xref: /linux/mm/filemap.c (revision 27258e448eb301cf89e351df87aa8cb916653bf2)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(vmtruncate)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  */
108 
109 /*
110  * Remove a page from the page cache and free it. Caller has to make
111  * sure the page is locked and that nobody else uses it - or that usage
112  * is safe.  The caller must hold the mapping's tree_lock.
113  */
114 void __remove_from_page_cache(struct page *page)
115 {
116 	struct address_space *mapping = page->mapping;
117 
118 	radix_tree_delete(&mapping->page_tree, page->index);
119 	page->mapping = NULL;
120 	mapping->nrpages--;
121 	__dec_zone_page_state(page, NR_FILE_PAGES);
122 	if (PageSwapBacked(page))
123 		__dec_zone_page_state(page, NR_SHMEM);
124 	BUG_ON(page_mapped(page));
125 
126 	/*
127 	 * Some filesystems seem to re-dirty the page even after
128 	 * the VM has canceled the dirty bit (eg ext3 journaling).
129 	 *
130 	 * Fix it up by doing a final dirty accounting check after
131 	 * having removed the page entirely.
132 	 */
133 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
134 		dec_zone_page_state(page, NR_FILE_DIRTY);
135 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
136 	}
137 }
138 
139 void remove_from_page_cache(struct page *page)
140 {
141 	struct address_space *mapping = page->mapping;
142 
143 	BUG_ON(!PageLocked(page));
144 
145 	spin_lock_irq(&mapping->tree_lock);
146 	__remove_from_page_cache(page);
147 	spin_unlock_irq(&mapping->tree_lock);
148 	mem_cgroup_uncharge_cache_page(page);
149 }
150 
151 static int sync_page(void *word)
152 {
153 	struct address_space *mapping;
154 	struct page *page;
155 
156 	page = container_of((unsigned long *)word, struct page, flags);
157 
158 	/*
159 	 * page_mapping() is being called without PG_locked held.
160 	 * Some knowledge of the state and use of the page is used to
161 	 * reduce the requirements down to a memory barrier.
162 	 * The danger here is of a stale page_mapping() return value
163 	 * indicating a struct address_space different from the one it's
164 	 * associated with when it is associated with one.
165 	 * After smp_mb(), it's either the correct page_mapping() for
166 	 * the page, or an old page_mapping() and the page's own
167 	 * page_mapping() has gone NULL.
168 	 * The ->sync_page() address_space operation must tolerate
169 	 * page_mapping() going NULL. By an amazing coincidence,
170 	 * this comes about because none of the users of the page
171 	 * in the ->sync_page() methods make essential use of the
172 	 * page_mapping(), merely passing the page down to the backing
173 	 * device's unplug functions when it's non-NULL, which in turn
174 	 * ignore it for all cases but swap, where only page_private(page) is
175 	 * of interest. When page_mapping() does go NULL, the entire
176 	 * call stack gracefully ignores the page and returns.
177 	 * -- wli
178 	 */
179 	smp_mb();
180 	mapping = page_mapping(page);
181 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
182 		mapping->a_ops->sync_page(page);
183 	io_schedule();
184 	return 0;
185 }
186 
187 static int sync_page_killable(void *word)
188 {
189 	sync_page(word);
190 	return fatal_signal_pending(current) ? -EINTR : 0;
191 }
192 
193 /**
194  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
195  * @mapping:	address space structure to write
196  * @start:	offset in bytes where the range starts
197  * @end:	offset in bytes where the range ends (inclusive)
198  * @sync_mode:	enable synchronous operation
199  *
200  * Start writeback against all of a mapping's dirty pages that lie
201  * within the byte offsets <start, end> inclusive.
202  *
203  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
204  * opposed to a regular memory cleansing writeback.  The difference between
205  * these two operations is that if a dirty page/buffer is encountered, it must
206  * be waited upon, and not just skipped over.
207  */
208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
209 				loff_t end, int sync_mode)
210 {
211 	int ret;
212 	struct writeback_control wbc = {
213 		.sync_mode = sync_mode,
214 		.nr_to_write = LONG_MAX,
215 		.range_start = start,
216 		.range_end = end,
217 	};
218 
219 	if (!mapping_cap_writeback_dirty(mapping))
220 		return 0;
221 
222 	ret = do_writepages(mapping, &wbc);
223 	return ret;
224 }
225 
226 static inline int __filemap_fdatawrite(struct address_space *mapping,
227 	int sync_mode)
228 {
229 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
230 }
231 
232 int filemap_fdatawrite(struct address_space *mapping)
233 {
234 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
235 }
236 EXPORT_SYMBOL(filemap_fdatawrite);
237 
238 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
239 				loff_t end)
240 {
241 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
242 }
243 EXPORT_SYMBOL(filemap_fdatawrite_range);
244 
245 /**
246  * filemap_flush - mostly a non-blocking flush
247  * @mapping:	target address_space
248  *
249  * This is a mostly non-blocking flush.  Not suitable for data-integrity
250  * purposes - I/O may not be started against all dirty pages.
251  */
252 int filemap_flush(struct address_space *mapping)
253 {
254 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
255 }
256 EXPORT_SYMBOL(filemap_flush);
257 
258 /**
259  * wait_on_page_writeback_range - wait for writeback to complete
260  * @mapping:	target address_space
261  * @start:	beginning page index
262  * @end:	ending page index
263  *
264  * Wait for writeback to complete against pages indexed by start->end
265  * inclusive
266  */
267 int wait_on_page_writeback_range(struct address_space *mapping,
268 				pgoff_t start, pgoff_t end)
269 {
270 	struct pagevec pvec;
271 	int nr_pages;
272 	int ret = 0;
273 	pgoff_t index;
274 
275 	if (end < start)
276 		return 0;
277 
278 	pagevec_init(&pvec, 0);
279 	index = start;
280 	while ((index <= end) &&
281 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
282 			PAGECACHE_TAG_WRITEBACK,
283 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
284 		unsigned i;
285 
286 		for (i = 0; i < nr_pages; i++) {
287 			struct page *page = pvec.pages[i];
288 
289 			/* until radix tree lookup accepts end_index */
290 			if (page->index > end)
291 				continue;
292 
293 			wait_on_page_writeback(page);
294 			if (PageError(page))
295 				ret = -EIO;
296 		}
297 		pagevec_release(&pvec);
298 		cond_resched();
299 	}
300 
301 	/* Check for outstanding write errors */
302 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
303 		ret = -ENOSPC;
304 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
305 		ret = -EIO;
306 
307 	return ret;
308 }
309 
310 /**
311  * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
312  * @mapping: address space structure to wait for
313  * @start:	offset in bytes where the range starts
314  * @end:	offset in bytes where the range ends (inclusive)
315  *
316  * Walk the list of under-writeback pages of the given address space
317  * in the given range and wait for all of them.
318  *
319  * This is just a simple wrapper so that callers don't have to convert offsets
320  * to page indexes themselves
321  */
322 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
323 			    loff_t end)
324 {
325 	return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
326 					    end >> PAGE_CACHE_SHIFT);
327 }
328 EXPORT_SYMBOL(filemap_fdatawait_range);
329 
330 /**
331  * filemap_fdatawait - wait for all under-writeback pages to complete
332  * @mapping: address space structure to wait for
333  *
334  * Walk the list of under-writeback pages of the given address space
335  * and wait for all of them.
336  */
337 int filemap_fdatawait(struct address_space *mapping)
338 {
339 	loff_t i_size = i_size_read(mapping->host);
340 
341 	if (i_size == 0)
342 		return 0;
343 
344 	return wait_on_page_writeback_range(mapping, 0,
345 				(i_size - 1) >> PAGE_CACHE_SHIFT);
346 }
347 EXPORT_SYMBOL(filemap_fdatawait);
348 
349 int filemap_write_and_wait(struct address_space *mapping)
350 {
351 	int err = 0;
352 
353 	if (mapping->nrpages) {
354 		err = filemap_fdatawrite(mapping);
355 		/*
356 		 * Even if the above returned error, the pages may be
357 		 * written partially (e.g. -ENOSPC), so we wait for it.
358 		 * But the -EIO is special case, it may indicate the worst
359 		 * thing (e.g. bug) happened, so we avoid waiting for it.
360 		 */
361 		if (err != -EIO) {
362 			int err2 = filemap_fdatawait(mapping);
363 			if (!err)
364 				err = err2;
365 		}
366 	}
367 	return err;
368 }
369 EXPORT_SYMBOL(filemap_write_and_wait);
370 
371 /**
372  * filemap_write_and_wait_range - write out & wait on a file range
373  * @mapping:	the address_space for the pages
374  * @lstart:	offset in bytes where the range starts
375  * @lend:	offset in bytes where the range ends (inclusive)
376  *
377  * Write out and wait upon file offsets lstart->lend, inclusive.
378  *
379  * Note that `lend' is inclusive (describes the last byte to be written) so
380  * that this function can be used to write to the very end-of-file (end = -1).
381  */
382 int filemap_write_and_wait_range(struct address_space *mapping,
383 				 loff_t lstart, loff_t lend)
384 {
385 	int err = 0;
386 
387 	if (mapping->nrpages) {
388 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
389 						 WB_SYNC_ALL);
390 		/* See comment of filemap_write_and_wait() */
391 		if (err != -EIO) {
392 			int err2 = wait_on_page_writeback_range(mapping,
393 						lstart >> PAGE_CACHE_SHIFT,
394 						lend >> PAGE_CACHE_SHIFT);
395 			if (!err)
396 				err = err2;
397 		}
398 	}
399 	return err;
400 }
401 EXPORT_SYMBOL(filemap_write_and_wait_range);
402 
403 /**
404  * add_to_page_cache_locked - add a locked page to the pagecache
405  * @page:	page to add
406  * @mapping:	the page's address_space
407  * @offset:	page index
408  * @gfp_mask:	page allocation mode
409  *
410  * This function is used to add a page to the pagecache. It must be locked.
411  * This function does not add the page to the LRU.  The caller must do that.
412  */
413 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
414 		pgoff_t offset, gfp_t gfp_mask)
415 {
416 	int error;
417 
418 	VM_BUG_ON(!PageLocked(page));
419 
420 	error = mem_cgroup_cache_charge(page, current->mm,
421 					gfp_mask & GFP_RECLAIM_MASK);
422 	if (error)
423 		goto out;
424 
425 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
426 	if (error == 0) {
427 		page_cache_get(page);
428 		page->mapping = mapping;
429 		page->index = offset;
430 
431 		spin_lock_irq(&mapping->tree_lock);
432 		error = radix_tree_insert(&mapping->page_tree, offset, page);
433 		if (likely(!error)) {
434 			mapping->nrpages++;
435 			__inc_zone_page_state(page, NR_FILE_PAGES);
436 			if (PageSwapBacked(page))
437 				__inc_zone_page_state(page, NR_SHMEM);
438 			spin_unlock_irq(&mapping->tree_lock);
439 		} else {
440 			page->mapping = NULL;
441 			spin_unlock_irq(&mapping->tree_lock);
442 			mem_cgroup_uncharge_cache_page(page);
443 			page_cache_release(page);
444 		}
445 		radix_tree_preload_end();
446 	} else
447 		mem_cgroup_uncharge_cache_page(page);
448 out:
449 	return error;
450 }
451 EXPORT_SYMBOL(add_to_page_cache_locked);
452 
453 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
454 				pgoff_t offset, gfp_t gfp_mask)
455 {
456 	int ret;
457 
458 	/*
459 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
460 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
461 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
462 	 * (called in add_to_page_cache) needs to know where they're going too.
463 	 */
464 	if (mapping_cap_swap_backed(mapping))
465 		SetPageSwapBacked(page);
466 
467 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
468 	if (ret == 0) {
469 		if (page_is_file_cache(page))
470 			lru_cache_add_file(page);
471 		else
472 			lru_cache_add_active_anon(page);
473 	}
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
477 
478 #ifdef CONFIG_NUMA
479 struct page *__page_cache_alloc(gfp_t gfp)
480 {
481 	if (cpuset_do_page_mem_spread()) {
482 		int n = cpuset_mem_spread_node();
483 		return alloc_pages_exact_node(n, gfp, 0);
484 	}
485 	return alloc_pages(gfp, 0);
486 }
487 EXPORT_SYMBOL(__page_cache_alloc);
488 #endif
489 
490 static int __sleep_on_page_lock(void *word)
491 {
492 	io_schedule();
493 	return 0;
494 }
495 
496 /*
497  * In order to wait for pages to become available there must be
498  * waitqueues associated with pages. By using a hash table of
499  * waitqueues where the bucket discipline is to maintain all
500  * waiters on the same queue and wake all when any of the pages
501  * become available, and for the woken contexts to check to be
502  * sure the appropriate page became available, this saves space
503  * at a cost of "thundering herd" phenomena during rare hash
504  * collisions.
505  */
506 static wait_queue_head_t *page_waitqueue(struct page *page)
507 {
508 	const struct zone *zone = page_zone(page);
509 
510 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
511 }
512 
513 static inline void wake_up_page(struct page *page, int bit)
514 {
515 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
516 }
517 
518 void wait_on_page_bit(struct page *page, int bit_nr)
519 {
520 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
521 
522 	if (test_bit(bit_nr, &page->flags))
523 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
524 							TASK_UNINTERRUPTIBLE);
525 }
526 EXPORT_SYMBOL(wait_on_page_bit);
527 
528 /**
529  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
530  * @page: Page defining the wait queue of interest
531  * @waiter: Waiter to add to the queue
532  *
533  * Add an arbitrary @waiter to the wait queue for the nominated @page.
534  */
535 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
536 {
537 	wait_queue_head_t *q = page_waitqueue(page);
538 	unsigned long flags;
539 
540 	spin_lock_irqsave(&q->lock, flags);
541 	__add_wait_queue(q, waiter);
542 	spin_unlock_irqrestore(&q->lock, flags);
543 }
544 EXPORT_SYMBOL_GPL(add_page_wait_queue);
545 
546 /**
547  * unlock_page - unlock a locked page
548  * @page: the page
549  *
550  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
551  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
552  * mechananism between PageLocked pages and PageWriteback pages is shared.
553  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
554  *
555  * The mb is necessary to enforce ordering between the clear_bit and the read
556  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
557  */
558 void unlock_page(struct page *page)
559 {
560 	VM_BUG_ON(!PageLocked(page));
561 	clear_bit_unlock(PG_locked, &page->flags);
562 	smp_mb__after_clear_bit();
563 	wake_up_page(page, PG_locked);
564 }
565 EXPORT_SYMBOL(unlock_page);
566 
567 /**
568  * end_page_writeback - end writeback against a page
569  * @page: the page
570  */
571 void end_page_writeback(struct page *page)
572 {
573 	if (TestClearPageReclaim(page))
574 		rotate_reclaimable_page(page);
575 
576 	if (!test_clear_page_writeback(page))
577 		BUG();
578 
579 	smp_mb__after_clear_bit();
580 	wake_up_page(page, PG_writeback);
581 }
582 EXPORT_SYMBOL(end_page_writeback);
583 
584 /**
585  * __lock_page - get a lock on the page, assuming we need to sleep to get it
586  * @page: the page to lock
587  *
588  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
589  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
590  * chances are that on the second loop, the block layer's plug list is empty,
591  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
592  */
593 void __lock_page(struct page *page)
594 {
595 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
596 
597 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
598 							TASK_UNINTERRUPTIBLE);
599 }
600 EXPORT_SYMBOL(__lock_page);
601 
602 int __lock_page_killable(struct page *page)
603 {
604 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
605 
606 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
607 					sync_page_killable, TASK_KILLABLE);
608 }
609 EXPORT_SYMBOL_GPL(__lock_page_killable);
610 
611 /**
612  * __lock_page_nosync - get a lock on the page, without calling sync_page()
613  * @page: the page to lock
614  *
615  * Variant of lock_page that does not require the caller to hold a reference
616  * on the page's mapping.
617  */
618 void __lock_page_nosync(struct page *page)
619 {
620 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
621 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
622 							TASK_UNINTERRUPTIBLE);
623 }
624 
625 /**
626  * find_get_page - find and get a page reference
627  * @mapping: the address_space to search
628  * @offset: the page index
629  *
630  * Is there a pagecache struct page at the given (mapping, offset) tuple?
631  * If yes, increment its refcount and return it; if no, return NULL.
632  */
633 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
634 {
635 	void **pagep;
636 	struct page *page;
637 
638 	rcu_read_lock();
639 repeat:
640 	page = NULL;
641 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
642 	if (pagep) {
643 		page = radix_tree_deref_slot(pagep);
644 		if (unlikely(!page || page == RADIX_TREE_RETRY))
645 			goto repeat;
646 
647 		if (!page_cache_get_speculative(page))
648 			goto repeat;
649 
650 		/*
651 		 * Has the page moved?
652 		 * This is part of the lockless pagecache protocol. See
653 		 * include/linux/pagemap.h for details.
654 		 */
655 		if (unlikely(page != *pagep)) {
656 			page_cache_release(page);
657 			goto repeat;
658 		}
659 	}
660 	rcu_read_unlock();
661 
662 	return page;
663 }
664 EXPORT_SYMBOL(find_get_page);
665 
666 /**
667  * find_lock_page - locate, pin and lock a pagecache page
668  * @mapping: the address_space to search
669  * @offset: the page index
670  *
671  * Locates the desired pagecache page, locks it, increments its reference
672  * count and returns its address.
673  *
674  * Returns zero if the page was not present. find_lock_page() may sleep.
675  */
676 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
677 {
678 	struct page *page;
679 
680 repeat:
681 	page = find_get_page(mapping, offset);
682 	if (page) {
683 		lock_page(page);
684 		/* Has the page been truncated? */
685 		if (unlikely(page->mapping != mapping)) {
686 			unlock_page(page);
687 			page_cache_release(page);
688 			goto repeat;
689 		}
690 		VM_BUG_ON(page->index != offset);
691 	}
692 	return page;
693 }
694 EXPORT_SYMBOL(find_lock_page);
695 
696 /**
697  * find_or_create_page - locate or add a pagecache page
698  * @mapping: the page's address_space
699  * @index: the page's index into the mapping
700  * @gfp_mask: page allocation mode
701  *
702  * Locates a page in the pagecache.  If the page is not present, a new page
703  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
704  * LRU list.  The returned page is locked and has its reference count
705  * incremented.
706  *
707  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
708  * allocation!
709  *
710  * find_or_create_page() returns the desired page's address, or zero on
711  * memory exhaustion.
712  */
713 struct page *find_or_create_page(struct address_space *mapping,
714 		pgoff_t index, gfp_t gfp_mask)
715 {
716 	struct page *page;
717 	int err;
718 repeat:
719 	page = find_lock_page(mapping, index);
720 	if (!page) {
721 		page = __page_cache_alloc(gfp_mask);
722 		if (!page)
723 			return NULL;
724 		/*
725 		 * We want a regular kernel memory (not highmem or DMA etc)
726 		 * allocation for the radix tree nodes, but we need to honour
727 		 * the context-specific requirements the caller has asked for.
728 		 * GFP_RECLAIM_MASK collects those requirements.
729 		 */
730 		err = add_to_page_cache_lru(page, mapping, index,
731 			(gfp_mask & GFP_RECLAIM_MASK));
732 		if (unlikely(err)) {
733 			page_cache_release(page);
734 			page = NULL;
735 			if (err == -EEXIST)
736 				goto repeat;
737 		}
738 	}
739 	return page;
740 }
741 EXPORT_SYMBOL(find_or_create_page);
742 
743 /**
744  * find_get_pages - gang pagecache lookup
745  * @mapping:	The address_space to search
746  * @start:	The starting page index
747  * @nr_pages:	The maximum number of pages
748  * @pages:	Where the resulting pages are placed
749  *
750  * find_get_pages() will search for and return a group of up to
751  * @nr_pages pages in the mapping.  The pages are placed at @pages.
752  * find_get_pages() takes a reference against the returned pages.
753  *
754  * The search returns a group of mapping-contiguous pages with ascending
755  * indexes.  There may be holes in the indices due to not-present pages.
756  *
757  * find_get_pages() returns the number of pages which were found.
758  */
759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
760 			    unsigned int nr_pages, struct page **pages)
761 {
762 	unsigned int i;
763 	unsigned int ret;
764 	unsigned int nr_found;
765 
766 	rcu_read_lock();
767 restart:
768 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
769 				(void ***)pages, start, nr_pages);
770 	ret = 0;
771 	for (i = 0; i < nr_found; i++) {
772 		struct page *page;
773 repeat:
774 		page = radix_tree_deref_slot((void **)pages[i]);
775 		if (unlikely(!page))
776 			continue;
777 		/*
778 		 * this can only trigger if nr_found == 1, making livelock
779 		 * a non issue.
780 		 */
781 		if (unlikely(page == RADIX_TREE_RETRY))
782 			goto restart;
783 
784 		if (!page_cache_get_speculative(page))
785 			goto repeat;
786 
787 		/* Has the page moved? */
788 		if (unlikely(page != *((void **)pages[i]))) {
789 			page_cache_release(page);
790 			goto repeat;
791 		}
792 
793 		pages[ret] = page;
794 		ret++;
795 	}
796 	rcu_read_unlock();
797 	return ret;
798 }
799 
800 /**
801  * find_get_pages_contig - gang contiguous pagecache lookup
802  * @mapping:	The address_space to search
803  * @index:	The starting page index
804  * @nr_pages:	The maximum number of pages
805  * @pages:	Where the resulting pages are placed
806  *
807  * find_get_pages_contig() works exactly like find_get_pages(), except
808  * that the returned number of pages are guaranteed to be contiguous.
809  *
810  * find_get_pages_contig() returns the number of pages which were found.
811  */
812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
813 			       unsigned int nr_pages, struct page **pages)
814 {
815 	unsigned int i;
816 	unsigned int ret;
817 	unsigned int nr_found;
818 
819 	rcu_read_lock();
820 restart:
821 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
822 				(void ***)pages, index, nr_pages);
823 	ret = 0;
824 	for (i = 0; i < nr_found; i++) {
825 		struct page *page;
826 repeat:
827 		page = radix_tree_deref_slot((void **)pages[i]);
828 		if (unlikely(!page))
829 			continue;
830 		/*
831 		 * this can only trigger if nr_found == 1, making livelock
832 		 * a non issue.
833 		 */
834 		if (unlikely(page == RADIX_TREE_RETRY))
835 			goto restart;
836 
837 		if (page->mapping == NULL || page->index != index)
838 			break;
839 
840 		if (!page_cache_get_speculative(page))
841 			goto repeat;
842 
843 		/* Has the page moved? */
844 		if (unlikely(page != *((void **)pages[i]))) {
845 			page_cache_release(page);
846 			goto repeat;
847 		}
848 
849 		pages[ret] = page;
850 		ret++;
851 		index++;
852 	}
853 	rcu_read_unlock();
854 	return ret;
855 }
856 EXPORT_SYMBOL(find_get_pages_contig);
857 
858 /**
859  * find_get_pages_tag - find and return pages that match @tag
860  * @mapping:	the address_space to search
861  * @index:	the starting page index
862  * @tag:	the tag index
863  * @nr_pages:	the maximum number of pages
864  * @pages:	where the resulting pages are placed
865  *
866  * Like find_get_pages, except we only return pages which are tagged with
867  * @tag.   We update @index to index the next page for the traversal.
868  */
869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
870 			int tag, unsigned int nr_pages, struct page **pages)
871 {
872 	unsigned int i;
873 	unsigned int ret;
874 	unsigned int nr_found;
875 
876 	rcu_read_lock();
877 restart:
878 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
879 				(void ***)pages, *index, nr_pages, tag);
880 	ret = 0;
881 	for (i = 0; i < nr_found; i++) {
882 		struct page *page;
883 repeat:
884 		page = radix_tree_deref_slot((void **)pages[i]);
885 		if (unlikely(!page))
886 			continue;
887 		/*
888 		 * this can only trigger if nr_found == 1, making livelock
889 		 * a non issue.
890 		 */
891 		if (unlikely(page == RADIX_TREE_RETRY))
892 			goto restart;
893 
894 		if (!page_cache_get_speculative(page))
895 			goto repeat;
896 
897 		/* Has the page moved? */
898 		if (unlikely(page != *((void **)pages[i]))) {
899 			page_cache_release(page);
900 			goto repeat;
901 		}
902 
903 		pages[ret] = page;
904 		ret++;
905 	}
906 	rcu_read_unlock();
907 
908 	if (ret)
909 		*index = pages[ret - 1]->index + 1;
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL(find_get_pages_tag);
914 
915 /**
916  * grab_cache_page_nowait - returns locked page at given index in given cache
917  * @mapping: target address_space
918  * @index: the page index
919  *
920  * Same as grab_cache_page(), but do not wait if the page is unavailable.
921  * This is intended for speculative data generators, where the data can
922  * be regenerated if the page couldn't be grabbed.  This routine should
923  * be safe to call while holding the lock for another page.
924  *
925  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926  * and deadlock against the caller's locked page.
927  */
928 struct page *
929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
930 {
931 	struct page *page = find_get_page(mapping, index);
932 
933 	if (page) {
934 		if (trylock_page(page))
935 			return page;
936 		page_cache_release(page);
937 		return NULL;
938 	}
939 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
940 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
941 		page_cache_release(page);
942 		page = NULL;
943 	}
944 	return page;
945 }
946 EXPORT_SYMBOL(grab_cache_page_nowait);
947 
948 /*
949  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950  * a _large_ part of the i/o request. Imagine the worst scenario:
951  *
952  *      ---R__________________________________________B__________
953  *         ^ reading here                             ^ bad block(assume 4k)
954  *
955  * read(R) => miss => readahead(R...B) => media error => frustrating retries
956  * => failing the whole request => read(R) => read(R+1) =>
957  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
960  *
961  * It is going insane. Fix it by quickly scaling down the readahead size.
962  */
963 static void shrink_readahead_size_eio(struct file *filp,
964 					struct file_ra_state *ra)
965 {
966 	ra->ra_pages /= 4;
967 }
968 
969 /**
970  * do_generic_file_read - generic file read routine
971  * @filp:	the file to read
972  * @ppos:	current file position
973  * @desc:	read_descriptor
974  * @actor:	read method
975  *
976  * This is a generic file read routine, and uses the
977  * mapping->a_ops->readpage() function for the actual low-level stuff.
978  *
979  * This is really ugly. But the goto's actually try to clarify some
980  * of the logic when it comes to error handling etc.
981  */
982 static void do_generic_file_read(struct file *filp, loff_t *ppos,
983 		read_descriptor_t *desc, read_actor_t actor)
984 {
985 	struct address_space *mapping = filp->f_mapping;
986 	struct inode *inode = mapping->host;
987 	struct file_ra_state *ra = &filp->f_ra;
988 	pgoff_t index;
989 	pgoff_t last_index;
990 	pgoff_t prev_index;
991 	unsigned long offset;      /* offset into pagecache page */
992 	unsigned int prev_offset;
993 	int error;
994 
995 	index = *ppos >> PAGE_CACHE_SHIFT;
996 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
997 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
998 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
999 	offset = *ppos & ~PAGE_CACHE_MASK;
1000 
1001 	for (;;) {
1002 		struct page *page;
1003 		pgoff_t end_index;
1004 		loff_t isize;
1005 		unsigned long nr, ret;
1006 
1007 		cond_resched();
1008 find_page:
1009 		page = find_get_page(mapping, index);
1010 		if (!page) {
1011 			page_cache_sync_readahead(mapping,
1012 					ra, filp,
1013 					index, last_index - index);
1014 			page = find_get_page(mapping, index);
1015 			if (unlikely(page == NULL))
1016 				goto no_cached_page;
1017 		}
1018 		if (PageReadahead(page)) {
1019 			page_cache_async_readahead(mapping,
1020 					ra, filp, page,
1021 					index, last_index - index);
1022 		}
1023 		if (!PageUptodate(page)) {
1024 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1025 					!mapping->a_ops->is_partially_uptodate)
1026 				goto page_not_up_to_date;
1027 			if (!trylock_page(page))
1028 				goto page_not_up_to_date;
1029 			if (!mapping->a_ops->is_partially_uptodate(page,
1030 								desc, offset))
1031 				goto page_not_up_to_date_locked;
1032 			unlock_page(page);
1033 		}
1034 page_ok:
1035 		/*
1036 		 * i_size must be checked after we know the page is Uptodate.
1037 		 *
1038 		 * Checking i_size after the check allows us to calculate
1039 		 * the correct value for "nr", which means the zero-filled
1040 		 * part of the page is not copied back to userspace (unless
1041 		 * another truncate extends the file - this is desired though).
1042 		 */
1043 
1044 		isize = i_size_read(inode);
1045 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1046 		if (unlikely(!isize || index > end_index)) {
1047 			page_cache_release(page);
1048 			goto out;
1049 		}
1050 
1051 		/* nr is the maximum number of bytes to copy from this page */
1052 		nr = PAGE_CACHE_SIZE;
1053 		if (index == end_index) {
1054 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1055 			if (nr <= offset) {
1056 				page_cache_release(page);
1057 				goto out;
1058 			}
1059 		}
1060 		nr = nr - offset;
1061 
1062 		/* If users can be writing to this page using arbitrary
1063 		 * virtual addresses, take care about potential aliasing
1064 		 * before reading the page on the kernel side.
1065 		 */
1066 		if (mapping_writably_mapped(mapping))
1067 			flush_dcache_page(page);
1068 
1069 		/*
1070 		 * When a sequential read accesses a page several times,
1071 		 * only mark it as accessed the first time.
1072 		 */
1073 		if (prev_index != index || offset != prev_offset)
1074 			mark_page_accessed(page);
1075 		prev_index = index;
1076 
1077 		/*
1078 		 * Ok, we have the page, and it's up-to-date, so
1079 		 * now we can copy it to user space...
1080 		 *
1081 		 * The actor routine returns how many bytes were actually used..
1082 		 * NOTE! This may not be the same as how much of a user buffer
1083 		 * we filled up (we may be padding etc), so we can only update
1084 		 * "pos" here (the actor routine has to update the user buffer
1085 		 * pointers and the remaining count).
1086 		 */
1087 		ret = actor(desc, page, offset, nr);
1088 		offset += ret;
1089 		index += offset >> PAGE_CACHE_SHIFT;
1090 		offset &= ~PAGE_CACHE_MASK;
1091 		prev_offset = offset;
1092 
1093 		page_cache_release(page);
1094 		if (ret == nr && desc->count)
1095 			continue;
1096 		goto out;
1097 
1098 page_not_up_to_date:
1099 		/* Get exclusive access to the page ... */
1100 		error = lock_page_killable(page);
1101 		if (unlikely(error))
1102 			goto readpage_error;
1103 
1104 page_not_up_to_date_locked:
1105 		/* Did it get truncated before we got the lock? */
1106 		if (!page->mapping) {
1107 			unlock_page(page);
1108 			page_cache_release(page);
1109 			continue;
1110 		}
1111 
1112 		/* Did somebody else fill it already? */
1113 		if (PageUptodate(page)) {
1114 			unlock_page(page);
1115 			goto page_ok;
1116 		}
1117 
1118 readpage:
1119 		/* Start the actual read. The read will unlock the page. */
1120 		error = mapping->a_ops->readpage(filp, page);
1121 
1122 		if (unlikely(error)) {
1123 			if (error == AOP_TRUNCATED_PAGE) {
1124 				page_cache_release(page);
1125 				goto find_page;
1126 			}
1127 			goto readpage_error;
1128 		}
1129 
1130 		if (!PageUptodate(page)) {
1131 			error = lock_page_killable(page);
1132 			if (unlikely(error))
1133 				goto readpage_error;
1134 			if (!PageUptodate(page)) {
1135 				if (page->mapping == NULL) {
1136 					/*
1137 					 * invalidate_inode_pages got it
1138 					 */
1139 					unlock_page(page);
1140 					page_cache_release(page);
1141 					goto find_page;
1142 				}
1143 				unlock_page(page);
1144 				shrink_readahead_size_eio(filp, ra);
1145 				error = -EIO;
1146 				goto readpage_error;
1147 			}
1148 			unlock_page(page);
1149 		}
1150 
1151 		goto page_ok;
1152 
1153 readpage_error:
1154 		/* UHHUH! A synchronous read error occurred. Report it */
1155 		desc->error = error;
1156 		page_cache_release(page);
1157 		goto out;
1158 
1159 no_cached_page:
1160 		/*
1161 		 * Ok, it wasn't cached, so we need to create a new
1162 		 * page..
1163 		 */
1164 		page = page_cache_alloc_cold(mapping);
1165 		if (!page) {
1166 			desc->error = -ENOMEM;
1167 			goto out;
1168 		}
1169 		error = add_to_page_cache_lru(page, mapping,
1170 						index, GFP_KERNEL);
1171 		if (error) {
1172 			page_cache_release(page);
1173 			if (error == -EEXIST)
1174 				goto find_page;
1175 			desc->error = error;
1176 			goto out;
1177 		}
1178 		goto readpage;
1179 	}
1180 
1181 out:
1182 	ra->prev_pos = prev_index;
1183 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1184 	ra->prev_pos |= prev_offset;
1185 
1186 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1187 	file_accessed(filp);
1188 }
1189 
1190 int file_read_actor(read_descriptor_t *desc, struct page *page,
1191 			unsigned long offset, unsigned long size)
1192 {
1193 	char *kaddr;
1194 	unsigned long left, count = desc->count;
1195 
1196 	if (size > count)
1197 		size = count;
1198 
1199 	/*
1200 	 * Faults on the destination of a read are common, so do it before
1201 	 * taking the kmap.
1202 	 */
1203 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1204 		kaddr = kmap_atomic(page, KM_USER0);
1205 		left = __copy_to_user_inatomic(desc->arg.buf,
1206 						kaddr + offset, size);
1207 		kunmap_atomic(kaddr, KM_USER0);
1208 		if (left == 0)
1209 			goto success;
1210 	}
1211 
1212 	/* Do it the slow way */
1213 	kaddr = kmap(page);
1214 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1215 	kunmap(page);
1216 
1217 	if (left) {
1218 		size -= left;
1219 		desc->error = -EFAULT;
1220 	}
1221 success:
1222 	desc->count = count - size;
1223 	desc->written += size;
1224 	desc->arg.buf += size;
1225 	return size;
1226 }
1227 
1228 /*
1229  * Performs necessary checks before doing a write
1230  * @iov:	io vector request
1231  * @nr_segs:	number of segments in the iovec
1232  * @count:	number of bytes to write
1233  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1234  *
1235  * Adjust number of segments and amount of bytes to write (nr_segs should be
1236  * properly initialized first). Returns appropriate error code that caller
1237  * should return or zero in case that write should be allowed.
1238  */
1239 int generic_segment_checks(const struct iovec *iov,
1240 			unsigned long *nr_segs, size_t *count, int access_flags)
1241 {
1242 	unsigned long   seg;
1243 	size_t cnt = 0;
1244 	for (seg = 0; seg < *nr_segs; seg++) {
1245 		const struct iovec *iv = &iov[seg];
1246 
1247 		/*
1248 		 * If any segment has a negative length, or the cumulative
1249 		 * length ever wraps negative then return -EINVAL.
1250 		 */
1251 		cnt += iv->iov_len;
1252 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1253 			return -EINVAL;
1254 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1255 			continue;
1256 		if (seg == 0)
1257 			return -EFAULT;
1258 		*nr_segs = seg;
1259 		cnt -= iv->iov_len;	/* This segment is no good */
1260 		break;
1261 	}
1262 	*count = cnt;
1263 	return 0;
1264 }
1265 EXPORT_SYMBOL(generic_segment_checks);
1266 
1267 /**
1268  * generic_file_aio_read - generic filesystem read routine
1269  * @iocb:	kernel I/O control block
1270  * @iov:	io vector request
1271  * @nr_segs:	number of segments in the iovec
1272  * @pos:	current file position
1273  *
1274  * This is the "read()" routine for all filesystems
1275  * that can use the page cache directly.
1276  */
1277 ssize_t
1278 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1279 		unsigned long nr_segs, loff_t pos)
1280 {
1281 	struct file *filp = iocb->ki_filp;
1282 	ssize_t retval;
1283 	unsigned long seg;
1284 	size_t count;
1285 	loff_t *ppos = &iocb->ki_pos;
1286 
1287 	count = 0;
1288 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1289 	if (retval)
1290 		return retval;
1291 
1292 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1293 	if (filp->f_flags & O_DIRECT) {
1294 		loff_t size;
1295 		struct address_space *mapping;
1296 		struct inode *inode;
1297 
1298 		mapping = filp->f_mapping;
1299 		inode = mapping->host;
1300 		if (!count)
1301 			goto out; /* skip atime */
1302 		size = i_size_read(inode);
1303 		if (pos < size) {
1304 			retval = filemap_write_and_wait_range(mapping, pos,
1305 					pos + iov_length(iov, nr_segs) - 1);
1306 			if (!retval) {
1307 				retval = mapping->a_ops->direct_IO(READ, iocb,
1308 							iov, pos, nr_segs);
1309 			}
1310 			if (retval > 0)
1311 				*ppos = pos + retval;
1312 			if (retval) {
1313 				file_accessed(filp);
1314 				goto out;
1315 			}
1316 		}
1317 	}
1318 
1319 	for (seg = 0; seg < nr_segs; seg++) {
1320 		read_descriptor_t desc;
1321 
1322 		desc.written = 0;
1323 		desc.arg.buf = iov[seg].iov_base;
1324 		desc.count = iov[seg].iov_len;
1325 		if (desc.count == 0)
1326 			continue;
1327 		desc.error = 0;
1328 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1329 		retval += desc.written;
1330 		if (desc.error) {
1331 			retval = retval ?: desc.error;
1332 			break;
1333 		}
1334 		if (desc.count > 0)
1335 			break;
1336 	}
1337 out:
1338 	return retval;
1339 }
1340 EXPORT_SYMBOL(generic_file_aio_read);
1341 
1342 static ssize_t
1343 do_readahead(struct address_space *mapping, struct file *filp,
1344 	     pgoff_t index, unsigned long nr)
1345 {
1346 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1347 		return -EINVAL;
1348 
1349 	force_page_cache_readahead(mapping, filp, index, nr);
1350 	return 0;
1351 }
1352 
1353 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1354 {
1355 	ssize_t ret;
1356 	struct file *file;
1357 
1358 	ret = -EBADF;
1359 	file = fget(fd);
1360 	if (file) {
1361 		if (file->f_mode & FMODE_READ) {
1362 			struct address_space *mapping = file->f_mapping;
1363 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1364 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1365 			unsigned long len = end - start + 1;
1366 			ret = do_readahead(mapping, file, start, len);
1367 		}
1368 		fput(file);
1369 	}
1370 	return ret;
1371 }
1372 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1373 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1374 {
1375 	return SYSC_readahead((int) fd, offset, (size_t) count);
1376 }
1377 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1378 #endif
1379 
1380 #ifdef CONFIG_MMU
1381 /**
1382  * page_cache_read - adds requested page to the page cache if not already there
1383  * @file:	file to read
1384  * @offset:	page index
1385  *
1386  * This adds the requested page to the page cache if it isn't already there,
1387  * and schedules an I/O to read in its contents from disk.
1388  */
1389 static int page_cache_read(struct file *file, pgoff_t offset)
1390 {
1391 	struct address_space *mapping = file->f_mapping;
1392 	struct page *page;
1393 	int ret;
1394 
1395 	do {
1396 		page = page_cache_alloc_cold(mapping);
1397 		if (!page)
1398 			return -ENOMEM;
1399 
1400 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1401 		if (ret == 0)
1402 			ret = mapping->a_ops->readpage(file, page);
1403 		else if (ret == -EEXIST)
1404 			ret = 0; /* losing race to add is OK */
1405 
1406 		page_cache_release(page);
1407 
1408 	} while (ret == AOP_TRUNCATED_PAGE);
1409 
1410 	return ret;
1411 }
1412 
1413 #define MMAP_LOTSAMISS  (100)
1414 
1415 /*
1416  * Synchronous readahead happens when we don't even find
1417  * a page in the page cache at all.
1418  */
1419 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1420 				   struct file_ra_state *ra,
1421 				   struct file *file,
1422 				   pgoff_t offset)
1423 {
1424 	unsigned long ra_pages;
1425 	struct address_space *mapping = file->f_mapping;
1426 
1427 	/* If we don't want any read-ahead, don't bother */
1428 	if (VM_RandomReadHint(vma))
1429 		return;
1430 
1431 	if (VM_SequentialReadHint(vma) ||
1432 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1433 		page_cache_sync_readahead(mapping, ra, file, offset,
1434 					  ra->ra_pages);
1435 		return;
1436 	}
1437 
1438 	if (ra->mmap_miss < INT_MAX)
1439 		ra->mmap_miss++;
1440 
1441 	/*
1442 	 * Do we miss much more than hit in this file? If so,
1443 	 * stop bothering with read-ahead. It will only hurt.
1444 	 */
1445 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1446 		return;
1447 
1448 	/*
1449 	 * mmap read-around
1450 	 */
1451 	ra_pages = max_sane_readahead(ra->ra_pages);
1452 	if (ra_pages) {
1453 		ra->start = max_t(long, 0, offset - ra_pages/2);
1454 		ra->size = ra_pages;
1455 		ra->async_size = 0;
1456 		ra_submit(ra, mapping, file);
1457 	}
1458 }
1459 
1460 /*
1461  * Asynchronous readahead happens when we find the page and PG_readahead,
1462  * so we want to possibly extend the readahead further..
1463  */
1464 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1465 				    struct file_ra_state *ra,
1466 				    struct file *file,
1467 				    struct page *page,
1468 				    pgoff_t offset)
1469 {
1470 	struct address_space *mapping = file->f_mapping;
1471 
1472 	/* If we don't want any read-ahead, don't bother */
1473 	if (VM_RandomReadHint(vma))
1474 		return;
1475 	if (ra->mmap_miss > 0)
1476 		ra->mmap_miss--;
1477 	if (PageReadahead(page))
1478 		page_cache_async_readahead(mapping, ra, file,
1479 					   page, offset, ra->ra_pages);
1480 }
1481 
1482 /**
1483  * filemap_fault - read in file data for page fault handling
1484  * @vma:	vma in which the fault was taken
1485  * @vmf:	struct vm_fault containing details of the fault
1486  *
1487  * filemap_fault() is invoked via the vma operations vector for a
1488  * mapped memory region to read in file data during a page fault.
1489  *
1490  * The goto's are kind of ugly, but this streamlines the normal case of having
1491  * it in the page cache, and handles the special cases reasonably without
1492  * having a lot of duplicated code.
1493  */
1494 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1495 {
1496 	int error;
1497 	struct file *file = vma->vm_file;
1498 	struct address_space *mapping = file->f_mapping;
1499 	struct file_ra_state *ra = &file->f_ra;
1500 	struct inode *inode = mapping->host;
1501 	pgoff_t offset = vmf->pgoff;
1502 	struct page *page;
1503 	pgoff_t size;
1504 	int ret = 0;
1505 
1506 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1507 	if (offset >= size)
1508 		return VM_FAULT_SIGBUS;
1509 
1510 	/*
1511 	 * Do we have something in the page cache already?
1512 	 */
1513 	page = find_get_page(mapping, offset);
1514 	if (likely(page)) {
1515 		/*
1516 		 * We found the page, so try async readahead before
1517 		 * waiting for the lock.
1518 		 */
1519 		do_async_mmap_readahead(vma, ra, file, page, offset);
1520 		lock_page(page);
1521 
1522 		/* Did it get truncated? */
1523 		if (unlikely(page->mapping != mapping)) {
1524 			unlock_page(page);
1525 			put_page(page);
1526 			goto no_cached_page;
1527 		}
1528 	} else {
1529 		/* No page in the page cache at all */
1530 		do_sync_mmap_readahead(vma, ra, file, offset);
1531 		count_vm_event(PGMAJFAULT);
1532 		ret = VM_FAULT_MAJOR;
1533 retry_find:
1534 		page = find_lock_page(mapping, offset);
1535 		if (!page)
1536 			goto no_cached_page;
1537 	}
1538 
1539 	/*
1540 	 * We have a locked page in the page cache, now we need to check
1541 	 * that it's up-to-date. If not, it is going to be due to an error.
1542 	 */
1543 	if (unlikely(!PageUptodate(page)))
1544 		goto page_not_uptodate;
1545 
1546 	/*
1547 	 * Found the page and have a reference on it.
1548 	 * We must recheck i_size under page lock.
1549 	 */
1550 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1551 	if (unlikely(offset >= size)) {
1552 		unlock_page(page);
1553 		page_cache_release(page);
1554 		return VM_FAULT_SIGBUS;
1555 	}
1556 
1557 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1558 	vmf->page = page;
1559 	return ret | VM_FAULT_LOCKED;
1560 
1561 no_cached_page:
1562 	/*
1563 	 * We're only likely to ever get here if MADV_RANDOM is in
1564 	 * effect.
1565 	 */
1566 	error = page_cache_read(file, offset);
1567 
1568 	/*
1569 	 * The page we want has now been added to the page cache.
1570 	 * In the unlikely event that someone removed it in the
1571 	 * meantime, we'll just come back here and read it again.
1572 	 */
1573 	if (error >= 0)
1574 		goto retry_find;
1575 
1576 	/*
1577 	 * An error return from page_cache_read can result if the
1578 	 * system is low on memory, or a problem occurs while trying
1579 	 * to schedule I/O.
1580 	 */
1581 	if (error == -ENOMEM)
1582 		return VM_FAULT_OOM;
1583 	return VM_FAULT_SIGBUS;
1584 
1585 page_not_uptodate:
1586 	/*
1587 	 * Umm, take care of errors if the page isn't up-to-date.
1588 	 * Try to re-read it _once_. We do this synchronously,
1589 	 * because there really aren't any performance issues here
1590 	 * and we need to check for errors.
1591 	 */
1592 	ClearPageError(page);
1593 	error = mapping->a_ops->readpage(file, page);
1594 	if (!error) {
1595 		wait_on_page_locked(page);
1596 		if (!PageUptodate(page))
1597 			error = -EIO;
1598 	}
1599 	page_cache_release(page);
1600 
1601 	if (!error || error == AOP_TRUNCATED_PAGE)
1602 		goto retry_find;
1603 
1604 	/* Things didn't work out. Return zero to tell the mm layer so. */
1605 	shrink_readahead_size_eio(file, ra);
1606 	return VM_FAULT_SIGBUS;
1607 }
1608 EXPORT_SYMBOL(filemap_fault);
1609 
1610 struct vm_operations_struct generic_file_vm_ops = {
1611 	.fault		= filemap_fault,
1612 };
1613 
1614 /* This is used for a general mmap of a disk file */
1615 
1616 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1617 {
1618 	struct address_space *mapping = file->f_mapping;
1619 
1620 	if (!mapping->a_ops->readpage)
1621 		return -ENOEXEC;
1622 	file_accessed(file);
1623 	vma->vm_ops = &generic_file_vm_ops;
1624 	vma->vm_flags |= VM_CAN_NONLINEAR;
1625 	return 0;
1626 }
1627 
1628 /*
1629  * This is for filesystems which do not implement ->writepage.
1630  */
1631 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1632 {
1633 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1634 		return -EINVAL;
1635 	return generic_file_mmap(file, vma);
1636 }
1637 #else
1638 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1639 {
1640 	return -ENOSYS;
1641 }
1642 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1643 {
1644 	return -ENOSYS;
1645 }
1646 #endif /* CONFIG_MMU */
1647 
1648 EXPORT_SYMBOL(generic_file_mmap);
1649 EXPORT_SYMBOL(generic_file_readonly_mmap);
1650 
1651 static struct page *__read_cache_page(struct address_space *mapping,
1652 				pgoff_t index,
1653 				int (*filler)(void *,struct page*),
1654 				void *data)
1655 {
1656 	struct page *page;
1657 	int err;
1658 repeat:
1659 	page = find_get_page(mapping, index);
1660 	if (!page) {
1661 		page = page_cache_alloc_cold(mapping);
1662 		if (!page)
1663 			return ERR_PTR(-ENOMEM);
1664 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1665 		if (unlikely(err)) {
1666 			page_cache_release(page);
1667 			if (err == -EEXIST)
1668 				goto repeat;
1669 			/* Presumably ENOMEM for radix tree node */
1670 			return ERR_PTR(err);
1671 		}
1672 		err = filler(data, page);
1673 		if (err < 0) {
1674 			page_cache_release(page);
1675 			page = ERR_PTR(err);
1676 		}
1677 	}
1678 	return page;
1679 }
1680 
1681 /**
1682  * read_cache_page_async - read into page cache, fill it if needed
1683  * @mapping:	the page's address_space
1684  * @index:	the page index
1685  * @filler:	function to perform the read
1686  * @data:	destination for read data
1687  *
1688  * Same as read_cache_page, but don't wait for page to become unlocked
1689  * after submitting it to the filler.
1690  *
1691  * Read into the page cache. If a page already exists, and PageUptodate() is
1692  * not set, try to fill the page but don't wait for it to become unlocked.
1693  *
1694  * If the page does not get brought uptodate, return -EIO.
1695  */
1696 struct page *read_cache_page_async(struct address_space *mapping,
1697 				pgoff_t index,
1698 				int (*filler)(void *,struct page*),
1699 				void *data)
1700 {
1701 	struct page *page;
1702 	int err;
1703 
1704 retry:
1705 	page = __read_cache_page(mapping, index, filler, data);
1706 	if (IS_ERR(page))
1707 		return page;
1708 	if (PageUptodate(page))
1709 		goto out;
1710 
1711 	lock_page(page);
1712 	if (!page->mapping) {
1713 		unlock_page(page);
1714 		page_cache_release(page);
1715 		goto retry;
1716 	}
1717 	if (PageUptodate(page)) {
1718 		unlock_page(page);
1719 		goto out;
1720 	}
1721 	err = filler(data, page);
1722 	if (err < 0) {
1723 		page_cache_release(page);
1724 		return ERR_PTR(err);
1725 	}
1726 out:
1727 	mark_page_accessed(page);
1728 	return page;
1729 }
1730 EXPORT_SYMBOL(read_cache_page_async);
1731 
1732 /**
1733  * read_cache_page - read into page cache, fill it if needed
1734  * @mapping:	the page's address_space
1735  * @index:	the page index
1736  * @filler:	function to perform the read
1737  * @data:	destination for read data
1738  *
1739  * Read into the page cache. If a page already exists, and PageUptodate() is
1740  * not set, try to fill the page then wait for it to become unlocked.
1741  *
1742  * If the page does not get brought uptodate, return -EIO.
1743  */
1744 struct page *read_cache_page(struct address_space *mapping,
1745 				pgoff_t index,
1746 				int (*filler)(void *,struct page*),
1747 				void *data)
1748 {
1749 	struct page *page;
1750 
1751 	page = read_cache_page_async(mapping, index, filler, data);
1752 	if (IS_ERR(page))
1753 		goto out;
1754 	wait_on_page_locked(page);
1755 	if (!PageUptodate(page)) {
1756 		page_cache_release(page);
1757 		page = ERR_PTR(-EIO);
1758 	}
1759  out:
1760 	return page;
1761 }
1762 EXPORT_SYMBOL(read_cache_page);
1763 
1764 /*
1765  * The logic we want is
1766  *
1767  *	if suid or (sgid and xgrp)
1768  *		remove privs
1769  */
1770 int should_remove_suid(struct dentry *dentry)
1771 {
1772 	mode_t mode = dentry->d_inode->i_mode;
1773 	int kill = 0;
1774 
1775 	/* suid always must be killed */
1776 	if (unlikely(mode & S_ISUID))
1777 		kill = ATTR_KILL_SUID;
1778 
1779 	/*
1780 	 * sgid without any exec bits is just a mandatory locking mark; leave
1781 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1782 	 */
1783 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1784 		kill |= ATTR_KILL_SGID;
1785 
1786 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1787 		return kill;
1788 
1789 	return 0;
1790 }
1791 EXPORT_SYMBOL(should_remove_suid);
1792 
1793 static int __remove_suid(struct dentry *dentry, int kill)
1794 {
1795 	struct iattr newattrs;
1796 
1797 	newattrs.ia_valid = ATTR_FORCE | kill;
1798 	return notify_change(dentry, &newattrs);
1799 }
1800 
1801 int file_remove_suid(struct file *file)
1802 {
1803 	struct dentry *dentry = file->f_path.dentry;
1804 	int killsuid = should_remove_suid(dentry);
1805 	int killpriv = security_inode_need_killpriv(dentry);
1806 	int error = 0;
1807 
1808 	if (killpriv < 0)
1809 		return killpriv;
1810 	if (killpriv)
1811 		error = security_inode_killpriv(dentry);
1812 	if (!error && killsuid)
1813 		error = __remove_suid(dentry, killsuid);
1814 
1815 	return error;
1816 }
1817 EXPORT_SYMBOL(file_remove_suid);
1818 
1819 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1820 			const struct iovec *iov, size_t base, size_t bytes)
1821 {
1822 	size_t copied = 0, left = 0;
1823 
1824 	while (bytes) {
1825 		char __user *buf = iov->iov_base + base;
1826 		int copy = min(bytes, iov->iov_len - base);
1827 
1828 		base = 0;
1829 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1830 		copied += copy;
1831 		bytes -= copy;
1832 		vaddr += copy;
1833 		iov++;
1834 
1835 		if (unlikely(left))
1836 			break;
1837 	}
1838 	return copied - left;
1839 }
1840 
1841 /*
1842  * Copy as much as we can into the page and return the number of bytes which
1843  * were sucessfully copied.  If a fault is encountered then return the number of
1844  * bytes which were copied.
1845  */
1846 size_t iov_iter_copy_from_user_atomic(struct page *page,
1847 		struct iov_iter *i, unsigned long offset, size_t bytes)
1848 {
1849 	char *kaddr;
1850 	size_t copied;
1851 
1852 	BUG_ON(!in_atomic());
1853 	kaddr = kmap_atomic(page, KM_USER0);
1854 	if (likely(i->nr_segs == 1)) {
1855 		int left;
1856 		char __user *buf = i->iov->iov_base + i->iov_offset;
1857 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1858 		copied = bytes - left;
1859 	} else {
1860 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1861 						i->iov, i->iov_offset, bytes);
1862 	}
1863 	kunmap_atomic(kaddr, KM_USER0);
1864 
1865 	return copied;
1866 }
1867 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1868 
1869 /*
1870  * This has the same sideeffects and return value as
1871  * iov_iter_copy_from_user_atomic().
1872  * The difference is that it attempts to resolve faults.
1873  * Page must not be locked.
1874  */
1875 size_t iov_iter_copy_from_user(struct page *page,
1876 		struct iov_iter *i, unsigned long offset, size_t bytes)
1877 {
1878 	char *kaddr;
1879 	size_t copied;
1880 
1881 	kaddr = kmap(page);
1882 	if (likely(i->nr_segs == 1)) {
1883 		int left;
1884 		char __user *buf = i->iov->iov_base + i->iov_offset;
1885 		left = __copy_from_user(kaddr + offset, buf, bytes);
1886 		copied = bytes - left;
1887 	} else {
1888 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1889 						i->iov, i->iov_offset, bytes);
1890 	}
1891 	kunmap(page);
1892 	return copied;
1893 }
1894 EXPORT_SYMBOL(iov_iter_copy_from_user);
1895 
1896 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1897 {
1898 	BUG_ON(i->count < bytes);
1899 
1900 	if (likely(i->nr_segs == 1)) {
1901 		i->iov_offset += bytes;
1902 		i->count -= bytes;
1903 	} else {
1904 		const struct iovec *iov = i->iov;
1905 		size_t base = i->iov_offset;
1906 
1907 		/*
1908 		 * The !iov->iov_len check ensures we skip over unlikely
1909 		 * zero-length segments (without overruning the iovec).
1910 		 */
1911 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1912 			int copy;
1913 
1914 			copy = min(bytes, iov->iov_len - base);
1915 			BUG_ON(!i->count || i->count < copy);
1916 			i->count -= copy;
1917 			bytes -= copy;
1918 			base += copy;
1919 			if (iov->iov_len == base) {
1920 				iov++;
1921 				base = 0;
1922 			}
1923 		}
1924 		i->iov = iov;
1925 		i->iov_offset = base;
1926 	}
1927 }
1928 EXPORT_SYMBOL(iov_iter_advance);
1929 
1930 /*
1931  * Fault in the first iovec of the given iov_iter, to a maximum length
1932  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1933  * accessed (ie. because it is an invalid address).
1934  *
1935  * writev-intensive code may want this to prefault several iovecs -- that
1936  * would be possible (callers must not rely on the fact that _only_ the
1937  * first iovec will be faulted with the current implementation).
1938  */
1939 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1940 {
1941 	char __user *buf = i->iov->iov_base + i->iov_offset;
1942 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1943 	return fault_in_pages_readable(buf, bytes);
1944 }
1945 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1946 
1947 /*
1948  * Return the count of just the current iov_iter segment.
1949  */
1950 size_t iov_iter_single_seg_count(struct iov_iter *i)
1951 {
1952 	const struct iovec *iov = i->iov;
1953 	if (i->nr_segs == 1)
1954 		return i->count;
1955 	else
1956 		return min(i->count, iov->iov_len - i->iov_offset);
1957 }
1958 EXPORT_SYMBOL(iov_iter_single_seg_count);
1959 
1960 /*
1961  * Performs necessary checks before doing a write
1962  *
1963  * Can adjust writing position or amount of bytes to write.
1964  * Returns appropriate error code that caller should return or
1965  * zero in case that write should be allowed.
1966  */
1967 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1968 {
1969 	struct inode *inode = file->f_mapping->host;
1970 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1971 
1972         if (unlikely(*pos < 0))
1973                 return -EINVAL;
1974 
1975 	if (!isblk) {
1976 		/* FIXME: this is for backwards compatibility with 2.4 */
1977 		if (file->f_flags & O_APPEND)
1978                         *pos = i_size_read(inode);
1979 
1980 		if (limit != RLIM_INFINITY) {
1981 			if (*pos >= limit) {
1982 				send_sig(SIGXFSZ, current, 0);
1983 				return -EFBIG;
1984 			}
1985 			if (*count > limit - (typeof(limit))*pos) {
1986 				*count = limit - (typeof(limit))*pos;
1987 			}
1988 		}
1989 	}
1990 
1991 	/*
1992 	 * LFS rule
1993 	 */
1994 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1995 				!(file->f_flags & O_LARGEFILE))) {
1996 		if (*pos >= MAX_NON_LFS) {
1997 			return -EFBIG;
1998 		}
1999 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2000 			*count = MAX_NON_LFS - (unsigned long)*pos;
2001 		}
2002 	}
2003 
2004 	/*
2005 	 * Are we about to exceed the fs block limit ?
2006 	 *
2007 	 * If we have written data it becomes a short write.  If we have
2008 	 * exceeded without writing data we send a signal and return EFBIG.
2009 	 * Linus frestrict idea will clean these up nicely..
2010 	 */
2011 	if (likely(!isblk)) {
2012 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2013 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2014 				return -EFBIG;
2015 			}
2016 			/* zero-length writes at ->s_maxbytes are OK */
2017 		}
2018 
2019 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2020 			*count = inode->i_sb->s_maxbytes - *pos;
2021 	} else {
2022 #ifdef CONFIG_BLOCK
2023 		loff_t isize;
2024 		if (bdev_read_only(I_BDEV(inode)))
2025 			return -EPERM;
2026 		isize = i_size_read(inode);
2027 		if (*pos >= isize) {
2028 			if (*count || *pos > isize)
2029 				return -ENOSPC;
2030 		}
2031 
2032 		if (*pos + *count > isize)
2033 			*count = isize - *pos;
2034 #else
2035 		return -EPERM;
2036 #endif
2037 	}
2038 	return 0;
2039 }
2040 EXPORT_SYMBOL(generic_write_checks);
2041 
2042 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2043 				loff_t pos, unsigned len, unsigned flags,
2044 				struct page **pagep, void **fsdata)
2045 {
2046 	const struct address_space_operations *aops = mapping->a_ops;
2047 
2048 	return aops->write_begin(file, mapping, pos, len, flags,
2049 							pagep, fsdata);
2050 }
2051 EXPORT_SYMBOL(pagecache_write_begin);
2052 
2053 int pagecache_write_end(struct file *file, struct address_space *mapping,
2054 				loff_t pos, unsigned len, unsigned copied,
2055 				struct page *page, void *fsdata)
2056 {
2057 	const struct address_space_operations *aops = mapping->a_ops;
2058 
2059 	mark_page_accessed(page);
2060 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2061 }
2062 EXPORT_SYMBOL(pagecache_write_end);
2063 
2064 ssize_t
2065 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2066 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2067 		size_t count, size_t ocount)
2068 {
2069 	struct file	*file = iocb->ki_filp;
2070 	struct address_space *mapping = file->f_mapping;
2071 	struct inode	*inode = mapping->host;
2072 	ssize_t		written;
2073 	size_t		write_len;
2074 	pgoff_t		end;
2075 
2076 	if (count != ocount)
2077 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2078 
2079 	write_len = iov_length(iov, *nr_segs);
2080 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2081 
2082 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2083 	if (written)
2084 		goto out;
2085 
2086 	/*
2087 	 * After a write we want buffered reads to be sure to go to disk to get
2088 	 * the new data.  We invalidate clean cached page from the region we're
2089 	 * about to write.  We do this *before* the write so that we can return
2090 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2091 	 */
2092 	if (mapping->nrpages) {
2093 		written = invalidate_inode_pages2_range(mapping,
2094 					pos >> PAGE_CACHE_SHIFT, end);
2095 		/*
2096 		 * If a page can not be invalidated, return 0 to fall back
2097 		 * to buffered write.
2098 		 */
2099 		if (written) {
2100 			if (written == -EBUSY)
2101 				return 0;
2102 			goto out;
2103 		}
2104 	}
2105 
2106 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2107 
2108 	/*
2109 	 * Finally, try again to invalidate clean pages which might have been
2110 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2111 	 * if the source of the write was an mmap'ed region of the file
2112 	 * we're writing.  Either one is a pretty crazy thing to do,
2113 	 * so we don't support it 100%.  If this invalidation
2114 	 * fails, tough, the write still worked...
2115 	 */
2116 	if (mapping->nrpages) {
2117 		invalidate_inode_pages2_range(mapping,
2118 					      pos >> PAGE_CACHE_SHIFT, end);
2119 	}
2120 
2121 	if (written > 0) {
2122 		loff_t end = pos + written;
2123 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2124 			i_size_write(inode,  end);
2125 			mark_inode_dirty(inode);
2126 		}
2127 		*ppos = end;
2128 	}
2129 out:
2130 	return written;
2131 }
2132 EXPORT_SYMBOL(generic_file_direct_write);
2133 
2134 /*
2135  * Find or create a page at the given pagecache position. Return the locked
2136  * page. This function is specifically for buffered writes.
2137  */
2138 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2139 					pgoff_t index, unsigned flags)
2140 {
2141 	int status;
2142 	struct page *page;
2143 	gfp_t gfp_notmask = 0;
2144 	if (flags & AOP_FLAG_NOFS)
2145 		gfp_notmask = __GFP_FS;
2146 repeat:
2147 	page = find_lock_page(mapping, index);
2148 	if (likely(page))
2149 		return page;
2150 
2151 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2152 	if (!page)
2153 		return NULL;
2154 	status = add_to_page_cache_lru(page, mapping, index,
2155 						GFP_KERNEL & ~gfp_notmask);
2156 	if (unlikely(status)) {
2157 		page_cache_release(page);
2158 		if (status == -EEXIST)
2159 			goto repeat;
2160 		return NULL;
2161 	}
2162 	return page;
2163 }
2164 EXPORT_SYMBOL(grab_cache_page_write_begin);
2165 
2166 static ssize_t generic_perform_write(struct file *file,
2167 				struct iov_iter *i, loff_t pos)
2168 {
2169 	struct address_space *mapping = file->f_mapping;
2170 	const struct address_space_operations *a_ops = mapping->a_ops;
2171 	long status = 0;
2172 	ssize_t written = 0;
2173 	unsigned int flags = 0;
2174 
2175 	/*
2176 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2177 	 */
2178 	if (segment_eq(get_fs(), KERNEL_DS))
2179 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2180 
2181 	do {
2182 		struct page *page;
2183 		pgoff_t index;		/* Pagecache index for current page */
2184 		unsigned long offset;	/* Offset into pagecache page */
2185 		unsigned long bytes;	/* Bytes to write to page */
2186 		size_t copied;		/* Bytes copied from user */
2187 		void *fsdata;
2188 
2189 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2190 		index = pos >> PAGE_CACHE_SHIFT;
2191 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2192 						iov_iter_count(i));
2193 
2194 again:
2195 
2196 		/*
2197 		 * Bring in the user page that we will copy from _first_.
2198 		 * Otherwise there's a nasty deadlock on copying from the
2199 		 * same page as we're writing to, without it being marked
2200 		 * up-to-date.
2201 		 *
2202 		 * Not only is this an optimisation, but it is also required
2203 		 * to check that the address is actually valid, when atomic
2204 		 * usercopies are used, below.
2205 		 */
2206 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2207 			status = -EFAULT;
2208 			break;
2209 		}
2210 
2211 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2212 						&page, &fsdata);
2213 		if (unlikely(status))
2214 			break;
2215 
2216 		pagefault_disable();
2217 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2218 		pagefault_enable();
2219 		flush_dcache_page(page);
2220 
2221 		mark_page_accessed(page);
2222 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2223 						page, fsdata);
2224 		if (unlikely(status < 0))
2225 			break;
2226 		copied = status;
2227 
2228 		cond_resched();
2229 
2230 		iov_iter_advance(i, copied);
2231 		if (unlikely(copied == 0)) {
2232 			/*
2233 			 * If we were unable to copy any data at all, we must
2234 			 * fall back to a single segment length write.
2235 			 *
2236 			 * If we didn't fallback here, we could livelock
2237 			 * because not all segments in the iov can be copied at
2238 			 * once without a pagefault.
2239 			 */
2240 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2241 						iov_iter_single_seg_count(i));
2242 			goto again;
2243 		}
2244 		pos += copied;
2245 		written += copied;
2246 
2247 		balance_dirty_pages_ratelimited(mapping);
2248 
2249 	} while (iov_iter_count(i));
2250 
2251 	return written ? written : status;
2252 }
2253 
2254 ssize_t
2255 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2256 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2257 		size_t count, ssize_t written)
2258 {
2259 	struct file *file = iocb->ki_filp;
2260 	struct address_space *mapping = file->f_mapping;
2261 	ssize_t status;
2262 	struct iov_iter i;
2263 
2264 	iov_iter_init(&i, iov, nr_segs, count, written);
2265 	status = generic_perform_write(file, &i, pos);
2266 
2267 	if (likely(status >= 0)) {
2268 		written += status;
2269 		*ppos = pos + status;
2270   	}
2271 
2272 	/*
2273 	 * If we get here for O_DIRECT writes then we must have fallen through
2274 	 * to buffered writes (block instantiation inside i_size).  So we sync
2275 	 * the file data here, to try to honour O_DIRECT expectations.
2276 	 */
2277 	if (unlikely(file->f_flags & O_DIRECT) && written)
2278 		status = filemap_write_and_wait_range(mapping,
2279 					pos, pos + written - 1);
2280 
2281 	return written ? written : status;
2282 }
2283 EXPORT_SYMBOL(generic_file_buffered_write);
2284 
2285 /**
2286  * __generic_file_aio_write - write data to a file
2287  * @iocb:	IO state structure (file, offset, etc.)
2288  * @iov:	vector with data to write
2289  * @nr_segs:	number of segments in the vector
2290  * @ppos:	position where to write
2291  *
2292  * This function does all the work needed for actually writing data to a
2293  * file. It does all basic checks, removes SUID from the file, updates
2294  * modification times and calls proper subroutines depending on whether we
2295  * do direct IO or a standard buffered write.
2296  *
2297  * It expects i_mutex to be grabbed unless we work on a block device or similar
2298  * object which does not need locking at all.
2299  *
2300  * This function does *not* take care of syncing data in case of O_SYNC write.
2301  * A caller has to handle it. This is mainly due to the fact that we want to
2302  * avoid syncing under i_mutex.
2303  */
2304 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2305 				 unsigned long nr_segs, loff_t *ppos)
2306 {
2307 	struct file *file = iocb->ki_filp;
2308 	struct address_space * mapping = file->f_mapping;
2309 	size_t ocount;		/* original count */
2310 	size_t count;		/* after file limit checks */
2311 	struct inode 	*inode = mapping->host;
2312 	loff_t		pos;
2313 	ssize_t		written;
2314 	ssize_t		err;
2315 
2316 	ocount = 0;
2317 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2318 	if (err)
2319 		return err;
2320 
2321 	count = ocount;
2322 	pos = *ppos;
2323 
2324 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2325 
2326 	/* We can write back this queue in page reclaim */
2327 	current->backing_dev_info = mapping->backing_dev_info;
2328 	written = 0;
2329 
2330 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2331 	if (err)
2332 		goto out;
2333 
2334 	if (count == 0)
2335 		goto out;
2336 
2337 	err = file_remove_suid(file);
2338 	if (err)
2339 		goto out;
2340 
2341 	file_update_time(file);
2342 
2343 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2344 	if (unlikely(file->f_flags & O_DIRECT)) {
2345 		loff_t endbyte;
2346 		ssize_t written_buffered;
2347 
2348 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2349 							ppos, count, ocount);
2350 		if (written < 0 || written == count)
2351 			goto out;
2352 		/*
2353 		 * direct-io write to a hole: fall through to buffered I/O
2354 		 * for completing the rest of the request.
2355 		 */
2356 		pos += written;
2357 		count -= written;
2358 		written_buffered = generic_file_buffered_write(iocb, iov,
2359 						nr_segs, pos, ppos, count,
2360 						written);
2361 		/*
2362 		 * If generic_file_buffered_write() retuned a synchronous error
2363 		 * then we want to return the number of bytes which were
2364 		 * direct-written, or the error code if that was zero.  Note
2365 		 * that this differs from normal direct-io semantics, which
2366 		 * will return -EFOO even if some bytes were written.
2367 		 */
2368 		if (written_buffered < 0) {
2369 			err = written_buffered;
2370 			goto out;
2371 		}
2372 
2373 		/*
2374 		 * We need to ensure that the page cache pages are written to
2375 		 * disk and invalidated to preserve the expected O_DIRECT
2376 		 * semantics.
2377 		 */
2378 		endbyte = pos + written_buffered - written - 1;
2379 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2380 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2381 					    SYNC_FILE_RANGE_WRITE|
2382 					    SYNC_FILE_RANGE_WAIT_AFTER);
2383 		if (err == 0) {
2384 			written = written_buffered;
2385 			invalidate_mapping_pages(mapping,
2386 						 pos >> PAGE_CACHE_SHIFT,
2387 						 endbyte >> PAGE_CACHE_SHIFT);
2388 		} else {
2389 			/*
2390 			 * We don't know how much we wrote, so just return
2391 			 * the number of bytes which were direct-written
2392 			 */
2393 		}
2394 	} else {
2395 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2396 				pos, ppos, count, written);
2397 	}
2398 out:
2399 	current->backing_dev_info = NULL;
2400 	return written ? written : err;
2401 }
2402 EXPORT_SYMBOL(__generic_file_aio_write);
2403 
2404 /**
2405  * generic_file_aio_write - write data to a file
2406  * @iocb:	IO state structure
2407  * @iov:	vector with data to write
2408  * @nr_segs:	number of segments in the vector
2409  * @pos:	position in file where to write
2410  *
2411  * This is a wrapper around __generic_file_aio_write() to be used by most
2412  * filesystems. It takes care of syncing the file in case of O_SYNC file
2413  * and acquires i_mutex as needed.
2414  */
2415 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2416 		unsigned long nr_segs, loff_t pos)
2417 {
2418 	struct file *file = iocb->ki_filp;
2419 	struct inode *inode = file->f_mapping->host;
2420 	ssize_t ret;
2421 
2422 	BUG_ON(iocb->ki_pos != pos);
2423 
2424 	mutex_lock(&inode->i_mutex);
2425 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2426 	mutex_unlock(&inode->i_mutex);
2427 
2428 	if (ret > 0 || ret == -EIOCBQUEUED) {
2429 		ssize_t err;
2430 
2431 		err = generic_write_sync(file, pos, ret);
2432 		if (err < 0 && ret > 0)
2433 			ret = err;
2434 	}
2435 	return ret;
2436 }
2437 EXPORT_SYMBOL(generic_file_aio_write);
2438 
2439 /**
2440  * try_to_release_page() - release old fs-specific metadata on a page
2441  *
2442  * @page: the page which the kernel is trying to free
2443  * @gfp_mask: memory allocation flags (and I/O mode)
2444  *
2445  * The address_space is to try to release any data against the page
2446  * (presumably at page->private).  If the release was successful, return `1'.
2447  * Otherwise return zero.
2448  *
2449  * This may also be called if PG_fscache is set on a page, indicating that the
2450  * page is known to the local caching routines.
2451  *
2452  * The @gfp_mask argument specifies whether I/O may be performed to release
2453  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2454  *
2455  */
2456 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2457 {
2458 	struct address_space * const mapping = page->mapping;
2459 
2460 	BUG_ON(!PageLocked(page));
2461 	if (PageWriteback(page))
2462 		return 0;
2463 
2464 	if (mapping && mapping->a_ops->releasepage)
2465 		return mapping->a_ops->releasepage(page, gfp_mask);
2466 	return try_to_free_buffers(page);
2467 }
2468 
2469 EXPORT_SYMBOL(try_to_release_page);
2470