1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/syscalls.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/memcontrol.h> 36 #include <linux/mm_inline.h> /* for page_is_file_cache() */ 37 #include "internal.h" 38 39 /* 40 * FIXME: remove all knowledge of the buffer layer from the core VM 41 */ 42 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 43 44 #include <asm/mman.h> 45 46 /* 47 * Shared mappings implemented 30.11.1994. It's not fully working yet, 48 * though. 49 * 50 * Shared mappings now work. 15.8.1995 Bruno. 51 * 52 * finished 'unifying' the page and buffer cache and SMP-threaded the 53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 54 * 55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 56 */ 57 58 /* 59 * Lock ordering: 60 * 61 * ->i_mmap_lock (vmtruncate) 62 * ->private_lock (__free_pte->__set_page_dirty_buffers) 63 * ->swap_lock (exclusive_swap_page, others) 64 * ->mapping->tree_lock 65 * 66 * ->i_mutex 67 * ->i_mmap_lock (truncate->unmap_mapping_range) 68 * 69 * ->mmap_sem 70 * ->i_mmap_lock 71 * ->page_table_lock or pte_lock (various, mainly in memory.c) 72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 73 * 74 * ->mmap_sem 75 * ->lock_page (access_process_vm) 76 * 77 * ->i_mutex (generic_file_buffered_write) 78 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 79 * 80 * ->i_mutex 81 * ->i_alloc_sem (various) 82 * 83 * ->inode_lock 84 * ->sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_lock 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * ->inode_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (zap_pte_range->set_page_dirty) 103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 104 * 105 * ->task->proc_lock 106 * ->dcache_lock (proc_pid_lookup) 107 */ 108 109 /* 110 * Remove a page from the page cache and free it. Caller has to make 111 * sure the page is locked and that nobody else uses it - or that usage 112 * is safe. The caller must hold the mapping's tree_lock. 113 */ 114 void __remove_from_page_cache(struct page *page) 115 { 116 struct address_space *mapping = page->mapping; 117 118 radix_tree_delete(&mapping->page_tree, page->index); 119 page->mapping = NULL; 120 mapping->nrpages--; 121 __dec_zone_page_state(page, NR_FILE_PAGES); 122 if (PageSwapBacked(page)) 123 __dec_zone_page_state(page, NR_SHMEM); 124 BUG_ON(page_mapped(page)); 125 126 /* 127 * Some filesystems seem to re-dirty the page even after 128 * the VM has canceled the dirty bit (eg ext3 journaling). 129 * 130 * Fix it up by doing a final dirty accounting check after 131 * having removed the page entirely. 132 */ 133 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 134 dec_zone_page_state(page, NR_FILE_DIRTY); 135 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 136 } 137 } 138 139 void remove_from_page_cache(struct page *page) 140 { 141 struct address_space *mapping = page->mapping; 142 143 BUG_ON(!PageLocked(page)); 144 145 spin_lock_irq(&mapping->tree_lock); 146 __remove_from_page_cache(page); 147 spin_unlock_irq(&mapping->tree_lock); 148 mem_cgroup_uncharge_cache_page(page); 149 } 150 151 static int sync_page(void *word) 152 { 153 struct address_space *mapping; 154 struct page *page; 155 156 page = container_of((unsigned long *)word, struct page, flags); 157 158 /* 159 * page_mapping() is being called without PG_locked held. 160 * Some knowledge of the state and use of the page is used to 161 * reduce the requirements down to a memory barrier. 162 * The danger here is of a stale page_mapping() return value 163 * indicating a struct address_space different from the one it's 164 * associated with when it is associated with one. 165 * After smp_mb(), it's either the correct page_mapping() for 166 * the page, or an old page_mapping() and the page's own 167 * page_mapping() has gone NULL. 168 * The ->sync_page() address_space operation must tolerate 169 * page_mapping() going NULL. By an amazing coincidence, 170 * this comes about because none of the users of the page 171 * in the ->sync_page() methods make essential use of the 172 * page_mapping(), merely passing the page down to the backing 173 * device's unplug functions when it's non-NULL, which in turn 174 * ignore it for all cases but swap, where only page_private(page) is 175 * of interest. When page_mapping() does go NULL, the entire 176 * call stack gracefully ignores the page and returns. 177 * -- wli 178 */ 179 smp_mb(); 180 mapping = page_mapping(page); 181 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 182 mapping->a_ops->sync_page(page); 183 io_schedule(); 184 return 0; 185 } 186 187 static int sync_page_killable(void *word) 188 { 189 sync_page(word); 190 return fatal_signal_pending(current) ? -EINTR : 0; 191 } 192 193 /** 194 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 195 * @mapping: address space structure to write 196 * @start: offset in bytes where the range starts 197 * @end: offset in bytes where the range ends (inclusive) 198 * @sync_mode: enable synchronous operation 199 * 200 * Start writeback against all of a mapping's dirty pages that lie 201 * within the byte offsets <start, end> inclusive. 202 * 203 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 204 * opposed to a regular memory cleansing writeback. The difference between 205 * these two operations is that if a dirty page/buffer is encountered, it must 206 * be waited upon, and not just skipped over. 207 */ 208 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 209 loff_t end, int sync_mode) 210 { 211 int ret; 212 struct writeback_control wbc = { 213 .sync_mode = sync_mode, 214 .nr_to_write = LONG_MAX, 215 .range_start = start, 216 .range_end = end, 217 }; 218 219 if (!mapping_cap_writeback_dirty(mapping)) 220 return 0; 221 222 ret = do_writepages(mapping, &wbc); 223 return ret; 224 } 225 226 static inline int __filemap_fdatawrite(struct address_space *mapping, 227 int sync_mode) 228 { 229 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 230 } 231 232 int filemap_fdatawrite(struct address_space *mapping) 233 { 234 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 235 } 236 EXPORT_SYMBOL(filemap_fdatawrite); 237 238 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 239 loff_t end) 240 { 241 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 242 } 243 EXPORT_SYMBOL(filemap_fdatawrite_range); 244 245 /** 246 * filemap_flush - mostly a non-blocking flush 247 * @mapping: target address_space 248 * 249 * This is a mostly non-blocking flush. Not suitable for data-integrity 250 * purposes - I/O may not be started against all dirty pages. 251 */ 252 int filemap_flush(struct address_space *mapping) 253 { 254 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 255 } 256 EXPORT_SYMBOL(filemap_flush); 257 258 /** 259 * wait_on_page_writeback_range - wait for writeback to complete 260 * @mapping: target address_space 261 * @start: beginning page index 262 * @end: ending page index 263 * 264 * Wait for writeback to complete against pages indexed by start->end 265 * inclusive 266 */ 267 int wait_on_page_writeback_range(struct address_space *mapping, 268 pgoff_t start, pgoff_t end) 269 { 270 struct pagevec pvec; 271 int nr_pages; 272 int ret = 0; 273 pgoff_t index; 274 275 if (end < start) 276 return 0; 277 278 pagevec_init(&pvec, 0); 279 index = start; 280 while ((index <= end) && 281 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 282 PAGECACHE_TAG_WRITEBACK, 283 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 284 unsigned i; 285 286 for (i = 0; i < nr_pages; i++) { 287 struct page *page = pvec.pages[i]; 288 289 /* until radix tree lookup accepts end_index */ 290 if (page->index > end) 291 continue; 292 293 wait_on_page_writeback(page); 294 if (PageError(page)) 295 ret = -EIO; 296 } 297 pagevec_release(&pvec); 298 cond_resched(); 299 } 300 301 /* Check for outstanding write errors */ 302 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 303 ret = -ENOSPC; 304 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 305 ret = -EIO; 306 307 return ret; 308 } 309 310 /** 311 * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range 312 * @mapping: address space structure to wait for 313 * @start: offset in bytes where the range starts 314 * @end: offset in bytes where the range ends (inclusive) 315 * 316 * Walk the list of under-writeback pages of the given address space 317 * in the given range and wait for all of them. 318 * 319 * This is just a simple wrapper so that callers don't have to convert offsets 320 * to page indexes themselves 321 */ 322 int filemap_fdatawait_range(struct address_space *mapping, loff_t start, 323 loff_t end) 324 { 325 return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT, 326 end >> PAGE_CACHE_SHIFT); 327 } 328 EXPORT_SYMBOL(filemap_fdatawait_range); 329 330 /** 331 * filemap_fdatawait - wait for all under-writeback pages to complete 332 * @mapping: address space structure to wait for 333 * 334 * Walk the list of under-writeback pages of the given address space 335 * and wait for all of them. 336 */ 337 int filemap_fdatawait(struct address_space *mapping) 338 { 339 loff_t i_size = i_size_read(mapping->host); 340 341 if (i_size == 0) 342 return 0; 343 344 return wait_on_page_writeback_range(mapping, 0, 345 (i_size - 1) >> PAGE_CACHE_SHIFT); 346 } 347 EXPORT_SYMBOL(filemap_fdatawait); 348 349 int filemap_write_and_wait(struct address_space *mapping) 350 { 351 int err = 0; 352 353 if (mapping->nrpages) { 354 err = filemap_fdatawrite(mapping); 355 /* 356 * Even if the above returned error, the pages may be 357 * written partially (e.g. -ENOSPC), so we wait for it. 358 * But the -EIO is special case, it may indicate the worst 359 * thing (e.g. bug) happened, so we avoid waiting for it. 360 */ 361 if (err != -EIO) { 362 int err2 = filemap_fdatawait(mapping); 363 if (!err) 364 err = err2; 365 } 366 } 367 return err; 368 } 369 EXPORT_SYMBOL(filemap_write_and_wait); 370 371 /** 372 * filemap_write_and_wait_range - write out & wait on a file range 373 * @mapping: the address_space for the pages 374 * @lstart: offset in bytes where the range starts 375 * @lend: offset in bytes where the range ends (inclusive) 376 * 377 * Write out and wait upon file offsets lstart->lend, inclusive. 378 * 379 * Note that `lend' is inclusive (describes the last byte to be written) so 380 * that this function can be used to write to the very end-of-file (end = -1). 381 */ 382 int filemap_write_and_wait_range(struct address_space *mapping, 383 loff_t lstart, loff_t lend) 384 { 385 int err = 0; 386 387 if (mapping->nrpages) { 388 err = __filemap_fdatawrite_range(mapping, lstart, lend, 389 WB_SYNC_ALL); 390 /* See comment of filemap_write_and_wait() */ 391 if (err != -EIO) { 392 int err2 = wait_on_page_writeback_range(mapping, 393 lstart >> PAGE_CACHE_SHIFT, 394 lend >> PAGE_CACHE_SHIFT); 395 if (!err) 396 err = err2; 397 } 398 } 399 return err; 400 } 401 EXPORT_SYMBOL(filemap_write_and_wait_range); 402 403 /** 404 * add_to_page_cache_locked - add a locked page to the pagecache 405 * @page: page to add 406 * @mapping: the page's address_space 407 * @offset: page index 408 * @gfp_mask: page allocation mode 409 * 410 * This function is used to add a page to the pagecache. It must be locked. 411 * This function does not add the page to the LRU. The caller must do that. 412 */ 413 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 414 pgoff_t offset, gfp_t gfp_mask) 415 { 416 int error; 417 418 VM_BUG_ON(!PageLocked(page)); 419 420 error = mem_cgroup_cache_charge(page, current->mm, 421 gfp_mask & GFP_RECLAIM_MASK); 422 if (error) 423 goto out; 424 425 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 426 if (error == 0) { 427 page_cache_get(page); 428 page->mapping = mapping; 429 page->index = offset; 430 431 spin_lock_irq(&mapping->tree_lock); 432 error = radix_tree_insert(&mapping->page_tree, offset, page); 433 if (likely(!error)) { 434 mapping->nrpages++; 435 __inc_zone_page_state(page, NR_FILE_PAGES); 436 if (PageSwapBacked(page)) 437 __inc_zone_page_state(page, NR_SHMEM); 438 spin_unlock_irq(&mapping->tree_lock); 439 } else { 440 page->mapping = NULL; 441 spin_unlock_irq(&mapping->tree_lock); 442 mem_cgroup_uncharge_cache_page(page); 443 page_cache_release(page); 444 } 445 radix_tree_preload_end(); 446 } else 447 mem_cgroup_uncharge_cache_page(page); 448 out: 449 return error; 450 } 451 EXPORT_SYMBOL(add_to_page_cache_locked); 452 453 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 454 pgoff_t offset, gfp_t gfp_mask) 455 { 456 int ret; 457 458 /* 459 * Splice_read and readahead add shmem/tmpfs pages into the page cache 460 * before shmem_readpage has a chance to mark them as SwapBacked: they 461 * need to go on the active_anon lru below, and mem_cgroup_cache_charge 462 * (called in add_to_page_cache) needs to know where they're going too. 463 */ 464 if (mapping_cap_swap_backed(mapping)) 465 SetPageSwapBacked(page); 466 467 ret = add_to_page_cache(page, mapping, offset, gfp_mask); 468 if (ret == 0) { 469 if (page_is_file_cache(page)) 470 lru_cache_add_file(page); 471 else 472 lru_cache_add_active_anon(page); 473 } 474 return ret; 475 } 476 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 477 478 #ifdef CONFIG_NUMA 479 struct page *__page_cache_alloc(gfp_t gfp) 480 { 481 if (cpuset_do_page_mem_spread()) { 482 int n = cpuset_mem_spread_node(); 483 return alloc_pages_exact_node(n, gfp, 0); 484 } 485 return alloc_pages(gfp, 0); 486 } 487 EXPORT_SYMBOL(__page_cache_alloc); 488 #endif 489 490 static int __sleep_on_page_lock(void *word) 491 { 492 io_schedule(); 493 return 0; 494 } 495 496 /* 497 * In order to wait for pages to become available there must be 498 * waitqueues associated with pages. By using a hash table of 499 * waitqueues where the bucket discipline is to maintain all 500 * waiters on the same queue and wake all when any of the pages 501 * become available, and for the woken contexts to check to be 502 * sure the appropriate page became available, this saves space 503 * at a cost of "thundering herd" phenomena during rare hash 504 * collisions. 505 */ 506 static wait_queue_head_t *page_waitqueue(struct page *page) 507 { 508 const struct zone *zone = page_zone(page); 509 510 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 511 } 512 513 static inline void wake_up_page(struct page *page, int bit) 514 { 515 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 516 } 517 518 void wait_on_page_bit(struct page *page, int bit_nr) 519 { 520 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 521 522 if (test_bit(bit_nr, &page->flags)) 523 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 524 TASK_UNINTERRUPTIBLE); 525 } 526 EXPORT_SYMBOL(wait_on_page_bit); 527 528 /** 529 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 530 * @page: Page defining the wait queue of interest 531 * @waiter: Waiter to add to the queue 532 * 533 * Add an arbitrary @waiter to the wait queue for the nominated @page. 534 */ 535 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 536 { 537 wait_queue_head_t *q = page_waitqueue(page); 538 unsigned long flags; 539 540 spin_lock_irqsave(&q->lock, flags); 541 __add_wait_queue(q, waiter); 542 spin_unlock_irqrestore(&q->lock, flags); 543 } 544 EXPORT_SYMBOL_GPL(add_page_wait_queue); 545 546 /** 547 * unlock_page - unlock a locked page 548 * @page: the page 549 * 550 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 551 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 552 * mechananism between PageLocked pages and PageWriteback pages is shared. 553 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 554 * 555 * The mb is necessary to enforce ordering between the clear_bit and the read 556 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 557 */ 558 void unlock_page(struct page *page) 559 { 560 VM_BUG_ON(!PageLocked(page)); 561 clear_bit_unlock(PG_locked, &page->flags); 562 smp_mb__after_clear_bit(); 563 wake_up_page(page, PG_locked); 564 } 565 EXPORT_SYMBOL(unlock_page); 566 567 /** 568 * end_page_writeback - end writeback against a page 569 * @page: the page 570 */ 571 void end_page_writeback(struct page *page) 572 { 573 if (TestClearPageReclaim(page)) 574 rotate_reclaimable_page(page); 575 576 if (!test_clear_page_writeback(page)) 577 BUG(); 578 579 smp_mb__after_clear_bit(); 580 wake_up_page(page, PG_writeback); 581 } 582 EXPORT_SYMBOL(end_page_writeback); 583 584 /** 585 * __lock_page - get a lock on the page, assuming we need to sleep to get it 586 * @page: the page to lock 587 * 588 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 589 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 590 * chances are that on the second loop, the block layer's plug list is empty, 591 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 592 */ 593 void __lock_page(struct page *page) 594 { 595 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 596 597 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 598 TASK_UNINTERRUPTIBLE); 599 } 600 EXPORT_SYMBOL(__lock_page); 601 602 int __lock_page_killable(struct page *page) 603 { 604 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 605 606 return __wait_on_bit_lock(page_waitqueue(page), &wait, 607 sync_page_killable, TASK_KILLABLE); 608 } 609 EXPORT_SYMBOL_GPL(__lock_page_killable); 610 611 /** 612 * __lock_page_nosync - get a lock on the page, without calling sync_page() 613 * @page: the page to lock 614 * 615 * Variant of lock_page that does not require the caller to hold a reference 616 * on the page's mapping. 617 */ 618 void __lock_page_nosync(struct page *page) 619 { 620 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 621 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock, 622 TASK_UNINTERRUPTIBLE); 623 } 624 625 /** 626 * find_get_page - find and get a page reference 627 * @mapping: the address_space to search 628 * @offset: the page index 629 * 630 * Is there a pagecache struct page at the given (mapping, offset) tuple? 631 * If yes, increment its refcount and return it; if no, return NULL. 632 */ 633 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 634 { 635 void **pagep; 636 struct page *page; 637 638 rcu_read_lock(); 639 repeat: 640 page = NULL; 641 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 642 if (pagep) { 643 page = radix_tree_deref_slot(pagep); 644 if (unlikely(!page || page == RADIX_TREE_RETRY)) 645 goto repeat; 646 647 if (!page_cache_get_speculative(page)) 648 goto repeat; 649 650 /* 651 * Has the page moved? 652 * This is part of the lockless pagecache protocol. See 653 * include/linux/pagemap.h for details. 654 */ 655 if (unlikely(page != *pagep)) { 656 page_cache_release(page); 657 goto repeat; 658 } 659 } 660 rcu_read_unlock(); 661 662 return page; 663 } 664 EXPORT_SYMBOL(find_get_page); 665 666 /** 667 * find_lock_page - locate, pin and lock a pagecache page 668 * @mapping: the address_space to search 669 * @offset: the page index 670 * 671 * Locates the desired pagecache page, locks it, increments its reference 672 * count and returns its address. 673 * 674 * Returns zero if the page was not present. find_lock_page() may sleep. 675 */ 676 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 677 { 678 struct page *page; 679 680 repeat: 681 page = find_get_page(mapping, offset); 682 if (page) { 683 lock_page(page); 684 /* Has the page been truncated? */ 685 if (unlikely(page->mapping != mapping)) { 686 unlock_page(page); 687 page_cache_release(page); 688 goto repeat; 689 } 690 VM_BUG_ON(page->index != offset); 691 } 692 return page; 693 } 694 EXPORT_SYMBOL(find_lock_page); 695 696 /** 697 * find_or_create_page - locate or add a pagecache page 698 * @mapping: the page's address_space 699 * @index: the page's index into the mapping 700 * @gfp_mask: page allocation mode 701 * 702 * Locates a page in the pagecache. If the page is not present, a new page 703 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 704 * LRU list. The returned page is locked and has its reference count 705 * incremented. 706 * 707 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 708 * allocation! 709 * 710 * find_or_create_page() returns the desired page's address, or zero on 711 * memory exhaustion. 712 */ 713 struct page *find_or_create_page(struct address_space *mapping, 714 pgoff_t index, gfp_t gfp_mask) 715 { 716 struct page *page; 717 int err; 718 repeat: 719 page = find_lock_page(mapping, index); 720 if (!page) { 721 page = __page_cache_alloc(gfp_mask); 722 if (!page) 723 return NULL; 724 /* 725 * We want a regular kernel memory (not highmem or DMA etc) 726 * allocation for the radix tree nodes, but we need to honour 727 * the context-specific requirements the caller has asked for. 728 * GFP_RECLAIM_MASK collects those requirements. 729 */ 730 err = add_to_page_cache_lru(page, mapping, index, 731 (gfp_mask & GFP_RECLAIM_MASK)); 732 if (unlikely(err)) { 733 page_cache_release(page); 734 page = NULL; 735 if (err == -EEXIST) 736 goto repeat; 737 } 738 } 739 return page; 740 } 741 EXPORT_SYMBOL(find_or_create_page); 742 743 /** 744 * find_get_pages - gang pagecache lookup 745 * @mapping: The address_space to search 746 * @start: The starting page index 747 * @nr_pages: The maximum number of pages 748 * @pages: Where the resulting pages are placed 749 * 750 * find_get_pages() will search for and return a group of up to 751 * @nr_pages pages in the mapping. The pages are placed at @pages. 752 * find_get_pages() takes a reference against the returned pages. 753 * 754 * The search returns a group of mapping-contiguous pages with ascending 755 * indexes. There may be holes in the indices due to not-present pages. 756 * 757 * find_get_pages() returns the number of pages which were found. 758 */ 759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 760 unsigned int nr_pages, struct page **pages) 761 { 762 unsigned int i; 763 unsigned int ret; 764 unsigned int nr_found; 765 766 rcu_read_lock(); 767 restart: 768 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 769 (void ***)pages, start, nr_pages); 770 ret = 0; 771 for (i = 0; i < nr_found; i++) { 772 struct page *page; 773 repeat: 774 page = radix_tree_deref_slot((void **)pages[i]); 775 if (unlikely(!page)) 776 continue; 777 /* 778 * this can only trigger if nr_found == 1, making livelock 779 * a non issue. 780 */ 781 if (unlikely(page == RADIX_TREE_RETRY)) 782 goto restart; 783 784 if (!page_cache_get_speculative(page)) 785 goto repeat; 786 787 /* Has the page moved? */ 788 if (unlikely(page != *((void **)pages[i]))) { 789 page_cache_release(page); 790 goto repeat; 791 } 792 793 pages[ret] = page; 794 ret++; 795 } 796 rcu_read_unlock(); 797 return ret; 798 } 799 800 /** 801 * find_get_pages_contig - gang contiguous pagecache lookup 802 * @mapping: The address_space to search 803 * @index: The starting page index 804 * @nr_pages: The maximum number of pages 805 * @pages: Where the resulting pages are placed 806 * 807 * find_get_pages_contig() works exactly like find_get_pages(), except 808 * that the returned number of pages are guaranteed to be contiguous. 809 * 810 * find_get_pages_contig() returns the number of pages which were found. 811 */ 812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 813 unsigned int nr_pages, struct page **pages) 814 { 815 unsigned int i; 816 unsigned int ret; 817 unsigned int nr_found; 818 819 rcu_read_lock(); 820 restart: 821 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree, 822 (void ***)pages, index, nr_pages); 823 ret = 0; 824 for (i = 0; i < nr_found; i++) { 825 struct page *page; 826 repeat: 827 page = radix_tree_deref_slot((void **)pages[i]); 828 if (unlikely(!page)) 829 continue; 830 /* 831 * this can only trigger if nr_found == 1, making livelock 832 * a non issue. 833 */ 834 if (unlikely(page == RADIX_TREE_RETRY)) 835 goto restart; 836 837 if (page->mapping == NULL || page->index != index) 838 break; 839 840 if (!page_cache_get_speculative(page)) 841 goto repeat; 842 843 /* Has the page moved? */ 844 if (unlikely(page != *((void **)pages[i]))) { 845 page_cache_release(page); 846 goto repeat; 847 } 848 849 pages[ret] = page; 850 ret++; 851 index++; 852 } 853 rcu_read_unlock(); 854 return ret; 855 } 856 EXPORT_SYMBOL(find_get_pages_contig); 857 858 /** 859 * find_get_pages_tag - find and return pages that match @tag 860 * @mapping: the address_space to search 861 * @index: the starting page index 862 * @tag: the tag index 863 * @nr_pages: the maximum number of pages 864 * @pages: where the resulting pages are placed 865 * 866 * Like find_get_pages, except we only return pages which are tagged with 867 * @tag. We update @index to index the next page for the traversal. 868 */ 869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 870 int tag, unsigned int nr_pages, struct page **pages) 871 { 872 unsigned int i; 873 unsigned int ret; 874 unsigned int nr_found; 875 876 rcu_read_lock(); 877 restart: 878 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree, 879 (void ***)pages, *index, nr_pages, tag); 880 ret = 0; 881 for (i = 0; i < nr_found; i++) { 882 struct page *page; 883 repeat: 884 page = radix_tree_deref_slot((void **)pages[i]); 885 if (unlikely(!page)) 886 continue; 887 /* 888 * this can only trigger if nr_found == 1, making livelock 889 * a non issue. 890 */ 891 if (unlikely(page == RADIX_TREE_RETRY)) 892 goto restart; 893 894 if (!page_cache_get_speculative(page)) 895 goto repeat; 896 897 /* Has the page moved? */ 898 if (unlikely(page != *((void **)pages[i]))) { 899 page_cache_release(page); 900 goto repeat; 901 } 902 903 pages[ret] = page; 904 ret++; 905 } 906 rcu_read_unlock(); 907 908 if (ret) 909 *index = pages[ret - 1]->index + 1; 910 911 return ret; 912 } 913 EXPORT_SYMBOL(find_get_pages_tag); 914 915 /** 916 * grab_cache_page_nowait - returns locked page at given index in given cache 917 * @mapping: target address_space 918 * @index: the page index 919 * 920 * Same as grab_cache_page(), but do not wait if the page is unavailable. 921 * This is intended for speculative data generators, where the data can 922 * be regenerated if the page couldn't be grabbed. This routine should 923 * be safe to call while holding the lock for another page. 924 * 925 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 926 * and deadlock against the caller's locked page. 927 */ 928 struct page * 929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 930 { 931 struct page *page = find_get_page(mapping, index); 932 933 if (page) { 934 if (trylock_page(page)) 935 return page; 936 page_cache_release(page); 937 return NULL; 938 } 939 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 940 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 941 page_cache_release(page); 942 page = NULL; 943 } 944 return page; 945 } 946 EXPORT_SYMBOL(grab_cache_page_nowait); 947 948 /* 949 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 950 * a _large_ part of the i/o request. Imagine the worst scenario: 951 * 952 * ---R__________________________________________B__________ 953 * ^ reading here ^ bad block(assume 4k) 954 * 955 * read(R) => miss => readahead(R...B) => media error => frustrating retries 956 * => failing the whole request => read(R) => read(R+1) => 957 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 958 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 959 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 960 * 961 * It is going insane. Fix it by quickly scaling down the readahead size. 962 */ 963 static void shrink_readahead_size_eio(struct file *filp, 964 struct file_ra_state *ra) 965 { 966 ra->ra_pages /= 4; 967 } 968 969 /** 970 * do_generic_file_read - generic file read routine 971 * @filp: the file to read 972 * @ppos: current file position 973 * @desc: read_descriptor 974 * @actor: read method 975 * 976 * This is a generic file read routine, and uses the 977 * mapping->a_ops->readpage() function for the actual low-level stuff. 978 * 979 * This is really ugly. But the goto's actually try to clarify some 980 * of the logic when it comes to error handling etc. 981 */ 982 static void do_generic_file_read(struct file *filp, loff_t *ppos, 983 read_descriptor_t *desc, read_actor_t actor) 984 { 985 struct address_space *mapping = filp->f_mapping; 986 struct inode *inode = mapping->host; 987 struct file_ra_state *ra = &filp->f_ra; 988 pgoff_t index; 989 pgoff_t last_index; 990 pgoff_t prev_index; 991 unsigned long offset; /* offset into pagecache page */ 992 unsigned int prev_offset; 993 int error; 994 995 index = *ppos >> PAGE_CACHE_SHIFT; 996 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 997 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 998 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 999 offset = *ppos & ~PAGE_CACHE_MASK; 1000 1001 for (;;) { 1002 struct page *page; 1003 pgoff_t end_index; 1004 loff_t isize; 1005 unsigned long nr, ret; 1006 1007 cond_resched(); 1008 find_page: 1009 page = find_get_page(mapping, index); 1010 if (!page) { 1011 page_cache_sync_readahead(mapping, 1012 ra, filp, 1013 index, last_index - index); 1014 page = find_get_page(mapping, index); 1015 if (unlikely(page == NULL)) 1016 goto no_cached_page; 1017 } 1018 if (PageReadahead(page)) { 1019 page_cache_async_readahead(mapping, 1020 ra, filp, page, 1021 index, last_index - index); 1022 } 1023 if (!PageUptodate(page)) { 1024 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1025 !mapping->a_ops->is_partially_uptodate) 1026 goto page_not_up_to_date; 1027 if (!trylock_page(page)) 1028 goto page_not_up_to_date; 1029 if (!mapping->a_ops->is_partially_uptodate(page, 1030 desc, offset)) 1031 goto page_not_up_to_date_locked; 1032 unlock_page(page); 1033 } 1034 page_ok: 1035 /* 1036 * i_size must be checked after we know the page is Uptodate. 1037 * 1038 * Checking i_size after the check allows us to calculate 1039 * the correct value for "nr", which means the zero-filled 1040 * part of the page is not copied back to userspace (unless 1041 * another truncate extends the file - this is desired though). 1042 */ 1043 1044 isize = i_size_read(inode); 1045 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1046 if (unlikely(!isize || index > end_index)) { 1047 page_cache_release(page); 1048 goto out; 1049 } 1050 1051 /* nr is the maximum number of bytes to copy from this page */ 1052 nr = PAGE_CACHE_SIZE; 1053 if (index == end_index) { 1054 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1055 if (nr <= offset) { 1056 page_cache_release(page); 1057 goto out; 1058 } 1059 } 1060 nr = nr - offset; 1061 1062 /* If users can be writing to this page using arbitrary 1063 * virtual addresses, take care about potential aliasing 1064 * before reading the page on the kernel side. 1065 */ 1066 if (mapping_writably_mapped(mapping)) 1067 flush_dcache_page(page); 1068 1069 /* 1070 * When a sequential read accesses a page several times, 1071 * only mark it as accessed the first time. 1072 */ 1073 if (prev_index != index || offset != prev_offset) 1074 mark_page_accessed(page); 1075 prev_index = index; 1076 1077 /* 1078 * Ok, we have the page, and it's up-to-date, so 1079 * now we can copy it to user space... 1080 * 1081 * The actor routine returns how many bytes were actually used.. 1082 * NOTE! This may not be the same as how much of a user buffer 1083 * we filled up (we may be padding etc), so we can only update 1084 * "pos" here (the actor routine has to update the user buffer 1085 * pointers and the remaining count). 1086 */ 1087 ret = actor(desc, page, offset, nr); 1088 offset += ret; 1089 index += offset >> PAGE_CACHE_SHIFT; 1090 offset &= ~PAGE_CACHE_MASK; 1091 prev_offset = offset; 1092 1093 page_cache_release(page); 1094 if (ret == nr && desc->count) 1095 continue; 1096 goto out; 1097 1098 page_not_up_to_date: 1099 /* Get exclusive access to the page ... */ 1100 error = lock_page_killable(page); 1101 if (unlikely(error)) 1102 goto readpage_error; 1103 1104 page_not_up_to_date_locked: 1105 /* Did it get truncated before we got the lock? */ 1106 if (!page->mapping) { 1107 unlock_page(page); 1108 page_cache_release(page); 1109 continue; 1110 } 1111 1112 /* Did somebody else fill it already? */ 1113 if (PageUptodate(page)) { 1114 unlock_page(page); 1115 goto page_ok; 1116 } 1117 1118 readpage: 1119 /* Start the actual read. The read will unlock the page. */ 1120 error = mapping->a_ops->readpage(filp, page); 1121 1122 if (unlikely(error)) { 1123 if (error == AOP_TRUNCATED_PAGE) { 1124 page_cache_release(page); 1125 goto find_page; 1126 } 1127 goto readpage_error; 1128 } 1129 1130 if (!PageUptodate(page)) { 1131 error = lock_page_killable(page); 1132 if (unlikely(error)) 1133 goto readpage_error; 1134 if (!PageUptodate(page)) { 1135 if (page->mapping == NULL) { 1136 /* 1137 * invalidate_inode_pages got it 1138 */ 1139 unlock_page(page); 1140 page_cache_release(page); 1141 goto find_page; 1142 } 1143 unlock_page(page); 1144 shrink_readahead_size_eio(filp, ra); 1145 error = -EIO; 1146 goto readpage_error; 1147 } 1148 unlock_page(page); 1149 } 1150 1151 goto page_ok; 1152 1153 readpage_error: 1154 /* UHHUH! A synchronous read error occurred. Report it */ 1155 desc->error = error; 1156 page_cache_release(page); 1157 goto out; 1158 1159 no_cached_page: 1160 /* 1161 * Ok, it wasn't cached, so we need to create a new 1162 * page.. 1163 */ 1164 page = page_cache_alloc_cold(mapping); 1165 if (!page) { 1166 desc->error = -ENOMEM; 1167 goto out; 1168 } 1169 error = add_to_page_cache_lru(page, mapping, 1170 index, GFP_KERNEL); 1171 if (error) { 1172 page_cache_release(page); 1173 if (error == -EEXIST) 1174 goto find_page; 1175 desc->error = error; 1176 goto out; 1177 } 1178 goto readpage; 1179 } 1180 1181 out: 1182 ra->prev_pos = prev_index; 1183 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1184 ra->prev_pos |= prev_offset; 1185 1186 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1187 file_accessed(filp); 1188 } 1189 1190 int file_read_actor(read_descriptor_t *desc, struct page *page, 1191 unsigned long offset, unsigned long size) 1192 { 1193 char *kaddr; 1194 unsigned long left, count = desc->count; 1195 1196 if (size > count) 1197 size = count; 1198 1199 /* 1200 * Faults on the destination of a read are common, so do it before 1201 * taking the kmap. 1202 */ 1203 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1204 kaddr = kmap_atomic(page, KM_USER0); 1205 left = __copy_to_user_inatomic(desc->arg.buf, 1206 kaddr + offset, size); 1207 kunmap_atomic(kaddr, KM_USER0); 1208 if (left == 0) 1209 goto success; 1210 } 1211 1212 /* Do it the slow way */ 1213 kaddr = kmap(page); 1214 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1215 kunmap(page); 1216 1217 if (left) { 1218 size -= left; 1219 desc->error = -EFAULT; 1220 } 1221 success: 1222 desc->count = count - size; 1223 desc->written += size; 1224 desc->arg.buf += size; 1225 return size; 1226 } 1227 1228 /* 1229 * Performs necessary checks before doing a write 1230 * @iov: io vector request 1231 * @nr_segs: number of segments in the iovec 1232 * @count: number of bytes to write 1233 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1234 * 1235 * Adjust number of segments and amount of bytes to write (nr_segs should be 1236 * properly initialized first). Returns appropriate error code that caller 1237 * should return or zero in case that write should be allowed. 1238 */ 1239 int generic_segment_checks(const struct iovec *iov, 1240 unsigned long *nr_segs, size_t *count, int access_flags) 1241 { 1242 unsigned long seg; 1243 size_t cnt = 0; 1244 for (seg = 0; seg < *nr_segs; seg++) { 1245 const struct iovec *iv = &iov[seg]; 1246 1247 /* 1248 * If any segment has a negative length, or the cumulative 1249 * length ever wraps negative then return -EINVAL. 1250 */ 1251 cnt += iv->iov_len; 1252 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1253 return -EINVAL; 1254 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1255 continue; 1256 if (seg == 0) 1257 return -EFAULT; 1258 *nr_segs = seg; 1259 cnt -= iv->iov_len; /* This segment is no good */ 1260 break; 1261 } 1262 *count = cnt; 1263 return 0; 1264 } 1265 EXPORT_SYMBOL(generic_segment_checks); 1266 1267 /** 1268 * generic_file_aio_read - generic filesystem read routine 1269 * @iocb: kernel I/O control block 1270 * @iov: io vector request 1271 * @nr_segs: number of segments in the iovec 1272 * @pos: current file position 1273 * 1274 * This is the "read()" routine for all filesystems 1275 * that can use the page cache directly. 1276 */ 1277 ssize_t 1278 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1279 unsigned long nr_segs, loff_t pos) 1280 { 1281 struct file *filp = iocb->ki_filp; 1282 ssize_t retval; 1283 unsigned long seg; 1284 size_t count; 1285 loff_t *ppos = &iocb->ki_pos; 1286 1287 count = 0; 1288 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1289 if (retval) 1290 return retval; 1291 1292 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1293 if (filp->f_flags & O_DIRECT) { 1294 loff_t size; 1295 struct address_space *mapping; 1296 struct inode *inode; 1297 1298 mapping = filp->f_mapping; 1299 inode = mapping->host; 1300 if (!count) 1301 goto out; /* skip atime */ 1302 size = i_size_read(inode); 1303 if (pos < size) { 1304 retval = filemap_write_and_wait_range(mapping, pos, 1305 pos + iov_length(iov, nr_segs) - 1); 1306 if (!retval) { 1307 retval = mapping->a_ops->direct_IO(READ, iocb, 1308 iov, pos, nr_segs); 1309 } 1310 if (retval > 0) 1311 *ppos = pos + retval; 1312 if (retval) { 1313 file_accessed(filp); 1314 goto out; 1315 } 1316 } 1317 } 1318 1319 for (seg = 0; seg < nr_segs; seg++) { 1320 read_descriptor_t desc; 1321 1322 desc.written = 0; 1323 desc.arg.buf = iov[seg].iov_base; 1324 desc.count = iov[seg].iov_len; 1325 if (desc.count == 0) 1326 continue; 1327 desc.error = 0; 1328 do_generic_file_read(filp, ppos, &desc, file_read_actor); 1329 retval += desc.written; 1330 if (desc.error) { 1331 retval = retval ?: desc.error; 1332 break; 1333 } 1334 if (desc.count > 0) 1335 break; 1336 } 1337 out: 1338 return retval; 1339 } 1340 EXPORT_SYMBOL(generic_file_aio_read); 1341 1342 static ssize_t 1343 do_readahead(struct address_space *mapping, struct file *filp, 1344 pgoff_t index, unsigned long nr) 1345 { 1346 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1347 return -EINVAL; 1348 1349 force_page_cache_readahead(mapping, filp, index, nr); 1350 return 0; 1351 } 1352 1353 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count) 1354 { 1355 ssize_t ret; 1356 struct file *file; 1357 1358 ret = -EBADF; 1359 file = fget(fd); 1360 if (file) { 1361 if (file->f_mode & FMODE_READ) { 1362 struct address_space *mapping = file->f_mapping; 1363 pgoff_t start = offset >> PAGE_CACHE_SHIFT; 1364 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1365 unsigned long len = end - start + 1; 1366 ret = do_readahead(mapping, file, start, len); 1367 } 1368 fput(file); 1369 } 1370 return ret; 1371 } 1372 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS 1373 asmlinkage long SyS_readahead(long fd, loff_t offset, long count) 1374 { 1375 return SYSC_readahead((int) fd, offset, (size_t) count); 1376 } 1377 SYSCALL_ALIAS(sys_readahead, SyS_readahead); 1378 #endif 1379 1380 #ifdef CONFIG_MMU 1381 /** 1382 * page_cache_read - adds requested page to the page cache if not already there 1383 * @file: file to read 1384 * @offset: page index 1385 * 1386 * This adds the requested page to the page cache if it isn't already there, 1387 * and schedules an I/O to read in its contents from disk. 1388 */ 1389 static int page_cache_read(struct file *file, pgoff_t offset) 1390 { 1391 struct address_space *mapping = file->f_mapping; 1392 struct page *page; 1393 int ret; 1394 1395 do { 1396 page = page_cache_alloc_cold(mapping); 1397 if (!page) 1398 return -ENOMEM; 1399 1400 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1401 if (ret == 0) 1402 ret = mapping->a_ops->readpage(file, page); 1403 else if (ret == -EEXIST) 1404 ret = 0; /* losing race to add is OK */ 1405 1406 page_cache_release(page); 1407 1408 } while (ret == AOP_TRUNCATED_PAGE); 1409 1410 return ret; 1411 } 1412 1413 #define MMAP_LOTSAMISS (100) 1414 1415 /* 1416 * Synchronous readahead happens when we don't even find 1417 * a page in the page cache at all. 1418 */ 1419 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1420 struct file_ra_state *ra, 1421 struct file *file, 1422 pgoff_t offset) 1423 { 1424 unsigned long ra_pages; 1425 struct address_space *mapping = file->f_mapping; 1426 1427 /* If we don't want any read-ahead, don't bother */ 1428 if (VM_RandomReadHint(vma)) 1429 return; 1430 1431 if (VM_SequentialReadHint(vma) || 1432 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) { 1433 page_cache_sync_readahead(mapping, ra, file, offset, 1434 ra->ra_pages); 1435 return; 1436 } 1437 1438 if (ra->mmap_miss < INT_MAX) 1439 ra->mmap_miss++; 1440 1441 /* 1442 * Do we miss much more than hit in this file? If so, 1443 * stop bothering with read-ahead. It will only hurt. 1444 */ 1445 if (ra->mmap_miss > MMAP_LOTSAMISS) 1446 return; 1447 1448 /* 1449 * mmap read-around 1450 */ 1451 ra_pages = max_sane_readahead(ra->ra_pages); 1452 if (ra_pages) { 1453 ra->start = max_t(long, 0, offset - ra_pages/2); 1454 ra->size = ra_pages; 1455 ra->async_size = 0; 1456 ra_submit(ra, mapping, file); 1457 } 1458 } 1459 1460 /* 1461 * Asynchronous readahead happens when we find the page and PG_readahead, 1462 * so we want to possibly extend the readahead further.. 1463 */ 1464 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1465 struct file_ra_state *ra, 1466 struct file *file, 1467 struct page *page, 1468 pgoff_t offset) 1469 { 1470 struct address_space *mapping = file->f_mapping; 1471 1472 /* If we don't want any read-ahead, don't bother */ 1473 if (VM_RandomReadHint(vma)) 1474 return; 1475 if (ra->mmap_miss > 0) 1476 ra->mmap_miss--; 1477 if (PageReadahead(page)) 1478 page_cache_async_readahead(mapping, ra, file, 1479 page, offset, ra->ra_pages); 1480 } 1481 1482 /** 1483 * filemap_fault - read in file data for page fault handling 1484 * @vma: vma in which the fault was taken 1485 * @vmf: struct vm_fault containing details of the fault 1486 * 1487 * filemap_fault() is invoked via the vma operations vector for a 1488 * mapped memory region to read in file data during a page fault. 1489 * 1490 * The goto's are kind of ugly, but this streamlines the normal case of having 1491 * it in the page cache, and handles the special cases reasonably without 1492 * having a lot of duplicated code. 1493 */ 1494 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1495 { 1496 int error; 1497 struct file *file = vma->vm_file; 1498 struct address_space *mapping = file->f_mapping; 1499 struct file_ra_state *ra = &file->f_ra; 1500 struct inode *inode = mapping->host; 1501 pgoff_t offset = vmf->pgoff; 1502 struct page *page; 1503 pgoff_t size; 1504 int ret = 0; 1505 1506 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1507 if (offset >= size) 1508 return VM_FAULT_SIGBUS; 1509 1510 /* 1511 * Do we have something in the page cache already? 1512 */ 1513 page = find_get_page(mapping, offset); 1514 if (likely(page)) { 1515 /* 1516 * We found the page, so try async readahead before 1517 * waiting for the lock. 1518 */ 1519 do_async_mmap_readahead(vma, ra, file, page, offset); 1520 lock_page(page); 1521 1522 /* Did it get truncated? */ 1523 if (unlikely(page->mapping != mapping)) { 1524 unlock_page(page); 1525 put_page(page); 1526 goto no_cached_page; 1527 } 1528 } else { 1529 /* No page in the page cache at all */ 1530 do_sync_mmap_readahead(vma, ra, file, offset); 1531 count_vm_event(PGMAJFAULT); 1532 ret = VM_FAULT_MAJOR; 1533 retry_find: 1534 page = find_lock_page(mapping, offset); 1535 if (!page) 1536 goto no_cached_page; 1537 } 1538 1539 /* 1540 * We have a locked page in the page cache, now we need to check 1541 * that it's up-to-date. If not, it is going to be due to an error. 1542 */ 1543 if (unlikely(!PageUptodate(page))) 1544 goto page_not_uptodate; 1545 1546 /* 1547 * Found the page and have a reference on it. 1548 * We must recheck i_size under page lock. 1549 */ 1550 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1551 if (unlikely(offset >= size)) { 1552 unlock_page(page); 1553 page_cache_release(page); 1554 return VM_FAULT_SIGBUS; 1555 } 1556 1557 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT; 1558 vmf->page = page; 1559 return ret | VM_FAULT_LOCKED; 1560 1561 no_cached_page: 1562 /* 1563 * We're only likely to ever get here if MADV_RANDOM is in 1564 * effect. 1565 */ 1566 error = page_cache_read(file, offset); 1567 1568 /* 1569 * The page we want has now been added to the page cache. 1570 * In the unlikely event that someone removed it in the 1571 * meantime, we'll just come back here and read it again. 1572 */ 1573 if (error >= 0) 1574 goto retry_find; 1575 1576 /* 1577 * An error return from page_cache_read can result if the 1578 * system is low on memory, or a problem occurs while trying 1579 * to schedule I/O. 1580 */ 1581 if (error == -ENOMEM) 1582 return VM_FAULT_OOM; 1583 return VM_FAULT_SIGBUS; 1584 1585 page_not_uptodate: 1586 /* 1587 * Umm, take care of errors if the page isn't up-to-date. 1588 * Try to re-read it _once_. We do this synchronously, 1589 * because there really aren't any performance issues here 1590 * and we need to check for errors. 1591 */ 1592 ClearPageError(page); 1593 error = mapping->a_ops->readpage(file, page); 1594 if (!error) { 1595 wait_on_page_locked(page); 1596 if (!PageUptodate(page)) 1597 error = -EIO; 1598 } 1599 page_cache_release(page); 1600 1601 if (!error || error == AOP_TRUNCATED_PAGE) 1602 goto retry_find; 1603 1604 /* Things didn't work out. Return zero to tell the mm layer so. */ 1605 shrink_readahead_size_eio(file, ra); 1606 return VM_FAULT_SIGBUS; 1607 } 1608 EXPORT_SYMBOL(filemap_fault); 1609 1610 struct vm_operations_struct generic_file_vm_ops = { 1611 .fault = filemap_fault, 1612 }; 1613 1614 /* This is used for a general mmap of a disk file */ 1615 1616 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1617 { 1618 struct address_space *mapping = file->f_mapping; 1619 1620 if (!mapping->a_ops->readpage) 1621 return -ENOEXEC; 1622 file_accessed(file); 1623 vma->vm_ops = &generic_file_vm_ops; 1624 vma->vm_flags |= VM_CAN_NONLINEAR; 1625 return 0; 1626 } 1627 1628 /* 1629 * This is for filesystems which do not implement ->writepage. 1630 */ 1631 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1632 { 1633 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1634 return -EINVAL; 1635 return generic_file_mmap(file, vma); 1636 } 1637 #else 1638 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1639 { 1640 return -ENOSYS; 1641 } 1642 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1643 { 1644 return -ENOSYS; 1645 } 1646 #endif /* CONFIG_MMU */ 1647 1648 EXPORT_SYMBOL(generic_file_mmap); 1649 EXPORT_SYMBOL(generic_file_readonly_mmap); 1650 1651 static struct page *__read_cache_page(struct address_space *mapping, 1652 pgoff_t index, 1653 int (*filler)(void *,struct page*), 1654 void *data) 1655 { 1656 struct page *page; 1657 int err; 1658 repeat: 1659 page = find_get_page(mapping, index); 1660 if (!page) { 1661 page = page_cache_alloc_cold(mapping); 1662 if (!page) 1663 return ERR_PTR(-ENOMEM); 1664 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL); 1665 if (unlikely(err)) { 1666 page_cache_release(page); 1667 if (err == -EEXIST) 1668 goto repeat; 1669 /* Presumably ENOMEM for radix tree node */ 1670 return ERR_PTR(err); 1671 } 1672 err = filler(data, page); 1673 if (err < 0) { 1674 page_cache_release(page); 1675 page = ERR_PTR(err); 1676 } 1677 } 1678 return page; 1679 } 1680 1681 /** 1682 * read_cache_page_async - read into page cache, fill it if needed 1683 * @mapping: the page's address_space 1684 * @index: the page index 1685 * @filler: function to perform the read 1686 * @data: destination for read data 1687 * 1688 * Same as read_cache_page, but don't wait for page to become unlocked 1689 * after submitting it to the filler. 1690 * 1691 * Read into the page cache. If a page already exists, and PageUptodate() is 1692 * not set, try to fill the page but don't wait for it to become unlocked. 1693 * 1694 * If the page does not get brought uptodate, return -EIO. 1695 */ 1696 struct page *read_cache_page_async(struct address_space *mapping, 1697 pgoff_t index, 1698 int (*filler)(void *,struct page*), 1699 void *data) 1700 { 1701 struct page *page; 1702 int err; 1703 1704 retry: 1705 page = __read_cache_page(mapping, index, filler, data); 1706 if (IS_ERR(page)) 1707 return page; 1708 if (PageUptodate(page)) 1709 goto out; 1710 1711 lock_page(page); 1712 if (!page->mapping) { 1713 unlock_page(page); 1714 page_cache_release(page); 1715 goto retry; 1716 } 1717 if (PageUptodate(page)) { 1718 unlock_page(page); 1719 goto out; 1720 } 1721 err = filler(data, page); 1722 if (err < 0) { 1723 page_cache_release(page); 1724 return ERR_PTR(err); 1725 } 1726 out: 1727 mark_page_accessed(page); 1728 return page; 1729 } 1730 EXPORT_SYMBOL(read_cache_page_async); 1731 1732 /** 1733 * read_cache_page - read into page cache, fill it if needed 1734 * @mapping: the page's address_space 1735 * @index: the page index 1736 * @filler: function to perform the read 1737 * @data: destination for read data 1738 * 1739 * Read into the page cache. If a page already exists, and PageUptodate() is 1740 * not set, try to fill the page then wait for it to become unlocked. 1741 * 1742 * If the page does not get brought uptodate, return -EIO. 1743 */ 1744 struct page *read_cache_page(struct address_space *mapping, 1745 pgoff_t index, 1746 int (*filler)(void *,struct page*), 1747 void *data) 1748 { 1749 struct page *page; 1750 1751 page = read_cache_page_async(mapping, index, filler, data); 1752 if (IS_ERR(page)) 1753 goto out; 1754 wait_on_page_locked(page); 1755 if (!PageUptodate(page)) { 1756 page_cache_release(page); 1757 page = ERR_PTR(-EIO); 1758 } 1759 out: 1760 return page; 1761 } 1762 EXPORT_SYMBOL(read_cache_page); 1763 1764 /* 1765 * The logic we want is 1766 * 1767 * if suid or (sgid and xgrp) 1768 * remove privs 1769 */ 1770 int should_remove_suid(struct dentry *dentry) 1771 { 1772 mode_t mode = dentry->d_inode->i_mode; 1773 int kill = 0; 1774 1775 /* suid always must be killed */ 1776 if (unlikely(mode & S_ISUID)) 1777 kill = ATTR_KILL_SUID; 1778 1779 /* 1780 * sgid without any exec bits is just a mandatory locking mark; leave 1781 * it alone. If some exec bits are set, it's a real sgid; kill it. 1782 */ 1783 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1784 kill |= ATTR_KILL_SGID; 1785 1786 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode))) 1787 return kill; 1788 1789 return 0; 1790 } 1791 EXPORT_SYMBOL(should_remove_suid); 1792 1793 static int __remove_suid(struct dentry *dentry, int kill) 1794 { 1795 struct iattr newattrs; 1796 1797 newattrs.ia_valid = ATTR_FORCE | kill; 1798 return notify_change(dentry, &newattrs); 1799 } 1800 1801 int file_remove_suid(struct file *file) 1802 { 1803 struct dentry *dentry = file->f_path.dentry; 1804 int killsuid = should_remove_suid(dentry); 1805 int killpriv = security_inode_need_killpriv(dentry); 1806 int error = 0; 1807 1808 if (killpriv < 0) 1809 return killpriv; 1810 if (killpriv) 1811 error = security_inode_killpriv(dentry); 1812 if (!error && killsuid) 1813 error = __remove_suid(dentry, killsuid); 1814 1815 return error; 1816 } 1817 EXPORT_SYMBOL(file_remove_suid); 1818 1819 static size_t __iovec_copy_from_user_inatomic(char *vaddr, 1820 const struct iovec *iov, size_t base, size_t bytes) 1821 { 1822 size_t copied = 0, left = 0; 1823 1824 while (bytes) { 1825 char __user *buf = iov->iov_base + base; 1826 int copy = min(bytes, iov->iov_len - base); 1827 1828 base = 0; 1829 left = __copy_from_user_inatomic(vaddr, buf, copy); 1830 copied += copy; 1831 bytes -= copy; 1832 vaddr += copy; 1833 iov++; 1834 1835 if (unlikely(left)) 1836 break; 1837 } 1838 return copied - left; 1839 } 1840 1841 /* 1842 * Copy as much as we can into the page and return the number of bytes which 1843 * were sucessfully copied. If a fault is encountered then return the number of 1844 * bytes which were copied. 1845 */ 1846 size_t iov_iter_copy_from_user_atomic(struct page *page, 1847 struct iov_iter *i, unsigned long offset, size_t bytes) 1848 { 1849 char *kaddr; 1850 size_t copied; 1851 1852 BUG_ON(!in_atomic()); 1853 kaddr = kmap_atomic(page, KM_USER0); 1854 if (likely(i->nr_segs == 1)) { 1855 int left; 1856 char __user *buf = i->iov->iov_base + i->iov_offset; 1857 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes); 1858 copied = bytes - left; 1859 } else { 1860 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1861 i->iov, i->iov_offset, bytes); 1862 } 1863 kunmap_atomic(kaddr, KM_USER0); 1864 1865 return copied; 1866 } 1867 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic); 1868 1869 /* 1870 * This has the same sideeffects and return value as 1871 * iov_iter_copy_from_user_atomic(). 1872 * The difference is that it attempts to resolve faults. 1873 * Page must not be locked. 1874 */ 1875 size_t iov_iter_copy_from_user(struct page *page, 1876 struct iov_iter *i, unsigned long offset, size_t bytes) 1877 { 1878 char *kaddr; 1879 size_t copied; 1880 1881 kaddr = kmap(page); 1882 if (likely(i->nr_segs == 1)) { 1883 int left; 1884 char __user *buf = i->iov->iov_base + i->iov_offset; 1885 left = __copy_from_user(kaddr + offset, buf, bytes); 1886 copied = bytes - left; 1887 } else { 1888 copied = __iovec_copy_from_user_inatomic(kaddr + offset, 1889 i->iov, i->iov_offset, bytes); 1890 } 1891 kunmap(page); 1892 return copied; 1893 } 1894 EXPORT_SYMBOL(iov_iter_copy_from_user); 1895 1896 void iov_iter_advance(struct iov_iter *i, size_t bytes) 1897 { 1898 BUG_ON(i->count < bytes); 1899 1900 if (likely(i->nr_segs == 1)) { 1901 i->iov_offset += bytes; 1902 i->count -= bytes; 1903 } else { 1904 const struct iovec *iov = i->iov; 1905 size_t base = i->iov_offset; 1906 1907 /* 1908 * The !iov->iov_len check ensures we skip over unlikely 1909 * zero-length segments (without overruning the iovec). 1910 */ 1911 while (bytes || unlikely(i->count && !iov->iov_len)) { 1912 int copy; 1913 1914 copy = min(bytes, iov->iov_len - base); 1915 BUG_ON(!i->count || i->count < copy); 1916 i->count -= copy; 1917 bytes -= copy; 1918 base += copy; 1919 if (iov->iov_len == base) { 1920 iov++; 1921 base = 0; 1922 } 1923 } 1924 i->iov = iov; 1925 i->iov_offset = base; 1926 } 1927 } 1928 EXPORT_SYMBOL(iov_iter_advance); 1929 1930 /* 1931 * Fault in the first iovec of the given iov_iter, to a maximum length 1932 * of bytes. Returns 0 on success, or non-zero if the memory could not be 1933 * accessed (ie. because it is an invalid address). 1934 * 1935 * writev-intensive code may want this to prefault several iovecs -- that 1936 * would be possible (callers must not rely on the fact that _only_ the 1937 * first iovec will be faulted with the current implementation). 1938 */ 1939 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes) 1940 { 1941 char __user *buf = i->iov->iov_base + i->iov_offset; 1942 bytes = min(bytes, i->iov->iov_len - i->iov_offset); 1943 return fault_in_pages_readable(buf, bytes); 1944 } 1945 EXPORT_SYMBOL(iov_iter_fault_in_readable); 1946 1947 /* 1948 * Return the count of just the current iov_iter segment. 1949 */ 1950 size_t iov_iter_single_seg_count(struct iov_iter *i) 1951 { 1952 const struct iovec *iov = i->iov; 1953 if (i->nr_segs == 1) 1954 return i->count; 1955 else 1956 return min(i->count, iov->iov_len - i->iov_offset); 1957 } 1958 EXPORT_SYMBOL(iov_iter_single_seg_count); 1959 1960 /* 1961 * Performs necessary checks before doing a write 1962 * 1963 * Can adjust writing position or amount of bytes to write. 1964 * Returns appropriate error code that caller should return or 1965 * zero in case that write should be allowed. 1966 */ 1967 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1968 { 1969 struct inode *inode = file->f_mapping->host; 1970 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1971 1972 if (unlikely(*pos < 0)) 1973 return -EINVAL; 1974 1975 if (!isblk) { 1976 /* FIXME: this is for backwards compatibility with 2.4 */ 1977 if (file->f_flags & O_APPEND) 1978 *pos = i_size_read(inode); 1979 1980 if (limit != RLIM_INFINITY) { 1981 if (*pos >= limit) { 1982 send_sig(SIGXFSZ, current, 0); 1983 return -EFBIG; 1984 } 1985 if (*count > limit - (typeof(limit))*pos) { 1986 *count = limit - (typeof(limit))*pos; 1987 } 1988 } 1989 } 1990 1991 /* 1992 * LFS rule 1993 */ 1994 if (unlikely(*pos + *count > MAX_NON_LFS && 1995 !(file->f_flags & O_LARGEFILE))) { 1996 if (*pos >= MAX_NON_LFS) { 1997 return -EFBIG; 1998 } 1999 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2000 *count = MAX_NON_LFS - (unsigned long)*pos; 2001 } 2002 } 2003 2004 /* 2005 * Are we about to exceed the fs block limit ? 2006 * 2007 * If we have written data it becomes a short write. If we have 2008 * exceeded without writing data we send a signal and return EFBIG. 2009 * Linus frestrict idea will clean these up nicely.. 2010 */ 2011 if (likely(!isblk)) { 2012 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2013 if (*count || *pos > inode->i_sb->s_maxbytes) { 2014 return -EFBIG; 2015 } 2016 /* zero-length writes at ->s_maxbytes are OK */ 2017 } 2018 2019 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2020 *count = inode->i_sb->s_maxbytes - *pos; 2021 } else { 2022 #ifdef CONFIG_BLOCK 2023 loff_t isize; 2024 if (bdev_read_only(I_BDEV(inode))) 2025 return -EPERM; 2026 isize = i_size_read(inode); 2027 if (*pos >= isize) { 2028 if (*count || *pos > isize) 2029 return -ENOSPC; 2030 } 2031 2032 if (*pos + *count > isize) 2033 *count = isize - *pos; 2034 #else 2035 return -EPERM; 2036 #endif 2037 } 2038 return 0; 2039 } 2040 EXPORT_SYMBOL(generic_write_checks); 2041 2042 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2043 loff_t pos, unsigned len, unsigned flags, 2044 struct page **pagep, void **fsdata) 2045 { 2046 const struct address_space_operations *aops = mapping->a_ops; 2047 2048 return aops->write_begin(file, mapping, pos, len, flags, 2049 pagep, fsdata); 2050 } 2051 EXPORT_SYMBOL(pagecache_write_begin); 2052 2053 int pagecache_write_end(struct file *file, struct address_space *mapping, 2054 loff_t pos, unsigned len, unsigned copied, 2055 struct page *page, void *fsdata) 2056 { 2057 const struct address_space_operations *aops = mapping->a_ops; 2058 2059 mark_page_accessed(page); 2060 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2061 } 2062 EXPORT_SYMBOL(pagecache_write_end); 2063 2064 ssize_t 2065 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2066 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2067 size_t count, size_t ocount) 2068 { 2069 struct file *file = iocb->ki_filp; 2070 struct address_space *mapping = file->f_mapping; 2071 struct inode *inode = mapping->host; 2072 ssize_t written; 2073 size_t write_len; 2074 pgoff_t end; 2075 2076 if (count != ocount) 2077 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2078 2079 write_len = iov_length(iov, *nr_segs); 2080 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2081 2082 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2083 if (written) 2084 goto out; 2085 2086 /* 2087 * After a write we want buffered reads to be sure to go to disk to get 2088 * the new data. We invalidate clean cached page from the region we're 2089 * about to write. We do this *before* the write so that we can return 2090 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2091 */ 2092 if (mapping->nrpages) { 2093 written = invalidate_inode_pages2_range(mapping, 2094 pos >> PAGE_CACHE_SHIFT, end); 2095 /* 2096 * If a page can not be invalidated, return 0 to fall back 2097 * to buffered write. 2098 */ 2099 if (written) { 2100 if (written == -EBUSY) 2101 return 0; 2102 goto out; 2103 } 2104 } 2105 2106 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2107 2108 /* 2109 * Finally, try again to invalidate clean pages which might have been 2110 * cached by non-direct readahead, or faulted in by get_user_pages() 2111 * if the source of the write was an mmap'ed region of the file 2112 * we're writing. Either one is a pretty crazy thing to do, 2113 * so we don't support it 100%. If this invalidation 2114 * fails, tough, the write still worked... 2115 */ 2116 if (mapping->nrpages) { 2117 invalidate_inode_pages2_range(mapping, 2118 pos >> PAGE_CACHE_SHIFT, end); 2119 } 2120 2121 if (written > 0) { 2122 loff_t end = pos + written; 2123 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2124 i_size_write(inode, end); 2125 mark_inode_dirty(inode); 2126 } 2127 *ppos = end; 2128 } 2129 out: 2130 return written; 2131 } 2132 EXPORT_SYMBOL(generic_file_direct_write); 2133 2134 /* 2135 * Find or create a page at the given pagecache position. Return the locked 2136 * page. This function is specifically for buffered writes. 2137 */ 2138 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2139 pgoff_t index, unsigned flags) 2140 { 2141 int status; 2142 struct page *page; 2143 gfp_t gfp_notmask = 0; 2144 if (flags & AOP_FLAG_NOFS) 2145 gfp_notmask = __GFP_FS; 2146 repeat: 2147 page = find_lock_page(mapping, index); 2148 if (likely(page)) 2149 return page; 2150 2151 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask); 2152 if (!page) 2153 return NULL; 2154 status = add_to_page_cache_lru(page, mapping, index, 2155 GFP_KERNEL & ~gfp_notmask); 2156 if (unlikely(status)) { 2157 page_cache_release(page); 2158 if (status == -EEXIST) 2159 goto repeat; 2160 return NULL; 2161 } 2162 return page; 2163 } 2164 EXPORT_SYMBOL(grab_cache_page_write_begin); 2165 2166 static ssize_t generic_perform_write(struct file *file, 2167 struct iov_iter *i, loff_t pos) 2168 { 2169 struct address_space *mapping = file->f_mapping; 2170 const struct address_space_operations *a_ops = mapping->a_ops; 2171 long status = 0; 2172 ssize_t written = 0; 2173 unsigned int flags = 0; 2174 2175 /* 2176 * Copies from kernel address space cannot fail (NFSD is a big user). 2177 */ 2178 if (segment_eq(get_fs(), KERNEL_DS)) 2179 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2180 2181 do { 2182 struct page *page; 2183 pgoff_t index; /* Pagecache index for current page */ 2184 unsigned long offset; /* Offset into pagecache page */ 2185 unsigned long bytes; /* Bytes to write to page */ 2186 size_t copied; /* Bytes copied from user */ 2187 void *fsdata; 2188 2189 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2190 index = pos >> PAGE_CACHE_SHIFT; 2191 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2192 iov_iter_count(i)); 2193 2194 again: 2195 2196 /* 2197 * Bring in the user page that we will copy from _first_. 2198 * Otherwise there's a nasty deadlock on copying from the 2199 * same page as we're writing to, without it being marked 2200 * up-to-date. 2201 * 2202 * Not only is this an optimisation, but it is also required 2203 * to check that the address is actually valid, when atomic 2204 * usercopies are used, below. 2205 */ 2206 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2207 status = -EFAULT; 2208 break; 2209 } 2210 2211 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2212 &page, &fsdata); 2213 if (unlikely(status)) 2214 break; 2215 2216 pagefault_disable(); 2217 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2218 pagefault_enable(); 2219 flush_dcache_page(page); 2220 2221 mark_page_accessed(page); 2222 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2223 page, fsdata); 2224 if (unlikely(status < 0)) 2225 break; 2226 copied = status; 2227 2228 cond_resched(); 2229 2230 iov_iter_advance(i, copied); 2231 if (unlikely(copied == 0)) { 2232 /* 2233 * If we were unable to copy any data at all, we must 2234 * fall back to a single segment length write. 2235 * 2236 * If we didn't fallback here, we could livelock 2237 * because not all segments in the iov can be copied at 2238 * once without a pagefault. 2239 */ 2240 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2241 iov_iter_single_seg_count(i)); 2242 goto again; 2243 } 2244 pos += copied; 2245 written += copied; 2246 2247 balance_dirty_pages_ratelimited(mapping); 2248 2249 } while (iov_iter_count(i)); 2250 2251 return written ? written : status; 2252 } 2253 2254 ssize_t 2255 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2256 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2257 size_t count, ssize_t written) 2258 { 2259 struct file *file = iocb->ki_filp; 2260 struct address_space *mapping = file->f_mapping; 2261 ssize_t status; 2262 struct iov_iter i; 2263 2264 iov_iter_init(&i, iov, nr_segs, count, written); 2265 status = generic_perform_write(file, &i, pos); 2266 2267 if (likely(status >= 0)) { 2268 written += status; 2269 *ppos = pos + status; 2270 } 2271 2272 /* 2273 * If we get here for O_DIRECT writes then we must have fallen through 2274 * to buffered writes (block instantiation inside i_size). So we sync 2275 * the file data here, to try to honour O_DIRECT expectations. 2276 */ 2277 if (unlikely(file->f_flags & O_DIRECT) && written) 2278 status = filemap_write_and_wait_range(mapping, 2279 pos, pos + written - 1); 2280 2281 return written ? written : status; 2282 } 2283 EXPORT_SYMBOL(generic_file_buffered_write); 2284 2285 /** 2286 * __generic_file_aio_write - write data to a file 2287 * @iocb: IO state structure (file, offset, etc.) 2288 * @iov: vector with data to write 2289 * @nr_segs: number of segments in the vector 2290 * @ppos: position where to write 2291 * 2292 * This function does all the work needed for actually writing data to a 2293 * file. It does all basic checks, removes SUID from the file, updates 2294 * modification times and calls proper subroutines depending on whether we 2295 * do direct IO or a standard buffered write. 2296 * 2297 * It expects i_mutex to be grabbed unless we work on a block device or similar 2298 * object which does not need locking at all. 2299 * 2300 * This function does *not* take care of syncing data in case of O_SYNC write. 2301 * A caller has to handle it. This is mainly due to the fact that we want to 2302 * avoid syncing under i_mutex. 2303 */ 2304 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2305 unsigned long nr_segs, loff_t *ppos) 2306 { 2307 struct file *file = iocb->ki_filp; 2308 struct address_space * mapping = file->f_mapping; 2309 size_t ocount; /* original count */ 2310 size_t count; /* after file limit checks */ 2311 struct inode *inode = mapping->host; 2312 loff_t pos; 2313 ssize_t written; 2314 ssize_t err; 2315 2316 ocount = 0; 2317 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2318 if (err) 2319 return err; 2320 2321 count = ocount; 2322 pos = *ppos; 2323 2324 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2325 2326 /* We can write back this queue in page reclaim */ 2327 current->backing_dev_info = mapping->backing_dev_info; 2328 written = 0; 2329 2330 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2331 if (err) 2332 goto out; 2333 2334 if (count == 0) 2335 goto out; 2336 2337 err = file_remove_suid(file); 2338 if (err) 2339 goto out; 2340 2341 file_update_time(file); 2342 2343 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2344 if (unlikely(file->f_flags & O_DIRECT)) { 2345 loff_t endbyte; 2346 ssize_t written_buffered; 2347 2348 written = generic_file_direct_write(iocb, iov, &nr_segs, pos, 2349 ppos, count, ocount); 2350 if (written < 0 || written == count) 2351 goto out; 2352 /* 2353 * direct-io write to a hole: fall through to buffered I/O 2354 * for completing the rest of the request. 2355 */ 2356 pos += written; 2357 count -= written; 2358 written_buffered = generic_file_buffered_write(iocb, iov, 2359 nr_segs, pos, ppos, count, 2360 written); 2361 /* 2362 * If generic_file_buffered_write() retuned a synchronous error 2363 * then we want to return the number of bytes which were 2364 * direct-written, or the error code if that was zero. Note 2365 * that this differs from normal direct-io semantics, which 2366 * will return -EFOO even if some bytes were written. 2367 */ 2368 if (written_buffered < 0) { 2369 err = written_buffered; 2370 goto out; 2371 } 2372 2373 /* 2374 * We need to ensure that the page cache pages are written to 2375 * disk and invalidated to preserve the expected O_DIRECT 2376 * semantics. 2377 */ 2378 endbyte = pos + written_buffered - written - 1; 2379 err = do_sync_mapping_range(file->f_mapping, pos, endbyte, 2380 SYNC_FILE_RANGE_WAIT_BEFORE| 2381 SYNC_FILE_RANGE_WRITE| 2382 SYNC_FILE_RANGE_WAIT_AFTER); 2383 if (err == 0) { 2384 written = written_buffered; 2385 invalidate_mapping_pages(mapping, 2386 pos >> PAGE_CACHE_SHIFT, 2387 endbyte >> PAGE_CACHE_SHIFT); 2388 } else { 2389 /* 2390 * We don't know how much we wrote, so just return 2391 * the number of bytes which were direct-written 2392 */ 2393 } 2394 } else { 2395 written = generic_file_buffered_write(iocb, iov, nr_segs, 2396 pos, ppos, count, written); 2397 } 2398 out: 2399 current->backing_dev_info = NULL; 2400 return written ? written : err; 2401 } 2402 EXPORT_SYMBOL(__generic_file_aio_write); 2403 2404 /** 2405 * generic_file_aio_write - write data to a file 2406 * @iocb: IO state structure 2407 * @iov: vector with data to write 2408 * @nr_segs: number of segments in the vector 2409 * @pos: position in file where to write 2410 * 2411 * This is a wrapper around __generic_file_aio_write() to be used by most 2412 * filesystems. It takes care of syncing the file in case of O_SYNC file 2413 * and acquires i_mutex as needed. 2414 */ 2415 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2416 unsigned long nr_segs, loff_t pos) 2417 { 2418 struct file *file = iocb->ki_filp; 2419 struct inode *inode = file->f_mapping->host; 2420 ssize_t ret; 2421 2422 BUG_ON(iocb->ki_pos != pos); 2423 2424 mutex_lock(&inode->i_mutex); 2425 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos); 2426 mutex_unlock(&inode->i_mutex); 2427 2428 if (ret > 0 || ret == -EIOCBQUEUED) { 2429 ssize_t err; 2430 2431 err = generic_write_sync(file, pos, ret); 2432 if (err < 0 && ret > 0) 2433 ret = err; 2434 } 2435 return ret; 2436 } 2437 EXPORT_SYMBOL(generic_file_aio_write); 2438 2439 /** 2440 * try_to_release_page() - release old fs-specific metadata on a page 2441 * 2442 * @page: the page which the kernel is trying to free 2443 * @gfp_mask: memory allocation flags (and I/O mode) 2444 * 2445 * The address_space is to try to release any data against the page 2446 * (presumably at page->private). If the release was successful, return `1'. 2447 * Otherwise return zero. 2448 * 2449 * This may also be called if PG_fscache is set on a page, indicating that the 2450 * page is known to the local caching routines. 2451 * 2452 * The @gfp_mask argument specifies whether I/O may be performed to release 2453 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2454 * 2455 */ 2456 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2457 { 2458 struct address_space * const mapping = page->mapping; 2459 2460 BUG_ON(!PageLocked(page)); 2461 if (PageWriteback(page)) 2462 return 0; 2463 2464 if (mapping && mapping->a_ops->releasepage) 2465 return mapping->a_ops->releasepage(page, gfp_mask); 2466 return try_to_free_buffers(page); 2467 } 2468 2469 EXPORT_SYMBOL(try_to_release_page); 2470