
687  */
688 bool filemap_range_needs_writeback(struct address_space *mapping,
689 				   loff_t start_byte, loff_t end_byte)
690 {
691 	if (!mapping_needs_writeback(mapping))
692 		return false;
693 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
694 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
695 		return false;
696 	return filemap_range_has_writeback(mapping, start_byte, end_byte);
697 }
698 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
699 
700 /**
701  * filemap_write_and_wait_range - write out & wait on a file range
702  * @mapping:	the address_space for the pages
703  * @lstart:	offset in bytes where the range starts
704  * @lend:	offset in bytes where the range ends (inclusive)
705  *
706  * Write out and wait upon file offsets lstart->lend, inclusive.
707  *
708  * Note that @lend is inclusive (describes the last byte to be written) so
709  * that this function can be used to write to the very end-of-file (end = -1).
710  *
711  * Return: error status of the address space.
712  */
713 int filemap_write_and_wait_range(struct address_space *mapping,
714 				 loff_t lstart, loff_t lend)
715 {
716 	int err = 0;
717 
718 	if (mapping_needs_writeback(mapping)) {
719 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
720 						 WB_SYNC_ALL);
721 		/*
722 		 * Even if the above returned error, the pages may be
723 		 * written partially (e.g. -ENOSPC), so we wait for it.
724 		 * But the -EIO is special case, it may indicate the worst
725 		 * thing (e.g. bug) happened, so we avoid waiting for it.
726 		 */
727 		if (err != -EIO) {
728 			int err2 = filemap_fdatawait_range(mapping,
729 						lstart, lend);
730 			if (!err)
731 				err = err2;
732 		} else {
733 			/* Clear any previously stored errors */
734 			filemap_check_errors(mapping);
735 		}
736 	} else {
737 		err = filemap_check_errors(mapping);
738 	}
739 	return err;
740 }
741 EXPORT_SYMBOL(filemap_write_and_wait_range);
742 
743 void __filemap_set_wb_err(struct address_space *mapping, int err)
744 {
745 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
746 
747 	trace_filemap_set_wb_err(mapping, eseq);
748 }
749 EXPORT_SYMBOL(__filemap_set_wb_err);
750 
751 /**
752  * file_check_and_advance_wb_err - report wb error (if any) that was previously
753  * 				   and advance wb_err to current one
754  * @file: struct file on which the error is being reported
755  *
756  * When userland calls fsync (or something like nfsd does the equivalent), we
757  * want to report any writeback errors that occurred since the last fsync (or
758  * since the file was opened if there haven't been any).
759  *
760  * Grab the wb_err from the mapping. If it matches what we have in the file,
761  * then just quickly return 0. The file is all caught up.
762  *
763  * If it doesn't match, then take the mapping value, set the "seen" flag in
764  * it and try to swap it into place. If it works, or another task beat us
765  * to it with the new value, then update the f_wb_err and return the error
766  * portion. The error at this point must be reported via proper channels
767  * (a'la fsync, or NFS COMMIT operation, etc.).
768  *
769  * While we handle mapping->wb_err with atomic operations, the f_wb_err
770  * value is protected by the f_lock since we must ensure that it reflects
771  * the latest value swapped in for this file descriptor.
772  *
773  * Return: %0 on success, negative error code otherwise.
774  */
775 int file_check_and_advance_wb_err(struct file *file)
776 {
777 	int err = 0;
778 	errseq_t old = READ_ONCE(file->f_wb_err);
779 	struct address_space *mapping = file->f_mapping;
780 
781 	/* Locklessly handle the common case where nothing has changed */
782 	if (errseq_check(&mapping->wb_err, old)) {
783 		/* Something changed, must use slow path */
784 		spin_lock(&file->f_lock);
785 		old = file->f_wb_err;
786 		err = errseq_check_and_advance(&mapping->wb_err,
787 						&file->f_wb_err);
788 		trace_file_check_and_advance_wb_err(file, old);
789 		spin_unlock(&file->f_lock);
790 	}
791 
792 	/*
793 	 * We're mostly using this function as a drop in replacement for
794 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
795 	 * that the legacy code would have had on these flags.
796 	 */
797 	clear_bit(AS_EIO, &mapping->flags);
798 	clear_bit(AS_ENOSPC, &mapping->flags);
799 	return err;
800 }
801 EXPORT_SYMBOL(file_check_and_advance_wb_err);
802 
803 /**
804  * file_write_and_wait_range - write out & wait on a file range
805  * @file:	file pointing to address_space with pages
806  * @lstart:	offset in bytes where the range starts
807  * @lend:	offset in bytes where the range ends (inclusive)
808  *
809  * Write out and wait upon file offsets lstart->lend, inclusive.
810  *
811  * Note that @lend is inclusive (describes the last byte to be written) so
812  * that this function can be used to write to the very end-of-file (end = -1).
813  *
814  * After writing out and waiting on the data, we check and advance the
815  * f_wb_err cursor to the latest value, and return any errors detected there.
816  *
817  * Return: %0 on success, negative error code otherwise.
818  */
819 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
820 {
821 	int err = 0, err2;
822 	struct address_space *mapping = file->f_mapping;
823 
824 	if (mapping_needs_writeback(mapping)) {
825 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
826 						 WB_SYNC_ALL);
827 		/* See comment of filemap_write_and_wait() */
828 		if (err != -EIO)
829 			__filemap_fdatawait_range(mapping, lstart, lend);
830 	}
831 	err2 = file_check_and_advance_wb_err(file);
832 	if (!err)
833 		err = err2;
834 	return err;
835 }
836 EXPORT_SYMBOL(file_write_and_wait_range);
837 
838 /**
839  * replace_page_cache_page - replace a pagecache page with a new one
840  * @old:	page to be replaced
841  * @new:	page to replace with
842  *
843  * This function replaces a page in the pagecache with a new one.  On
844  * success it acquires the pagecache reference for the new page and
845  * drops it for the old page.  Both the old and new pages must be
846  * locked.  This function does not add the new page to the LRU, the
847  * caller must do that.
848  *
849  * The remove + add is atomic.  This function cannot fail.
850  */
851 void replace_page_cache_page(struct page *old, struct page *new)
852 {
853 	struct address_space *mapping = old->mapping;
854 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
855 	pgoff_t offset = old->index;
856 	XA_STATE(xas, &mapping->i_pages, offset);
857 
858 	VM_BUG_ON_PAGE(!PageLocked(old), old);
859 	VM_BUG_ON_PAGE(!PageLocked(new), new);
860 	VM_BUG_ON_PAGE(new->mapping, new);
861 
862 	get_page(new);
863 	new->mapping = mapping;
864 	new->index = offset;
865 
866 	mem_cgroup_migrate(old, new);
867 
868 	xas_lock_irq(&xas);
869 	xas_store(&xas, new);
870 
871 	old->mapping = NULL;
872 	/* hugetlb pages do not participate in page cache accounting. */
873 	if (!PageHuge(old))
874 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
875 	if (!PageHuge(new))
876 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
877 	if (PageSwapBacked(old))
878 		__dec_lruvec_page_state(old, NR_SHMEM);
879 	if (PageSwapBacked(new))
880 		__inc_lruvec_page_state(new, NR_SHMEM);
881 	xas_unlock_irq(&xas);
882 	if (freepage)
883 		freepage(old);
884 	put_page(old);
885 }
886 EXPORT_SYMBOL_GPL(replace_page_cache_page);
887 
888 noinline int __add_to_page_cache_locked(struct page *page,
889 					struct address_space *mapping,
890 					pgoff_t offset, gfp_t gfp,
891 					void **shadowp)
892 {
893 	XA_STATE(xas, &mapping->i_pages, offset);
894 	int huge = PageHuge(page);
895 	int error;
896 	bool charged = false;
897 
898 	VM_BUG_ON_PAGE(!PageLocked(page), page);
899 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
900 	mapping_set_update(&xas, mapping);
901 
902 	get_page(page);
903 	page->mapping = mapping;
904 	page->index = offset;
905 
906 	if (!huge) {
907 		error = mem_cgroup_charge(page, NULL, gfp);
908 		if (error)
909 			goto error;
910 		charged = true;
911 	}
912 
913 	gfp &= GFP_RECLAIM_MASK;
914 
915 	do {
916 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
917 		void *entry, *old = NULL;
918 
919 		if (order > thp_order(page))
920 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
921 					order, gfp);
922 		xas_lock_irq(&xas);
923 		xas_for_each_conflict(&xas, entry) {
924 			old = entry;
925 			if (!xa_is_value(entry)) {
926 				xas_set_err(&xas, -EEXIST);
927 				goto unlock;
928 			}
929 		}
930 
931 		if (old) {
932 			if (shadowp)
933 				*shadowp = old;
934 			/* entry may have been split before we acquired lock */
935 			order = xa_get_order(xas.xa, xas.xa_index);
936 			if (order > thp_order(page)) {
937 				xas_split(&xas, old, order);
938 				xas_reset(&xas);
939 			}
940 		}
941 
942 		xas_store(&xas, page);
943 		if (xas_error(&xas))
944 			goto unlock;
945 
946 		mapping->nrpages++;
947 
948 		/* hugetlb pages do not participate in page cache accounting */
949 		if (!huge)
950 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
951 unlock:
952 		xas_unlock_irq(&xas);
953 	} while (xas_nomem(&xas, gfp));
954 
955 	if (xas_error(&xas)) {
956 		error = xas_error(&xas);
957 		if (charged)
958 			mem_cgroup_uncharge(page);
959 		goto error;
960 	}
961 
962 	trace_mm_filemap_add_to_page_cache(page);
963 	return 0;
964 error:
965 	page->mapping = NULL;
966 	/* Leave page->index set: truncation relies upon it */
967 	put_page(page);
968 	return error;
969 }
970 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
971 
972 /**
973  * add_to_page_cache_locked - add a locked page to the pagecache
974  * @page:	page to add
975  * @mapping:	the page's address_space
976  * @offset:	page index
977  * @gfp_mask:	page allocation mode
978  *
979  * This function is used to add a page to the pagecache. It must be locked.
980  * This function does not add the page to the LRU.  The caller must do that.
981  *
982  * Return: %0 on success, negative error code otherwise.
983  */
984 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
985 		pgoff_t offset, gfp_t gfp_mask)
986 {
987 	return __add_to_page_cache_locked(page, mapping, offset,
988 					  gfp_mask, NULL);
989 }
990 EXPORT_SYMBOL(add_to_page_cache_locked);
991 
992 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
993 				pgoff_t offset, gfp_t gfp_mask)
994 {
995 	void *shadow = NULL;
996 	int ret;
997 
998 	__SetPageLocked(page);
999 	ret = __add_to_page_cache_locked(page, mapping, offset,
1000 					 gfp_mask, &shadow);
1001 	if (unlikely(ret))
1002 		__ClearPageLocked(page);
1003 	else {
1004 		/*
1005 		 * The page might have been evicted from cache only
1006 		 * recently, in which case it should be activated like
1007 		 * any other repeatedly accessed page.
1008 		 * The exception is pages getting rewritten; evicting other
1009 		 * data from the working set, only to cache data that will
1010 		 * get overwritten with something else, is a waste of memory.
1011 		 */
1012 		WARN_ON_ONCE(PageActive(page));
1013 		if (!(gfp_mask & __GFP_WRITE) && shadow)
1014 			workingset_refault(page, shadow);
1015 		lru_cache_add(page);
1016 	}
1017 	return ret;
1018 }
1019 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1020 
1021 #ifdef CONFIG_NUMA
1022 struct page *__page_cache_alloc(gfp_t gfp)
1023 {
1024 	int n;
1025 	struct page *page;
1026 
1027 	if (cpuset_do_page_mem_spread()) {
1028 		unsigned int cpuset_mems_cookie;
1029 		do {
1030 			cpuset_mems_cookie = read_mems_allowed_begin();
1031 			n = cpuset_mem_spread_node();
1032 			page = __alloc_pages_node(n, gfp, 0);
1033 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1034 
1035 		return page;
1036 	}
1037 	return alloc_pages(gfp, 0);
1038 }
1039 EXPORT_SYMBOL(__page_cache_alloc);
1040 #endif
1041 
1042 /*
1043  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1044  *
1045  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1046  *
1047  * @mapping1: the first mapping to lock
1048  * @mapping2: the second mapping to lock
1049  */
1050 void filemap_invalidate_lock_two(struct address_space *mapping1,
1051 				 struct address_space *mapping2)
1052 {
1053 	if (mapping1 > mapping2)
1054 		swap(mapping1, mapping2);
1055 	if (mapping1)
1056 		down_write(&mapping1->invalidate_lock);
1057 	if (mapping2 && mapping1 != mapping2)
1058 		down_write_nested(&mapping2->invalidate_lock, 1);
1059 }
1060 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1061 
1062 /*
1063  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1064  *
1065  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1066  *
1067  * @mapping1: the first mapping to unlock
1068  * @mapping2: the second mapping to unlock
1069  */
1070 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1071 				   struct address_space *mapping2)
1072 {
1073 	if (mapping1)
1074 		up_write(&mapping1->invalidate_lock);
1075 	if (mapping2 && mapping1 != mapping2)
1076 		up_write(&mapping2->invalidate_lock);
1077 }
1078 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1079 
1080 /*
1081  * In order to wait for pages to become available there must be
1082  * waitqueues associated with pages. By using a hash table of
1083  * waitqueues where the bucket discipline is to maintain all
1084  * waiters on the same queue and wake all when any of the pages
1085  * become available, and for the woken contexts to check to be
1086  * sure the appropriate page became available, this saves space
1087  * at a cost of "thundering herd" phenomena during rare hash
1088  * collisions.
1089  */
1090 #define PAGE_WAIT_TABLE_BITS 8
1091 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1092 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1093 
1094 static wait_queue_head_t *page_waitqueue(struct page *page)
1095 {
1096 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1097 }
1098 
1099 void __init pagecache_init(void)
1100 {
1101 	int i;
1102 
1103 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1104 		init_waitqueue_head(&page_wait_table[i]);
1105 
1106 	page_writeback_init();
1107 }
1108 
1109 /*
1110  * The page wait code treats the "wait->flags" somewhat unusually, because
1111  * we have multiple different kinds of waits, not just the usual "exclusive"
1112  * one.
1113  *
1114  * We have:
1115  *
1116  *  (a) no special bits set:
1117  *
1118  *	We're just waiting for the bit to be released, and when a waker
1119  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1120  *	and remove it from the wait queue.
1121  *
1122  *	Simple and straightforward.
1123  *
1124  *  (b) WQ_FLAG_EXCLUSIVE:
1125  *
1126  *	The waiter is waiting to get the lock, and only one waiter should
1127  *	be woken up to avoid any thundering herd behavior. We'll set the
1128  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1129  *
1130  *	This is the traditional exclusive wait.
1131  *
1132  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1133  *
1134  *	The waiter is waiting to get the bit, and additionally wants the
1135  *	lock to be transferred to it for fair lock behavior. If the lock
1136  *	cannot be taken, we stop walking the wait queue without waking
1137  *	the waiter.
1138  *
1139  *	This is the "fair lock handoff" case, and in addition to setting
1140  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1141  *	that it now has the lock.
1142  */
1143 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1144 {
1145 	unsigned int flags;
1146 	struct wait_page_key *key = arg;
1147 	struct wait_page_queue *wait_page
1148 		= container_of(wait, struct wait_page_queue, wait);
1149 
1150 	if (!wake_page_match(wait_page, key))
1151 		return 0;
1152 
1153 	/*
1154 	 * If it's a lock handoff wait, we get the bit for it, and
1155 	 * stop walking (and do not wake it up) if we can't.
1156 	 */
1157 	flags = wait->flags;
1158 	if (flags & WQ_FLAG_EXCLUSIVE) {
1159 		if (test_bit(key->bit_nr, &key->page->flags))
1160 			return -1;
1161 		if (flags & WQ_FLAG_CUSTOM) {
1162 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1163 				return -1;
1164 			flags |= WQ_FLAG_DONE;
1165 		}
1166 	}
1167 
1168 	/*
1169 	 * We are holding the wait-queue lock, but the waiter that
1170 	 * is waiting for this will be checking the flags without
1171 	 * any locking.
1172 	 *
1173 	 * So update the flags atomically, and wake up the waiter
1174 	 * afterwards to avoid any races. This store-release pairs
1175 	 * with the load-acquire in wait_on_page_bit_common().
1176 	 */
1177 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1178 	wake_up_state(wait->private, mode);
1179 
1180 	/*
1181 	 * Ok, we have successfully done what we're waiting for,
1182 	 * and we can unconditionally remove the wait entry.
1183 	 *
1184 	 * Note that this pairs with the "finish_wait()" in the
1185 	 * waiter, and has to be the absolute last thing we do.
1186 	 * After this list_del_init(&wait->entry) the wait entry
1187 	 * might be de-allocated and the process might even have
1188 	 * exited.
1189 	 */
1190 	list_del_init_careful(&wait->entry);
1191 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1192 }
1193 
1194 static void wake_up_page_bit(struct page *page, int bit_nr)
1195 {
1196 	wait_queue_head_t *q = page_waitqueue(page);
1197 	struct wait_page_key key;
1198 	unsigned long flags;
1199 	wait_queue_entry_t bookmark;
1200 
1201 	key.page = page;
1202 	key.bit_nr = bit_nr;
1203 	key.page_match = 0;
1204 
1205 	bookmark.flags = 0;
1206 	bookmark.private = NULL;
1207 	bookmark.func = NULL;
1208 	INIT_LIST_HEAD(&bookmark.entry);
1209 
1210 	spin_lock_irqsave(&q->lock, flags);
1211 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1212 
1213 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1214 		/*
1215 		 * Take a breather from holding the lock,
1216 		 * allow pages that finish wake up asynchronously
1217 		 * to acquire the lock and remove themselves
1218 		 * from wait queue
1219 		 */
1220 		spin_unlock_irqrestore(&q->lock, flags);
1221 		cpu_relax();
1222 		spin_lock_irqsave(&q->lock, flags);
1223 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1224 	}
1225 
1226 	/*
1227 	 * It is possible for other pages to have collided on the waitqueue
1228 	 * hash, so in that case check for a page match. That prevents a long-
1229 	 * term waiter
1230 	 *
1231 	 * It is still possible to miss a case here, when we woke page waiters
1232 	 * and removed them from the waitqueue, but there are still other
1233 	 * page waiters.
1234 	 */
1235 	if (!waitqueue_active(q) || !key.page_match) {
1236 		ClearPageWaiters(page);
1237 		/*
1238 		 * It's possible to miss clearing Waiters here, when we woke
1239 		 * our page waiters, but the hashed waitqueue has waiters for
1240 		 * other pages on it.
1241 		 *
1242 		 * That's okay, it's a rare case. The next waker will clear it.
1243 		 */
1244 	}
1245 	spin_unlock_irqrestore(&q->lock, flags);
1246 }
1247 
1248 static void wake_up_page(struct page *page, int bit)
1249 {
1250 	if (!PageWaiters(page))
1251 		return;
1252 	wake_up_page_bit(page, bit);
1253 }
1254 
1255 /*
1256  * A choice of three behaviors for wait_on_page_bit_common():
1257  */
1258 enum behavior {
1259 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1260 			 * __lock_page() waiting on then setting PG_locked.
1261 			 */
1262 	SHARED,		/* Hold ref to page and check the bit when woken, like
1263 			 * wait_on_page_writeback() waiting on PG_writeback.
1264 			 */
1265 	DROP,		/* Drop ref to page before wait, no check when woken,
1266 			 * like put_and_wait_on_page_locked() on PG_locked.
1267 			 */
1268 };
1269 
1270 /*
1271  * Attempt to check (or get) the page bit, and mark us done
1272  * if successful.
1273  */
1274 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1275 					struct wait_queue_entry *wait)
1276 {
1277 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1278 		if (test_and_set_bit(bit_nr, &page->flags))
1279 			return false;
1280 	} else if (test_bit(bit_nr, &page->flags))
1281 		return false;
1282 
1283 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1284 	return true;
1285 }
1286 
1287 /* How many times do we accept lock stealing from under a waiter? */
1288 int sysctl_page_lock_unfairness = 5;
1289 
1290 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1291 	struct page *page, int bit_nr, int state, enum behavior behavior)
1292 {
1293 	int unfairness = sysctl_page_lock_unfairness;
1294 	struct wait_page_queue wait_page;
1295 	wait_queue_entry_t *wait = &wait_page.wait;
1296 	bool thrashing = false;
1297 	bool delayacct = false;
1298 	unsigned long pflags;
1299 
1300 	if (bit_nr == PG_locked &&
1301 	    !PageUptodate(page) && PageWorkingset(page)) {
1302 		if (!PageSwapBacked(page)) {
1303 			delayacct_thrashing_start();
1304 			delayacct = true;
1305 		}
1306 		psi_memstall_enter(&pflags);
1307 		thrashing = true;
1308 	}
1309 
1310 	init_wait(wait);
1311 	wait->func = wake_page_function;
1312 	wait_page.page = page;
1313 	wait_page.bit_nr = bit_nr;
1314 
1315 repeat:
1316 	wait->flags = 0;
1317 	if (behavior == EXCLUSIVE) {
1318 		wait->flags = WQ_FLAG_EXCLUSIVE;
1319 		if (--unfairness < 0)
1320 			wait->flags |= WQ_FLAG_CUSTOM;
1321 	}
1322 
1323 	/*
1324 	 * Do one last check whether we can get the
1325 	 * page bit synchronously.
1326 	 *
1327 	 * Do the SetPageWaiters() marking before that
1328 	 * to let any waker we _just_ missed know they
1329 	 * need to wake us up (otherwise they'll never
1330 	 * even go to the slow case that looks at the
1331 	 * page queue), and add ourselves to the wait
1332 	 * queue if we need to sleep.
1333 	 *
1334 	 * This part needs to be done under the queue
1335 	 * lock to avoid races.
1336 	 */
1337 	spin_lock_irq(&q->lock);
1338 	SetPageWaiters(page);
1339 	if (!trylock_page_bit_common(page, bit_nr, wait))
1340 		__add_wait_queue_entry_tail(q, wait);
1341 	spin_unlock_irq(&q->lock);
1342 
1343 	/*
1344 	 * From now on, all the logic will be based on
1345 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1346 	 * see whether the page bit testing has already
1347 	 * been done by the wake function.
1348 	 *
1349 	 * We can drop our reference to the page.
1350 	 */
1351 	if (behavior == DROP)
1352 		put_page(page);
1353 
1354 	/*
1355 	 * Note that until the "finish_wait()", or until
1356 	 * we see the WQ_FLAG_WOKEN flag, we need to
1357 	 * be very careful with the 'wait->flags', because
1358 	 * we may race with a waker that sets them.
1359 	 */
1360 	for (;;) {
1361 		unsigned int flags;
1362 
1363 		set_current_state(state);
1364 
1365 		/* Loop until we've been woken or interrupted */
1366 		flags = smp_load_acquire(&wait->flags);
1367 		if (!(flags & WQ_FLAG_WOKEN)) {
1368 			if (signal_pending_state(state, current))
1369 				break;
1370 
1371 			io_schedule();
1372 			continue;
1373 		}
1374 
1375 		/* If we were non-exclusive, we're done */
1376 		if (behavior != EXCLUSIVE)
1377 			break;
1378 
1379 		/* If the waker got the lock for us, we're done */
1380 		if (flags & WQ_FLAG_DONE)
1381 			break;
1382 
1383 		/*
1384 		 * Otherwise, if we're getting the lock, we need to
1385 		 * try to get it ourselves.
1386 		 *
1387 		 * And if that fails, we'll have to retry this all.
1388 		 */
1389 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1390 			goto repeat;
1391 
1392 		wait->flags |= WQ_FLAG_DONE;
1393 		break;
1394 	}
1395 
1396 	/*
1397 	 * If a signal happened, this 'finish_wait()' may remove the last
1398 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1399 	 * set. That's ok. The next wakeup will take care of it, and trying
1400 	 * to do it here would be difficult and prone to races.
1401 	 */
1402 	finish_wait(q, wait);
1403 
1404 	if (thrashing) {
1405 		if (delayacct)
1406 			delayacct_thrashing_end();
1407 		psi_memstall_leave(&pflags);
1408 	}
1409 
1410 	/*
1411 	 * NOTE! The wait->flags weren't stable until we've done the
1412 	 * 'finish_wait()', and we could have exited the loop above due
1413 	 * to a signal, and had a wakeup event happen after the signal
1414 	 * test but before the 'finish_wait()'.
1415 	 *
1416 	 * So only after the finish_wait() can we reliably determine
1417 	 * if we got woken up or not, so we can now figure out the final
1418 	 * return value based on that state without races.
1419 	 *
1420 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1421 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1422 	 */
1423 	if (behavior == EXCLUSIVE)
1424 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1425 
1426 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1427 }
1428 
1429 void wait_on_page_bit(struct page *page, int bit_nr)
1430 {
1431 	wait_queue_head_t *q = page_waitqueue(page);
1432 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1433 }
1434 EXPORT_SYMBOL(wait_on_page_bit);
1435 
1436 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1437 {
1438 	wait_queue_head_t *q = page_waitqueue(page);
1439 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1440 }
1441 EXPORT_SYMBOL(wait_on_page_bit_killable);
1442 
1443 /**
1444  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1445  * @page: The page to wait for.
1446  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1447  *
1448  * The caller should hold a reference on @page.  They expect the page to
1449  * become unlocked relatively soon, but do not wish to hold up migration
1450  * (for example) by holding the reference while waiting for the page to
1451  * come unlocked.  After this function returns, the caller should not
1452  * dereference @page.
1453  *
1454  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1455  */
1456 int put_and_wait_on_page_locked(struct page *page, int state)
1457 {
1458 	wait_queue_head_t *q;
1459 
1460 	page = compound_head(page);
1461 	q = page_waitqueue(page);
1462 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1463 }
1464 
1465 /**
1466  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1467  * @page: Page defining the wait queue of interest
1468  * @waiter: Waiter to add to the queue
1469  *
1470  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1471  */
1472 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1473 {
1474 	wait_queue_head_t *q = page_waitqueue(page);
1475 	unsigned long flags;
1476 
1477 	spin_lock_irqsave(&q->lock, flags);
1478 	__add_wait_queue_entry_tail(q, waiter);
1479 	SetPageWaiters(page);
1480 	spin_unlock_irqrestore(&q->lock, flags);
1481 }
1482 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1483 
1484 #ifndef clear_bit_unlock_is_negative_byte
1485 
1486 /*
1487  * PG_waiters is the high bit in the same byte as PG_lock.
1488  *
1489  * On x86 (and on many other architectures), we can clear PG_lock and
1490  * test the sign bit at the same time. But if the architecture does
1491  * not support that special operation, we just do this all by hand
1492  * instead.
1493  *
1494  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1495  * being cleared, but a memory barrier should be unnecessary since it is
1496  * in the same byte as PG_locked.
1497  */
1498 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1499 {
1500 	clear_bit_unlock(nr, mem);
1501 	/* smp_mb__after_atomic(); */
1502 	return test_bit(PG_waiters, mem);
1503 }
1504 
1505 #endif
1506 
1507 /**
1508  * unlock_page - unlock a locked page
1509  * @page: the page
1510  *
1511  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1512  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1513  * mechanism between PageLocked pages and PageWriteback pages is shared.
1514  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1515  *
1516  * Note that this depends on PG_waiters being the sign bit in the byte
1517  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1518  * clear the PG_locked bit and test PG_waiters at the same time fairly
1519  * portably (architectures that do LL/SC can test any bit, while x86 can
1520  * test the sign bit).
1521  */
1522 void unlock_page(struct page *page)
1523 {
1524 	BUILD_BUG_ON(PG_waiters != 7);
1525 	page = compound_head(page);
1526 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1527 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1528 		wake_up_page_bit(page, PG_locked);
1529 }
1530 EXPORT_SYMBOL(unlock_page);
1531 
1532 /**
1533  * end_page_private_2 - Clear PG_private_2 and release any waiters
1534  * @page: The page
1535  *
1536  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1537  * this.  The page ref held for PG_private_2 being set is released.
1538  *
1539  * This is, for example, used when a netfs page is being written to a local
1540  * disk cache, thereby allowing writes to the cache for the same page to be
1541  * serialised.
1542  */
1543 void end_page_private_2(struct page *page)
1544 {
1545 	page = compound_head(page);
1546 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1547 	clear_bit_unlock(PG_private_2, &page->flags);
1548 	wake_up_page_bit(page, PG_private_2);
1549 	put_page(page);
1550 }
1551 EXPORT_SYMBOL(end_page_private_2);
1552 
1553 /**
1554  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1555  * @page: The page to wait on
1556  *
1557  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1558  */
1559 void wait_on_page_private_2(struct page *page)
1560 {
1561 	page = compound_head(page);
1562 	while (PagePrivate2(page))
1563 		wait_on_page_bit(page, PG_private_2);
1564 }
1565 EXPORT_SYMBOL(wait_on_page_private_2);
1566 
1567 /**
1568  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1569  * @page: The page to wait on
1570  *
1571  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1572  * fatal signal is received by the calling task.
1573  *
1574  * Return:
1575  * - 0 if successful.
1576  * - -EINTR if a fatal signal was encountered.
1577  */
1578 int wait_on_page_private_2_killable(struct page *page)
1579 {
1580 	int ret = 0;
1581 
1582 	page = compound_head(page);
1583 	while (PagePrivate2(page)) {
1584 		ret = wait_on_page_bit_killable(page, PG_private_2);
1585 		if (ret < 0)
1586 			break;
1587 	}
1588 
1589 	return ret;
1590 }
1591 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1592 
1593 /**
1594  * end_page_writeback - end writeback against a page
1595  * @page: the page
1596  */
1597 void end_page_writeback(struct page *page)
1598 {
1599 	/*
1600 	 * TestClearPageReclaim could be used here but it is an atomic
1601 	 * operation and overkill in this particular case. Failing to
1602 	 * shuffle a page marked for immediate reclaim is too mild to
1603 	 * justify taking an atomic operation penalty at the end of
1604 	 * ever page writeback.
1605 	 */
1606 	if (PageReclaim(page)) {
1607 		ClearPageReclaim(page);
1608 		rotate_reclaimable_page(page);
1609 	}
1610 
1611 	/*
1612 	 * Writeback does not hold a page reference of its own, relying
1613 	 * on truncation to wait for the clearing of PG_writeback.
1614 	 * But here we must make sure that the page is not freed and
1615 	 * reused before the wake_up_page().
1616 	 */
1617 	get_page(page);
1618 	if (!test_clear_page_writeback(page))
1619 		BUG();
1620 
1621 	smp_mb__after_atomic();
1622 	wake_up_page(page, PG_writeback);
1623 	acct_reclaim_writeback(page);
1624 	put_page(page);
1625 }
1626 EXPORT_SYMBOL(end_page_writeback);
1627 
1628 /*
1629  * After completing I/O on a page, call this routine to update the page
1630  * flags appropriately
1631  */
1632 void page_endio(struct page *page, bool is_write, int err)
1633 {
1634 	if (!is_write) {
1635 		if (!err) {
1636 			SetPageUptodate(page);
1637 		} else {
1638 			ClearPageUptodate(page);
1639 			SetPageError(page);
1640 		}
1641 		unlock_page(page);
1642 	} else {
1643 		if (err) {
1644 			struct address_space *mapping;
1645 
1646 			SetPageError(page);
1647 			mapping = page_mapping(page);
1648 			if (mapping)
1649 				mapping_set_error(mapping, err);
1650 		}
1651 		end_page_writeback(page);
1652 	}
1653 }
1654 EXPORT_SYMBOL_GPL(page_endio);
1655 
1656 /**
1657  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1658  * @__page: the page to lock
1659  */
1660 void __lock_page(struct page *__page)
1661 {
1662 	struct page *page = compound_head(__page);
1663 	wait_queue_head_t *q = page_waitqueue(page);
1664 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1665 				EXCLUSIVE);
1666 }
1667 EXPORT_SYMBOL(__lock_page);
1668 
1669 int __lock_page_killable(struct page *__page)
1670 {
1671 	struct page *page = compound_head(__page);
1672 	wait_queue_head_t *q = page_waitqueue(page);
1673 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1674 					EXCLUSIVE);
1675 }
1676 EXPORT_SYMBOL_GPL(__lock_page_killable);
1677 
1678 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1679 {
1680 	struct wait_queue_head *q = page_waitqueue(page);
1681 	int ret = 0;
1682 
1683 	wait->page = page;
1684 	wait->bit_nr = PG_locked;
1685 
1686 	spin_lock_irq(&q->lock);
1687 	__add_wait_queue_entry_tail(q, &wait->wait);
1688 	SetPageWaiters(page);
1689 	ret = !trylock_page(page);
1690 	/*
1691 	 * If we were successful now, we know we're still on the
1692 	 * waitqueue as we're still under the lock. This means it's
1693 	 * safe to remove and return success, we know the callback
1694 	 * isn't going to trigger.
1695 	 */
1696 	if (!ret)
1697 		__remove_wait_queue(q, &wait->wait);
1698 	else
1699 		ret = -EIOCBQUEUED;
1700 	spin_unlock_irq(&q->lock);
1701 	return ret;
1702 }
1703 
1704 /*
1705  * Return values:
1706  * 1 - page is locked; mmap_lock is still held.
1707  * 0 - page is not locked.
1708  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1709  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1710  *     which case mmap_lock is still held.
1711  *
1712  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1713  * with the page locked and the mmap_lock unperturbed.
1714  */
1715 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1716 			 unsigned int flags)
1717 {
1718 	if (fault_flag_allow_retry_first(flags)) {
1719 		/*
1720 		 * CAUTION! In this case, mmap_lock is not released
1721 		 * even though return 0.
1722 		 */
1723 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1724 			return 0;
1725 
1726 		mmap_read_unlock(mm);
1727 		if (flags & FAULT_FLAG_KILLABLE)
1728 			wait_on_page_locked_killable(page);
1729 		else
1730 			wait_on_page_locked(page);
1731 		return 0;
1732 	}
1733 	if (flags & FAULT_FLAG_KILLABLE) {
1734 		int ret;
1735 
1736 		ret = __lock_page_killable(page);
1737 		if (ret) {
1738 			mmap_read_unlock(mm);
1739 			return 0;
1740 		}
1741 	} else {
1742 		__lock_page(page);
1743 	}
1744 	return 1;
1745 
1746 }
1747 
1748 /**
1749  * page_cache_next_miss() - Find the next gap in the page cache.
1750  * @mapping: Mapping.
1751  * @index: Index.
1752  * @max_scan: Maximum range to search.
1753  *
1754  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1755  * gap with the lowest index.
1756  *
1757  * This function may be called under the rcu_read_lock.  However, this will
1758  * not atomically search a snapshot of the cache at a single point in time.
1759  * For example, if a gap is created at index 5, then subsequently a gap is
1760  * created at index 10, page_cache_next_miss covering both indices may
1761  * return 10 if called under the rcu_read_lock.
1762  *
1763  * Return: The index of the gap if found, otherwise an index outside the
1764  * range specified (in which case 'return - index >= max_scan' will be true).
1765  * In the rare case of index wrap-around, 0 will be returned.
1766  */
1767 pgoff_t page_cache_next_miss(struct address_space *mapping,
1768 			     pgoff_t index, unsigned long max_scan)
1769 {
1770 	XA_STATE(xas, &mapping->i_pages, index);
1771 
1772 	while (max_scan--) {
1773 		void *entry = xas_next(&xas);
1774 		if (!entry || xa_is_value(entry))
1775 			break;
1776 		if (xas.xa_index == 0)
1777 			break;
1778 	}
1779 
1780 	return xas.xa_index;
1781 }
1782 EXPORT_SYMBOL(page_cache_next_miss);
1783 
1784 /**
1785  * page_cache_prev_miss() - Find the previous gap in the page cache.
1786  * @mapping: Mapping.
1787  * @index: Index.
1788  * @max_scan: Maximum range to search.
1789  *
1790  * Search the range [max(index - max_scan + 1, 0), index] for the
1791  * gap with the highest index.
1792  *
1793  * This function may be called under the rcu_read_lock.  However, this will
1794  * not atomically search a snapshot of the cache at a single point in time.
1795  * For example, if a gap is created at index 10, then subsequently a gap is
1796  * created at index 5, page_cache_prev_miss() covering both indices may
1797  * return 5 if called under the rcu_read_lock.
1798  *
1799  * Return: The index of the gap if found, otherwise an index outside the
1800  * range specified (in which case 'index - return >= max_scan' will be true).
1801  * In the rare case of wrap-around, ULONG_MAX will be returned.
1802  */
1803 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1804 			     pgoff_t index, unsigned long max_scan)
1805 {
1806 	XA_STATE(xas, &mapping->i_pages, index);
1807 
1808 	while (max_scan--) {
1809 		void *entry = xas_prev(&xas);
1810 		if (!entry || xa_is_value(entry))
1811 			break;
1812 		if (xas.xa_index == ULONG_MAX)
1813 			break;
1814 	}
1815 
1816 	return xas.xa_index;
1817 }
1818 EXPORT_SYMBOL(page_cache_prev_miss);
1819 
1820 /*
1821  * mapping_get_entry - Get a page cache entry.
1822  * @mapping: the address_space to search
1823  * @index: The page cache index.
1824  *
1825  * Looks up the page cache slot at @mapping & @index.  If there is a
1826  * page cache page, the head page is returned with an increased refcount.
1827  *
1828  * If the slot holds a shadow entry of a previously evicted page, or a
1829  * swap entry from shmem/tmpfs, it is returned.
1830  *
1831  * Return: The head page or shadow entry, %NULL if nothing is found.
1832  */
1833 static struct page *mapping_get_entry(struct address_space *mapping,
1834 		pgoff_t index)
1835 {
1836 	XA_STATE(xas, &mapping->i_pages, index);
1837 	struct page *page;
1838 
1839 	rcu_read_lock();
1840 repeat:
1841 	xas_reset(&xas);
1842 	page = xas_load(&xas);
1843 	if (xas_retry(&xas, page))
1844 		goto repeat;
1845 	/*
1846 	 * A shadow entry of a recently evicted page, or a swap entry from
1847 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1848 	 */
1849 	if (!page || xa_is_value(page))
1850 		goto out;
1851 
1852 	if (!page_cache_get_speculative(page))
1853 		goto repeat;
1854 
1855 	/*
1856 	 * Has the page moved or been split?
1857 	 * This is part of the lockless pagecache protocol. See
1858 	 * include/linux/pagemap.h for details.
1859 	 */
1860 	if (unlikely(page != xas_reload(&xas))) {
1861 		put_page(page);
1862 		goto repeat;
1863 	}
1864 out:
1865 	rcu_read_unlock();
1866 
1867 	return page;
1868 }
1869 
1870 /**
1871  * pagecache_get_page - Find and get a reference to a page.
1872  * @mapping: The address_space to search.
1873  * @index: The page index.
1874  * @fgp_flags: %FGP flags modify how the page is returned.
1875  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1876  *
1877  * Looks up the page cache entry at @mapping & @index.
1878  *
1879  * @fgp_flags can be zero or more of these flags:
1880  *
1881  * * %FGP_ACCESSED - The page will be marked accessed.
1882  * * %FGP_LOCK - The page is returned locked.
1883  * * %FGP_HEAD - If the page is present and a THP, return the head page
1884  *   rather than the exact page specified by the index.
1885  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1886  *   instead of allocating a new page to replace it.
1887  * * %FGP_CREAT - If no page is present then a new page is allocated using
1888  *   @gfp_mask and added to the page cache and the VM's LRU list.
1889  *   The page is returned locked and with an increased refcount.
1890  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1891  *   page is already in cache.  If the page was allocated, unlock it before
1892  *   returning so the caller can do the same dance.
1893  * * %FGP_WRITE - The page will be written
1894  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1895  * * %FGP_NOWAIT - Don't get blocked by page lock
1896  *
1897  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1898  * if the %GFP flags specified for %FGP_CREAT are atomic.
1899  *
1900  * If there is a page cache page, it is returned with an increased refcount.
1901  *
1902  * Return: The found page or %NULL otherwise.
1903  */
1904 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1905 		int fgp_flags, gfp_t gfp_mask)
1906 {
1907 	struct page *page;
1908 
1909 repeat:
1910 	page = mapping_get_entry(mapping, index);
1911 	if (xa_is_value(page)) {
1912 		if (fgp_flags & FGP_ENTRY)
1913 			return page;
1914 		page = NULL;
1915 	}
1916 	if (!page)
1917 		goto no_page;
1918 
1919 	if (fgp_flags & FGP_LOCK) {
1920 		if (fgp_flags & FGP_NOWAIT) {
1921 			if (!trylock_page(page)) {
1922 				put_page(page);
1923 				return NULL;
1924 			}
1925 		} else {
1926 			lock_page(page);
1927 		}
1928 
1929 		/* Has the page been truncated? */
1930 		if (unlikely(page->mapping != mapping)) {
1931 			unlock_page(page);
1932 			put_page(page);
1933 			goto repeat;
1934 		}
1935 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1936 	}
1937 
1938 	if (fgp_flags & FGP_ACCESSED)
1939 		mark_page_accessed(page);
1940 	else if (fgp_flags & FGP_WRITE) {
1941 		/* Clear idle flag for buffer write */
1942 		if (page_is_idle(page))
1943 			clear_page_idle(page);
1944 	}
1945 	if (!(fgp_flags & FGP_HEAD))
1946 		page = find_subpage(page, index);
1947 
1948 no_page:
1949 	if (!page && (fgp_flags & FGP_CREAT)) {
1950 		int err;
1951 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1952 			gfp_mask |= __GFP_WRITE;
1953 		if (fgp_flags & FGP_NOFS)
1954 			gfp_mask &= ~__GFP_FS;
1955 
1956 		page = __page_cache_alloc(gfp_mask);
1957 		if (!page)
1958 			return NULL;
1959 
1960 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1961 			fgp_flags |= FGP_LOCK;
1962 
1963 		/* Init accessed so avoid atomic mark_page_accessed later */
1964 		if (fgp_flags & FGP_ACCESSED)
1965 			__SetPageReferenced(page);
1966 
1967 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1968 		if (unlikely(err)) {
1969 			put_page(page);
1970 			page = NULL;
1971 			if (err == -EEXIST)
1972 				goto repeat;
1973 		}
1974 
1975 		/*
1976 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1977 		 * an unlocked page.
1978 		 */
1979 		if (page && (fgp_flags & FGP_FOR_MMAP))
1980 			unlock_page(page);
1981 	}
1982 
1983 	return page;
1984 }
1985 EXPORT_SYMBOL(pagecache_get_page);
1986 
1987 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1988 		xa_mark_t mark)
1989 {
1990 	struct page *page;
1991 
1992 retry:
1993 	if (mark == XA_PRESENT)
1994 		page = xas_find(xas, max);
1995 	else
1996 		page = xas_find_marked(xas, max, mark);
1997 
1998 	if (xas_retry(xas, page))
1999 		goto retry;
2000 	/*
2001 	 * A shadow entry of a recently evicted page, a swap
2002 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2003 	 * without attempting to raise page count.
2004 	 */
2005 	if (!page || xa_is_value(page))
2006 		return page;
2007 
2008 	if (!page_cache_get_speculative(page))
2009 		goto reset;
2010 
2011 	/* Has the page moved or been split? */
2012 	if (unlikely(page != xas_reload(xas))) {
2013 		put_page(page);
2014 		goto reset;
2015 	}
2016 
2017 	return page;
2018 reset:
2019 	xas_reset(xas);
2020 	goto retry;
2021 }
2022 
2023 /**
2024  * find_get_entries - gang pagecache lookup
2025  * @mapping:	The address_space to search
2026  * @start:	The starting page cache index
2027  * @end:	The final page index (inclusive).
2028  * @pvec:	Where the resulting entries are placed.
2029  * @indices:	The cache indices corresponding to the entries in @entries
2030  *
2031  * find_get_entries() will search for and return a batch of entries in
2032  * the mapping.  The entries are placed in @pvec.  find_get_entries()
2033  * takes a reference on any actual pages it returns.
2034  *
2035  * The search returns a group of mapping-contiguous page cache entries
2036  * with ascending indexes.  There may be holes in the indices due to
2037  * not-present pages.
2038  *
2039  * Any shadow entries of evicted pages, or swap entries from
2040  * shmem/tmpfs, are included in the returned array.
2041  *
2042  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2043  * stops at that page: the caller is likely to have a better way to handle
2044  * the compound page as a whole, and then skip its extent, than repeatedly
2045  * calling find_get_entries() to return all its tails.
2046  *
2047  * Return: the number of pages and shadow entries which were found.
2048  */
2049 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2050 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2051 {
2052 	XA_STATE(xas, &mapping->i_pages, start);
2053 	struct page *page;
2054 	unsigned int ret = 0;
2055 	unsigned nr_entries = PAGEVEC_SIZE;
2056 
2057 	rcu_read_lock();
2058 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2059 		/*
2060 		 * Terminate early on finding a THP, to allow the caller to
2061 		 * handle it all at once; but continue if this is hugetlbfs.
2062 		 */
2063 		if (!xa_is_value(page) && PageTransHuge(page) &&
2064 				!PageHuge(page)) {
2065 			page = find_subpage(page, xas.xa_index);
2066 			nr_entries = ret + 1;
2067 		}
2068 
2069 		indices[ret] = xas.xa_index;
2070 		pvec->pages[ret] = page;
2071 		if (++ret == nr_entries)
2072 			break;
2073 	}
2074 	rcu_read_unlock();
2075 
2076 	pvec->nr = ret;
2077 	return ret;
2078 }
2079 
2080 /**
2081  * find_lock_entries - Find a batch of pagecache entries.
2082  * @mapping:	The address_space to search.
2083  * @start:	The starting page cache index.
2084  * @end:	The final page index (inclusive).
2085  * @pvec:	Where the resulting entries are placed.
2086  * @indices:	The cache indices of the entries in @pvec.
2087  *
2088  * find_lock_entries() will return a batch of entries from @mapping.
2089  * Swap, shadow and DAX entries are included.  Pages are returned
2090  * locked and with an incremented refcount.  Pages which are locked by
2091  * somebody else or under writeback are skipped.  Only the head page of
2092  * a THP is returned.  Pages which are partially outside the range are
2093  * not returned.
2094  *
2095  * The entries have ascending indexes.  The indices may not be consecutive
2096  * due to not-present entries, THP pages, pages which could not be locked
2097  * or pages under writeback.
2098  *
2099  * Return: The number of entries which were found.
2100  */
2101 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2102 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2103 {
2104 	XA_STATE(xas, &mapping->i_pages, start);
2105 	struct page *page;
2106 
2107 	rcu_read_lock();
2108 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2109 		if (!xa_is_value(page)) {
2110 			if (page->index < start)
2111 				goto put;
2112 			if (page->index + thp_nr_pages(page) - 1 > end)
2113 				goto put;
2114 			if (!trylock_page(page))
2115 				goto put;
2116 			if (page->mapping != mapping || PageWriteback(page))
2117 				goto unlock;
2118 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2119 					page);
2120 		}
2121 		indices[pvec->nr] = xas.xa_index;
2122 		if (!pagevec_add(pvec, page))
2123 			break;
2124 		goto next;
2125 unlock:
2126 		unlock_page(page);
2127 put:
2128 		put_page(page);
2129 next:
2130 		if (!xa_is_value(page) && PageTransHuge(page)) {
2131 			unsigned int nr_pages = thp_nr_pages(page);
2132 
2133 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2134 			xas_set(&xas, page->index + nr_pages);
2135 			if (xas.xa_index < nr_pages)
2136 				break;
2137 		}
2138 	}
2139 	rcu_read_unlock();
2140 
2141 	return pagevec_count(pvec);
2142 }
2143 
2144 /**
2145  * find_get_pages_range - gang pagecache lookup
2146  * @mapping:	The address_space to search
2147  * @start:	The starting page index
2148  * @end:	The final page index (inclusive)
2149  * @nr_pages:	The maximum number of pages
2150  * @pages:	Where the resulting pages are placed
2151  *
2152  * find_get_pages_range() will search for and return a group of up to @nr_pages
2153  * pages in the mapping starting at index @start and up to index @end
2154  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2155  * a reference against the returned pages.
2156  *
2157  * The search returns a group of mapping-contiguous pages with ascending
2158  * indexes.  There may be holes in the indices due to not-present pages.
2159  * We also update @start to index the next page for the traversal.
2160  *
2161  * Return: the number of pages which were found. If this number is
2162  * smaller than @nr_pages, the end of specified range has been
2163  * reached.
2164  */
2165 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2166 			      pgoff_t end, unsigned int nr_pages,
2167 			      struct page **pages)
2168 {
2169 	XA_STATE(xas, &mapping->i_pages, *start);
2170 	struct page *page;
2171 	unsigned ret = 0;
2172 
2173 	if (unlikely(!nr_pages))
2174 		return 0;
2175 
2176 	rcu_read_lock();
2177 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2178 		/* Skip over shadow, swap and DAX entries */
2179 		if (xa_is_value(page))
2180 			continue;
2181 
2182 		pages[ret] = find_subpage(page, xas.xa_index);
2183 		if (++ret == nr_pages) {
2184 			*start = xas.xa_index + 1;
2185 			goto out;
2186 		}
2187 	}
2188 
2189 	/*
2190 	 * We come here when there is no page beyond @end. We take care to not
2191 	 * overflow the index @start as it confuses some of the callers. This
2192 	 * breaks the iteration when there is a page at index -1 but that is
2193 	 * already broken anyway.
2194 	 */
2195 	if (end == (pgoff_t)-1)
2196 		*start = (pgoff_t)-1;
2197 	else
2198 		*start = end + 1;
2199 out:
2200 	rcu_read_unlock();
2201 
2202 	return ret;
2203 }
2204 
2205 /**
2206  * find_get_pages_contig - gang contiguous pagecache lookup
2207  * @mapping:	The address_space to search
2208  * @index:	The starting page index
2209  * @nr_pages:	The maximum number of pages
2210  * @pages:	Where the resulting pages are placed
2211  *
2212  * find_get_pages_contig() works exactly like find_get_pages(), except
2213  * that the returned number of pages are guaranteed to be contiguous.
2214  *
2215  * Return: the number of pages which were found.
2216  */
2217 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2218 			       unsigned int nr_pages, struct page **pages)
2219 {
2220 	XA_STATE(xas, &mapping->i_pages, index);
2221 	struct page *page;
2222 	unsigned int ret = 0;
2223 
2224 	if (unlikely(!nr_pages))
2225 		return 0;
2226 
2227 	rcu_read_lock();
2228 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2229 		if (xas_retry(&xas, page))
2230 			continue;
2231 		/*
2232 		 * If the entry has been swapped out, we can stop looking.
2233 		 * No current caller is looking for DAX entries.
2234 		 */
2235 		if (xa_is_value(page))
2236 			break;
2237 
2238 		if (!page_cache_get_speculative(page))
2239 			goto retry;
2240 
2241 		/* Has the page moved or been split? */
2242 		if (unlikely(page != xas_reload(&xas)))
2243 			goto put_page;
2244 
2245 		pages[ret] = find_subpage(page, xas.xa_index);
2246 		if (++ret == nr_pages)
2247 			break;
2248 		continue;
2249 put_page:
2250 		put_page(page);
2251 retry:
2252 		xas_reset(&xas);
2253 	}
2254 	rcu_read_unlock();
2255 	return ret;
2256 }
2257 EXPORT_SYMBOL(find_get_pages_contig);
2258 
2259 /**
2260  * find_get_pages_range_tag - Find and return head pages matching @tag.
2261  * @mapping:	the address_space to search
2262  * @index:	the starting page index
2263  * @end:	The final page index (inclusive)
2264  * @tag:	the tag index
2265  * @nr_pages:	the maximum number of pages
2266  * @pages:	where the resulting pages are placed
2267  *
2268  * Like find_get_pages(), except we only return head pages which are tagged
2269  * with @tag.  @index is updated to the index immediately after the last
2270  * page we return, ready for the next iteration.
2271  *
2272  * Return: the number of pages which were found.
2273  */
2274 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2275 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2276 			struct page **pages)
2277 {
2278 	XA_STATE(xas, &mapping->i_pages, *index);
2279 	struct page *page;
2280 	unsigned ret = 0;
2281 
2282 	if (unlikely(!nr_pages))
2283 		return 0;
2284 
2285 	rcu_read_lock();
2286 	while ((page = find_get_entry(&xas, end, tag))) {
2287 		/*
2288 		 * Shadow entries should never be tagged, but this iteration
2289 		 * is lockless so there is a window for page reclaim to evict
2290 		 * a page we saw tagged.  Skip over it.
2291 		 */
2292 		if (xa_is_value(page))
2293 			continue;
2294 
2295 		pages[ret] = page;
2296 		if (++ret == nr_pages) {
2297 			*index = page->index + thp_nr_pages(page);
2298 			goto out;
2299 		}
2300 	}
2301 
2302 	/*
2303 	 * We come here when we got to @end. We take care to not overflow the
2304 	 * index @index as it confuses some of the callers. This breaks the
2305 	 * iteration when there is a page at index -1 but that is already
2306 	 * broken anyway.
2307 	 */
2308 	if (end == (pgoff_t)-1)
2309 		*index = (pgoff_t)-1;
2310 	else
2311 		*index = end + 1;
2312 out:
2313 	rcu_read_unlock();
2314 
2315 	return ret;
2316 }
2317 EXPORT_SYMBOL(find_get_pages_range_tag);
2318 
2319 /*
2320  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2321  * a _large_ part of the i/o request. Imagine the worst scenario:
2322  *
2323  *      ---R__________________________________________B__________
2324  *         ^ reading here                             ^ bad block(assume 4k)
2325  *
2326  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2327  * => failing the whole request => read(R) => read(R+1) =>
2328  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2329  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2330  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2331  *
2332  * It is going insane. Fix it by quickly scaling down the readahead size.
2333  */
2334 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2335 {
2336 	ra->ra_pages /= 4;
2337 }
2338 
2339 /*
2340  * filemap_get_read_batch - Get a batch of pages for read
2341  *
2342  * Get a batch of pages which represent a contiguous range of bytes
2343  * in the file.  No tail pages will be returned.  If @index is in the
2344  * middle of a THP, the entire THP will be returned.  The last page in
2345  * the batch may have Readahead set or be not Uptodate so that the
2346  * caller can take the appropriate action.
2347  */
2348 static void filemap_get_read_batch(struct address_space *mapping,
2349 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2350 {
2351 	XA_STATE(xas, &mapping->i_pages, index);
2352 	struct page *head;
2353 
2354 	rcu_read_lock();
2355 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2356 		if (xas_retry(&xas, head))
2357 			continue;
2358 		if (xas.xa_index > max || xa_is_value(head))
2359 			break;
2360 		if (!page_cache_get_speculative(head))
2361 			goto retry;
2362 
2363 		/* Has the page moved or been split? */
2364 		if (unlikely(head != xas_reload(&xas)))
2365 			goto put_page;
2366 
2367 		if (!pagevec_add(pvec, head))
2368 			break;
2369 		if (!PageUptodate(head))
2370 			break;
2371 		if (PageReadahead(head))
2372 			break;
2373 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2374 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2375 		continue;
2376 put_page:
2377 		put_page(head);
2378 retry:
2379 		xas_reset(&xas);
2380 	}
2381 	rcu_read_unlock();
2382 }
2383 
2384 static int filemap_read_page(struct file *file, struct address_space *mapping,
2385 		struct page *page)
2386 {
2387 	int error;
2388 
2389 	/*
2390 	 * A previous I/O error may have been due to temporary failures,
2391 	 * eg. multipath errors.  PG_error will be set again if readpage
2392 	 * fails.
2393 	 */
2394 	ClearPageError(page);
2395 	/* Start the actual read. The read will unlock the page. */
2396 	error = mapping->a_ops->readpage(file, page);
2397 	if (error)
2398 		return error;
2399 
2400 	error = wait_on_page_locked_killable(page);
2401 	if (error)
2402 		return error;
2403 	if (PageUptodate(page))
2404 		return 0;
2405 	shrink_readahead_size_eio(&file->f_ra);
2406 	return -EIO;
2407 }
2408 
2409 static bool filemap_range_uptodate(struct address_space *mapping,
2410 		loff_t pos, struct iov_iter *iter, struct page *page)
2411 {
2412 	int count;
2413 
2414 	if (PageUptodate(page))
2415 		return true;
2416 	/* pipes can't handle partially uptodate pages */
2417 	if (iov_iter_is_pipe(iter))
2418 		return false;
2419 	if (!mapping->a_ops->is_partially_uptodate)
2420 		return false;
2421 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2422 		return false;
2423 
2424 	count = iter->count;
2425 	if (page_offset(page) > pos) {
2426 		count -= page_offset(page) - pos;
2427 		pos = 0;
2428 	} else {
2429 		pos -= page_offset(page);
2430 	}
2431 
2432 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2433 }
2434 
2435 static int filemap_update_page(struct kiocb *iocb,
2436 		struct address_space *mapping, struct iov_iter *iter,
2437 		struct page *page)
2438 {
2439 	int error;
2440 
2441 	if (iocb->ki_flags & IOCB_NOWAIT) {
2442 		if (!filemap_invalidate_trylock_shared(mapping))
2443 			return -EAGAIN;
2444 	} else {
2445 		filemap_invalidate_lock_shared(mapping);
2446 	}
2447 
2448 	if (!trylock_page(page)) {
2449 		error = -EAGAIN;
2450 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2451 			goto unlock_mapping;
2452 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2453 			filemap_invalidate_unlock_shared(mapping);
2454 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2455 			return AOP_TRUNCATED_PAGE;
2456 		}
2457 		error = __lock_page_async(page, iocb->ki_waitq);
2458 		if (error)
2459 			goto unlock_mapping;
2460 	}
2461 
2462 	error = AOP_TRUNCATED_PAGE;
2463 	if (!page->mapping)
2464 		goto unlock;
2465 
2466 	error = 0;
2467 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2468 		goto unlock;
2469 
2470 	error = -EAGAIN;
2471 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2472 		goto unlock;
2473 
2474 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2475 	goto unlock_mapping;
2476 unlock:
2477 	unlock_page(page);
2478 unlock_mapping:
2479 	filemap_invalidate_unlock_shared(mapping);
2480 	if (error == AOP_TRUNCATED_PAGE)
2481 		put_page(page);
2482 	return error;
2483 }
2484 
2485 static int filemap_create_page(struct file *file,
2486 		struct address_space *mapping, pgoff_t index,
2487 		struct pagevec *pvec)
2488 {
2489 	struct page *page;
2490 	int error;
2491 
2492 	page = page_cache_alloc(mapping);
2493 	if (!page)
2494 		return -ENOMEM;
2495 
2496 	/*
2497 	 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2498 	 * assures we cannot instantiate and bring uptodate new pagecache pages
2499 	 * after evicting page cache during truncate and before actually
2500 	 * freeing blocks.  Note that we could release invalidate_lock after
2501 	 * inserting the page into page cache as the locked page would then be
2502 	 * enough to synchronize with hole punching. But there are code paths
2503 	 * such as filemap_update_page() filling in partially uptodate pages or
2504 	 * ->readpages() that need to hold invalidate_lock while mapping blocks
2505 	 * for IO so let's hold the lock here as well to keep locking rules
2506 	 * simple.
2507 	 */
2508 	filemap_invalidate_lock_shared(mapping);
2509 	error = add_to_page_cache_lru(page, mapping, index,
2510 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2511 	if (error == -EEXIST)
2512 		error = AOP_TRUNCATED_PAGE;
2513 	if (error)
2514 		goto error;
2515 
2516 	error = filemap_read_page(file, mapping, page);
2517 	if (error)
2518 		goto error;
2519 
2520 	filemap_invalidate_unlock_shared(mapping);
2521 	pagevec_add(pvec, page);
2522 	return 0;
2523 error:
2524 	filemap_invalidate_unlock_shared(mapping);
2525 	put_page(page);
2526 	return error;
2527 }
2528 
2529 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2530 		struct address_space *mapping, struct page *page,
2531 		pgoff_t last_index)
2532 {
2533 	if (iocb->ki_flags & IOCB_NOIO)
2534 		return -EAGAIN;
2535 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2536 			page->index, last_index - page->index);
2537 	return 0;
2538 }
2539 
2540 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2541 		struct pagevec *pvec)
2542 {
2543 	struct file *filp = iocb->ki_filp;
2544 	struct address_space *mapping = filp->f_mapping;
2545 	struct file_ra_state *ra = &filp->f_ra;
2546 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2547 	pgoff_t last_index;
2548 	struct page *page;
2549 	int err = 0;
2550 
2551 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2552 retry:
2553 	if (fatal_signal_pending(current))
2554 		return -EINTR;
2555 
2556 	filemap_get_read_batch(mapping, index, last_index, pvec);
2557 	if (!pagevec_count(pvec)) {
2558 		if (iocb->ki_flags & IOCB_NOIO)
2559 			return -EAGAIN;
2560 		page_cache_sync_readahead(mapping, ra, filp, index,
2561 				last_index - index);
2562 		filemap_get_read_batch(mapping, index, last_index, pvec);
2563 	}
2564 	if (!pagevec_count(pvec)) {
2565 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2566 			return -EAGAIN;
2567 		err = filemap_create_page(filp, mapping,
2568 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2569 		if (err == AOP_TRUNCATED_PAGE)
2570 			goto retry;
2571 		return err;
2572 	}
2573 
2574 	page = pvec->pages[pagevec_count(pvec) - 1];
2575 	if (PageReadahead(page)) {
2576 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2577 		if (err)
2578 			goto err;
2579 	}
2580 	if (!PageUptodate(page)) {
2581 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2582 			iocb->ki_flags |= IOCB_NOWAIT;
2583 		err = filemap_update_page(iocb, mapping, iter, page);
2584 		if (err)
2585 			goto err;
2586 	}
2587 
2588 	return 0;
2589 err:
2590 	if (err < 0)
2591 		put_page(page);
2592 	if (likely(--pvec->nr))
2593 		return 0;
2594 	if (err == AOP_TRUNCATED_PAGE)
2595 		goto retry;
2596 	return err;
2597 }
2598 
2599 /**
2600  * filemap_read - Read data from the page cache.
2601  * @iocb: The iocb to read.
2602  * @iter: Destination for the data.
2603  * @already_read: Number of bytes already read by the caller.
2604  *
2605  * Copies data from the page cache.  If the data is not currently present,
2606  * uses the readahead and readpage address_space operations to fetch it.
2607  *
2608  * Return: Total number of bytes copied, including those already read by
2609  * the caller.  If an error happens before any bytes are copied, returns
2610  * a negative error number.
2611  */
2612 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2613 		ssize_t already_read)
2614 {
2615 	struct file *filp = iocb->ki_filp;
2616 	struct file_ra_state *ra = &filp->f_ra;
2617 	struct address_space *mapping = filp->f_mapping;
2618 	struct inode *inode = mapping->host;
2619 	struct pagevec pvec;
2620 	int i, error = 0;
2621 	bool writably_mapped;
2622 	loff_t isize, end_offset;
2623 
2624 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2625 		return 0;
2626 	if (unlikely(!iov_iter_count(iter)))
2627 		return 0;
2628 
2629 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2630 	pagevec_init(&pvec);
2631 
2632 	do {
2633 		cond_resched();
2634 
2635 		/*
2636 		 * If we've already successfully copied some data, then we
2637 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2638 		 * an async read NOWAIT at that point.
2639 		 */
2640 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2641 			iocb->ki_flags |= IOCB_NOWAIT;
2642 
2643 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2644 			break;
2645 
2646 		error = filemap_get_pages(iocb, iter, &pvec);
2647 		if (error < 0)
2648 			break;
2649 
2650 		/*
2651 		 * i_size must be checked after we know the pages are Uptodate.
2652 		 *
2653 		 * Checking i_size after the check allows us to calculate
2654 		 * the correct value for "nr", which means the zero-filled
2655 		 * part of the page is not copied back to userspace (unless
2656 		 * another truncate extends the file - this is desired though).
2657 		 */
2658 		isize = i_size_read(inode);
2659 		if (unlikely(iocb->ki_pos >= isize))
2660 			goto put_pages;
2661 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2662 
2663 		/*
2664 		 * Once we start copying data, we don't want to be touching any
2665 		 * cachelines that might be contended:
2666 		 */
2667 		writably_mapped = mapping_writably_mapped(mapping);
2668 
2669 		/*
2670 		 * When a sequential read accesses a page several times, only
2671 		 * mark it as accessed the first time.
2672 		 */
2673 		if (iocb->ki_pos >> PAGE_SHIFT !=
2674 		    ra->prev_pos >> PAGE_SHIFT)
2675 			mark_page_accessed(pvec.pages[0]);
2676 
2677 		for (i = 0; i < pagevec_count(&pvec); i++) {
2678 			struct page *page = pvec.pages[i];
2679 			size_t page_size = thp_size(page);
2680 			size_t offset = iocb->ki_pos & (page_size - 1);
2681 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2682 					     page_size - offset);
2683 			size_t copied;
2684 
2685 			if (end_offset < page_offset(page))
2686 				break;
2687 			if (i > 0)
2688 				mark_page_accessed(page);
2689 			/*
2690 			 * If users can be writing to this page using arbitrary
2691 			 * virtual addresses, take care about potential aliasing
2692 			 * before reading the page on the kernel side.
2693 			 */
2694 			if (writably_mapped) {
2695 				int j;
2696 
2697 				for (j = 0; j < thp_nr_pages(page); j++)
2698 					flush_dcache_page(page + j);
2699 			}
2700 
2701 			copied = copy_page_to_iter(page, offset, bytes, iter);
2702 
2703 			already_read += copied;
2704 			iocb->ki_pos += copied;
2705 			ra->prev_pos = iocb->ki_pos;
2706 
2707 			if (copied < bytes) {
2708 				error = -EFAULT;
2709 				break;
2710 			}
2711 		}
2712 put_pages:
2713 		for (i = 0; i < pagevec_count(&pvec); i++)
2714 			put_page(pvec.pages[i]);
2715 		pagevec_reinit(&pvec);
2716 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2717 
2718 	file_accessed(filp);
2719 
2720 	return already_read ? already_read : error;
2721 }
2722 EXPORT_SYMBOL_GPL(filemap_read);
2723 
2724 /**
2725  * generic_file_read_iter - generic filesystem read routine
2726  * @iocb:	kernel I/O control block
2727  * @iter:	destination for the data read
2728  *
2729  * This is the "read_iter()" routine for all filesystems
2730  * that can use the page cache directly.
2731  *
2732  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2733  * be returned when no data can be read without waiting for I/O requests
2734  * to complete; it doesn't prevent readahead.
2735  *
2736  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2737  * requests shall be made for the read or for readahead.  When no data
2738  * can be read, -EAGAIN shall be returned.  When readahead would be
2739  * triggered, a partial, possibly empty read shall be returned.
2740  *
2741  * Return:
2742  * * number of bytes copied, even for partial reads
2743  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2744  */
2745 ssize_t
2746 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2747 {
2748 	size_t count = iov_iter_count(iter);
2749 	ssize_t retval = 0;
2750 
2751 	if (!count)
2752 		return 0; /* skip atime */
2753 
2754 	if (iocb->ki_flags & IOCB_DIRECT) {
2755 		struct file *file = iocb->ki_filp;
2756 		struct address_space *mapping = file->f_mapping;
2757 		struct inode *inode = mapping->host;
2758 
2759 		if (iocb->ki_flags & IOCB_NOWAIT) {
2760 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2761 						iocb->ki_pos + count - 1))
2762 				return -EAGAIN;
2763 		} else {
2764 			retval = filemap_write_and_wait_range(mapping,
2765 						iocb->ki_pos,
2766 					        iocb->ki_pos + count - 1);
2767 			if (retval < 0)
2768 				return retval;
2769 		}
2770 
2771 		file_accessed(file);
2772 
2773 		retval = mapping->a_ops->direct_IO(iocb, iter);
2774 		if (retval >= 0) {
2775 			iocb->ki_pos += retval;
2776 			count -= retval;
2777 		}
2778 		if (retval != -EIOCBQUEUED)
2779 			iov_iter_revert(iter, count - iov_iter_count(iter));
2780 
2781 		/*
2782 		 * Btrfs can have a short DIO read if we encounter
2783 		 * compressed extents, so if there was an error, or if
2784 		 * we've already read everything we wanted to, or if
2785 		 * there was a short read because we hit EOF, go ahead
2786 		 * and return.  Otherwise fallthrough to buffered io for
2787 		 * the rest of the read.  Buffered reads will not work for
2788 		 * DAX files, so don't bother trying.
2789 		 */
2790 		if (retval < 0 || !count || IS_DAX(inode))
2791 			return retval;
2792 		if (iocb->ki_pos >= i_size_read(inode))
2793 			return retval;
2794 	}
2795 
2796 	return filemap_read(iocb, iter, retval);
2797 }
2798 EXPORT_SYMBOL(generic_file_read_iter);
2799 
2800 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2801 		struct address_space *mapping, struct page *page,
2802 		loff_t start, loff_t end, bool seek_data)
2803 {
2804 	const struct address_space_operations *ops = mapping->a_ops;
2805 	size_t offset, bsz = i_blocksize(mapping->host);
2806 
2807 	if (xa_is_value(page) || PageUptodate(page))
2808 		return seek_data ? start : end;
2809 	if (!ops->is_partially_uptodate)
2810 		return seek_data ? end : start;
2811 
2812 	xas_pause(xas);
2813 	rcu_read_unlock();
2814 	lock_page(page);
2815 	if (unlikely(page->mapping != mapping))
2816 		goto unlock;
2817 
2818 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2819 
2820 	do {
2821 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2822 			break;
2823 		start = (start + bsz) & ~(bsz - 1);
2824 		offset += bsz;
2825 	} while (offset < thp_size(page));
2826 unlock:
2827 	unlock_page(page);
2828 	rcu_read_lock();
2829 	return start;
2830 }
2831 
2832 static inline
2833 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2834 {
2835 	if (xa_is_value(page))
2836 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2837 	return thp_size(page);
2838 }
2839 
2840 /**
2841  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2842  * @mapping: Address space to search.
2843  * @start: First byte to consider.
2844  * @end: Limit of search (exclusive).
2845  * @whence: Either SEEK_HOLE or SEEK_DATA.
2846  *
2847  * If the page cache knows which blocks contain holes and which blocks
2848  * contain data, your filesystem can use this function to implement
2849  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2850  * entirely memory-based such as tmpfs, and filesystems which support
2851  * unwritten extents.
2852  *
2853  * Return: The requested offset on success, or -ENXIO if @whence specifies
2854  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2855  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2856  * and @end contain data.
2857  */
2858 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2859 		loff_t end, int whence)
2860 {
2861 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2862 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2863 	bool seek_data = (whence == SEEK_DATA);
2864 	struct page *page;
2865 
2866 	if (end <= start)
2867 		return -ENXIO;
2868 
2869 	rcu_read_lock();
2870 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2871 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2872 		unsigned int seek_size;
2873 
2874 		if (start < pos) {
2875 			if (!seek_data)
2876 				goto unlock;
2877 			start = pos;
2878 		}
2879 
2880 		seek_size = seek_page_size(&xas, page);
2881 		pos = round_up(pos + 1, seek_size);
2882 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2883 				seek_data);
2884 		if (start < pos)
2885 			goto unlock;
2886 		if (start >= end)
2887 			break;
2888 		if (seek_size > PAGE_SIZE)
2889 			xas_set(&xas, pos >> PAGE_SHIFT);
2890 		if (!xa_is_value(page))
2891 			put_page(page);
2892 	}
2893 	if (seek_data)
2894 		start = -ENXIO;
2895 unlock:
2896 	rcu_read_unlock();
2897 	if (page && !xa_is_value(page))
2898 		put_page(page);
2899 	if (start > end)
2900 		return end;
2901 	return start;
2902 }
2903 
2904 #ifdef CONFIG_MMU
2905 #define MMAP_LOTSAMISS  (100)
2906 /*
2907  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2908  * @vmf - the vm_fault for this fault.
2909  * @page - the page to lock.
2910  * @fpin - the pointer to the file we may pin (or is already pinned).
2911  *
2912  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2913  * It differs in that it actually returns the page locked if it returns 1 and 0
2914  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2915  * will point to the pinned file and needs to be fput()'ed at a later point.
2916  */
2917 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2918 				     struct file **fpin)
2919 {
2920 	if (trylock_page(page))
2921 		return 1;
2922 
2923 	/*
2924 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2925 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2926 	 * is supposed to work. We have way too many special cases..
2927 	 */
2928 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2929 		return 0;
2930 
2931 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2932 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2933 		if (__lock_page_killable(page)) {
2934 			/*
2935 			 * We didn't have the right flags to drop the mmap_lock,
2936 			 * but all fault_handlers only check for fatal signals
2937 			 * if we return VM_FAULT_RETRY, so we need to drop the
2938 			 * mmap_lock here and return 0 if we don't have a fpin.
2939 			 */
2940 			if (*fpin == NULL)
2941 				mmap_read_unlock(vmf->vma->vm_mm);
2942 			return 0;
2943 		}
2944 	} else
2945 		__lock_page(page);
2946 	return 1;
2947 }
2948 
2949 
2950 /*
2951  * Synchronous readahead happens when we don't even find a page in the page
2952  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2953  * to drop the mmap sem we return the file that was pinned in order for us to do
2954  * that.  If we didn't pin a file then we return NULL.  The file that is
2955  * returned needs to be fput()'ed when we're done with it.
2956  */
2957 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2958 {
2959 	struct file *file = vmf->vma->vm_file;
2960 	struct file_ra_state *ra = &file->f_ra;
2961 	struct address_space *mapping = file->f_mapping;
2962 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2963 	struct file *fpin = NULL;
2964 	unsigned int mmap_miss;
2965 
2966 	/* If we don't want any read-ahead, don't bother */
2967 	if (vmf->vma->vm_flags & VM_RAND_READ)
2968 		return fpin;
2969 	if (!ra->ra_pages)
2970 		return fpin;
2971 
2972 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2973 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2974 		page_cache_sync_ra(&ractl, ra->ra_pages);
2975 		return fpin;
2976 	}
2977 
2978 	/* Avoid banging the cache line if not needed */
2979 	mmap_miss = READ_ONCE(ra->mmap_miss);
2980 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2981 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2982 
2983 	/*
2984 	 * Do we miss much more than hit in this file? If so,
2985 	 * stop bothering with read-ahead. It will only hurt.
2986 	 */
2987 	if (mmap_miss > MMAP_LOTSAMISS)
2988 		return fpin;
2989 
2990 	/*
2991 	 * mmap read-around
2992 	 */
2993 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2994 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2995 	ra->size = ra->ra_pages;
2996 	ra->async_size = ra->ra_pages / 4;
2997 	ractl._index = ra->start;
2998 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2999 	return fpin;
3000 }
3001 
3002 /*
3003  * Asynchronous readahead happens when we find the page and PG_readahead,
3004  * so we want to possibly extend the readahead further.  We return the file that
3005  * was pinned if we have to drop the mmap_lock in order to do IO.
3006  */
3007 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3008 					    struct page *page)
3009 {
3010 	struct file *file = vmf->vma->vm_file;
3011 	struct file_ra_state *ra = &file->f_ra;
3012 	struct address_space *mapping = file->f_mapping;
3013 	struct file *fpin = NULL;
3014 	unsigned int mmap_miss;
3015 	pgoff_t offset = vmf->pgoff;
3016 
3017 	/* If we don't want any read-ahead, don't bother */
3018 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3019 		return fpin;
3020 	mmap_miss = READ_ONCE(ra->mmap_miss);
3021 	if (mmap_miss)
3022 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3023 	if (PageReadahead(page)) {
3024 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3025 		page_cache_async_readahead(mapping, ra, file,
3026 					   page, offset, ra->ra_pages);
3027 	}
3028 	return fpin;
3029 }
3030 
3031 /**
3032  * filemap_fault - read in file data for page fault handling
3033  * @vmf:	struct vm_fault containing details of the fault
3034  *
3035  * filemap_fault() is invoked via the vma operations vector for a
3036  * mapped memory region to read in file data during a page fault.
3037  *
3038  * The goto's are kind of ugly, but this streamlines the normal case of having
3039  * it in the page cache, and handles the special cases reasonably without
3040  * having a lot of duplicated code.
3041  *
3042  * vma->vm_mm->mmap_lock must be held on entry.
3043  *
3044  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3045  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3046  *
3047  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3048  * has not been released.
3049  *
3050  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3051  *
3052  * Return: bitwise-OR of %VM_FAULT_ codes.
3053  */
3054 vm_fault_t filemap_fault(struct vm_fault *vmf)
3055 {
3056 	int error;
3057 	struct file *file = vmf->vma->vm_file;
3058 	struct file *fpin = NULL;
3059 	struct address_space *mapping = file->f_mapping;
3060 	struct inode *inode = mapping->host;
3061 	pgoff_t offset = vmf->pgoff;
3062 	pgoff_t max_off;
3063 	struct page *page;
3064 	vm_fault_t ret = 0;
3065 	bool mapping_locked = false;
3066 
3067 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3068 	if (unlikely(offset >= max_off))
3069 		return VM_FAULT_SIGBUS;
3070 
3071 	/*
3072 	 * Do we have something in the page cache already?
3073 	 */
3074 	page = find_get_page(mapping, offset);
3075 	if (likely(page)) {
3076 		/*
3077 		 * We found the page, so try async readahead before waiting for
3078 		 * the lock.
3079 		 */
3080 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3081 			fpin = do_async_mmap_readahead(vmf, page);
3082 		if (unlikely(!PageUptodate(page))) {
3083 			filemap_invalidate_lock_shared(mapping);
3084 			mapping_locked = true;
3085 		}
3086 	} else {
3087 		/* No page in the page cache at all */
3088 		count_vm_event(PGMAJFAULT);
3089 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3090 		ret = VM_FAULT_MAJOR;
3091 		fpin = do_sync_mmap_readahead(vmf);
3092 retry_find:
3093 		/*
3094 		 * See comment in filemap_create_page() why we need
3095 		 * invalidate_lock
3096 		 */
3097 		if (!mapping_locked) {
3098 			filemap_invalidate_lock_shared(mapping);
3099 			mapping_locked = true;
3100 		}
3101 		page = pagecache_get_page(mapping, offset,
3102 					  FGP_CREAT|FGP_FOR_MMAP,
3103 					  vmf->gfp_mask);
3104 		if (!page) {
3105 			if (fpin)
3106 				goto out_retry;
3107 			filemap_invalidate_unlock_shared(mapping);
3108 			return VM_FAULT_OOM;
3109 		}
3110 	}
3111 
3112 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3113 		goto out_retry;
3114 
3115 	/* Did it get truncated? */
3116 	if (unlikely(compound_head(page)->mapping != mapping)) {
3117 		unlock_page(page);
3118 		put_page(page);
3119 		goto retry_find;
3120 	}
3121 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3122 
3123 	/*
3124 	 * We have a locked page in the page cache, now we need to check
3125 	 * that it's up-to-date. If not, it is going to be due to an error.
3126 	 */
3127 	if (unlikely(!PageUptodate(page))) {
3128 		/*
3129 		 * The page was in cache and uptodate and now it is not.
3130 		 * Strange but possible since we didn't hold the page lock all
3131 		 * the time. Let's drop everything get the invalidate lock and
3132 		 * try again.
3133 		 */
3134 		if (!mapping_locked) {
3135 			unlock_page(page);
3136 			put_page(page);
3137 			goto retry_find;
3138 		}
3139 		goto page_not_uptodate;
3140 	}
3141 
3142 	/*
3143 	 * We've made it this far and we had to drop our mmap_lock, now is the
3144 	 * time to return to the upper layer and have it re-find the vma and
3145 	 * redo the fault.
3146 	 */
3147 	if (fpin) {
3148 		unlock_page(page);
3149 		goto out_retry;
3150 	}
3151 	if (mapping_locked)
3152 		filemap_invalidate_unlock_shared(mapping);
3153 
3154 	/*
3155 	 * Found the page and have a reference on it.
3156 	 * We must recheck i_size under page lock.
3157 	 */
3158 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3159 	if (unlikely(offset >= max_off)) {
3160 		unlock_page(page);
3161 		put_page(page);
3162 		return VM_FAULT_SIGBUS;
3163 	}
3164 
3165 	vmf->page = page;
3166 	return ret | VM_FAULT_LOCKED;
3167 
3168 page_not_uptodate:
3169 	/*
3170 	 * Umm, take care of errors if the page isn't up-to-date.
3171 	 * Try to re-read it _once_. We do this synchronously,
3172 	 * because there really aren't any performance issues here
3173 	 * and we need to check for errors.
3174 	 */
3175 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3176 	error = filemap_read_page(file, mapping, page);
3177 	if (fpin)
3178 		goto out_retry;
3179 	put_page(page);
3180 
3181 	if (!error || error == AOP_TRUNCATED_PAGE)
3182 		goto retry_find;
3183 	filemap_invalidate_unlock_shared(mapping);
3184 
3185 	return VM_FAULT_SIGBUS;
3186 
3187 out_retry:
3188 	/*
3189 	 * We dropped the mmap_lock, we need to return to the fault handler to
3190 	 * re-find the vma and come back and find our hopefully still populated
3191 	 * page.
3192 	 */
3193 	if (page)
3194 		put_page(page);
3195 	if (mapping_locked)
3196 		filemap_invalidate_unlock_shared(mapping);
3197 	if (fpin)
3198 		fput(fpin);
3199 	return ret | VM_FAULT_RETRY;
3200 }
3201 EXPORT_SYMBOL(filemap_fault);
3202 
3203 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3204 {
3205 	struct mm_struct *mm = vmf->vma->vm_mm;
3206 
3207 	/* Huge page is mapped? No need to proceed. */
3208 	if (pmd_trans_huge(*vmf->pmd)) {
3209 		unlock_page(page);
3210 		put_page(page);
3211 		return true;
3212 	}
3213 
3214 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3215 		vm_fault_t ret = do_set_pmd(vmf, page);
3216 		if (!ret) {
3217 			/* The page is mapped successfully, reference consumed. */
3218 			unlock_page(page);
3219 			return true;
3220 		}
3221 	}
3222 
3223 	if (pmd_none(*vmf->pmd))
3224 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3225 
3226 	/* See comment in handle_pte_fault() */
3227 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3228 		unlock_page(page);
3229 		put_page(page);
3230 		return true;
3231 	}
3232 
3233 	return false;
3234 }
3235 
3236 static struct page *next_uptodate_page(struct page *page,
3237 				       struct address_space *mapping,
3238 				       struct xa_state *xas, pgoff_t end_pgoff)
3239 {
3240 	unsigned long max_idx;
3241 
3242 	do {
3243 		if (!page)
3244 			return NULL;
3245 		if (xas_retry(xas, page))
3246 			continue;
3247 		if (xa_is_value(page))
3248 			continue;
3249 		if (PageLocked(page))
3250 			continue;
3251 		if (!page_cache_get_speculative(page))
3252 			continue;
3253 		/* Has the page moved or been split? */
3254 		if (unlikely(page != xas_reload(xas)))
3255 			goto skip;
3256 		if (!PageUptodate(page) || PageReadahead(page))
3257 			goto skip;
3258 		if (PageHWPoison(page))
3259 			goto skip;
3260 		if (!trylock_page(page))
3261 			goto skip;
3262 		if (page->mapping != mapping)
3263 			goto unlock;
3264 		if (!PageUptodate(page))
3265 			goto unlock;
3266 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3267 		if (xas->xa_index >= max_idx)
3268 			goto unlock;
3269 		return page;
3270 unlock:
3271 		unlock_page(page);
3272 skip:
3273 		put_page(page);
3274 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3275 
3276 	return NULL;
3277 }
3278 
3279 static inline struct page *first_map_page(struct address_space *mapping,
3280 					  struct xa_state *xas,
3281 					  pgoff_t end_pgoff)
3282 {
3283 	return next_uptodate_page(xas_find(xas, end_pgoff),
3284 				  mapping, xas, end_pgoff);
3285 }
3286 
3287 static inline struct page *next_map_page(struct address_space *mapping,
3288 					 struct xa_state *xas,
3289 					 pgoff_t end_pgoff)
3290 {
3291 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3292 				  mapping, xas, end_pgoff);
3293 }
3294 
3295 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3296 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3297 {
3298 	struct vm_area_struct *vma = vmf->vma;
3299 	struct file *file = vma->vm_file;
3300 	struct address_space *mapping = file->f_mapping;
3301 	pgoff_t last_pgoff = start_pgoff;
3302 	unsigned long addr;
3303 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3304 	struct page *head, *page;
3305 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3306 	vm_fault_t ret = 0;
3307 
3308 	rcu_read_lock();
3309 	head = first_map_page(mapping, &xas, end_pgoff);
3310 	if (!head)
3311 		goto out;
3312 
3313 	if (filemap_map_pmd(vmf, head)) {
3314 		ret = VM_FAULT_NOPAGE;
3315 		goto out;
3316 	}
3317 
3318 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3319 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3320 	do {
3321 		page = find_subpage(head, xas.xa_index);
3322 		if (PageHWPoison(page))
3323 			goto unlock;
3324 
3325 		if (mmap_miss > 0)
3326 			mmap_miss--;
3327 
3328 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3329 		vmf->pte += xas.xa_index - last_pgoff;
3330 		last_pgoff = xas.xa_index;
3331 
3332 		if (!pte_none(*vmf->pte))
3333 			goto unlock;
3334 
3335 		/* We're about to handle the fault */
3336 		if (vmf->address == addr)
3337 			ret = VM_FAULT_NOPAGE;
3338 
3339 		do_set_pte(vmf, page, addr);
3340 		/* no need to invalidate: a not-present page won't be cached */
3341 		update_mmu_cache(vma, addr, vmf->pte);
3342 		unlock_page(head);
3343 		continue;
3344 unlock:
3345 		unlock_page(head);
3346 		put_page(head);
3347 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3348 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3349 out:
3350 	rcu_read_unlock();
3351 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3352 	return ret;
3353 }
3354 EXPORT_SYMBOL(filemap_map_pages);
3355 
3356 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3357 {
3358 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3359 	struct page *page = vmf->page;
3360 	vm_fault_t ret = VM_FAULT_LOCKED;
3361 
3362 	sb_start_pagefault(mapping->host->i_sb);
3363 	file_update_time(vmf->vma->vm_file);
3364 	lock_page(page);
3365 	if (page->mapping != mapping) {
3366 		unlock_page(page);
3367 		ret = VM_FAULT_NOPAGE;
3368 		goto out;
3369 	}
3370 	/*
3371 	 * We mark the page dirty already here so that when freeze is in
3372 	 * progress, we are guaranteed that writeback during freezing will
3373 	 * see the dirty page and writeprotect it again.
3374 	 */
3375 	set_page_dirty(page);
3376 	wait_for_stable_page(page);
3377 out:
3378 	sb_end_pagefault(mapping->host->i_sb);
3379 	return ret;
3380 }
3381 
3382 const struct vm_operations_struct generic_file_vm_ops = {
3383 	.fault		= filemap_fault,
3384 	.map_pages	= filemap_map_pages,
3385 	.page_mkwrite	= filemap_page_mkwrite,
3386 };
3387 
3388 /* This is used for a general mmap of a disk file */
3389 
3390 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3391 {
3392 	struct address_space *mapping = file->f_mapping;
3393 
3394 	if (!mapping->a_ops->readpage)
3395 		return -ENOEXEC;
3396 	file_accessed(file);
3397 	vma->vm_ops = &generic_file_vm_ops;
3398 	return 0;
3399 }
3400 
3401 /*
3402  * This is for filesystems which do not implement ->writepage.
3403  */
3404 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3405 {
3406 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3407 		return -EINVAL;
3408 	return generic_file_mmap(file, vma);
3409 }
3410 #else
3411 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3412 {
3413 	return VM_FAULT_SIGBUS;
3414 }
3415 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3416 {
3417 	return -ENOSYS;
3418 }
3419 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3420 {
3421 	return -ENOSYS;
3422 }
3423 #endif /* CONFIG_MMU */
3424 
3425 EXPORT_SYMBOL(filemap_page_mkwrite);
3426 EXPORT_SYMBOL(generic_file_mmap);
3427 EXPORT_SYMBOL(generic_file_readonly_mmap);
3428 
3429 static struct page *wait_on_page_read(struct page *page)
3430 {
3431 	if (!IS_ERR(page)) {
3432 		wait_on_page_locked(page);
3433 		if (!PageUptodate(page)) {
3434 			put_page(page);
3435 			page = ERR_PTR(-EIO);
3436 		}
3437 	}
3438 	return page;
3439 }
3440 
3441 static struct page *do_read_cache_page(struct address_space *mapping,
3442 				pgoff_t index,
3443 				int (*filler)(void *, struct page *),
3444 				void *data,
3445 				gfp_t gfp)
3446 {
3447 	struct page *page;
3448 	int err;
3449 repeat:
3450 	page = find_get_page(mapping, index);
3451 	if (!page) {
3452 		page = __page_cache_alloc(gfp);
3453 		if (!page)
3454 			return ERR_PTR(-ENOMEM);
3455 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3456 		if (unlikely(err)) {
3457 			put_page(page);
3458 			if (err == -EEXIST)
3459 				goto repeat;
3460 			/* Presumably ENOMEM for xarray node */
3461 			return ERR_PTR(err);
3462 		}
3463 
3464 filler:
3465 		if (filler)
3466 			err = filler(data, page);
3467 		else
3468 			err = mapping->a_ops->readpage(data, page);
3469 
3470 		if (err < 0) {
3471 			put_page(page);
3472 			return ERR_PTR(err);
3473 		}
3474 
3475 		page = wait_on_page_read(page);
3476 		if (IS_ERR(page))
3477 			return page;
3478 		goto out;
3479 	}
3480 	if (PageUptodate(page))
3481 		goto out;
3482 
3483 	/*
3484 	 * Page is not up to date and may be locked due to one of the following
3485 	 * case a: Page is being filled and the page lock is held
3486 	 * case b: Read/write error clearing the page uptodate status
3487 	 * case c: Truncation in progress (page locked)
3488 	 * case d: Reclaim in progress
3489 	 *
3490 	 * Case a, the page will be up to date when the page is unlocked.
3491 	 *    There is no need to serialise on the page lock here as the page
3492 	 *    is pinned so the lock gives no additional protection. Even if the
3493 	 *    page is truncated, the data is still valid if PageUptodate as
3494 	 *    it's a race vs truncate race.
3495 	 * Case b, the page will not be up to date
3496 	 * Case c, the page may be truncated but in itself, the data may still
3497 	 *    be valid after IO completes as it's a read vs truncate race. The
3498 	 *    operation must restart if the page is not uptodate on unlock but
3499 	 *    otherwise serialising on page lock to stabilise the mapping gives
3500 	 *    no additional guarantees to the caller as the page lock is
3501 	 *    released before return.
3502 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3503 	 *    will be a race with remove_mapping that determines if the mapping
3504 	 *    is valid on unlock but otherwise the data is valid and there is
3505 	 *    no need to serialise with page lock.
3506 	 *
3507 	 * As the page lock gives no additional guarantee, we optimistically
3508 	 * wait on the page to be unlocked and check if it's up to date and
3509 	 * use the page if it is. Otherwise, the page lock is required to
3510 	 * distinguish between the different cases. The motivation is that we
3511 	 * avoid spurious serialisations and wakeups when multiple processes
3512 	 * wait on the same page for IO to complete.
3513 	 */
3514 	wait_on_page_locked(page);
3515 	if (PageUptodate(page))
3516 		goto out;
3517 
3518 	/* Distinguish between all the cases under the safety of the lock */
3519 	lock_page(page);
3520 
3521 	/* Case c or d, restart the operation */
3522 	if (!page->mapping) {
3523 		unlock_page(page);
3524 		put_page(page);
3525 		goto repeat;
3526 	}
3527 
3528 	/* Someone else locked and filled the page in a very small window */
3529 	if (PageUptodate(page)) {
3530 		unlock_page(page);
3531 		goto out;
3532 	}
3533 
3534 	/*
3535 	 * A previous I/O error may have been due to temporary
3536 	 * failures.
3537 	 * Clear page error before actual read, PG_error will be
3538 	 * set again if read page fails.
3539 	 */
3540 	ClearPageError(page);
3541 	goto filler;
3542 
3543 out:
3544 	mark_page_accessed(page);
3545 	return page;
3546 }
3547 
3548 /**
3549  * read_cache_page - read into page cache, fill it if needed
3550  * @mapping:	the page's address_space
3551  * @index:	the page index
3552  * @filler:	function to perform the read
3553  * @data:	first arg to filler(data, page) function, often left as NULL
3554  *
3555  * Read into the page cache. If a page already exists, and PageUptodate() is
3556  * not set, try to fill the page and wait for it to become unlocked.
3557  *
3558  * If the page does not get brought uptodate, return -EIO.
3559  *
3560  * The function expects mapping->invalidate_lock to be already held.
3561  *
3562  * Return: up to date page on success, ERR_PTR() on failure.
3563  */
3564 struct page *read_cache_page(struct address_space *mapping,
3565 				pgoff_t index,
3566 				int (*filler)(void *, struct page *),
3567 				void *data)
3568 {
3569 	return do_read_cache_page(mapping, index, filler, data,
3570 			mapping_gfp_mask(mapping));
3571 }
3572 EXPORT_SYMBOL(read_cache_page);
3573 
3574 /**
3575  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3576  * @mapping:	the page's address_space
3577  * @index:	the page index
3578  * @gfp:	the page allocator flags to use if allocating
3579  *
3580  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3581  * any new page allocations done using the specified allocation flags.
3582  *
3583  * If the page does not get brought uptodate, return -EIO.
3584  *
3585  * The function expects mapping->invalidate_lock to be already held.
3586  *
3587  * Return: up to date page on success, ERR_PTR() on failure.
3588  */
3589 struct page *read_cache_page_gfp(struct address_space *mapping,
3590 				pgoff_t index,
3591 				gfp_t gfp)
3592 {
3593 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3594 }
3595 EXPORT_SYMBOL(read_cache_page_gfp);
3596 
3597 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3598 				loff_t pos, unsigned len, unsigned flags,
3599 				struct page **pagep, void **fsdata)
3600 {
3601 	const struct address_space_operations *aops = mapping->a_ops;
3602 
3603 	return aops->write_begin(file, mapping, pos, len, flags,
3604 							pagep, fsdata);
3605 }
3606 EXPORT_SYMBOL(pagecache_write_begin);
3607 
3608 int pagecache_write_end(struct file *file, struct address_space *mapping,
3609 				loff_t pos, unsigned len, unsigned copied,
3610 				struct page *page, void *fsdata)
3611 {
3612 	const struct address_space_operations *aops = mapping->a_ops;
3613 
3614 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3615 }
3616 EXPORT_SYMBOL(pagecache_write_end);
3617 
3618 /*
3619  * Warn about a page cache invalidation failure during a direct I/O write.
3620  */
3621 void dio_warn_stale_pagecache(struct file *filp)
3622 {
3623 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3624 	char pathname[128];
3625 	char *path;
3626 
3627 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3628 	if (__ratelimit(&_rs)) {
3629 		path = file_path(filp, pathname, sizeof(pathname));
3630 		if (IS_ERR(path))
3631 			path = "(unknown)";
3632 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3633 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3634 			current->comm);
3635 	}
3636 }
3637 
3638 ssize_t
3639 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3640 {
3641 	struct file	*file = iocb->ki_filp;
3642 	struct address_space *mapping = file->f_mapping;
3643 	struct inode	*inode = mapping->host;
3644 	loff_t		pos = iocb->ki_pos;
3645 	ssize_t		written;
3646 	size_t		write_len;
3647 	pgoff_t		end;
3648 
3649 	write_len = iov_iter_count(from);
3650 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3651 
3652 	if (iocb->ki_flags & IOCB_NOWAIT) {
3653 		/* If there are pages to writeback, return */
3654 		if (filemap_range_has_page(file->f_mapping, pos,
3655 					   pos + write_len - 1))
3656 			return -EAGAIN;
3657 	} else {
3658 		written = filemap_write_and_wait_range(mapping, pos,
3659 							pos + write_len - 1);
3660 		if (written)
3661 			goto out;
3662 	}
3663 
3664 	/*
3665 	 * After a write we want buffered reads to be sure to go to disk to get
3666 	 * the new data.  We invalidate clean cached page from the region we're
3667 	 * about to write.  We do this *before* the write so that we can return
3668 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3669 	 */
3670 	written = invalidate_inode_pages2_range(mapping,
3671 					pos >> PAGE_SHIFT, end);
3672 	/*
3673 	 * If a page can not be invalidated, return 0 to fall back
3674 	 * to buffered write.
3675 	 */
3676 	if (written) {
3677 		if (written == -EBUSY)
3678 			return 0;
3679 		goto out;
3680 	}
3681 
3682 	written = mapping->a_ops->direct_IO(iocb, from);
3683 
3684 	/*
3685 	 * Finally, try again to invalidate clean pages which might have been
3686 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3687 	 * if the source of the write was an mmap'ed region of the file
3688 	 * we're writing.  Either one is a pretty crazy thing to do,
3689 	 * so we don't support it 100%.  If this invalidation
3690 	 * fails, tough, the write still worked...
3691 	 *
3692 	 * Most of the time we do not need this since dio_complete() will do
3693 	 * the invalidation for us. However there are some file systems that
3694 	 * do not end up with dio_complete() being called, so let's not break
3695 	 * them by removing it completely.
3696 	 *
3697 	 * Noticeable example is a blkdev_direct_IO().
3698 	 *
3699 	 * Skip invalidation for async writes or if mapping has no pages.
3700 	 */
3701 	if (written > 0 && mapping->nrpages &&
3702 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3703 		dio_warn_stale_pagecache(file);
3704 
3705 	if (written > 0) {
3706 		pos += written;
3707 		write_len -= written;
3708 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3709 			i_size_write(inode, pos);
3710 			mark_inode_dirty(inode);
3711 		}
3712 		iocb->ki_pos = pos;
3713 	}
3714 	if (written != -EIOCBQUEUED)
3715 		iov_iter_revert(from, write_len - iov_iter_count(from));
3716 out:
3717 	return written;
3718 }
3719 EXPORT_SYMBOL(generic_file_direct_write);
3720 
3721 /*
3722  * Find or create a page at the given pagecache position. Return the locked
3723  * page. This function is specifically for buffered writes.
3724  */
3725 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3726 					pgoff_t index, unsigned flags)
3727 {
3728 	struct page *page;
3729 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3730 
3731 	if (flags & AOP_FLAG_NOFS)
3732 		fgp_flags |= FGP_NOFS;
3733 
3734 	page = pagecache_get_page(mapping, index, fgp_flags,
3735 			mapping_gfp_mask(mapping));
3736 	if (page)
3737 		wait_for_stable_page(page);
3738 
3739 	return page;
3740 }
3741 EXPORT_SYMBOL(grab_cache_page_write_begin);
3742 
3743 ssize_t generic_perform_write(struct file *file,
3744 				struct iov_iter *i, loff_t pos)
3745 {
3746 	struct address_space *mapping = file->f_mapping;
3747 	const struct address_space_operations *a_ops = mapping->a_ops;
3748 	long status = 0;
3749 	ssize_t written = 0;
3750 	unsigned int flags = 0;
3751 
3752 	do {
3753 		struct page *page;
3754 		unsigned long offset;	/* Offset into pagecache page */
3755 		unsigned long bytes;	/* Bytes to write to page */
3756 		size_t copied;		/* Bytes copied from user */
3757 		void *fsdata;
3758 
3759 		offset = (pos & (PAGE_SIZE - 1));
3760 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3761 						iov_iter_count(i));
3762 
3763 again:
3764 		/*
3765 		 * Bring in the user page that we will copy from _first_.
3766 		 * Otherwise there's a nasty deadlock on copying from the
3767 		 * same page as we're writing to, without it being marked
3768 		 * up-to-date.
3769 		 */
3770 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3771 			status = -EFAULT;
3772 			break;
3773 		}
3774 
3775 		if (fatal_signal_pending(current)) {
3776 			status = -EINTR;
3777 			break;
3778 		}
3779 
3780 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3781 						&page, &fsdata);
3782 		if (unlikely(status < 0))
3783 			break;
3784 
3785 		if (mapping_writably_mapped(mapping))
3786 			flush_dcache_page(page);
3787 
3788 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3789 		flush_dcache_page(page);
3790 
3791 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3792 						page, fsdata);
3793 		if (unlikely(status != copied)) {
3794 			iov_iter_revert(i, copied - max(status, 0L));
3795 			if (unlikely(status < 0))
3796 				break;
3797 		}
3798 		cond_resched();
3799 
3800 		if (unlikely(status == 0)) {
3801 			/*
3802 			 * A short copy made ->write_end() reject the
3803 			 * thing entirely.  Might be memory poisoning
3804 			 * halfway through, might be a race with munmap,
3805 			 * might be severe memory pressure.
3806 			 */
3807 			if (copied)
3808 				bytes = copied;
3809 			goto again;
3810 		}
3811 		pos += status;
3812 		written += status;
3813 
3814 		balance_dirty_pages_ratelimited(mapping);
3815 	} while (iov_iter_count(i));
3816 
3817 	return written ? written : status;
3818 }
3819 EXPORT_SYMBOL(generic_perform_write);
3820 
3821 /**
3822  * __generic_file_write_iter - write data to a file
3823  * @iocb:	IO state structure (file, offset, etc.)
3824  * @from:	iov_iter with data to write
3825  *
3826  * This function does all the work needed for actually writing data to a
3827  * file. It does all basic checks, removes SUID from the file, updates
3828  * modification times and calls proper subroutines depending on whether we
3829  * do direct IO or a standard buffered write.
3830  *
3831  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3832  * object which does not need locking at all.
3833  *
3834  * This function does *not* take care of syncing data in case of O_SYNC write.
3835  * A caller has to handle it. This is mainly due to the fact that we want to
3836  * avoid syncing under i_rwsem.
3837  *
3838  * Return:
3839  * * number of bytes written, even for truncated writes
3840  * * negative error code if no data has been written at all
3841  */
3842 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3843 {
3844 	struct file *file = iocb->ki_filp;
3845 	struct address_space *mapping = file->f_mapping;
3846 	struct inode 	*inode = mapping->host;
3847 	ssize_t		written = 0;
3848 	ssize_t		err;
3849 	ssize_t		status;
3850 
3851 	/* We can write back this queue in page reclaim */
3852 	current->backing_dev_info = inode_to_bdi(inode);
3853 	err = file_remove_privs(file);
3854 	if (err)
3855 		goto out;
3856 
3857 	err = file_update_time(file);
3858 	if (err)
3859 		goto out;
3860 
3861 	if (iocb->ki_flags & IOCB_DIRECT) {
3862 		loff_t pos, endbyte;
3863 
3864 		written = generic_file_direct_write(iocb, from);
3865 		/*
3866 		 * If the write stopped short of completing, fall back to
3867 		 * buffered writes.  Some filesystems do this for writes to
3868 		 * holes, for example.  For DAX files, a buffered write will
3869 		 * not succeed (even if it did, DAX does not handle dirty
3870 		 * page-cache pages correctly).
3871 		 */
3872 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3873 			goto out;
3874 
3875 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3876 		/*
3877 		 * If generic_perform_write() returned a synchronous error
3878 		 * then we want to return the number of bytes which were
3879 		 * direct-written, or the error code if that was zero.  Note
3880 		 * that this differs from normal direct-io semantics, which
3881 		 * will return -EFOO even if some bytes were written.
3882 		 */
3883 		if (unlikely(status < 0)) {
3884 			err = status;
3885 			goto out;
3886 		}
3887 		/*
3888 		 * We need to ensure that the page cache pages are written to
3889 		 * disk and invalidated to preserve the expected O_DIRECT
3890 		 * semantics.
3891 		 */
3892 		endbyte = pos + status - 1;
3893 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3894 		if (err == 0) {
3895 			iocb->ki_pos = endbyte + 1;
3896 			written += status;
3897 			invalidate_mapping_pages(mapping,
3898 						 pos >> PAGE_SHIFT,
3899 						 endbyte >> PAGE_SHIFT);
3900 		} else {
3901 			/*
3902 			 * We don't know how much we wrote, so just return
3903 			 * the number of bytes which were direct-written
3904 			 */
3905 		}
3906 	} else {
3907 		written = generic_perform_write(file, from, iocb->ki_pos);
3908 		if (likely(written > 0))
3909 			iocb->ki_pos += written;
3910 	}
3911 out:
3912 	current->backing_dev_info = NULL;
3913 	return written ? written : err;
3914 }
3915 EXPORT_SYMBOL(__generic_file_write_iter);
3916 
3917 /**
3918  * generic_file_write_iter - write data to a file
3919  * @iocb:	IO state structure
3920  * @from:	iov_iter with data to write
3921  *
3922  * This is a wrapper around __generic_file_write_iter() to be used by most
3923  * filesystems. It takes care of syncing the file in case of O_SYNC file
3924  * and acquires i_rwsem as needed.
3925  * Return:
3926  * * negative error code if no data has been written at all of
3927  *   vfs_fsync_range() failed for a synchronous write
3928  * * number of bytes written, even for truncated writes
3929  */
3930 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3931 {
3932 	struct file *file = iocb->ki_filp;
3933 	struct inode *inode = file->f_mapping->host;
3934 	ssize_t ret;
3935 
3936 	inode_lock(inode);
3937 	ret = generic_write_checks(iocb, from);
3938 	if (ret > 0)
3939 		ret = __generic_file_write_iter(iocb, from);
3940 	inode_unlock(inode);
3941 
3942 	if (ret > 0)
3943 		ret = generic_write_sync(iocb, ret);
3944 	return ret;
3945 }
3946 EXPORT_SYMBOL(generic_file_write_iter);
3947 
3948 /**
3949  * try_to_release_page() - release old fs-specific metadata on a page
3950  *
3951  * @page: the page which the kernel is trying to free
3952  * @gfp_mask: memory allocation flags (and I/O mode)
3953  *
3954  * The address_space is to try to release any data against the page
3955  * (presumably at page->private).
3956  *
3957  * This may also be called if PG_fscache is set on a page, indicating that the
3958  * page is known to the local caching routines.
3959  *
3960  * The @gfp_mask argument specifies whether I/O may be performed to release
3961  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3962  *
3963  * Return: %1 if the release was successful, otherwise return zero.
3964  */
3965 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3966 {
3967 	struct address_space * const mapping = page->mapping;
3968 
3969 	BUG_ON(!PageLocked(page));
3970 	if (PageWriteback(page))
3971 		return 0;
3972 
3973 	if (mapping && mapping->a_ops->releasepage)
3974 		return mapping->a_ops->releasepage(page, gfp_mask);
3975 	return try_to_free_buffers(page);
3976 }
3977 
3978 EXPORT_SYMBOL(try_to_release_page);
3979