xref: /linux/mm/filemap.c (revision 2fe3c78a2c26dd5ee811024a1b7d6cfb4d654319)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <asm/pgalloc.h>
50 #include <asm/tlbflush.h>
51 #include "internal.h"
52 
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/filemap.h>
55 
56 /*
57  * FIXME: remove all knowledge of the buffer layer from the core VM
58  */
59 #include <linux/buffer_head.h> /* for try_to_free_buffers */
60 
61 #include <asm/mman.h>
62 
63 #include "swap.h"
64 
65 /*
66  * Shared mappings implemented 30.11.1994. It's not fully working yet,
67  * though.
68  *
69  * Shared mappings now work. 15.8.1995  Bruno.
70  *
71  * finished 'unifying' the page and buffer cache and SMP-threaded the
72  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
73  *
74  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
75  */
76 
77 /*
78  * Lock ordering:
79  *
80  *  ->i_mmap_rwsem		(truncate_pagecache)
81  *    ->private_lock		(__free_pte->block_dirty_folio)
82  *      ->swap_lock		(exclusive_swap_page, others)
83  *        ->i_pages lock
84  *
85  *  ->i_rwsem
86  *    ->invalidate_lock		(acquired by fs in truncate path)
87  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
88  *
89  *  ->mmap_lock
90  *    ->i_mmap_rwsem
91  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
92  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
93  *
94  *  ->mmap_lock
95  *    ->invalidate_lock		(filemap_fault)
96  *      ->lock_page		(filemap_fault, access_process_vm)
97  *
98  *  ->i_rwsem			(generic_perform_write)
99  *    ->mmap_lock		(fault_in_readable->do_page_fault)
100  *
101  *  bdi->wb.list_lock
102  *    sb_lock			(fs/fs-writeback.c)
103  *    ->i_pages lock		(__sync_single_inode)
104  *
105  *  ->i_mmap_rwsem
106  *    ->anon_vma.lock		(vma_merge)
107  *
108  *  ->anon_vma.lock
109  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
110  *
111  *  ->page_table_lock or pte_lock
112  *    ->swap_lock		(try_to_unmap_one)
113  *    ->private_lock		(try_to_unmap_one)
114  *    ->i_pages lock		(try_to_unmap_one)
115  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
116  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
117  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
118  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
122  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
123  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
124  *    ->private_lock		(zap_pte_range->block_dirty_folio)
125  */
126 
127 static void mapping_set_update(struct xa_state *xas,
128 		struct address_space *mapping)
129 {
130 	if (dax_mapping(mapping) || shmem_mapping(mapping))
131 		return;
132 	xas_set_update(xas, workingset_update_node);
133 	xas_set_lru(xas, &shadow_nodes);
134 }
135 
136 static void page_cache_delete(struct address_space *mapping,
137 				   struct folio *folio, void *shadow)
138 {
139 	XA_STATE(xas, &mapping->i_pages, folio->index);
140 	long nr = 1;
141 
142 	mapping_set_update(&xas, mapping);
143 
144 	xas_set_order(&xas, folio->index, folio_order(folio));
145 	nr = folio_nr_pages(folio);
146 
147 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
148 
149 	xas_store(&xas, shadow);
150 	xas_init_marks(&xas);
151 
152 	folio->mapping = NULL;
153 	/* Leave page->index set: truncation lookup relies upon it */
154 	mapping->nrpages -= nr;
155 }
156 
157 static void filemap_unaccount_folio(struct address_space *mapping,
158 		struct folio *folio)
159 {
160 	long nr;
161 
162 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
163 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
164 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
165 			 current->comm, folio_pfn(folio));
166 		dump_page(&folio->page, "still mapped when deleted");
167 		dump_stack();
168 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
169 
170 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
171 			int mapcount = folio_mapcount(folio);
172 
173 			if (folio_ref_count(folio) >= mapcount + 2) {
174 				/*
175 				 * All vmas have already been torn down, so it's
176 				 * a good bet that actually the page is unmapped
177 				 * and we'd rather not leak it: if we're wrong,
178 				 * another bad page check should catch it later.
179 				 */
180 				atomic_set(&folio->_mapcount, -1);
181 				folio_ref_sub(folio, mapcount);
182 			}
183 		}
184 	}
185 
186 	/* hugetlb folios do not participate in page cache accounting. */
187 	if (folio_test_hugetlb(folio))
188 		return;
189 
190 	nr = folio_nr_pages(folio);
191 
192 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
193 	if (folio_test_swapbacked(folio)) {
194 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
195 		if (folio_test_pmd_mappable(folio))
196 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
197 	} else if (folio_test_pmd_mappable(folio)) {
198 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
199 		filemap_nr_thps_dec(mapping);
200 	}
201 
202 	/*
203 	 * At this point folio must be either written or cleaned by
204 	 * truncate.  Dirty folio here signals a bug and loss of
205 	 * unwritten data - on ordinary filesystems.
206 	 *
207 	 * But it's harmless on in-memory filesystems like tmpfs; and can
208 	 * occur when a driver which did get_user_pages() sets page dirty
209 	 * before putting it, while the inode is being finally evicted.
210 	 *
211 	 * Below fixes dirty accounting after removing the folio entirely
212 	 * but leaves the dirty flag set: it has no effect for truncated
213 	 * folio and anyway will be cleared before returning folio to
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
217 			 mapping_can_writeback(mapping)))
218 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
219 }
220 
221 /*
222  * Delete a page from the page cache and free it. Caller has to make
223  * sure the page is locked and that nobody else uses it - or that usage
224  * is safe.  The caller must hold the i_pages lock.
225  */
226 void __filemap_remove_folio(struct folio *folio, void *shadow)
227 {
228 	struct address_space *mapping = folio->mapping;
229 
230 	trace_mm_filemap_delete_from_page_cache(folio);
231 	filemap_unaccount_folio(mapping, folio);
232 	page_cache_delete(mapping, folio, shadow);
233 }
234 
235 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
236 {
237 	void (*free_folio)(struct folio *);
238 	int refs = 1;
239 
240 	free_folio = mapping->a_ops->free_folio;
241 	if (free_folio)
242 		free_folio(folio);
243 
244 	if (folio_test_large(folio))
245 		refs = folio_nr_pages(folio);
246 	folio_put_refs(folio, refs);
247 }
248 
249 /**
250  * filemap_remove_folio - Remove folio from page cache.
251  * @folio: The folio.
252  *
253  * This must be called only on folios that are locked and have been
254  * verified to be in the page cache.  It will never put the folio into
255  * the free list because the caller has a reference on the page.
256  */
257 void filemap_remove_folio(struct folio *folio)
258 {
259 	struct address_space *mapping = folio->mapping;
260 
261 	BUG_ON(!folio_test_locked(folio));
262 	spin_lock(&mapping->host->i_lock);
263 	xa_lock_irq(&mapping->i_pages);
264 	__filemap_remove_folio(folio, NULL);
265 	xa_unlock_irq(&mapping->i_pages);
266 	if (mapping_shrinkable(mapping))
267 		inode_add_lru(mapping->host);
268 	spin_unlock(&mapping->host->i_lock);
269 
270 	filemap_free_folio(mapping, folio);
271 }
272 
273 /*
274  * page_cache_delete_batch - delete several folios from page cache
275  * @mapping: the mapping to which folios belong
276  * @fbatch: batch of folios to delete
277  *
278  * The function walks over mapping->i_pages and removes folios passed in
279  * @fbatch from the mapping. The function expects @fbatch to be sorted
280  * by page index and is optimised for it to be dense.
281  * It tolerates holes in @fbatch (mapping entries at those indices are not
282  * modified).
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct folio_batch *fbatch)
288 {
289 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
290 	long total_pages = 0;
291 	int i = 0;
292 	struct folio *folio;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, folio, ULONG_MAX) {
296 		if (i >= folio_batch_count(fbatch))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(folio))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (folio != fbatch->folios[i]) {
310 			VM_BUG_ON_FOLIO(folio->index >
311 					fbatch->folios[i]->index, folio);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!folio_test_locked(folio));
316 
317 		folio->mapping = NULL;
318 		/* Leave folio->index set: truncation lookup relies on it */
319 
320 		i++;
321 		xas_store(&xas, NULL);
322 		total_pages += folio_nr_pages(folio);
323 	}
324 	mapping->nrpages -= total_pages;
325 }
326 
327 void delete_from_page_cache_batch(struct address_space *mapping,
328 				  struct folio_batch *fbatch)
329 {
330 	int i;
331 
332 	if (!folio_batch_count(fbatch))
333 		return;
334 
335 	spin_lock(&mapping->host->i_lock);
336 	xa_lock_irq(&mapping->i_pages);
337 	for (i = 0; i < folio_batch_count(fbatch); i++) {
338 		struct folio *folio = fbatch->folios[i];
339 
340 		trace_mm_filemap_delete_from_page_cache(folio);
341 		filemap_unaccount_folio(mapping, folio);
342 	}
343 	page_cache_delete_batch(mapping, fbatch);
344 	xa_unlock_irq(&mapping->i_pages);
345 	if (mapping_shrinkable(mapping))
346 		inode_add_lru(mapping->host);
347 	spin_unlock(&mapping->host->i_lock);
348 
349 	for (i = 0; i < folio_batch_count(fbatch); i++)
350 		filemap_free_folio(mapping, fbatch->folios[i]);
351 }
352 
353 int filemap_check_errors(struct address_space *mapping)
354 {
355 	int ret = 0;
356 	/* Check for outstanding write errors */
357 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
358 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
359 		ret = -ENOSPC;
360 	if (test_bit(AS_EIO, &mapping->flags) &&
361 	    test_and_clear_bit(AS_EIO, &mapping->flags))
362 		ret = -EIO;
363 	return ret;
364 }
365 EXPORT_SYMBOL(filemap_check_errors);
366 
367 static int filemap_check_and_keep_errors(struct address_space *mapping)
368 {
369 	/* Check for outstanding write errors */
370 	if (test_bit(AS_EIO, &mapping->flags))
371 		return -EIO;
372 	if (test_bit(AS_ENOSPC, &mapping->flags))
373 		return -ENOSPC;
374 	return 0;
375 }
376 
377 /**
378  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
379  * @mapping:	address space structure to write
380  * @wbc:	the writeback_control controlling the writeout
381  *
382  * Call writepages on the mapping using the provided wbc to control the
383  * writeout.
384  *
385  * Return: %0 on success, negative error code otherwise.
386  */
387 int filemap_fdatawrite_wbc(struct address_space *mapping,
388 			   struct writeback_control *wbc)
389 {
390 	int ret;
391 
392 	if (!mapping_can_writeback(mapping) ||
393 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
394 		return 0;
395 
396 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
397 	ret = do_writepages(mapping, wbc);
398 	wbc_detach_inode(wbc);
399 	return ret;
400 }
401 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
402 
403 /**
404  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
405  * @mapping:	address space structure to write
406  * @start:	offset in bytes where the range starts
407  * @end:	offset in bytes where the range ends (inclusive)
408  * @sync_mode:	enable synchronous operation
409  *
410  * Start writeback against all of a mapping's dirty pages that lie
411  * within the byte offsets <start, end> inclusive.
412  *
413  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
414  * opposed to a regular memory cleansing writeback.  The difference between
415  * these two operations is that if a dirty page/buffer is encountered, it must
416  * be waited upon, and not just skipped over.
417  *
418  * Return: %0 on success, negative error code otherwise.
419  */
420 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
421 				loff_t end, int sync_mode)
422 {
423 	struct writeback_control wbc = {
424 		.sync_mode = sync_mode,
425 		.nr_to_write = LONG_MAX,
426 		.range_start = start,
427 		.range_end = end,
428 	};
429 
430 	return filemap_fdatawrite_wbc(mapping, &wbc);
431 }
432 
433 static inline int __filemap_fdatawrite(struct address_space *mapping,
434 	int sync_mode)
435 {
436 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
437 }
438 
439 int filemap_fdatawrite(struct address_space *mapping)
440 {
441 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
442 }
443 EXPORT_SYMBOL(filemap_fdatawrite);
444 
445 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
446 				loff_t end)
447 {
448 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
449 }
450 EXPORT_SYMBOL(filemap_fdatawrite_range);
451 
452 /**
453  * filemap_flush - mostly a non-blocking flush
454  * @mapping:	target address_space
455  *
456  * This is a mostly non-blocking flush.  Not suitable for data-integrity
457  * purposes - I/O may not be started against all dirty pages.
458  *
459  * Return: %0 on success, negative error code otherwise.
460  */
461 int filemap_flush(struct address_space *mapping)
462 {
463 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
464 }
465 EXPORT_SYMBOL(filemap_flush);
466 
467 /**
468  * filemap_range_has_page - check if a page exists in range.
469  * @mapping:           address space within which to check
470  * @start_byte:        offset in bytes where the range starts
471  * @end_byte:          offset in bytes where the range ends (inclusive)
472  *
473  * Find at least one page in the range supplied, usually used to check if
474  * direct writing in this range will trigger a writeback.
475  *
476  * Return: %true if at least one page exists in the specified range,
477  * %false otherwise.
478  */
479 bool filemap_range_has_page(struct address_space *mapping,
480 			   loff_t start_byte, loff_t end_byte)
481 {
482 	struct folio *folio;
483 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
484 	pgoff_t max = end_byte >> PAGE_SHIFT;
485 
486 	if (end_byte < start_byte)
487 		return false;
488 
489 	rcu_read_lock();
490 	for (;;) {
491 		folio = xas_find(&xas, max);
492 		if (xas_retry(&xas, folio))
493 			continue;
494 		/* Shadow entries don't count */
495 		if (xa_is_value(folio))
496 			continue;
497 		/*
498 		 * We don't need to try to pin this page; we're about to
499 		 * release the RCU lock anyway.  It is enough to know that
500 		 * there was a page here recently.
501 		 */
502 		break;
503 	}
504 	rcu_read_unlock();
505 
506 	return folio != NULL;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct folio_batch fbatch;
516 	unsigned nr_folios;
517 
518 	folio_batch_init(&fbatch);
519 
520 	while (index <= end) {
521 		unsigned i;
522 
523 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
524 				PAGECACHE_TAG_WRITEBACK, &fbatch);
525 
526 		if (!nr_folios)
527 			break;
528 
529 		for (i = 0; i < nr_folios; i++) {
530 			struct folio *folio = fbatch.folios[i];
531 
532 			folio_wait_writeback(folio);
533 			folio_clear_error(folio);
534 		}
535 		folio_batch_release(&fbatch);
536 		cond_resched();
537 	}
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:		address space structure to wait for
543  * @start_byte:		offset in bytes where the range starts
544  * @end_byte:		offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 			    loff_t end_byte)
558 {
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:		address space structure to wait for
567  * @start_byte:		offset in bytes where the range starts
568  * @end_byte:		offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 		loff_t start_byte, loff_t end_byte)
580 {
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:		file pointing to address space structure to wait for
589  * @start_byte:		offset in bytes where the range starts
590  * @end_byte:		offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 	struct address_space *mapping = file->f_mapping;
605 
606 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607 	return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 	return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 	return mapping->nrpages;
636 }
637 
638 bool filemap_range_has_writeback(struct address_space *mapping,
639 				 loff_t start_byte, loff_t end_byte)
640 {
641 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 	pgoff_t max = end_byte >> PAGE_SHIFT;
643 	struct folio *folio;
644 
645 	if (end_byte < start_byte)
646 		return false;
647 
648 	rcu_read_lock();
649 	xas_for_each(&xas, folio, max) {
650 		if (xas_retry(&xas, folio))
651 			continue;
652 		if (xa_is_value(folio))
653 			continue;
654 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 				folio_test_writeback(folio))
656 			break;
657 	}
658 	rcu_read_unlock();
659 	return folio != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:	the address_space for the pages
666  * @lstart:	offset in bytes where the range starts
667  * @lend:	offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677 				 loff_t lstart, loff_t lend)
678 {
679 	int err = 0, err2;
680 
681 	if (lend < lstart)
682 		return 0;
683 
684 	if (mapping_needs_writeback(mapping)) {
685 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 						 WB_SYNC_ALL);
687 		/*
688 		 * Even if the above returned error, the pages may be
689 		 * written partially (e.g. -ENOSPC), so we wait for it.
690 		 * But the -EIO is special case, it may indicate the worst
691 		 * thing (e.g. bug) happened, so we avoid waiting for it.
692 		 */
693 		if (err != -EIO)
694 			__filemap_fdatawait_range(mapping, lstart, lend);
695 	}
696 	err2 = filemap_check_errors(mapping);
697 	if (!err)
698 		err = err2;
699 	return err;
700 }
701 EXPORT_SYMBOL(filemap_write_and_wait_range);
702 
703 void __filemap_set_wb_err(struct address_space *mapping, int err)
704 {
705 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
706 
707 	trace_filemap_set_wb_err(mapping, eseq);
708 }
709 EXPORT_SYMBOL(__filemap_set_wb_err);
710 
711 /**
712  * file_check_and_advance_wb_err - report wb error (if any) that was previously
713  * 				   and advance wb_err to current one
714  * @file: struct file on which the error is being reported
715  *
716  * When userland calls fsync (or something like nfsd does the equivalent), we
717  * want to report any writeback errors that occurred since the last fsync (or
718  * since the file was opened if there haven't been any).
719  *
720  * Grab the wb_err from the mapping. If it matches what we have in the file,
721  * then just quickly return 0. The file is all caught up.
722  *
723  * If it doesn't match, then take the mapping value, set the "seen" flag in
724  * it and try to swap it into place. If it works, or another task beat us
725  * to it with the new value, then update the f_wb_err and return the error
726  * portion. The error at this point must be reported via proper channels
727  * (a'la fsync, or NFS COMMIT operation, etc.).
728  *
729  * While we handle mapping->wb_err with atomic operations, the f_wb_err
730  * value is protected by the f_lock since we must ensure that it reflects
731  * the latest value swapped in for this file descriptor.
732  *
733  * Return: %0 on success, negative error code otherwise.
734  */
735 int file_check_and_advance_wb_err(struct file *file)
736 {
737 	int err = 0;
738 	errseq_t old = READ_ONCE(file->f_wb_err);
739 	struct address_space *mapping = file->f_mapping;
740 
741 	/* Locklessly handle the common case where nothing has changed */
742 	if (errseq_check(&mapping->wb_err, old)) {
743 		/* Something changed, must use slow path */
744 		spin_lock(&file->f_lock);
745 		old = file->f_wb_err;
746 		err = errseq_check_and_advance(&mapping->wb_err,
747 						&file->f_wb_err);
748 		trace_file_check_and_advance_wb_err(file, old);
749 		spin_unlock(&file->f_lock);
750 	}
751 
752 	/*
753 	 * We're mostly using this function as a drop in replacement for
754 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 	 * that the legacy code would have had on these flags.
756 	 */
757 	clear_bit(AS_EIO, &mapping->flags);
758 	clear_bit(AS_ENOSPC, &mapping->flags);
759 	return err;
760 }
761 EXPORT_SYMBOL(file_check_and_advance_wb_err);
762 
763 /**
764  * file_write_and_wait_range - write out & wait on a file range
765  * @file:	file pointing to address_space with pages
766  * @lstart:	offset in bytes where the range starts
767  * @lend:	offset in bytes where the range ends (inclusive)
768  *
769  * Write out and wait upon file offsets lstart->lend, inclusive.
770  *
771  * Note that @lend is inclusive (describes the last byte to be written) so
772  * that this function can be used to write to the very end-of-file (end = -1).
773  *
774  * After writing out and waiting on the data, we check and advance the
775  * f_wb_err cursor to the latest value, and return any errors detected there.
776  *
777  * Return: %0 on success, negative error code otherwise.
778  */
779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780 {
781 	int err = 0, err2;
782 	struct address_space *mapping = file->f_mapping;
783 
784 	if (lend < lstart)
785 		return 0;
786 
787 	if (mapping_needs_writeback(mapping)) {
788 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 						 WB_SYNC_ALL);
790 		/* See comment of filemap_write_and_wait() */
791 		if (err != -EIO)
792 			__filemap_fdatawait_range(mapping, lstart, lend);
793 	}
794 	err2 = file_check_and_advance_wb_err(file);
795 	if (!err)
796 		err = err2;
797 	return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_folio - replace a pagecache folio with a new one
803  * @old:	folio to be replaced
804  * @new:	folio to replace with
805  *
806  * This function replaces a folio in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new folio and
808  * drops it for the old folio.  Both the old and new folios must be
809  * locked.  This function does not add the new folio to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_folio(struct folio *old, struct folio *new)
815 {
816 	struct address_space *mapping = old->mapping;
817 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 	pgoff_t offset = old->index;
819 	XA_STATE(xas, &mapping->i_pages, offset);
820 
821 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 	VM_BUG_ON_FOLIO(new->mapping, new);
824 
825 	folio_get(new);
826 	new->mapping = mapping;
827 	new->index = offset;
828 
829 	mem_cgroup_replace_folio(old, new);
830 
831 	xas_lock_irq(&xas);
832 	xas_store(&xas, new);
833 
834 	old->mapping = NULL;
835 	/* hugetlb pages do not participate in page cache accounting. */
836 	if (!folio_test_hugetlb(old))
837 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 	if (!folio_test_hugetlb(new))
839 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 	if (folio_test_swapbacked(old))
841 		__lruvec_stat_sub_folio(old, NR_SHMEM);
842 	if (folio_test_swapbacked(new))
843 		__lruvec_stat_add_folio(new, NR_SHMEM);
844 	xas_unlock_irq(&xas);
845 	if (free_folio)
846 		free_folio(old);
847 	folio_put(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, index);
855 	void *alloced_shadow = NULL;
856 	int alloced_order = 0;
857 	bool huge;
858 	long nr;
859 
860 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862 	mapping_set_update(&xas, mapping);
863 
864 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
865 	xas_set_order(&xas, index, folio_order(folio));
866 	huge = folio_test_hugetlb(folio);
867 	nr = folio_nr_pages(folio);
868 
869 	gfp &= GFP_RECLAIM_MASK;
870 	folio_ref_add(folio, nr);
871 	folio->mapping = mapping;
872 	folio->index = xas.xa_index;
873 
874 	for (;;) {
875 		int order = -1, split_order = 0;
876 		void *entry, *old = NULL;
877 
878 		xas_lock_irq(&xas);
879 		xas_for_each_conflict(&xas, entry) {
880 			old = entry;
881 			if (!xa_is_value(entry)) {
882 				xas_set_err(&xas, -EEXIST);
883 				goto unlock;
884 			}
885 			/*
886 			 * If a larger entry exists,
887 			 * it will be the first and only entry iterated.
888 			 */
889 			if (order == -1)
890 				order = xas_get_order(&xas);
891 		}
892 
893 		/* entry may have changed before we re-acquire the lock */
894 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
895 			xas_destroy(&xas);
896 			alloced_order = 0;
897 		}
898 
899 		if (old) {
900 			if (order > 0 && order > folio_order(folio)) {
901 				/* How to handle large swap entries? */
902 				BUG_ON(shmem_mapping(mapping));
903 				if (!alloced_order) {
904 					split_order = order;
905 					goto unlock;
906 				}
907 				xas_split(&xas, old, order);
908 				xas_reset(&xas);
909 			}
910 			if (shadowp)
911 				*shadowp = old;
912 		}
913 
914 		xas_store(&xas, folio);
915 		if (xas_error(&xas))
916 			goto unlock;
917 
918 		mapping->nrpages += nr;
919 
920 		/* hugetlb pages do not participate in page cache accounting */
921 		if (!huge) {
922 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
923 			if (folio_test_pmd_mappable(folio))
924 				__lruvec_stat_mod_folio(folio,
925 						NR_FILE_THPS, nr);
926 		}
927 
928 unlock:
929 		xas_unlock_irq(&xas);
930 
931 		/* split needed, alloc here and retry. */
932 		if (split_order) {
933 			xas_split_alloc(&xas, old, split_order, gfp);
934 			if (xas_error(&xas))
935 				goto error;
936 			alloced_shadow = old;
937 			alloced_order = split_order;
938 			xas_reset(&xas);
939 			continue;
940 		}
941 
942 		if (!xas_nomem(&xas, gfp))
943 			break;
944 	}
945 
946 	if (xas_error(&xas))
947 		goto error;
948 
949 	trace_mm_filemap_add_to_page_cache(folio);
950 	return 0;
951 error:
952 	folio->mapping = NULL;
953 	/* Leave page->index set: truncation relies upon it */
954 	folio_put_refs(folio, nr);
955 	return xas_error(&xas);
956 }
957 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
958 
959 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
960 				pgoff_t index, gfp_t gfp)
961 {
962 	void *shadow = NULL;
963 	int ret;
964 
965 	ret = mem_cgroup_charge(folio, NULL, gfp);
966 	if (ret)
967 		return ret;
968 
969 	__folio_set_locked(folio);
970 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
971 	if (unlikely(ret)) {
972 		mem_cgroup_uncharge(folio);
973 		__folio_clear_locked(folio);
974 	} else {
975 		/*
976 		 * The folio might have been evicted from cache only
977 		 * recently, in which case it should be activated like
978 		 * any other repeatedly accessed folio.
979 		 * The exception is folios getting rewritten; evicting other
980 		 * data from the working set, only to cache data that will
981 		 * get overwritten with something else, is a waste of memory.
982 		 */
983 		WARN_ON_ONCE(folio_test_active(folio));
984 		if (!(gfp & __GFP_WRITE) && shadow)
985 			workingset_refault(folio, shadow);
986 		folio_add_lru(folio);
987 	}
988 	return ret;
989 }
990 EXPORT_SYMBOL_GPL(filemap_add_folio);
991 
992 #ifdef CONFIG_NUMA
993 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
994 {
995 	int n;
996 	struct folio *folio;
997 
998 	if (cpuset_do_page_mem_spread()) {
999 		unsigned int cpuset_mems_cookie;
1000 		do {
1001 			cpuset_mems_cookie = read_mems_allowed_begin();
1002 			n = cpuset_mem_spread_node();
1003 			folio = __folio_alloc_node_noprof(gfp, order, n);
1004 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1005 
1006 		return folio;
1007 	}
1008 	return folio_alloc_noprof(gfp, order);
1009 }
1010 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1011 #endif
1012 
1013 /*
1014  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1015  *
1016  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1017  *
1018  * @mapping1: the first mapping to lock
1019  * @mapping2: the second mapping to lock
1020  */
1021 void filemap_invalidate_lock_two(struct address_space *mapping1,
1022 				 struct address_space *mapping2)
1023 {
1024 	if (mapping1 > mapping2)
1025 		swap(mapping1, mapping2);
1026 	if (mapping1)
1027 		down_write(&mapping1->invalidate_lock);
1028 	if (mapping2 && mapping1 != mapping2)
1029 		down_write_nested(&mapping2->invalidate_lock, 1);
1030 }
1031 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1032 
1033 /*
1034  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1035  *
1036  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1037  *
1038  * @mapping1: the first mapping to unlock
1039  * @mapping2: the second mapping to unlock
1040  */
1041 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1042 				   struct address_space *mapping2)
1043 {
1044 	if (mapping1)
1045 		up_write(&mapping1->invalidate_lock);
1046 	if (mapping2 && mapping1 != mapping2)
1047 		up_write(&mapping2->invalidate_lock);
1048 }
1049 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1050 
1051 /*
1052  * In order to wait for pages to become available there must be
1053  * waitqueues associated with pages. By using a hash table of
1054  * waitqueues where the bucket discipline is to maintain all
1055  * waiters on the same queue and wake all when any of the pages
1056  * become available, and for the woken contexts to check to be
1057  * sure the appropriate page became available, this saves space
1058  * at a cost of "thundering herd" phenomena during rare hash
1059  * collisions.
1060  */
1061 #define PAGE_WAIT_TABLE_BITS 8
1062 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1063 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1064 
1065 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1066 {
1067 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1068 }
1069 
1070 void __init pagecache_init(void)
1071 {
1072 	int i;
1073 
1074 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1075 		init_waitqueue_head(&folio_wait_table[i]);
1076 
1077 	page_writeback_init();
1078 }
1079 
1080 /*
1081  * The page wait code treats the "wait->flags" somewhat unusually, because
1082  * we have multiple different kinds of waits, not just the usual "exclusive"
1083  * one.
1084  *
1085  * We have:
1086  *
1087  *  (a) no special bits set:
1088  *
1089  *	We're just waiting for the bit to be released, and when a waker
1090  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1091  *	and remove it from the wait queue.
1092  *
1093  *	Simple and straightforward.
1094  *
1095  *  (b) WQ_FLAG_EXCLUSIVE:
1096  *
1097  *	The waiter is waiting to get the lock, and only one waiter should
1098  *	be woken up to avoid any thundering herd behavior. We'll set the
1099  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1100  *
1101  *	This is the traditional exclusive wait.
1102  *
1103  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1104  *
1105  *	The waiter is waiting to get the bit, and additionally wants the
1106  *	lock to be transferred to it for fair lock behavior. If the lock
1107  *	cannot be taken, we stop walking the wait queue without waking
1108  *	the waiter.
1109  *
1110  *	This is the "fair lock handoff" case, and in addition to setting
1111  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1112  *	that it now has the lock.
1113  */
1114 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1115 {
1116 	unsigned int flags;
1117 	struct wait_page_key *key = arg;
1118 	struct wait_page_queue *wait_page
1119 		= container_of(wait, struct wait_page_queue, wait);
1120 
1121 	if (!wake_page_match(wait_page, key))
1122 		return 0;
1123 
1124 	/*
1125 	 * If it's a lock handoff wait, we get the bit for it, and
1126 	 * stop walking (and do not wake it up) if we can't.
1127 	 */
1128 	flags = wait->flags;
1129 	if (flags & WQ_FLAG_EXCLUSIVE) {
1130 		if (test_bit(key->bit_nr, &key->folio->flags))
1131 			return -1;
1132 		if (flags & WQ_FLAG_CUSTOM) {
1133 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1134 				return -1;
1135 			flags |= WQ_FLAG_DONE;
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * We are holding the wait-queue lock, but the waiter that
1141 	 * is waiting for this will be checking the flags without
1142 	 * any locking.
1143 	 *
1144 	 * So update the flags atomically, and wake up the waiter
1145 	 * afterwards to avoid any races. This store-release pairs
1146 	 * with the load-acquire in folio_wait_bit_common().
1147 	 */
1148 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1149 	wake_up_state(wait->private, mode);
1150 
1151 	/*
1152 	 * Ok, we have successfully done what we're waiting for,
1153 	 * and we can unconditionally remove the wait entry.
1154 	 *
1155 	 * Note that this pairs with the "finish_wait()" in the
1156 	 * waiter, and has to be the absolute last thing we do.
1157 	 * After this list_del_init(&wait->entry) the wait entry
1158 	 * might be de-allocated and the process might even have
1159 	 * exited.
1160 	 */
1161 	list_del_init_careful(&wait->entry);
1162 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1163 }
1164 
1165 static void folio_wake_bit(struct folio *folio, int bit_nr)
1166 {
1167 	wait_queue_head_t *q = folio_waitqueue(folio);
1168 	struct wait_page_key key;
1169 	unsigned long flags;
1170 
1171 	key.folio = folio;
1172 	key.bit_nr = bit_nr;
1173 	key.page_match = 0;
1174 
1175 	spin_lock_irqsave(&q->lock, flags);
1176 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1177 
1178 	/*
1179 	 * It's possible to miss clearing waiters here, when we woke our page
1180 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1181 	 * That's okay, it's a rare case. The next waker will clear it.
1182 	 *
1183 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1184 	 * other), the flag may be cleared in the course of freeing the page;
1185 	 * but that is not required for correctness.
1186 	 */
1187 	if (!waitqueue_active(q) || !key.page_match)
1188 		folio_clear_waiters(folio);
1189 
1190 	spin_unlock_irqrestore(&q->lock, flags);
1191 }
1192 
1193 /*
1194  * A choice of three behaviors for folio_wait_bit_common():
1195  */
1196 enum behavior {
1197 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1198 			 * __folio_lock() waiting on then setting PG_locked.
1199 			 */
1200 	SHARED,		/* Hold ref to page and check the bit when woken, like
1201 			 * folio_wait_writeback() waiting on PG_writeback.
1202 			 */
1203 	DROP,		/* Drop ref to page before wait, no check when woken,
1204 			 * like folio_put_wait_locked() on PG_locked.
1205 			 */
1206 };
1207 
1208 /*
1209  * Attempt to check (or get) the folio flag, and mark us done
1210  * if successful.
1211  */
1212 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1213 					struct wait_queue_entry *wait)
1214 {
1215 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1216 		if (test_and_set_bit(bit_nr, &folio->flags))
1217 			return false;
1218 	} else if (test_bit(bit_nr, &folio->flags))
1219 		return false;
1220 
1221 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1222 	return true;
1223 }
1224 
1225 /* How many times do we accept lock stealing from under a waiter? */
1226 int sysctl_page_lock_unfairness = 5;
1227 
1228 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1229 		int state, enum behavior behavior)
1230 {
1231 	wait_queue_head_t *q = folio_waitqueue(folio);
1232 	int unfairness = sysctl_page_lock_unfairness;
1233 	struct wait_page_queue wait_page;
1234 	wait_queue_entry_t *wait = &wait_page.wait;
1235 	bool thrashing = false;
1236 	unsigned long pflags;
1237 	bool in_thrashing;
1238 
1239 	if (bit_nr == PG_locked &&
1240 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1241 		delayacct_thrashing_start(&in_thrashing);
1242 		psi_memstall_enter(&pflags);
1243 		thrashing = true;
1244 	}
1245 
1246 	init_wait(wait);
1247 	wait->func = wake_page_function;
1248 	wait_page.folio = folio;
1249 	wait_page.bit_nr = bit_nr;
1250 
1251 repeat:
1252 	wait->flags = 0;
1253 	if (behavior == EXCLUSIVE) {
1254 		wait->flags = WQ_FLAG_EXCLUSIVE;
1255 		if (--unfairness < 0)
1256 			wait->flags |= WQ_FLAG_CUSTOM;
1257 	}
1258 
1259 	/*
1260 	 * Do one last check whether we can get the
1261 	 * page bit synchronously.
1262 	 *
1263 	 * Do the folio_set_waiters() marking before that
1264 	 * to let any waker we _just_ missed know they
1265 	 * need to wake us up (otherwise they'll never
1266 	 * even go to the slow case that looks at the
1267 	 * page queue), and add ourselves to the wait
1268 	 * queue if we need to sleep.
1269 	 *
1270 	 * This part needs to be done under the queue
1271 	 * lock to avoid races.
1272 	 */
1273 	spin_lock_irq(&q->lock);
1274 	folio_set_waiters(folio);
1275 	if (!folio_trylock_flag(folio, bit_nr, wait))
1276 		__add_wait_queue_entry_tail(q, wait);
1277 	spin_unlock_irq(&q->lock);
1278 
1279 	/*
1280 	 * From now on, all the logic will be based on
1281 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1282 	 * see whether the page bit testing has already
1283 	 * been done by the wake function.
1284 	 *
1285 	 * We can drop our reference to the folio.
1286 	 */
1287 	if (behavior == DROP)
1288 		folio_put(folio);
1289 
1290 	/*
1291 	 * Note that until the "finish_wait()", or until
1292 	 * we see the WQ_FLAG_WOKEN flag, we need to
1293 	 * be very careful with the 'wait->flags', because
1294 	 * we may race with a waker that sets them.
1295 	 */
1296 	for (;;) {
1297 		unsigned int flags;
1298 
1299 		set_current_state(state);
1300 
1301 		/* Loop until we've been woken or interrupted */
1302 		flags = smp_load_acquire(&wait->flags);
1303 		if (!(flags & WQ_FLAG_WOKEN)) {
1304 			if (signal_pending_state(state, current))
1305 				break;
1306 
1307 			io_schedule();
1308 			continue;
1309 		}
1310 
1311 		/* If we were non-exclusive, we're done */
1312 		if (behavior != EXCLUSIVE)
1313 			break;
1314 
1315 		/* If the waker got the lock for us, we're done */
1316 		if (flags & WQ_FLAG_DONE)
1317 			break;
1318 
1319 		/*
1320 		 * Otherwise, if we're getting the lock, we need to
1321 		 * try to get it ourselves.
1322 		 *
1323 		 * And if that fails, we'll have to retry this all.
1324 		 */
1325 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1326 			goto repeat;
1327 
1328 		wait->flags |= WQ_FLAG_DONE;
1329 		break;
1330 	}
1331 
1332 	/*
1333 	 * If a signal happened, this 'finish_wait()' may remove the last
1334 	 * waiter from the wait-queues, but the folio waiters bit will remain
1335 	 * set. That's ok. The next wakeup will take care of it, and trying
1336 	 * to do it here would be difficult and prone to races.
1337 	 */
1338 	finish_wait(q, wait);
1339 
1340 	if (thrashing) {
1341 		delayacct_thrashing_end(&in_thrashing);
1342 		psi_memstall_leave(&pflags);
1343 	}
1344 
1345 	/*
1346 	 * NOTE! The wait->flags weren't stable until we've done the
1347 	 * 'finish_wait()', and we could have exited the loop above due
1348 	 * to a signal, and had a wakeup event happen after the signal
1349 	 * test but before the 'finish_wait()'.
1350 	 *
1351 	 * So only after the finish_wait() can we reliably determine
1352 	 * if we got woken up or not, so we can now figure out the final
1353 	 * return value based on that state without races.
1354 	 *
1355 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1356 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1357 	 */
1358 	if (behavior == EXCLUSIVE)
1359 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1360 
1361 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1362 }
1363 
1364 #ifdef CONFIG_MIGRATION
1365 /**
1366  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1367  * @entry: migration swap entry.
1368  * @ptl: already locked ptl. This function will drop the lock.
1369  *
1370  * Wait for a migration entry referencing the given page to be removed. This is
1371  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1372  * this can be called without taking a reference on the page. Instead this
1373  * should be called while holding the ptl for the migration entry referencing
1374  * the page.
1375  *
1376  * Returns after unlocking the ptl.
1377  *
1378  * This follows the same logic as folio_wait_bit_common() so see the comments
1379  * there.
1380  */
1381 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1382 	__releases(ptl)
1383 {
1384 	struct wait_page_queue wait_page;
1385 	wait_queue_entry_t *wait = &wait_page.wait;
1386 	bool thrashing = false;
1387 	unsigned long pflags;
1388 	bool in_thrashing;
1389 	wait_queue_head_t *q;
1390 	struct folio *folio = pfn_swap_entry_folio(entry);
1391 
1392 	q = folio_waitqueue(folio);
1393 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1394 		delayacct_thrashing_start(&in_thrashing);
1395 		psi_memstall_enter(&pflags);
1396 		thrashing = true;
1397 	}
1398 
1399 	init_wait(wait);
1400 	wait->func = wake_page_function;
1401 	wait_page.folio = folio;
1402 	wait_page.bit_nr = PG_locked;
1403 	wait->flags = 0;
1404 
1405 	spin_lock_irq(&q->lock);
1406 	folio_set_waiters(folio);
1407 	if (!folio_trylock_flag(folio, PG_locked, wait))
1408 		__add_wait_queue_entry_tail(q, wait);
1409 	spin_unlock_irq(&q->lock);
1410 
1411 	/*
1412 	 * If a migration entry exists for the page the migration path must hold
1413 	 * a valid reference to the page, and it must take the ptl to remove the
1414 	 * migration entry. So the page is valid until the ptl is dropped.
1415 	 */
1416 	spin_unlock(ptl);
1417 
1418 	for (;;) {
1419 		unsigned int flags;
1420 
1421 		set_current_state(TASK_UNINTERRUPTIBLE);
1422 
1423 		/* Loop until we've been woken or interrupted */
1424 		flags = smp_load_acquire(&wait->flags);
1425 		if (!(flags & WQ_FLAG_WOKEN)) {
1426 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1427 				break;
1428 
1429 			io_schedule();
1430 			continue;
1431 		}
1432 		break;
1433 	}
1434 
1435 	finish_wait(q, wait);
1436 
1437 	if (thrashing) {
1438 		delayacct_thrashing_end(&in_thrashing);
1439 		psi_memstall_leave(&pflags);
1440 	}
1441 }
1442 #endif
1443 
1444 void folio_wait_bit(struct folio *folio, int bit_nr)
1445 {
1446 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1447 }
1448 EXPORT_SYMBOL(folio_wait_bit);
1449 
1450 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1451 {
1452 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1453 }
1454 EXPORT_SYMBOL(folio_wait_bit_killable);
1455 
1456 /**
1457  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1458  * @folio: The folio to wait for.
1459  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1460  *
1461  * The caller should hold a reference on @folio.  They expect the page to
1462  * become unlocked relatively soon, but do not wish to hold up migration
1463  * (for example) by holding the reference while waiting for the folio to
1464  * come unlocked.  After this function returns, the caller should not
1465  * dereference @folio.
1466  *
1467  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1468  */
1469 static int folio_put_wait_locked(struct folio *folio, int state)
1470 {
1471 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1472 }
1473 
1474 /**
1475  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1476  * @folio: Folio defining the wait queue of interest
1477  * @waiter: Waiter to add to the queue
1478  *
1479  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1480  */
1481 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1482 {
1483 	wait_queue_head_t *q = folio_waitqueue(folio);
1484 	unsigned long flags;
1485 
1486 	spin_lock_irqsave(&q->lock, flags);
1487 	__add_wait_queue_entry_tail(q, waiter);
1488 	folio_set_waiters(folio);
1489 	spin_unlock_irqrestore(&q->lock, flags);
1490 }
1491 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1492 
1493 /**
1494  * folio_unlock - Unlock a locked folio.
1495  * @folio: The folio.
1496  *
1497  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1498  *
1499  * Context: May be called from interrupt or process context.  May not be
1500  * called from NMI context.
1501  */
1502 void folio_unlock(struct folio *folio)
1503 {
1504 	/* Bit 7 allows x86 to check the byte's sign bit */
1505 	BUILD_BUG_ON(PG_waiters != 7);
1506 	BUILD_BUG_ON(PG_locked > 7);
1507 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1508 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1509 		folio_wake_bit(folio, PG_locked);
1510 }
1511 EXPORT_SYMBOL(folio_unlock);
1512 
1513 /**
1514  * folio_end_read - End read on a folio.
1515  * @folio: The folio.
1516  * @success: True if all reads completed successfully.
1517  *
1518  * When all reads against a folio have completed, filesystems should
1519  * call this function to let the pagecache know that no more reads
1520  * are outstanding.  This will unlock the folio and wake up any thread
1521  * sleeping on the lock.  The folio will also be marked uptodate if all
1522  * reads succeeded.
1523  *
1524  * Context: May be called from interrupt or process context.  May not be
1525  * called from NMI context.
1526  */
1527 void folio_end_read(struct folio *folio, bool success)
1528 {
1529 	unsigned long mask = 1 << PG_locked;
1530 
1531 	/* Must be in bottom byte for x86 to work */
1532 	BUILD_BUG_ON(PG_uptodate > 7);
1533 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1534 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1535 
1536 	if (likely(success))
1537 		mask |= 1 << PG_uptodate;
1538 	if (folio_xor_flags_has_waiters(folio, mask))
1539 		folio_wake_bit(folio, PG_locked);
1540 }
1541 EXPORT_SYMBOL(folio_end_read);
1542 
1543 /**
1544  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1545  * @folio: The folio.
1546  *
1547  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1548  * it.  The folio reference held for PG_private_2 being set is released.
1549  *
1550  * This is, for example, used when a netfs folio is being written to a local
1551  * disk cache, thereby allowing writes to the cache for the same folio to be
1552  * serialised.
1553  */
1554 void folio_end_private_2(struct folio *folio)
1555 {
1556 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1557 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1558 	folio_wake_bit(folio, PG_private_2);
1559 	folio_put(folio);
1560 }
1561 EXPORT_SYMBOL(folio_end_private_2);
1562 
1563 /**
1564  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1565  * @folio: The folio to wait on.
1566  *
1567  * Wait for PG_private_2 to be cleared on a folio.
1568  */
1569 void folio_wait_private_2(struct folio *folio)
1570 {
1571 	while (folio_test_private_2(folio))
1572 		folio_wait_bit(folio, PG_private_2);
1573 }
1574 EXPORT_SYMBOL(folio_wait_private_2);
1575 
1576 /**
1577  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1578  * @folio: The folio to wait on.
1579  *
1580  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1581  * received by the calling task.
1582  *
1583  * Return:
1584  * - 0 if successful.
1585  * - -EINTR if a fatal signal was encountered.
1586  */
1587 int folio_wait_private_2_killable(struct folio *folio)
1588 {
1589 	int ret = 0;
1590 
1591 	while (folio_test_private_2(folio)) {
1592 		ret = folio_wait_bit_killable(folio, PG_private_2);
1593 		if (ret < 0)
1594 			break;
1595 	}
1596 
1597 	return ret;
1598 }
1599 EXPORT_SYMBOL(folio_wait_private_2_killable);
1600 
1601 /**
1602  * folio_end_writeback - End writeback against a folio.
1603  * @folio: The folio.
1604  *
1605  * The folio must actually be under writeback.
1606  *
1607  * Context: May be called from process or interrupt context.
1608  */
1609 void folio_end_writeback(struct folio *folio)
1610 {
1611 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1612 
1613 	/*
1614 	 * folio_test_clear_reclaim() could be used here but it is an
1615 	 * atomic operation and overkill in this particular case. Failing
1616 	 * to shuffle a folio marked for immediate reclaim is too mild
1617 	 * a gain to justify taking an atomic operation penalty at the
1618 	 * end of every folio writeback.
1619 	 */
1620 	if (folio_test_reclaim(folio)) {
1621 		folio_clear_reclaim(folio);
1622 		folio_rotate_reclaimable(folio);
1623 	}
1624 
1625 	/*
1626 	 * Writeback does not hold a folio reference of its own, relying
1627 	 * on truncation to wait for the clearing of PG_writeback.
1628 	 * But here we must make sure that the folio is not freed and
1629 	 * reused before the folio_wake_bit().
1630 	 */
1631 	folio_get(folio);
1632 	if (__folio_end_writeback(folio))
1633 		folio_wake_bit(folio, PG_writeback);
1634 	acct_reclaim_writeback(folio);
1635 	folio_put(folio);
1636 }
1637 EXPORT_SYMBOL(folio_end_writeback);
1638 
1639 /**
1640  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1641  * @folio: The folio to lock
1642  */
1643 void __folio_lock(struct folio *folio)
1644 {
1645 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1646 				EXCLUSIVE);
1647 }
1648 EXPORT_SYMBOL(__folio_lock);
1649 
1650 int __folio_lock_killable(struct folio *folio)
1651 {
1652 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1653 					EXCLUSIVE);
1654 }
1655 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1656 
1657 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1658 {
1659 	struct wait_queue_head *q = folio_waitqueue(folio);
1660 	int ret;
1661 
1662 	wait->folio = folio;
1663 	wait->bit_nr = PG_locked;
1664 
1665 	spin_lock_irq(&q->lock);
1666 	__add_wait_queue_entry_tail(q, &wait->wait);
1667 	folio_set_waiters(folio);
1668 	ret = !folio_trylock(folio);
1669 	/*
1670 	 * If we were successful now, we know we're still on the
1671 	 * waitqueue as we're still under the lock. This means it's
1672 	 * safe to remove and return success, we know the callback
1673 	 * isn't going to trigger.
1674 	 */
1675 	if (!ret)
1676 		__remove_wait_queue(q, &wait->wait);
1677 	else
1678 		ret = -EIOCBQUEUED;
1679 	spin_unlock_irq(&q->lock);
1680 	return ret;
1681 }
1682 
1683 /*
1684  * Return values:
1685  * 0 - folio is locked.
1686  * non-zero - folio is not locked.
1687  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1688  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1689  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1690  *
1691  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1692  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1693  */
1694 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1695 {
1696 	unsigned int flags = vmf->flags;
1697 
1698 	if (fault_flag_allow_retry_first(flags)) {
1699 		/*
1700 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1701 		 * released even though returning VM_FAULT_RETRY.
1702 		 */
1703 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1704 			return VM_FAULT_RETRY;
1705 
1706 		release_fault_lock(vmf);
1707 		if (flags & FAULT_FLAG_KILLABLE)
1708 			folio_wait_locked_killable(folio);
1709 		else
1710 			folio_wait_locked(folio);
1711 		return VM_FAULT_RETRY;
1712 	}
1713 	if (flags & FAULT_FLAG_KILLABLE) {
1714 		bool ret;
1715 
1716 		ret = __folio_lock_killable(folio);
1717 		if (ret) {
1718 			release_fault_lock(vmf);
1719 			return VM_FAULT_RETRY;
1720 		}
1721 	} else {
1722 		__folio_lock(folio);
1723 	}
1724 
1725 	return 0;
1726 }
1727 
1728 /**
1729  * page_cache_next_miss() - Find the next gap in the page cache.
1730  * @mapping: Mapping.
1731  * @index: Index.
1732  * @max_scan: Maximum range to search.
1733  *
1734  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1735  * gap with the lowest index.
1736  *
1737  * This function may be called under the rcu_read_lock.  However, this will
1738  * not atomically search a snapshot of the cache at a single point in time.
1739  * For example, if a gap is created at index 5, then subsequently a gap is
1740  * created at index 10, page_cache_next_miss covering both indices may
1741  * return 10 if called under the rcu_read_lock.
1742  *
1743  * Return: The index of the gap if found, otherwise an index outside the
1744  * range specified (in which case 'return - index >= max_scan' will be true).
1745  * In the rare case of index wrap-around, 0 will be returned.
1746  */
1747 pgoff_t page_cache_next_miss(struct address_space *mapping,
1748 			     pgoff_t index, unsigned long max_scan)
1749 {
1750 	XA_STATE(xas, &mapping->i_pages, index);
1751 
1752 	while (max_scan--) {
1753 		void *entry = xas_next(&xas);
1754 		if (!entry || xa_is_value(entry))
1755 			return xas.xa_index;
1756 		if (xas.xa_index == 0)
1757 			return 0;
1758 	}
1759 
1760 	return index + max_scan;
1761 }
1762 EXPORT_SYMBOL(page_cache_next_miss);
1763 
1764 /**
1765  * page_cache_prev_miss() - Find the previous gap in the page cache.
1766  * @mapping: Mapping.
1767  * @index: Index.
1768  * @max_scan: Maximum range to search.
1769  *
1770  * Search the range [max(index - max_scan + 1, 0), index] for the
1771  * gap with the highest index.
1772  *
1773  * This function may be called under the rcu_read_lock.  However, this will
1774  * not atomically search a snapshot of the cache at a single point in time.
1775  * For example, if a gap is created at index 10, then subsequently a gap is
1776  * created at index 5, page_cache_prev_miss() covering both indices may
1777  * return 5 if called under the rcu_read_lock.
1778  *
1779  * Return: The index of the gap if found, otherwise an index outside the
1780  * range specified (in which case 'index - return >= max_scan' will be true).
1781  * In the rare case of wrap-around, ULONG_MAX will be returned.
1782  */
1783 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1784 			     pgoff_t index, unsigned long max_scan)
1785 {
1786 	XA_STATE(xas, &mapping->i_pages, index);
1787 
1788 	while (max_scan--) {
1789 		void *entry = xas_prev(&xas);
1790 		if (!entry || xa_is_value(entry))
1791 			break;
1792 		if (xas.xa_index == ULONG_MAX)
1793 			break;
1794 	}
1795 
1796 	return xas.xa_index;
1797 }
1798 EXPORT_SYMBOL(page_cache_prev_miss);
1799 
1800 /*
1801  * Lockless page cache protocol:
1802  * On the lookup side:
1803  * 1. Load the folio from i_pages
1804  * 2. Increment the refcount if it's not zero
1805  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1806  *
1807  * On the removal side:
1808  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1809  * B. Remove the page from i_pages
1810  * C. Return the page to the page allocator
1811  *
1812  * This means that any page may have its reference count temporarily
1813  * increased by a speculative page cache (or GUP-fast) lookup as it can
1814  * be allocated by another user before the RCU grace period expires.
1815  * Because the refcount temporarily acquired here may end up being the
1816  * last refcount on the page, any page allocation must be freeable by
1817  * folio_put().
1818  */
1819 
1820 /*
1821  * filemap_get_entry - Get a page cache entry.
1822  * @mapping: the address_space to search
1823  * @index: The page cache index.
1824  *
1825  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1826  * it is returned with an increased refcount.  If it is a shadow entry
1827  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1828  * it is returned without further action.
1829  *
1830  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1831  */
1832 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1833 {
1834 	XA_STATE(xas, &mapping->i_pages, index);
1835 	struct folio *folio;
1836 
1837 	rcu_read_lock();
1838 repeat:
1839 	xas_reset(&xas);
1840 	folio = xas_load(&xas);
1841 	if (xas_retry(&xas, folio))
1842 		goto repeat;
1843 	/*
1844 	 * A shadow entry of a recently evicted page, or a swap entry from
1845 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1846 	 */
1847 	if (!folio || xa_is_value(folio))
1848 		goto out;
1849 
1850 	if (!folio_try_get(folio))
1851 		goto repeat;
1852 
1853 	if (unlikely(folio != xas_reload(&xas))) {
1854 		folio_put(folio);
1855 		goto repeat;
1856 	}
1857 out:
1858 	rcu_read_unlock();
1859 
1860 	return folio;
1861 }
1862 
1863 /**
1864  * __filemap_get_folio - Find and get a reference to a folio.
1865  * @mapping: The address_space to search.
1866  * @index: The page index.
1867  * @fgp_flags: %FGP flags modify how the folio is returned.
1868  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1869  *
1870  * Looks up the page cache entry at @mapping & @index.
1871  *
1872  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1873  * if the %GFP flags specified for %FGP_CREAT are atomic.
1874  *
1875  * If this function returns a folio, it is returned with an increased refcount.
1876  *
1877  * Return: The found folio or an ERR_PTR() otherwise.
1878  */
1879 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1880 		fgf_t fgp_flags, gfp_t gfp)
1881 {
1882 	struct folio *folio;
1883 
1884 repeat:
1885 	folio = filemap_get_entry(mapping, index);
1886 	if (xa_is_value(folio))
1887 		folio = NULL;
1888 	if (!folio)
1889 		goto no_page;
1890 
1891 	if (fgp_flags & FGP_LOCK) {
1892 		if (fgp_flags & FGP_NOWAIT) {
1893 			if (!folio_trylock(folio)) {
1894 				folio_put(folio);
1895 				return ERR_PTR(-EAGAIN);
1896 			}
1897 		} else {
1898 			folio_lock(folio);
1899 		}
1900 
1901 		/* Has the page been truncated? */
1902 		if (unlikely(folio->mapping != mapping)) {
1903 			folio_unlock(folio);
1904 			folio_put(folio);
1905 			goto repeat;
1906 		}
1907 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1908 	}
1909 
1910 	if (fgp_flags & FGP_ACCESSED)
1911 		folio_mark_accessed(folio);
1912 	else if (fgp_flags & FGP_WRITE) {
1913 		/* Clear idle flag for buffer write */
1914 		if (folio_test_idle(folio))
1915 			folio_clear_idle(folio);
1916 	}
1917 
1918 	if (fgp_flags & FGP_STABLE)
1919 		folio_wait_stable(folio);
1920 no_page:
1921 	if (!folio && (fgp_flags & FGP_CREAT)) {
1922 		unsigned order = FGF_GET_ORDER(fgp_flags);
1923 		int err;
1924 
1925 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1926 			gfp |= __GFP_WRITE;
1927 		if (fgp_flags & FGP_NOFS)
1928 			gfp &= ~__GFP_FS;
1929 		if (fgp_flags & FGP_NOWAIT) {
1930 			gfp &= ~GFP_KERNEL;
1931 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1932 		}
1933 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1934 			fgp_flags |= FGP_LOCK;
1935 
1936 		if (!mapping_large_folio_support(mapping))
1937 			order = 0;
1938 		if (order > MAX_PAGECACHE_ORDER)
1939 			order = MAX_PAGECACHE_ORDER;
1940 		/* If we're not aligned, allocate a smaller folio */
1941 		if (index & ((1UL << order) - 1))
1942 			order = __ffs(index);
1943 
1944 		do {
1945 			gfp_t alloc_gfp = gfp;
1946 
1947 			err = -ENOMEM;
1948 			if (order > 0)
1949 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1950 			folio = filemap_alloc_folio(alloc_gfp, order);
1951 			if (!folio)
1952 				continue;
1953 
1954 			/* Init accessed so avoid atomic mark_page_accessed later */
1955 			if (fgp_flags & FGP_ACCESSED)
1956 				__folio_set_referenced(folio);
1957 
1958 			err = filemap_add_folio(mapping, folio, index, gfp);
1959 			if (!err)
1960 				break;
1961 			folio_put(folio);
1962 			folio = NULL;
1963 		} while (order-- > 0);
1964 
1965 		if (err == -EEXIST)
1966 			goto repeat;
1967 		if (err)
1968 			return ERR_PTR(err);
1969 		/*
1970 		 * filemap_add_folio locks the page, and for mmap
1971 		 * we expect an unlocked page.
1972 		 */
1973 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1974 			folio_unlock(folio);
1975 	}
1976 
1977 	if (!folio)
1978 		return ERR_PTR(-ENOENT);
1979 	return folio;
1980 }
1981 EXPORT_SYMBOL(__filemap_get_folio);
1982 
1983 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1984 		xa_mark_t mark)
1985 {
1986 	struct folio *folio;
1987 
1988 retry:
1989 	if (mark == XA_PRESENT)
1990 		folio = xas_find(xas, max);
1991 	else
1992 		folio = xas_find_marked(xas, max, mark);
1993 
1994 	if (xas_retry(xas, folio))
1995 		goto retry;
1996 	/*
1997 	 * A shadow entry of a recently evicted page, a swap
1998 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1999 	 * without attempting to raise page count.
2000 	 */
2001 	if (!folio || xa_is_value(folio))
2002 		return folio;
2003 
2004 	if (!folio_try_get(folio))
2005 		goto reset;
2006 
2007 	if (unlikely(folio != xas_reload(xas))) {
2008 		folio_put(folio);
2009 		goto reset;
2010 	}
2011 
2012 	return folio;
2013 reset:
2014 	xas_reset(xas);
2015 	goto retry;
2016 }
2017 
2018 /**
2019  * find_get_entries - gang pagecache lookup
2020  * @mapping:	The address_space to search
2021  * @start:	The starting page cache index
2022  * @end:	The final page index (inclusive).
2023  * @fbatch:	Where the resulting entries are placed.
2024  * @indices:	The cache indices corresponding to the entries in @entries
2025  *
2026  * find_get_entries() will search for and return a batch of entries in
2027  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2028  * takes a reference on any actual folios it returns.
2029  *
2030  * The entries have ascending indexes.  The indices may not be consecutive
2031  * due to not-present entries or large folios.
2032  *
2033  * Any shadow entries of evicted folios, or swap entries from
2034  * shmem/tmpfs, are included in the returned array.
2035  *
2036  * Return: The number of entries which were found.
2037  */
2038 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2039 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2040 {
2041 	XA_STATE(xas, &mapping->i_pages, *start);
2042 	struct folio *folio;
2043 
2044 	rcu_read_lock();
2045 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2046 		indices[fbatch->nr] = xas.xa_index;
2047 		if (!folio_batch_add(fbatch, folio))
2048 			break;
2049 	}
2050 	rcu_read_unlock();
2051 
2052 	if (folio_batch_count(fbatch)) {
2053 		unsigned long nr = 1;
2054 		int idx = folio_batch_count(fbatch) - 1;
2055 
2056 		folio = fbatch->folios[idx];
2057 		if (!xa_is_value(folio))
2058 			nr = folio_nr_pages(folio);
2059 		*start = indices[idx] + nr;
2060 	}
2061 	return folio_batch_count(fbatch);
2062 }
2063 
2064 /**
2065  * find_lock_entries - Find a batch of pagecache entries.
2066  * @mapping:	The address_space to search.
2067  * @start:	The starting page cache index.
2068  * @end:	The final page index (inclusive).
2069  * @fbatch:	Where the resulting entries are placed.
2070  * @indices:	The cache indices of the entries in @fbatch.
2071  *
2072  * find_lock_entries() will return a batch of entries from @mapping.
2073  * Swap, shadow and DAX entries are included.  Folios are returned
2074  * locked and with an incremented refcount.  Folios which are locked
2075  * by somebody else or under writeback are skipped.  Folios which are
2076  * partially outside the range are not returned.
2077  *
2078  * The entries have ascending indexes.  The indices may not be consecutive
2079  * due to not-present entries, large folios, folios which could not be
2080  * locked or folios under writeback.
2081  *
2082  * Return: The number of entries which were found.
2083  */
2084 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2085 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2086 {
2087 	XA_STATE(xas, &mapping->i_pages, *start);
2088 	struct folio *folio;
2089 
2090 	rcu_read_lock();
2091 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2092 		if (!xa_is_value(folio)) {
2093 			if (folio->index < *start)
2094 				goto put;
2095 			if (folio_next_index(folio) - 1 > end)
2096 				goto put;
2097 			if (!folio_trylock(folio))
2098 				goto put;
2099 			if (folio->mapping != mapping ||
2100 			    folio_test_writeback(folio))
2101 				goto unlock;
2102 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2103 					folio);
2104 		}
2105 		indices[fbatch->nr] = xas.xa_index;
2106 		if (!folio_batch_add(fbatch, folio))
2107 			break;
2108 		continue;
2109 unlock:
2110 		folio_unlock(folio);
2111 put:
2112 		folio_put(folio);
2113 	}
2114 	rcu_read_unlock();
2115 
2116 	if (folio_batch_count(fbatch)) {
2117 		unsigned long nr = 1;
2118 		int idx = folio_batch_count(fbatch) - 1;
2119 
2120 		folio = fbatch->folios[idx];
2121 		if (!xa_is_value(folio))
2122 			nr = folio_nr_pages(folio);
2123 		*start = indices[idx] + nr;
2124 	}
2125 	return folio_batch_count(fbatch);
2126 }
2127 
2128 /**
2129  * filemap_get_folios - Get a batch of folios
2130  * @mapping:	The address_space to search
2131  * @start:	The starting page index
2132  * @end:	The final page index (inclusive)
2133  * @fbatch:	The batch to fill.
2134  *
2135  * Search for and return a batch of folios in the mapping starting at
2136  * index @start and up to index @end (inclusive).  The folios are returned
2137  * in @fbatch with an elevated reference count.
2138  *
2139  * Return: The number of folios which were found.
2140  * We also update @start to index the next folio for the traversal.
2141  */
2142 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2143 		pgoff_t end, struct folio_batch *fbatch)
2144 {
2145 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2146 }
2147 EXPORT_SYMBOL(filemap_get_folios);
2148 
2149 /**
2150  * filemap_get_folios_contig - Get a batch of contiguous folios
2151  * @mapping:	The address_space to search
2152  * @start:	The starting page index
2153  * @end:	The final page index (inclusive)
2154  * @fbatch:	The batch to fill
2155  *
2156  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2157  * except the returned folios are guaranteed to be contiguous. This may
2158  * not return all contiguous folios if the batch gets filled up.
2159  *
2160  * Return: The number of folios found.
2161  * Also update @start to be positioned for traversal of the next folio.
2162  */
2163 
2164 unsigned filemap_get_folios_contig(struct address_space *mapping,
2165 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2166 {
2167 	XA_STATE(xas, &mapping->i_pages, *start);
2168 	unsigned long nr;
2169 	struct folio *folio;
2170 
2171 	rcu_read_lock();
2172 
2173 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2174 			folio = xas_next(&xas)) {
2175 		if (xas_retry(&xas, folio))
2176 			continue;
2177 		/*
2178 		 * If the entry has been swapped out, we can stop looking.
2179 		 * No current caller is looking for DAX entries.
2180 		 */
2181 		if (xa_is_value(folio))
2182 			goto update_start;
2183 
2184 		if (!folio_try_get(folio))
2185 			goto retry;
2186 
2187 		if (unlikely(folio != xas_reload(&xas)))
2188 			goto put_folio;
2189 
2190 		if (!folio_batch_add(fbatch, folio)) {
2191 			nr = folio_nr_pages(folio);
2192 			*start = folio->index + nr;
2193 			goto out;
2194 		}
2195 		continue;
2196 put_folio:
2197 		folio_put(folio);
2198 
2199 retry:
2200 		xas_reset(&xas);
2201 	}
2202 
2203 update_start:
2204 	nr = folio_batch_count(fbatch);
2205 
2206 	if (nr) {
2207 		folio = fbatch->folios[nr - 1];
2208 		*start = folio_next_index(folio);
2209 	}
2210 out:
2211 	rcu_read_unlock();
2212 	return folio_batch_count(fbatch);
2213 }
2214 EXPORT_SYMBOL(filemap_get_folios_contig);
2215 
2216 /**
2217  * filemap_get_folios_tag - Get a batch of folios matching @tag
2218  * @mapping:    The address_space to search
2219  * @start:      The starting page index
2220  * @end:        The final page index (inclusive)
2221  * @tag:        The tag index
2222  * @fbatch:     The batch to fill
2223  *
2224  * The first folio may start before @start; if it does, it will contain
2225  * @start.  The final folio may extend beyond @end; if it does, it will
2226  * contain @end.  The folios have ascending indices.  There may be gaps
2227  * between the folios if there are indices which have no folio in the
2228  * page cache.  If folios are added to or removed from the page cache
2229  * while this is running, they may or may not be found by this call.
2230  * Only returns folios that are tagged with @tag.
2231  *
2232  * Return: The number of folios found.
2233  * Also update @start to index the next folio for traversal.
2234  */
2235 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2236 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2237 {
2238 	XA_STATE(xas, &mapping->i_pages, *start);
2239 	struct folio *folio;
2240 
2241 	rcu_read_lock();
2242 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2243 		/*
2244 		 * Shadow entries should never be tagged, but this iteration
2245 		 * is lockless so there is a window for page reclaim to evict
2246 		 * a page we saw tagged. Skip over it.
2247 		 */
2248 		if (xa_is_value(folio))
2249 			continue;
2250 		if (!folio_batch_add(fbatch, folio)) {
2251 			unsigned long nr = folio_nr_pages(folio);
2252 			*start = folio->index + nr;
2253 			goto out;
2254 		}
2255 	}
2256 	/*
2257 	 * We come here when there is no page beyond @end. We take care to not
2258 	 * overflow the index @start as it confuses some of the callers. This
2259 	 * breaks the iteration when there is a page at index -1 but that is
2260 	 * already broke anyway.
2261 	 */
2262 	if (end == (pgoff_t)-1)
2263 		*start = (pgoff_t)-1;
2264 	else
2265 		*start = end + 1;
2266 out:
2267 	rcu_read_unlock();
2268 
2269 	return folio_batch_count(fbatch);
2270 }
2271 EXPORT_SYMBOL(filemap_get_folios_tag);
2272 
2273 /*
2274  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2275  * a _large_ part of the i/o request. Imagine the worst scenario:
2276  *
2277  *      ---R__________________________________________B__________
2278  *         ^ reading here                             ^ bad block(assume 4k)
2279  *
2280  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2281  * => failing the whole request => read(R) => read(R+1) =>
2282  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2283  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2284  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2285  *
2286  * It is going insane. Fix it by quickly scaling down the readahead size.
2287  */
2288 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2289 {
2290 	ra->ra_pages /= 4;
2291 }
2292 
2293 /*
2294  * filemap_get_read_batch - Get a batch of folios for read
2295  *
2296  * Get a batch of folios which represent a contiguous range of bytes in
2297  * the file.  No exceptional entries will be returned.  If @index is in
2298  * the middle of a folio, the entire folio will be returned.  The last
2299  * folio in the batch may have the readahead flag set or the uptodate flag
2300  * clear so that the caller can take the appropriate action.
2301  */
2302 static void filemap_get_read_batch(struct address_space *mapping,
2303 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2304 {
2305 	XA_STATE(xas, &mapping->i_pages, index);
2306 	struct folio *folio;
2307 
2308 	rcu_read_lock();
2309 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2310 		if (xas_retry(&xas, folio))
2311 			continue;
2312 		if (xas.xa_index > max || xa_is_value(folio))
2313 			break;
2314 		if (xa_is_sibling(folio))
2315 			break;
2316 		if (!folio_try_get(folio))
2317 			goto retry;
2318 
2319 		if (unlikely(folio != xas_reload(&xas)))
2320 			goto put_folio;
2321 
2322 		if (!folio_batch_add(fbatch, folio))
2323 			break;
2324 		if (!folio_test_uptodate(folio))
2325 			break;
2326 		if (folio_test_readahead(folio))
2327 			break;
2328 		xas_advance(&xas, folio_next_index(folio) - 1);
2329 		continue;
2330 put_folio:
2331 		folio_put(folio);
2332 retry:
2333 		xas_reset(&xas);
2334 	}
2335 	rcu_read_unlock();
2336 }
2337 
2338 static int filemap_read_folio(struct file *file, filler_t filler,
2339 		struct folio *folio)
2340 {
2341 	bool workingset = folio_test_workingset(folio);
2342 	unsigned long pflags;
2343 	int error;
2344 
2345 	/*
2346 	 * A previous I/O error may have been due to temporary failures,
2347 	 * eg. multipath errors.  PG_error will be set again if read_folio
2348 	 * fails.
2349 	 */
2350 	folio_clear_error(folio);
2351 
2352 	/* Start the actual read. The read will unlock the page. */
2353 	if (unlikely(workingset))
2354 		psi_memstall_enter(&pflags);
2355 	error = filler(file, folio);
2356 	if (unlikely(workingset))
2357 		psi_memstall_leave(&pflags);
2358 	if (error)
2359 		return error;
2360 
2361 	error = folio_wait_locked_killable(folio);
2362 	if (error)
2363 		return error;
2364 	if (folio_test_uptodate(folio))
2365 		return 0;
2366 	if (file)
2367 		shrink_readahead_size_eio(&file->f_ra);
2368 	return -EIO;
2369 }
2370 
2371 static bool filemap_range_uptodate(struct address_space *mapping,
2372 		loff_t pos, size_t count, struct folio *folio,
2373 		bool need_uptodate)
2374 {
2375 	if (folio_test_uptodate(folio))
2376 		return true;
2377 	/* pipes can't handle partially uptodate pages */
2378 	if (need_uptodate)
2379 		return false;
2380 	if (!mapping->a_ops->is_partially_uptodate)
2381 		return false;
2382 	if (mapping->host->i_blkbits >= folio_shift(folio))
2383 		return false;
2384 
2385 	if (folio_pos(folio) > pos) {
2386 		count -= folio_pos(folio) - pos;
2387 		pos = 0;
2388 	} else {
2389 		pos -= folio_pos(folio);
2390 	}
2391 
2392 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2393 }
2394 
2395 static int filemap_update_page(struct kiocb *iocb,
2396 		struct address_space *mapping, size_t count,
2397 		struct folio *folio, bool need_uptodate)
2398 {
2399 	int error;
2400 
2401 	if (iocb->ki_flags & IOCB_NOWAIT) {
2402 		if (!filemap_invalidate_trylock_shared(mapping))
2403 			return -EAGAIN;
2404 	} else {
2405 		filemap_invalidate_lock_shared(mapping);
2406 	}
2407 
2408 	if (!folio_trylock(folio)) {
2409 		error = -EAGAIN;
2410 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2411 			goto unlock_mapping;
2412 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2413 			filemap_invalidate_unlock_shared(mapping);
2414 			/*
2415 			 * This is where we usually end up waiting for a
2416 			 * previously submitted readahead to finish.
2417 			 */
2418 			folio_put_wait_locked(folio, TASK_KILLABLE);
2419 			return AOP_TRUNCATED_PAGE;
2420 		}
2421 		error = __folio_lock_async(folio, iocb->ki_waitq);
2422 		if (error)
2423 			goto unlock_mapping;
2424 	}
2425 
2426 	error = AOP_TRUNCATED_PAGE;
2427 	if (!folio->mapping)
2428 		goto unlock;
2429 
2430 	error = 0;
2431 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2432 				   need_uptodate))
2433 		goto unlock;
2434 
2435 	error = -EAGAIN;
2436 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2437 		goto unlock;
2438 
2439 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2440 			folio);
2441 	goto unlock_mapping;
2442 unlock:
2443 	folio_unlock(folio);
2444 unlock_mapping:
2445 	filemap_invalidate_unlock_shared(mapping);
2446 	if (error == AOP_TRUNCATED_PAGE)
2447 		folio_put(folio);
2448 	return error;
2449 }
2450 
2451 static int filemap_create_folio(struct file *file,
2452 		struct address_space *mapping, pgoff_t index,
2453 		struct folio_batch *fbatch)
2454 {
2455 	struct folio *folio;
2456 	int error;
2457 
2458 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2459 	if (!folio)
2460 		return -ENOMEM;
2461 
2462 	/*
2463 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2464 	 * here assures we cannot instantiate and bring uptodate new
2465 	 * pagecache folios after evicting page cache during truncate
2466 	 * and before actually freeing blocks.	Note that we could
2467 	 * release invalidate_lock after inserting the folio into
2468 	 * the page cache as the locked folio would then be enough to
2469 	 * synchronize with hole punching. But there are code paths
2470 	 * such as filemap_update_page() filling in partially uptodate
2471 	 * pages or ->readahead() that need to hold invalidate_lock
2472 	 * while mapping blocks for IO so let's hold the lock here as
2473 	 * well to keep locking rules simple.
2474 	 */
2475 	filemap_invalidate_lock_shared(mapping);
2476 	error = filemap_add_folio(mapping, folio, index,
2477 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2478 	if (error == -EEXIST)
2479 		error = AOP_TRUNCATED_PAGE;
2480 	if (error)
2481 		goto error;
2482 
2483 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2484 	if (error)
2485 		goto error;
2486 
2487 	filemap_invalidate_unlock_shared(mapping);
2488 	folio_batch_add(fbatch, folio);
2489 	return 0;
2490 error:
2491 	filemap_invalidate_unlock_shared(mapping);
2492 	folio_put(folio);
2493 	return error;
2494 }
2495 
2496 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2497 		struct address_space *mapping, struct folio *folio,
2498 		pgoff_t last_index)
2499 {
2500 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2501 
2502 	if (iocb->ki_flags & IOCB_NOIO)
2503 		return -EAGAIN;
2504 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2505 	return 0;
2506 }
2507 
2508 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2509 		struct folio_batch *fbatch, bool need_uptodate)
2510 {
2511 	struct file *filp = iocb->ki_filp;
2512 	struct address_space *mapping = filp->f_mapping;
2513 	struct file_ra_state *ra = &filp->f_ra;
2514 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2515 	pgoff_t last_index;
2516 	struct folio *folio;
2517 	int err = 0;
2518 
2519 	/* "last_index" is the index of the page beyond the end of the read */
2520 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2521 retry:
2522 	if (fatal_signal_pending(current))
2523 		return -EINTR;
2524 
2525 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2526 	if (!folio_batch_count(fbatch)) {
2527 		if (iocb->ki_flags & IOCB_NOIO)
2528 			return -EAGAIN;
2529 		page_cache_sync_readahead(mapping, ra, filp, index,
2530 				last_index - index);
2531 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2532 	}
2533 	if (!folio_batch_count(fbatch)) {
2534 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2535 			return -EAGAIN;
2536 		err = filemap_create_folio(filp, mapping,
2537 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2538 		if (err == AOP_TRUNCATED_PAGE)
2539 			goto retry;
2540 		return err;
2541 	}
2542 
2543 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2544 	if (folio_test_readahead(folio)) {
2545 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2546 		if (err)
2547 			goto err;
2548 	}
2549 	if (!folio_test_uptodate(folio)) {
2550 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2551 		    folio_batch_count(fbatch) > 1)
2552 			iocb->ki_flags |= IOCB_NOWAIT;
2553 		err = filemap_update_page(iocb, mapping, count, folio,
2554 					  need_uptodate);
2555 		if (err)
2556 			goto err;
2557 	}
2558 
2559 	return 0;
2560 err:
2561 	if (err < 0)
2562 		folio_put(folio);
2563 	if (likely(--fbatch->nr))
2564 		return 0;
2565 	if (err == AOP_TRUNCATED_PAGE)
2566 		goto retry;
2567 	return err;
2568 }
2569 
2570 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2571 {
2572 	unsigned int shift = folio_shift(folio);
2573 
2574 	return (pos1 >> shift == pos2 >> shift);
2575 }
2576 
2577 /**
2578  * filemap_read - Read data from the page cache.
2579  * @iocb: The iocb to read.
2580  * @iter: Destination for the data.
2581  * @already_read: Number of bytes already read by the caller.
2582  *
2583  * Copies data from the page cache.  If the data is not currently present,
2584  * uses the readahead and read_folio address_space operations to fetch it.
2585  *
2586  * Return: Total number of bytes copied, including those already read by
2587  * the caller.  If an error happens before any bytes are copied, returns
2588  * a negative error number.
2589  */
2590 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2591 		ssize_t already_read)
2592 {
2593 	struct file *filp = iocb->ki_filp;
2594 	struct file_ra_state *ra = &filp->f_ra;
2595 	struct address_space *mapping = filp->f_mapping;
2596 	struct inode *inode = mapping->host;
2597 	struct folio_batch fbatch;
2598 	int i, error = 0;
2599 	bool writably_mapped;
2600 	loff_t isize, end_offset;
2601 	loff_t last_pos = ra->prev_pos;
2602 
2603 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2604 		return 0;
2605 	if (unlikely(!iov_iter_count(iter)))
2606 		return 0;
2607 
2608 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2609 	folio_batch_init(&fbatch);
2610 
2611 	do {
2612 		cond_resched();
2613 
2614 		/*
2615 		 * If we've already successfully copied some data, then we
2616 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2617 		 * an async read NOWAIT at that point.
2618 		 */
2619 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2620 			iocb->ki_flags |= IOCB_NOWAIT;
2621 
2622 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2623 			break;
2624 
2625 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2626 		if (error < 0)
2627 			break;
2628 
2629 		/*
2630 		 * i_size must be checked after we know the pages are Uptodate.
2631 		 *
2632 		 * Checking i_size after the check allows us to calculate
2633 		 * the correct value for "nr", which means the zero-filled
2634 		 * part of the page is not copied back to userspace (unless
2635 		 * another truncate extends the file - this is desired though).
2636 		 */
2637 		isize = i_size_read(inode);
2638 		if (unlikely(iocb->ki_pos >= isize))
2639 			goto put_folios;
2640 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2641 
2642 		/*
2643 		 * Once we start copying data, we don't want to be touching any
2644 		 * cachelines that might be contended:
2645 		 */
2646 		writably_mapped = mapping_writably_mapped(mapping);
2647 
2648 		/*
2649 		 * When a read accesses the same folio several times, only
2650 		 * mark it as accessed the first time.
2651 		 */
2652 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2653 				    fbatch.folios[0]))
2654 			folio_mark_accessed(fbatch.folios[0]);
2655 
2656 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2657 			struct folio *folio = fbatch.folios[i];
2658 			size_t fsize = folio_size(folio);
2659 			size_t offset = iocb->ki_pos & (fsize - 1);
2660 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2661 					     fsize - offset);
2662 			size_t copied;
2663 
2664 			if (end_offset < folio_pos(folio))
2665 				break;
2666 			if (i > 0)
2667 				folio_mark_accessed(folio);
2668 			/*
2669 			 * If users can be writing to this folio using arbitrary
2670 			 * virtual addresses, take care of potential aliasing
2671 			 * before reading the folio on the kernel side.
2672 			 */
2673 			if (writably_mapped)
2674 				flush_dcache_folio(folio);
2675 
2676 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2677 
2678 			already_read += copied;
2679 			iocb->ki_pos += copied;
2680 			last_pos = iocb->ki_pos;
2681 
2682 			if (copied < bytes) {
2683 				error = -EFAULT;
2684 				break;
2685 			}
2686 		}
2687 put_folios:
2688 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2689 			folio_put(fbatch.folios[i]);
2690 		folio_batch_init(&fbatch);
2691 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2692 
2693 	file_accessed(filp);
2694 	ra->prev_pos = last_pos;
2695 	return already_read ? already_read : error;
2696 }
2697 EXPORT_SYMBOL_GPL(filemap_read);
2698 
2699 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2700 {
2701 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2702 	loff_t pos = iocb->ki_pos;
2703 	loff_t end = pos + count - 1;
2704 
2705 	if (iocb->ki_flags & IOCB_NOWAIT) {
2706 		if (filemap_range_needs_writeback(mapping, pos, end))
2707 			return -EAGAIN;
2708 		return 0;
2709 	}
2710 
2711 	return filemap_write_and_wait_range(mapping, pos, end);
2712 }
2713 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2714 
2715 int filemap_invalidate_pages(struct address_space *mapping,
2716 			     loff_t pos, loff_t end, bool nowait)
2717 {
2718 	int ret;
2719 
2720 	if (nowait) {
2721 		/* we could block if there are any pages in the range */
2722 		if (filemap_range_has_page(mapping, pos, end))
2723 			return -EAGAIN;
2724 	} else {
2725 		ret = filemap_write_and_wait_range(mapping, pos, end);
2726 		if (ret)
2727 			return ret;
2728 	}
2729 
2730 	/*
2731 	 * After a write we want buffered reads to be sure to go to disk to get
2732 	 * the new data.  We invalidate clean cached page from the region we're
2733 	 * about to write.  We do this *before* the write so that we can return
2734 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2735 	 */
2736 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2737 					     end >> PAGE_SHIFT);
2738 }
2739 
2740 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2741 {
2742 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2743 
2744 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2745 					iocb->ki_pos + count - 1,
2746 					iocb->ki_flags & IOCB_NOWAIT);
2747 }
2748 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2749 
2750 /**
2751  * generic_file_read_iter - generic filesystem read routine
2752  * @iocb:	kernel I/O control block
2753  * @iter:	destination for the data read
2754  *
2755  * This is the "read_iter()" routine for all filesystems
2756  * that can use the page cache directly.
2757  *
2758  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2759  * be returned when no data can be read without waiting for I/O requests
2760  * to complete; it doesn't prevent readahead.
2761  *
2762  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2763  * requests shall be made for the read or for readahead.  When no data
2764  * can be read, -EAGAIN shall be returned.  When readahead would be
2765  * triggered, a partial, possibly empty read shall be returned.
2766  *
2767  * Return:
2768  * * number of bytes copied, even for partial reads
2769  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2770  */
2771 ssize_t
2772 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2773 {
2774 	size_t count = iov_iter_count(iter);
2775 	ssize_t retval = 0;
2776 
2777 	if (!count)
2778 		return 0; /* skip atime */
2779 
2780 	if (iocb->ki_flags & IOCB_DIRECT) {
2781 		struct file *file = iocb->ki_filp;
2782 		struct address_space *mapping = file->f_mapping;
2783 		struct inode *inode = mapping->host;
2784 
2785 		retval = kiocb_write_and_wait(iocb, count);
2786 		if (retval < 0)
2787 			return retval;
2788 		file_accessed(file);
2789 
2790 		retval = mapping->a_ops->direct_IO(iocb, iter);
2791 		if (retval >= 0) {
2792 			iocb->ki_pos += retval;
2793 			count -= retval;
2794 		}
2795 		if (retval != -EIOCBQUEUED)
2796 			iov_iter_revert(iter, count - iov_iter_count(iter));
2797 
2798 		/*
2799 		 * Btrfs can have a short DIO read if we encounter
2800 		 * compressed extents, so if there was an error, or if
2801 		 * we've already read everything we wanted to, or if
2802 		 * there was a short read because we hit EOF, go ahead
2803 		 * and return.  Otherwise fallthrough to buffered io for
2804 		 * the rest of the read.  Buffered reads will not work for
2805 		 * DAX files, so don't bother trying.
2806 		 */
2807 		if (retval < 0 || !count || IS_DAX(inode))
2808 			return retval;
2809 		if (iocb->ki_pos >= i_size_read(inode))
2810 			return retval;
2811 	}
2812 
2813 	return filemap_read(iocb, iter, retval);
2814 }
2815 EXPORT_SYMBOL(generic_file_read_iter);
2816 
2817 /*
2818  * Splice subpages from a folio into a pipe.
2819  */
2820 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2821 			      struct folio *folio, loff_t fpos, size_t size)
2822 {
2823 	struct page *page;
2824 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2825 
2826 	page = folio_page(folio, offset / PAGE_SIZE);
2827 	size = min(size, folio_size(folio) - offset);
2828 	offset %= PAGE_SIZE;
2829 
2830 	while (spliced < size &&
2831 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2832 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2833 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2834 
2835 		*buf = (struct pipe_buffer) {
2836 			.ops	= &page_cache_pipe_buf_ops,
2837 			.page	= page,
2838 			.offset	= offset,
2839 			.len	= part,
2840 		};
2841 		folio_get(folio);
2842 		pipe->head++;
2843 		page++;
2844 		spliced += part;
2845 		offset = 0;
2846 	}
2847 
2848 	return spliced;
2849 }
2850 
2851 /**
2852  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2853  * @in: The file to read from
2854  * @ppos: Pointer to the file position to read from
2855  * @pipe: The pipe to splice into
2856  * @len: The amount to splice
2857  * @flags: The SPLICE_F_* flags
2858  *
2859  * This function gets folios from a file's pagecache and splices them into the
2860  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2861  * be used for blockdevs also.
2862  *
2863  * Return: On success, the number of bytes read will be returned and *@ppos
2864  * will be updated if appropriate; 0 will be returned if there is no more data
2865  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2866  * other negative error code will be returned on error.  A short read may occur
2867  * if the pipe has insufficient space, we reach the end of the data or we hit a
2868  * hole.
2869  */
2870 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2871 			    struct pipe_inode_info *pipe,
2872 			    size_t len, unsigned int flags)
2873 {
2874 	struct folio_batch fbatch;
2875 	struct kiocb iocb;
2876 	size_t total_spliced = 0, used, npages;
2877 	loff_t isize, end_offset;
2878 	bool writably_mapped;
2879 	int i, error = 0;
2880 
2881 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2882 		return 0;
2883 
2884 	init_sync_kiocb(&iocb, in);
2885 	iocb.ki_pos = *ppos;
2886 
2887 	/* Work out how much data we can actually add into the pipe */
2888 	used = pipe_occupancy(pipe->head, pipe->tail);
2889 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2890 	len = min_t(size_t, len, npages * PAGE_SIZE);
2891 
2892 	folio_batch_init(&fbatch);
2893 
2894 	do {
2895 		cond_resched();
2896 
2897 		if (*ppos >= i_size_read(in->f_mapping->host))
2898 			break;
2899 
2900 		iocb.ki_pos = *ppos;
2901 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2902 		if (error < 0)
2903 			break;
2904 
2905 		/*
2906 		 * i_size must be checked after we know the pages are Uptodate.
2907 		 *
2908 		 * Checking i_size after the check allows us to calculate
2909 		 * the correct value for "nr", which means the zero-filled
2910 		 * part of the page is not copied back to userspace (unless
2911 		 * another truncate extends the file - this is desired though).
2912 		 */
2913 		isize = i_size_read(in->f_mapping->host);
2914 		if (unlikely(*ppos >= isize))
2915 			break;
2916 		end_offset = min_t(loff_t, isize, *ppos + len);
2917 
2918 		/*
2919 		 * Once we start copying data, we don't want to be touching any
2920 		 * cachelines that might be contended:
2921 		 */
2922 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2923 
2924 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2925 			struct folio *folio = fbatch.folios[i];
2926 			size_t n;
2927 
2928 			if (folio_pos(folio) >= end_offset)
2929 				goto out;
2930 			folio_mark_accessed(folio);
2931 
2932 			/*
2933 			 * If users can be writing to this folio using arbitrary
2934 			 * virtual addresses, take care of potential aliasing
2935 			 * before reading the folio on the kernel side.
2936 			 */
2937 			if (writably_mapped)
2938 				flush_dcache_folio(folio);
2939 
2940 			n = min_t(loff_t, len, isize - *ppos);
2941 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2942 			if (!n)
2943 				goto out;
2944 			len -= n;
2945 			total_spliced += n;
2946 			*ppos += n;
2947 			in->f_ra.prev_pos = *ppos;
2948 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2949 				goto out;
2950 		}
2951 
2952 		folio_batch_release(&fbatch);
2953 	} while (len);
2954 
2955 out:
2956 	folio_batch_release(&fbatch);
2957 	file_accessed(in);
2958 
2959 	return total_spliced ? total_spliced : error;
2960 }
2961 EXPORT_SYMBOL(filemap_splice_read);
2962 
2963 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2964 		struct address_space *mapping, struct folio *folio,
2965 		loff_t start, loff_t end, bool seek_data)
2966 {
2967 	const struct address_space_operations *ops = mapping->a_ops;
2968 	size_t offset, bsz = i_blocksize(mapping->host);
2969 
2970 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2971 		return seek_data ? start : end;
2972 	if (!ops->is_partially_uptodate)
2973 		return seek_data ? end : start;
2974 
2975 	xas_pause(xas);
2976 	rcu_read_unlock();
2977 	folio_lock(folio);
2978 	if (unlikely(folio->mapping != mapping))
2979 		goto unlock;
2980 
2981 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2982 
2983 	do {
2984 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2985 							seek_data)
2986 			break;
2987 		start = (start + bsz) & ~(bsz - 1);
2988 		offset += bsz;
2989 	} while (offset < folio_size(folio));
2990 unlock:
2991 	folio_unlock(folio);
2992 	rcu_read_lock();
2993 	return start;
2994 }
2995 
2996 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2997 {
2998 	if (xa_is_value(folio))
2999 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3000 	return folio_size(folio);
3001 }
3002 
3003 /**
3004  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3005  * @mapping: Address space to search.
3006  * @start: First byte to consider.
3007  * @end: Limit of search (exclusive).
3008  * @whence: Either SEEK_HOLE or SEEK_DATA.
3009  *
3010  * If the page cache knows which blocks contain holes and which blocks
3011  * contain data, your filesystem can use this function to implement
3012  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3013  * entirely memory-based such as tmpfs, and filesystems which support
3014  * unwritten extents.
3015  *
3016  * Return: The requested offset on success, or -ENXIO if @whence specifies
3017  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3018  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3019  * and @end contain data.
3020  */
3021 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3022 		loff_t end, int whence)
3023 {
3024 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3025 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3026 	bool seek_data = (whence == SEEK_DATA);
3027 	struct folio *folio;
3028 
3029 	if (end <= start)
3030 		return -ENXIO;
3031 
3032 	rcu_read_lock();
3033 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3034 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3035 		size_t seek_size;
3036 
3037 		if (start < pos) {
3038 			if (!seek_data)
3039 				goto unlock;
3040 			start = pos;
3041 		}
3042 
3043 		seek_size = seek_folio_size(&xas, folio);
3044 		pos = round_up((u64)pos + 1, seek_size);
3045 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3046 				seek_data);
3047 		if (start < pos)
3048 			goto unlock;
3049 		if (start >= end)
3050 			break;
3051 		if (seek_size > PAGE_SIZE)
3052 			xas_set(&xas, pos >> PAGE_SHIFT);
3053 		if (!xa_is_value(folio))
3054 			folio_put(folio);
3055 	}
3056 	if (seek_data)
3057 		start = -ENXIO;
3058 unlock:
3059 	rcu_read_unlock();
3060 	if (folio && !xa_is_value(folio))
3061 		folio_put(folio);
3062 	if (start > end)
3063 		return end;
3064 	return start;
3065 }
3066 
3067 #ifdef CONFIG_MMU
3068 #define MMAP_LOTSAMISS  (100)
3069 /*
3070  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3071  * @vmf - the vm_fault for this fault.
3072  * @folio - the folio to lock.
3073  * @fpin - the pointer to the file we may pin (or is already pinned).
3074  *
3075  * This works similar to lock_folio_or_retry in that it can drop the
3076  * mmap_lock.  It differs in that it actually returns the folio locked
3077  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3078  * to drop the mmap_lock then fpin will point to the pinned file and
3079  * needs to be fput()'ed at a later point.
3080  */
3081 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3082 				     struct file **fpin)
3083 {
3084 	if (folio_trylock(folio))
3085 		return 1;
3086 
3087 	/*
3088 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3089 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3090 	 * is supposed to work. We have way too many special cases..
3091 	 */
3092 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3093 		return 0;
3094 
3095 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3096 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3097 		if (__folio_lock_killable(folio)) {
3098 			/*
3099 			 * We didn't have the right flags to drop the
3100 			 * fault lock, but all fault_handlers only check
3101 			 * for fatal signals if we return VM_FAULT_RETRY,
3102 			 * so we need to drop the fault lock here and
3103 			 * return 0 if we don't have a fpin.
3104 			 */
3105 			if (*fpin == NULL)
3106 				release_fault_lock(vmf);
3107 			return 0;
3108 		}
3109 	} else
3110 		__folio_lock(folio);
3111 
3112 	return 1;
3113 }
3114 
3115 /*
3116  * Synchronous readahead happens when we don't even find a page in the page
3117  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3118  * to drop the mmap sem we return the file that was pinned in order for us to do
3119  * that.  If we didn't pin a file then we return NULL.  The file that is
3120  * returned needs to be fput()'ed when we're done with it.
3121  */
3122 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3123 {
3124 	struct file *file = vmf->vma->vm_file;
3125 	struct file_ra_state *ra = &file->f_ra;
3126 	struct address_space *mapping = file->f_mapping;
3127 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3128 	struct file *fpin = NULL;
3129 	unsigned long vm_flags = vmf->vma->vm_flags;
3130 	unsigned int mmap_miss;
3131 
3132 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3133 	/* Use the readahead code, even if readahead is disabled */
3134 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3135 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3136 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3137 		ra->size = HPAGE_PMD_NR;
3138 		/*
3139 		 * Fetch two PMD folios, so we get the chance to actually
3140 		 * readahead, unless we've been told not to.
3141 		 */
3142 		if (!(vm_flags & VM_RAND_READ))
3143 			ra->size *= 2;
3144 		ra->async_size = HPAGE_PMD_NR;
3145 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3146 		return fpin;
3147 	}
3148 #endif
3149 
3150 	/* If we don't want any read-ahead, don't bother */
3151 	if (vm_flags & VM_RAND_READ)
3152 		return fpin;
3153 	if (!ra->ra_pages)
3154 		return fpin;
3155 
3156 	if (vm_flags & VM_SEQ_READ) {
3157 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3158 		page_cache_sync_ra(&ractl, ra->ra_pages);
3159 		return fpin;
3160 	}
3161 
3162 	/* Avoid banging the cache line if not needed */
3163 	mmap_miss = READ_ONCE(ra->mmap_miss);
3164 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3165 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3166 
3167 	/*
3168 	 * Do we miss much more than hit in this file? If so,
3169 	 * stop bothering with read-ahead. It will only hurt.
3170 	 */
3171 	if (mmap_miss > MMAP_LOTSAMISS)
3172 		return fpin;
3173 
3174 	/*
3175 	 * mmap read-around
3176 	 */
3177 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3178 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3179 	ra->size = ra->ra_pages;
3180 	ra->async_size = ra->ra_pages / 4;
3181 	ractl._index = ra->start;
3182 	page_cache_ra_order(&ractl, ra, 0);
3183 	return fpin;
3184 }
3185 
3186 /*
3187  * Asynchronous readahead happens when we find the page and PG_readahead,
3188  * so we want to possibly extend the readahead further.  We return the file that
3189  * was pinned if we have to drop the mmap_lock in order to do IO.
3190  */
3191 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3192 					    struct folio *folio)
3193 {
3194 	struct file *file = vmf->vma->vm_file;
3195 	struct file_ra_state *ra = &file->f_ra;
3196 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3197 	struct file *fpin = NULL;
3198 	unsigned int mmap_miss;
3199 
3200 	/* If we don't want any read-ahead, don't bother */
3201 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3202 		return fpin;
3203 
3204 	mmap_miss = READ_ONCE(ra->mmap_miss);
3205 	if (mmap_miss)
3206 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3207 
3208 	if (folio_test_readahead(folio)) {
3209 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3210 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3211 	}
3212 	return fpin;
3213 }
3214 
3215 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3216 {
3217 	struct vm_area_struct *vma = vmf->vma;
3218 	vm_fault_t ret = 0;
3219 	pte_t *ptep;
3220 
3221 	/*
3222 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3223 	 * anon folio mapped. The original pagecache folio is not mlocked and
3224 	 * might have been evicted. During a read+clear/modify/write update of
3225 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3226 	 * temporarily clear the PTE under PT lock and might detect it here as
3227 	 * "none" when not holding the PT lock.
3228 	 *
3229 	 * Not rechecking the PTE under PT lock could result in an unexpected
3230 	 * major fault in an mlock'ed region. Recheck only for this special
3231 	 * scenario while holding the PT lock, to not degrade non-mlocked
3232 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3233 	 * the number of times we hold PT lock.
3234 	 */
3235 	if (!(vma->vm_flags & VM_LOCKED))
3236 		return 0;
3237 
3238 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3239 		return 0;
3240 
3241 	ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3242 				     &vmf->ptl);
3243 	if (unlikely(!ptep))
3244 		return VM_FAULT_NOPAGE;
3245 
3246 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3247 		ret = VM_FAULT_NOPAGE;
3248 	} else {
3249 		spin_lock(vmf->ptl);
3250 		if (unlikely(!pte_none(ptep_get(ptep))))
3251 			ret = VM_FAULT_NOPAGE;
3252 		spin_unlock(vmf->ptl);
3253 	}
3254 	pte_unmap(ptep);
3255 	return ret;
3256 }
3257 
3258 /**
3259  * filemap_fault - read in file data for page fault handling
3260  * @vmf:	struct vm_fault containing details of the fault
3261  *
3262  * filemap_fault() is invoked via the vma operations vector for a
3263  * mapped memory region to read in file data during a page fault.
3264  *
3265  * The goto's are kind of ugly, but this streamlines the normal case of having
3266  * it in the page cache, and handles the special cases reasonably without
3267  * having a lot of duplicated code.
3268  *
3269  * vma->vm_mm->mmap_lock must be held on entry.
3270  *
3271  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3272  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3273  *
3274  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3275  * has not been released.
3276  *
3277  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3278  *
3279  * Return: bitwise-OR of %VM_FAULT_ codes.
3280  */
3281 vm_fault_t filemap_fault(struct vm_fault *vmf)
3282 {
3283 	int error;
3284 	struct file *file = vmf->vma->vm_file;
3285 	struct file *fpin = NULL;
3286 	struct address_space *mapping = file->f_mapping;
3287 	struct inode *inode = mapping->host;
3288 	pgoff_t max_idx, index = vmf->pgoff;
3289 	struct folio *folio;
3290 	vm_fault_t ret = 0;
3291 	bool mapping_locked = false;
3292 
3293 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3294 	if (unlikely(index >= max_idx))
3295 		return VM_FAULT_SIGBUS;
3296 
3297 	/*
3298 	 * Do we have something in the page cache already?
3299 	 */
3300 	folio = filemap_get_folio(mapping, index);
3301 	if (likely(!IS_ERR(folio))) {
3302 		/*
3303 		 * We found the page, so try async readahead before waiting for
3304 		 * the lock.
3305 		 */
3306 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3307 			fpin = do_async_mmap_readahead(vmf, folio);
3308 		if (unlikely(!folio_test_uptodate(folio))) {
3309 			filemap_invalidate_lock_shared(mapping);
3310 			mapping_locked = true;
3311 		}
3312 	} else {
3313 		ret = filemap_fault_recheck_pte_none(vmf);
3314 		if (unlikely(ret))
3315 			return ret;
3316 
3317 		/* No page in the page cache at all */
3318 		count_vm_event(PGMAJFAULT);
3319 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3320 		ret = VM_FAULT_MAJOR;
3321 		fpin = do_sync_mmap_readahead(vmf);
3322 retry_find:
3323 		/*
3324 		 * See comment in filemap_create_folio() why we need
3325 		 * invalidate_lock
3326 		 */
3327 		if (!mapping_locked) {
3328 			filemap_invalidate_lock_shared(mapping);
3329 			mapping_locked = true;
3330 		}
3331 		folio = __filemap_get_folio(mapping, index,
3332 					  FGP_CREAT|FGP_FOR_MMAP,
3333 					  vmf->gfp_mask);
3334 		if (IS_ERR(folio)) {
3335 			if (fpin)
3336 				goto out_retry;
3337 			filemap_invalidate_unlock_shared(mapping);
3338 			return VM_FAULT_OOM;
3339 		}
3340 	}
3341 
3342 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3343 		goto out_retry;
3344 
3345 	/* Did it get truncated? */
3346 	if (unlikely(folio->mapping != mapping)) {
3347 		folio_unlock(folio);
3348 		folio_put(folio);
3349 		goto retry_find;
3350 	}
3351 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3352 
3353 	/*
3354 	 * We have a locked folio in the page cache, now we need to check
3355 	 * that it's up-to-date. If not, it is going to be due to an error,
3356 	 * or because readahead was otherwise unable to retrieve it.
3357 	 */
3358 	if (unlikely(!folio_test_uptodate(folio))) {
3359 		/*
3360 		 * If the invalidate lock is not held, the folio was in cache
3361 		 * and uptodate and now it is not. Strange but possible since we
3362 		 * didn't hold the page lock all the time. Let's drop
3363 		 * everything, get the invalidate lock and try again.
3364 		 */
3365 		if (!mapping_locked) {
3366 			folio_unlock(folio);
3367 			folio_put(folio);
3368 			goto retry_find;
3369 		}
3370 
3371 		/*
3372 		 * OK, the folio is really not uptodate. This can be because the
3373 		 * VMA has the VM_RAND_READ flag set, or because an error
3374 		 * arose. Let's read it in directly.
3375 		 */
3376 		goto page_not_uptodate;
3377 	}
3378 
3379 	/*
3380 	 * We've made it this far and we had to drop our mmap_lock, now is the
3381 	 * time to return to the upper layer and have it re-find the vma and
3382 	 * redo the fault.
3383 	 */
3384 	if (fpin) {
3385 		folio_unlock(folio);
3386 		goto out_retry;
3387 	}
3388 	if (mapping_locked)
3389 		filemap_invalidate_unlock_shared(mapping);
3390 
3391 	/*
3392 	 * Found the page and have a reference on it.
3393 	 * We must recheck i_size under page lock.
3394 	 */
3395 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3396 	if (unlikely(index >= max_idx)) {
3397 		folio_unlock(folio);
3398 		folio_put(folio);
3399 		return VM_FAULT_SIGBUS;
3400 	}
3401 
3402 	vmf->page = folio_file_page(folio, index);
3403 	return ret | VM_FAULT_LOCKED;
3404 
3405 page_not_uptodate:
3406 	/*
3407 	 * Umm, take care of errors if the page isn't up-to-date.
3408 	 * Try to re-read it _once_. We do this synchronously,
3409 	 * because there really aren't any performance issues here
3410 	 * and we need to check for errors.
3411 	 */
3412 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3413 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3414 	if (fpin)
3415 		goto out_retry;
3416 	folio_put(folio);
3417 
3418 	if (!error || error == AOP_TRUNCATED_PAGE)
3419 		goto retry_find;
3420 	filemap_invalidate_unlock_shared(mapping);
3421 
3422 	return VM_FAULT_SIGBUS;
3423 
3424 out_retry:
3425 	/*
3426 	 * We dropped the mmap_lock, we need to return to the fault handler to
3427 	 * re-find the vma and come back and find our hopefully still populated
3428 	 * page.
3429 	 */
3430 	if (!IS_ERR(folio))
3431 		folio_put(folio);
3432 	if (mapping_locked)
3433 		filemap_invalidate_unlock_shared(mapping);
3434 	if (fpin)
3435 		fput(fpin);
3436 	return ret | VM_FAULT_RETRY;
3437 }
3438 EXPORT_SYMBOL(filemap_fault);
3439 
3440 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3441 		pgoff_t start)
3442 {
3443 	struct mm_struct *mm = vmf->vma->vm_mm;
3444 
3445 	/* Huge page is mapped? No need to proceed. */
3446 	if (pmd_trans_huge(*vmf->pmd)) {
3447 		folio_unlock(folio);
3448 		folio_put(folio);
3449 		return true;
3450 	}
3451 
3452 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3453 		struct page *page = folio_file_page(folio, start);
3454 		vm_fault_t ret = do_set_pmd(vmf, page);
3455 		if (!ret) {
3456 			/* The page is mapped successfully, reference consumed. */
3457 			folio_unlock(folio);
3458 			return true;
3459 		}
3460 	}
3461 
3462 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3463 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3464 
3465 	return false;
3466 }
3467 
3468 static struct folio *next_uptodate_folio(struct xa_state *xas,
3469 		struct address_space *mapping, pgoff_t end_pgoff)
3470 {
3471 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3472 	unsigned long max_idx;
3473 
3474 	do {
3475 		if (!folio)
3476 			return NULL;
3477 		if (xas_retry(xas, folio))
3478 			continue;
3479 		if (xa_is_value(folio))
3480 			continue;
3481 		if (folio_test_locked(folio))
3482 			continue;
3483 		if (!folio_try_get(folio))
3484 			continue;
3485 		/* Has the page moved or been split? */
3486 		if (unlikely(folio != xas_reload(xas)))
3487 			goto skip;
3488 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3489 			goto skip;
3490 		if (!folio_trylock(folio))
3491 			goto skip;
3492 		if (folio->mapping != mapping)
3493 			goto unlock;
3494 		if (!folio_test_uptodate(folio))
3495 			goto unlock;
3496 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3497 		if (xas->xa_index >= max_idx)
3498 			goto unlock;
3499 		return folio;
3500 unlock:
3501 		folio_unlock(folio);
3502 skip:
3503 		folio_put(folio);
3504 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3505 
3506 	return NULL;
3507 }
3508 
3509 /*
3510  * Map page range [start_page, start_page + nr_pages) of folio.
3511  * start_page is gotten from start by folio_page(folio, start)
3512  */
3513 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3514 			struct folio *folio, unsigned long start,
3515 			unsigned long addr, unsigned int nr_pages,
3516 			unsigned long *rss, unsigned int *mmap_miss)
3517 {
3518 	vm_fault_t ret = 0;
3519 	struct page *page = folio_page(folio, start);
3520 	unsigned int count = 0;
3521 	pte_t *old_ptep = vmf->pte;
3522 
3523 	do {
3524 		if (PageHWPoison(page + count))
3525 			goto skip;
3526 
3527 		/*
3528 		 * If there are too many folios that are recently evicted
3529 		 * in a file, they will probably continue to be evicted.
3530 		 * In such situation, read-ahead is only a waste of IO.
3531 		 * Don't decrease mmap_miss in this scenario to make sure
3532 		 * we can stop read-ahead.
3533 		 */
3534 		if (!folio_test_workingset(folio))
3535 			(*mmap_miss)++;
3536 
3537 		/*
3538 		 * NOTE: If there're PTE markers, we'll leave them to be
3539 		 * handled in the specific fault path, and it'll prohibit the
3540 		 * fault-around logic.
3541 		 */
3542 		if (!pte_none(ptep_get(&vmf->pte[count])))
3543 			goto skip;
3544 
3545 		count++;
3546 		continue;
3547 skip:
3548 		if (count) {
3549 			set_pte_range(vmf, folio, page, count, addr);
3550 			*rss += count;
3551 			folio_ref_add(folio, count);
3552 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3553 				ret = VM_FAULT_NOPAGE;
3554 		}
3555 
3556 		count++;
3557 		page += count;
3558 		vmf->pte += count;
3559 		addr += count * PAGE_SIZE;
3560 		count = 0;
3561 	} while (--nr_pages > 0);
3562 
3563 	if (count) {
3564 		set_pte_range(vmf, folio, page, count, addr);
3565 		*rss += count;
3566 		folio_ref_add(folio, count);
3567 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3568 			ret = VM_FAULT_NOPAGE;
3569 	}
3570 
3571 	vmf->pte = old_ptep;
3572 
3573 	return ret;
3574 }
3575 
3576 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3577 		struct folio *folio, unsigned long addr,
3578 		unsigned long *rss, unsigned int *mmap_miss)
3579 {
3580 	vm_fault_t ret = 0;
3581 	struct page *page = &folio->page;
3582 
3583 	if (PageHWPoison(page))
3584 		return ret;
3585 
3586 	/* See comment of filemap_map_folio_range() */
3587 	if (!folio_test_workingset(folio))
3588 		(*mmap_miss)++;
3589 
3590 	/*
3591 	 * NOTE: If there're PTE markers, we'll leave them to be
3592 	 * handled in the specific fault path, and it'll prohibit
3593 	 * the fault-around logic.
3594 	 */
3595 	if (!pte_none(ptep_get(vmf->pte)))
3596 		return ret;
3597 
3598 	if (vmf->address == addr)
3599 		ret = VM_FAULT_NOPAGE;
3600 
3601 	set_pte_range(vmf, folio, page, 1, addr);
3602 	(*rss)++;
3603 	folio_ref_inc(folio);
3604 
3605 	return ret;
3606 }
3607 
3608 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3609 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3610 {
3611 	struct vm_area_struct *vma = vmf->vma;
3612 	struct file *file = vma->vm_file;
3613 	struct address_space *mapping = file->f_mapping;
3614 	pgoff_t last_pgoff = start_pgoff;
3615 	unsigned long addr;
3616 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3617 	struct folio *folio;
3618 	vm_fault_t ret = 0;
3619 	unsigned long rss = 0;
3620 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3621 
3622 	rcu_read_lock();
3623 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3624 	if (!folio)
3625 		goto out;
3626 
3627 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3628 		ret = VM_FAULT_NOPAGE;
3629 		goto out;
3630 	}
3631 
3632 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3633 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3634 	if (!vmf->pte) {
3635 		folio_unlock(folio);
3636 		folio_put(folio);
3637 		goto out;
3638 	}
3639 
3640 	folio_type = mm_counter_file(folio);
3641 	do {
3642 		unsigned long end;
3643 
3644 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3645 		vmf->pte += xas.xa_index - last_pgoff;
3646 		last_pgoff = xas.xa_index;
3647 		end = folio_next_index(folio) - 1;
3648 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3649 
3650 		if (!folio_test_large(folio))
3651 			ret |= filemap_map_order0_folio(vmf,
3652 					folio, addr, &rss, &mmap_miss);
3653 		else
3654 			ret |= filemap_map_folio_range(vmf, folio,
3655 					xas.xa_index - folio->index, addr,
3656 					nr_pages, &rss, &mmap_miss);
3657 
3658 		folio_unlock(folio);
3659 		folio_put(folio);
3660 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3661 	add_mm_counter(vma->vm_mm, folio_type, rss);
3662 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3663 out:
3664 	rcu_read_unlock();
3665 
3666 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3667 	if (mmap_miss >= mmap_miss_saved)
3668 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3669 	else
3670 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3671 
3672 	return ret;
3673 }
3674 EXPORT_SYMBOL(filemap_map_pages);
3675 
3676 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3677 {
3678 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3679 	struct folio *folio = page_folio(vmf->page);
3680 	vm_fault_t ret = VM_FAULT_LOCKED;
3681 
3682 	sb_start_pagefault(mapping->host->i_sb);
3683 	file_update_time(vmf->vma->vm_file);
3684 	folio_lock(folio);
3685 	if (folio->mapping != mapping) {
3686 		folio_unlock(folio);
3687 		ret = VM_FAULT_NOPAGE;
3688 		goto out;
3689 	}
3690 	/*
3691 	 * We mark the folio dirty already here so that when freeze is in
3692 	 * progress, we are guaranteed that writeback during freezing will
3693 	 * see the dirty folio and writeprotect it again.
3694 	 */
3695 	folio_mark_dirty(folio);
3696 	folio_wait_stable(folio);
3697 out:
3698 	sb_end_pagefault(mapping->host->i_sb);
3699 	return ret;
3700 }
3701 
3702 const struct vm_operations_struct generic_file_vm_ops = {
3703 	.fault		= filemap_fault,
3704 	.map_pages	= filemap_map_pages,
3705 	.page_mkwrite	= filemap_page_mkwrite,
3706 };
3707 
3708 /* This is used for a general mmap of a disk file */
3709 
3710 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3711 {
3712 	struct address_space *mapping = file->f_mapping;
3713 
3714 	if (!mapping->a_ops->read_folio)
3715 		return -ENOEXEC;
3716 	file_accessed(file);
3717 	vma->vm_ops = &generic_file_vm_ops;
3718 	return 0;
3719 }
3720 
3721 /*
3722  * This is for filesystems which do not implement ->writepage.
3723  */
3724 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3725 {
3726 	if (vma_is_shared_maywrite(vma))
3727 		return -EINVAL;
3728 	return generic_file_mmap(file, vma);
3729 }
3730 #else
3731 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3732 {
3733 	return VM_FAULT_SIGBUS;
3734 }
3735 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3736 {
3737 	return -ENOSYS;
3738 }
3739 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3740 {
3741 	return -ENOSYS;
3742 }
3743 #endif /* CONFIG_MMU */
3744 
3745 EXPORT_SYMBOL(filemap_page_mkwrite);
3746 EXPORT_SYMBOL(generic_file_mmap);
3747 EXPORT_SYMBOL(generic_file_readonly_mmap);
3748 
3749 static struct folio *do_read_cache_folio(struct address_space *mapping,
3750 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3751 {
3752 	struct folio *folio;
3753 	int err;
3754 
3755 	if (!filler)
3756 		filler = mapping->a_ops->read_folio;
3757 repeat:
3758 	folio = filemap_get_folio(mapping, index);
3759 	if (IS_ERR(folio)) {
3760 		folio = filemap_alloc_folio(gfp, 0);
3761 		if (!folio)
3762 			return ERR_PTR(-ENOMEM);
3763 		err = filemap_add_folio(mapping, folio, index, gfp);
3764 		if (unlikely(err)) {
3765 			folio_put(folio);
3766 			if (err == -EEXIST)
3767 				goto repeat;
3768 			/* Presumably ENOMEM for xarray node */
3769 			return ERR_PTR(err);
3770 		}
3771 
3772 		goto filler;
3773 	}
3774 	if (folio_test_uptodate(folio))
3775 		goto out;
3776 
3777 	if (!folio_trylock(folio)) {
3778 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3779 		goto repeat;
3780 	}
3781 
3782 	/* Folio was truncated from mapping */
3783 	if (!folio->mapping) {
3784 		folio_unlock(folio);
3785 		folio_put(folio);
3786 		goto repeat;
3787 	}
3788 
3789 	/* Someone else locked and filled the page in a very small window */
3790 	if (folio_test_uptodate(folio)) {
3791 		folio_unlock(folio);
3792 		goto out;
3793 	}
3794 
3795 filler:
3796 	err = filemap_read_folio(file, filler, folio);
3797 	if (err) {
3798 		folio_put(folio);
3799 		if (err == AOP_TRUNCATED_PAGE)
3800 			goto repeat;
3801 		return ERR_PTR(err);
3802 	}
3803 
3804 out:
3805 	folio_mark_accessed(folio);
3806 	return folio;
3807 }
3808 
3809 /**
3810  * read_cache_folio - Read into page cache, fill it if needed.
3811  * @mapping: The address_space to read from.
3812  * @index: The index to read.
3813  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3814  * @file: Passed to filler function, may be NULL if not required.
3815  *
3816  * Read one page into the page cache.  If it succeeds, the folio returned
3817  * will contain @index, but it may not be the first page of the folio.
3818  *
3819  * If the filler function returns an error, it will be returned to the
3820  * caller.
3821  *
3822  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3823  * Return: An uptodate folio on success, ERR_PTR() on failure.
3824  */
3825 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3826 		filler_t filler, struct file *file)
3827 {
3828 	return do_read_cache_folio(mapping, index, filler, file,
3829 			mapping_gfp_mask(mapping));
3830 }
3831 EXPORT_SYMBOL(read_cache_folio);
3832 
3833 /**
3834  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3835  * @mapping:	The address_space for the folio.
3836  * @index:	The index that the allocated folio will contain.
3837  * @gfp:	The page allocator flags to use if allocating.
3838  *
3839  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3840  * any new memory allocations done using the specified allocation flags.
3841  *
3842  * The most likely error from this function is EIO, but ENOMEM is
3843  * possible and so is EINTR.  If ->read_folio returns another error,
3844  * that will be returned to the caller.
3845  *
3846  * The function expects mapping->invalidate_lock to be already held.
3847  *
3848  * Return: Uptodate folio on success, ERR_PTR() on failure.
3849  */
3850 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3851 		pgoff_t index, gfp_t gfp)
3852 {
3853 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3854 }
3855 EXPORT_SYMBOL(mapping_read_folio_gfp);
3856 
3857 static struct page *do_read_cache_page(struct address_space *mapping,
3858 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3859 {
3860 	struct folio *folio;
3861 
3862 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3863 	if (IS_ERR(folio))
3864 		return &folio->page;
3865 	return folio_file_page(folio, index);
3866 }
3867 
3868 struct page *read_cache_page(struct address_space *mapping,
3869 			pgoff_t index, filler_t *filler, struct file *file)
3870 {
3871 	return do_read_cache_page(mapping, index, filler, file,
3872 			mapping_gfp_mask(mapping));
3873 }
3874 EXPORT_SYMBOL(read_cache_page);
3875 
3876 /**
3877  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3878  * @mapping:	the page's address_space
3879  * @index:	the page index
3880  * @gfp:	the page allocator flags to use if allocating
3881  *
3882  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3883  * any new page allocations done using the specified allocation flags.
3884  *
3885  * If the page does not get brought uptodate, return -EIO.
3886  *
3887  * The function expects mapping->invalidate_lock to be already held.
3888  *
3889  * Return: up to date page on success, ERR_PTR() on failure.
3890  */
3891 struct page *read_cache_page_gfp(struct address_space *mapping,
3892 				pgoff_t index,
3893 				gfp_t gfp)
3894 {
3895 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3896 }
3897 EXPORT_SYMBOL(read_cache_page_gfp);
3898 
3899 /*
3900  * Warn about a page cache invalidation failure during a direct I/O write.
3901  */
3902 static void dio_warn_stale_pagecache(struct file *filp)
3903 {
3904 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3905 	char pathname[128];
3906 	char *path;
3907 
3908 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3909 	if (__ratelimit(&_rs)) {
3910 		path = file_path(filp, pathname, sizeof(pathname));
3911 		if (IS_ERR(path))
3912 			path = "(unknown)";
3913 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3914 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3915 			current->comm);
3916 	}
3917 }
3918 
3919 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3920 {
3921 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3922 
3923 	if (mapping->nrpages &&
3924 	    invalidate_inode_pages2_range(mapping,
3925 			iocb->ki_pos >> PAGE_SHIFT,
3926 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3927 		dio_warn_stale_pagecache(iocb->ki_filp);
3928 }
3929 
3930 ssize_t
3931 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3932 {
3933 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3934 	size_t write_len = iov_iter_count(from);
3935 	ssize_t written;
3936 
3937 	/*
3938 	 * If a page can not be invalidated, return 0 to fall back
3939 	 * to buffered write.
3940 	 */
3941 	written = kiocb_invalidate_pages(iocb, write_len);
3942 	if (written) {
3943 		if (written == -EBUSY)
3944 			return 0;
3945 		return written;
3946 	}
3947 
3948 	written = mapping->a_ops->direct_IO(iocb, from);
3949 
3950 	/*
3951 	 * Finally, try again to invalidate clean pages which might have been
3952 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3953 	 * if the source of the write was an mmap'ed region of the file
3954 	 * we're writing.  Either one is a pretty crazy thing to do,
3955 	 * so we don't support it 100%.  If this invalidation
3956 	 * fails, tough, the write still worked...
3957 	 *
3958 	 * Most of the time we do not need this since dio_complete() will do
3959 	 * the invalidation for us. However there are some file systems that
3960 	 * do not end up with dio_complete() being called, so let's not break
3961 	 * them by removing it completely.
3962 	 *
3963 	 * Noticeable example is a blkdev_direct_IO().
3964 	 *
3965 	 * Skip invalidation for async writes or if mapping has no pages.
3966 	 */
3967 	if (written > 0) {
3968 		struct inode *inode = mapping->host;
3969 		loff_t pos = iocb->ki_pos;
3970 
3971 		kiocb_invalidate_post_direct_write(iocb, written);
3972 		pos += written;
3973 		write_len -= written;
3974 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3975 			i_size_write(inode, pos);
3976 			mark_inode_dirty(inode);
3977 		}
3978 		iocb->ki_pos = pos;
3979 	}
3980 	if (written != -EIOCBQUEUED)
3981 		iov_iter_revert(from, write_len - iov_iter_count(from));
3982 	return written;
3983 }
3984 EXPORT_SYMBOL(generic_file_direct_write);
3985 
3986 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3987 {
3988 	struct file *file = iocb->ki_filp;
3989 	loff_t pos = iocb->ki_pos;
3990 	struct address_space *mapping = file->f_mapping;
3991 	const struct address_space_operations *a_ops = mapping->a_ops;
3992 	size_t chunk = mapping_max_folio_size(mapping);
3993 	long status = 0;
3994 	ssize_t written = 0;
3995 
3996 	do {
3997 		struct folio *folio;
3998 		size_t offset;		/* Offset into folio */
3999 		size_t bytes;		/* Bytes to write to folio */
4000 		size_t copied;		/* Bytes copied from user */
4001 		void *fsdata = NULL;
4002 
4003 		bytes = iov_iter_count(i);
4004 retry:
4005 		offset = pos & (chunk - 1);
4006 		bytes = min(chunk - offset, bytes);
4007 		balance_dirty_pages_ratelimited(mapping);
4008 
4009 		/*
4010 		 * Bring in the user page that we will copy from _first_.
4011 		 * Otherwise there's a nasty deadlock on copying from the
4012 		 * same page as we're writing to, without it being marked
4013 		 * up-to-date.
4014 		 */
4015 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4016 			status = -EFAULT;
4017 			break;
4018 		}
4019 
4020 		if (fatal_signal_pending(current)) {
4021 			status = -EINTR;
4022 			break;
4023 		}
4024 
4025 		status = a_ops->write_begin(file, mapping, pos, bytes,
4026 						&folio, &fsdata);
4027 		if (unlikely(status < 0))
4028 			break;
4029 
4030 		offset = offset_in_folio(folio, pos);
4031 		if (bytes > folio_size(folio) - offset)
4032 			bytes = folio_size(folio) - offset;
4033 
4034 		if (mapping_writably_mapped(mapping))
4035 			flush_dcache_folio(folio);
4036 
4037 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4038 		flush_dcache_folio(folio);
4039 
4040 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4041 						folio, fsdata);
4042 		if (unlikely(status != copied)) {
4043 			iov_iter_revert(i, copied - max(status, 0L));
4044 			if (unlikely(status < 0))
4045 				break;
4046 		}
4047 		cond_resched();
4048 
4049 		if (unlikely(status == 0)) {
4050 			/*
4051 			 * A short copy made ->write_end() reject the
4052 			 * thing entirely.  Might be memory poisoning
4053 			 * halfway through, might be a race with munmap,
4054 			 * might be severe memory pressure.
4055 			 */
4056 			if (chunk > PAGE_SIZE)
4057 				chunk /= 2;
4058 			if (copied) {
4059 				bytes = copied;
4060 				goto retry;
4061 			}
4062 		} else {
4063 			pos += status;
4064 			written += status;
4065 		}
4066 	} while (iov_iter_count(i));
4067 
4068 	if (!written)
4069 		return status;
4070 	iocb->ki_pos += written;
4071 	return written;
4072 }
4073 EXPORT_SYMBOL(generic_perform_write);
4074 
4075 /**
4076  * __generic_file_write_iter - write data to a file
4077  * @iocb:	IO state structure (file, offset, etc.)
4078  * @from:	iov_iter with data to write
4079  *
4080  * This function does all the work needed for actually writing data to a
4081  * file. It does all basic checks, removes SUID from the file, updates
4082  * modification times and calls proper subroutines depending on whether we
4083  * do direct IO or a standard buffered write.
4084  *
4085  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4086  * object which does not need locking at all.
4087  *
4088  * This function does *not* take care of syncing data in case of O_SYNC write.
4089  * A caller has to handle it. This is mainly due to the fact that we want to
4090  * avoid syncing under i_rwsem.
4091  *
4092  * Return:
4093  * * number of bytes written, even for truncated writes
4094  * * negative error code if no data has been written at all
4095  */
4096 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4097 {
4098 	struct file *file = iocb->ki_filp;
4099 	struct address_space *mapping = file->f_mapping;
4100 	struct inode *inode = mapping->host;
4101 	ssize_t ret;
4102 
4103 	ret = file_remove_privs(file);
4104 	if (ret)
4105 		return ret;
4106 
4107 	ret = file_update_time(file);
4108 	if (ret)
4109 		return ret;
4110 
4111 	if (iocb->ki_flags & IOCB_DIRECT) {
4112 		ret = generic_file_direct_write(iocb, from);
4113 		/*
4114 		 * If the write stopped short of completing, fall back to
4115 		 * buffered writes.  Some filesystems do this for writes to
4116 		 * holes, for example.  For DAX files, a buffered write will
4117 		 * not succeed (even if it did, DAX does not handle dirty
4118 		 * page-cache pages correctly).
4119 		 */
4120 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4121 			return ret;
4122 		return direct_write_fallback(iocb, from, ret,
4123 				generic_perform_write(iocb, from));
4124 	}
4125 
4126 	return generic_perform_write(iocb, from);
4127 }
4128 EXPORT_SYMBOL(__generic_file_write_iter);
4129 
4130 /**
4131  * generic_file_write_iter - write data to a file
4132  * @iocb:	IO state structure
4133  * @from:	iov_iter with data to write
4134  *
4135  * This is a wrapper around __generic_file_write_iter() to be used by most
4136  * filesystems. It takes care of syncing the file in case of O_SYNC file
4137  * and acquires i_rwsem as needed.
4138  * Return:
4139  * * negative error code if no data has been written at all of
4140  *   vfs_fsync_range() failed for a synchronous write
4141  * * number of bytes written, even for truncated writes
4142  */
4143 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4144 {
4145 	struct file *file = iocb->ki_filp;
4146 	struct inode *inode = file->f_mapping->host;
4147 	ssize_t ret;
4148 
4149 	inode_lock(inode);
4150 	ret = generic_write_checks(iocb, from);
4151 	if (ret > 0)
4152 		ret = __generic_file_write_iter(iocb, from);
4153 	inode_unlock(inode);
4154 
4155 	if (ret > 0)
4156 		ret = generic_write_sync(iocb, ret);
4157 	return ret;
4158 }
4159 EXPORT_SYMBOL(generic_file_write_iter);
4160 
4161 /**
4162  * filemap_release_folio() - Release fs-specific metadata on a folio.
4163  * @folio: The folio which the kernel is trying to free.
4164  * @gfp: Memory allocation flags (and I/O mode).
4165  *
4166  * The address_space is trying to release any data attached to a folio
4167  * (presumably at folio->private).
4168  *
4169  * This will also be called if the private_2 flag is set on a page,
4170  * indicating that the folio has other metadata associated with it.
4171  *
4172  * The @gfp argument specifies whether I/O may be performed to release
4173  * this page (__GFP_IO), and whether the call may block
4174  * (__GFP_RECLAIM & __GFP_FS).
4175  *
4176  * Return: %true if the release was successful, otherwise %false.
4177  */
4178 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4179 {
4180 	struct address_space * const mapping = folio->mapping;
4181 
4182 	BUG_ON(!folio_test_locked(folio));
4183 	if (!folio_needs_release(folio))
4184 		return true;
4185 	if (folio_test_writeback(folio))
4186 		return false;
4187 
4188 	if (mapping && mapping->a_ops->release_folio)
4189 		return mapping->a_ops->release_folio(folio, gfp);
4190 	return try_to_free_buffers(folio);
4191 }
4192 EXPORT_SYMBOL(filemap_release_folio);
4193 
4194 /**
4195  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4196  * @inode: The inode to flush
4197  * @flush: Set to write back rather than simply invalidate.
4198  * @start: First byte to in range.
4199  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4200  *       onwards.
4201  *
4202  * Invalidate all the folios on an inode that contribute to the specified
4203  * range, possibly writing them back first.  Whilst the operation is
4204  * undertaken, the invalidate lock is held to prevent new folios from being
4205  * installed.
4206  */
4207 int filemap_invalidate_inode(struct inode *inode, bool flush,
4208 			     loff_t start, loff_t end)
4209 {
4210 	struct address_space *mapping = inode->i_mapping;
4211 	pgoff_t first = start >> PAGE_SHIFT;
4212 	pgoff_t last = end >> PAGE_SHIFT;
4213 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4214 
4215 	if (!mapping || !mapping->nrpages || end < start)
4216 		goto out;
4217 
4218 	/* Prevent new folios from being added to the inode. */
4219 	filemap_invalidate_lock(mapping);
4220 
4221 	if (!mapping->nrpages)
4222 		goto unlock;
4223 
4224 	unmap_mapping_pages(mapping, first, nr, false);
4225 
4226 	/* Write back the data if we're asked to. */
4227 	if (flush) {
4228 		struct writeback_control wbc = {
4229 			.sync_mode	= WB_SYNC_ALL,
4230 			.nr_to_write	= LONG_MAX,
4231 			.range_start	= start,
4232 			.range_end	= end,
4233 		};
4234 
4235 		filemap_fdatawrite_wbc(mapping, &wbc);
4236 	}
4237 
4238 	/* Wait for writeback to complete on all folios and discard. */
4239 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4240 
4241 unlock:
4242 	filemap_invalidate_unlock(mapping);
4243 out:
4244 	return filemap_check_errors(mapping);
4245 }
4246 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4247 
4248 #ifdef CONFIG_CACHESTAT_SYSCALL
4249 /**
4250  * filemap_cachestat() - compute the page cache statistics of a mapping
4251  * @mapping:	The mapping to compute the statistics for.
4252  * @first_index:	The starting page cache index.
4253  * @last_index:	The final page index (inclusive).
4254  * @cs:	the cachestat struct to write the result to.
4255  *
4256  * This will query the page cache statistics of a mapping in the
4257  * page range of [first_index, last_index] (inclusive). The statistics
4258  * queried include: number of dirty pages, number of pages marked for
4259  * writeback, and the number of (recently) evicted pages.
4260  */
4261 static void filemap_cachestat(struct address_space *mapping,
4262 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4263 {
4264 	XA_STATE(xas, &mapping->i_pages, first_index);
4265 	struct folio *folio;
4266 
4267 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4268 	mem_cgroup_flush_stats_ratelimited(NULL);
4269 
4270 	rcu_read_lock();
4271 	xas_for_each(&xas, folio, last_index) {
4272 		int order;
4273 		unsigned long nr_pages;
4274 		pgoff_t folio_first_index, folio_last_index;
4275 
4276 		/*
4277 		 * Don't deref the folio. It is not pinned, and might
4278 		 * get freed (and reused) underneath us.
4279 		 *
4280 		 * We *could* pin it, but that would be expensive for
4281 		 * what should be a fast and lightweight syscall.
4282 		 *
4283 		 * Instead, derive all information of interest from
4284 		 * the rcu-protected xarray.
4285 		 */
4286 
4287 		if (xas_retry(&xas, folio))
4288 			continue;
4289 
4290 		order = xa_get_order(xas.xa, xas.xa_index);
4291 		nr_pages = 1 << order;
4292 		folio_first_index = round_down(xas.xa_index, 1 << order);
4293 		folio_last_index = folio_first_index + nr_pages - 1;
4294 
4295 		/* Folios might straddle the range boundaries, only count covered pages */
4296 		if (folio_first_index < first_index)
4297 			nr_pages -= first_index - folio_first_index;
4298 
4299 		if (folio_last_index > last_index)
4300 			nr_pages -= folio_last_index - last_index;
4301 
4302 		if (xa_is_value(folio)) {
4303 			/* page is evicted */
4304 			void *shadow = (void *)folio;
4305 			bool workingset; /* not used */
4306 
4307 			cs->nr_evicted += nr_pages;
4308 
4309 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4310 			if (shmem_mapping(mapping)) {
4311 				/* shmem file - in swap cache */
4312 				swp_entry_t swp = radix_to_swp_entry(folio);
4313 
4314 				/* swapin error results in poisoned entry */
4315 				if (non_swap_entry(swp))
4316 					goto resched;
4317 
4318 				/*
4319 				 * Getting a swap entry from the shmem
4320 				 * inode means we beat
4321 				 * shmem_unuse(). rcu_read_lock()
4322 				 * ensures swapoff waits for us before
4323 				 * freeing the swapper space. However,
4324 				 * we can race with swapping and
4325 				 * invalidation, so there might not be
4326 				 * a shadow in the swapcache (yet).
4327 				 */
4328 				shadow = get_shadow_from_swap_cache(swp);
4329 				if (!shadow)
4330 					goto resched;
4331 			}
4332 #endif
4333 			if (workingset_test_recent(shadow, true, &workingset, false))
4334 				cs->nr_recently_evicted += nr_pages;
4335 
4336 			goto resched;
4337 		}
4338 
4339 		/* page is in cache */
4340 		cs->nr_cache += nr_pages;
4341 
4342 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4343 			cs->nr_dirty += nr_pages;
4344 
4345 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4346 			cs->nr_writeback += nr_pages;
4347 
4348 resched:
4349 		if (need_resched()) {
4350 			xas_pause(&xas);
4351 			cond_resched_rcu();
4352 		}
4353 	}
4354 	rcu_read_unlock();
4355 }
4356 
4357 /*
4358  * The cachestat(2) system call.
4359  *
4360  * cachestat() returns the page cache statistics of a file in the
4361  * bytes range specified by `off` and `len`: number of cached pages,
4362  * number of dirty pages, number of pages marked for writeback,
4363  * number of evicted pages, and number of recently evicted pages.
4364  *
4365  * An evicted page is a page that is previously in the page cache
4366  * but has been evicted since. A page is recently evicted if its last
4367  * eviction was recent enough that its reentry to the cache would
4368  * indicate that it is actively being used by the system, and that
4369  * there is memory pressure on the system.
4370  *
4371  * `off` and `len` must be non-negative integers. If `len` > 0,
4372  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4373  * we will query in the range from `off` to the end of the file.
4374  *
4375  * The `flags` argument is unused for now, but is included for future
4376  * extensibility. User should pass 0 (i.e no flag specified).
4377  *
4378  * Currently, hugetlbfs is not supported.
4379  *
4380  * Because the status of a page can change after cachestat() checks it
4381  * but before it returns to the application, the returned values may
4382  * contain stale information.
4383  *
4384  * return values:
4385  *  zero        - success
4386  *  -EFAULT     - cstat or cstat_range points to an illegal address
4387  *  -EINVAL     - invalid flags
4388  *  -EBADF      - invalid file descriptor
4389  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4390  */
4391 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4392 		struct cachestat_range __user *, cstat_range,
4393 		struct cachestat __user *, cstat, unsigned int, flags)
4394 {
4395 	struct fd f = fdget(fd);
4396 	struct address_space *mapping;
4397 	struct cachestat_range csr;
4398 	struct cachestat cs;
4399 	pgoff_t first_index, last_index;
4400 
4401 	if (!f.file)
4402 		return -EBADF;
4403 
4404 	if (copy_from_user(&csr, cstat_range,
4405 			sizeof(struct cachestat_range))) {
4406 		fdput(f);
4407 		return -EFAULT;
4408 	}
4409 
4410 	/* hugetlbfs is not supported */
4411 	if (is_file_hugepages(f.file)) {
4412 		fdput(f);
4413 		return -EOPNOTSUPP;
4414 	}
4415 
4416 	if (flags != 0) {
4417 		fdput(f);
4418 		return -EINVAL;
4419 	}
4420 
4421 	first_index = csr.off >> PAGE_SHIFT;
4422 	last_index =
4423 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4424 	memset(&cs, 0, sizeof(struct cachestat));
4425 	mapping = f.file->f_mapping;
4426 	filemap_cachestat(mapping, first_index, last_index, &cs);
4427 	fdput(f);
4428 
4429 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4430 		return -EFAULT;
4431 
4432 	return 0;
4433 }
4434 #endif /* CONFIG_CACHESTAT_SYSCALL */
4435