xref: /linux/mm/filemap.c (revision 26b433d0da062d6e19d75350c0171d3cf8ff560d)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (shadowp)
134 			*shadowp = p;
135 	}
136 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
137 			     workingset_update_node, mapping);
138 	mapping->nrpages++;
139 	return 0;
140 }
141 
142 static void page_cache_tree_delete(struct address_space *mapping,
143 				   struct page *page, void *shadow)
144 {
145 	int i, nr;
146 
147 	/* hugetlb pages are represented by one entry in the radix tree */
148 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(PageTail(page), page);
152 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153 
154 	for (i = 0; i < nr; i++) {
155 		struct radix_tree_node *node;
156 		void **slot;
157 
158 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
159 				    &node, &slot);
160 
161 		VM_BUG_ON_PAGE(!node && nr != 1, page);
162 
163 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 				     workingset_update_node, mapping);
166 	}
167 
168 	if (shadow) {
169 		mapping->nrexceptional += nr;
170 		/*
171 		 * Make sure the nrexceptional update is committed before
172 		 * the nrpages update so that final truncate racing
173 		 * with reclaim does not see both counters 0 at the
174 		 * same time and miss a shadow entry.
175 		 */
176 		smp_wmb();
177 	}
178 	mapping->nrpages -= nr;
179 }
180 
181 /*
182  * Delete a page from the page cache and free it. Caller has to make
183  * sure the page is locked and that nobody else uses it - or that usage
184  * is safe.  The caller must hold the mapping's tree_lock.
185  */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 	struct address_space *mapping = page->mapping;
189 	int nr = hpage_nr_pages(page);
190 
191 	trace_mm_filemap_delete_from_page_cache(page);
192 	/*
193 	 * if we're uptodate, flush out into the cleancache, otherwise
194 	 * invalidate any existing cleancache entries.  We can't leave
195 	 * stale data around in the cleancache once our page is gone
196 	 */
197 	if (PageUptodate(page) && PageMappedToDisk(page))
198 		cleancache_put_page(page);
199 	else
200 		cleancache_invalidate_page(mapping, page);
201 
202 	VM_BUG_ON_PAGE(PageTail(page), page);
203 	VM_BUG_ON_PAGE(page_mapped(page), page);
204 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 		int mapcount;
206 
207 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
208 			 current->comm, page_to_pfn(page));
209 		dump_page(page, "still mapped when deleted");
210 		dump_stack();
211 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212 
213 		mapcount = page_mapcount(page);
214 		if (mapping_exiting(mapping) &&
215 		    page_count(page) >= mapcount + 2) {
216 			/*
217 			 * All vmas have already been torn down, so it's
218 			 * a good bet that actually the page is unmapped,
219 			 * and we'd prefer not to leak it: if we're wrong,
220 			 * some other bad page check should catch it later.
221 			 */
222 			page_mapcount_reset(page);
223 			page_ref_sub(page, mapcount);
224 		}
225 	}
226 
227 	page_cache_tree_delete(mapping, page, shadow);
228 
229 	page->mapping = NULL;
230 	/* Leave page->index set: truncation lookup relies upon it */
231 
232 	/* hugetlb pages do not participate in page cache accounting. */
233 	if (PageHuge(page))
234 		return;
235 
236 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 	if (PageSwapBacked(page)) {
238 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 		if (PageTransHuge(page))
240 			__dec_node_page_state(page, NR_SHMEM_THPS);
241 	} else {
242 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 	}
244 
245 	/*
246 	 * At this point page must be either written or cleaned by truncate.
247 	 * Dirty page here signals a bug and loss of unwritten data.
248 	 *
249 	 * This fixes dirty accounting after removing the page entirely but
250 	 * leaves PageDirty set: it has no effect for truncated page and
251 	 * anyway will be cleared before returning page into buddy allocator.
252 	 */
253 	if (WARN_ON_ONCE(PageDirty(page)))
254 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256 
257 /**
258  * delete_from_page_cache - delete page from page cache
259  * @page: the page which the kernel is trying to remove from page cache
260  *
261  * This must be called only on pages that have been verified to be in the page
262  * cache and locked.  It will never put the page into the free list, the caller
263  * has a reference on the page.
264  */
265 void delete_from_page_cache(struct page *page)
266 {
267 	struct address_space *mapping = page_mapping(page);
268 	unsigned long flags;
269 	void (*freepage)(struct page *);
270 
271 	BUG_ON(!PageLocked(page));
272 
273 	freepage = mapping->a_ops->freepage;
274 
275 	spin_lock_irqsave(&mapping->tree_lock, flags);
276 	__delete_from_page_cache(page, NULL);
277 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
278 
279 	if (freepage)
280 		freepage(page);
281 
282 	if (PageTransHuge(page) && !PageHuge(page)) {
283 		page_ref_sub(page, HPAGE_PMD_NR);
284 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 	} else {
286 		put_page(page);
287 	}
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290 
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 	int ret = 0;
294 	/* Check for outstanding write errors */
295 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 		ret = -ENOSPC;
298 	if (test_bit(AS_EIO, &mapping->flags) &&
299 	    test_and_clear_bit(AS_EIO, &mapping->flags))
300 		ret = -EIO;
301 	return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304 
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 	/* Check for outstanding write errors */
308 	if (test_bit(AS_EIO, &mapping->flags))
309 		return -EIO;
310 	if (test_bit(AS_ENOSPC, &mapping->flags))
311 		return -ENOSPC;
312 	return 0;
313 }
314 
315 /**
316  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317  * @mapping:	address space structure to write
318  * @start:	offset in bytes where the range starts
319  * @end:	offset in bytes where the range ends (inclusive)
320  * @sync_mode:	enable synchronous operation
321  *
322  * Start writeback against all of a mapping's dirty pages that lie
323  * within the byte offsets <start, end> inclusive.
324  *
325  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326  * opposed to a regular memory cleansing writeback.  The difference between
327  * these two operations is that if a dirty page/buffer is encountered, it must
328  * be waited upon, and not just skipped over.
329  */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 				loff_t end, int sync_mode)
332 {
333 	int ret;
334 	struct writeback_control wbc = {
335 		.sync_mode = sync_mode,
336 		.nr_to_write = LONG_MAX,
337 		.range_start = start,
338 		.range_end = end,
339 	};
340 
341 	if (!mapping_cap_writeback_dirty(mapping))
342 		return 0;
343 
344 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 	ret = do_writepages(mapping, &wbc);
346 	wbc_detach_inode(&wbc);
347 	return ret;
348 }
349 
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 	int sync_mode)
352 {
353 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355 
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361 
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 				loff_t end)
364 {
365 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368 
369 /**
370  * filemap_flush - mostly a non-blocking flush
371  * @mapping:	target address_space
372  *
373  * This is a mostly non-blocking flush.  Not suitable for data-integrity
374  * purposes - I/O may not be started against all dirty pages.
375  */
376 int filemap_flush(struct address_space *mapping)
377 {
378 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381 
382 /**
383  * filemap_range_has_page - check if a page exists in range.
384  * @mapping:           address space within which to check
385  * @start_byte:        offset in bytes where the range starts
386  * @end_byte:          offset in bytes where the range ends (inclusive)
387  *
388  * Find at least one page in the range supplied, usually used to check if
389  * direct writing in this range will trigger a writeback.
390  */
391 bool filemap_range_has_page(struct address_space *mapping,
392 			   loff_t start_byte, loff_t end_byte)
393 {
394 	pgoff_t index = start_byte >> PAGE_SHIFT;
395 	pgoff_t end = end_byte >> PAGE_SHIFT;
396 	struct pagevec pvec;
397 	bool ret;
398 
399 	if (end_byte < start_byte)
400 		return false;
401 
402 	if (mapping->nrpages == 0)
403 		return false;
404 
405 	pagevec_init(&pvec, 0);
406 	if (!pagevec_lookup(&pvec, mapping, index, 1))
407 		return false;
408 	ret = (pvec.pages[0]->index <= end);
409 	pagevec_release(&pvec);
410 	return ret;
411 }
412 EXPORT_SYMBOL(filemap_range_has_page);
413 
414 static void __filemap_fdatawait_range(struct address_space *mapping,
415 				     loff_t start_byte, loff_t end_byte)
416 {
417 	pgoff_t index = start_byte >> PAGE_SHIFT;
418 	pgoff_t end = end_byte >> PAGE_SHIFT;
419 	struct pagevec pvec;
420 	int nr_pages;
421 
422 	if (end_byte < start_byte)
423 		return;
424 
425 	pagevec_init(&pvec, 0);
426 	while ((index <= end) &&
427 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
428 			PAGECACHE_TAG_WRITEBACK,
429 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
430 		unsigned i;
431 
432 		for (i = 0; i < nr_pages; i++) {
433 			struct page *page = pvec.pages[i];
434 
435 			/* until radix tree lookup accepts end_index */
436 			if (page->index > end)
437 				continue;
438 
439 			wait_on_page_writeback(page);
440 			ClearPageError(page);
441 		}
442 		pagevec_release(&pvec);
443 		cond_resched();
444 	}
445 }
446 
447 /**
448  * filemap_fdatawait_range - wait for writeback to complete
449  * @mapping:		address space structure to wait for
450  * @start_byte:		offset in bytes where the range starts
451  * @end_byte:		offset in bytes where the range ends (inclusive)
452  *
453  * Walk the list of under-writeback pages of the given address space
454  * in the given range and wait for all of them.  Check error status of
455  * the address space and return it.
456  *
457  * Since the error status of the address space is cleared by this function,
458  * callers are responsible for checking the return value and handling and/or
459  * reporting the error.
460  */
461 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
462 			    loff_t end_byte)
463 {
464 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
465 	return filemap_check_errors(mapping);
466 }
467 EXPORT_SYMBOL(filemap_fdatawait_range);
468 
469 /**
470  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
471  * @mapping: address space structure to wait for
472  *
473  * Walk the list of under-writeback pages of the given address space
474  * and wait for all of them.  Unlike filemap_fdatawait(), this function
475  * does not clear error status of the address space.
476  *
477  * Use this function if callers don't handle errors themselves.  Expected
478  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
479  * fsfreeze(8)
480  */
481 int filemap_fdatawait_keep_errors(struct address_space *mapping)
482 {
483 	loff_t i_size = i_size_read(mapping->host);
484 
485 	if (i_size == 0)
486 		return 0;
487 
488 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
489 	return filemap_check_and_keep_errors(mapping);
490 }
491 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
492 
493 /**
494  * filemap_fdatawait - wait for all under-writeback pages to complete
495  * @mapping: address space structure to wait for
496  *
497  * Walk the list of under-writeback pages of the given address space
498  * and wait for all of them.  Check error status of the address space
499  * and return it.
500  *
501  * Since the error status of the address space is cleared by this function,
502  * callers are responsible for checking the return value and handling and/or
503  * reporting the error.
504  */
505 int filemap_fdatawait(struct address_space *mapping)
506 {
507 	loff_t i_size = i_size_read(mapping->host);
508 
509 	if (i_size == 0)
510 		return 0;
511 
512 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
513 }
514 EXPORT_SYMBOL(filemap_fdatawait);
515 
516 int filemap_write_and_wait(struct address_space *mapping)
517 {
518 	int err = 0;
519 
520 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
521 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
522 		err = filemap_fdatawrite(mapping);
523 		/*
524 		 * Even if the above returned error, the pages may be
525 		 * written partially (e.g. -ENOSPC), so we wait for it.
526 		 * But the -EIO is special case, it may indicate the worst
527 		 * thing (e.g. bug) happened, so we avoid waiting for it.
528 		 */
529 		if (err != -EIO) {
530 			int err2 = filemap_fdatawait(mapping);
531 			if (!err)
532 				err = err2;
533 		} else {
534 			/* Clear any previously stored errors */
535 			filemap_check_errors(mapping);
536 		}
537 	} else {
538 		err = filemap_check_errors(mapping);
539 	}
540 	return err;
541 }
542 EXPORT_SYMBOL(filemap_write_and_wait);
543 
544 /**
545  * filemap_write_and_wait_range - write out & wait on a file range
546  * @mapping:	the address_space for the pages
547  * @lstart:	offset in bytes where the range starts
548  * @lend:	offset in bytes where the range ends (inclusive)
549  *
550  * Write out and wait upon file offsets lstart->lend, inclusive.
551  *
552  * Note that @lend is inclusive (describes the last byte to be written) so
553  * that this function can be used to write to the very end-of-file (end = -1).
554  */
555 int filemap_write_and_wait_range(struct address_space *mapping,
556 				 loff_t lstart, loff_t lend)
557 {
558 	int err = 0;
559 
560 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
561 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
562 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
563 						 WB_SYNC_ALL);
564 		/* See comment of filemap_write_and_wait() */
565 		if (err != -EIO) {
566 			int err2 = filemap_fdatawait_range(mapping,
567 						lstart, lend);
568 			if (!err)
569 				err = err2;
570 		} else {
571 			/* Clear any previously stored errors */
572 			filemap_check_errors(mapping);
573 		}
574 	} else {
575 		err = filemap_check_errors(mapping);
576 	}
577 	return err;
578 }
579 EXPORT_SYMBOL(filemap_write_and_wait_range);
580 
581 void __filemap_set_wb_err(struct address_space *mapping, int err)
582 {
583 	errseq_t eseq = __errseq_set(&mapping->wb_err, err);
584 
585 	trace_filemap_set_wb_err(mapping, eseq);
586 }
587 EXPORT_SYMBOL(__filemap_set_wb_err);
588 
589 /**
590  * file_check_and_advance_wb_err - report wb error (if any) that was previously
591  * 				   and advance wb_err to current one
592  * @file: struct file on which the error is being reported
593  *
594  * When userland calls fsync (or something like nfsd does the equivalent), we
595  * want to report any writeback errors that occurred since the last fsync (or
596  * since the file was opened if there haven't been any).
597  *
598  * Grab the wb_err from the mapping. If it matches what we have in the file,
599  * then just quickly return 0. The file is all caught up.
600  *
601  * If it doesn't match, then take the mapping value, set the "seen" flag in
602  * it and try to swap it into place. If it works, or another task beat us
603  * to it with the new value, then update the f_wb_err and return the error
604  * portion. The error at this point must be reported via proper channels
605  * (a'la fsync, or NFS COMMIT operation, etc.).
606  *
607  * While we handle mapping->wb_err with atomic operations, the f_wb_err
608  * value is protected by the f_lock since we must ensure that it reflects
609  * the latest value swapped in for this file descriptor.
610  */
611 int file_check_and_advance_wb_err(struct file *file)
612 {
613 	int err = 0;
614 	errseq_t old = READ_ONCE(file->f_wb_err);
615 	struct address_space *mapping = file->f_mapping;
616 
617 	/* Locklessly handle the common case where nothing has changed */
618 	if (errseq_check(&mapping->wb_err, old)) {
619 		/* Something changed, must use slow path */
620 		spin_lock(&file->f_lock);
621 		old = file->f_wb_err;
622 		err = errseq_check_and_advance(&mapping->wb_err,
623 						&file->f_wb_err);
624 		trace_file_check_and_advance_wb_err(file, old);
625 		spin_unlock(&file->f_lock);
626 	}
627 	return err;
628 }
629 EXPORT_SYMBOL(file_check_and_advance_wb_err);
630 
631 /**
632  * file_write_and_wait_range - write out & wait on a file range
633  * @file:	file pointing to address_space with pages
634  * @lstart:	offset in bytes where the range starts
635  * @lend:	offset in bytes where the range ends (inclusive)
636  *
637  * Write out and wait upon file offsets lstart->lend, inclusive.
638  *
639  * Note that @lend is inclusive (describes the last byte to be written) so
640  * that this function can be used to write to the very end-of-file (end = -1).
641  *
642  * After writing out and waiting on the data, we check and advance the
643  * f_wb_err cursor to the latest value, and return any errors detected there.
644  */
645 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
646 {
647 	int err = 0, err2;
648 	struct address_space *mapping = file->f_mapping;
649 
650 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
651 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
652 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
653 						 WB_SYNC_ALL);
654 		/* See comment of filemap_write_and_wait() */
655 		if (err != -EIO)
656 			__filemap_fdatawait_range(mapping, lstart, lend);
657 	}
658 	err2 = file_check_and_advance_wb_err(file);
659 	if (!err)
660 		err = err2;
661 	return err;
662 }
663 EXPORT_SYMBOL(file_write_and_wait_range);
664 
665 /**
666  * replace_page_cache_page - replace a pagecache page with a new one
667  * @old:	page to be replaced
668  * @new:	page to replace with
669  * @gfp_mask:	allocation mode
670  *
671  * This function replaces a page in the pagecache with a new one.  On
672  * success it acquires the pagecache reference for the new page and
673  * drops it for the old page.  Both the old and new pages must be
674  * locked.  This function does not add the new page to the LRU, the
675  * caller must do that.
676  *
677  * The remove + add is atomic.  The only way this function can fail is
678  * memory allocation failure.
679  */
680 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
681 {
682 	int error;
683 
684 	VM_BUG_ON_PAGE(!PageLocked(old), old);
685 	VM_BUG_ON_PAGE(!PageLocked(new), new);
686 	VM_BUG_ON_PAGE(new->mapping, new);
687 
688 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
689 	if (!error) {
690 		struct address_space *mapping = old->mapping;
691 		void (*freepage)(struct page *);
692 		unsigned long flags;
693 
694 		pgoff_t offset = old->index;
695 		freepage = mapping->a_ops->freepage;
696 
697 		get_page(new);
698 		new->mapping = mapping;
699 		new->index = offset;
700 
701 		spin_lock_irqsave(&mapping->tree_lock, flags);
702 		__delete_from_page_cache(old, NULL);
703 		error = page_cache_tree_insert(mapping, new, NULL);
704 		BUG_ON(error);
705 
706 		/*
707 		 * hugetlb pages do not participate in page cache accounting.
708 		 */
709 		if (!PageHuge(new))
710 			__inc_node_page_state(new, NR_FILE_PAGES);
711 		if (PageSwapBacked(new))
712 			__inc_node_page_state(new, NR_SHMEM);
713 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
714 		mem_cgroup_migrate(old, new);
715 		radix_tree_preload_end();
716 		if (freepage)
717 			freepage(old);
718 		put_page(old);
719 	}
720 
721 	return error;
722 }
723 EXPORT_SYMBOL_GPL(replace_page_cache_page);
724 
725 static int __add_to_page_cache_locked(struct page *page,
726 				      struct address_space *mapping,
727 				      pgoff_t offset, gfp_t gfp_mask,
728 				      void **shadowp)
729 {
730 	int huge = PageHuge(page);
731 	struct mem_cgroup *memcg;
732 	int error;
733 
734 	VM_BUG_ON_PAGE(!PageLocked(page), page);
735 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
736 
737 	if (!huge) {
738 		error = mem_cgroup_try_charge(page, current->mm,
739 					      gfp_mask, &memcg, false);
740 		if (error)
741 			return error;
742 	}
743 
744 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
745 	if (error) {
746 		if (!huge)
747 			mem_cgroup_cancel_charge(page, memcg, false);
748 		return error;
749 	}
750 
751 	get_page(page);
752 	page->mapping = mapping;
753 	page->index = offset;
754 
755 	spin_lock_irq(&mapping->tree_lock);
756 	error = page_cache_tree_insert(mapping, page, shadowp);
757 	radix_tree_preload_end();
758 	if (unlikely(error))
759 		goto err_insert;
760 
761 	/* hugetlb pages do not participate in page cache accounting. */
762 	if (!huge)
763 		__inc_node_page_state(page, NR_FILE_PAGES);
764 	spin_unlock_irq(&mapping->tree_lock);
765 	if (!huge)
766 		mem_cgroup_commit_charge(page, memcg, false, false);
767 	trace_mm_filemap_add_to_page_cache(page);
768 	return 0;
769 err_insert:
770 	page->mapping = NULL;
771 	/* Leave page->index set: truncation relies upon it */
772 	spin_unlock_irq(&mapping->tree_lock);
773 	if (!huge)
774 		mem_cgroup_cancel_charge(page, memcg, false);
775 	put_page(page);
776 	return error;
777 }
778 
779 /**
780  * add_to_page_cache_locked - add a locked page to the pagecache
781  * @page:	page to add
782  * @mapping:	the page's address_space
783  * @offset:	page index
784  * @gfp_mask:	page allocation mode
785  *
786  * This function is used to add a page to the pagecache. It must be locked.
787  * This function does not add the page to the LRU.  The caller must do that.
788  */
789 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
790 		pgoff_t offset, gfp_t gfp_mask)
791 {
792 	return __add_to_page_cache_locked(page, mapping, offset,
793 					  gfp_mask, NULL);
794 }
795 EXPORT_SYMBOL(add_to_page_cache_locked);
796 
797 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
798 				pgoff_t offset, gfp_t gfp_mask)
799 {
800 	void *shadow = NULL;
801 	int ret;
802 
803 	__SetPageLocked(page);
804 	ret = __add_to_page_cache_locked(page, mapping, offset,
805 					 gfp_mask, &shadow);
806 	if (unlikely(ret))
807 		__ClearPageLocked(page);
808 	else {
809 		/*
810 		 * The page might have been evicted from cache only
811 		 * recently, in which case it should be activated like
812 		 * any other repeatedly accessed page.
813 		 * The exception is pages getting rewritten; evicting other
814 		 * data from the working set, only to cache data that will
815 		 * get overwritten with something else, is a waste of memory.
816 		 */
817 		if (!(gfp_mask & __GFP_WRITE) &&
818 		    shadow && workingset_refault(shadow)) {
819 			SetPageActive(page);
820 			workingset_activation(page);
821 		} else
822 			ClearPageActive(page);
823 		lru_cache_add(page);
824 	}
825 	return ret;
826 }
827 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
828 
829 #ifdef CONFIG_NUMA
830 struct page *__page_cache_alloc(gfp_t gfp)
831 {
832 	int n;
833 	struct page *page;
834 
835 	if (cpuset_do_page_mem_spread()) {
836 		unsigned int cpuset_mems_cookie;
837 		do {
838 			cpuset_mems_cookie = read_mems_allowed_begin();
839 			n = cpuset_mem_spread_node();
840 			page = __alloc_pages_node(n, gfp, 0);
841 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
842 
843 		return page;
844 	}
845 	return alloc_pages(gfp, 0);
846 }
847 EXPORT_SYMBOL(__page_cache_alloc);
848 #endif
849 
850 /*
851  * In order to wait for pages to become available there must be
852  * waitqueues associated with pages. By using a hash table of
853  * waitqueues where the bucket discipline is to maintain all
854  * waiters on the same queue and wake all when any of the pages
855  * become available, and for the woken contexts to check to be
856  * sure the appropriate page became available, this saves space
857  * at a cost of "thundering herd" phenomena during rare hash
858  * collisions.
859  */
860 #define PAGE_WAIT_TABLE_BITS 8
861 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
862 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
863 
864 static wait_queue_head_t *page_waitqueue(struct page *page)
865 {
866 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
867 }
868 
869 void __init pagecache_init(void)
870 {
871 	int i;
872 
873 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
874 		init_waitqueue_head(&page_wait_table[i]);
875 
876 	page_writeback_init();
877 }
878 
879 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
880 struct wait_page_key {
881 	struct page *page;
882 	int bit_nr;
883 	int page_match;
884 };
885 
886 struct wait_page_queue {
887 	struct page *page;
888 	int bit_nr;
889 	wait_queue_entry_t wait;
890 };
891 
892 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
893 {
894 	struct wait_page_key *key = arg;
895 	struct wait_page_queue *wait_page
896 		= container_of(wait, struct wait_page_queue, wait);
897 
898 	if (wait_page->page != key->page)
899 	       return 0;
900 	key->page_match = 1;
901 
902 	if (wait_page->bit_nr != key->bit_nr)
903 		return 0;
904 
905 	/* Stop walking if it's locked */
906 	if (test_bit(key->bit_nr, &key->page->flags))
907 		return -1;
908 
909 	return autoremove_wake_function(wait, mode, sync, key);
910 }
911 
912 static void wake_up_page_bit(struct page *page, int bit_nr)
913 {
914 	wait_queue_head_t *q = page_waitqueue(page);
915 	struct wait_page_key key;
916 	unsigned long flags;
917 
918 	key.page = page;
919 	key.bit_nr = bit_nr;
920 	key.page_match = 0;
921 
922 	spin_lock_irqsave(&q->lock, flags);
923 	__wake_up_locked_key(q, TASK_NORMAL, &key);
924 	/*
925 	 * It is possible for other pages to have collided on the waitqueue
926 	 * hash, so in that case check for a page match. That prevents a long-
927 	 * term waiter
928 	 *
929 	 * It is still possible to miss a case here, when we woke page waiters
930 	 * and removed them from the waitqueue, but there are still other
931 	 * page waiters.
932 	 */
933 	if (!waitqueue_active(q) || !key.page_match) {
934 		ClearPageWaiters(page);
935 		/*
936 		 * It's possible to miss clearing Waiters here, when we woke
937 		 * our page waiters, but the hashed waitqueue has waiters for
938 		 * other pages on it.
939 		 *
940 		 * That's okay, it's a rare case. The next waker will clear it.
941 		 */
942 	}
943 	spin_unlock_irqrestore(&q->lock, flags);
944 }
945 
946 static void wake_up_page(struct page *page, int bit)
947 {
948 	if (!PageWaiters(page))
949 		return;
950 	wake_up_page_bit(page, bit);
951 }
952 
953 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
954 		struct page *page, int bit_nr, int state, bool lock)
955 {
956 	struct wait_page_queue wait_page;
957 	wait_queue_entry_t *wait = &wait_page.wait;
958 	int ret = 0;
959 
960 	init_wait(wait);
961 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
962 	wait->func = wake_page_function;
963 	wait_page.page = page;
964 	wait_page.bit_nr = bit_nr;
965 
966 	for (;;) {
967 		spin_lock_irq(&q->lock);
968 
969 		if (likely(list_empty(&wait->entry))) {
970 			__add_wait_queue_entry_tail(q, wait);
971 			SetPageWaiters(page);
972 		}
973 
974 		set_current_state(state);
975 
976 		spin_unlock_irq(&q->lock);
977 
978 		if (likely(test_bit(bit_nr, &page->flags))) {
979 			io_schedule();
980 		}
981 
982 		if (lock) {
983 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
984 				break;
985 		} else {
986 			if (!test_bit(bit_nr, &page->flags))
987 				break;
988 		}
989 
990 		if (unlikely(signal_pending_state(state, current))) {
991 			ret = -EINTR;
992 			break;
993 		}
994 	}
995 
996 	finish_wait(q, wait);
997 
998 	/*
999 	 * A signal could leave PageWaiters set. Clearing it here if
1000 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1001 	 * but still fail to catch it in the case of wait hash collision. We
1002 	 * already can fail to clear wait hash collision cases, so don't
1003 	 * bother with signals either.
1004 	 */
1005 
1006 	return ret;
1007 }
1008 
1009 void wait_on_page_bit(struct page *page, int bit_nr)
1010 {
1011 	wait_queue_head_t *q = page_waitqueue(page);
1012 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1013 }
1014 EXPORT_SYMBOL(wait_on_page_bit);
1015 
1016 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1017 {
1018 	wait_queue_head_t *q = page_waitqueue(page);
1019 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1020 }
1021 
1022 /**
1023  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1024  * @page: Page defining the wait queue of interest
1025  * @waiter: Waiter to add to the queue
1026  *
1027  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1028  */
1029 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1030 {
1031 	wait_queue_head_t *q = page_waitqueue(page);
1032 	unsigned long flags;
1033 
1034 	spin_lock_irqsave(&q->lock, flags);
1035 	__add_wait_queue_entry_tail(q, waiter);
1036 	SetPageWaiters(page);
1037 	spin_unlock_irqrestore(&q->lock, flags);
1038 }
1039 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1040 
1041 #ifndef clear_bit_unlock_is_negative_byte
1042 
1043 /*
1044  * PG_waiters is the high bit in the same byte as PG_lock.
1045  *
1046  * On x86 (and on many other architectures), we can clear PG_lock and
1047  * test the sign bit at the same time. But if the architecture does
1048  * not support that special operation, we just do this all by hand
1049  * instead.
1050  *
1051  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1052  * being cleared, but a memory barrier should be unneccssary since it is
1053  * in the same byte as PG_locked.
1054  */
1055 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1056 {
1057 	clear_bit_unlock(nr, mem);
1058 	/* smp_mb__after_atomic(); */
1059 	return test_bit(PG_waiters, mem);
1060 }
1061 
1062 #endif
1063 
1064 /**
1065  * unlock_page - unlock a locked page
1066  * @page: the page
1067  *
1068  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1069  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1070  * mechanism between PageLocked pages and PageWriteback pages is shared.
1071  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1072  *
1073  * Note that this depends on PG_waiters being the sign bit in the byte
1074  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1075  * clear the PG_locked bit and test PG_waiters at the same time fairly
1076  * portably (architectures that do LL/SC can test any bit, while x86 can
1077  * test the sign bit).
1078  */
1079 void unlock_page(struct page *page)
1080 {
1081 	BUILD_BUG_ON(PG_waiters != 7);
1082 	page = compound_head(page);
1083 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1084 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1085 		wake_up_page_bit(page, PG_locked);
1086 }
1087 EXPORT_SYMBOL(unlock_page);
1088 
1089 /**
1090  * end_page_writeback - end writeback against a page
1091  * @page: the page
1092  */
1093 void end_page_writeback(struct page *page)
1094 {
1095 	/*
1096 	 * TestClearPageReclaim could be used here but it is an atomic
1097 	 * operation and overkill in this particular case. Failing to
1098 	 * shuffle a page marked for immediate reclaim is too mild to
1099 	 * justify taking an atomic operation penalty at the end of
1100 	 * ever page writeback.
1101 	 */
1102 	if (PageReclaim(page)) {
1103 		ClearPageReclaim(page);
1104 		rotate_reclaimable_page(page);
1105 	}
1106 
1107 	if (!test_clear_page_writeback(page))
1108 		BUG();
1109 
1110 	smp_mb__after_atomic();
1111 	wake_up_page(page, PG_writeback);
1112 }
1113 EXPORT_SYMBOL(end_page_writeback);
1114 
1115 /*
1116  * After completing I/O on a page, call this routine to update the page
1117  * flags appropriately
1118  */
1119 void page_endio(struct page *page, bool is_write, int err)
1120 {
1121 	if (!is_write) {
1122 		if (!err) {
1123 			SetPageUptodate(page);
1124 		} else {
1125 			ClearPageUptodate(page);
1126 			SetPageError(page);
1127 		}
1128 		unlock_page(page);
1129 	} else {
1130 		if (err) {
1131 			struct address_space *mapping;
1132 
1133 			SetPageError(page);
1134 			mapping = page_mapping(page);
1135 			if (mapping)
1136 				mapping_set_error(mapping, err);
1137 		}
1138 		end_page_writeback(page);
1139 	}
1140 }
1141 EXPORT_SYMBOL_GPL(page_endio);
1142 
1143 /**
1144  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1145  * @__page: the page to lock
1146  */
1147 void __lock_page(struct page *__page)
1148 {
1149 	struct page *page = compound_head(__page);
1150 	wait_queue_head_t *q = page_waitqueue(page);
1151 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1152 }
1153 EXPORT_SYMBOL(__lock_page);
1154 
1155 int __lock_page_killable(struct page *__page)
1156 {
1157 	struct page *page = compound_head(__page);
1158 	wait_queue_head_t *q = page_waitqueue(page);
1159 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1160 }
1161 EXPORT_SYMBOL_GPL(__lock_page_killable);
1162 
1163 /*
1164  * Return values:
1165  * 1 - page is locked; mmap_sem is still held.
1166  * 0 - page is not locked.
1167  *     mmap_sem has been released (up_read()), unless flags had both
1168  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1169  *     which case mmap_sem is still held.
1170  *
1171  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1172  * with the page locked and the mmap_sem unperturbed.
1173  */
1174 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1175 			 unsigned int flags)
1176 {
1177 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1178 		/*
1179 		 * CAUTION! In this case, mmap_sem is not released
1180 		 * even though return 0.
1181 		 */
1182 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1183 			return 0;
1184 
1185 		up_read(&mm->mmap_sem);
1186 		if (flags & FAULT_FLAG_KILLABLE)
1187 			wait_on_page_locked_killable(page);
1188 		else
1189 			wait_on_page_locked(page);
1190 		return 0;
1191 	} else {
1192 		if (flags & FAULT_FLAG_KILLABLE) {
1193 			int ret;
1194 
1195 			ret = __lock_page_killable(page);
1196 			if (ret) {
1197 				up_read(&mm->mmap_sem);
1198 				return 0;
1199 			}
1200 		} else
1201 			__lock_page(page);
1202 		return 1;
1203 	}
1204 }
1205 
1206 /**
1207  * page_cache_next_hole - find the next hole (not-present entry)
1208  * @mapping: mapping
1209  * @index: index
1210  * @max_scan: maximum range to search
1211  *
1212  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1213  * lowest indexed hole.
1214  *
1215  * Returns: the index of the hole if found, otherwise returns an index
1216  * outside of the set specified (in which case 'return - index >=
1217  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1218  * be returned.
1219  *
1220  * page_cache_next_hole may be called under rcu_read_lock. However,
1221  * like radix_tree_gang_lookup, this will not atomically search a
1222  * snapshot of the tree at a single point in time. For example, if a
1223  * hole is created at index 5, then subsequently a hole is created at
1224  * index 10, page_cache_next_hole covering both indexes may return 10
1225  * if called under rcu_read_lock.
1226  */
1227 pgoff_t page_cache_next_hole(struct address_space *mapping,
1228 			     pgoff_t index, unsigned long max_scan)
1229 {
1230 	unsigned long i;
1231 
1232 	for (i = 0; i < max_scan; i++) {
1233 		struct page *page;
1234 
1235 		page = radix_tree_lookup(&mapping->page_tree, index);
1236 		if (!page || radix_tree_exceptional_entry(page))
1237 			break;
1238 		index++;
1239 		if (index == 0)
1240 			break;
1241 	}
1242 
1243 	return index;
1244 }
1245 EXPORT_SYMBOL(page_cache_next_hole);
1246 
1247 /**
1248  * page_cache_prev_hole - find the prev hole (not-present entry)
1249  * @mapping: mapping
1250  * @index: index
1251  * @max_scan: maximum range to search
1252  *
1253  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1254  * the first hole.
1255  *
1256  * Returns: the index of the hole if found, otherwise returns an index
1257  * outside of the set specified (in which case 'index - return >=
1258  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1259  * will be returned.
1260  *
1261  * page_cache_prev_hole may be called under rcu_read_lock. However,
1262  * like radix_tree_gang_lookup, this will not atomically search a
1263  * snapshot of the tree at a single point in time. For example, if a
1264  * hole is created at index 10, then subsequently a hole is created at
1265  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1266  * called under rcu_read_lock.
1267  */
1268 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1269 			     pgoff_t index, unsigned long max_scan)
1270 {
1271 	unsigned long i;
1272 
1273 	for (i = 0; i < max_scan; i++) {
1274 		struct page *page;
1275 
1276 		page = radix_tree_lookup(&mapping->page_tree, index);
1277 		if (!page || radix_tree_exceptional_entry(page))
1278 			break;
1279 		index--;
1280 		if (index == ULONG_MAX)
1281 			break;
1282 	}
1283 
1284 	return index;
1285 }
1286 EXPORT_SYMBOL(page_cache_prev_hole);
1287 
1288 /**
1289  * find_get_entry - find and get a page cache entry
1290  * @mapping: the address_space to search
1291  * @offset: the page cache index
1292  *
1293  * Looks up the page cache slot at @mapping & @offset.  If there is a
1294  * page cache page, it is returned with an increased refcount.
1295  *
1296  * If the slot holds a shadow entry of a previously evicted page, or a
1297  * swap entry from shmem/tmpfs, it is returned.
1298  *
1299  * Otherwise, %NULL is returned.
1300  */
1301 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1302 {
1303 	void **pagep;
1304 	struct page *head, *page;
1305 
1306 	rcu_read_lock();
1307 repeat:
1308 	page = NULL;
1309 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1310 	if (pagep) {
1311 		page = radix_tree_deref_slot(pagep);
1312 		if (unlikely(!page))
1313 			goto out;
1314 		if (radix_tree_exception(page)) {
1315 			if (radix_tree_deref_retry(page))
1316 				goto repeat;
1317 			/*
1318 			 * A shadow entry of a recently evicted page,
1319 			 * or a swap entry from shmem/tmpfs.  Return
1320 			 * it without attempting to raise page count.
1321 			 */
1322 			goto out;
1323 		}
1324 
1325 		head = compound_head(page);
1326 		if (!page_cache_get_speculative(head))
1327 			goto repeat;
1328 
1329 		/* The page was split under us? */
1330 		if (compound_head(page) != head) {
1331 			put_page(head);
1332 			goto repeat;
1333 		}
1334 
1335 		/*
1336 		 * Has the page moved?
1337 		 * This is part of the lockless pagecache protocol. See
1338 		 * include/linux/pagemap.h for details.
1339 		 */
1340 		if (unlikely(page != *pagep)) {
1341 			put_page(head);
1342 			goto repeat;
1343 		}
1344 	}
1345 out:
1346 	rcu_read_unlock();
1347 
1348 	return page;
1349 }
1350 EXPORT_SYMBOL(find_get_entry);
1351 
1352 /**
1353  * find_lock_entry - locate, pin and lock a page cache entry
1354  * @mapping: the address_space to search
1355  * @offset: the page cache index
1356  *
1357  * Looks up the page cache slot at @mapping & @offset.  If there is a
1358  * page cache page, it is returned locked and with an increased
1359  * refcount.
1360  *
1361  * If the slot holds a shadow entry of a previously evicted page, or a
1362  * swap entry from shmem/tmpfs, it is returned.
1363  *
1364  * Otherwise, %NULL is returned.
1365  *
1366  * find_lock_entry() may sleep.
1367  */
1368 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1369 {
1370 	struct page *page;
1371 
1372 repeat:
1373 	page = find_get_entry(mapping, offset);
1374 	if (page && !radix_tree_exception(page)) {
1375 		lock_page(page);
1376 		/* Has the page been truncated? */
1377 		if (unlikely(page_mapping(page) != mapping)) {
1378 			unlock_page(page);
1379 			put_page(page);
1380 			goto repeat;
1381 		}
1382 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1383 	}
1384 	return page;
1385 }
1386 EXPORT_SYMBOL(find_lock_entry);
1387 
1388 /**
1389  * pagecache_get_page - find and get a page reference
1390  * @mapping: the address_space to search
1391  * @offset: the page index
1392  * @fgp_flags: PCG flags
1393  * @gfp_mask: gfp mask to use for the page cache data page allocation
1394  *
1395  * Looks up the page cache slot at @mapping & @offset.
1396  *
1397  * PCG flags modify how the page is returned.
1398  *
1399  * @fgp_flags can be:
1400  *
1401  * - FGP_ACCESSED: the page will be marked accessed
1402  * - FGP_LOCK: Page is return locked
1403  * - FGP_CREAT: If page is not present then a new page is allocated using
1404  *   @gfp_mask and added to the page cache and the VM's LRU
1405  *   list. The page is returned locked and with an increased
1406  *   refcount. Otherwise, NULL is returned.
1407  *
1408  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1409  * if the GFP flags specified for FGP_CREAT are atomic.
1410  *
1411  * If there is a page cache page, it is returned with an increased refcount.
1412  */
1413 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1414 	int fgp_flags, gfp_t gfp_mask)
1415 {
1416 	struct page *page;
1417 
1418 repeat:
1419 	page = find_get_entry(mapping, offset);
1420 	if (radix_tree_exceptional_entry(page))
1421 		page = NULL;
1422 	if (!page)
1423 		goto no_page;
1424 
1425 	if (fgp_flags & FGP_LOCK) {
1426 		if (fgp_flags & FGP_NOWAIT) {
1427 			if (!trylock_page(page)) {
1428 				put_page(page);
1429 				return NULL;
1430 			}
1431 		} else {
1432 			lock_page(page);
1433 		}
1434 
1435 		/* Has the page been truncated? */
1436 		if (unlikely(page->mapping != mapping)) {
1437 			unlock_page(page);
1438 			put_page(page);
1439 			goto repeat;
1440 		}
1441 		VM_BUG_ON_PAGE(page->index != offset, page);
1442 	}
1443 
1444 	if (page && (fgp_flags & FGP_ACCESSED))
1445 		mark_page_accessed(page);
1446 
1447 no_page:
1448 	if (!page && (fgp_flags & FGP_CREAT)) {
1449 		int err;
1450 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1451 			gfp_mask |= __GFP_WRITE;
1452 		if (fgp_flags & FGP_NOFS)
1453 			gfp_mask &= ~__GFP_FS;
1454 
1455 		page = __page_cache_alloc(gfp_mask);
1456 		if (!page)
1457 			return NULL;
1458 
1459 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1460 			fgp_flags |= FGP_LOCK;
1461 
1462 		/* Init accessed so avoid atomic mark_page_accessed later */
1463 		if (fgp_flags & FGP_ACCESSED)
1464 			__SetPageReferenced(page);
1465 
1466 		err = add_to_page_cache_lru(page, mapping, offset,
1467 				gfp_mask & GFP_RECLAIM_MASK);
1468 		if (unlikely(err)) {
1469 			put_page(page);
1470 			page = NULL;
1471 			if (err == -EEXIST)
1472 				goto repeat;
1473 		}
1474 	}
1475 
1476 	return page;
1477 }
1478 EXPORT_SYMBOL(pagecache_get_page);
1479 
1480 /**
1481  * find_get_entries - gang pagecache lookup
1482  * @mapping:	The address_space to search
1483  * @start:	The starting page cache index
1484  * @nr_entries:	The maximum number of entries
1485  * @entries:	Where the resulting entries are placed
1486  * @indices:	The cache indices corresponding to the entries in @entries
1487  *
1488  * find_get_entries() will search for and return a group of up to
1489  * @nr_entries entries in the mapping.  The entries are placed at
1490  * @entries.  find_get_entries() takes a reference against any actual
1491  * pages it returns.
1492  *
1493  * The search returns a group of mapping-contiguous page cache entries
1494  * with ascending indexes.  There may be holes in the indices due to
1495  * not-present pages.
1496  *
1497  * Any shadow entries of evicted pages, or swap entries from
1498  * shmem/tmpfs, are included in the returned array.
1499  *
1500  * find_get_entries() returns the number of pages and shadow entries
1501  * which were found.
1502  */
1503 unsigned find_get_entries(struct address_space *mapping,
1504 			  pgoff_t start, unsigned int nr_entries,
1505 			  struct page **entries, pgoff_t *indices)
1506 {
1507 	void **slot;
1508 	unsigned int ret = 0;
1509 	struct radix_tree_iter iter;
1510 
1511 	if (!nr_entries)
1512 		return 0;
1513 
1514 	rcu_read_lock();
1515 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1516 		struct page *head, *page;
1517 repeat:
1518 		page = radix_tree_deref_slot(slot);
1519 		if (unlikely(!page))
1520 			continue;
1521 		if (radix_tree_exception(page)) {
1522 			if (radix_tree_deref_retry(page)) {
1523 				slot = radix_tree_iter_retry(&iter);
1524 				continue;
1525 			}
1526 			/*
1527 			 * A shadow entry of a recently evicted page, a swap
1528 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1529 			 * without attempting to raise page count.
1530 			 */
1531 			goto export;
1532 		}
1533 
1534 		head = compound_head(page);
1535 		if (!page_cache_get_speculative(head))
1536 			goto repeat;
1537 
1538 		/* The page was split under us? */
1539 		if (compound_head(page) != head) {
1540 			put_page(head);
1541 			goto repeat;
1542 		}
1543 
1544 		/* Has the page moved? */
1545 		if (unlikely(page != *slot)) {
1546 			put_page(head);
1547 			goto repeat;
1548 		}
1549 export:
1550 		indices[ret] = iter.index;
1551 		entries[ret] = page;
1552 		if (++ret == nr_entries)
1553 			break;
1554 	}
1555 	rcu_read_unlock();
1556 	return ret;
1557 }
1558 
1559 /**
1560  * find_get_pages - gang pagecache lookup
1561  * @mapping:	The address_space to search
1562  * @start:	The starting page index
1563  * @nr_pages:	The maximum number of pages
1564  * @pages:	Where the resulting pages are placed
1565  *
1566  * find_get_pages() will search for and return a group of up to
1567  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1568  * find_get_pages() takes a reference against the returned pages.
1569  *
1570  * The search returns a group of mapping-contiguous pages with ascending
1571  * indexes.  There may be holes in the indices due to not-present pages.
1572  *
1573  * find_get_pages() returns the number of pages which were found.
1574  */
1575 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1576 			    unsigned int nr_pages, struct page **pages)
1577 {
1578 	struct radix_tree_iter iter;
1579 	void **slot;
1580 	unsigned ret = 0;
1581 
1582 	if (unlikely(!nr_pages))
1583 		return 0;
1584 
1585 	rcu_read_lock();
1586 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1587 		struct page *head, *page;
1588 repeat:
1589 		page = radix_tree_deref_slot(slot);
1590 		if (unlikely(!page))
1591 			continue;
1592 
1593 		if (radix_tree_exception(page)) {
1594 			if (radix_tree_deref_retry(page)) {
1595 				slot = radix_tree_iter_retry(&iter);
1596 				continue;
1597 			}
1598 			/*
1599 			 * A shadow entry of a recently evicted page,
1600 			 * or a swap entry from shmem/tmpfs.  Skip
1601 			 * over it.
1602 			 */
1603 			continue;
1604 		}
1605 
1606 		head = compound_head(page);
1607 		if (!page_cache_get_speculative(head))
1608 			goto repeat;
1609 
1610 		/* The page was split under us? */
1611 		if (compound_head(page) != head) {
1612 			put_page(head);
1613 			goto repeat;
1614 		}
1615 
1616 		/* Has the page moved? */
1617 		if (unlikely(page != *slot)) {
1618 			put_page(head);
1619 			goto repeat;
1620 		}
1621 
1622 		pages[ret] = page;
1623 		if (++ret == nr_pages)
1624 			break;
1625 	}
1626 
1627 	rcu_read_unlock();
1628 	return ret;
1629 }
1630 
1631 /**
1632  * find_get_pages_contig - gang contiguous pagecache lookup
1633  * @mapping:	The address_space to search
1634  * @index:	The starting page index
1635  * @nr_pages:	The maximum number of pages
1636  * @pages:	Where the resulting pages are placed
1637  *
1638  * find_get_pages_contig() works exactly like find_get_pages(), except
1639  * that the returned number of pages are guaranteed to be contiguous.
1640  *
1641  * find_get_pages_contig() returns the number of pages which were found.
1642  */
1643 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1644 			       unsigned int nr_pages, struct page **pages)
1645 {
1646 	struct radix_tree_iter iter;
1647 	void **slot;
1648 	unsigned int ret = 0;
1649 
1650 	if (unlikely(!nr_pages))
1651 		return 0;
1652 
1653 	rcu_read_lock();
1654 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1655 		struct page *head, *page;
1656 repeat:
1657 		page = radix_tree_deref_slot(slot);
1658 		/* The hole, there no reason to continue */
1659 		if (unlikely(!page))
1660 			break;
1661 
1662 		if (radix_tree_exception(page)) {
1663 			if (radix_tree_deref_retry(page)) {
1664 				slot = radix_tree_iter_retry(&iter);
1665 				continue;
1666 			}
1667 			/*
1668 			 * A shadow entry of a recently evicted page,
1669 			 * or a swap entry from shmem/tmpfs.  Stop
1670 			 * looking for contiguous pages.
1671 			 */
1672 			break;
1673 		}
1674 
1675 		head = compound_head(page);
1676 		if (!page_cache_get_speculative(head))
1677 			goto repeat;
1678 
1679 		/* The page was split under us? */
1680 		if (compound_head(page) != head) {
1681 			put_page(head);
1682 			goto repeat;
1683 		}
1684 
1685 		/* Has the page moved? */
1686 		if (unlikely(page != *slot)) {
1687 			put_page(head);
1688 			goto repeat;
1689 		}
1690 
1691 		/*
1692 		 * must check mapping and index after taking the ref.
1693 		 * otherwise we can get both false positives and false
1694 		 * negatives, which is just confusing to the caller.
1695 		 */
1696 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1697 			put_page(page);
1698 			break;
1699 		}
1700 
1701 		pages[ret] = page;
1702 		if (++ret == nr_pages)
1703 			break;
1704 	}
1705 	rcu_read_unlock();
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(find_get_pages_contig);
1709 
1710 /**
1711  * find_get_pages_tag - find and return pages that match @tag
1712  * @mapping:	the address_space to search
1713  * @index:	the starting page index
1714  * @tag:	the tag index
1715  * @nr_pages:	the maximum number of pages
1716  * @pages:	where the resulting pages are placed
1717  *
1718  * Like find_get_pages, except we only return pages which are tagged with
1719  * @tag.   We update @index to index the next page for the traversal.
1720  */
1721 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1722 			int tag, unsigned int nr_pages, struct page **pages)
1723 {
1724 	struct radix_tree_iter iter;
1725 	void **slot;
1726 	unsigned ret = 0;
1727 
1728 	if (unlikely(!nr_pages))
1729 		return 0;
1730 
1731 	rcu_read_lock();
1732 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1733 				   &iter, *index, tag) {
1734 		struct page *head, *page;
1735 repeat:
1736 		page = radix_tree_deref_slot(slot);
1737 		if (unlikely(!page))
1738 			continue;
1739 
1740 		if (radix_tree_exception(page)) {
1741 			if (radix_tree_deref_retry(page)) {
1742 				slot = radix_tree_iter_retry(&iter);
1743 				continue;
1744 			}
1745 			/*
1746 			 * A shadow entry of a recently evicted page.
1747 			 *
1748 			 * Those entries should never be tagged, but
1749 			 * this tree walk is lockless and the tags are
1750 			 * looked up in bulk, one radix tree node at a
1751 			 * time, so there is a sizable window for page
1752 			 * reclaim to evict a page we saw tagged.
1753 			 *
1754 			 * Skip over it.
1755 			 */
1756 			continue;
1757 		}
1758 
1759 		head = compound_head(page);
1760 		if (!page_cache_get_speculative(head))
1761 			goto repeat;
1762 
1763 		/* The page was split under us? */
1764 		if (compound_head(page) != head) {
1765 			put_page(head);
1766 			goto repeat;
1767 		}
1768 
1769 		/* Has the page moved? */
1770 		if (unlikely(page != *slot)) {
1771 			put_page(head);
1772 			goto repeat;
1773 		}
1774 
1775 		pages[ret] = page;
1776 		if (++ret == nr_pages)
1777 			break;
1778 	}
1779 
1780 	rcu_read_unlock();
1781 
1782 	if (ret)
1783 		*index = pages[ret - 1]->index + 1;
1784 
1785 	return ret;
1786 }
1787 EXPORT_SYMBOL(find_get_pages_tag);
1788 
1789 /**
1790  * find_get_entries_tag - find and return entries that match @tag
1791  * @mapping:	the address_space to search
1792  * @start:	the starting page cache index
1793  * @tag:	the tag index
1794  * @nr_entries:	the maximum number of entries
1795  * @entries:	where the resulting entries are placed
1796  * @indices:	the cache indices corresponding to the entries in @entries
1797  *
1798  * Like find_get_entries, except we only return entries which are tagged with
1799  * @tag.
1800  */
1801 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1802 			int tag, unsigned int nr_entries,
1803 			struct page **entries, pgoff_t *indices)
1804 {
1805 	void **slot;
1806 	unsigned int ret = 0;
1807 	struct radix_tree_iter iter;
1808 
1809 	if (!nr_entries)
1810 		return 0;
1811 
1812 	rcu_read_lock();
1813 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1814 				   &iter, start, tag) {
1815 		struct page *head, *page;
1816 repeat:
1817 		page = radix_tree_deref_slot(slot);
1818 		if (unlikely(!page))
1819 			continue;
1820 		if (radix_tree_exception(page)) {
1821 			if (radix_tree_deref_retry(page)) {
1822 				slot = radix_tree_iter_retry(&iter);
1823 				continue;
1824 			}
1825 
1826 			/*
1827 			 * A shadow entry of a recently evicted page, a swap
1828 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1829 			 * without attempting to raise page count.
1830 			 */
1831 			goto export;
1832 		}
1833 
1834 		head = compound_head(page);
1835 		if (!page_cache_get_speculative(head))
1836 			goto repeat;
1837 
1838 		/* The page was split under us? */
1839 		if (compound_head(page) != head) {
1840 			put_page(head);
1841 			goto repeat;
1842 		}
1843 
1844 		/* Has the page moved? */
1845 		if (unlikely(page != *slot)) {
1846 			put_page(head);
1847 			goto repeat;
1848 		}
1849 export:
1850 		indices[ret] = iter.index;
1851 		entries[ret] = page;
1852 		if (++ret == nr_entries)
1853 			break;
1854 	}
1855 	rcu_read_unlock();
1856 	return ret;
1857 }
1858 EXPORT_SYMBOL(find_get_entries_tag);
1859 
1860 /*
1861  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1862  * a _large_ part of the i/o request. Imagine the worst scenario:
1863  *
1864  *      ---R__________________________________________B__________
1865  *         ^ reading here                             ^ bad block(assume 4k)
1866  *
1867  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1868  * => failing the whole request => read(R) => read(R+1) =>
1869  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1870  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1871  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1872  *
1873  * It is going insane. Fix it by quickly scaling down the readahead size.
1874  */
1875 static void shrink_readahead_size_eio(struct file *filp,
1876 					struct file_ra_state *ra)
1877 {
1878 	ra->ra_pages /= 4;
1879 }
1880 
1881 /**
1882  * do_generic_file_read - generic file read routine
1883  * @filp:	the file to read
1884  * @ppos:	current file position
1885  * @iter:	data destination
1886  * @written:	already copied
1887  *
1888  * This is a generic file read routine, and uses the
1889  * mapping->a_ops->readpage() function for the actual low-level stuff.
1890  *
1891  * This is really ugly. But the goto's actually try to clarify some
1892  * of the logic when it comes to error handling etc.
1893  */
1894 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1895 		struct iov_iter *iter, ssize_t written)
1896 {
1897 	struct address_space *mapping = filp->f_mapping;
1898 	struct inode *inode = mapping->host;
1899 	struct file_ra_state *ra = &filp->f_ra;
1900 	pgoff_t index;
1901 	pgoff_t last_index;
1902 	pgoff_t prev_index;
1903 	unsigned long offset;      /* offset into pagecache page */
1904 	unsigned int prev_offset;
1905 	int error = 0;
1906 
1907 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1908 		return 0;
1909 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1910 
1911 	index = *ppos >> PAGE_SHIFT;
1912 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1913 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1914 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1915 	offset = *ppos & ~PAGE_MASK;
1916 
1917 	for (;;) {
1918 		struct page *page;
1919 		pgoff_t end_index;
1920 		loff_t isize;
1921 		unsigned long nr, ret;
1922 
1923 		cond_resched();
1924 find_page:
1925 		if (fatal_signal_pending(current)) {
1926 			error = -EINTR;
1927 			goto out;
1928 		}
1929 
1930 		page = find_get_page(mapping, index);
1931 		if (!page) {
1932 			page_cache_sync_readahead(mapping,
1933 					ra, filp,
1934 					index, last_index - index);
1935 			page = find_get_page(mapping, index);
1936 			if (unlikely(page == NULL))
1937 				goto no_cached_page;
1938 		}
1939 		if (PageReadahead(page)) {
1940 			page_cache_async_readahead(mapping,
1941 					ra, filp, page,
1942 					index, last_index - index);
1943 		}
1944 		if (!PageUptodate(page)) {
1945 			/*
1946 			 * See comment in do_read_cache_page on why
1947 			 * wait_on_page_locked is used to avoid unnecessarily
1948 			 * serialisations and why it's safe.
1949 			 */
1950 			error = wait_on_page_locked_killable(page);
1951 			if (unlikely(error))
1952 				goto readpage_error;
1953 			if (PageUptodate(page))
1954 				goto page_ok;
1955 
1956 			if (inode->i_blkbits == PAGE_SHIFT ||
1957 					!mapping->a_ops->is_partially_uptodate)
1958 				goto page_not_up_to_date;
1959 			/* pipes can't handle partially uptodate pages */
1960 			if (unlikely(iter->type & ITER_PIPE))
1961 				goto page_not_up_to_date;
1962 			if (!trylock_page(page))
1963 				goto page_not_up_to_date;
1964 			/* Did it get truncated before we got the lock? */
1965 			if (!page->mapping)
1966 				goto page_not_up_to_date_locked;
1967 			if (!mapping->a_ops->is_partially_uptodate(page,
1968 							offset, iter->count))
1969 				goto page_not_up_to_date_locked;
1970 			unlock_page(page);
1971 		}
1972 page_ok:
1973 		/*
1974 		 * i_size must be checked after we know the page is Uptodate.
1975 		 *
1976 		 * Checking i_size after the check allows us to calculate
1977 		 * the correct value for "nr", which means the zero-filled
1978 		 * part of the page is not copied back to userspace (unless
1979 		 * another truncate extends the file - this is desired though).
1980 		 */
1981 
1982 		isize = i_size_read(inode);
1983 		end_index = (isize - 1) >> PAGE_SHIFT;
1984 		if (unlikely(!isize || index > end_index)) {
1985 			put_page(page);
1986 			goto out;
1987 		}
1988 
1989 		/* nr is the maximum number of bytes to copy from this page */
1990 		nr = PAGE_SIZE;
1991 		if (index == end_index) {
1992 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1993 			if (nr <= offset) {
1994 				put_page(page);
1995 				goto out;
1996 			}
1997 		}
1998 		nr = nr - offset;
1999 
2000 		/* If users can be writing to this page using arbitrary
2001 		 * virtual addresses, take care about potential aliasing
2002 		 * before reading the page on the kernel side.
2003 		 */
2004 		if (mapping_writably_mapped(mapping))
2005 			flush_dcache_page(page);
2006 
2007 		/*
2008 		 * When a sequential read accesses a page several times,
2009 		 * only mark it as accessed the first time.
2010 		 */
2011 		if (prev_index != index || offset != prev_offset)
2012 			mark_page_accessed(page);
2013 		prev_index = index;
2014 
2015 		/*
2016 		 * Ok, we have the page, and it's up-to-date, so
2017 		 * now we can copy it to user space...
2018 		 */
2019 
2020 		ret = copy_page_to_iter(page, offset, nr, iter);
2021 		offset += ret;
2022 		index += offset >> PAGE_SHIFT;
2023 		offset &= ~PAGE_MASK;
2024 		prev_offset = offset;
2025 
2026 		put_page(page);
2027 		written += ret;
2028 		if (!iov_iter_count(iter))
2029 			goto out;
2030 		if (ret < nr) {
2031 			error = -EFAULT;
2032 			goto out;
2033 		}
2034 		continue;
2035 
2036 page_not_up_to_date:
2037 		/* Get exclusive access to the page ... */
2038 		error = lock_page_killable(page);
2039 		if (unlikely(error))
2040 			goto readpage_error;
2041 
2042 page_not_up_to_date_locked:
2043 		/* Did it get truncated before we got the lock? */
2044 		if (!page->mapping) {
2045 			unlock_page(page);
2046 			put_page(page);
2047 			continue;
2048 		}
2049 
2050 		/* Did somebody else fill it already? */
2051 		if (PageUptodate(page)) {
2052 			unlock_page(page);
2053 			goto page_ok;
2054 		}
2055 
2056 readpage:
2057 		/*
2058 		 * A previous I/O error may have been due to temporary
2059 		 * failures, eg. multipath errors.
2060 		 * PG_error will be set again if readpage fails.
2061 		 */
2062 		ClearPageError(page);
2063 		/* Start the actual read. The read will unlock the page. */
2064 		error = mapping->a_ops->readpage(filp, page);
2065 
2066 		if (unlikely(error)) {
2067 			if (error == AOP_TRUNCATED_PAGE) {
2068 				put_page(page);
2069 				error = 0;
2070 				goto find_page;
2071 			}
2072 			goto readpage_error;
2073 		}
2074 
2075 		if (!PageUptodate(page)) {
2076 			error = lock_page_killable(page);
2077 			if (unlikely(error))
2078 				goto readpage_error;
2079 			if (!PageUptodate(page)) {
2080 				if (page->mapping == NULL) {
2081 					/*
2082 					 * invalidate_mapping_pages got it
2083 					 */
2084 					unlock_page(page);
2085 					put_page(page);
2086 					goto find_page;
2087 				}
2088 				unlock_page(page);
2089 				shrink_readahead_size_eio(filp, ra);
2090 				error = -EIO;
2091 				goto readpage_error;
2092 			}
2093 			unlock_page(page);
2094 		}
2095 
2096 		goto page_ok;
2097 
2098 readpage_error:
2099 		/* UHHUH! A synchronous read error occurred. Report it */
2100 		put_page(page);
2101 		goto out;
2102 
2103 no_cached_page:
2104 		/*
2105 		 * Ok, it wasn't cached, so we need to create a new
2106 		 * page..
2107 		 */
2108 		page = page_cache_alloc_cold(mapping);
2109 		if (!page) {
2110 			error = -ENOMEM;
2111 			goto out;
2112 		}
2113 		error = add_to_page_cache_lru(page, mapping, index,
2114 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2115 		if (error) {
2116 			put_page(page);
2117 			if (error == -EEXIST) {
2118 				error = 0;
2119 				goto find_page;
2120 			}
2121 			goto out;
2122 		}
2123 		goto readpage;
2124 	}
2125 
2126 out:
2127 	ra->prev_pos = prev_index;
2128 	ra->prev_pos <<= PAGE_SHIFT;
2129 	ra->prev_pos |= prev_offset;
2130 
2131 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2132 	file_accessed(filp);
2133 	return written ? written : error;
2134 }
2135 
2136 /**
2137  * generic_file_read_iter - generic filesystem read routine
2138  * @iocb:	kernel I/O control block
2139  * @iter:	destination for the data read
2140  *
2141  * This is the "read_iter()" routine for all filesystems
2142  * that can use the page cache directly.
2143  */
2144 ssize_t
2145 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2146 {
2147 	struct file *file = iocb->ki_filp;
2148 	ssize_t retval = 0;
2149 	size_t count = iov_iter_count(iter);
2150 
2151 	if (!count)
2152 		goto out; /* skip atime */
2153 
2154 	if (iocb->ki_flags & IOCB_DIRECT) {
2155 		struct address_space *mapping = file->f_mapping;
2156 		struct inode *inode = mapping->host;
2157 		loff_t size;
2158 
2159 		size = i_size_read(inode);
2160 		if (iocb->ki_flags & IOCB_NOWAIT) {
2161 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2162 						   iocb->ki_pos + count - 1))
2163 				return -EAGAIN;
2164 		} else {
2165 			retval = filemap_write_and_wait_range(mapping,
2166 						iocb->ki_pos,
2167 					        iocb->ki_pos + count - 1);
2168 			if (retval < 0)
2169 				goto out;
2170 		}
2171 
2172 		file_accessed(file);
2173 
2174 		retval = mapping->a_ops->direct_IO(iocb, iter);
2175 		if (retval >= 0) {
2176 			iocb->ki_pos += retval;
2177 			count -= retval;
2178 		}
2179 		iov_iter_revert(iter, count - iov_iter_count(iter));
2180 
2181 		/*
2182 		 * Btrfs can have a short DIO read if we encounter
2183 		 * compressed extents, so if there was an error, or if
2184 		 * we've already read everything we wanted to, or if
2185 		 * there was a short read because we hit EOF, go ahead
2186 		 * and return.  Otherwise fallthrough to buffered io for
2187 		 * the rest of the read.  Buffered reads will not work for
2188 		 * DAX files, so don't bother trying.
2189 		 */
2190 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2191 		    IS_DAX(inode))
2192 			goto out;
2193 	}
2194 
2195 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2196 out:
2197 	return retval;
2198 }
2199 EXPORT_SYMBOL(generic_file_read_iter);
2200 
2201 #ifdef CONFIG_MMU
2202 /**
2203  * page_cache_read - adds requested page to the page cache if not already there
2204  * @file:	file to read
2205  * @offset:	page index
2206  * @gfp_mask:	memory allocation flags
2207  *
2208  * This adds the requested page to the page cache if it isn't already there,
2209  * and schedules an I/O to read in its contents from disk.
2210  */
2211 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2212 {
2213 	struct address_space *mapping = file->f_mapping;
2214 	struct page *page;
2215 	int ret;
2216 
2217 	do {
2218 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2219 		if (!page)
2220 			return -ENOMEM;
2221 
2222 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2223 		if (ret == 0)
2224 			ret = mapping->a_ops->readpage(file, page);
2225 		else if (ret == -EEXIST)
2226 			ret = 0; /* losing race to add is OK */
2227 
2228 		put_page(page);
2229 
2230 	} while (ret == AOP_TRUNCATED_PAGE);
2231 
2232 	return ret;
2233 }
2234 
2235 #define MMAP_LOTSAMISS  (100)
2236 
2237 /*
2238  * Synchronous readahead happens when we don't even find
2239  * a page in the page cache at all.
2240  */
2241 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2242 				   struct file_ra_state *ra,
2243 				   struct file *file,
2244 				   pgoff_t offset)
2245 {
2246 	struct address_space *mapping = file->f_mapping;
2247 
2248 	/* If we don't want any read-ahead, don't bother */
2249 	if (vma->vm_flags & VM_RAND_READ)
2250 		return;
2251 	if (!ra->ra_pages)
2252 		return;
2253 
2254 	if (vma->vm_flags & VM_SEQ_READ) {
2255 		page_cache_sync_readahead(mapping, ra, file, offset,
2256 					  ra->ra_pages);
2257 		return;
2258 	}
2259 
2260 	/* Avoid banging the cache line if not needed */
2261 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2262 		ra->mmap_miss++;
2263 
2264 	/*
2265 	 * Do we miss much more than hit in this file? If so,
2266 	 * stop bothering with read-ahead. It will only hurt.
2267 	 */
2268 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2269 		return;
2270 
2271 	/*
2272 	 * mmap read-around
2273 	 */
2274 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2275 	ra->size = ra->ra_pages;
2276 	ra->async_size = ra->ra_pages / 4;
2277 	ra_submit(ra, mapping, file);
2278 }
2279 
2280 /*
2281  * Asynchronous readahead happens when we find the page and PG_readahead,
2282  * so we want to possibly extend the readahead further..
2283  */
2284 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2285 				    struct file_ra_state *ra,
2286 				    struct file *file,
2287 				    struct page *page,
2288 				    pgoff_t offset)
2289 {
2290 	struct address_space *mapping = file->f_mapping;
2291 
2292 	/* If we don't want any read-ahead, don't bother */
2293 	if (vma->vm_flags & VM_RAND_READ)
2294 		return;
2295 	if (ra->mmap_miss > 0)
2296 		ra->mmap_miss--;
2297 	if (PageReadahead(page))
2298 		page_cache_async_readahead(mapping, ra, file,
2299 					   page, offset, ra->ra_pages);
2300 }
2301 
2302 /**
2303  * filemap_fault - read in file data for page fault handling
2304  * @vmf:	struct vm_fault containing details of the fault
2305  *
2306  * filemap_fault() is invoked via the vma operations vector for a
2307  * mapped memory region to read in file data during a page fault.
2308  *
2309  * The goto's are kind of ugly, but this streamlines the normal case of having
2310  * it in the page cache, and handles the special cases reasonably without
2311  * having a lot of duplicated code.
2312  *
2313  * vma->vm_mm->mmap_sem must be held on entry.
2314  *
2315  * If our return value has VM_FAULT_RETRY set, it's because
2316  * lock_page_or_retry() returned 0.
2317  * The mmap_sem has usually been released in this case.
2318  * See __lock_page_or_retry() for the exception.
2319  *
2320  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2321  * has not been released.
2322  *
2323  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2324  */
2325 int filemap_fault(struct vm_fault *vmf)
2326 {
2327 	int error;
2328 	struct file *file = vmf->vma->vm_file;
2329 	struct address_space *mapping = file->f_mapping;
2330 	struct file_ra_state *ra = &file->f_ra;
2331 	struct inode *inode = mapping->host;
2332 	pgoff_t offset = vmf->pgoff;
2333 	pgoff_t max_off;
2334 	struct page *page;
2335 	int ret = 0;
2336 
2337 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2338 	if (unlikely(offset >= max_off))
2339 		return VM_FAULT_SIGBUS;
2340 
2341 	/*
2342 	 * Do we have something in the page cache already?
2343 	 */
2344 	page = find_get_page(mapping, offset);
2345 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2346 		/*
2347 		 * We found the page, so try async readahead before
2348 		 * waiting for the lock.
2349 		 */
2350 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2351 	} else if (!page) {
2352 		/* No page in the page cache at all */
2353 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2354 		count_vm_event(PGMAJFAULT);
2355 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2356 		ret = VM_FAULT_MAJOR;
2357 retry_find:
2358 		page = find_get_page(mapping, offset);
2359 		if (!page)
2360 			goto no_cached_page;
2361 	}
2362 
2363 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2364 		put_page(page);
2365 		return ret | VM_FAULT_RETRY;
2366 	}
2367 
2368 	/* Did it get truncated? */
2369 	if (unlikely(page->mapping != mapping)) {
2370 		unlock_page(page);
2371 		put_page(page);
2372 		goto retry_find;
2373 	}
2374 	VM_BUG_ON_PAGE(page->index != offset, page);
2375 
2376 	/*
2377 	 * We have a locked page in the page cache, now we need to check
2378 	 * that it's up-to-date. If not, it is going to be due to an error.
2379 	 */
2380 	if (unlikely(!PageUptodate(page)))
2381 		goto page_not_uptodate;
2382 
2383 	/*
2384 	 * Found the page and have a reference on it.
2385 	 * We must recheck i_size under page lock.
2386 	 */
2387 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2388 	if (unlikely(offset >= max_off)) {
2389 		unlock_page(page);
2390 		put_page(page);
2391 		return VM_FAULT_SIGBUS;
2392 	}
2393 
2394 	vmf->page = page;
2395 	return ret | VM_FAULT_LOCKED;
2396 
2397 no_cached_page:
2398 	/*
2399 	 * We're only likely to ever get here if MADV_RANDOM is in
2400 	 * effect.
2401 	 */
2402 	error = page_cache_read(file, offset, vmf->gfp_mask);
2403 
2404 	/*
2405 	 * The page we want has now been added to the page cache.
2406 	 * In the unlikely event that someone removed it in the
2407 	 * meantime, we'll just come back here and read it again.
2408 	 */
2409 	if (error >= 0)
2410 		goto retry_find;
2411 
2412 	/*
2413 	 * An error return from page_cache_read can result if the
2414 	 * system is low on memory, or a problem occurs while trying
2415 	 * to schedule I/O.
2416 	 */
2417 	if (error == -ENOMEM)
2418 		return VM_FAULT_OOM;
2419 	return VM_FAULT_SIGBUS;
2420 
2421 page_not_uptodate:
2422 	/*
2423 	 * Umm, take care of errors if the page isn't up-to-date.
2424 	 * Try to re-read it _once_. We do this synchronously,
2425 	 * because there really aren't any performance issues here
2426 	 * and we need to check for errors.
2427 	 */
2428 	ClearPageError(page);
2429 	error = mapping->a_ops->readpage(file, page);
2430 	if (!error) {
2431 		wait_on_page_locked(page);
2432 		if (!PageUptodate(page))
2433 			error = -EIO;
2434 	}
2435 	put_page(page);
2436 
2437 	if (!error || error == AOP_TRUNCATED_PAGE)
2438 		goto retry_find;
2439 
2440 	/* Things didn't work out. Return zero to tell the mm layer so. */
2441 	shrink_readahead_size_eio(file, ra);
2442 	return VM_FAULT_SIGBUS;
2443 }
2444 EXPORT_SYMBOL(filemap_fault);
2445 
2446 void filemap_map_pages(struct vm_fault *vmf,
2447 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2448 {
2449 	struct radix_tree_iter iter;
2450 	void **slot;
2451 	struct file *file = vmf->vma->vm_file;
2452 	struct address_space *mapping = file->f_mapping;
2453 	pgoff_t last_pgoff = start_pgoff;
2454 	unsigned long max_idx;
2455 	struct page *head, *page;
2456 
2457 	rcu_read_lock();
2458 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2459 			start_pgoff) {
2460 		if (iter.index > end_pgoff)
2461 			break;
2462 repeat:
2463 		page = radix_tree_deref_slot(slot);
2464 		if (unlikely(!page))
2465 			goto next;
2466 		if (radix_tree_exception(page)) {
2467 			if (radix_tree_deref_retry(page)) {
2468 				slot = radix_tree_iter_retry(&iter);
2469 				continue;
2470 			}
2471 			goto next;
2472 		}
2473 
2474 		head = compound_head(page);
2475 		if (!page_cache_get_speculative(head))
2476 			goto repeat;
2477 
2478 		/* The page was split under us? */
2479 		if (compound_head(page) != head) {
2480 			put_page(head);
2481 			goto repeat;
2482 		}
2483 
2484 		/* Has the page moved? */
2485 		if (unlikely(page != *slot)) {
2486 			put_page(head);
2487 			goto repeat;
2488 		}
2489 
2490 		if (!PageUptodate(page) ||
2491 				PageReadahead(page) ||
2492 				PageHWPoison(page))
2493 			goto skip;
2494 		if (!trylock_page(page))
2495 			goto skip;
2496 
2497 		if (page->mapping != mapping || !PageUptodate(page))
2498 			goto unlock;
2499 
2500 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2501 		if (page->index >= max_idx)
2502 			goto unlock;
2503 
2504 		if (file->f_ra.mmap_miss > 0)
2505 			file->f_ra.mmap_miss--;
2506 
2507 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2508 		if (vmf->pte)
2509 			vmf->pte += iter.index - last_pgoff;
2510 		last_pgoff = iter.index;
2511 		if (alloc_set_pte(vmf, NULL, page))
2512 			goto unlock;
2513 		unlock_page(page);
2514 		goto next;
2515 unlock:
2516 		unlock_page(page);
2517 skip:
2518 		put_page(page);
2519 next:
2520 		/* Huge page is mapped? No need to proceed. */
2521 		if (pmd_trans_huge(*vmf->pmd))
2522 			break;
2523 		if (iter.index == end_pgoff)
2524 			break;
2525 	}
2526 	rcu_read_unlock();
2527 }
2528 EXPORT_SYMBOL(filemap_map_pages);
2529 
2530 int filemap_page_mkwrite(struct vm_fault *vmf)
2531 {
2532 	struct page *page = vmf->page;
2533 	struct inode *inode = file_inode(vmf->vma->vm_file);
2534 	int ret = VM_FAULT_LOCKED;
2535 
2536 	sb_start_pagefault(inode->i_sb);
2537 	file_update_time(vmf->vma->vm_file);
2538 	lock_page(page);
2539 	if (page->mapping != inode->i_mapping) {
2540 		unlock_page(page);
2541 		ret = VM_FAULT_NOPAGE;
2542 		goto out;
2543 	}
2544 	/*
2545 	 * We mark the page dirty already here so that when freeze is in
2546 	 * progress, we are guaranteed that writeback during freezing will
2547 	 * see the dirty page and writeprotect it again.
2548 	 */
2549 	set_page_dirty(page);
2550 	wait_for_stable_page(page);
2551 out:
2552 	sb_end_pagefault(inode->i_sb);
2553 	return ret;
2554 }
2555 EXPORT_SYMBOL(filemap_page_mkwrite);
2556 
2557 const struct vm_operations_struct generic_file_vm_ops = {
2558 	.fault		= filemap_fault,
2559 	.map_pages	= filemap_map_pages,
2560 	.page_mkwrite	= filemap_page_mkwrite,
2561 };
2562 
2563 /* This is used for a general mmap of a disk file */
2564 
2565 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2566 {
2567 	struct address_space *mapping = file->f_mapping;
2568 
2569 	if (!mapping->a_ops->readpage)
2570 		return -ENOEXEC;
2571 	file_accessed(file);
2572 	vma->vm_ops = &generic_file_vm_ops;
2573 	return 0;
2574 }
2575 
2576 /*
2577  * This is for filesystems which do not implement ->writepage.
2578  */
2579 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2580 {
2581 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2582 		return -EINVAL;
2583 	return generic_file_mmap(file, vma);
2584 }
2585 #else
2586 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2587 {
2588 	return -ENOSYS;
2589 }
2590 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2591 {
2592 	return -ENOSYS;
2593 }
2594 #endif /* CONFIG_MMU */
2595 
2596 EXPORT_SYMBOL(generic_file_mmap);
2597 EXPORT_SYMBOL(generic_file_readonly_mmap);
2598 
2599 static struct page *wait_on_page_read(struct page *page)
2600 {
2601 	if (!IS_ERR(page)) {
2602 		wait_on_page_locked(page);
2603 		if (!PageUptodate(page)) {
2604 			put_page(page);
2605 			page = ERR_PTR(-EIO);
2606 		}
2607 	}
2608 	return page;
2609 }
2610 
2611 static struct page *do_read_cache_page(struct address_space *mapping,
2612 				pgoff_t index,
2613 				int (*filler)(void *, struct page *),
2614 				void *data,
2615 				gfp_t gfp)
2616 {
2617 	struct page *page;
2618 	int err;
2619 repeat:
2620 	page = find_get_page(mapping, index);
2621 	if (!page) {
2622 		page = __page_cache_alloc(gfp | __GFP_COLD);
2623 		if (!page)
2624 			return ERR_PTR(-ENOMEM);
2625 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2626 		if (unlikely(err)) {
2627 			put_page(page);
2628 			if (err == -EEXIST)
2629 				goto repeat;
2630 			/* Presumably ENOMEM for radix tree node */
2631 			return ERR_PTR(err);
2632 		}
2633 
2634 filler:
2635 		err = filler(data, page);
2636 		if (err < 0) {
2637 			put_page(page);
2638 			return ERR_PTR(err);
2639 		}
2640 
2641 		page = wait_on_page_read(page);
2642 		if (IS_ERR(page))
2643 			return page;
2644 		goto out;
2645 	}
2646 	if (PageUptodate(page))
2647 		goto out;
2648 
2649 	/*
2650 	 * Page is not up to date and may be locked due one of the following
2651 	 * case a: Page is being filled and the page lock is held
2652 	 * case b: Read/write error clearing the page uptodate status
2653 	 * case c: Truncation in progress (page locked)
2654 	 * case d: Reclaim in progress
2655 	 *
2656 	 * Case a, the page will be up to date when the page is unlocked.
2657 	 *    There is no need to serialise on the page lock here as the page
2658 	 *    is pinned so the lock gives no additional protection. Even if the
2659 	 *    the page is truncated, the data is still valid if PageUptodate as
2660 	 *    it's a race vs truncate race.
2661 	 * Case b, the page will not be up to date
2662 	 * Case c, the page may be truncated but in itself, the data may still
2663 	 *    be valid after IO completes as it's a read vs truncate race. The
2664 	 *    operation must restart if the page is not uptodate on unlock but
2665 	 *    otherwise serialising on page lock to stabilise the mapping gives
2666 	 *    no additional guarantees to the caller as the page lock is
2667 	 *    released before return.
2668 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2669 	 *    will be a race with remove_mapping that determines if the mapping
2670 	 *    is valid on unlock but otherwise the data is valid and there is
2671 	 *    no need to serialise with page lock.
2672 	 *
2673 	 * As the page lock gives no additional guarantee, we optimistically
2674 	 * wait on the page to be unlocked and check if it's up to date and
2675 	 * use the page if it is. Otherwise, the page lock is required to
2676 	 * distinguish between the different cases. The motivation is that we
2677 	 * avoid spurious serialisations and wakeups when multiple processes
2678 	 * wait on the same page for IO to complete.
2679 	 */
2680 	wait_on_page_locked(page);
2681 	if (PageUptodate(page))
2682 		goto out;
2683 
2684 	/* Distinguish between all the cases under the safety of the lock */
2685 	lock_page(page);
2686 
2687 	/* Case c or d, restart the operation */
2688 	if (!page->mapping) {
2689 		unlock_page(page);
2690 		put_page(page);
2691 		goto repeat;
2692 	}
2693 
2694 	/* Someone else locked and filled the page in a very small window */
2695 	if (PageUptodate(page)) {
2696 		unlock_page(page);
2697 		goto out;
2698 	}
2699 	goto filler;
2700 
2701 out:
2702 	mark_page_accessed(page);
2703 	return page;
2704 }
2705 
2706 /**
2707  * read_cache_page - read into page cache, fill it if needed
2708  * @mapping:	the page's address_space
2709  * @index:	the page index
2710  * @filler:	function to perform the read
2711  * @data:	first arg to filler(data, page) function, often left as NULL
2712  *
2713  * Read into the page cache. If a page already exists, and PageUptodate() is
2714  * not set, try to fill the page and wait for it to become unlocked.
2715  *
2716  * If the page does not get brought uptodate, return -EIO.
2717  */
2718 struct page *read_cache_page(struct address_space *mapping,
2719 				pgoff_t index,
2720 				int (*filler)(void *, struct page *),
2721 				void *data)
2722 {
2723 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2724 }
2725 EXPORT_SYMBOL(read_cache_page);
2726 
2727 /**
2728  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2729  * @mapping:	the page's address_space
2730  * @index:	the page index
2731  * @gfp:	the page allocator flags to use if allocating
2732  *
2733  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2734  * any new page allocations done using the specified allocation flags.
2735  *
2736  * If the page does not get brought uptodate, return -EIO.
2737  */
2738 struct page *read_cache_page_gfp(struct address_space *mapping,
2739 				pgoff_t index,
2740 				gfp_t gfp)
2741 {
2742 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2743 
2744 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2745 }
2746 EXPORT_SYMBOL(read_cache_page_gfp);
2747 
2748 /*
2749  * Performs necessary checks before doing a write
2750  *
2751  * Can adjust writing position or amount of bytes to write.
2752  * Returns appropriate error code that caller should return or
2753  * zero in case that write should be allowed.
2754  */
2755 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2756 {
2757 	struct file *file = iocb->ki_filp;
2758 	struct inode *inode = file->f_mapping->host;
2759 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2760 	loff_t pos;
2761 
2762 	if (!iov_iter_count(from))
2763 		return 0;
2764 
2765 	/* FIXME: this is for backwards compatibility with 2.4 */
2766 	if (iocb->ki_flags & IOCB_APPEND)
2767 		iocb->ki_pos = i_size_read(inode);
2768 
2769 	pos = iocb->ki_pos;
2770 
2771 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2772 		return -EINVAL;
2773 
2774 	if (limit != RLIM_INFINITY) {
2775 		if (iocb->ki_pos >= limit) {
2776 			send_sig(SIGXFSZ, current, 0);
2777 			return -EFBIG;
2778 		}
2779 		iov_iter_truncate(from, limit - (unsigned long)pos);
2780 	}
2781 
2782 	/*
2783 	 * LFS rule
2784 	 */
2785 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2786 				!(file->f_flags & O_LARGEFILE))) {
2787 		if (pos >= MAX_NON_LFS)
2788 			return -EFBIG;
2789 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2790 	}
2791 
2792 	/*
2793 	 * Are we about to exceed the fs block limit ?
2794 	 *
2795 	 * If we have written data it becomes a short write.  If we have
2796 	 * exceeded without writing data we send a signal and return EFBIG.
2797 	 * Linus frestrict idea will clean these up nicely..
2798 	 */
2799 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2800 		return -EFBIG;
2801 
2802 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2803 	return iov_iter_count(from);
2804 }
2805 EXPORT_SYMBOL(generic_write_checks);
2806 
2807 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2808 				loff_t pos, unsigned len, unsigned flags,
2809 				struct page **pagep, void **fsdata)
2810 {
2811 	const struct address_space_operations *aops = mapping->a_ops;
2812 
2813 	return aops->write_begin(file, mapping, pos, len, flags,
2814 							pagep, fsdata);
2815 }
2816 EXPORT_SYMBOL(pagecache_write_begin);
2817 
2818 int pagecache_write_end(struct file *file, struct address_space *mapping,
2819 				loff_t pos, unsigned len, unsigned copied,
2820 				struct page *page, void *fsdata)
2821 {
2822 	const struct address_space_operations *aops = mapping->a_ops;
2823 
2824 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2825 }
2826 EXPORT_SYMBOL(pagecache_write_end);
2827 
2828 ssize_t
2829 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2830 {
2831 	struct file	*file = iocb->ki_filp;
2832 	struct address_space *mapping = file->f_mapping;
2833 	struct inode	*inode = mapping->host;
2834 	loff_t		pos = iocb->ki_pos;
2835 	ssize_t		written;
2836 	size_t		write_len;
2837 	pgoff_t		end;
2838 
2839 	write_len = iov_iter_count(from);
2840 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2841 
2842 	if (iocb->ki_flags & IOCB_NOWAIT) {
2843 		/* If there are pages to writeback, return */
2844 		if (filemap_range_has_page(inode->i_mapping, pos,
2845 					   pos + iov_iter_count(from)))
2846 			return -EAGAIN;
2847 	} else {
2848 		written = filemap_write_and_wait_range(mapping, pos,
2849 							pos + write_len - 1);
2850 		if (written)
2851 			goto out;
2852 	}
2853 
2854 	/*
2855 	 * After a write we want buffered reads to be sure to go to disk to get
2856 	 * the new data.  We invalidate clean cached page from the region we're
2857 	 * about to write.  We do this *before* the write so that we can return
2858 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2859 	 */
2860 	written = invalidate_inode_pages2_range(mapping,
2861 					pos >> PAGE_SHIFT, end);
2862 	/*
2863 	 * If a page can not be invalidated, return 0 to fall back
2864 	 * to buffered write.
2865 	 */
2866 	if (written) {
2867 		if (written == -EBUSY)
2868 			return 0;
2869 		goto out;
2870 	}
2871 
2872 	written = mapping->a_ops->direct_IO(iocb, from);
2873 
2874 	/*
2875 	 * Finally, try again to invalidate clean pages which might have been
2876 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2877 	 * if the source of the write was an mmap'ed region of the file
2878 	 * we're writing.  Either one is a pretty crazy thing to do,
2879 	 * so we don't support it 100%.  If this invalidation
2880 	 * fails, tough, the write still worked...
2881 	 */
2882 	invalidate_inode_pages2_range(mapping,
2883 				pos >> PAGE_SHIFT, end);
2884 
2885 	if (written > 0) {
2886 		pos += written;
2887 		write_len -= written;
2888 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2889 			i_size_write(inode, pos);
2890 			mark_inode_dirty(inode);
2891 		}
2892 		iocb->ki_pos = pos;
2893 	}
2894 	iov_iter_revert(from, write_len - iov_iter_count(from));
2895 out:
2896 	return written;
2897 }
2898 EXPORT_SYMBOL(generic_file_direct_write);
2899 
2900 /*
2901  * Find or create a page at the given pagecache position. Return the locked
2902  * page. This function is specifically for buffered writes.
2903  */
2904 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2905 					pgoff_t index, unsigned flags)
2906 {
2907 	struct page *page;
2908 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2909 
2910 	if (flags & AOP_FLAG_NOFS)
2911 		fgp_flags |= FGP_NOFS;
2912 
2913 	page = pagecache_get_page(mapping, index, fgp_flags,
2914 			mapping_gfp_mask(mapping));
2915 	if (page)
2916 		wait_for_stable_page(page);
2917 
2918 	return page;
2919 }
2920 EXPORT_SYMBOL(grab_cache_page_write_begin);
2921 
2922 ssize_t generic_perform_write(struct file *file,
2923 				struct iov_iter *i, loff_t pos)
2924 {
2925 	struct address_space *mapping = file->f_mapping;
2926 	const struct address_space_operations *a_ops = mapping->a_ops;
2927 	long status = 0;
2928 	ssize_t written = 0;
2929 	unsigned int flags = 0;
2930 
2931 	do {
2932 		struct page *page;
2933 		unsigned long offset;	/* Offset into pagecache page */
2934 		unsigned long bytes;	/* Bytes to write to page */
2935 		size_t copied;		/* Bytes copied from user */
2936 		void *fsdata;
2937 
2938 		offset = (pos & (PAGE_SIZE - 1));
2939 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2940 						iov_iter_count(i));
2941 
2942 again:
2943 		/*
2944 		 * Bring in the user page that we will copy from _first_.
2945 		 * Otherwise there's a nasty deadlock on copying from the
2946 		 * same page as we're writing to, without it being marked
2947 		 * up-to-date.
2948 		 *
2949 		 * Not only is this an optimisation, but it is also required
2950 		 * to check that the address is actually valid, when atomic
2951 		 * usercopies are used, below.
2952 		 */
2953 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2954 			status = -EFAULT;
2955 			break;
2956 		}
2957 
2958 		if (fatal_signal_pending(current)) {
2959 			status = -EINTR;
2960 			break;
2961 		}
2962 
2963 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2964 						&page, &fsdata);
2965 		if (unlikely(status < 0))
2966 			break;
2967 
2968 		if (mapping_writably_mapped(mapping))
2969 			flush_dcache_page(page);
2970 
2971 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2972 		flush_dcache_page(page);
2973 
2974 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2975 						page, fsdata);
2976 		if (unlikely(status < 0))
2977 			break;
2978 		copied = status;
2979 
2980 		cond_resched();
2981 
2982 		iov_iter_advance(i, copied);
2983 		if (unlikely(copied == 0)) {
2984 			/*
2985 			 * If we were unable to copy any data at all, we must
2986 			 * fall back to a single segment length write.
2987 			 *
2988 			 * If we didn't fallback here, we could livelock
2989 			 * because not all segments in the iov can be copied at
2990 			 * once without a pagefault.
2991 			 */
2992 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2993 						iov_iter_single_seg_count(i));
2994 			goto again;
2995 		}
2996 		pos += copied;
2997 		written += copied;
2998 
2999 		balance_dirty_pages_ratelimited(mapping);
3000 	} while (iov_iter_count(i));
3001 
3002 	return written ? written : status;
3003 }
3004 EXPORT_SYMBOL(generic_perform_write);
3005 
3006 /**
3007  * __generic_file_write_iter - write data to a file
3008  * @iocb:	IO state structure (file, offset, etc.)
3009  * @from:	iov_iter with data to write
3010  *
3011  * This function does all the work needed for actually writing data to a
3012  * file. It does all basic checks, removes SUID from the file, updates
3013  * modification times and calls proper subroutines depending on whether we
3014  * do direct IO or a standard buffered write.
3015  *
3016  * It expects i_mutex to be grabbed unless we work on a block device or similar
3017  * object which does not need locking at all.
3018  *
3019  * This function does *not* take care of syncing data in case of O_SYNC write.
3020  * A caller has to handle it. This is mainly due to the fact that we want to
3021  * avoid syncing under i_mutex.
3022  */
3023 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3024 {
3025 	struct file *file = iocb->ki_filp;
3026 	struct address_space * mapping = file->f_mapping;
3027 	struct inode 	*inode = mapping->host;
3028 	ssize_t		written = 0;
3029 	ssize_t		err;
3030 	ssize_t		status;
3031 
3032 	/* We can write back this queue in page reclaim */
3033 	current->backing_dev_info = inode_to_bdi(inode);
3034 	err = file_remove_privs(file);
3035 	if (err)
3036 		goto out;
3037 
3038 	err = file_update_time(file);
3039 	if (err)
3040 		goto out;
3041 
3042 	if (iocb->ki_flags & IOCB_DIRECT) {
3043 		loff_t pos, endbyte;
3044 
3045 		written = generic_file_direct_write(iocb, from);
3046 		/*
3047 		 * If the write stopped short of completing, fall back to
3048 		 * buffered writes.  Some filesystems do this for writes to
3049 		 * holes, for example.  For DAX files, a buffered write will
3050 		 * not succeed (even if it did, DAX does not handle dirty
3051 		 * page-cache pages correctly).
3052 		 */
3053 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3054 			goto out;
3055 
3056 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3057 		/*
3058 		 * If generic_perform_write() returned a synchronous error
3059 		 * then we want to return the number of bytes which were
3060 		 * direct-written, or the error code if that was zero.  Note
3061 		 * that this differs from normal direct-io semantics, which
3062 		 * will return -EFOO even if some bytes were written.
3063 		 */
3064 		if (unlikely(status < 0)) {
3065 			err = status;
3066 			goto out;
3067 		}
3068 		/*
3069 		 * We need to ensure that the page cache pages are written to
3070 		 * disk and invalidated to preserve the expected O_DIRECT
3071 		 * semantics.
3072 		 */
3073 		endbyte = pos + status - 1;
3074 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3075 		if (err == 0) {
3076 			iocb->ki_pos = endbyte + 1;
3077 			written += status;
3078 			invalidate_mapping_pages(mapping,
3079 						 pos >> PAGE_SHIFT,
3080 						 endbyte >> PAGE_SHIFT);
3081 		} else {
3082 			/*
3083 			 * We don't know how much we wrote, so just return
3084 			 * the number of bytes which were direct-written
3085 			 */
3086 		}
3087 	} else {
3088 		written = generic_perform_write(file, from, iocb->ki_pos);
3089 		if (likely(written > 0))
3090 			iocb->ki_pos += written;
3091 	}
3092 out:
3093 	current->backing_dev_info = NULL;
3094 	return written ? written : err;
3095 }
3096 EXPORT_SYMBOL(__generic_file_write_iter);
3097 
3098 /**
3099  * generic_file_write_iter - write data to a file
3100  * @iocb:	IO state structure
3101  * @from:	iov_iter with data to write
3102  *
3103  * This is a wrapper around __generic_file_write_iter() to be used by most
3104  * filesystems. It takes care of syncing the file in case of O_SYNC file
3105  * and acquires i_mutex as needed.
3106  */
3107 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3108 {
3109 	struct file *file = iocb->ki_filp;
3110 	struct inode *inode = file->f_mapping->host;
3111 	ssize_t ret;
3112 
3113 	inode_lock(inode);
3114 	ret = generic_write_checks(iocb, from);
3115 	if (ret > 0)
3116 		ret = __generic_file_write_iter(iocb, from);
3117 	inode_unlock(inode);
3118 
3119 	if (ret > 0)
3120 		ret = generic_write_sync(iocb, ret);
3121 	return ret;
3122 }
3123 EXPORT_SYMBOL(generic_file_write_iter);
3124 
3125 /**
3126  * try_to_release_page() - release old fs-specific metadata on a page
3127  *
3128  * @page: the page which the kernel is trying to free
3129  * @gfp_mask: memory allocation flags (and I/O mode)
3130  *
3131  * The address_space is to try to release any data against the page
3132  * (presumably at page->private).  If the release was successful, return '1'.
3133  * Otherwise return zero.
3134  *
3135  * This may also be called if PG_fscache is set on a page, indicating that the
3136  * page is known to the local caching routines.
3137  *
3138  * The @gfp_mask argument specifies whether I/O may be performed to release
3139  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3140  *
3141  */
3142 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3143 {
3144 	struct address_space * const mapping = page->mapping;
3145 
3146 	BUG_ON(!PageLocked(page));
3147 	if (PageWriteback(page))
3148 		return 0;
3149 
3150 	if (mapping && mapping->a_ops->releasepage)
3151 		return mapping->a_ops->releasepage(page, gfp_mask);
3152 	return try_to_free_buffers(page);
3153 }
3154 
3155 EXPORT_SYMBOL(try_to_release_page);
3156