1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/sched/signal.h> 17 #include <linux/uaccess.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/gfp.h> 21 #include <linux/mm.h> 22 #include <linux/swap.h> 23 #include <linux/mman.h> 24 #include <linux/pagemap.h> 25 #include <linux/file.h> 26 #include <linux/uio.h> 27 #include <linux/hash.h> 28 #include <linux/writeback.h> 29 #include <linux/backing-dev.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/security.h> 33 #include <linux/cpuset.h> 34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 35 #include <linux/hugetlb.h> 36 #include <linux/memcontrol.h> 37 #include <linux/cleancache.h> 38 #include <linux/rmap.h> 39 #include "internal.h" 40 41 #define CREATE_TRACE_POINTS 42 #include <trace/events/filemap.h> 43 44 /* 45 * FIXME: remove all knowledge of the buffer layer from the core VM 46 */ 47 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 48 49 #include <asm/mman.h> 50 51 /* 52 * Shared mappings implemented 30.11.1994. It's not fully working yet, 53 * though. 54 * 55 * Shared mappings now work. 15.8.1995 Bruno. 56 * 57 * finished 'unifying' the page and buffer cache and SMP-threaded the 58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 59 * 60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 61 */ 62 63 /* 64 * Lock ordering: 65 * 66 * ->i_mmap_rwsem (truncate_pagecache) 67 * ->private_lock (__free_pte->__set_page_dirty_buffers) 68 * ->swap_lock (exclusive_swap_page, others) 69 * ->mapping->tree_lock 70 * 71 * ->i_mutex 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 73 * 74 * ->mmap_sem 75 * ->i_mmap_rwsem 76 * ->page_table_lock or pte_lock (various, mainly in memory.c) 77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 78 * 79 * ->mmap_sem 80 * ->lock_page (access_process_vm) 81 * 82 * ->i_mutex (generic_perform_write) 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 84 * 85 * bdi->wb.list_lock 86 * sb_lock (fs/fs-writeback.c) 87 * ->mapping->tree_lock (__sync_single_inode) 88 * 89 * ->i_mmap_rwsem 90 * ->anon_vma.lock (vma_adjust) 91 * 92 * ->anon_vma.lock 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 94 * 95 * ->page_table_lock or pte_lock 96 * ->swap_lock (try_to_unmap_one) 97 * ->private_lock (try_to_unmap_one) 98 * ->tree_lock (try_to_unmap_one) 99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed) 100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page) 101 * ->private_lock (page_remove_rmap->set_page_dirty) 102 * ->tree_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 107 * ->inode->i_lock (zap_pte_range->set_page_dirty) 108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 109 * 110 * ->i_mmap_rwsem 111 * ->tasklist_lock (memory_failure, collect_procs_ao) 112 */ 113 114 static int page_cache_tree_insert(struct address_space *mapping, 115 struct page *page, void **shadowp) 116 { 117 struct radix_tree_node *node; 118 void **slot; 119 int error; 120 121 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 122 &node, &slot); 123 if (error) 124 return error; 125 if (*slot) { 126 void *p; 127 128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 129 if (!radix_tree_exceptional_entry(p)) 130 return -EEXIST; 131 132 mapping->nrexceptional--; 133 if (shadowp) 134 *shadowp = p; 135 } 136 __radix_tree_replace(&mapping->page_tree, node, slot, page, 137 workingset_update_node, mapping); 138 mapping->nrpages++; 139 return 0; 140 } 141 142 static void page_cache_tree_delete(struct address_space *mapping, 143 struct page *page, void *shadow) 144 { 145 int i, nr; 146 147 /* hugetlb pages are represented by one entry in the radix tree */ 148 nr = PageHuge(page) ? 1 : hpage_nr_pages(page); 149 150 VM_BUG_ON_PAGE(!PageLocked(page), page); 151 VM_BUG_ON_PAGE(PageTail(page), page); 152 VM_BUG_ON_PAGE(nr != 1 && shadow, page); 153 154 for (i = 0; i < nr; i++) { 155 struct radix_tree_node *node; 156 void **slot; 157 158 __radix_tree_lookup(&mapping->page_tree, page->index + i, 159 &node, &slot); 160 161 VM_BUG_ON_PAGE(!node && nr != 1, page); 162 163 radix_tree_clear_tags(&mapping->page_tree, node, slot); 164 __radix_tree_replace(&mapping->page_tree, node, slot, shadow, 165 workingset_update_node, mapping); 166 } 167 168 if (shadow) { 169 mapping->nrexceptional += nr; 170 /* 171 * Make sure the nrexceptional update is committed before 172 * the nrpages update so that final truncate racing 173 * with reclaim does not see both counters 0 at the 174 * same time and miss a shadow entry. 175 */ 176 smp_wmb(); 177 } 178 mapping->nrpages -= nr; 179 } 180 181 /* 182 * Delete a page from the page cache and free it. Caller has to make 183 * sure the page is locked and that nobody else uses it - or that usage 184 * is safe. The caller must hold the mapping's tree_lock. 185 */ 186 void __delete_from_page_cache(struct page *page, void *shadow) 187 { 188 struct address_space *mapping = page->mapping; 189 int nr = hpage_nr_pages(page); 190 191 trace_mm_filemap_delete_from_page_cache(page); 192 /* 193 * if we're uptodate, flush out into the cleancache, otherwise 194 * invalidate any existing cleancache entries. We can't leave 195 * stale data around in the cleancache once our page is gone 196 */ 197 if (PageUptodate(page) && PageMappedToDisk(page)) 198 cleancache_put_page(page); 199 else 200 cleancache_invalidate_page(mapping, page); 201 202 VM_BUG_ON_PAGE(PageTail(page), page); 203 VM_BUG_ON_PAGE(page_mapped(page), page); 204 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 205 int mapcount; 206 207 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 208 current->comm, page_to_pfn(page)); 209 dump_page(page, "still mapped when deleted"); 210 dump_stack(); 211 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 212 213 mapcount = page_mapcount(page); 214 if (mapping_exiting(mapping) && 215 page_count(page) >= mapcount + 2) { 216 /* 217 * All vmas have already been torn down, so it's 218 * a good bet that actually the page is unmapped, 219 * and we'd prefer not to leak it: if we're wrong, 220 * some other bad page check should catch it later. 221 */ 222 page_mapcount_reset(page); 223 page_ref_sub(page, mapcount); 224 } 225 } 226 227 page_cache_tree_delete(mapping, page, shadow); 228 229 page->mapping = NULL; 230 /* Leave page->index set: truncation lookup relies upon it */ 231 232 /* hugetlb pages do not participate in page cache accounting. */ 233 if (PageHuge(page)) 234 return; 235 236 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr); 237 if (PageSwapBacked(page)) { 238 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr); 239 if (PageTransHuge(page)) 240 __dec_node_page_state(page, NR_SHMEM_THPS); 241 } else { 242 VM_BUG_ON_PAGE(PageTransHuge(page), page); 243 } 244 245 /* 246 * At this point page must be either written or cleaned by truncate. 247 * Dirty page here signals a bug and loss of unwritten data. 248 * 249 * This fixes dirty accounting after removing the page entirely but 250 * leaves PageDirty set: it has no effect for truncated page and 251 * anyway will be cleared before returning page into buddy allocator. 252 */ 253 if (WARN_ON_ONCE(PageDirty(page))) 254 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 255 } 256 257 /** 258 * delete_from_page_cache - delete page from page cache 259 * @page: the page which the kernel is trying to remove from page cache 260 * 261 * This must be called only on pages that have been verified to be in the page 262 * cache and locked. It will never put the page into the free list, the caller 263 * has a reference on the page. 264 */ 265 void delete_from_page_cache(struct page *page) 266 { 267 struct address_space *mapping = page_mapping(page); 268 unsigned long flags; 269 void (*freepage)(struct page *); 270 271 BUG_ON(!PageLocked(page)); 272 273 freepage = mapping->a_ops->freepage; 274 275 spin_lock_irqsave(&mapping->tree_lock, flags); 276 __delete_from_page_cache(page, NULL); 277 spin_unlock_irqrestore(&mapping->tree_lock, flags); 278 279 if (freepage) 280 freepage(page); 281 282 if (PageTransHuge(page) && !PageHuge(page)) { 283 page_ref_sub(page, HPAGE_PMD_NR); 284 VM_BUG_ON_PAGE(page_count(page) <= 0, page); 285 } else { 286 put_page(page); 287 } 288 } 289 EXPORT_SYMBOL(delete_from_page_cache); 290 291 int filemap_check_errors(struct address_space *mapping) 292 { 293 int ret = 0; 294 /* Check for outstanding write errors */ 295 if (test_bit(AS_ENOSPC, &mapping->flags) && 296 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 297 ret = -ENOSPC; 298 if (test_bit(AS_EIO, &mapping->flags) && 299 test_and_clear_bit(AS_EIO, &mapping->flags)) 300 ret = -EIO; 301 return ret; 302 } 303 EXPORT_SYMBOL(filemap_check_errors); 304 305 static int filemap_check_and_keep_errors(struct address_space *mapping) 306 { 307 /* Check for outstanding write errors */ 308 if (test_bit(AS_EIO, &mapping->flags)) 309 return -EIO; 310 if (test_bit(AS_ENOSPC, &mapping->flags)) 311 return -ENOSPC; 312 return 0; 313 } 314 315 /** 316 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 317 * @mapping: address space structure to write 318 * @start: offset in bytes where the range starts 319 * @end: offset in bytes where the range ends (inclusive) 320 * @sync_mode: enable synchronous operation 321 * 322 * Start writeback against all of a mapping's dirty pages that lie 323 * within the byte offsets <start, end> inclusive. 324 * 325 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 326 * opposed to a regular memory cleansing writeback. The difference between 327 * these two operations is that if a dirty page/buffer is encountered, it must 328 * be waited upon, and not just skipped over. 329 */ 330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 331 loff_t end, int sync_mode) 332 { 333 int ret; 334 struct writeback_control wbc = { 335 .sync_mode = sync_mode, 336 .nr_to_write = LONG_MAX, 337 .range_start = start, 338 .range_end = end, 339 }; 340 341 if (!mapping_cap_writeback_dirty(mapping)) 342 return 0; 343 344 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 345 ret = do_writepages(mapping, &wbc); 346 wbc_detach_inode(&wbc); 347 return ret; 348 } 349 350 static inline int __filemap_fdatawrite(struct address_space *mapping, 351 int sync_mode) 352 { 353 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 354 } 355 356 int filemap_fdatawrite(struct address_space *mapping) 357 { 358 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 359 } 360 EXPORT_SYMBOL(filemap_fdatawrite); 361 362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 363 loff_t end) 364 { 365 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 366 } 367 EXPORT_SYMBOL(filemap_fdatawrite_range); 368 369 /** 370 * filemap_flush - mostly a non-blocking flush 371 * @mapping: target address_space 372 * 373 * This is a mostly non-blocking flush. Not suitable for data-integrity 374 * purposes - I/O may not be started against all dirty pages. 375 */ 376 int filemap_flush(struct address_space *mapping) 377 { 378 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 379 } 380 EXPORT_SYMBOL(filemap_flush); 381 382 /** 383 * filemap_range_has_page - check if a page exists in range. 384 * @mapping: address space within which to check 385 * @start_byte: offset in bytes where the range starts 386 * @end_byte: offset in bytes where the range ends (inclusive) 387 * 388 * Find at least one page in the range supplied, usually used to check if 389 * direct writing in this range will trigger a writeback. 390 */ 391 bool filemap_range_has_page(struct address_space *mapping, 392 loff_t start_byte, loff_t end_byte) 393 { 394 pgoff_t index = start_byte >> PAGE_SHIFT; 395 pgoff_t end = end_byte >> PAGE_SHIFT; 396 struct pagevec pvec; 397 bool ret; 398 399 if (end_byte < start_byte) 400 return false; 401 402 if (mapping->nrpages == 0) 403 return false; 404 405 pagevec_init(&pvec, 0); 406 if (!pagevec_lookup(&pvec, mapping, index, 1)) 407 return false; 408 ret = (pvec.pages[0]->index <= end); 409 pagevec_release(&pvec); 410 return ret; 411 } 412 EXPORT_SYMBOL(filemap_range_has_page); 413 414 static void __filemap_fdatawait_range(struct address_space *mapping, 415 loff_t start_byte, loff_t end_byte) 416 { 417 pgoff_t index = start_byte >> PAGE_SHIFT; 418 pgoff_t end = end_byte >> PAGE_SHIFT; 419 struct pagevec pvec; 420 int nr_pages; 421 422 if (end_byte < start_byte) 423 return; 424 425 pagevec_init(&pvec, 0); 426 while ((index <= end) && 427 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 428 PAGECACHE_TAG_WRITEBACK, 429 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 430 unsigned i; 431 432 for (i = 0; i < nr_pages; i++) { 433 struct page *page = pvec.pages[i]; 434 435 /* until radix tree lookup accepts end_index */ 436 if (page->index > end) 437 continue; 438 439 wait_on_page_writeback(page); 440 ClearPageError(page); 441 } 442 pagevec_release(&pvec); 443 cond_resched(); 444 } 445 } 446 447 /** 448 * filemap_fdatawait_range - wait for writeback to complete 449 * @mapping: address space structure to wait for 450 * @start_byte: offset in bytes where the range starts 451 * @end_byte: offset in bytes where the range ends (inclusive) 452 * 453 * Walk the list of under-writeback pages of the given address space 454 * in the given range and wait for all of them. Check error status of 455 * the address space and return it. 456 * 457 * Since the error status of the address space is cleared by this function, 458 * callers are responsible for checking the return value and handling and/or 459 * reporting the error. 460 */ 461 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 462 loff_t end_byte) 463 { 464 __filemap_fdatawait_range(mapping, start_byte, end_byte); 465 return filemap_check_errors(mapping); 466 } 467 EXPORT_SYMBOL(filemap_fdatawait_range); 468 469 /** 470 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 471 * @mapping: address space structure to wait for 472 * 473 * Walk the list of under-writeback pages of the given address space 474 * and wait for all of them. Unlike filemap_fdatawait(), this function 475 * does not clear error status of the address space. 476 * 477 * Use this function if callers don't handle errors themselves. Expected 478 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 479 * fsfreeze(8) 480 */ 481 int filemap_fdatawait_keep_errors(struct address_space *mapping) 482 { 483 loff_t i_size = i_size_read(mapping->host); 484 485 if (i_size == 0) 486 return 0; 487 488 __filemap_fdatawait_range(mapping, 0, i_size - 1); 489 return filemap_check_and_keep_errors(mapping); 490 } 491 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 492 493 /** 494 * filemap_fdatawait - wait for all under-writeback pages to complete 495 * @mapping: address space structure to wait for 496 * 497 * Walk the list of under-writeback pages of the given address space 498 * and wait for all of them. Check error status of the address space 499 * and return it. 500 * 501 * Since the error status of the address space is cleared by this function, 502 * callers are responsible for checking the return value and handling and/or 503 * reporting the error. 504 */ 505 int filemap_fdatawait(struct address_space *mapping) 506 { 507 loff_t i_size = i_size_read(mapping->host); 508 509 if (i_size == 0) 510 return 0; 511 512 return filemap_fdatawait_range(mapping, 0, i_size - 1); 513 } 514 EXPORT_SYMBOL(filemap_fdatawait); 515 516 int filemap_write_and_wait(struct address_space *mapping) 517 { 518 int err = 0; 519 520 if ((!dax_mapping(mapping) && mapping->nrpages) || 521 (dax_mapping(mapping) && mapping->nrexceptional)) { 522 err = filemap_fdatawrite(mapping); 523 /* 524 * Even if the above returned error, the pages may be 525 * written partially (e.g. -ENOSPC), so we wait for it. 526 * But the -EIO is special case, it may indicate the worst 527 * thing (e.g. bug) happened, so we avoid waiting for it. 528 */ 529 if (err != -EIO) { 530 int err2 = filemap_fdatawait(mapping); 531 if (!err) 532 err = err2; 533 } else { 534 /* Clear any previously stored errors */ 535 filemap_check_errors(mapping); 536 } 537 } else { 538 err = filemap_check_errors(mapping); 539 } 540 return err; 541 } 542 EXPORT_SYMBOL(filemap_write_and_wait); 543 544 /** 545 * filemap_write_and_wait_range - write out & wait on a file range 546 * @mapping: the address_space for the pages 547 * @lstart: offset in bytes where the range starts 548 * @lend: offset in bytes where the range ends (inclusive) 549 * 550 * Write out and wait upon file offsets lstart->lend, inclusive. 551 * 552 * Note that @lend is inclusive (describes the last byte to be written) so 553 * that this function can be used to write to the very end-of-file (end = -1). 554 */ 555 int filemap_write_and_wait_range(struct address_space *mapping, 556 loff_t lstart, loff_t lend) 557 { 558 int err = 0; 559 560 if ((!dax_mapping(mapping) && mapping->nrpages) || 561 (dax_mapping(mapping) && mapping->nrexceptional)) { 562 err = __filemap_fdatawrite_range(mapping, lstart, lend, 563 WB_SYNC_ALL); 564 /* See comment of filemap_write_and_wait() */ 565 if (err != -EIO) { 566 int err2 = filemap_fdatawait_range(mapping, 567 lstart, lend); 568 if (!err) 569 err = err2; 570 } else { 571 /* Clear any previously stored errors */ 572 filemap_check_errors(mapping); 573 } 574 } else { 575 err = filemap_check_errors(mapping); 576 } 577 return err; 578 } 579 EXPORT_SYMBOL(filemap_write_and_wait_range); 580 581 void __filemap_set_wb_err(struct address_space *mapping, int err) 582 { 583 errseq_t eseq = __errseq_set(&mapping->wb_err, err); 584 585 trace_filemap_set_wb_err(mapping, eseq); 586 } 587 EXPORT_SYMBOL(__filemap_set_wb_err); 588 589 /** 590 * file_check_and_advance_wb_err - report wb error (if any) that was previously 591 * and advance wb_err to current one 592 * @file: struct file on which the error is being reported 593 * 594 * When userland calls fsync (or something like nfsd does the equivalent), we 595 * want to report any writeback errors that occurred since the last fsync (or 596 * since the file was opened if there haven't been any). 597 * 598 * Grab the wb_err from the mapping. If it matches what we have in the file, 599 * then just quickly return 0. The file is all caught up. 600 * 601 * If it doesn't match, then take the mapping value, set the "seen" flag in 602 * it and try to swap it into place. If it works, or another task beat us 603 * to it with the new value, then update the f_wb_err and return the error 604 * portion. The error at this point must be reported via proper channels 605 * (a'la fsync, or NFS COMMIT operation, etc.). 606 * 607 * While we handle mapping->wb_err with atomic operations, the f_wb_err 608 * value is protected by the f_lock since we must ensure that it reflects 609 * the latest value swapped in for this file descriptor. 610 */ 611 int file_check_and_advance_wb_err(struct file *file) 612 { 613 int err = 0; 614 errseq_t old = READ_ONCE(file->f_wb_err); 615 struct address_space *mapping = file->f_mapping; 616 617 /* Locklessly handle the common case where nothing has changed */ 618 if (errseq_check(&mapping->wb_err, old)) { 619 /* Something changed, must use slow path */ 620 spin_lock(&file->f_lock); 621 old = file->f_wb_err; 622 err = errseq_check_and_advance(&mapping->wb_err, 623 &file->f_wb_err); 624 trace_file_check_and_advance_wb_err(file, old); 625 spin_unlock(&file->f_lock); 626 } 627 return err; 628 } 629 EXPORT_SYMBOL(file_check_and_advance_wb_err); 630 631 /** 632 * file_write_and_wait_range - write out & wait on a file range 633 * @file: file pointing to address_space with pages 634 * @lstart: offset in bytes where the range starts 635 * @lend: offset in bytes where the range ends (inclusive) 636 * 637 * Write out and wait upon file offsets lstart->lend, inclusive. 638 * 639 * Note that @lend is inclusive (describes the last byte to be written) so 640 * that this function can be used to write to the very end-of-file (end = -1). 641 * 642 * After writing out and waiting on the data, we check and advance the 643 * f_wb_err cursor to the latest value, and return any errors detected there. 644 */ 645 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 646 { 647 int err = 0, err2; 648 struct address_space *mapping = file->f_mapping; 649 650 if ((!dax_mapping(mapping) && mapping->nrpages) || 651 (dax_mapping(mapping) && mapping->nrexceptional)) { 652 err = __filemap_fdatawrite_range(mapping, lstart, lend, 653 WB_SYNC_ALL); 654 /* See comment of filemap_write_and_wait() */ 655 if (err != -EIO) 656 __filemap_fdatawait_range(mapping, lstart, lend); 657 } 658 err2 = file_check_and_advance_wb_err(file); 659 if (!err) 660 err = err2; 661 return err; 662 } 663 EXPORT_SYMBOL(file_write_and_wait_range); 664 665 /** 666 * replace_page_cache_page - replace a pagecache page with a new one 667 * @old: page to be replaced 668 * @new: page to replace with 669 * @gfp_mask: allocation mode 670 * 671 * This function replaces a page in the pagecache with a new one. On 672 * success it acquires the pagecache reference for the new page and 673 * drops it for the old page. Both the old and new pages must be 674 * locked. This function does not add the new page to the LRU, the 675 * caller must do that. 676 * 677 * The remove + add is atomic. The only way this function can fail is 678 * memory allocation failure. 679 */ 680 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 681 { 682 int error; 683 684 VM_BUG_ON_PAGE(!PageLocked(old), old); 685 VM_BUG_ON_PAGE(!PageLocked(new), new); 686 VM_BUG_ON_PAGE(new->mapping, new); 687 688 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 689 if (!error) { 690 struct address_space *mapping = old->mapping; 691 void (*freepage)(struct page *); 692 unsigned long flags; 693 694 pgoff_t offset = old->index; 695 freepage = mapping->a_ops->freepage; 696 697 get_page(new); 698 new->mapping = mapping; 699 new->index = offset; 700 701 spin_lock_irqsave(&mapping->tree_lock, flags); 702 __delete_from_page_cache(old, NULL); 703 error = page_cache_tree_insert(mapping, new, NULL); 704 BUG_ON(error); 705 706 /* 707 * hugetlb pages do not participate in page cache accounting. 708 */ 709 if (!PageHuge(new)) 710 __inc_node_page_state(new, NR_FILE_PAGES); 711 if (PageSwapBacked(new)) 712 __inc_node_page_state(new, NR_SHMEM); 713 spin_unlock_irqrestore(&mapping->tree_lock, flags); 714 mem_cgroup_migrate(old, new); 715 radix_tree_preload_end(); 716 if (freepage) 717 freepage(old); 718 put_page(old); 719 } 720 721 return error; 722 } 723 EXPORT_SYMBOL_GPL(replace_page_cache_page); 724 725 static int __add_to_page_cache_locked(struct page *page, 726 struct address_space *mapping, 727 pgoff_t offset, gfp_t gfp_mask, 728 void **shadowp) 729 { 730 int huge = PageHuge(page); 731 struct mem_cgroup *memcg; 732 int error; 733 734 VM_BUG_ON_PAGE(!PageLocked(page), page); 735 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 736 737 if (!huge) { 738 error = mem_cgroup_try_charge(page, current->mm, 739 gfp_mask, &memcg, false); 740 if (error) 741 return error; 742 } 743 744 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 745 if (error) { 746 if (!huge) 747 mem_cgroup_cancel_charge(page, memcg, false); 748 return error; 749 } 750 751 get_page(page); 752 page->mapping = mapping; 753 page->index = offset; 754 755 spin_lock_irq(&mapping->tree_lock); 756 error = page_cache_tree_insert(mapping, page, shadowp); 757 radix_tree_preload_end(); 758 if (unlikely(error)) 759 goto err_insert; 760 761 /* hugetlb pages do not participate in page cache accounting. */ 762 if (!huge) 763 __inc_node_page_state(page, NR_FILE_PAGES); 764 spin_unlock_irq(&mapping->tree_lock); 765 if (!huge) 766 mem_cgroup_commit_charge(page, memcg, false, false); 767 trace_mm_filemap_add_to_page_cache(page); 768 return 0; 769 err_insert: 770 page->mapping = NULL; 771 /* Leave page->index set: truncation relies upon it */ 772 spin_unlock_irq(&mapping->tree_lock); 773 if (!huge) 774 mem_cgroup_cancel_charge(page, memcg, false); 775 put_page(page); 776 return error; 777 } 778 779 /** 780 * add_to_page_cache_locked - add a locked page to the pagecache 781 * @page: page to add 782 * @mapping: the page's address_space 783 * @offset: page index 784 * @gfp_mask: page allocation mode 785 * 786 * This function is used to add a page to the pagecache. It must be locked. 787 * This function does not add the page to the LRU. The caller must do that. 788 */ 789 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 790 pgoff_t offset, gfp_t gfp_mask) 791 { 792 return __add_to_page_cache_locked(page, mapping, offset, 793 gfp_mask, NULL); 794 } 795 EXPORT_SYMBOL(add_to_page_cache_locked); 796 797 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 798 pgoff_t offset, gfp_t gfp_mask) 799 { 800 void *shadow = NULL; 801 int ret; 802 803 __SetPageLocked(page); 804 ret = __add_to_page_cache_locked(page, mapping, offset, 805 gfp_mask, &shadow); 806 if (unlikely(ret)) 807 __ClearPageLocked(page); 808 else { 809 /* 810 * The page might have been evicted from cache only 811 * recently, in which case it should be activated like 812 * any other repeatedly accessed page. 813 * The exception is pages getting rewritten; evicting other 814 * data from the working set, only to cache data that will 815 * get overwritten with something else, is a waste of memory. 816 */ 817 if (!(gfp_mask & __GFP_WRITE) && 818 shadow && workingset_refault(shadow)) { 819 SetPageActive(page); 820 workingset_activation(page); 821 } else 822 ClearPageActive(page); 823 lru_cache_add(page); 824 } 825 return ret; 826 } 827 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 828 829 #ifdef CONFIG_NUMA 830 struct page *__page_cache_alloc(gfp_t gfp) 831 { 832 int n; 833 struct page *page; 834 835 if (cpuset_do_page_mem_spread()) { 836 unsigned int cpuset_mems_cookie; 837 do { 838 cpuset_mems_cookie = read_mems_allowed_begin(); 839 n = cpuset_mem_spread_node(); 840 page = __alloc_pages_node(n, gfp, 0); 841 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 842 843 return page; 844 } 845 return alloc_pages(gfp, 0); 846 } 847 EXPORT_SYMBOL(__page_cache_alloc); 848 #endif 849 850 /* 851 * In order to wait for pages to become available there must be 852 * waitqueues associated with pages. By using a hash table of 853 * waitqueues where the bucket discipline is to maintain all 854 * waiters on the same queue and wake all when any of the pages 855 * become available, and for the woken contexts to check to be 856 * sure the appropriate page became available, this saves space 857 * at a cost of "thundering herd" phenomena during rare hash 858 * collisions. 859 */ 860 #define PAGE_WAIT_TABLE_BITS 8 861 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 862 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 863 864 static wait_queue_head_t *page_waitqueue(struct page *page) 865 { 866 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)]; 867 } 868 869 void __init pagecache_init(void) 870 { 871 int i; 872 873 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 874 init_waitqueue_head(&page_wait_table[i]); 875 876 page_writeback_init(); 877 } 878 879 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */ 880 struct wait_page_key { 881 struct page *page; 882 int bit_nr; 883 int page_match; 884 }; 885 886 struct wait_page_queue { 887 struct page *page; 888 int bit_nr; 889 wait_queue_entry_t wait; 890 }; 891 892 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 893 { 894 struct wait_page_key *key = arg; 895 struct wait_page_queue *wait_page 896 = container_of(wait, struct wait_page_queue, wait); 897 898 if (wait_page->page != key->page) 899 return 0; 900 key->page_match = 1; 901 902 if (wait_page->bit_nr != key->bit_nr) 903 return 0; 904 905 /* Stop walking if it's locked */ 906 if (test_bit(key->bit_nr, &key->page->flags)) 907 return -1; 908 909 return autoremove_wake_function(wait, mode, sync, key); 910 } 911 912 static void wake_up_page_bit(struct page *page, int bit_nr) 913 { 914 wait_queue_head_t *q = page_waitqueue(page); 915 struct wait_page_key key; 916 unsigned long flags; 917 918 key.page = page; 919 key.bit_nr = bit_nr; 920 key.page_match = 0; 921 922 spin_lock_irqsave(&q->lock, flags); 923 __wake_up_locked_key(q, TASK_NORMAL, &key); 924 /* 925 * It is possible for other pages to have collided on the waitqueue 926 * hash, so in that case check for a page match. That prevents a long- 927 * term waiter 928 * 929 * It is still possible to miss a case here, when we woke page waiters 930 * and removed them from the waitqueue, but there are still other 931 * page waiters. 932 */ 933 if (!waitqueue_active(q) || !key.page_match) { 934 ClearPageWaiters(page); 935 /* 936 * It's possible to miss clearing Waiters here, when we woke 937 * our page waiters, but the hashed waitqueue has waiters for 938 * other pages on it. 939 * 940 * That's okay, it's a rare case. The next waker will clear it. 941 */ 942 } 943 spin_unlock_irqrestore(&q->lock, flags); 944 } 945 946 static void wake_up_page(struct page *page, int bit) 947 { 948 if (!PageWaiters(page)) 949 return; 950 wake_up_page_bit(page, bit); 951 } 952 953 static inline int wait_on_page_bit_common(wait_queue_head_t *q, 954 struct page *page, int bit_nr, int state, bool lock) 955 { 956 struct wait_page_queue wait_page; 957 wait_queue_entry_t *wait = &wait_page.wait; 958 int ret = 0; 959 960 init_wait(wait); 961 wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0; 962 wait->func = wake_page_function; 963 wait_page.page = page; 964 wait_page.bit_nr = bit_nr; 965 966 for (;;) { 967 spin_lock_irq(&q->lock); 968 969 if (likely(list_empty(&wait->entry))) { 970 __add_wait_queue_entry_tail(q, wait); 971 SetPageWaiters(page); 972 } 973 974 set_current_state(state); 975 976 spin_unlock_irq(&q->lock); 977 978 if (likely(test_bit(bit_nr, &page->flags))) { 979 io_schedule(); 980 } 981 982 if (lock) { 983 if (!test_and_set_bit_lock(bit_nr, &page->flags)) 984 break; 985 } else { 986 if (!test_bit(bit_nr, &page->flags)) 987 break; 988 } 989 990 if (unlikely(signal_pending_state(state, current))) { 991 ret = -EINTR; 992 break; 993 } 994 } 995 996 finish_wait(q, wait); 997 998 /* 999 * A signal could leave PageWaiters set. Clearing it here if 1000 * !waitqueue_active would be possible (by open-coding finish_wait), 1001 * but still fail to catch it in the case of wait hash collision. We 1002 * already can fail to clear wait hash collision cases, so don't 1003 * bother with signals either. 1004 */ 1005 1006 return ret; 1007 } 1008 1009 void wait_on_page_bit(struct page *page, int bit_nr) 1010 { 1011 wait_queue_head_t *q = page_waitqueue(page); 1012 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false); 1013 } 1014 EXPORT_SYMBOL(wait_on_page_bit); 1015 1016 int wait_on_page_bit_killable(struct page *page, int bit_nr) 1017 { 1018 wait_queue_head_t *q = page_waitqueue(page); 1019 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false); 1020 } 1021 1022 /** 1023 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 1024 * @page: Page defining the wait queue of interest 1025 * @waiter: Waiter to add to the queue 1026 * 1027 * Add an arbitrary @waiter to the wait queue for the nominated @page. 1028 */ 1029 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter) 1030 { 1031 wait_queue_head_t *q = page_waitqueue(page); 1032 unsigned long flags; 1033 1034 spin_lock_irqsave(&q->lock, flags); 1035 __add_wait_queue_entry_tail(q, waiter); 1036 SetPageWaiters(page); 1037 spin_unlock_irqrestore(&q->lock, flags); 1038 } 1039 EXPORT_SYMBOL_GPL(add_page_wait_queue); 1040 1041 #ifndef clear_bit_unlock_is_negative_byte 1042 1043 /* 1044 * PG_waiters is the high bit in the same byte as PG_lock. 1045 * 1046 * On x86 (and on many other architectures), we can clear PG_lock and 1047 * test the sign bit at the same time. But if the architecture does 1048 * not support that special operation, we just do this all by hand 1049 * instead. 1050 * 1051 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1052 * being cleared, but a memory barrier should be unneccssary since it is 1053 * in the same byte as PG_locked. 1054 */ 1055 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1056 { 1057 clear_bit_unlock(nr, mem); 1058 /* smp_mb__after_atomic(); */ 1059 return test_bit(PG_waiters, mem); 1060 } 1061 1062 #endif 1063 1064 /** 1065 * unlock_page - unlock a locked page 1066 * @page: the page 1067 * 1068 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 1069 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 1070 * mechanism between PageLocked pages and PageWriteback pages is shared. 1071 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 1072 * 1073 * Note that this depends on PG_waiters being the sign bit in the byte 1074 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to 1075 * clear the PG_locked bit and test PG_waiters at the same time fairly 1076 * portably (architectures that do LL/SC can test any bit, while x86 can 1077 * test the sign bit). 1078 */ 1079 void unlock_page(struct page *page) 1080 { 1081 BUILD_BUG_ON(PG_waiters != 7); 1082 page = compound_head(page); 1083 VM_BUG_ON_PAGE(!PageLocked(page), page); 1084 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags)) 1085 wake_up_page_bit(page, PG_locked); 1086 } 1087 EXPORT_SYMBOL(unlock_page); 1088 1089 /** 1090 * end_page_writeback - end writeback against a page 1091 * @page: the page 1092 */ 1093 void end_page_writeback(struct page *page) 1094 { 1095 /* 1096 * TestClearPageReclaim could be used here but it is an atomic 1097 * operation and overkill in this particular case. Failing to 1098 * shuffle a page marked for immediate reclaim is too mild to 1099 * justify taking an atomic operation penalty at the end of 1100 * ever page writeback. 1101 */ 1102 if (PageReclaim(page)) { 1103 ClearPageReclaim(page); 1104 rotate_reclaimable_page(page); 1105 } 1106 1107 if (!test_clear_page_writeback(page)) 1108 BUG(); 1109 1110 smp_mb__after_atomic(); 1111 wake_up_page(page, PG_writeback); 1112 } 1113 EXPORT_SYMBOL(end_page_writeback); 1114 1115 /* 1116 * After completing I/O on a page, call this routine to update the page 1117 * flags appropriately 1118 */ 1119 void page_endio(struct page *page, bool is_write, int err) 1120 { 1121 if (!is_write) { 1122 if (!err) { 1123 SetPageUptodate(page); 1124 } else { 1125 ClearPageUptodate(page); 1126 SetPageError(page); 1127 } 1128 unlock_page(page); 1129 } else { 1130 if (err) { 1131 struct address_space *mapping; 1132 1133 SetPageError(page); 1134 mapping = page_mapping(page); 1135 if (mapping) 1136 mapping_set_error(mapping, err); 1137 } 1138 end_page_writeback(page); 1139 } 1140 } 1141 EXPORT_SYMBOL_GPL(page_endio); 1142 1143 /** 1144 * __lock_page - get a lock on the page, assuming we need to sleep to get it 1145 * @__page: the page to lock 1146 */ 1147 void __lock_page(struct page *__page) 1148 { 1149 struct page *page = compound_head(__page); 1150 wait_queue_head_t *q = page_waitqueue(page); 1151 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true); 1152 } 1153 EXPORT_SYMBOL(__lock_page); 1154 1155 int __lock_page_killable(struct page *__page) 1156 { 1157 struct page *page = compound_head(__page); 1158 wait_queue_head_t *q = page_waitqueue(page); 1159 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true); 1160 } 1161 EXPORT_SYMBOL_GPL(__lock_page_killable); 1162 1163 /* 1164 * Return values: 1165 * 1 - page is locked; mmap_sem is still held. 1166 * 0 - page is not locked. 1167 * mmap_sem has been released (up_read()), unless flags had both 1168 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1169 * which case mmap_sem is still held. 1170 * 1171 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 1172 * with the page locked and the mmap_sem unperturbed. 1173 */ 1174 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 1175 unsigned int flags) 1176 { 1177 if (flags & FAULT_FLAG_ALLOW_RETRY) { 1178 /* 1179 * CAUTION! In this case, mmap_sem is not released 1180 * even though return 0. 1181 */ 1182 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1183 return 0; 1184 1185 up_read(&mm->mmap_sem); 1186 if (flags & FAULT_FLAG_KILLABLE) 1187 wait_on_page_locked_killable(page); 1188 else 1189 wait_on_page_locked(page); 1190 return 0; 1191 } else { 1192 if (flags & FAULT_FLAG_KILLABLE) { 1193 int ret; 1194 1195 ret = __lock_page_killable(page); 1196 if (ret) { 1197 up_read(&mm->mmap_sem); 1198 return 0; 1199 } 1200 } else 1201 __lock_page(page); 1202 return 1; 1203 } 1204 } 1205 1206 /** 1207 * page_cache_next_hole - find the next hole (not-present entry) 1208 * @mapping: mapping 1209 * @index: index 1210 * @max_scan: maximum range to search 1211 * 1212 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 1213 * lowest indexed hole. 1214 * 1215 * Returns: the index of the hole if found, otherwise returns an index 1216 * outside of the set specified (in which case 'return - index >= 1217 * max_scan' will be true). In rare cases of index wrap-around, 0 will 1218 * be returned. 1219 * 1220 * page_cache_next_hole may be called under rcu_read_lock. However, 1221 * like radix_tree_gang_lookup, this will not atomically search a 1222 * snapshot of the tree at a single point in time. For example, if a 1223 * hole is created at index 5, then subsequently a hole is created at 1224 * index 10, page_cache_next_hole covering both indexes may return 10 1225 * if called under rcu_read_lock. 1226 */ 1227 pgoff_t page_cache_next_hole(struct address_space *mapping, 1228 pgoff_t index, unsigned long max_scan) 1229 { 1230 unsigned long i; 1231 1232 for (i = 0; i < max_scan; i++) { 1233 struct page *page; 1234 1235 page = radix_tree_lookup(&mapping->page_tree, index); 1236 if (!page || radix_tree_exceptional_entry(page)) 1237 break; 1238 index++; 1239 if (index == 0) 1240 break; 1241 } 1242 1243 return index; 1244 } 1245 EXPORT_SYMBOL(page_cache_next_hole); 1246 1247 /** 1248 * page_cache_prev_hole - find the prev hole (not-present entry) 1249 * @mapping: mapping 1250 * @index: index 1251 * @max_scan: maximum range to search 1252 * 1253 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1254 * the first hole. 1255 * 1256 * Returns: the index of the hole if found, otherwise returns an index 1257 * outside of the set specified (in which case 'index - return >= 1258 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1259 * will be returned. 1260 * 1261 * page_cache_prev_hole may be called under rcu_read_lock. However, 1262 * like radix_tree_gang_lookup, this will not atomically search a 1263 * snapshot of the tree at a single point in time. For example, if a 1264 * hole is created at index 10, then subsequently a hole is created at 1265 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1266 * called under rcu_read_lock. 1267 */ 1268 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1269 pgoff_t index, unsigned long max_scan) 1270 { 1271 unsigned long i; 1272 1273 for (i = 0; i < max_scan; i++) { 1274 struct page *page; 1275 1276 page = radix_tree_lookup(&mapping->page_tree, index); 1277 if (!page || radix_tree_exceptional_entry(page)) 1278 break; 1279 index--; 1280 if (index == ULONG_MAX) 1281 break; 1282 } 1283 1284 return index; 1285 } 1286 EXPORT_SYMBOL(page_cache_prev_hole); 1287 1288 /** 1289 * find_get_entry - find and get a page cache entry 1290 * @mapping: the address_space to search 1291 * @offset: the page cache index 1292 * 1293 * Looks up the page cache slot at @mapping & @offset. If there is a 1294 * page cache page, it is returned with an increased refcount. 1295 * 1296 * If the slot holds a shadow entry of a previously evicted page, or a 1297 * swap entry from shmem/tmpfs, it is returned. 1298 * 1299 * Otherwise, %NULL is returned. 1300 */ 1301 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1302 { 1303 void **pagep; 1304 struct page *head, *page; 1305 1306 rcu_read_lock(); 1307 repeat: 1308 page = NULL; 1309 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1310 if (pagep) { 1311 page = radix_tree_deref_slot(pagep); 1312 if (unlikely(!page)) 1313 goto out; 1314 if (radix_tree_exception(page)) { 1315 if (radix_tree_deref_retry(page)) 1316 goto repeat; 1317 /* 1318 * A shadow entry of a recently evicted page, 1319 * or a swap entry from shmem/tmpfs. Return 1320 * it without attempting to raise page count. 1321 */ 1322 goto out; 1323 } 1324 1325 head = compound_head(page); 1326 if (!page_cache_get_speculative(head)) 1327 goto repeat; 1328 1329 /* The page was split under us? */ 1330 if (compound_head(page) != head) { 1331 put_page(head); 1332 goto repeat; 1333 } 1334 1335 /* 1336 * Has the page moved? 1337 * This is part of the lockless pagecache protocol. See 1338 * include/linux/pagemap.h for details. 1339 */ 1340 if (unlikely(page != *pagep)) { 1341 put_page(head); 1342 goto repeat; 1343 } 1344 } 1345 out: 1346 rcu_read_unlock(); 1347 1348 return page; 1349 } 1350 EXPORT_SYMBOL(find_get_entry); 1351 1352 /** 1353 * find_lock_entry - locate, pin and lock a page cache entry 1354 * @mapping: the address_space to search 1355 * @offset: the page cache index 1356 * 1357 * Looks up the page cache slot at @mapping & @offset. If there is a 1358 * page cache page, it is returned locked and with an increased 1359 * refcount. 1360 * 1361 * If the slot holds a shadow entry of a previously evicted page, or a 1362 * swap entry from shmem/tmpfs, it is returned. 1363 * 1364 * Otherwise, %NULL is returned. 1365 * 1366 * find_lock_entry() may sleep. 1367 */ 1368 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1369 { 1370 struct page *page; 1371 1372 repeat: 1373 page = find_get_entry(mapping, offset); 1374 if (page && !radix_tree_exception(page)) { 1375 lock_page(page); 1376 /* Has the page been truncated? */ 1377 if (unlikely(page_mapping(page) != mapping)) { 1378 unlock_page(page); 1379 put_page(page); 1380 goto repeat; 1381 } 1382 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page); 1383 } 1384 return page; 1385 } 1386 EXPORT_SYMBOL(find_lock_entry); 1387 1388 /** 1389 * pagecache_get_page - find and get a page reference 1390 * @mapping: the address_space to search 1391 * @offset: the page index 1392 * @fgp_flags: PCG flags 1393 * @gfp_mask: gfp mask to use for the page cache data page allocation 1394 * 1395 * Looks up the page cache slot at @mapping & @offset. 1396 * 1397 * PCG flags modify how the page is returned. 1398 * 1399 * @fgp_flags can be: 1400 * 1401 * - FGP_ACCESSED: the page will be marked accessed 1402 * - FGP_LOCK: Page is return locked 1403 * - FGP_CREAT: If page is not present then a new page is allocated using 1404 * @gfp_mask and added to the page cache and the VM's LRU 1405 * list. The page is returned locked and with an increased 1406 * refcount. Otherwise, NULL is returned. 1407 * 1408 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1409 * if the GFP flags specified for FGP_CREAT are atomic. 1410 * 1411 * If there is a page cache page, it is returned with an increased refcount. 1412 */ 1413 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1414 int fgp_flags, gfp_t gfp_mask) 1415 { 1416 struct page *page; 1417 1418 repeat: 1419 page = find_get_entry(mapping, offset); 1420 if (radix_tree_exceptional_entry(page)) 1421 page = NULL; 1422 if (!page) 1423 goto no_page; 1424 1425 if (fgp_flags & FGP_LOCK) { 1426 if (fgp_flags & FGP_NOWAIT) { 1427 if (!trylock_page(page)) { 1428 put_page(page); 1429 return NULL; 1430 } 1431 } else { 1432 lock_page(page); 1433 } 1434 1435 /* Has the page been truncated? */ 1436 if (unlikely(page->mapping != mapping)) { 1437 unlock_page(page); 1438 put_page(page); 1439 goto repeat; 1440 } 1441 VM_BUG_ON_PAGE(page->index != offset, page); 1442 } 1443 1444 if (page && (fgp_flags & FGP_ACCESSED)) 1445 mark_page_accessed(page); 1446 1447 no_page: 1448 if (!page && (fgp_flags & FGP_CREAT)) { 1449 int err; 1450 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1451 gfp_mask |= __GFP_WRITE; 1452 if (fgp_flags & FGP_NOFS) 1453 gfp_mask &= ~__GFP_FS; 1454 1455 page = __page_cache_alloc(gfp_mask); 1456 if (!page) 1457 return NULL; 1458 1459 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1460 fgp_flags |= FGP_LOCK; 1461 1462 /* Init accessed so avoid atomic mark_page_accessed later */ 1463 if (fgp_flags & FGP_ACCESSED) 1464 __SetPageReferenced(page); 1465 1466 err = add_to_page_cache_lru(page, mapping, offset, 1467 gfp_mask & GFP_RECLAIM_MASK); 1468 if (unlikely(err)) { 1469 put_page(page); 1470 page = NULL; 1471 if (err == -EEXIST) 1472 goto repeat; 1473 } 1474 } 1475 1476 return page; 1477 } 1478 EXPORT_SYMBOL(pagecache_get_page); 1479 1480 /** 1481 * find_get_entries - gang pagecache lookup 1482 * @mapping: The address_space to search 1483 * @start: The starting page cache index 1484 * @nr_entries: The maximum number of entries 1485 * @entries: Where the resulting entries are placed 1486 * @indices: The cache indices corresponding to the entries in @entries 1487 * 1488 * find_get_entries() will search for and return a group of up to 1489 * @nr_entries entries in the mapping. The entries are placed at 1490 * @entries. find_get_entries() takes a reference against any actual 1491 * pages it returns. 1492 * 1493 * The search returns a group of mapping-contiguous page cache entries 1494 * with ascending indexes. There may be holes in the indices due to 1495 * not-present pages. 1496 * 1497 * Any shadow entries of evicted pages, or swap entries from 1498 * shmem/tmpfs, are included in the returned array. 1499 * 1500 * find_get_entries() returns the number of pages and shadow entries 1501 * which were found. 1502 */ 1503 unsigned find_get_entries(struct address_space *mapping, 1504 pgoff_t start, unsigned int nr_entries, 1505 struct page **entries, pgoff_t *indices) 1506 { 1507 void **slot; 1508 unsigned int ret = 0; 1509 struct radix_tree_iter iter; 1510 1511 if (!nr_entries) 1512 return 0; 1513 1514 rcu_read_lock(); 1515 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1516 struct page *head, *page; 1517 repeat: 1518 page = radix_tree_deref_slot(slot); 1519 if (unlikely(!page)) 1520 continue; 1521 if (radix_tree_exception(page)) { 1522 if (radix_tree_deref_retry(page)) { 1523 slot = radix_tree_iter_retry(&iter); 1524 continue; 1525 } 1526 /* 1527 * A shadow entry of a recently evicted page, a swap 1528 * entry from shmem/tmpfs or a DAX entry. Return it 1529 * without attempting to raise page count. 1530 */ 1531 goto export; 1532 } 1533 1534 head = compound_head(page); 1535 if (!page_cache_get_speculative(head)) 1536 goto repeat; 1537 1538 /* The page was split under us? */ 1539 if (compound_head(page) != head) { 1540 put_page(head); 1541 goto repeat; 1542 } 1543 1544 /* Has the page moved? */ 1545 if (unlikely(page != *slot)) { 1546 put_page(head); 1547 goto repeat; 1548 } 1549 export: 1550 indices[ret] = iter.index; 1551 entries[ret] = page; 1552 if (++ret == nr_entries) 1553 break; 1554 } 1555 rcu_read_unlock(); 1556 return ret; 1557 } 1558 1559 /** 1560 * find_get_pages - gang pagecache lookup 1561 * @mapping: The address_space to search 1562 * @start: The starting page index 1563 * @nr_pages: The maximum number of pages 1564 * @pages: Where the resulting pages are placed 1565 * 1566 * find_get_pages() will search for and return a group of up to 1567 * @nr_pages pages in the mapping. The pages are placed at @pages. 1568 * find_get_pages() takes a reference against the returned pages. 1569 * 1570 * The search returns a group of mapping-contiguous pages with ascending 1571 * indexes. There may be holes in the indices due to not-present pages. 1572 * 1573 * find_get_pages() returns the number of pages which were found. 1574 */ 1575 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1576 unsigned int nr_pages, struct page **pages) 1577 { 1578 struct radix_tree_iter iter; 1579 void **slot; 1580 unsigned ret = 0; 1581 1582 if (unlikely(!nr_pages)) 1583 return 0; 1584 1585 rcu_read_lock(); 1586 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1587 struct page *head, *page; 1588 repeat: 1589 page = radix_tree_deref_slot(slot); 1590 if (unlikely(!page)) 1591 continue; 1592 1593 if (radix_tree_exception(page)) { 1594 if (radix_tree_deref_retry(page)) { 1595 slot = radix_tree_iter_retry(&iter); 1596 continue; 1597 } 1598 /* 1599 * A shadow entry of a recently evicted page, 1600 * or a swap entry from shmem/tmpfs. Skip 1601 * over it. 1602 */ 1603 continue; 1604 } 1605 1606 head = compound_head(page); 1607 if (!page_cache_get_speculative(head)) 1608 goto repeat; 1609 1610 /* The page was split under us? */ 1611 if (compound_head(page) != head) { 1612 put_page(head); 1613 goto repeat; 1614 } 1615 1616 /* Has the page moved? */ 1617 if (unlikely(page != *slot)) { 1618 put_page(head); 1619 goto repeat; 1620 } 1621 1622 pages[ret] = page; 1623 if (++ret == nr_pages) 1624 break; 1625 } 1626 1627 rcu_read_unlock(); 1628 return ret; 1629 } 1630 1631 /** 1632 * find_get_pages_contig - gang contiguous pagecache lookup 1633 * @mapping: The address_space to search 1634 * @index: The starting page index 1635 * @nr_pages: The maximum number of pages 1636 * @pages: Where the resulting pages are placed 1637 * 1638 * find_get_pages_contig() works exactly like find_get_pages(), except 1639 * that the returned number of pages are guaranteed to be contiguous. 1640 * 1641 * find_get_pages_contig() returns the number of pages which were found. 1642 */ 1643 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1644 unsigned int nr_pages, struct page **pages) 1645 { 1646 struct radix_tree_iter iter; 1647 void **slot; 1648 unsigned int ret = 0; 1649 1650 if (unlikely(!nr_pages)) 1651 return 0; 1652 1653 rcu_read_lock(); 1654 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1655 struct page *head, *page; 1656 repeat: 1657 page = radix_tree_deref_slot(slot); 1658 /* The hole, there no reason to continue */ 1659 if (unlikely(!page)) 1660 break; 1661 1662 if (radix_tree_exception(page)) { 1663 if (radix_tree_deref_retry(page)) { 1664 slot = radix_tree_iter_retry(&iter); 1665 continue; 1666 } 1667 /* 1668 * A shadow entry of a recently evicted page, 1669 * or a swap entry from shmem/tmpfs. Stop 1670 * looking for contiguous pages. 1671 */ 1672 break; 1673 } 1674 1675 head = compound_head(page); 1676 if (!page_cache_get_speculative(head)) 1677 goto repeat; 1678 1679 /* The page was split under us? */ 1680 if (compound_head(page) != head) { 1681 put_page(head); 1682 goto repeat; 1683 } 1684 1685 /* Has the page moved? */ 1686 if (unlikely(page != *slot)) { 1687 put_page(head); 1688 goto repeat; 1689 } 1690 1691 /* 1692 * must check mapping and index after taking the ref. 1693 * otherwise we can get both false positives and false 1694 * negatives, which is just confusing to the caller. 1695 */ 1696 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) { 1697 put_page(page); 1698 break; 1699 } 1700 1701 pages[ret] = page; 1702 if (++ret == nr_pages) 1703 break; 1704 } 1705 rcu_read_unlock(); 1706 return ret; 1707 } 1708 EXPORT_SYMBOL(find_get_pages_contig); 1709 1710 /** 1711 * find_get_pages_tag - find and return pages that match @tag 1712 * @mapping: the address_space to search 1713 * @index: the starting page index 1714 * @tag: the tag index 1715 * @nr_pages: the maximum number of pages 1716 * @pages: where the resulting pages are placed 1717 * 1718 * Like find_get_pages, except we only return pages which are tagged with 1719 * @tag. We update @index to index the next page for the traversal. 1720 */ 1721 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1722 int tag, unsigned int nr_pages, struct page **pages) 1723 { 1724 struct radix_tree_iter iter; 1725 void **slot; 1726 unsigned ret = 0; 1727 1728 if (unlikely(!nr_pages)) 1729 return 0; 1730 1731 rcu_read_lock(); 1732 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1733 &iter, *index, tag) { 1734 struct page *head, *page; 1735 repeat: 1736 page = radix_tree_deref_slot(slot); 1737 if (unlikely(!page)) 1738 continue; 1739 1740 if (radix_tree_exception(page)) { 1741 if (radix_tree_deref_retry(page)) { 1742 slot = radix_tree_iter_retry(&iter); 1743 continue; 1744 } 1745 /* 1746 * A shadow entry of a recently evicted page. 1747 * 1748 * Those entries should never be tagged, but 1749 * this tree walk is lockless and the tags are 1750 * looked up in bulk, one radix tree node at a 1751 * time, so there is a sizable window for page 1752 * reclaim to evict a page we saw tagged. 1753 * 1754 * Skip over it. 1755 */ 1756 continue; 1757 } 1758 1759 head = compound_head(page); 1760 if (!page_cache_get_speculative(head)) 1761 goto repeat; 1762 1763 /* The page was split under us? */ 1764 if (compound_head(page) != head) { 1765 put_page(head); 1766 goto repeat; 1767 } 1768 1769 /* Has the page moved? */ 1770 if (unlikely(page != *slot)) { 1771 put_page(head); 1772 goto repeat; 1773 } 1774 1775 pages[ret] = page; 1776 if (++ret == nr_pages) 1777 break; 1778 } 1779 1780 rcu_read_unlock(); 1781 1782 if (ret) 1783 *index = pages[ret - 1]->index + 1; 1784 1785 return ret; 1786 } 1787 EXPORT_SYMBOL(find_get_pages_tag); 1788 1789 /** 1790 * find_get_entries_tag - find and return entries that match @tag 1791 * @mapping: the address_space to search 1792 * @start: the starting page cache index 1793 * @tag: the tag index 1794 * @nr_entries: the maximum number of entries 1795 * @entries: where the resulting entries are placed 1796 * @indices: the cache indices corresponding to the entries in @entries 1797 * 1798 * Like find_get_entries, except we only return entries which are tagged with 1799 * @tag. 1800 */ 1801 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1802 int tag, unsigned int nr_entries, 1803 struct page **entries, pgoff_t *indices) 1804 { 1805 void **slot; 1806 unsigned int ret = 0; 1807 struct radix_tree_iter iter; 1808 1809 if (!nr_entries) 1810 return 0; 1811 1812 rcu_read_lock(); 1813 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1814 &iter, start, tag) { 1815 struct page *head, *page; 1816 repeat: 1817 page = radix_tree_deref_slot(slot); 1818 if (unlikely(!page)) 1819 continue; 1820 if (radix_tree_exception(page)) { 1821 if (radix_tree_deref_retry(page)) { 1822 slot = radix_tree_iter_retry(&iter); 1823 continue; 1824 } 1825 1826 /* 1827 * A shadow entry of a recently evicted page, a swap 1828 * entry from shmem/tmpfs or a DAX entry. Return it 1829 * without attempting to raise page count. 1830 */ 1831 goto export; 1832 } 1833 1834 head = compound_head(page); 1835 if (!page_cache_get_speculative(head)) 1836 goto repeat; 1837 1838 /* The page was split under us? */ 1839 if (compound_head(page) != head) { 1840 put_page(head); 1841 goto repeat; 1842 } 1843 1844 /* Has the page moved? */ 1845 if (unlikely(page != *slot)) { 1846 put_page(head); 1847 goto repeat; 1848 } 1849 export: 1850 indices[ret] = iter.index; 1851 entries[ret] = page; 1852 if (++ret == nr_entries) 1853 break; 1854 } 1855 rcu_read_unlock(); 1856 return ret; 1857 } 1858 EXPORT_SYMBOL(find_get_entries_tag); 1859 1860 /* 1861 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1862 * a _large_ part of the i/o request. Imagine the worst scenario: 1863 * 1864 * ---R__________________________________________B__________ 1865 * ^ reading here ^ bad block(assume 4k) 1866 * 1867 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1868 * => failing the whole request => read(R) => read(R+1) => 1869 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1870 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1871 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1872 * 1873 * It is going insane. Fix it by quickly scaling down the readahead size. 1874 */ 1875 static void shrink_readahead_size_eio(struct file *filp, 1876 struct file_ra_state *ra) 1877 { 1878 ra->ra_pages /= 4; 1879 } 1880 1881 /** 1882 * do_generic_file_read - generic file read routine 1883 * @filp: the file to read 1884 * @ppos: current file position 1885 * @iter: data destination 1886 * @written: already copied 1887 * 1888 * This is a generic file read routine, and uses the 1889 * mapping->a_ops->readpage() function for the actual low-level stuff. 1890 * 1891 * This is really ugly. But the goto's actually try to clarify some 1892 * of the logic when it comes to error handling etc. 1893 */ 1894 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1895 struct iov_iter *iter, ssize_t written) 1896 { 1897 struct address_space *mapping = filp->f_mapping; 1898 struct inode *inode = mapping->host; 1899 struct file_ra_state *ra = &filp->f_ra; 1900 pgoff_t index; 1901 pgoff_t last_index; 1902 pgoff_t prev_index; 1903 unsigned long offset; /* offset into pagecache page */ 1904 unsigned int prev_offset; 1905 int error = 0; 1906 1907 if (unlikely(*ppos >= inode->i_sb->s_maxbytes)) 1908 return 0; 1909 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 1910 1911 index = *ppos >> PAGE_SHIFT; 1912 prev_index = ra->prev_pos >> PAGE_SHIFT; 1913 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1914 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1915 offset = *ppos & ~PAGE_MASK; 1916 1917 for (;;) { 1918 struct page *page; 1919 pgoff_t end_index; 1920 loff_t isize; 1921 unsigned long nr, ret; 1922 1923 cond_resched(); 1924 find_page: 1925 if (fatal_signal_pending(current)) { 1926 error = -EINTR; 1927 goto out; 1928 } 1929 1930 page = find_get_page(mapping, index); 1931 if (!page) { 1932 page_cache_sync_readahead(mapping, 1933 ra, filp, 1934 index, last_index - index); 1935 page = find_get_page(mapping, index); 1936 if (unlikely(page == NULL)) 1937 goto no_cached_page; 1938 } 1939 if (PageReadahead(page)) { 1940 page_cache_async_readahead(mapping, 1941 ra, filp, page, 1942 index, last_index - index); 1943 } 1944 if (!PageUptodate(page)) { 1945 /* 1946 * See comment in do_read_cache_page on why 1947 * wait_on_page_locked is used to avoid unnecessarily 1948 * serialisations and why it's safe. 1949 */ 1950 error = wait_on_page_locked_killable(page); 1951 if (unlikely(error)) 1952 goto readpage_error; 1953 if (PageUptodate(page)) 1954 goto page_ok; 1955 1956 if (inode->i_blkbits == PAGE_SHIFT || 1957 !mapping->a_ops->is_partially_uptodate) 1958 goto page_not_up_to_date; 1959 /* pipes can't handle partially uptodate pages */ 1960 if (unlikely(iter->type & ITER_PIPE)) 1961 goto page_not_up_to_date; 1962 if (!trylock_page(page)) 1963 goto page_not_up_to_date; 1964 /* Did it get truncated before we got the lock? */ 1965 if (!page->mapping) 1966 goto page_not_up_to_date_locked; 1967 if (!mapping->a_ops->is_partially_uptodate(page, 1968 offset, iter->count)) 1969 goto page_not_up_to_date_locked; 1970 unlock_page(page); 1971 } 1972 page_ok: 1973 /* 1974 * i_size must be checked after we know the page is Uptodate. 1975 * 1976 * Checking i_size after the check allows us to calculate 1977 * the correct value for "nr", which means the zero-filled 1978 * part of the page is not copied back to userspace (unless 1979 * another truncate extends the file - this is desired though). 1980 */ 1981 1982 isize = i_size_read(inode); 1983 end_index = (isize - 1) >> PAGE_SHIFT; 1984 if (unlikely(!isize || index > end_index)) { 1985 put_page(page); 1986 goto out; 1987 } 1988 1989 /* nr is the maximum number of bytes to copy from this page */ 1990 nr = PAGE_SIZE; 1991 if (index == end_index) { 1992 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1993 if (nr <= offset) { 1994 put_page(page); 1995 goto out; 1996 } 1997 } 1998 nr = nr - offset; 1999 2000 /* If users can be writing to this page using arbitrary 2001 * virtual addresses, take care about potential aliasing 2002 * before reading the page on the kernel side. 2003 */ 2004 if (mapping_writably_mapped(mapping)) 2005 flush_dcache_page(page); 2006 2007 /* 2008 * When a sequential read accesses a page several times, 2009 * only mark it as accessed the first time. 2010 */ 2011 if (prev_index != index || offset != prev_offset) 2012 mark_page_accessed(page); 2013 prev_index = index; 2014 2015 /* 2016 * Ok, we have the page, and it's up-to-date, so 2017 * now we can copy it to user space... 2018 */ 2019 2020 ret = copy_page_to_iter(page, offset, nr, iter); 2021 offset += ret; 2022 index += offset >> PAGE_SHIFT; 2023 offset &= ~PAGE_MASK; 2024 prev_offset = offset; 2025 2026 put_page(page); 2027 written += ret; 2028 if (!iov_iter_count(iter)) 2029 goto out; 2030 if (ret < nr) { 2031 error = -EFAULT; 2032 goto out; 2033 } 2034 continue; 2035 2036 page_not_up_to_date: 2037 /* Get exclusive access to the page ... */ 2038 error = lock_page_killable(page); 2039 if (unlikely(error)) 2040 goto readpage_error; 2041 2042 page_not_up_to_date_locked: 2043 /* Did it get truncated before we got the lock? */ 2044 if (!page->mapping) { 2045 unlock_page(page); 2046 put_page(page); 2047 continue; 2048 } 2049 2050 /* Did somebody else fill it already? */ 2051 if (PageUptodate(page)) { 2052 unlock_page(page); 2053 goto page_ok; 2054 } 2055 2056 readpage: 2057 /* 2058 * A previous I/O error may have been due to temporary 2059 * failures, eg. multipath errors. 2060 * PG_error will be set again if readpage fails. 2061 */ 2062 ClearPageError(page); 2063 /* Start the actual read. The read will unlock the page. */ 2064 error = mapping->a_ops->readpage(filp, page); 2065 2066 if (unlikely(error)) { 2067 if (error == AOP_TRUNCATED_PAGE) { 2068 put_page(page); 2069 error = 0; 2070 goto find_page; 2071 } 2072 goto readpage_error; 2073 } 2074 2075 if (!PageUptodate(page)) { 2076 error = lock_page_killable(page); 2077 if (unlikely(error)) 2078 goto readpage_error; 2079 if (!PageUptodate(page)) { 2080 if (page->mapping == NULL) { 2081 /* 2082 * invalidate_mapping_pages got it 2083 */ 2084 unlock_page(page); 2085 put_page(page); 2086 goto find_page; 2087 } 2088 unlock_page(page); 2089 shrink_readahead_size_eio(filp, ra); 2090 error = -EIO; 2091 goto readpage_error; 2092 } 2093 unlock_page(page); 2094 } 2095 2096 goto page_ok; 2097 2098 readpage_error: 2099 /* UHHUH! A synchronous read error occurred. Report it */ 2100 put_page(page); 2101 goto out; 2102 2103 no_cached_page: 2104 /* 2105 * Ok, it wasn't cached, so we need to create a new 2106 * page.. 2107 */ 2108 page = page_cache_alloc_cold(mapping); 2109 if (!page) { 2110 error = -ENOMEM; 2111 goto out; 2112 } 2113 error = add_to_page_cache_lru(page, mapping, index, 2114 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2115 if (error) { 2116 put_page(page); 2117 if (error == -EEXIST) { 2118 error = 0; 2119 goto find_page; 2120 } 2121 goto out; 2122 } 2123 goto readpage; 2124 } 2125 2126 out: 2127 ra->prev_pos = prev_index; 2128 ra->prev_pos <<= PAGE_SHIFT; 2129 ra->prev_pos |= prev_offset; 2130 2131 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 2132 file_accessed(filp); 2133 return written ? written : error; 2134 } 2135 2136 /** 2137 * generic_file_read_iter - generic filesystem read routine 2138 * @iocb: kernel I/O control block 2139 * @iter: destination for the data read 2140 * 2141 * This is the "read_iter()" routine for all filesystems 2142 * that can use the page cache directly. 2143 */ 2144 ssize_t 2145 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2146 { 2147 struct file *file = iocb->ki_filp; 2148 ssize_t retval = 0; 2149 size_t count = iov_iter_count(iter); 2150 2151 if (!count) 2152 goto out; /* skip atime */ 2153 2154 if (iocb->ki_flags & IOCB_DIRECT) { 2155 struct address_space *mapping = file->f_mapping; 2156 struct inode *inode = mapping->host; 2157 loff_t size; 2158 2159 size = i_size_read(inode); 2160 if (iocb->ki_flags & IOCB_NOWAIT) { 2161 if (filemap_range_has_page(mapping, iocb->ki_pos, 2162 iocb->ki_pos + count - 1)) 2163 return -EAGAIN; 2164 } else { 2165 retval = filemap_write_and_wait_range(mapping, 2166 iocb->ki_pos, 2167 iocb->ki_pos + count - 1); 2168 if (retval < 0) 2169 goto out; 2170 } 2171 2172 file_accessed(file); 2173 2174 retval = mapping->a_ops->direct_IO(iocb, iter); 2175 if (retval >= 0) { 2176 iocb->ki_pos += retval; 2177 count -= retval; 2178 } 2179 iov_iter_revert(iter, count - iov_iter_count(iter)); 2180 2181 /* 2182 * Btrfs can have a short DIO read if we encounter 2183 * compressed extents, so if there was an error, or if 2184 * we've already read everything we wanted to, or if 2185 * there was a short read because we hit EOF, go ahead 2186 * and return. Otherwise fallthrough to buffered io for 2187 * the rest of the read. Buffered reads will not work for 2188 * DAX files, so don't bother trying. 2189 */ 2190 if (retval < 0 || !count || iocb->ki_pos >= size || 2191 IS_DAX(inode)) 2192 goto out; 2193 } 2194 2195 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval); 2196 out: 2197 return retval; 2198 } 2199 EXPORT_SYMBOL(generic_file_read_iter); 2200 2201 #ifdef CONFIG_MMU 2202 /** 2203 * page_cache_read - adds requested page to the page cache if not already there 2204 * @file: file to read 2205 * @offset: page index 2206 * @gfp_mask: memory allocation flags 2207 * 2208 * This adds the requested page to the page cache if it isn't already there, 2209 * and schedules an I/O to read in its contents from disk. 2210 */ 2211 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 2212 { 2213 struct address_space *mapping = file->f_mapping; 2214 struct page *page; 2215 int ret; 2216 2217 do { 2218 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 2219 if (!page) 2220 return -ENOMEM; 2221 2222 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 2223 if (ret == 0) 2224 ret = mapping->a_ops->readpage(file, page); 2225 else if (ret == -EEXIST) 2226 ret = 0; /* losing race to add is OK */ 2227 2228 put_page(page); 2229 2230 } while (ret == AOP_TRUNCATED_PAGE); 2231 2232 return ret; 2233 } 2234 2235 #define MMAP_LOTSAMISS (100) 2236 2237 /* 2238 * Synchronous readahead happens when we don't even find 2239 * a page in the page cache at all. 2240 */ 2241 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 2242 struct file_ra_state *ra, 2243 struct file *file, 2244 pgoff_t offset) 2245 { 2246 struct address_space *mapping = file->f_mapping; 2247 2248 /* If we don't want any read-ahead, don't bother */ 2249 if (vma->vm_flags & VM_RAND_READ) 2250 return; 2251 if (!ra->ra_pages) 2252 return; 2253 2254 if (vma->vm_flags & VM_SEQ_READ) { 2255 page_cache_sync_readahead(mapping, ra, file, offset, 2256 ra->ra_pages); 2257 return; 2258 } 2259 2260 /* Avoid banging the cache line if not needed */ 2261 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 2262 ra->mmap_miss++; 2263 2264 /* 2265 * Do we miss much more than hit in this file? If so, 2266 * stop bothering with read-ahead. It will only hurt. 2267 */ 2268 if (ra->mmap_miss > MMAP_LOTSAMISS) 2269 return; 2270 2271 /* 2272 * mmap read-around 2273 */ 2274 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 2275 ra->size = ra->ra_pages; 2276 ra->async_size = ra->ra_pages / 4; 2277 ra_submit(ra, mapping, file); 2278 } 2279 2280 /* 2281 * Asynchronous readahead happens when we find the page and PG_readahead, 2282 * so we want to possibly extend the readahead further.. 2283 */ 2284 static void do_async_mmap_readahead(struct vm_area_struct *vma, 2285 struct file_ra_state *ra, 2286 struct file *file, 2287 struct page *page, 2288 pgoff_t offset) 2289 { 2290 struct address_space *mapping = file->f_mapping; 2291 2292 /* If we don't want any read-ahead, don't bother */ 2293 if (vma->vm_flags & VM_RAND_READ) 2294 return; 2295 if (ra->mmap_miss > 0) 2296 ra->mmap_miss--; 2297 if (PageReadahead(page)) 2298 page_cache_async_readahead(mapping, ra, file, 2299 page, offset, ra->ra_pages); 2300 } 2301 2302 /** 2303 * filemap_fault - read in file data for page fault handling 2304 * @vmf: struct vm_fault containing details of the fault 2305 * 2306 * filemap_fault() is invoked via the vma operations vector for a 2307 * mapped memory region to read in file data during a page fault. 2308 * 2309 * The goto's are kind of ugly, but this streamlines the normal case of having 2310 * it in the page cache, and handles the special cases reasonably without 2311 * having a lot of duplicated code. 2312 * 2313 * vma->vm_mm->mmap_sem must be held on entry. 2314 * 2315 * If our return value has VM_FAULT_RETRY set, it's because 2316 * lock_page_or_retry() returned 0. 2317 * The mmap_sem has usually been released in this case. 2318 * See __lock_page_or_retry() for the exception. 2319 * 2320 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2321 * has not been released. 2322 * 2323 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2324 */ 2325 int filemap_fault(struct vm_fault *vmf) 2326 { 2327 int error; 2328 struct file *file = vmf->vma->vm_file; 2329 struct address_space *mapping = file->f_mapping; 2330 struct file_ra_state *ra = &file->f_ra; 2331 struct inode *inode = mapping->host; 2332 pgoff_t offset = vmf->pgoff; 2333 pgoff_t max_off; 2334 struct page *page; 2335 int ret = 0; 2336 2337 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2338 if (unlikely(offset >= max_off)) 2339 return VM_FAULT_SIGBUS; 2340 2341 /* 2342 * Do we have something in the page cache already? 2343 */ 2344 page = find_get_page(mapping, offset); 2345 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2346 /* 2347 * We found the page, so try async readahead before 2348 * waiting for the lock. 2349 */ 2350 do_async_mmap_readahead(vmf->vma, ra, file, page, offset); 2351 } else if (!page) { 2352 /* No page in the page cache at all */ 2353 do_sync_mmap_readahead(vmf->vma, ra, file, offset); 2354 count_vm_event(PGMAJFAULT); 2355 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 2356 ret = VM_FAULT_MAJOR; 2357 retry_find: 2358 page = find_get_page(mapping, offset); 2359 if (!page) 2360 goto no_cached_page; 2361 } 2362 2363 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) { 2364 put_page(page); 2365 return ret | VM_FAULT_RETRY; 2366 } 2367 2368 /* Did it get truncated? */ 2369 if (unlikely(page->mapping != mapping)) { 2370 unlock_page(page); 2371 put_page(page); 2372 goto retry_find; 2373 } 2374 VM_BUG_ON_PAGE(page->index != offset, page); 2375 2376 /* 2377 * We have a locked page in the page cache, now we need to check 2378 * that it's up-to-date. If not, it is going to be due to an error. 2379 */ 2380 if (unlikely(!PageUptodate(page))) 2381 goto page_not_uptodate; 2382 2383 /* 2384 * Found the page and have a reference on it. 2385 * We must recheck i_size under page lock. 2386 */ 2387 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 2388 if (unlikely(offset >= max_off)) { 2389 unlock_page(page); 2390 put_page(page); 2391 return VM_FAULT_SIGBUS; 2392 } 2393 2394 vmf->page = page; 2395 return ret | VM_FAULT_LOCKED; 2396 2397 no_cached_page: 2398 /* 2399 * We're only likely to ever get here if MADV_RANDOM is in 2400 * effect. 2401 */ 2402 error = page_cache_read(file, offset, vmf->gfp_mask); 2403 2404 /* 2405 * The page we want has now been added to the page cache. 2406 * In the unlikely event that someone removed it in the 2407 * meantime, we'll just come back here and read it again. 2408 */ 2409 if (error >= 0) 2410 goto retry_find; 2411 2412 /* 2413 * An error return from page_cache_read can result if the 2414 * system is low on memory, or a problem occurs while trying 2415 * to schedule I/O. 2416 */ 2417 if (error == -ENOMEM) 2418 return VM_FAULT_OOM; 2419 return VM_FAULT_SIGBUS; 2420 2421 page_not_uptodate: 2422 /* 2423 * Umm, take care of errors if the page isn't up-to-date. 2424 * Try to re-read it _once_. We do this synchronously, 2425 * because there really aren't any performance issues here 2426 * and we need to check for errors. 2427 */ 2428 ClearPageError(page); 2429 error = mapping->a_ops->readpage(file, page); 2430 if (!error) { 2431 wait_on_page_locked(page); 2432 if (!PageUptodate(page)) 2433 error = -EIO; 2434 } 2435 put_page(page); 2436 2437 if (!error || error == AOP_TRUNCATED_PAGE) 2438 goto retry_find; 2439 2440 /* Things didn't work out. Return zero to tell the mm layer so. */ 2441 shrink_readahead_size_eio(file, ra); 2442 return VM_FAULT_SIGBUS; 2443 } 2444 EXPORT_SYMBOL(filemap_fault); 2445 2446 void filemap_map_pages(struct vm_fault *vmf, 2447 pgoff_t start_pgoff, pgoff_t end_pgoff) 2448 { 2449 struct radix_tree_iter iter; 2450 void **slot; 2451 struct file *file = vmf->vma->vm_file; 2452 struct address_space *mapping = file->f_mapping; 2453 pgoff_t last_pgoff = start_pgoff; 2454 unsigned long max_idx; 2455 struct page *head, *page; 2456 2457 rcu_read_lock(); 2458 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, 2459 start_pgoff) { 2460 if (iter.index > end_pgoff) 2461 break; 2462 repeat: 2463 page = radix_tree_deref_slot(slot); 2464 if (unlikely(!page)) 2465 goto next; 2466 if (radix_tree_exception(page)) { 2467 if (radix_tree_deref_retry(page)) { 2468 slot = radix_tree_iter_retry(&iter); 2469 continue; 2470 } 2471 goto next; 2472 } 2473 2474 head = compound_head(page); 2475 if (!page_cache_get_speculative(head)) 2476 goto repeat; 2477 2478 /* The page was split under us? */ 2479 if (compound_head(page) != head) { 2480 put_page(head); 2481 goto repeat; 2482 } 2483 2484 /* Has the page moved? */ 2485 if (unlikely(page != *slot)) { 2486 put_page(head); 2487 goto repeat; 2488 } 2489 2490 if (!PageUptodate(page) || 2491 PageReadahead(page) || 2492 PageHWPoison(page)) 2493 goto skip; 2494 if (!trylock_page(page)) 2495 goto skip; 2496 2497 if (page->mapping != mapping || !PageUptodate(page)) 2498 goto unlock; 2499 2500 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 2501 if (page->index >= max_idx) 2502 goto unlock; 2503 2504 if (file->f_ra.mmap_miss > 0) 2505 file->f_ra.mmap_miss--; 2506 2507 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT; 2508 if (vmf->pte) 2509 vmf->pte += iter.index - last_pgoff; 2510 last_pgoff = iter.index; 2511 if (alloc_set_pte(vmf, NULL, page)) 2512 goto unlock; 2513 unlock_page(page); 2514 goto next; 2515 unlock: 2516 unlock_page(page); 2517 skip: 2518 put_page(page); 2519 next: 2520 /* Huge page is mapped? No need to proceed. */ 2521 if (pmd_trans_huge(*vmf->pmd)) 2522 break; 2523 if (iter.index == end_pgoff) 2524 break; 2525 } 2526 rcu_read_unlock(); 2527 } 2528 EXPORT_SYMBOL(filemap_map_pages); 2529 2530 int filemap_page_mkwrite(struct vm_fault *vmf) 2531 { 2532 struct page *page = vmf->page; 2533 struct inode *inode = file_inode(vmf->vma->vm_file); 2534 int ret = VM_FAULT_LOCKED; 2535 2536 sb_start_pagefault(inode->i_sb); 2537 file_update_time(vmf->vma->vm_file); 2538 lock_page(page); 2539 if (page->mapping != inode->i_mapping) { 2540 unlock_page(page); 2541 ret = VM_FAULT_NOPAGE; 2542 goto out; 2543 } 2544 /* 2545 * We mark the page dirty already here so that when freeze is in 2546 * progress, we are guaranteed that writeback during freezing will 2547 * see the dirty page and writeprotect it again. 2548 */ 2549 set_page_dirty(page); 2550 wait_for_stable_page(page); 2551 out: 2552 sb_end_pagefault(inode->i_sb); 2553 return ret; 2554 } 2555 EXPORT_SYMBOL(filemap_page_mkwrite); 2556 2557 const struct vm_operations_struct generic_file_vm_ops = { 2558 .fault = filemap_fault, 2559 .map_pages = filemap_map_pages, 2560 .page_mkwrite = filemap_page_mkwrite, 2561 }; 2562 2563 /* This is used for a general mmap of a disk file */ 2564 2565 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2566 { 2567 struct address_space *mapping = file->f_mapping; 2568 2569 if (!mapping->a_ops->readpage) 2570 return -ENOEXEC; 2571 file_accessed(file); 2572 vma->vm_ops = &generic_file_vm_ops; 2573 return 0; 2574 } 2575 2576 /* 2577 * This is for filesystems which do not implement ->writepage. 2578 */ 2579 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2580 { 2581 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2582 return -EINVAL; 2583 return generic_file_mmap(file, vma); 2584 } 2585 #else 2586 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2587 { 2588 return -ENOSYS; 2589 } 2590 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2591 { 2592 return -ENOSYS; 2593 } 2594 #endif /* CONFIG_MMU */ 2595 2596 EXPORT_SYMBOL(generic_file_mmap); 2597 EXPORT_SYMBOL(generic_file_readonly_mmap); 2598 2599 static struct page *wait_on_page_read(struct page *page) 2600 { 2601 if (!IS_ERR(page)) { 2602 wait_on_page_locked(page); 2603 if (!PageUptodate(page)) { 2604 put_page(page); 2605 page = ERR_PTR(-EIO); 2606 } 2607 } 2608 return page; 2609 } 2610 2611 static struct page *do_read_cache_page(struct address_space *mapping, 2612 pgoff_t index, 2613 int (*filler)(void *, struct page *), 2614 void *data, 2615 gfp_t gfp) 2616 { 2617 struct page *page; 2618 int err; 2619 repeat: 2620 page = find_get_page(mapping, index); 2621 if (!page) { 2622 page = __page_cache_alloc(gfp | __GFP_COLD); 2623 if (!page) 2624 return ERR_PTR(-ENOMEM); 2625 err = add_to_page_cache_lru(page, mapping, index, gfp); 2626 if (unlikely(err)) { 2627 put_page(page); 2628 if (err == -EEXIST) 2629 goto repeat; 2630 /* Presumably ENOMEM for radix tree node */ 2631 return ERR_PTR(err); 2632 } 2633 2634 filler: 2635 err = filler(data, page); 2636 if (err < 0) { 2637 put_page(page); 2638 return ERR_PTR(err); 2639 } 2640 2641 page = wait_on_page_read(page); 2642 if (IS_ERR(page)) 2643 return page; 2644 goto out; 2645 } 2646 if (PageUptodate(page)) 2647 goto out; 2648 2649 /* 2650 * Page is not up to date and may be locked due one of the following 2651 * case a: Page is being filled and the page lock is held 2652 * case b: Read/write error clearing the page uptodate status 2653 * case c: Truncation in progress (page locked) 2654 * case d: Reclaim in progress 2655 * 2656 * Case a, the page will be up to date when the page is unlocked. 2657 * There is no need to serialise on the page lock here as the page 2658 * is pinned so the lock gives no additional protection. Even if the 2659 * the page is truncated, the data is still valid if PageUptodate as 2660 * it's a race vs truncate race. 2661 * Case b, the page will not be up to date 2662 * Case c, the page may be truncated but in itself, the data may still 2663 * be valid after IO completes as it's a read vs truncate race. The 2664 * operation must restart if the page is not uptodate on unlock but 2665 * otherwise serialising on page lock to stabilise the mapping gives 2666 * no additional guarantees to the caller as the page lock is 2667 * released before return. 2668 * Case d, similar to truncation. If reclaim holds the page lock, it 2669 * will be a race with remove_mapping that determines if the mapping 2670 * is valid on unlock but otherwise the data is valid and there is 2671 * no need to serialise with page lock. 2672 * 2673 * As the page lock gives no additional guarantee, we optimistically 2674 * wait on the page to be unlocked and check if it's up to date and 2675 * use the page if it is. Otherwise, the page lock is required to 2676 * distinguish between the different cases. The motivation is that we 2677 * avoid spurious serialisations and wakeups when multiple processes 2678 * wait on the same page for IO to complete. 2679 */ 2680 wait_on_page_locked(page); 2681 if (PageUptodate(page)) 2682 goto out; 2683 2684 /* Distinguish between all the cases under the safety of the lock */ 2685 lock_page(page); 2686 2687 /* Case c or d, restart the operation */ 2688 if (!page->mapping) { 2689 unlock_page(page); 2690 put_page(page); 2691 goto repeat; 2692 } 2693 2694 /* Someone else locked and filled the page in a very small window */ 2695 if (PageUptodate(page)) { 2696 unlock_page(page); 2697 goto out; 2698 } 2699 goto filler; 2700 2701 out: 2702 mark_page_accessed(page); 2703 return page; 2704 } 2705 2706 /** 2707 * read_cache_page - read into page cache, fill it if needed 2708 * @mapping: the page's address_space 2709 * @index: the page index 2710 * @filler: function to perform the read 2711 * @data: first arg to filler(data, page) function, often left as NULL 2712 * 2713 * Read into the page cache. If a page already exists, and PageUptodate() is 2714 * not set, try to fill the page and wait for it to become unlocked. 2715 * 2716 * If the page does not get brought uptodate, return -EIO. 2717 */ 2718 struct page *read_cache_page(struct address_space *mapping, 2719 pgoff_t index, 2720 int (*filler)(void *, struct page *), 2721 void *data) 2722 { 2723 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2724 } 2725 EXPORT_SYMBOL(read_cache_page); 2726 2727 /** 2728 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2729 * @mapping: the page's address_space 2730 * @index: the page index 2731 * @gfp: the page allocator flags to use if allocating 2732 * 2733 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2734 * any new page allocations done using the specified allocation flags. 2735 * 2736 * If the page does not get brought uptodate, return -EIO. 2737 */ 2738 struct page *read_cache_page_gfp(struct address_space *mapping, 2739 pgoff_t index, 2740 gfp_t gfp) 2741 { 2742 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2743 2744 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2745 } 2746 EXPORT_SYMBOL(read_cache_page_gfp); 2747 2748 /* 2749 * Performs necessary checks before doing a write 2750 * 2751 * Can adjust writing position or amount of bytes to write. 2752 * Returns appropriate error code that caller should return or 2753 * zero in case that write should be allowed. 2754 */ 2755 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2756 { 2757 struct file *file = iocb->ki_filp; 2758 struct inode *inode = file->f_mapping->host; 2759 unsigned long limit = rlimit(RLIMIT_FSIZE); 2760 loff_t pos; 2761 2762 if (!iov_iter_count(from)) 2763 return 0; 2764 2765 /* FIXME: this is for backwards compatibility with 2.4 */ 2766 if (iocb->ki_flags & IOCB_APPEND) 2767 iocb->ki_pos = i_size_read(inode); 2768 2769 pos = iocb->ki_pos; 2770 2771 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT)) 2772 return -EINVAL; 2773 2774 if (limit != RLIM_INFINITY) { 2775 if (iocb->ki_pos >= limit) { 2776 send_sig(SIGXFSZ, current, 0); 2777 return -EFBIG; 2778 } 2779 iov_iter_truncate(from, limit - (unsigned long)pos); 2780 } 2781 2782 /* 2783 * LFS rule 2784 */ 2785 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2786 !(file->f_flags & O_LARGEFILE))) { 2787 if (pos >= MAX_NON_LFS) 2788 return -EFBIG; 2789 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2790 } 2791 2792 /* 2793 * Are we about to exceed the fs block limit ? 2794 * 2795 * If we have written data it becomes a short write. If we have 2796 * exceeded without writing data we send a signal and return EFBIG. 2797 * Linus frestrict idea will clean these up nicely.. 2798 */ 2799 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2800 return -EFBIG; 2801 2802 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2803 return iov_iter_count(from); 2804 } 2805 EXPORT_SYMBOL(generic_write_checks); 2806 2807 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2808 loff_t pos, unsigned len, unsigned flags, 2809 struct page **pagep, void **fsdata) 2810 { 2811 const struct address_space_operations *aops = mapping->a_ops; 2812 2813 return aops->write_begin(file, mapping, pos, len, flags, 2814 pagep, fsdata); 2815 } 2816 EXPORT_SYMBOL(pagecache_write_begin); 2817 2818 int pagecache_write_end(struct file *file, struct address_space *mapping, 2819 loff_t pos, unsigned len, unsigned copied, 2820 struct page *page, void *fsdata) 2821 { 2822 const struct address_space_operations *aops = mapping->a_ops; 2823 2824 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2825 } 2826 EXPORT_SYMBOL(pagecache_write_end); 2827 2828 ssize_t 2829 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 2830 { 2831 struct file *file = iocb->ki_filp; 2832 struct address_space *mapping = file->f_mapping; 2833 struct inode *inode = mapping->host; 2834 loff_t pos = iocb->ki_pos; 2835 ssize_t written; 2836 size_t write_len; 2837 pgoff_t end; 2838 2839 write_len = iov_iter_count(from); 2840 end = (pos + write_len - 1) >> PAGE_SHIFT; 2841 2842 if (iocb->ki_flags & IOCB_NOWAIT) { 2843 /* If there are pages to writeback, return */ 2844 if (filemap_range_has_page(inode->i_mapping, pos, 2845 pos + iov_iter_count(from))) 2846 return -EAGAIN; 2847 } else { 2848 written = filemap_write_and_wait_range(mapping, pos, 2849 pos + write_len - 1); 2850 if (written) 2851 goto out; 2852 } 2853 2854 /* 2855 * After a write we want buffered reads to be sure to go to disk to get 2856 * the new data. We invalidate clean cached page from the region we're 2857 * about to write. We do this *before* the write so that we can return 2858 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2859 */ 2860 written = invalidate_inode_pages2_range(mapping, 2861 pos >> PAGE_SHIFT, end); 2862 /* 2863 * If a page can not be invalidated, return 0 to fall back 2864 * to buffered write. 2865 */ 2866 if (written) { 2867 if (written == -EBUSY) 2868 return 0; 2869 goto out; 2870 } 2871 2872 written = mapping->a_ops->direct_IO(iocb, from); 2873 2874 /* 2875 * Finally, try again to invalidate clean pages which might have been 2876 * cached by non-direct readahead, or faulted in by get_user_pages() 2877 * if the source of the write was an mmap'ed region of the file 2878 * we're writing. Either one is a pretty crazy thing to do, 2879 * so we don't support it 100%. If this invalidation 2880 * fails, tough, the write still worked... 2881 */ 2882 invalidate_inode_pages2_range(mapping, 2883 pos >> PAGE_SHIFT, end); 2884 2885 if (written > 0) { 2886 pos += written; 2887 write_len -= written; 2888 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2889 i_size_write(inode, pos); 2890 mark_inode_dirty(inode); 2891 } 2892 iocb->ki_pos = pos; 2893 } 2894 iov_iter_revert(from, write_len - iov_iter_count(from)); 2895 out: 2896 return written; 2897 } 2898 EXPORT_SYMBOL(generic_file_direct_write); 2899 2900 /* 2901 * Find or create a page at the given pagecache position. Return the locked 2902 * page. This function is specifically for buffered writes. 2903 */ 2904 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2905 pgoff_t index, unsigned flags) 2906 { 2907 struct page *page; 2908 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT; 2909 2910 if (flags & AOP_FLAG_NOFS) 2911 fgp_flags |= FGP_NOFS; 2912 2913 page = pagecache_get_page(mapping, index, fgp_flags, 2914 mapping_gfp_mask(mapping)); 2915 if (page) 2916 wait_for_stable_page(page); 2917 2918 return page; 2919 } 2920 EXPORT_SYMBOL(grab_cache_page_write_begin); 2921 2922 ssize_t generic_perform_write(struct file *file, 2923 struct iov_iter *i, loff_t pos) 2924 { 2925 struct address_space *mapping = file->f_mapping; 2926 const struct address_space_operations *a_ops = mapping->a_ops; 2927 long status = 0; 2928 ssize_t written = 0; 2929 unsigned int flags = 0; 2930 2931 do { 2932 struct page *page; 2933 unsigned long offset; /* Offset into pagecache page */ 2934 unsigned long bytes; /* Bytes to write to page */ 2935 size_t copied; /* Bytes copied from user */ 2936 void *fsdata; 2937 2938 offset = (pos & (PAGE_SIZE - 1)); 2939 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2940 iov_iter_count(i)); 2941 2942 again: 2943 /* 2944 * Bring in the user page that we will copy from _first_. 2945 * Otherwise there's a nasty deadlock on copying from the 2946 * same page as we're writing to, without it being marked 2947 * up-to-date. 2948 * 2949 * Not only is this an optimisation, but it is also required 2950 * to check that the address is actually valid, when atomic 2951 * usercopies are used, below. 2952 */ 2953 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2954 status = -EFAULT; 2955 break; 2956 } 2957 2958 if (fatal_signal_pending(current)) { 2959 status = -EINTR; 2960 break; 2961 } 2962 2963 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2964 &page, &fsdata); 2965 if (unlikely(status < 0)) 2966 break; 2967 2968 if (mapping_writably_mapped(mapping)) 2969 flush_dcache_page(page); 2970 2971 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2972 flush_dcache_page(page); 2973 2974 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2975 page, fsdata); 2976 if (unlikely(status < 0)) 2977 break; 2978 copied = status; 2979 2980 cond_resched(); 2981 2982 iov_iter_advance(i, copied); 2983 if (unlikely(copied == 0)) { 2984 /* 2985 * If we were unable to copy any data at all, we must 2986 * fall back to a single segment length write. 2987 * 2988 * If we didn't fallback here, we could livelock 2989 * because not all segments in the iov can be copied at 2990 * once without a pagefault. 2991 */ 2992 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2993 iov_iter_single_seg_count(i)); 2994 goto again; 2995 } 2996 pos += copied; 2997 written += copied; 2998 2999 balance_dirty_pages_ratelimited(mapping); 3000 } while (iov_iter_count(i)); 3001 3002 return written ? written : status; 3003 } 3004 EXPORT_SYMBOL(generic_perform_write); 3005 3006 /** 3007 * __generic_file_write_iter - write data to a file 3008 * @iocb: IO state structure (file, offset, etc.) 3009 * @from: iov_iter with data to write 3010 * 3011 * This function does all the work needed for actually writing data to a 3012 * file. It does all basic checks, removes SUID from the file, updates 3013 * modification times and calls proper subroutines depending on whether we 3014 * do direct IO or a standard buffered write. 3015 * 3016 * It expects i_mutex to be grabbed unless we work on a block device or similar 3017 * object which does not need locking at all. 3018 * 3019 * This function does *not* take care of syncing data in case of O_SYNC write. 3020 * A caller has to handle it. This is mainly due to the fact that we want to 3021 * avoid syncing under i_mutex. 3022 */ 3023 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3024 { 3025 struct file *file = iocb->ki_filp; 3026 struct address_space * mapping = file->f_mapping; 3027 struct inode *inode = mapping->host; 3028 ssize_t written = 0; 3029 ssize_t err; 3030 ssize_t status; 3031 3032 /* We can write back this queue in page reclaim */ 3033 current->backing_dev_info = inode_to_bdi(inode); 3034 err = file_remove_privs(file); 3035 if (err) 3036 goto out; 3037 3038 err = file_update_time(file); 3039 if (err) 3040 goto out; 3041 3042 if (iocb->ki_flags & IOCB_DIRECT) { 3043 loff_t pos, endbyte; 3044 3045 written = generic_file_direct_write(iocb, from); 3046 /* 3047 * If the write stopped short of completing, fall back to 3048 * buffered writes. Some filesystems do this for writes to 3049 * holes, for example. For DAX files, a buffered write will 3050 * not succeed (even if it did, DAX does not handle dirty 3051 * page-cache pages correctly). 3052 */ 3053 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3054 goto out; 3055 3056 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3057 /* 3058 * If generic_perform_write() returned a synchronous error 3059 * then we want to return the number of bytes which were 3060 * direct-written, or the error code if that was zero. Note 3061 * that this differs from normal direct-io semantics, which 3062 * will return -EFOO even if some bytes were written. 3063 */ 3064 if (unlikely(status < 0)) { 3065 err = status; 3066 goto out; 3067 } 3068 /* 3069 * We need to ensure that the page cache pages are written to 3070 * disk and invalidated to preserve the expected O_DIRECT 3071 * semantics. 3072 */ 3073 endbyte = pos + status - 1; 3074 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3075 if (err == 0) { 3076 iocb->ki_pos = endbyte + 1; 3077 written += status; 3078 invalidate_mapping_pages(mapping, 3079 pos >> PAGE_SHIFT, 3080 endbyte >> PAGE_SHIFT); 3081 } else { 3082 /* 3083 * We don't know how much we wrote, so just return 3084 * the number of bytes which were direct-written 3085 */ 3086 } 3087 } else { 3088 written = generic_perform_write(file, from, iocb->ki_pos); 3089 if (likely(written > 0)) 3090 iocb->ki_pos += written; 3091 } 3092 out: 3093 current->backing_dev_info = NULL; 3094 return written ? written : err; 3095 } 3096 EXPORT_SYMBOL(__generic_file_write_iter); 3097 3098 /** 3099 * generic_file_write_iter - write data to a file 3100 * @iocb: IO state structure 3101 * @from: iov_iter with data to write 3102 * 3103 * This is a wrapper around __generic_file_write_iter() to be used by most 3104 * filesystems. It takes care of syncing the file in case of O_SYNC file 3105 * and acquires i_mutex as needed. 3106 */ 3107 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3108 { 3109 struct file *file = iocb->ki_filp; 3110 struct inode *inode = file->f_mapping->host; 3111 ssize_t ret; 3112 3113 inode_lock(inode); 3114 ret = generic_write_checks(iocb, from); 3115 if (ret > 0) 3116 ret = __generic_file_write_iter(iocb, from); 3117 inode_unlock(inode); 3118 3119 if (ret > 0) 3120 ret = generic_write_sync(iocb, ret); 3121 return ret; 3122 } 3123 EXPORT_SYMBOL(generic_file_write_iter); 3124 3125 /** 3126 * try_to_release_page() - release old fs-specific metadata on a page 3127 * 3128 * @page: the page which the kernel is trying to free 3129 * @gfp_mask: memory allocation flags (and I/O mode) 3130 * 3131 * The address_space is to try to release any data against the page 3132 * (presumably at page->private). If the release was successful, return '1'. 3133 * Otherwise return zero. 3134 * 3135 * This may also be called if PG_fscache is set on a page, indicating that the 3136 * page is known to the local caching routines. 3137 * 3138 * The @gfp_mask argument specifies whether I/O may be performed to release 3139 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 3140 * 3141 */ 3142 int try_to_release_page(struct page *page, gfp_t gfp_mask) 3143 { 3144 struct address_space * const mapping = page->mapping; 3145 3146 BUG_ON(!PageLocked(page)); 3147 if (PageWriteback(page)) 3148 return 0; 3149 3150 if (mapping && mapping->a_ops->releasepage) 3151 return mapping->a_ops->releasepage(page, gfp_mask); 3152 return try_to_free_buffers(page); 3153 } 3154 3155 EXPORT_SYMBOL(try_to_release_page); 3156