xref: /linux/mm/filemap.c (revision 1e123fd73deb16cb362ecefb55c90c9196f4a6c2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <linux/rcupdate_wait.h>
49 #include <linux/sched/mm.h>
50 #include <asm/pgalloc.h>
51 #include <asm/tlbflush.h>
52 #include "internal.h"
53 
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/filemap.h>
56 
57 /*
58  * FIXME: remove all knowledge of the buffer layer from the core VM
59  */
60 #include <linux/buffer_head.h> /* for try_to_free_buffers */
61 
62 #include <asm/mman.h>
63 
64 #include "swap.h"
65 
66 /*
67  * Shared mappings implemented 30.11.1994. It's not fully working yet,
68  * though.
69  *
70  * Shared mappings now work. 15.8.1995  Bruno.
71  *
72  * finished 'unifying' the page and buffer cache and SMP-threaded the
73  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
74  *
75  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
76  */
77 
78 /*
79  * Lock ordering:
80  *
81  *  ->i_mmap_rwsem		(truncate_pagecache)
82  *    ->private_lock		(__free_pte->block_dirty_folio)
83  *      ->swap_lock		(exclusive_swap_page, others)
84  *        ->i_pages lock
85  *
86  *  ->i_rwsem
87  *    ->invalidate_lock		(acquired by fs in truncate path)
88  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
89  *
90  *  ->mmap_lock
91  *    ->i_mmap_rwsem
92  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
93  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
94  *
95  *  ->mmap_lock
96  *    ->invalidate_lock		(filemap_fault)
97  *      ->lock_page		(filemap_fault, access_process_vm)
98  *
99  *  ->i_rwsem			(generic_perform_write)
100  *    ->mmap_lock		(fault_in_readable->do_page_fault)
101  *
102  *  bdi->wb.list_lock
103  *    sb_lock			(fs/fs-writeback.c)
104  *    ->i_pages lock		(__sync_single_inode)
105  *
106  *  ->i_mmap_rwsem
107  *    ->anon_vma.lock		(vma_merge)
108  *
109  *  ->anon_vma.lock
110  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
111  *
112  *  ->page_table_lock or pte_lock
113  *    ->swap_lock		(try_to_unmap_one)
114  *    ->private_lock		(try_to_unmap_one)
115  *    ->i_pages lock		(try_to_unmap_one)
116  *    ->lruvec->lru_lock	(follow_page_mask->mark_page_accessed)
117  *    ->lruvec->lru_lock	(check_pte_range->folio_isolate_lru)
118  *    ->private_lock		(folio_remove_rmap_pte->set_page_dirty)
119  *    ->i_pages lock		(folio_remove_rmap_pte->set_page_dirty)
120  *    bdi.wb->list_lock		(folio_remove_rmap_pte->set_page_dirty)
121  *    ->inode->i_lock		(folio_remove_rmap_pte->set_page_dirty)
122  *    ->memcg->move_lock	(folio_remove_rmap_pte->folio_memcg_lock)
123  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
124  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
125  *    ->private_lock		(zap_pte_range->block_dirty_folio)
126  */
127 
128 static void mapping_set_update(struct xa_state *xas,
129 		struct address_space *mapping)
130 {
131 	if (dax_mapping(mapping) || shmem_mapping(mapping))
132 		return;
133 	xas_set_update(xas, workingset_update_node);
134 	xas_set_lru(xas, &shadow_nodes);
135 }
136 
137 static void page_cache_delete(struct address_space *mapping,
138 				   struct folio *folio, void *shadow)
139 {
140 	XA_STATE(xas, &mapping->i_pages, folio->index);
141 	long nr = 1;
142 
143 	mapping_set_update(&xas, mapping);
144 
145 	xas_set_order(&xas, folio->index, folio_order(folio));
146 	nr = folio_nr_pages(folio);
147 
148 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
149 
150 	xas_store(&xas, shadow);
151 	xas_init_marks(&xas);
152 
153 	folio->mapping = NULL;
154 	/* Leave page->index set: truncation lookup relies upon it */
155 	mapping->nrpages -= nr;
156 }
157 
158 static void filemap_unaccount_folio(struct address_space *mapping,
159 		struct folio *folio)
160 {
161 	long nr;
162 
163 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
164 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
165 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
166 			 current->comm, folio_pfn(folio));
167 		dump_page(&folio->page, "still mapped when deleted");
168 		dump_stack();
169 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
170 
171 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
172 			int mapcount = folio_mapcount(folio);
173 
174 			if (folio_ref_count(folio) >= mapcount + 2) {
175 				/*
176 				 * All vmas have already been torn down, so it's
177 				 * a good bet that actually the page is unmapped
178 				 * and we'd rather not leak it: if we're wrong,
179 				 * another bad page check should catch it later.
180 				 */
181 				atomic_set(&folio->_mapcount, -1);
182 				folio_ref_sub(folio, mapcount);
183 			}
184 		}
185 	}
186 
187 	/* hugetlb folios do not participate in page cache accounting. */
188 	if (folio_test_hugetlb(folio))
189 		return;
190 
191 	nr = folio_nr_pages(folio);
192 
193 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
194 	if (folio_test_swapbacked(folio)) {
195 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
196 		if (folio_test_pmd_mappable(folio))
197 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
198 	} else if (folio_test_pmd_mappable(folio)) {
199 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
200 		filemap_nr_thps_dec(mapping);
201 	}
202 
203 	/*
204 	 * At this point folio must be either written or cleaned by
205 	 * truncate.  Dirty folio here signals a bug and loss of
206 	 * unwritten data - on ordinary filesystems.
207 	 *
208 	 * But it's harmless on in-memory filesystems like tmpfs; and can
209 	 * occur when a driver which did get_user_pages() sets page dirty
210 	 * before putting it, while the inode is being finally evicted.
211 	 *
212 	 * Below fixes dirty accounting after removing the folio entirely
213 	 * but leaves the dirty flag set: it has no effect for truncated
214 	 * folio and anyway will be cleared before returning folio to
215 	 * buddy allocator.
216 	 */
217 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
218 			 mapping_can_writeback(mapping)))
219 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
220 }
221 
222 /*
223  * Delete a page from the page cache and free it. Caller has to make
224  * sure the page is locked and that nobody else uses it - or that usage
225  * is safe.  The caller must hold the i_pages lock.
226  */
227 void __filemap_remove_folio(struct folio *folio, void *shadow)
228 {
229 	struct address_space *mapping = folio->mapping;
230 
231 	trace_mm_filemap_delete_from_page_cache(folio);
232 	filemap_unaccount_folio(mapping, folio);
233 	page_cache_delete(mapping, folio, shadow);
234 }
235 
236 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
237 {
238 	void (*free_folio)(struct folio *);
239 	int refs = 1;
240 
241 	free_folio = mapping->a_ops->free_folio;
242 	if (free_folio)
243 		free_folio(folio);
244 
245 	if (folio_test_large(folio))
246 		refs = folio_nr_pages(folio);
247 	folio_put_refs(folio, refs);
248 }
249 
250 /**
251  * filemap_remove_folio - Remove folio from page cache.
252  * @folio: The folio.
253  *
254  * This must be called only on folios that are locked and have been
255  * verified to be in the page cache.  It will never put the folio into
256  * the free list because the caller has a reference on the page.
257  */
258 void filemap_remove_folio(struct folio *folio)
259 {
260 	struct address_space *mapping = folio->mapping;
261 
262 	BUG_ON(!folio_test_locked(folio));
263 	spin_lock(&mapping->host->i_lock);
264 	xa_lock_irq(&mapping->i_pages);
265 	__filemap_remove_folio(folio, NULL);
266 	xa_unlock_irq(&mapping->i_pages);
267 	if (mapping_shrinkable(mapping))
268 		inode_add_lru(mapping->host);
269 	spin_unlock(&mapping->host->i_lock);
270 
271 	filemap_free_folio(mapping, folio);
272 }
273 
274 /*
275  * page_cache_delete_batch - delete several folios from page cache
276  * @mapping: the mapping to which folios belong
277  * @fbatch: batch of folios to delete
278  *
279  * The function walks over mapping->i_pages and removes folios passed in
280  * @fbatch from the mapping. The function expects @fbatch to be sorted
281  * by page index and is optimised for it to be dense.
282  * It tolerates holes in @fbatch (mapping entries at those indices are not
283  * modified).
284  *
285  * The function expects the i_pages lock to be held.
286  */
287 static void page_cache_delete_batch(struct address_space *mapping,
288 			     struct folio_batch *fbatch)
289 {
290 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
291 	long total_pages = 0;
292 	int i = 0;
293 	struct folio *folio;
294 
295 	mapping_set_update(&xas, mapping);
296 	xas_for_each(&xas, folio, ULONG_MAX) {
297 		if (i >= folio_batch_count(fbatch))
298 			break;
299 
300 		/* A swap/dax/shadow entry got inserted? Skip it. */
301 		if (xa_is_value(folio))
302 			continue;
303 		/*
304 		 * A page got inserted in our range? Skip it. We have our
305 		 * pages locked so they are protected from being removed.
306 		 * If we see a page whose index is higher than ours, it
307 		 * means our page has been removed, which shouldn't be
308 		 * possible because we're holding the PageLock.
309 		 */
310 		if (folio != fbatch->folios[i]) {
311 			VM_BUG_ON_FOLIO(folio->index >
312 					fbatch->folios[i]->index, folio);
313 			continue;
314 		}
315 
316 		WARN_ON_ONCE(!folio_test_locked(folio));
317 
318 		folio->mapping = NULL;
319 		/* Leave folio->index set: truncation lookup relies on it */
320 
321 		i++;
322 		xas_store(&xas, NULL);
323 		total_pages += folio_nr_pages(folio);
324 	}
325 	mapping->nrpages -= total_pages;
326 }
327 
328 void delete_from_page_cache_batch(struct address_space *mapping,
329 				  struct folio_batch *fbatch)
330 {
331 	int i;
332 
333 	if (!folio_batch_count(fbatch))
334 		return;
335 
336 	spin_lock(&mapping->host->i_lock);
337 	xa_lock_irq(&mapping->i_pages);
338 	for (i = 0; i < folio_batch_count(fbatch); i++) {
339 		struct folio *folio = fbatch->folios[i];
340 
341 		trace_mm_filemap_delete_from_page_cache(folio);
342 		filemap_unaccount_folio(mapping, folio);
343 	}
344 	page_cache_delete_batch(mapping, fbatch);
345 	xa_unlock_irq(&mapping->i_pages);
346 	if (mapping_shrinkable(mapping))
347 		inode_add_lru(mapping->host);
348 	spin_unlock(&mapping->host->i_lock);
349 
350 	for (i = 0; i < folio_batch_count(fbatch); i++)
351 		filemap_free_folio(mapping, fbatch->folios[i]);
352 }
353 
354 int filemap_check_errors(struct address_space *mapping)
355 {
356 	int ret = 0;
357 	/* Check for outstanding write errors */
358 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
359 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
360 		ret = -ENOSPC;
361 	if (test_bit(AS_EIO, &mapping->flags) &&
362 	    test_and_clear_bit(AS_EIO, &mapping->flags))
363 		ret = -EIO;
364 	return ret;
365 }
366 EXPORT_SYMBOL(filemap_check_errors);
367 
368 static int filemap_check_and_keep_errors(struct address_space *mapping)
369 {
370 	/* Check for outstanding write errors */
371 	if (test_bit(AS_EIO, &mapping->flags))
372 		return -EIO;
373 	if (test_bit(AS_ENOSPC, &mapping->flags))
374 		return -ENOSPC;
375 	return 0;
376 }
377 
378 /**
379  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
380  * @mapping:	address space structure to write
381  * @wbc:	the writeback_control controlling the writeout
382  *
383  * Call writepages on the mapping using the provided wbc to control the
384  * writeout.
385  *
386  * Return: %0 on success, negative error code otherwise.
387  */
388 int filemap_fdatawrite_wbc(struct address_space *mapping,
389 			   struct writeback_control *wbc)
390 {
391 	int ret;
392 
393 	if (!mapping_can_writeback(mapping) ||
394 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
395 		return 0;
396 
397 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
398 	ret = do_writepages(mapping, wbc);
399 	wbc_detach_inode(wbc);
400 	return ret;
401 }
402 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
403 
404 /**
405  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
406  * @mapping:	address space structure to write
407  * @start:	offset in bytes where the range starts
408  * @end:	offset in bytes where the range ends (inclusive)
409  * @sync_mode:	enable synchronous operation
410  *
411  * Start writeback against all of a mapping's dirty pages that lie
412  * within the byte offsets <start, end> inclusive.
413  *
414  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
415  * opposed to a regular memory cleansing writeback.  The difference between
416  * these two operations is that if a dirty page/buffer is encountered, it must
417  * be waited upon, and not just skipped over.
418  *
419  * Return: %0 on success, negative error code otherwise.
420  */
421 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
422 				loff_t end, int sync_mode)
423 {
424 	struct writeback_control wbc = {
425 		.sync_mode = sync_mode,
426 		.nr_to_write = LONG_MAX,
427 		.range_start = start,
428 		.range_end = end,
429 	};
430 
431 	return filemap_fdatawrite_wbc(mapping, &wbc);
432 }
433 
434 static inline int __filemap_fdatawrite(struct address_space *mapping,
435 	int sync_mode)
436 {
437 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
438 }
439 
440 int filemap_fdatawrite(struct address_space *mapping)
441 {
442 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
443 }
444 EXPORT_SYMBOL(filemap_fdatawrite);
445 
446 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
447 				loff_t end)
448 {
449 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
450 }
451 EXPORT_SYMBOL(filemap_fdatawrite_range);
452 
453 /**
454  * filemap_flush - mostly a non-blocking flush
455  * @mapping:	target address_space
456  *
457  * This is a mostly non-blocking flush.  Not suitable for data-integrity
458  * purposes - I/O may not be started against all dirty pages.
459  *
460  * Return: %0 on success, negative error code otherwise.
461  */
462 int filemap_flush(struct address_space *mapping)
463 {
464 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
465 }
466 EXPORT_SYMBOL(filemap_flush);
467 
468 /**
469  * filemap_range_has_page - check if a page exists in range.
470  * @mapping:           address space within which to check
471  * @start_byte:        offset in bytes where the range starts
472  * @end_byte:          offset in bytes where the range ends (inclusive)
473  *
474  * Find at least one page in the range supplied, usually used to check if
475  * direct writing in this range will trigger a writeback.
476  *
477  * Return: %true if at least one page exists in the specified range,
478  * %false otherwise.
479  */
480 bool filemap_range_has_page(struct address_space *mapping,
481 			   loff_t start_byte, loff_t end_byte)
482 {
483 	struct folio *folio;
484 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
485 	pgoff_t max = end_byte >> PAGE_SHIFT;
486 
487 	if (end_byte < start_byte)
488 		return false;
489 
490 	rcu_read_lock();
491 	for (;;) {
492 		folio = xas_find(&xas, max);
493 		if (xas_retry(&xas, folio))
494 			continue;
495 		/* Shadow entries don't count */
496 		if (xa_is_value(folio))
497 			continue;
498 		/*
499 		 * We don't need to try to pin this page; we're about to
500 		 * release the RCU lock anyway.  It is enough to know that
501 		 * there was a page here recently.
502 		 */
503 		break;
504 	}
505 	rcu_read_unlock();
506 
507 	return folio != NULL;
508 }
509 EXPORT_SYMBOL(filemap_range_has_page);
510 
511 static void __filemap_fdatawait_range(struct address_space *mapping,
512 				     loff_t start_byte, loff_t end_byte)
513 {
514 	pgoff_t index = start_byte >> PAGE_SHIFT;
515 	pgoff_t end = end_byte >> PAGE_SHIFT;
516 	struct folio_batch fbatch;
517 	unsigned nr_folios;
518 
519 	folio_batch_init(&fbatch);
520 
521 	while (index <= end) {
522 		unsigned i;
523 
524 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
525 				PAGECACHE_TAG_WRITEBACK, &fbatch);
526 
527 		if (!nr_folios)
528 			break;
529 
530 		for (i = 0; i < nr_folios; i++) {
531 			struct folio *folio = fbatch.folios[i];
532 
533 			folio_wait_writeback(folio);
534 		}
535 		folio_batch_release(&fbatch);
536 		cond_resched();
537 	}
538 }
539 
540 /**
541  * filemap_fdatawait_range - wait for writeback to complete
542  * @mapping:		address space structure to wait for
543  * @start_byte:		offset in bytes where the range starts
544  * @end_byte:		offset in bytes where the range ends (inclusive)
545  *
546  * Walk the list of under-writeback pages of the given address space
547  * in the given range and wait for all of them.  Check error status of
548  * the address space and return it.
549  *
550  * Since the error status of the address space is cleared by this function,
551  * callers are responsible for checking the return value and handling and/or
552  * reporting the error.
553  *
554  * Return: error status of the address space.
555  */
556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
557 			    loff_t end_byte)
558 {
559 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
560 	return filemap_check_errors(mapping);
561 }
562 EXPORT_SYMBOL(filemap_fdatawait_range);
563 
564 /**
565  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
566  * @mapping:		address space structure to wait for
567  * @start_byte:		offset in bytes where the range starts
568  * @end_byte:		offset in bytes where the range ends (inclusive)
569  *
570  * Walk the list of under-writeback pages of the given address space in the
571  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
572  * this function does not clear error status of the address space.
573  *
574  * Use this function if callers don't handle errors themselves.  Expected
575  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
576  * fsfreeze(8)
577  */
578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
579 		loff_t start_byte, loff_t end_byte)
580 {
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return filemap_check_and_keep_errors(mapping);
583 }
584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
585 
586 /**
587  * file_fdatawait_range - wait for writeback to complete
588  * @file:		file pointing to address space structure to wait for
589  * @start_byte:		offset in bytes where the range starts
590  * @end_byte:		offset in bytes where the range ends (inclusive)
591  *
592  * Walk the list of under-writeback pages of the address space that file
593  * refers to, in the given range and wait for all of them.  Check error
594  * status of the address space vs. the file->f_wb_err cursor and return it.
595  *
596  * Since the error status of the file is advanced by this function,
597  * callers are responsible for checking the return value and handling and/or
598  * reporting the error.
599  *
600  * Return: error status of the address space vs. the file->f_wb_err cursor.
601  */
602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
603 {
604 	struct address_space *mapping = file->f_mapping;
605 
606 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
607 	return file_check_and_advance_wb_err(file);
608 }
609 EXPORT_SYMBOL(file_fdatawait_range);
610 
611 /**
612  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
613  * @mapping: address space structure to wait for
614  *
615  * Walk the list of under-writeback pages of the given address space
616  * and wait for all of them.  Unlike filemap_fdatawait(), this function
617  * does not clear error status of the address space.
618  *
619  * Use this function if callers don't handle errors themselves.  Expected
620  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
621  * fsfreeze(8)
622  *
623  * Return: error status of the address space.
624  */
625 int filemap_fdatawait_keep_errors(struct address_space *mapping)
626 {
627 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
628 	return filemap_check_and_keep_errors(mapping);
629 }
630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
631 
632 /* Returns true if writeback might be needed or already in progress. */
633 static bool mapping_needs_writeback(struct address_space *mapping)
634 {
635 	return mapping->nrpages;
636 }
637 
638 bool filemap_range_has_writeback(struct address_space *mapping,
639 				 loff_t start_byte, loff_t end_byte)
640 {
641 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 	pgoff_t max = end_byte >> PAGE_SHIFT;
643 	struct folio *folio;
644 
645 	if (end_byte < start_byte)
646 		return false;
647 
648 	rcu_read_lock();
649 	xas_for_each(&xas, folio, max) {
650 		if (xas_retry(&xas, folio))
651 			continue;
652 		if (xa_is_value(folio))
653 			continue;
654 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
655 				folio_test_writeback(folio))
656 			break;
657 	}
658 	rcu_read_unlock();
659 	return folio != NULL;
660 }
661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
662 
663 /**
664  * filemap_write_and_wait_range - write out & wait on a file range
665  * @mapping:	the address_space for the pages
666  * @lstart:	offset in bytes where the range starts
667  * @lend:	offset in bytes where the range ends (inclusive)
668  *
669  * Write out and wait upon file offsets lstart->lend, inclusive.
670  *
671  * Note that @lend is inclusive (describes the last byte to be written) so
672  * that this function can be used to write to the very end-of-file (end = -1).
673  *
674  * Return: error status of the address space.
675  */
676 int filemap_write_and_wait_range(struct address_space *mapping,
677 				 loff_t lstart, loff_t lend)
678 {
679 	int err = 0, err2;
680 
681 	if (lend < lstart)
682 		return 0;
683 
684 	if (mapping_needs_writeback(mapping)) {
685 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
686 						 WB_SYNC_ALL);
687 		/*
688 		 * Even if the above returned error, the pages may be
689 		 * written partially (e.g. -ENOSPC), so we wait for it.
690 		 * But the -EIO is special case, it may indicate the worst
691 		 * thing (e.g. bug) happened, so we avoid waiting for it.
692 		 */
693 		if (err != -EIO)
694 			__filemap_fdatawait_range(mapping, lstart, lend);
695 	}
696 	err2 = filemap_check_errors(mapping);
697 	if (!err)
698 		err = err2;
699 	return err;
700 }
701 EXPORT_SYMBOL(filemap_write_and_wait_range);
702 
703 void __filemap_set_wb_err(struct address_space *mapping, int err)
704 {
705 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
706 
707 	trace_filemap_set_wb_err(mapping, eseq);
708 }
709 EXPORT_SYMBOL(__filemap_set_wb_err);
710 
711 /**
712  * file_check_and_advance_wb_err - report wb error (if any) that was previously
713  * 				   and advance wb_err to current one
714  * @file: struct file on which the error is being reported
715  *
716  * When userland calls fsync (or something like nfsd does the equivalent), we
717  * want to report any writeback errors that occurred since the last fsync (or
718  * since the file was opened if there haven't been any).
719  *
720  * Grab the wb_err from the mapping. If it matches what we have in the file,
721  * then just quickly return 0. The file is all caught up.
722  *
723  * If it doesn't match, then take the mapping value, set the "seen" flag in
724  * it and try to swap it into place. If it works, or another task beat us
725  * to it with the new value, then update the f_wb_err and return the error
726  * portion. The error at this point must be reported via proper channels
727  * (a'la fsync, or NFS COMMIT operation, etc.).
728  *
729  * While we handle mapping->wb_err with atomic operations, the f_wb_err
730  * value is protected by the f_lock since we must ensure that it reflects
731  * the latest value swapped in for this file descriptor.
732  *
733  * Return: %0 on success, negative error code otherwise.
734  */
735 int file_check_and_advance_wb_err(struct file *file)
736 {
737 	int err = 0;
738 	errseq_t old = READ_ONCE(file->f_wb_err);
739 	struct address_space *mapping = file->f_mapping;
740 
741 	/* Locklessly handle the common case where nothing has changed */
742 	if (errseq_check(&mapping->wb_err, old)) {
743 		/* Something changed, must use slow path */
744 		spin_lock(&file->f_lock);
745 		old = file->f_wb_err;
746 		err = errseq_check_and_advance(&mapping->wb_err,
747 						&file->f_wb_err);
748 		trace_file_check_and_advance_wb_err(file, old);
749 		spin_unlock(&file->f_lock);
750 	}
751 
752 	/*
753 	 * We're mostly using this function as a drop in replacement for
754 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
755 	 * that the legacy code would have had on these flags.
756 	 */
757 	clear_bit(AS_EIO, &mapping->flags);
758 	clear_bit(AS_ENOSPC, &mapping->flags);
759 	return err;
760 }
761 EXPORT_SYMBOL(file_check_and_advance_wb_err);
762 
763 /**
764  * file_write_and_wait_range - write out & wait on a file range
765  * @file:	file pointing to address_space with pages
766  * @lstart:	offset in bytes where the range starts
767  * @lend:	offset in bytes where the range ends (inclusive)
768  *
769  * Write out and wait upon file offsets lstart->lend, inclusive.
770  *
771  * Note that @lend is inclusive (describes the last byte to be written) so
772  * that this function can be used to write to the very end-of-file (end = -1).
773  *
774  * After writing out and waiting on the data, we check and advance the
775  * f_wb_err cursor to the latest value, and return any errors detected there.
776  *
777  * Return: %0 on success, negative error code otherwise.
778  */
779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
780 {
781 	int err = 0, err2;
782 	struct address_space *mapping = file->f_mapping;
783 
784 	if (lend < lstart)
785 		return 0;
786 
787 	if (mapping_needs_writeback(mapping)) {
788 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
789 						 WB_SYNC_ALL);
790 		/* See comment of filemap_write_and_wait() */
791 		if (err != -EIO)
792 			__filemap_fdatawait_range(mapping, lstart, lend);
793 	}
794 	err2 = file_check_and_advance_wb_err(file);
795 	if (!err)
796 		err = err2;
797 	return err;
798 }
799 EXPORT_SYMBOL(file_write_and_wait_range);
800 
801 /**
802  * replace_page_cache_folio - replace a pagecache folio with a new one
803  * @old:	folio to be replaced
804  * @new:	folio to replace with
805  *
806  * This function replaces a folio in the pagecache with a new one.  On
807  * success it acquires the pagecache reference for the new folio and
808  * drops it for the old folio.  Both the old and new folios must be
809  * locked.  This function does not add the new folio to the LRU, the
810  * caller must do that.
811  *
812  * The remove + add is atomic.  This function cannot fail.
813  */
814 void replace_page_cache_folio(struct folio *old, struct folio *new)
815 {
816 	struct address_space *mapping = old->mapping;
817 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
818 	pgoff_t offset = old->index;
819 	XA_STATE(xas, &mapping->i_pages, offset);
820 
821 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
822 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
823 	VM_BUG_ON_FOLIO(new->mapping, new);
824 
825 	folio_get(new);
826 	new->mapping = mapping;
827 	new->index = offset;
828 
829 	mem_cgroup_replace_folio(old, new);
830 
831 	xas_lock_irq(&xas);
832 	xas_store(&xas, new);
833 
834 	old->mapping = NULL;
835 	/* hugetlb pages do not participate in page cache accounting. */
836 	if (!folio_test_hugetlb(old))
837 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
838 	if (!folio_test_hugetlb(new))
839 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
840 	if (folio_test_swapbacked(old))
841 		__lruvec_stat_sub_folio(old, NR_SHMEM);
842 	if (folio_test_swapbacked(new))
843 		__lruvec_stat_add_folio(new, NR_SHMEM);
844 	xas_unlock_irq(&xas);
845 	if (free_folio)
846 		free_folio(old);
847 	folio_put(old);
848 }
849 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
850 
851 noinline int __filemap_add_folio(struct address_space *mapping,
852 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
853 {
854 	XA_STATE(xas, &mapping->i_pages, index);
855 	void *alloced_shadow = NULL;
856 	int alloced_order = 0;
857 	bool huge;
858 	long nr;
859 
860 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
861 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
862 	VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping),
863 			folio);
864 	mapping_set_update(&xas, mapping);
865 
866 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
867 	xas_set_order(&xas, index, folio_order(folio));
868 	huge = folio_test_hugetlb(folio);
869 	nr = folio_nr_pages(folio);
870 
871 	gfp &= GFP_RECLAIM_MASK;
872 	folio_ref_add(folio, nr);
873 	folio->mapping = mapping;
874 	folio->index = xas.xa_index;
875 
876 	for (;;) {
877 		int order = -1, split_order = 0;
878 		void *entry, *old = NULL;
879 
880 		xas_lock_irq(&xas);
881 		xas_for_each_conflict(&xas, entry) {
882 			old = entry;
883 			if (!xa_is_value(entry)) {
884 				xas_set_err(&xas, -EEXIST);
885 				goto unlock;
886 			}
887 			/*
888 			 * If a larger entry exists,
889 			 * it will be the first and only entry iterated.
890 			 */
891 			if (order == -1)
892 				order = xas_get_order(&xas);
893 		}
894 
895 		/* entry may have changed before we re-acquire the lock */
896 		if (alloced_order && (old != alloced_shadow || order != alloced_order)) {
897 			xas_destroy(&xas);
898 			alloced_order = 0;
899 		}
900 
901 		if (old) {
902 			if (order > 0 && order > folio_order(folio)) {
903 				/* How to handle large swap entries? */
904 				BUG_ON(shmem_mapping(mapping));
905 				if (!alloced_order) {
906 					split_order = order;
907 					goto unlock;
908 				}
909 				xas_split(&xas, old, order);
910 				xas_reset(&xas);
911 			}
912 			if (shadowp)
913 				*shadowp = old;
914 		}
915 
916 		xas_store(&xas, folio);
917 		if (xas_error(&xas))
918 			goto unlock;
919 
920 		mapping->nrpages += nr;
921 
922 		/* hugetlb pages do not participate in page cache accounting */
923 		if (!huge) {
924 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
925 			if (folio_test_pmd_mappable(folio))
926 				__lruvec_stat_mod_folio(folio,
927 						NR_FILE_THPS, nr);
928 		}
929 
930 unlock:
931 		xas_unlock_irq(&xas);
932 
933 		/* split needed, alloc here and retry. */
934 		if (split_order) {
935 			xas_split_alloc(&xas, old, split_order, gfp);
936 			if (xas_error(&xas))
937 				goto error;
938 			alloced_shadow = old;
939 			alloced_order = split_order;
940 			xas_reset(&xas);
941 			continue;
942 		}
943 
944 		if (!xas_nomem(&xas, gfp))
945 			break;
946 	}
947 
948 	if (xas_error(&xas))
949 		goto error;
950 
951 	trace_mm_filemap_add_to_page_cache(folio);
952 	return 0;
953 error:
954 	folio->mapping = NULL;
955 	/* Leave page->index set: truncation relies upon it */
956 	folio_put_refs(folio, nr);
957 	return xas_error(&xas);
958 }
959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
960 
961 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
962 				pgoff_t index, gfp_t gfp)
963 {
964 	void *shadow = NULL;
965 	int ret;
966 
967 	ret = mem_cgroup_charge(folio, NULL, gfp);
968 	if (ret)
969 		return ret;
970 
971 	__folio_set_locked(folio);
972 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
973 	if (unlikely(ret)) {
974 		mem_cgroup_uncharge(folio);
975 		__folio_clear_locked(folio);
976 	} else {
977 		/*
978 		 * The folio might have been evicted from cache only
979 		 * recently, in which case it should be activated like
980 		 * any other repeatedly accessed folio.
981 		 * The exception is folios getting rewritten; evicting other
982 		 * data from the working set, only to cache data that will
983 		 * get overwritten with something else, is a waste of memory.
984 		 */
985 		WARN_ON_ONCE(folio_test_active(folio));
986 		if (!(gfp & __GFP_WRITE) && shadow)
987 			workingset_refault(folio, shadow);
988 		folio_add_lru(folio);
989 	}
990 	return ret;
991 }
992 EXPORT_SYMBOL_GPL(filemap_add_folio);
993 
994 #ifdef CONFIG_NUMA
995 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order)
996 {
997 	int n;
998 	struct folio *folio;
999 
1000 	if (cpuset_do_page_mem_spread()) {
1001 		unsigned int cpuset_mems_cookie;
1002 		do {
1003 			cpuset_mems_cookie = read_mems_allowed_begin();
1004 			n = cpuset_mem_spread_node();
1005 			folio = __folio_alloc_node_noprof(gfp, order, n);
1006 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
1007 
1008 		return folio;
1009 	}
1010 	return folio_alloc_noprof(gfp, order);
1011 }
1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof);
1013 #endif
1014 
1015 /*
1016  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1017  *
1018  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1019  *
1020  * @mapping1: the first mapping to lock
1021  * @mapping2: the second mapping to lock
1022  */
1023 void filemap_invalidate_lock_two(struct address_space *mapping1,
1024 				 struct address_space *mapping2)
1025 {
1026 	if (mapping1 > mapping2)
1027 		swap(mapping1, mapping2);
1028 	if (mapping1)
1029 		down_write(&mapping1->invalidate_lock);
1030 	if (mapping2 && mapping1 != mapping2)
1031 		down_write_nested(&mapping2->invalidate_lock, 1);
1032 }
1033 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1034 
1035 /*
1036  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1037  *
1038  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1039  *
1040  * @mapping1: the first mapping to unlock
1041  * @mapping2: the second mapping to unlock
1042  */
1043 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1044 				   struct address_space *mapping2)
1045 {
1046 	if (mapping1)
1047 		up_write(&mapping1->invalidate_lock);
1048 	if (mapping2 && mapping1 != mapping2)
1049 		up_write(&mapping2->invalidate_lock);
1050 }
1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1052 
1053 /*
1054  * In order to wait for pages to become available there must be
1055  * waitqueues associated with pages. By using a hash table of
1056  * waitqueues where the bucket discipline is to maintain all
1057  * waiters on the same queue and wake all when any of the pages
1058  * become available, and for the woken contexts to check to be
1059  * sure the appropriate page became available, this saves space
1060  * at a cost of "thundering herd" phenomena during rare hash
1061  * collisions.
1062  */
1063 #define PAGE_WAIT_TABLE_BITS 8
1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1065 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1066 
1067 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1068 {
1069 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1070 }
1071 
1072 void __init pagecache_init(void)
1073 {
1074 	int i;
1075 
1076 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1077 		init_waitqueue_head(&folio_wait_table[i]);
1078 
1079 	page_writeback_init();
1080 }
1081 
1082 /*
1083  * The page wait code treats the "wait->flags" somewhat unusually, because
1084  * we have multiple different kinds of waits, not just the usual "exclusive"
1085  * one.
1086  *
1087  * We have:
1088  *
1089  *  (a) no special bits set:
1090  *
1091  *	We're just waiting for the bit to be released, and when a waker
1092  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1093  *	and remove it from the wait queue.
1094  *
1095  *	Simple and straightforward.
1096  *
1097  *  (b) WQ_FLAG_EXCLUSIVE:
1098  *
1099  *	The waiter is waiting to get the lock, and only one waiter should
1100  *	be woken up to avoid any thundering herd behavior. We'll set the
1101  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1102  *
1103  *	This is the traditional exclusive wait.
1104  *
1105  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1106  *
1107  *	The waiter is waiting to get the bit, and additionally wants the
1108  *	lock to be transferred to it for fair lock behavior. If the lock
1109  *	cannot be taken, we stop walking the wait queue without waking
1110  *	the waiter.
1111  *
1112  *	This is the "fair lock handoff" case, and in addition to setting
1113  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1114  *	that it now has the lock.
1115  */
1116 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1117 {
1118 	unsigned int flags;
1119 	struct wait_page_key *key = arg;
1120 	struct wait_page_queue *wait_page
1121 		= container_of(wait, struct wait_page_queue, wait);
1122 
1123 	if (!wake_page_match(wait_page, key))
1124 		return 0;
1125 
1126 	/*
1127 	 * If it's a lock handoff wait, we get the bit for it, and
1128 	 * stop walking (and do not wake it up) if we can't.
1129 	 */
1130 	flags = wait->flags;
1131 	if (flags & WQ_FLAG_EXCLUSIVE) {
1132 		if (test_bit(key->bit_nr, &key->folio->flags))
1133 			return -1;
1134 		if (flags & WQ_FLAG_CUSTOM) {
1135 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1136 				return -1;
1137 			flags |= WQ_FLAG_DONE;
1138 		}
1139 	}
1140 
1141 	/*
1142 	 * We are holding the wait-queue lock, but the waiter that
1143 	 * is waiting for this will be checking the flags without
1144 	 * any locking.
1145 	 *
1146 	 * So update the flags atomically, and wake up the waiter
1147 	 * afterwards to avoid any races. This store-release pairs
1148 	 * with the load-acquire in folio_wait_bit_common().
1149 	 */
1150 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1151 	wake_up_state(wait->private, mode);
1152 
1153 	/*
1154 	 * Ok, we have successfully done what we're waiting for,
1155 	 * and we can unconditionally remove the wait entry.
1156 	 *
1157 	 * Note that this pairs with the "finish_wait()" in the
1158 	 * waiter, and has to be the absolute last thing we do.
1159 	 * After this list_del_init(&wait->entry) the wait entry
1160 	 * might be de-allocated and the process might even have
1161 	 * exited.
1162 	 */
1163 	list_del_init_careful(&wait->entry);
1164 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1165 }
1166 
1167 static void folio_wake_bit(struct folio *folio, int bit_nr)
1168 {
1169 	wait_queue_head_t *q = folio_waitqueue(folio);
1170 	struct wait_page_key key;
1171 	unsigned long flags;
1172 
1173 	key.folio = folio;
1174 	key.bit_nr = bit_nr;
1175 	key.page_match = 0;
1176 
1177 	spin_lock_irqsave(&q->lock, flags);
1178 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1179 
1180 	/*
1181 	 * It's possible to miss clearing waiters here, when we woke our page
1182 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1183 	 * That's okay, it's a rare case. The next waker will clear it.
1184 	 *
1185 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1186 	 * other), the flag may be cleared in the course of freeing the page;
1187 	 * but that is not required for correctness.
1188 	 */
1189 	if (!waitqueue_active(q) || !key.page_match)
1190 		folio_clear_waiters(folio);
1191 
1192 	spin_unlock_irqrestore(&q->lock, flags);
1193 }
1194 
1195 /*
1196  * A choice of three behaviors for folio_wait_bit_common():
1197  */
1198 enum behavior {
1199 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1200 			 * __folio_lock() waiting on then setting PG_locked.
1201 			 */
1202 	SHARED,		/* Hold ref to page and check the bit when woken, like
1203 			 * folio_wait_writeback() waiting on PG_writeback.
1204 			 */
1205 	DROP,		/* Drop ref to page before wait, no check when woken,
1206 			 * like folio_put_wait_locked() on PG_locked.
1207 			 */
1208 };
1209 
1210 /*
1211  * Attempt to check (or get) the folio flag, and mark us done
1212  * if successful.
1213  */
1214 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1215 					struct wait_queue_entry *wait)
1216 {
1217 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1218 		if (test_and_set_bit(bit_nr, &folio->flags))
1219 			return false;
1220 	} else if (test_bit(bit_nr, &folio->flags))
1221 		return false;
1222 
1223 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1224 	return true;
1225 }
1226 
1227 /* How many times do we accept lock stealing from under a waiter? */
1228 int sysctl_page_lock_unfairness = 5;
1229 
1230 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1231 		int state, enum behavior behavior)
1232 {
1233 	wait_queue_head_t *q = folio_waitqueue(folio);
1234 	int unfairness = sysctl_page_lock_unfairness;
1235 	struct wait_page_queue wait_page;
1236 	wait_queue_entry_t *wait = &wait_page.wait;
1237 	bool thrashing = false;
1238 	unsigned long pflags;
1239 	bool in_thrashing;
1240 
1241 	if (bit_nr == PG_locked &&
1242 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1243 		delayacct_thrashing_start(&in_thrashing);
1244 		psi_memstall_enter(&pflags);
1245 		thrashing = true;
1246 	}
1247 
1248 	init_wait(wait);
1249 	wait->func = wake_page_function;
1250 	wait_page.folio = folio;
1251 	wait_page.bit_nr = bit_nr;
1252 
1253 repeat:
1254 	wait->flags = 0;
1255 	if (behavior == EXCLUSIVE) {
1256 		wait->flags = WQ_FLAG_EXCLUSIVE;
1257 		if (--unfairness < 0)
1258 			wait->flags |= WQ_FLAG_CUSTOM;
1259 	}
1260 
1261 	/*
1262 	 * Do one last check whether we can get the
1263 	 * page bit synchronously.
1264 	 *
1265 	 * Do the folio_set_waiters() marking before that
1266 	 * to let any waker we _just_ missed know they
1267 	 * need to wake us up (otherwise they'll never
1268 	 * even go to the slow case that looks at the
1269 	 * page queue), and add ourselves to the wait
1270 	 * queue if we need to sleep.
1271 	 *
1272 	 * This part needs to be done under the queue
1273 	 * lock to avoid races.
1274 	 */
1275 	spin_lock_irq(&q->lock);
1276 	folio_set_waiters(folio);
1277 	if (!folio_trylock_flag(folio, bit_nr, wait))
1278 		__add_wait_queue_entry_tail(q, wait);
1279 	spin_unlock_irq(&q->lock);
1280 
1281 	/*
1282 	 * From now on, all the logic will be based on
1283 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1284 	 * see whether the page bit testing has already
1285 	 * been done by the wake function.
1286 	 *
1287 	 * We can drop our reference to the folio.
1288 	 */
1289 	if (behavior == DROP)
1290 		folio_put(folio);
1291 
1292 	/*
1293 	 * Note that until the "finish_wait()", or until
1294 	 * we see the WQ_FLAG_WOKEN flag, we need to
1295 	 * be very careful with the 'wait->flags', because
1296 	 * we may race with a waker that sets them.
1297 	 */
1298 	for (;;) {
1299 		unsigned int flags;
1300 
1301 		set_current_state(state);
1302 
1303 		/* Loop until we've been woken or interrupted */
1304 		flags = smp_load_acquire(&wait->flags);
1305 		if (!(flags & WQ_FLAG_WOKEN)) {
1306 			if (signal_pending_state(state, current))
1307 				break;
1308 
1309 			io_schedule();
1310 			continue;
1311 		}
1312 
1313 		/* If we were non-exclusive, we're done */
1314 		if (behavior != EXCLUSIVE)
1315 			break;
1316 
1317 		/* If the waker got the lock for us, we're done */
1318 		if (flags & WQ_FLAG_DONE)
1319 			break;
1320 
1321 		/*
1322 		 * Otherwise, if we're getting the lock, we need to
1323 		 * try to get it ourselves.
1324 		 *
1325 		 * And if that fails, we'll have to retry this all.
1326 		 */
1327 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1328 			goto repeat;
1329 
1330 		wait->flags |= WQ_FLAG_DONE;
1331 		break;
1332 	}
1333 
1334 	/*
1335 	 * If a signal happened, this 'finish_wait()' may remove the last
1336 	 * waiter from the wait-queues, but the folio waiters bit will remain
1337 	 * set. That's ok. The next wakeup will take care of it, and trying
1338 	 * to do it here would be difficult and prone to races.
1339 	 */
1340 	finish_wait(q, wait);
1341 
1342 	if (thrashing) {
1343 		delayacct_thrashing_end(&in_thrashing);
1344 		psi_memstall_leave(&pflags);
1345 	}
1346 
1347 	/*
1348 	 * NOTE! The wait->flags weren't stable until we've done the
1349 	 * 'finish_wait()', and we could have exited the loop above due
1350 	 * to a signal, and had a wakeup event happen after the signal
1351 	 * test but before the 'finish_wait()'.
1352 	 *
1353 	 * So only after the finish_wait() can we reliably determine
1354 	 * if we got woken up or not, so we can now figure out the final
1355 	 * return value based on that state without races.
1356 	 *
1357 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1358 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1359 	 */
1360 	if (behavior == EXCLUSIVE)
1361 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1362 
1363 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1364 }
1365 
1366 #ifdef CONFIG_MIGRATION
1367 /**
1368  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1369  * @entry: migration swap entry.
1370  * @ptl: already locked ptl. This function will drop the lock.
1371  *
1372  * Wait for a migration entry referencing the given page to be removed. This is
1373  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1374  * this can be called without taking a reference on the page. Instead this
1375  * should be called while holding the ptl for the migration entry referencing
1376  * the page.
1377  *
1378  * Returns after unlocking the ptl.
1379  *
1380  * This follows the same logic as folio_wait_bit_common() so see the comments
1381  * there.
1382  */
1383 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1384 	__releases(ptl)
1385 {
1386 	struct wait_page_queue wait_page;
1387 	wait_queue_entry_t *wait = &wait_page.wait;
1388 	bool thrashing = false;
1389 	unsigned long pflags;
1390 	bool in_thrashing;
1391 	wait_queue_head_t *q;
1392 	struct folio *folio = pfn_swap_entry_folio(entry);
1393 
1394 	q = folio_waitqueue(folio);
1395 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1396 		delayacct_thrashing_start(&in_thrashing);
1397 		psi_memstall_enter(&pflags);
1398 		thrashing = true;
1399 	}
1400 
1401 	init_wait(wait);
1402 	wait->func = wake_page_function;
1403 	wait_page.folio = folio;
1404 	wait_page.bit_nr = PG_locked;
1405 	wait->flags = 0;
1406 
1407 	spin_lock_irq(&q->lock);
1408 	folio_set_waiters(folio);
1409 	if (!folio_trylock_flag(folio, PG_locked, wait))
1410 		__add_wait_queue_entry_tail(q, wait);
1411 	spin_unlock_irq(&q->lock);
1412 
1413 	/*
1414 	 * If a migration entry exists for the page the migration path must hold
1415 	 * a valid reference to the page, and it must take the ptl to remove the
1416 	 * migration entry. So the page is valid until the ptl is dropped.
1417 	 */
1418 	spin_unlock(ptl);
1419 
1420 	for (;;) {
1421 		unsigned int flags;
1422 
1423 		set_current_state(TASK_UNINTERRUPTIBLE);
1424 
1425 		/* Loop until we've been woken or interrupted */
1426 		flags = smp_load_acquire(&wait->flags);
1427 		if (!(flags & WQ_FLAG_WOKEN)) {
1428 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1429 				break;
1430 
1431 			io_schedule();
1432 			continue;
1433 		}
1434 		break;
1435 	}
1436 
1437 	finish_wait(q, wait);
1438 
1439 	if (thrashing) {
1440 		delayacct_thrashing_end(&in_thrashing);
1441 		psi_memstall_leave(&pflags);
1442 	}
1443 }
1444 #endif
1445 
1446 void folio_wait_bit(struct folio *folio, int bit_nr)
1447 {
1448 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1449 }
1450 EXPORT_SYMBOL(folio_wait_bit);
1451 
1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1453 {
1454 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1455 }
1456 EXPORT_SYMBOL(folio_wait_bit_killable);
1457 
1458 /**
1459  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1460  * @folio: The folio to wait for.
1461  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1462  *
1463  * The caller should hold a reference on @folio.  They expect the page to
1464  * become unlocked relatively soon, but do not wish to hold up migration
1465  * (for example) by holding the reference while waiting for the folio to
1466  * come unlocked.  After this function returns, the caller should not
1467  * dereference @folio.
1468  *
1469  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1470  */
1471 static int folio_put_wait_locked(struct folio *folio, int state)
1472 {
1473 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1474 }
1475 
1476 /**
1477  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1478  * @folio: Folio defining the wait queue of interest
1479  * @waiter: Waiter to add to the queue
1480  *
1481  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1482  */
1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1484 {
1485 	wait_queue_head_t *q = folio_waitqueue(folio);
1486 	unsigned long flags;
1487 
1488 	spin_lock_irqsave(&q->lock, flags);
1489 	__add_wait_queue_entry_tail(q, waiter);
1490 	folio_set_waiters(folio);
1491 	spin_unlock_irqrestore(&q->lock, flags);
1492 }
1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1494 
1495 /**
1496  * folio_unlock - Unlock a locked folio.
1497  * @folio: The folio.
1498  *
1499  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1500  *
1501  * Context: May be called from interrupt or process context.  May not be
1502  * called from NMI context.
1503  */
1504 void folio_unlock(struct folio *folio)
1505 {
1506 	/* Bit 7 allows x86 to check the byte's sign bit */
1507 	BUILD_BUG_ON(PG_waiters != 7);
1508 	BUILD_BUG_ON(PG_locked > 7);
1509 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1510 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1511 		folio_wake_bit(folio, PG_locked);
1512 }
1513 EXPORT_SYMBOL(folio_unlock);
1514 
1515 /**
1516  * folio_end_read - End read on a folio.
1517  * @folio: The folio.
1518  * @success: True if all reads completed successfully.
1519  *
1520  * When all reads against a folio have completed, filesystems should
1521  * call this function to let the pagecache know that no more reads
1522  * are outstanding.  This will unlock the folio and wake up any thread
1523  * sleeping on the lock.  The folio will also be marked uptodate if all
1524  * reads succeeded.
1525  *
1526  * Context: May be called from interrupt or process context.  May not be
1527  * called from NMI context.
1528  */
1529 void folio_end_read(struct folio *folio, bool success)
1530 {
1531 	unsigned long mask = 1 << PG_locked;
1532 
1533 	/* Must be in bottom byte for x86 to work */
1534 	BUILD_BUG_ON(PG_uptodate > 7);
1535 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1536 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1537 
1538 	if (likely(success))
1539 		mask |= 1 << PG_uptodate;
1540 	if (folio_xor_flags_has_waiters(folio, mask))
1541 		folio_wake_bit(folio, PG_locked);
1542 }
1543 EXPORT_SYMBOL(folio_end_read);
1544 
1545 /**
1546  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1547  * @folio: The folio.
1548  *
1549  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1550  * it.  The folio reference held for PG_private_2 being set is released.
1551  *
1552  * This is, for example, used when a netfs folio is being written to a local
1553  * disk cache, thereby allowing writes to the cache for the same folio to be
1554  * serialised.
1555  */
1556 void folio_end_private_2(struct folio *folio)
1557 {
1558 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1559 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1560 	folio_wake_bit(folio, PG_private_2);
1561 	folio_put(folio);
1562 }
1563 EXPORT_SYMBOL(folio_end_private_2);
1564 
1565 /**
1566  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1567  * @folio: The folio to wait on.
1568  *
1569  * Wait for PG_private_2 to be cleared on a folio.
1570  */
1571 void folio_wait_private_2(struct folio *folio)
1572 {
1573 	while (folio_test_private_2(folio))
1574 		folio_wait_bit(folio, PG_private_2);
1575 }
1576 EXPORT_SYMBOL(folio_wait_private_2);
1577 
1578 /**
1579  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1580  * @folio: The folio to wait on.
1581  *
1582  * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is
1583  * received by the calling task.
1584  *
1585  * Return:
1586  * - 0 if successful.
1587  * - -EINTR if a fatal signal was encountered.
1588  */
1589 int folio_wait_private_2_killable(struct folio *folio)
1590 {
1591 	int ret = 0;
1592 
1593 	while (folio_test_private_2(folio)) {
1594 		ret = folio_wait_bit_killable(folio, PG_private_2);
1595 		if (ret < 0)
1596 			break;
1597 	}
1598 
1599 	return ret;
1600 }
1601 EXPORT_SYMBOL(folio_wait_private_2_killable);
1602 
1603 /**
1604  * folio_end_writeback - End writeback against a folio.
1605  * @folio: The folio.
1606  *
1607  * The folio must actually be under writeback.
1608  *
1609  * Context: May be called from process or interrupt context.
1610  */
1611 void folio_end_writeback(struct folio *folio)
1612 {
1613 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1614 
1615 	/*
1616 	 * folio_test_clear_reclaim() could be used here but it is an
1617 	 * atomic operation and overkill in this particular case. Failing
1618 	 * to shuffle a folio marked for immediate reclaim is too mild
1619 	 * a gain to justify taking an atomic operation penalty at the
1620 	 * end of every folio writeback.
1621 	 */
1622 	if (folio_test_reclaim(folio)) {
1623 		folio_clear_reclaim(folio);
1624 		folio_rotate_reclaimable(folio);
1625 	}
1626 
1627 	/*
1628 	 * Writeback does not hold a folio reference of its own, relying
1629 	 * on truncation to wait for the clearing of PG_writeback.
1630 	 * But here we must make sure that the folio is not freed and
1631 	 * reused before the folio_wake_bit().
1632 	 */
1633 	folio_get(folio);
1634 	if (__folio_end_writeback(folio))
1635 		folio_wake_bit(folio, PG_writeback);
1636 	acct_reclaim_writeback(folio);
1637 	folio_put(folio);
1638 }
1639 EXPORT_SYMBOL(folio_end_writeback);
1640 
1641 /**
1642  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1643  * @folio: The folio to lock
1644  */
1645 void __folio_lock(struct folio *folio)
1646 {
1647 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1648 				EXCLUSIVE);
1649 }
1650 EXPORT_SYMBOL(__folio_lock);
1651 
1652 int __folio_lock_killable(struct folio *folio)
1653 {
1654 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1655 					EXCLUSIVE);
1656 }
1657 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1658 
1659 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1660 {
1661 	struct wait_queue_head *q = folio_waitqueue(folio);
1662 	int ret;
1663 
1664 	wait->folio = folio;
1665 	wait->bit_nr = PG_locked;
1666 
1667 	spin_lock_irq(&q->lock);
1668 	__add_wait_queue_entry_tail(q, &wait->wait);
1669 	folio_set_waiters(folio);
1670 	ret = !folio_trylock(folio);
1671 	/*
1672 	 * If we were successful now, we know we're still on the
1673 	 * waitqueue as we're still under the lock. This means it's
1674 	 * safe to remove and return success, we know the callback
1675 	 * isn't going to trigger.
1676 	 */
1677 	if (!ret)
1678 		__remove_wait_queue(q, &wait->wait);
1679 	else
1680 		ret = -EIOCBQUEUED;
1681 	spin_unlock_irq(&q->lock);
1682 	return ret;
1683 }
1684 
1685 /*
1686  * Return values:
1687  * 0 - folio is locked.
1688  * non-zero - folio is not locked.
1689  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1690  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1691  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1692  *
1693  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1694  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1695  */
1696 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1697 {
1698 	unsigned int flags = vmf->flags;
1699 
1700 	if (fault_flag_allow_retry_first(flags)) {
1701 		/*
1702 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1703 		 * released even though returning VM_FAULT_RETRY.
1704 		 */
1705 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1706 			return VM_FAULT_RETRY;
1707 
1708 		release_fault_lock(vmf);
1709 		if (flags & FAULT_FLAG_KILLABLE)
1710 			folio_wait_locked_killable(folio);
1711 		else
1712 			folio_wait_locked(folio);
1713 		return VM_FAULT_RETRY;
1714 	}
1715 	if (flags & FAULT_FLAG_KILLABLE) {
1716 		bool ret;
1717 
1718 		ret = __folio_lock_killable(folio);
1719 		if (ret) {
1720 			release_fault_lock(vmf);
1721 			return VM_FAULT_RETRY;
1722 		}
1723 	} else {
1724 		__folio_lock(folio);
1725 	}
1726 
1727 	return 0;
1728 }
1729 
1730 /**
1731  * page_cache_next_miss() - Find the next gap in the page cache.
1732  * @mapping: Mapping.
1733  * @index: Index.
1734  * @max_scan: Maximum range to search.
1735  *
1736  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1737  * gap with the lowest index.
1738  *
1739  * This function may be called under the rcu_read_lock.  However, this will
1740  * not atomically search a snapshot of the cache at a single point in time.
1741  * For example, if a gap is created at index 5, then subsequently a gap is
1742  * created at index 10, page_cache_next_miss covering both indices may
1743  * return 10 if called under the rcu_read_lock.
1744  *
1745  * Return: The index of the gap if found, otherwise an index outside the
1746  * range specified (in which case 'return - index >= max_scan' will be true).
1747  * In the rare case of index wrap-around, 0 will be returned.
1748  */
1749 pgoff_t page_cache_next_miss(struct address_space *mapping,
1750 			     pgoff_t index, unsigned long max_scan)
1751 {
1752 	XA_STATE(xas, &mapping->i_pages, index);
1753 
1754 	while (max_scan--) {
1755 		void *entry = xas_next(&xas);
1756 		if (!entry || xa_is_value(entry))
1757 			return xas.xa_index;
1758 		if (xas.xa_index == 0)
1759 			return 0;
1760 	}
1761 
1762 	return index + max_scan;
1763 }
1764 EXPORT_SYMBOL(page_cache_next_miss);
1765 
1766 /**
1767  * page_cache_prev_miss() - Find the previous gap in the page cache.
1768  * @mapping: Mapping.
1769  * @index: Index.
1770  * @max_scan: Maximum range to search.
1771  *
1772  * Search the range [max(index - max_scan + 1, 0), index] for the
1773  * gap with the highest index.
1774  *
1775  * This function may be called under the rcu_read_lock.  However, this will
1776  * not atomically search a snapshot of the cache at a single point in time.
1777  * For example, if a gap is created at index 10, then subsequently a gap is
1778  * created at index 5, page_cache_prev_miss() covering both indices may
1779  * return 5 if called under the rcu_read_lock.
1780  *
1781  * Return: The index of the gap if found, otherwise an index outside the
1782  * range specified (in which case 'index - return >= max_scan' will be true).
1783  * In the rare case of wrap-around, ULONG_MAX will be returned.
1784  */
1785 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1786 			     pgoff_t index, unsigned long max_scan)
1787 {
1788 	XA_STATE(xas, &mapping->i_pages, index);
1789 
1790 	while (max_scan--) {
1791 		void *entry = xas_prev(&xas);
1792 		if (!entry || xa_is_value(entry))
1793 			break;
1794 		if (xas.xa_index == ULONG_MAX)
1795 			break;
1796 	}
1797 
1798 	return xas.xa_index;
1799 }
1800 EXPORT_SYMBOL(page_cache_prev_miss);
1801 
1802 /*
1803  * Lockless page cache protocol:
1804  * On the lookup side:
1805  * 1. Load the folio from i_pages
1806  * 2. Increment the refcount if it's not zero
1807  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1808  *
1809  * On the removal side:
1810  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1811  * B. Remove the page from i_pages
1812  * C. Return the page to the page allocator
1813  *
1814  * This means that any page may have its reference count temporarily
1815  * increased by a speculative page cache (or GUP-fast) lookup as it can
1816  * be allocated by another user before the RCU grace period expires.
1817  * Because the refcount temporarily acquired here may end up being the
1818  * last refcount on the page, any page allocation must be freeable by
1819  * folio_put().
1820  */
1821 
1822 /*
1823  * filemap_get_entry - Get a page cache entry.
1824  * @mapping: the address_space to search
1825  * @index: The page cache index.
1826  *
1827  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1828  * it is returned with an increased refcount.  If it is a shadow entry
1829  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1830  * it is returned without further action.
1831  *
1832  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1833  */
1834 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1835 {
1836 	XA_STATE(xas, &mapping->i_pages, index);
1837 	struct folio *folio;
1838 
1839 	rcu_read_lock();
1840 repeat:
1841 	xas_reset(&xas);
1842 	folio = xas_load(&xas);
1843 	if (xas_retry(&xas, folio))
1844 		goto repeat;
1845 	/*
1846 	 * A shadow entry of a recently evicted page, or a swap entry from
1847 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1848 	 */
1849 	if (!folio || xa_is_value(folio))
1850 		goto out;
1851 
1852 	if (!folio_try_get(folio))
1853 		goto repeat;
1854 
1855 	if (unlikely(folio != xas_reload(&xas))) {
1856 		folio_put(folio);
1857 		goto repeat;
1858 	}
1859 out:
1860 	rcu_read_unlock();
1861 
1862 	return folio;
1863 }
1864 
1865 /**
1866  * __filemap_get_folio - Find and get a reference to a folio.
1867  * @mapping: The address_space to search.
1868  * @index: The page index.
1869  * @fgp_flags: %FGP flags modify how the folio is returned.
1870  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1871  *
1872  * Looks up the page cache entry at @mapping & @index.
1873  *
1874  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1875  * if the %GFP flags specified for %FGP_CREAT are atomic.
1876  *
1877  * If this function returns a folio, it is returned with an increased refcount.
1878  *
1879  * Return: The found folio or an ERR_PTR() otherwise.
1880  */
1881 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1882 		fgf_t fgp_flags, gfp_t gfp)
1883 {
1884 	struct folio *folio;
1885 
1886 repeat:
1887 	folio = filemap_get_entry(mapping, index);
1888 	if (xa_is_value(folio))
1889 		folio = NULL;
1890 	if (!folio)
1891 		goto no_page;
1892 
1893 	if (fgp_flags & FGP_LOCK) {
1894 		if (fgp_flags & FGP_NOWAIT) {
1895 			if (!folio_trylock(folio)) {
1896 				folio_put(folio);
1897 				return ERR_PTR(-EAGAIN);
1898 			}
1899 		} else {
1900 			folio_lock(folio);
1901 		}
1902 
1903 		/* Has the page been truncated? */
1904 		if (unlikely(folio->mapping != mapping)) {
1905 			folio_unlock(folio);
1906 			folio_put(folio);
1907 			goto repeat;
1908 		}
1909 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1910 	}
1911 
1912 	if (fgp_flags & FGP_ACCESSED)
1913 		folio_mark_accessed(folio);
1914 	else if (fgp_flags & FGP_WRITE) {
1915 		/* Clear idle flag for buffer write */
1916 		if (folio_test_idle(folio))
1917 			folio_clear_idle(folio);
1918 	}
1919 
1920 	if (fgp_flags & FGP_STABLE)
1921 		folio_wait_stable(folio);
1922 no_page:
1923 	if (!folio && (fgp_flags & FGP_CREAT)) {
1924 		unsigned int min_order = mapping_min_folio_order(mapping);
1925 		unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags));
1926 		int err;
1927 		index = mapping_align_index(mapping, index);
1928 
1929 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1930 			gfp |= __GFP_WRITE;
1931 		if (fgp_flags & FGP_NOFS)
1932 			gfp &= ~__GFP_FS;
1933 		if (fgp_flags & FGP_NOWAIT) {
1934 			gfp &= ~GFP_KERNEL;
1935 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1936 		}
1937 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1938 			fgp_flags |= FGP_LOCK;
1939 
1940 		if (order > mapping_max_folio_order(mapping))
1941 			order = mapping_max_folio_order(mapping);
1942 		/* If we're not aligned, allocate a smaller folio */
1943 		if (index & ((1UL << order) - 1))
1944 			order = __ffs(index);
1945 
1946 		do {
1947 			gfp_t alloc_gfp = gfp;
1948 
1949 			err = -ENOMEM;
1950 			if (order > min_order)
1951 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1952 			folio = filemap_alloc_folio(alloc_gfp, order);
1953 			if (!folio)
1954 				continue;
1955 
1956 			/* Init accessed so avoid atomic mark_page_accessed later */
1957 			if (fgp_flags & FGP_ACCESSED)
1958 				__folio_set_referenced(folio);
1959 
1960 			err = filemap_add_folio(mapping, folio, index, gfp);
1961 			if (!err)
1962 				break;
1963 			folio_put(folio);
1964 			folio = NULL;
1965 		} while (order-- > min_order);
1966 
1967 		if (err == -EEXIST)
1968 			goto repeat;
1969 		if (err)
1970 			return ERR_PTR(err);
1971 		/*
1972 		 * filemap_add_folio locks the page, and for mmap
1973 		 * we expect an unlocked page.
1974 		 */
1975 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1976 			folio_unlock(folio);
1977 	}
1978 
1979 	if (!folio)
1980 		return ERR_PTR(-ENOENT);
1981 	return folio;
1982 }
1983 EXPORT_SYMBOL(__filemap_get_folio);
1984 
1985 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1986 		xa_mark_t mark)
1987 {
1988 	struct folio *folio;
1989 
1990 retry:
1991 	if (mark == XA_PRESENT)
1992 		folio = xas_find(xas, max);
1993 	else
1994 		folio = xas_find_marked(xas, max, mark);
1995 
1996 	if (xas_retry(xas, folio))
1997 		goto retry;
1998 	/*
1999 	 * A shadow entry of a recently evicted page, a swap
2000 	 * entry from shmem/tmpfs or a DAX entry.  Return it
2001 	 * without attempting to raise page count.
2002 	 */
2003 	if (!folio || xa_is_value(folio))
2004 		return folio;
2005 
2006 	if (!folio_try_get(folio))
2007 		goto reset;
2008 
2009 	if (unlikely(folio != xas_reload(xas))) {
2010 		folio_put(folio);
2011 		goto reset;
2012 	}
2013 
2014 	return folio;
2015 reset:
2016 	xas_reset(xas);
2017 	goto retry;
2018 }
2019 
2020 /**
2021  * find_get_entries - gang pagecache lookup
2022  * @mapping:	The address_space to search
2023  * @start:	The starting page cache index
2024  * @end:	The final page index (inclusive).
2025  * @fbatch:	Where the resulting entries are placed.
2026  * @indices:	The cache indices corresponding to the entries in @entries
2027  *
2028  * find_get_entries() will search for and return a batch of entries in
2029  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
2030  * takes a reference on any actual folios it returns.
2031  *
2032  * The entries have ascending indexes.  The indices may not be consecutive
2033  * due to not-present entries or large folios.
2034  *
2035  * Any shadow entries of evicted folios, or swap entries from
2036  * shmem/tmpfs, are included in the returned array.
2037  *
2038  * Return: The number of entries which were found.
2039  */
2040 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2041 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2042 {
2043 	XA_STATE(xas, &mapping->i_pages, *start);
2044 	struct folio *folio;
2045 
2046 	rcu_read_lock();
2047 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2048 		indices[fbatch->nr] = xas.xa_index;
2049 		if (!folio_batch_add(fbatch, folio))
2050 			break;
2051 	}
2052 
2053 	if (folio_batch_count(fbatch)) {
2054 		unsigned long nr;
2055 		int idx = folio_batch_count(fbatch) - 1;
2056 
2057 		folio = fbatch->folios[idx];
2058 		if (!xa_is_value(folio))
2059 			nr = folio_nr_pages(folio);
2060 		else
2061 			nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]);
2062 		*start = round_down(indices[idx] + nr, nr);
2063 	}
2064 	rcu_read_unlock();
2065 
2066 	return folio_batch_count(fbatch);
2067 }
2068 
2069 /**
2070  * find_lock_entries - Find a batch of pagecache entries.
2071  * @mapping:	The address_space to search.
2072  * @start:	The starting page cache index.
2073  * @end:	The final page index (inclusive).
2074  * @fbatch:	Where the resulting entries are placed.
2075  * @indices:	The cache indices of the entries in @fbatch.
2076  *
2077  * find_lock_entries() will return a batch of entries from @mapping.
2078  * Swap, shadow and DAX entries are included.  Folios are returned
2079  * locked and with an incremented refcount.  Folios which are locked
2080  * by somebody else or under writeback are skipped.  Folios which are
2081  * partially outside the range are not returned.
2082  *
2083  * The entries have ascending indexes.  The indices may not be consecutive
2084  * due to not-present entries, large folios, folios which could not be
2085  * locked or folios under writeback.
2086  *
2087  * Return: The number of entries which were found.
2088  */
2089 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2090 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2091 {
2092 	XA_STATE(xas, &mapping->i_pages, *start);
2093 	struct folio *folio;
2094 
2095 	rcu_read_lock();
2096 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2097 		unsigned long base;
2098 		unsigned long nr;
2099 
2100 		if (!xa_is_value(folio)) {
2101 			nr = folio_nr_pages(folio);
2102 			base = folio->index;
2103 			/* Omit large folio which begins before the start */
2104 			if (base < *start)
2105 				goto put;
2106 			/* Omit large folio which extends beyond the end */
2107 			if (base + nr - 1 > end)
2108 				goto put;
2109 			if (!folio_trylock(folio))
2110 				goto put;
2111 			if (folio->mapping != mapping ||
2112 			    folio_test_writeback(folio))
2113 				goto unlock;
2114 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2115 					folio);
2116 		} else {
2117 			nr = 1 << xas_get_order(&xas);
2118 			base = xas.xa_index & ~(nr - 1);
2119 			/* Omit order>0 value which begins before the start */
2120 			if (base < *start)
2121 				continue;
2122 			/* Omit order>0 value which extends beyond the end */
2123 			if (base + nr - 1 > end)
2124 				break;
2125 		}
2126 
2127 		/* Update start now so that last update is correct on return */
2128 		*start = base + nr;
2129 		indices[fbatch->nr] = xas.xa_index;
2130 		if (!folio_batch_add(fbatch, folio))
2131 			break;
2132 		continue;
2133 unlock:
2134 		folio_unlock(folio);
2135 put:
2136 		folio_put(folio);
2137 	}
2138 	rcu_read_unlock();
2139 
2140 	return folio_batch_count(fbatch);
2141 }
2142 
2143 /**
2144  * filemap_get_folios - Get a batch of folios
2145  * @mapping:	The address_space to search
2146  * @start:	The starting page index
2147  * @end:	The final page index (inclusive)
2148  * @fbatch:	The batch to fill.
2149  *
2150  * Search for and return a batch of folios in the mapping starting at
2151  * index @start and up to index @end (inclusive).  The folios are returned
2152  * in @fbatch with an elevated reference count.
2153  *
2154  * Return: The number of folios which were found.
2155  * We also update @start to index the next folio for the traversal.
2156  */
2157 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2158 		pgoff_t end, struct folio_batch *fbatch)
2159 {
2160 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2161 }
2162 EXPORT_SYMBOL(filemap_get_folios);
2163 
2164 /**
2165  * filemap_get_folios_contig - Get a batch of contiguous folios
2166  * @mapping:	The address_space to search
2167  * @start:	The starting page index
2168  * @end:	The final page index (inclusive)
2169  * @fbatch:	The batch to fill
2170  *
2171  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2172  * except the returned folios are guaranteed to be contiguous. This may
2173  * not return all contiguous folios if the batch gets filled up.
2174  *
2175  * Return: The number of folios found.
2176  * Also update @start to be positioned for traversal of the next folio.
2177  */
2178 
2179 unsigned filemap_get_folios_contig(struct address_space *mapping,
2180 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2181 {
2182 	XA_STATE(xas, &mapping->i_pages, *start);
2183 	unsigned long nr;
2184 	struct folio *folio;
2185 
2186 	rcu_read_lock();
2187 
2188 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2189 			folio = xas_next(&xas)) {
2190 		if (xas_retry(&xas, folio))
2191 			continue;
2192 		/*
2193 		 * If the entry has been swapped out, we can stop looking.
2194 		 * No current caller is looking for DAX entries.
2195 		 */
2196 		if (xa_is_value(folio))
2197 			goto update_start;
2198 
2199 		if (!folio_try_get(folio))
2200 			goto retry;
2201 
2202 		if (unlikely(folio != xas_reload(&xas)))
2203 			goto put_folio;
2204 
2205 		if (!folio_batch_add(fbatch, folio)) {
2206 			nr = folio_nr_pages(folio);
2207 			*start = folio->index + nr;
2208 			goto out;
2209 		}
2210 		continue;
2211 put_folio:
2212 		folio_put(folio);
2213 
2214 retry:
2215 		xas_reset(&xas);
2216 	}
2217 
2218 update_start:
2219 	nr = folio_batch_count(fbatch);
2220 
2221 	if (nr) {
2222 		folio = fbatch->folios[nr - 1];
2223 		*start = folio_next_index(folio);
2224 	}
2225 out:
2226 	rcu_read_unlock();
2227 	return folio_batch_count(fbatch);
2228 }
2229 EXPORT_SYMBOL(filemap_get_folios_contig);
2230 
2231 /**
2232  * filemap_get_folios_tag - Get a batch of folios matching @tag
2233  * @mapping:    The address_space to search
2234  * @start:      The starting page index
2235  * @end:        The final page index (inclusive)
2236  * @tag:        The tag index
2237  * @fbatch:     The batch to fill
2238  *
2239  * The first folio may start before @start; if it does, it will contain
2240  * @start.  The final folio may extend beyond @end; if it does, it will
2241  * contain @end.  The folios have ascending indices.  There may be gaps
2242  * between the folios if there are indices which have no folio in the
2243  * page cache.  If folios are added to or removed from the page cache
2244  * while this is running, they may or may not be found by this call.
2245  * Only returns folios that are tagged with @tag.
2246  *
2247  * Return: The number of folios found.
2248  * Also update @start to index the next folio for traversal.
2249  */
2250 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2251 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2252 {
2253 	XA_STATE(xas, &mapping->i_pages, *start);
2254 	struct folio *folio;
2255 
2256 	rcu_read_lock();
2257 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2258 		/*
2259 		 * Shadow entries should never be tagged, but this iteration
2260 		 * is lockless so there is a window for page reclaim to evict
2261 		 * a page we saw tagged. Skip over it.
2262 		 */
2263 		if (xa_is_value(folio))
2264 			continue;
2265 		if (!folio_batch_add(fbatch, folio)) {
2266 			unsigned long nr = folio_nr_pages(folio);
2267 			*start = folio->index + nr;
2268 			goto out;
2269 		}
2270 	}
2271 	/*
2272 	 * We come here when there is no page beyond @end. We take care to not
2273 	 * overflow the index @start as it confuses some of the callers. This
2274 	 * breaks the iteration when there is a page at index -1 but that is
2275 	 * already broke anyway.
2276 	 */
2277 	if (end == (pgoff_t)-1)
2278 		*start = (pgoff_t)-1;
2279 	else
2280 		*start = end + 1;
2281 out:
2282 	rcu_read_unlock();
2283 
2284 	return folio_batch_count(fbatch);
2285 }
2286 EXPORT_SYMBOL(filemap_get_folios_tag);
2287 
2288 /*
2289  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2290  * a _large_ part of the i/o request. Imagine the worst scenario:
2291  *
2292  *      ---R__________________________________________B__________
2293  *         ^ reading here                             ^ bad block(assume 4k)
2294  *
2295  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2296  * => failing the whole request => read(R) => read(R+1) =>
2297  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2298  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2299  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2300  *
2301  * It is going insane. Fix it by quickly scaling down the readahead size.
2302  */
2303 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2304 {
2305 	ra->ra_pages /= 4;
2306 }
2307 
2308 /*
2309  * filemap_get_read_batch - Get a batch of folios for read
2310  *
2311  * Get a batch of folios which represent a contiguous range of bytes in
2312  * the file.  No exceptional entries will be returned.  If @index is in
2313  * the middle of a folio, the entire folio will be returned.  The last
2314  * folio in the batch may have the readahead flag set or the uptodate flag
2315  * clear so that the caller can take the appropriate action.
2316  */
2317 static void filemap_get_read_batch(struct address_space *mapping,
2318 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2319 {
2320 	XA_STATE(xas, &mapping->i_pages, index);
2321 	struct folio *folio;
2322 
2323 	rcu_read_lock();
2324 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2325 		if (xas_retry(&xas, folio))
2326 			continue;
2327 		if (xas.xa_index > max || xa_is_value(folio))
2328 			break;
2329 		if (xa_is_sibling(folio))
2330 			break;
2331 		if (!folio_try_get(folio))
2332 			goto retry;
2333 
2334 		if (unlikely(folio != xas_reload(&xas)))
2335 			goto put_folio;
2336 
2337 		if (!folio_batch_add(fbatch, folio))
2338 			break;
2339 		if (!folio_test_uptodate(folio))
2340 			break;
2341 		if (folio_test_readahead(folio))
2342 			break;
2343 		xas_advance(&xas, folio_next_index(folio) - 1);
2344 		continue;
2345 put_folio:
2346 		folio_put(folio);
2347 retry:
2348 		xas_reset(&xas);
2349 	}
2350 	rcu_read_unlock();
2351 }
2352 
2353 static int filemap_read_folio(struct file *file, filler_t filler,
2354 		struct folio *folio)
2355 {
2356 	bool workingset = folio_test_workingset(folio);
2357 	unsigned long pflags;
2358 	int error;
2359 
2360 	/* Start the actual read. The read will unlock the page. */
2361 	if (unlikely(workingset))
2362 		psi_memstall_enter(&pflags);
2363 	error = filler(file, folio);
2364 	if (unlikely(workingset))
2365 		psi_memstall_leave(&pflags);
2366 	if (error)
2367 		return error;
2368 
2369 	error = folio_wait_locked_killable(folio);
2370 	if (error)
2371 		return error;
2372 	if (folio_test_uptodate(folio))
2373 		return 0;
2374 	if (file)
2375 		shrink_readahead_size_eio(&file->f_ra);
2376 	return -EIO;
2377 }
2378 
2379 static bool filemap_range_uptodate(struct address_space *mapping,
2380 		loff_t pos, size_t count, struct folio *folio,
2381 		bool need_uptodate)
2382 {
2383 	if (folio_test_uptodate(folio))
2384 		return true;
2385 	/* pipes can't handle partially uptodate pages */
2386 	if (need_uptodate)
2387 		return false;
2388 	if (!mapping->a_ops->is_partially_uptodate)
2389 		return false;
2390 	if (mapping->host->i_blkbits >= folio_shift(folio))
2391 		return false;
2392 
2393 	if (folio_pos(folio) > pos) {
2394 		count -= folio_pos(folio) - pos;
2395 		pos = 0;
2396 	} else {
2397 		pos -= folio_pos(folio);
2398 	}
2399 
2400 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2401 }
2402 
2403 static int filemap_update_page(struct kiocb *iocb,
2404 		struct address_space *mapping, size_t count,
2405 		struct folio *folio, bool need_uptodate)
2406 {
2407 	int error;
2408 
2409 	if (iocb->ki_flags & IOCB_NOWAIT) {
2410 		if (!filemap_invalidate_trylock_shared(mapping))
2411 			return -EAGAIN;
2412 	} else {
2413 		filemap_invalidate_lock_shared(mapping);
2414 	}
2415 
2416 	if (!folio_trylock(folio)) {
2417 		error = -EAGAIN;
2418 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2419 			goto unlock_mapping;
2420 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2421 			filemap_invalidate_unlock_shared(mapping);
2422 			/*
2423 			 * This is where we usually end up waiting for a
2424 			 * previously submitted readahead to finish.
2425 			 */
2426 			folio_put_wait_locked(folio, TASK_KILLABLE);
2427 			return AOP_TRUNCATED_PAGE;
2428 		}
2429 		error = __folio_lock_async(folio, iocb->ki_waitq);
2430 		if (error)
2431 			goto unlock_mapping;
2432 	}
2433 
2434 	error = AOP_TRUNCATED_PAGE;
2435 	if (!folio->mapping)
2436 		goto unlock;
2437 
2438 	error = 0;
2439 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2440 				   need_uptodate))
2441 		goto unlock;
2442 
2443 	error = -EAGAIN;
2444 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2445 		goto unlock;
2446 
2447 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2448 			folio);
2449 	goto unlock_mapping;
2450 unlock:
2451 	folio_unlock(folio);
2452 unlock_mapping:
2453 	filemap_invalidate_unlock_shared(mapping);
2454 	if (error == AOP_TRUNCATED_PAGE)
2455 		folio_put(folio);
2456 	return error;
2457 }
2458 
2459 static int filemap_create_folio(struct file *file,
2460 		struct address_space *mapping, loff_t pos,
2461 		struct folio_batch *fbatch)
2462 {
2463 	struct folio *folio;
2464 	int error;
2465 	unsigned int min_order = mapping_min_folio_order(mapping);
2466 	pgoff_t index;
2467 
2468 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order);
2469 	if (!folio)
2470 		return -ENOMEM;
2471 
2472 	/*
2473 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2474 	 * here assures we cannot instantiate and bring uptodate new
2475 	 * pagecache folios after evicting page cache during truncate
2476 	 * and before actually freeing blocks.	Note that we could
2477 	 * release invalidate_lock after inserting the folio into
2478 	 * the page cache as the locked folio would then be enough to
2479 	 * synchronize with hole punching. But there are code paths
2480 	 * such as filemap_update_page() filling in partially uptodate
2481 	 * pages or ->readahead() that need to hold invalidate_lock
2482 	 * while mapping blocks for IO so let's hold the lock here as
2483 	 * well to keep locking rules simple.
2484 	 */
2485 	filemap_invalidate_lock_shared(mapping);
2486 	index = (pos >> (PAGE_SHIFT + min_order)) << min_order;
2487 	error = filemap_add_folio(mapping, folio, index,
2488 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2489 	if (error == -EEXIST)
2490 		error = AOP_TRUNCATED_PAGE;
2491 	if (error)
2492 		goto error;
2493 
2494 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2495 	if (error)
2496 		goto error;
2497 
2498 	filemap_invalidate_unlock_shared(mapping);
2499 	folio_batch_add(fbatch, folio);
2500 	return 0;
2501 error:
2502 	filemap_invalidate_unlock_shared(mapping);
2503 	folio_put(folio);
2504 	return error;
2505 }
2506 
2507 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2508 		struct address_space *mapping, struct folio *folio,
2509 		pgoff_t last_index)
2510 {
2511 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2512 
2513 	if (iocb->ki_flags & IOCB_NOIO)
2514 		return -EAGAIN;
2515 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2516 	return 0;
2517 }
2518 
2519 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2520 		struct folio_batch *fbatch, bool need_uptodate)
2521 {
2522 	struct file *filp = iocb->ki_filp;
2523 	struct address_space *mapping = filp->f_mapping;
2524 	struct file_ra_state *ra = &filp->f_ra;
2525 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2526 	pgoff_t last_index;
2527 	struct folio *folio;
2528 	unsigned int flags;
2529 	int err = 0;
2530 
2531 	/* "last_index" is the index of the page beyond the end of the read */
2532 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2533 retry:
2534 	if (fatal_signal_pending(current))
2535 		return -EINTR;
2536 
2537 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2538 	if (!folio_batch_count(fbatch)) {
2539 		if (iocb->ki_flags & IOCB_NOIO)
2540 			return -EAGAIN;
2541 		if (iocb->ki_flags & IOCB_NOWAIT)
2542 			flags = memalloc_noio_save();
2543 		page_cache_sync_readahead(mapping, ra, filp, index,
2544 				last_index - index);
2545 		if (iocb->ki_flags & IOCB_NOWAIT)
2546 			memalloc_noio_restore(flags);
2547 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2548 	}
2549 	if (!folio_batch_count(fbatch)) {
2550 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2551 			return -EAGAIN;
2552 		err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch);
2553 		if (err == AOP_TRUNCATED_PAGE)
2554 			goto retry;
2555 		return err;
2556 	}
2557 
2558 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2559 	if (folio_test_readahead(folio)) {
2560 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2561 		if (err)
2562 			goto err;
2563 	}
2564 	if (!folio_test_uptodate(folio)) {
2565 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2566 		    folio_batch_count(fbatch) > 1)
2567 			iocb->ki_flags |= IOCB_NOWAIT;
2568 		err = filemap_update_page(iocb, mapping, count, folio,
2569 					  need_uptodate);
2570 		if (err)
2571 			goto err;
2572 	}
2573 
2574 	trace_mm_filemap_get_pages(mapping, index, last_index - 1);
2575 	return 0;
2576 err:
2577 	if (err < 0)
2578 		folio_put(folio);
2579 	if (likely(--fbatch->nr))
2580 		return 0;
2581 	if (err == AOP_TRUNCATED_PAGE)
2582 		goto retry;
2583 	return err;
2584 }
2585 
2586 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2587 {
2588 	unsigned int shift = folio_shift(folio);
2589 
2590 	return (pos1 >> shift == pos2 >> shift);
2591 }
2592 
2593 /**
2594  * filemap_read - Read data from the page cache.
2595  * @iocb: The iocb to read.
2596  * @iter: Destination for the data.
2597  * @already_read: Number of bytes already read by the caller.
2598  *
2599  * Copies data from the page cache.  If the data is not currently present,
2600  * uses the readahead and read_folio address_space operations to fetch it.
2601  *
2602  * Return: Total number of bytes copied, including those already read by
2603  * the caller.  If an error happens before any bytes are copied, returns
2604  * a negative error number.
2605  */
2606 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2607 		ssize_t already_read)
2608 {
2609 	struct file *filp = iocb->ki_filp;
2610 	struct file_ra_state *ra = &filp->f_ra;
2611 	struct address_space *mapping = filp->f_mapping;
2612 	struct inode *inode = mapping->host;
2613 	struct folio_batch fbatch;
2614 	int i, error = 0;
2615 	bool writably_mapped;
2616 	loff_t isize, end_offset;
2617 	loff_t last_pos = ra->prev_pos;
2618 
2619 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2620 		return 0;
2621 	if (unlikely(!iov_iter_count(iter)))
2622 		return 0;
2623 
2624 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2625 	folio_batch_init(&fbatch);
2626 
2627 	do {
2628 		cond_resched();
2629 
2630 		/*
2631 		 * If we've already successfully copied some data, then we
2632 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2633 		 * an async read NOWAIT at that point.
2634 		 */
2635 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2636 			iocb->ki_flags |= IOCB_NOWAIT;
2637 
2638 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2639 			break;
2640 
2641 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2642 		if (error < 0)
2643 			break;
2644 
2645 		/*
2646 		 * i_size must be checked after we know the pages are Uptodate.
2647 		 *
2648 		 * Checking i_size after the check allows us to calculate
2649 		 * the correct value for "nr", which means the zero-filled
2650 		 * part of the page is not copied back to userspace (unless
2651 		 * another truncate extends the file - this is desired though).
2652 		 */
2653 		isize = i_size_read(inode);
2654 		if (unlikely(iocb->ki_pos >= isize))
2655 			goto put_folios;
2656 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2657 
2658 		/*
2659 		 * Once we start copying data, we don't want to be touching any
2660 		 * cachelines that might be contended:
2661 		 */
2662 		writably_mapped = mapping_writably_mapped(mapping);
2663 
2664 		/*
2665 		 * When a read accesses the same folio several times, only
2666 		 * mark it as accessed the first time.
2667 		 */
2668 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2669 				    fbatch.folios[0]))
2670 			folio_mark_accessed(fbatch.folios[0]);
2671 
2672 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2673 			struct folio *folio = fbatch.folios[i];
2674 			size_t fsize = folio_size(folio);
2675 			size_t offset = iocb->ki_pos & (fsize - 1);
2676 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2677 					     fsize - offset);
2678 			size_t copied;
2679 
2680 			if (end_offset < folio_pos(folio))
2681 				break;
2682 			if (i > 0)
2683 				folio_mark_accessed(folio);
2684 			/*
2685 			 * If users can be writing to this folio using arbitrary
2686 			 * virtual addresses, take care of potential aliasing
2687 			 * before reading the folio on the kernel side.
2688 			 */
2689 			if (writably_mapped)
2690 				flush_dcache_folio(folio);
2691 
2692 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2693 
2694 			already_read += copied;
2695 			iocb->ki_pos += copied;
2696 			last_pos = iocb->ki_pos;
2697 
2698 			if (copied < bytes) {
2699 				error = -EFAULT;
2700 				break;
2701 			}
2702 		}
2703 put_folios:
2704 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2705 			folio_put(fbatch.folios[i]);
2706 		folio_batch_init(&fbatch);
2707 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2708 
2709 	file_accessed(filp);
2710 	ra->prev_pos = last_pos;
2711 	return already_read ? already_read : error;
2712 }
2713 EXPORT_SYMBOL_GPL(filemap_read);
2714 
2715 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2716 {
2717 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2718 	loff_t pos = iocb->ki_pos;
2719 	loff_t end = pos + count - 1;
2720 
2721 	if (iocb->ki_flags & IOCB_NOWAIT) {
2722 		if (filemap_range_needs_writeback(mapping, pos, end))
2723 			return -EAGAIN;
2724 		return 0;
2725 	}
2726 
2727 	return filemap_write_and_wait_range(mapping, pos, end);
2728 }
2729 EXPORT_SYMBOL_GPL(kiocb_write_and_wait);
2730 
2731 int filemap_invalidate_pages(struct address_space *mapping,
2732 			     loff_t pos, loff_t end, bool nowait)
2733 {
2734 	int ret;
2735 
2736 	if (nowait) {
2737 		/* we could block if there are any pages in the range */
2738 		if (filemap_range_has_page(mapping, pos, end))
2739 			return -EAGAIN;
2740 	} else {
2741 		ret = filemap_write_and_wait_range(mapping, pos, end);
2742 		if (ret)
2743 			return ret;
2744 	}
2745 
2746 	/*
2747 	 * After a write we want buffered reads to be sure to go to disk to get
2748 	 * the new data.  We invalidate clean cached page from the region we're
2749 	 * about to write.  We do this *before* the write so that we can return
2750 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2751 	 */
2752 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2753 					     end >> PAGE_SHIFT);
2754 }
2755 
2756 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2757 {
2758 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2759 
2760 	return filemap_invalidate_pages(mapping, iocb->ki_pos,
2761 					iocb->ki_pos + count - 1,
2762 					iocb->ki_flags & IOCB_NOWAIT);
2763 }
2764 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages);
2765 
2766 /**
2767  * generic_file_read_iter - generic filesystem read routine
2768  * @iocb:	kernel I/O control block
2769  * @iter:	destination for the data read
2770  *
2771  * This is the "read_iter()" routine for all filesystems
2772  * that can use the page cache directly.
2773  *
2774  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2775  * be returned when no data can be read without waiting for I/O requests
2776  * to complete; it doesn't prevent readahead.
2777  *
2778  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2779  * requests shall be made for the read or for readahead.  When no data
2780  * can be read, -EAGAIN shall be returned.  When readahead would be
2781  * triggered, a partial, possibly empty read shall be returned.
2782  *
2783  * Return:
2784  * * number of bytes copied, even for partial reads
2785  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2786  */
2787 ssize_t
2788 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2789 {
2790 	size_t count = iov_iter_count(iter);
2791 	ssize_t retval = 0;
2792 
2793 	if (!count)
2794 		return 0; /* skip atime */
2795 
2796 	if (iocb->ki_flags & IOCB_DIRECT) {
2797 		struct file *file = iocb->ki_filp;
2798 		struct address_space *mapping = file->f_mapping;
2799 		struct inode *inode = mapping->host;
2800 
2801 		retval = kiocb_write_and_wait(iocb, count);
2802 		if (retval < 0)
2803 			return retval;
2804 		file_accessed(file);
2805 
2806 		retval = mapping->a_ops->direct_IO(iocb, iter);
2807 		if (retval >= 0) {
2808 			iocb->ki_pos += retval;
2809 			count -= retval;
2810 		}
2811 		if (retval != -EIOCBQUEUED)
2812 			iov_iter_revert(iter, count - iov_iter_count(iter));
2813 
2814 		/*
2815 		 * Btrfs can have a short DIO read if we encounter
2816 		 * compressed extents, so if there was an error, or if
2817 		 * we've already read everything we wanted to, or if
2818 		 * there was a short read because we hit EOF, go ahead
2819 		 * and return.  Otherwise fallthrough to buffered io for
2820 		 * the rest of the read.  Buffered reads will not work for
2821 		 * DAX files, so don't bother trying.
2822 		 */
2823 		if (retval < 0 || !count || IS_DAX(inode))
2824 			return retval;
2825 		if (iocb->ki_pos >= i_size_read(inode))
2826 			return retval;
2827 	}
2828 
2829 	return filemap_read(iocb, iter, retval);
2830 }
2831 EXPORT_SYMBOL(generic_file_read_iter);
2832 
2833 /*
2834  * Splice subpages from a folio into a pipe.
2835  */
2836 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2837 			      struct folio *folio, loff_t fpos, size_t size)
2838 {
2839 	struct page *page;
2840 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2841 
2842 	page = folio_page(folio, offset / PAGE_SIZE);
2843 	size = min(size, folio_size(folio) - offset);
2844 	offset %= PAGE_SIZE;
2845 
2846 	while (spliced < size &&
2847 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2848 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2849 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2850 
2851 		*buf = (struct pipe_buffer) {
2852 			.ops	= &page_cache_pipe_buf_ops,
2853 			.page	= page,
2854 			.offset	= offset,
2855 			.len	= part,
2856 		};
2857 		folio_get(folio);
2858 		pipe->head++;
2859 		page++;
2860 		spliced += part;
2861 		offset = 0;
2862 	}
2863 
2864 	return spliced;
2865 }
2866 
2867 /**
2868  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2869  * @in: The file to read from
2870  * @ppos: Pointer to the file position to read from
2871  * @pipe: The pipe to splice into
2872  * @len: The amount to splice
2873  * @flags: The SPLICE_F_* flags
2874  *
2875  * This function gets folios from a file's pagecache and splices them into the
2876  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2877  * be used for blockdevs also.
2878  *
2879  * Return: On success, the number of bytes read will be returned and *@ppos
2880  * will be updated if appropriate; 0 will be returned if there is no more data
2881  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2882  * other negative error code will be returned on error.  A short read may occur
2883  * if the pipe has insufficient space, we reach the end of the data or we hit a
2884  * hole.
2885  */
2886 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2887 			    struct pipe_inode_info *pipe,
2888 			    size_t len, unsigned int flags)
2889 {
2890 	struct folio_batch fbatch;
2891 	struct kiocb iocb;
2892 	size_t total_spliced = 0, used, npages;
2893 	loff_t isize, end_offset;
2894 	bool writably_mapped;
2895 	int i, error = 0;
2896 
2897 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2898 		return 0;
2899 
2900 	init_sync_kiocb(&iocb, in);
2901 	iocb.ki_pos = *ppos;
2902 
2903 	/* Work out how much data we can actually add into the pipe */
2904 	used = pipe_occupancy(pipe->head, pipe->tail);
2905 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2906 	len = min_t(size_t, len, npages * PAGE_SIZE);
2907 
2908 	folio_batch_init(&fbatch);
2909 
2910 	do {
2911 		cond_resched();
2912 
2913 		if (*ppos >= i_size_read(in->f_mapping->host))
2914 			break;
2915 
2916 		iocb.ki_pos = *ppos;
2917 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2918 		if (error < 0)
2919 			break;
2920 
2921 		/*
2922 		 * i_size must be checked after we know the pages are Uptodate.
2923 		 *
2924 		 * Checking i_size after the check allows us to calculate
2925 		 * the correct value for "nr", which means the zero-filled
2926 		 * part of the page is not copied back to userspace (unless
2927 		 * another truncate extends the file - this is desired though).
2928 		 */
2929 		isize = i_size_read(in->f_mapping->host);
2930 		if (unlikely(*ppos >= isize))
2931 			break;
2932 		end_offset = min_t(loff_t, isize, *ppos + len);
2933 
2934 		/*
2935 		 * Once we start copying data, we don't want to be touching any
2936 		 * cachelines that might be contended:
2937 		 */
2938 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2939 
2940 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2941 			struct folio *folio = fbatch.folios[i];
2942 			size_t n;
2943 
2944 			if (folio_pos(folio) >= end_offset)
2945 				goto out;
2946 			folio_mark_accessed(folio);
2947 
2948 			/*
2949 			 * If users can be writing to this folio using arbitrary
2950 			 * virtual addresses, take care of potential aliasing
2951 			 * before reading the folio on the kernel side.
2952 			 */
2953 			if (writably_mapped)
2954 				flush_dcache_folio(folio);
2955 
2956 			n = min_t(loff_t, len, isize - *ppos);
2957 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2958 			if (!n)
2959 				goto out;
2960 			len -= n;
2961 			total_spliced += n;
2962 			*ppos += n;
2963 			in->f_ra.prev_pos = *ppos;
2964 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2965 				goto out;
2966 		}
2967 
2968 		folio_batch_release(&fbatch);
2969 	} while (len);
2970 
2971 out:
2972 	folio_batch_release(&fbatch);
2973 	file_accessed(in);
2974 
2975 	return total_spliced ? total_spliced : error;
2976 }
2977 EXPORT_SYMBOL(filemap_splice_read);
2978 
2979 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2980 		struct address_space *mapping, struct folio *folio,
2981 		loff_t start, loff_t end, bool seek_data)
2982 {
2983 	const struct address_space_operations *ops = mapping->a_ops;
2984 	size_t offset, bsz = i_blocksize(mapping->host);
2985 
2986 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2987 		return seek_data ? start : end;
2988 	if (!ops->is_partially_uptodate)
2989 		return seek_data ? end : start;
2990 
2991 	xas_pause(xas);
2992 	rcu_read_unlock();
2993 	folio_lock(folio);
2994 	if (unlikely(folio->mapping != mapping))
2995 		goto unlock;
2996 
2997 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2998 
2999 	do {
3000 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
3001 							seek_data)
3002 			break;
3003 		start = (start + bsz) & ~(bsz - 1);
3004 		offset += bsz;
3005 	} while (offset < folio_size(folio));
3006 unlock:
3007 	folio_unlock(folio);
3008 	rcu_read_lock();
3009 	return start;
3010 }
3011 
3012 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3013 {
3014 	if (xa_is_value(folio))
3015 		return PAGE_SIZE << xas_get_order(xas);
3016 	return folio_size(folio);
3017 }
3018 
3019 /**
3020  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3021  * @mapping: Address space to search.
3022  * @start: First byte to consider.
3023  * @end: Limit of search (exclusive).
3024  * @whence: Either SEEK_HOLE or SEEK_DATA.
3025  *
3026  * If the page cache knows which blocks contain holes and which blocks
3027  * contain data, your filesystem can use this function to implement
3028  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
3029  * entirely memory-based such as tmpfs, and filesystems which support
3030  * unwritten extents.
3031  *
3032  * Return: The requested offset on success, or -ENXIO if @whence specifies
3033  * SEEK_DATA and there is no data after @start.  There is an implicit hole
3034  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3035  * and @end contain data.
3036  */
3037 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3038 		loff_t end, int whence)
3039 {
3040 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3041 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
3042 	bool seek_data = (whence == SEEK_DATA);
3043 	struct folio *folio;
3044 
3045 	if (end <= start)
3046 		return -ENXIO;
3047 
3048 	rcu_read_lock();
3049 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3050 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3051 		size_t seek_size;
3052 
3053 		if (start < pos) {
3054 			if (!seek_data)
3055 				goto unlock;
3056 			start = pos;
3057 		}
3058 
3059 		seek_size = seek_folio_size(&xas, folio);
3060 		pos = round_up((u64)pos + 1, seek_size);
3061 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3062 				seek_data);
3063 		if (start < pos)
3064 			goto unlock;
3065 		if (start >= end)
3066 			break;
3067 		if (seek_size > PAGE_SIZE)
3068 			xas_set(&xas, pos >> PAGE_SHIFT);
3069 		if (!xa_is_value(folio))
3070 			folio_put(folio);
3071 	}
3072 	if (seek_data)
3073 		start = -ENXIO;
3074 unlock:
3075 	rcu_read_unlock();
3076 	if (folio && !xa_is_value(folio))
3077 		folio_put(folio);
3078 	if (start > end)
3079 		return end;
3080 	return start;
3081 }
3082 
3083 #ifdef CONFIG_MMU
3084 #define MMAP_LOTSAMISS  (100)
3085 /*
3086  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3087  * @vmf - the vm_fault for this fault.
3088  * @folio - the folio to lock.
3089  * @fpin - the pointer to the file we may pin (or is already pinned).
3090  *
3091  * This works similar to lock_folio_or_retry in that it can drop the
3092  * mmap_lock.  It differs in that it actually returns the folio locked
3093  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3094  * to drop the mmap_lock then fpin will point to the pinned file and
3095  * needs to be fput()'ed at a later point.
3096  */
3097 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3098 				     struct file **fpin)
3099 {
3100 	if (folio_trylock(folio))
3101 		return 1;
3102 
3103 	/*
3104 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3105 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3106 	 * is supposed to work. We have way too many special cases..
3107 	 */
3108 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3109 		return 0;
3110 
3111 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3112 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3113 		if (__folio_lock_killable(folio)) {
3114 			/*
3115 			 * We didn't have the right flags to drop the
3116 			 * fault lock, but all fault_handlers only check
3117 			 * for fatal signals if we return VM_FAULT_RETRY,
3118 			 * so we need to drop the fault lock here and
3119 			 * return 0 if we don't have a fpin.
3120 			 */
3121 			if (*fpin == NULL)
3122 				release_fault_lock(vmf);
3123 			return 0;
3124 		}
3125 	} else
3126 		__folio_lock(folio);
3127 
3128 	return 1;
3129 }
3130 
3131 /*
3132  * Synchronous readahead happens when we don't even find a page in the page
3133  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3134  * to drop the mmap sem we return the file that was pinned in order for us to do
3135  * that.  If we didn't pin a file then we return NULL.  The file that is
3136  * returned needs to be fput()'ed when we're done with it.
3137  */
3138 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3139 {
3140 	struct file *file = vmf->vma->vm_file;
3141 	struct file_ra_state *ra = &file->f_ra;
3142 	struct address_space *mapping = file->f_mapping;
3143 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3144 	struct file *fpin = NULL;
3145 	unsigned long vm_flags = vmf->vma->vm_flags;
3146 	unsigned int mmap_miss;
3147 
3148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3149 	/* Use the readahead code, even if readahead is disabled */
3150 	if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) {
3151 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3152 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3153 		ra->size = HPAGE_PMD_NR;
3154 		/*
3155 		 * Fetch two PMD folios, so we get the chance to actually
3156 		 * readahead, unless we've been told not to.
3157 		 */
3158 		if (!(vm_flags & VM_RAND_READ))
3159 			ra->size *= 2;
3160 		ra->async_size = HPAGE_PMD_NR;
3161 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3162 		return fpin;
3163 	}
3164 #endif
3165 
3166 	/* If we don't want any read-ahead, don't bother */
3167 	if (vm_flags & VM_RAND_READ)
3168 		return fpin;
3169 	if (!ra->ra_pages)
3170 		return fpin;
3171 
3172 	if (vm_flags & VM_SEQ_READ) {
3173 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3174 		page_cache_sync_ra(&ractl, ra->ra_pages);
3175 		return fpin;
3176 	}
3177 
3178 	/* Avoid banging the cache line if not needed */
3179 	mmap_miss = READ_ONCE(ra->mmap_miss);
3180 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3181 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3182 
3183 	/*
3184 	 * Do we miss much more than hit in this file? If so,
3185 	 * stop bothering with read-ahead. It will only hurt.
3186 	 */
3187 	if (mmap_miss > MMAP_LOTSAMISS)
3188 		return fpin;
3189 
3190 	/*
3191 	 * mmap read-around
3192 	 */
3193 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3194 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3195 	ra->size = ra->ra_pages;
3196 	ra->async_size = ra->ra_pages / 4;
3197 	ractl._index = ra->start;
3198 	page_cache_ra_order(&ractl, ra, 0);
3199 	return fpin;
3200 }
3201 
3202 /*
3203  * Asynchronous readahead happens when we find the page and PG_readahead,
3204  * so we want to possibly extend the readahead further.  We return the file that
3205  * was pinned if we have to drop the mmap_lock in order to do IO.
3206  */
3207 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3208 					    struct folio *folio)
3209 {
3210 	struct file *file = vmf->vma->vm_file;
3211 	struct file_ra_state *ra = &file->f_ra;
3212 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3213 	struct file *fpin = NULL;
3214 	unsigned int mmap_miss;
3215 
3216 	/* If we don't want any read-ahead, don't bother */
3217 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3218 		return fpin;
3219 
3220 	mmap_miss = READ_ONCE(ra->mmap_miss);
3221 	if (mmap_miss)
3222 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3223 
3224 	if (folio_test_readahead(folio)) {
3225 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3226 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3227 	}
3228 	return fpin;
3229 }
3230 
3231 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf)
3232 {
3233 	struct vm_area_struct *vma = vmf->vma;
3234 	vm_fault_t ret = 0;
3235 	pte_t *ptep;
3236 
3237 	/*
3238 	 * We might have COW'ed a pagecache folio and might now have an mlocked
3239 	 * anon folio mapped. The original pagecache folio is not mlocked and
3240 	 * might have been evicted. During a read+clear/modify/write update of
3241 	 * the PTE, such as done in do_numa_page()/change_pte_range(), we
3242 	 * temporarily clear the PTE under PT lock and might detect it here as
3243 	 * "none" when not holding the PT lock.
3244 	 *
3245 	 * Not rechecking the PTE under PT lock could result in an unexpected
3246 	 * major fault in an mlock'ed region. Recheck only for this special
3247 	 * scenario while holding the PT lock, to not degrade non-mlocked
3248 	 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing
3249 	 * the number of times we hold PT lock.
3250 	 */
3251 	if (!(vma->vm_flags & VM_LOCKED))
3252 		return 0;
3253 
3254 	if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
3255 		return 0;
3256 
3257 	ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address,
3258 				     &vmf->ptl);
3259 	if (unlikely(!ptep))
3260 		return VM_FAULT_NOPAGE;
3261 
3262 	if (unlikely(!pte_none(ptep_get_lockless(ptep)))) {
3263 		ret = VM_FAULT_NOPAGE;
3264 	} else {
3265 		spin_lock(vmf->ptl);
3266 		if (unlikely(!pte_none(ptep_get(ptep))))
3267 			ret = VM_FAULT_NOPAGE;
3268 		spin_unlock(vmf->ptl);
3269 	}
3270 	pte_unmap(ptep);
3271 	return ret;
3272 }
3273 
3274 /**
3275  * filemap_fault - read in file data for page fault handling
3276  * @vmf:	struct vm_fault containing details of the fault
3277  *
3278  * filemap_fault() is invoked via the vma operations vector for a
3279  * mapped memory region to read in file data during a page fault.
3280  *
3281  * The goto's are kind of ugly, but this streamlines the normal case of having
3282  * it in the page cache, and handles the special cases reasonably without
3283  * having a lot of duplicated code.
3284  *
3285  * vma->vm_mm->mmap_lock must be held on entry.
3286  *
3287  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3288  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3289  *
3290  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3291  * has not been released.
3292  *
3293  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3294  *
3295  * Return: bitwise-OR of %VM_FAULT_ codes.
3296  */
3297 vm_fault_t filemap_fault(struct vm_fault *vmf)
3298 {
3299 	int error;
3300 	struct file *file = vmf->vma->vm_file;
3301 	struct file *fpin = NULL;
3302 	struct address_space *mapping = file->f_mapping;
3303 	struct inode *inode = mapping->host;
3304 	pgoff_t max_idx, index = vmf->pgoff;
3305 	struct folio *folio;
3306 	vm_fault_t ret = 0;
3307 	bool mapping_locked = false;
3308 
3309 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3310 	if (unlikely(index >= max_idx))
3311 		return VM_FAULT_SIGBUS;
3312 
3313 	trace_mm_filemap_fault(mapping, index);
3314 
3315 	/*
3316 	 * Do we have something in the page cache already?
3317 	 */
3318 	folio = filemap_get_folio(mapping, index);
3319 	if (likely(!IS_ERR(folio))) {
3320 		/*
3321 		 * We found the page, so try async readahead before waiting for
3322 		 * the lock.
3323 		 */
3324 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3325 			fpin = do_async_mmap_readahead(vmf, folio);
3326 		if (unlikely(!folio_test_uptodate(folio))) {
3327 			filemap_invalidate_lock_shared(mapping);
3328 			mapping_locked = true;
3329 		}
3330 	} else {
3331 		ret = filemap_fault_recheck_pte_none(vmf);
3332 		if (unlikely(ret))
3333 			return ret;
3334 
3335 		/* No page in the page cache at all */
3336 		count_vm_event(PGMAJFAULT);
3337 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3338 		ret = VM_FAULT_MAJOR;
3339 		fpin = do_sync_mmap_readahead(vmf);
3340 retry_find:
3341 		/*
3342 		 * See comment in filemap_create_folio() why we need
3343 		 * invalidate_lock
3344 		 */
3345 		if (!mapping_locked) {
3346 			filemap_invalidate_lock_shared(mapping);
3347 			mapping_locked = true;
3348 		}
3349 		folio = __filemap_get_folio(mapping, index,
3350 					  FGP_CREAT|FGP_FOR_MMAP,
3351 					  vmf->gfp_mask);
3352 		if (IS_ERR(folio)) {
3353 			if (fpin)
3354 				goto out_retry;
3355 			filemap_invalidate_unlock_shared(mapping);
3356 			return VM_FAULT_OOM;
3357 		}
3358 	}
3359 
3360 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3361 		goto out_retry;
3362 
3363 	/* Did it get truncated? */
3364 	if (unlikely(folio->mapping != mapping)) {
3365 		folio_unlock(folio);
3366 		folio_put(folio);
3367 		goto retry_find;
3368 	}
3369 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3370 
3371 	/*
3372 	 * We have a locked folio in the page cache, now we need to check
3373 	 * that it's up-to-date. If not, it is going to be due to an error,
3374 	 * or because readahead was otherwise unable to retrieve it.
3375 	 */
3376 	if (unlikely(!folio_test_uptodate(folio))) {
3377 		/*
3378 		 * If the invalidate lock is not held, the folio was in cache
3379 		 * and uptodate and now it is not. Strange but possible since we
3380 		 * didn't hold the page lock all the time. Let's drop
3381 		 * everything, get the invalidate lock and try again.
3382 		 */
3383 		if (!mapping_locked) {
3384 			folio_unlock(folio);
3385 			folio_put(folio);
3386 			goto retry_find;
3387 		}
3388 
3389 		/*
3390 		 * OK, the folio is really not uptodate. This can be because the
3391 		 * VMA has the VM_RAND_READ flag set, or because an error
3392 		 * arose. Let's read it in directly.
3393 		 */
3394 		goto page_not_uptodate;
3395 	}
3396 
3397 	/*
3398 	 * We've made it this far and we had to drop our mmap_lock, now is the
3399 	 * time to return to the upper layer and have it re-find the vma and
3400 	 * redo the fault.
3401 	 */
3402 	if (fpin) {
3403 		folio_unlock(folio);
3404 		goto out_retry;
3405 	}
3406 	if (mapping_locked)
3407 		filemap_invalidate_unlock_shared(mapping);
3408 
3409 	/*
3410 	 * Found the page and have a reference on it.
3411 	 * We must recheck i_size under page lock.
3412 	 */
3413 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3414 	if (unlikely(index >= max_idx)) {
3415 		folio_unlock(folio);
3416 		folio_put(folio);
3417 		return VM_FAULT_SIGBUS;
3418 	}
3419 
3420 	vmf->page = folio_file_page(folio, index);
3421 	return ret | VM_FAULT_LOCKED;
3422 
3423 page_not_uptodate:
3424 	/*
3425 	 * Umm, take care of errors if the page isn't up-to-date.
3426 	 * Try to re-read it _once_. We do this synchronously,
3427 	 * because there really aren't any performance issues here
3428 	 * and we need to check for errors.
3429 	 */
3430 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3431 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3432 	if (fpin)
3433 		goto out_retry;
3434 	folio_put(folio);
3435 
3436 	if (!error || error == AOP_TRUNCATED_PAGE)
3437 		goto retry_find;
3438 	filemap_invalidate_unlock_shared(mapping);
3439 
3440 	return VM_FAULT_SIGBUS;
3441 
3442 out_retry:
3443 	/*
3444 	 * We dropped the mmap_lock, we need to return to the fault handler to
3445 	 * re-find the vma and come back and find our hopefully still populated
3446 	 * page.
3447 	 */
3448 	if (!IS_ERR(folio))
3449 		folio_put(folio);
3450 	if (mapping_locked)
3451 		filemap_invalidate_unlock_shared(mapping);
3452 	if (fpin)
3453 		fput(fpin);
3454 	return ret | VM_FAULT_RETRY;
3455 }
3456 EXPORT_SYMBOL(filemap_fault);
3457 
3458 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3459 		pgoff_t start)
3460 {
3461 	struct mm_struct *mm = vmf->vma->vm_mm;
3462 
3463 	/* Huge page is mapped? No need to proceed. */
3464 	if (pmd_trans_huge(*vmf->pmd)) {
3465 		folio_unlock(folio);
3466 		folio_put(folio);
3467 		return true;
3468 	}
3469 
3470 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3471 		struct page *page = folio_file_page(folio, start);
3472 		vm_fault_t ret = do_set_pmd(vmf, page);
3473 		if (!ret) {
3474 			/* The page is mapped successfully, reference consumed. */
3475 			folio_unlock(folio);
3476 			return true;
3477 		}
3478 	}
3479 
3480 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3481 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3482 
3483 	return false;
3484 }
3485 
3486 static struct folio *next_uptodate_folio(struct xa_state *xas,
3487 		struct address_space *mapping, pgoff_t end_pgoff)
3488 {
3489 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3490 	unsigned long max_idx;
3491 
3492 	do {
3493 		if (!folio)
3494 			return NULL;
3495 		if (xas_retry(xas, folio))
3496 			continue;
3497 		if (xa_is_value(folio))
3498 			continue;
3499 		if (folio_test_locked(folio))
3500 			continue;
3501 		if (!folio_try_get(folio))
3502 			continue;
3503 		/* Has the page moved or been split? */
3504 		if (unlikely(folio != xas_reload(xas)))
3505 			goto skip;
3506 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3507 			goto skip;
3508 		if (!folio_trylock(folio))
3509 			goto skip;
3510 		if (folio->mapping != mapping)
3511 			goto unlock;
3512 		if (!folio_test_uptodate(folio))
3513 			goto unlock;
3514 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3515 		if (xas->xa_index >= max_idx)
3516 			goto unlock;
3517 		return folio;
3518 unlock:
3519 		folio_unlock(folio);
3520 skip:
3521 		folio_put(folio);
3522 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3523 
3524 	return NULL;
3525 }
3526 
3527 /*
3528  * Map page range [start_page, start_page + nr_pages) of folio.
3529  * start_page is gotten from start by folio_page(folio, start)
3530  */
3531 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3532 			struct folio *folio, unsigned long start,
3533 			unsigned long addr, unsigned int nr_pages,
3534 			unsigned long *rss, unsigned int *mmap_miss)
3535 {
3536 	vm_fault_t ret = 0;
3537 	struct page *page = folio_page(folio, start);
3538 	unsigned int count = 0;
3539 	pte_t *old_ptep = vmf->pte;
3540 
3541 	do {
3542 		if (PageHWPoison(page + count))
3543 			goto skip;
3544 
3545 		/*
3546 		 * If there are too many folios that are recently evicted
3547 		 * in a file, they will probably continue to be evicted.
3548 		 * In such situation, read-ahead is only a waste of IO.
3549 		 * Don't decrease mmap_miss in this scenario to make sure
3550 		 * we can stop read-ahead.
3551 		 */
3552 		if (!folio_test_workingset(folio))
3553 			(*mmap_miss)++;
3554 
3555 		/*
3556 		 * NOTE: If there're PTE markers, we'll leave them to be
3557 		 * handled in the specific fault path, and it'll prohibit the
3558 		 * fault-around logic.
3559 		 */
3560 		if (!pte_none(ptep_get(&vmf->pte[count])))
3561 			goto skip;
3562 
3563 		count++;
3564 		continue;
3565 skip:
3566 		if (count) {
3567 			set_pte_range(vmf, folio, page, count, addr);
3568 			*rss += count;
3569 			folio_ref_add(folio, count);
3570 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3571 				ret = VM_FAULT_NOPAGE;
3572 		}
3573 
3574 		count++;
3575 		page += count;
3576 		vmf->pte += count;
3577 		addr += count * PAGE_SIZE;
3578 		count = 0;
3579 	} while (--nr_pages > 0);
3580 
3581 	if (count) {
3582 		set_pte_range(vmf, folio, page, count, addr);
3583 		*rss += count;
3584 		folio_ref_add(folio, count);
3585 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3586 			ret = VM_FAULT_NOPAGE;
3587 	}
3588 
3589 	vmf->pte = old_ptep;
3590 
3591 	return ret;
3592 }
3593 
3594 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3595 		struct folio *folio, unsigned long addr,
3596 		unsigned long *rss, unsigned int *mmap_miss)
3597 {
3598 	vm_fault_t ret = 0;
3599 	struct page *page = &folio->page;
3600 
3601 	if (PageHWPoison(page))
3602 		return ret;
3603 
3604 	/* See comment of filemap_map_folio_range() */
3605 	if (!folio_test_workingset(folio))
3606 		(*mmap_miss)++;
3607 
3608 	/*
3609 	 * NOTE: If there're PTE markers, we'll leave them to be
3610 	 * handled in the specific fault path, and it'll prohibit
3611 	 * the fault-around logic.
3612 	 */
3613 	if (!pte_none(ptep_get(vmf->pte)))
3614 		return ret;
3615 
3616 	if (vmf->address == addr)
3617 		ret = VM_FAULT_NOPAGE;
3618 
3619 	set_pte_range(vmf, folio, page, 1, addr);
3620 	(*rss)++;
3621 	folio_ref_inc(folio);
3622 
3623 	return ret;
3624 }
3625 
3626 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3627 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3628 {
3629 	struct vm_area_struct *vma = vmf->vma;
3630 	struct file *file = vma->vm_file;
3631 	struct address_space *mapping = file->f_mapping;
3632 	pgoff_t file_end, last_pgoff = start_pgoff;
3633 	unsigned long addr;
3634 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3635 	struct folio *folio;
3636 	vm_fault_t ret = 0;
3637 	unsigned long rss = 0;
3638 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type;
3639 
3640 	rcu_read_lock();
3641 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3642 	if (!folio)
3643 		goto out;
3644 
3645 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3646 		ret = VM_FAULT_NOPAGE;
3647 		goto out;
3648 	}
3649 
3650 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3651 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3652 	if (!vmf->pte) {
3653 		folio_unlock(folio);
3654 		folio_put(folio);
3655 		goto out;
3656 	}
3657 
3658 	file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1;
3659 	if (end_pgoff > file_end)
3660 		end_pgoff = file_end;
3661 
3662 	folio_type = mm_counter_file(folio);
3663 	do {
3664 		unsigned long end;
3665 
3666 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3667 		vmf->pte += xas.xa_index - last_pgoff;
3668 		last_pgoff = xas.xa_index;
3669 		end = folio_next_index(folio) - 1;
3670 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3671 
3672 		if (!folio_test_large(folio))
3673 			ret |= filemap_map_order0_folio(vmf,
3674 					folio, addr, &rss, &mmap_miss);
3675 		else
3676 			ret |= filemap_map_folio_range(vmf, folio,
3677 					xas.xa_index - folio->index, addr,
3678 					nr_pages, &rss, &mmap_miss);
3679 
3680 		folio_unlock(folio);
3681 		folio_put(folio);
3682 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3683 	add_mm_counter(vma->vm_mm, folio_type, rss);
3684 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3685 	trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff);
3686 out:
3687 	rcu_read_unlock();
3688 
3689 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3690 	if (mmap_miss >= mmap_miss_saved)
3691 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3692 	else
3693 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3694 
3695 	return ret;
3696 }
3697 EXPORT_SYMBOL(filemap_map_pages);
3698 
3699 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3700 {
3701 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3702 	struct folio *folio = page_folio(vmf->page);
3703 	vm_fault_t ret = VM_FAULT_LOCKED;
3704 
3705 	sb_start_pagefault(mapping->host->i_sb);
3706 	file_update_time(vmf->vma->vm_file);
3707 	folio_lock(folio);
3708 	if (folio->mapping != mapping) {
3709 		folio_unlock(folio);
3710 		ret = VM_FAULT_NOPAGE;
3711 		goto out;
3712 	}
3713 	/*
3714 	 * We mark the folio dirty already here so that when freeze is in
3715 	 * progress, we are guaranteed that writeback during freezing will
3716 	 * see the dirty folio and writeprotect it again.
3717 	 */
3718 	folio_mark_dirty(folio);
3719 	folio_wait_stable(folio);
3720 out:
3721 	sb_end_pagefault(mapping->host->i_sb);
3722 	return ret;
3723 }
3724 
3725 const struct vm_operations_struct generic_file_vm_ops = {
3726 	.fault		= filemap_fault,
3727 	.map_pages	= filemap_map_pages,
3728 	.page_mkwrite	= filemap_page_mkwrite,
3729 };
3730 
3731 /* This is used for a general mmap of a disk file */
3732 
3733 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3734 {
3735 	struct address_space *mapping = file->f_mapping;
3736 
3737 	if (!mapping->a_ops->read_folio)
3738 		return -ENOEXEC;
3739 	file_accessed(file);
3740 	vma->vm_ops = &generic_file_vm_ops;
3741 	return 0;
3742 }
3743 
3744 /*
3745  * This is for filesystems which do not implement ->writepage.
3746  */
3747 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3748 {
3749 	if (vma_is_shared_maywrite(vma))
3750 		return -EINVAL;
3751 	return generic_file_mmap(file, vma);
3752 }
3753 #else
3754 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3755 {
3756 	return VM_FAULT_SIGBUS;
3757 }
3758 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3759 {
3760 	return -ENOSYS;
3761 }
3762 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3763 {
3764 	return -ENOSYS;
3765 }
3766 #endif /* CONFIG_MMU */
3767 
3768 EXPORT_SYMBOL(filemap_page_mkwrite);
3769 EXPORT_SYMBOL(generic_file_mmap);
3770 EXPORT_SYMBOL(generic_file_readonly_mmap);
3771 
3772 static struct folio *do_read_cache_folio(struct address_space *mapping,
3773 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3774 {
3775 	struct folio *folio;
3776 	int err;
3777 
3778 	if (!filler)
3779 		filler = mapping->a_ops->read_folio;
3780 repeat:
3781 	folio = filemap_get_folio(mapping, index);
3782 	if (IS_ERR(folio)) {
3783 		folio = filemap_alloc_folio(gfp,
3784 					    mapping_min_folio_order(mapping));
3785 		if (!folio)
3786 			return ERR_PTR(-ENOMEM);
3787 		index = mapping_align_index(mapping, index);
3788 		err = filemap_add_folio(mapping, folio, index, gfp);
3789 		if (unlikely(err)) {
3790 			folio_put(folio);
3791 			if (err == -EEXIST)
3792 				goto repeat;
3793 			/* Presumably ENOMEM for xarray node */
3794 			return ERR_PTR(err);
3795 		}
3796 
3797 		goto filler;
3798 	}
3799 	if (folio_test_uptodate(folio))
3800 		goto out;
3801 
3802 	if (!folio_trylock(folio)) {
3803 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3804 		goto repeat;
3805 	}
3806 
3807 	/* Folio was truncated from mapping */
3808 	if (!folio->mapping) {
3809 		folio_unlock(folio);
3810 		folio_put(folio);
3811 		goto repeat;
3812 	}
3813 
3814 	/* Someone else locked and filled the page in a very small window */
3815 	if (folio_test_uptodate(folio)) {
3816 		folio_unlock(folio);
3817 		goto out;
3818 	}
3819 
3820 filler:
3821 	err = filemap_read_folio(file, filler, folio);
3822 	if (err) {
3823 		folio_put(folio);
3824 		if (err == AOP_TRUNCATED_PAGE)
3825 			goto repeat;
3826 		return ERR_PTR(err);
3827 	}
3828 
3829 out:
3830 	folio_mark_accessed(folio);
3831 	return folio;
3832 }
3833 
3834 /**
3835  * read_cache_folio - Read into page cache, fill it if needed.
3836  * @mapping: The address_space to read from.
3837  * @index: The index to read.
3838  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3839  * @file: Passed to filler function, may be NULL if not required.
3840  *
3841  * Read one page into the page cache.  If it succeeds, the folio returned
3842  * will contain @index, but it may not be the first page of the folio.
3843  *
3844  * If the filler function returns an error, it will be returned to the
3845  * caller.
3846  *
3847  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3848  * Return: An uptodate folio on success, ERR_PTR() on failure.
3849  */
3850 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3851 		filler_t filler, struct file *file)
3852 {
3853 	return do_read_cache_folio(mapping, index, filler, file,
3854 			mapping_gfp_mask(mapping));
3855 }
3856 EXPORT_SYMBOL(read_cache_folio);
3857 
3858 /**
3859  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3860  * @mapping:	The address_space for the folio.
3861  * @index:	The index that the allocated folio will contain.
3862  * @gfp:	The page allocator flags to use if allocating.
3863  *
3864  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3865  * any new memory allocations done using the specified allocation flags.
3866  *
3867  * The most likely error from this function is EIO, but ENOMEM is
3868  * possible and so is EINTR.  If ->read_folio returns another error,
3869  * that will be returned to the caller.
3870  *
3871  * The function expects mapping->invalidate_lock to be already held.
3872  *
3873  * Return: Uptodate folio on success, ERR_PTR() on failure.
3874  */
3875 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3876 		pgoff_t index, gfp_t gfp)
3877 {
3878 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3879 }
3880 EXPORT_SYMBOL(mapping_read_folio_gfp);
3881 
3882 static struct page *do_read_cache_page(struct address_space *mapping,
3883 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3884 {
3885 	struct folio *folio;
3886 
3887 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3888 	if (IS_ERR(folio))
3889 		return &folio->page;
3890 	return folio_file_page(folio, index);
3891 }
3892 
3893 struct page *read_cache_page(struct address_space *mapping,
3894 			pgoff_t index, filler_t *filler, struct file *file)
3895 {
3896 	return do_read_cache_page(mapping, index, filler, file,
3897 			mapping_gfp_mask(mapping));
3898 }
3899 EXPORT_SYMBOL(read_cache_page);
3900 
3901 /**
3902  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3903  * @mapping:	the page's address_space
3904  * @index:	the page index
3905  * @gfp:	the page allocator flags to use if allocating
3906  *
3907  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3908  * any new page allocations done using the specified allocation flags.
3909  *
3910  * If the page does not get brought uptodate, return -EIO.
3911  *
3912  * The function expects mapping->invalidate_lock to be already held.
3913  *
3914  * Return: up to date page on success, ERR_PTR() on failure.
3915  */
3916 struct page *read_cache_page_gfp(struct address_space *mapping,
3917 				pgoff_t index,
3918 				gfp_t gfp)
3919 {
3920 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3921 }
3922 EXPORT_SYMBOL(read_cache_page_gfp);
3923 
3924 /*
3925  * Warn about a page cache invalidation failure during a direct I/O write.
3926  */
3927 static void dio_warn_stale_pagecache(struct file *filp)
3928 {
3929 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3930 	char pathname[128];
3931 	char *path;
3932 
3933 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3934 	if (__ratelimit(&_rs)) {
3935 		path = file_path(filp, pathname, sizeof(pathname));
3936 		if (IS_ERR(path))
3937 			path = "(unknown)";
3938 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3939 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3940 			current->comm);
3941 	}
3942 }
3943 
3944 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3945 {
3946 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3947 
3948 	if (mapping->nrpages &&
3949 	    invalidate_inode_pages2_range(mapping,
3950 			iocb->ki_pos >> PAGE_SHIFT,
3951 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3952 		dio_warn_stale_pagecache(iocb->ki_filp);
3953 }
3954 
3955 ssize_t
3956 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3957 {
3958 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3959 	size_t write_len = iov_iter_count(from);
3960 	ssize_t written;
3961 
3962 	/*
3963 	 * If a page can not be invalidated, return 0 to fall back
3964 	 * to buffered write.
3965 	 */
3966 	written = kiocb_invalidate_pages(iocb, write_len);
3967 	if (written) {
3968 		if (written == -EBUSY)
3969 			return 0;
3970 		return written;
3971 	}
3972 
3973 	written = mapping->a_ops->direct_IO(iocb, from);
3974 
3975 	/*
3976 	 * Finally, try again to invalidate clean pages which might have been
3977 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3978 	 * if the source of the write was an mmap'ed region of the file
3979 	 * we're writing.  Either one is a pretty crazy thing to do,
3980 	 * so we don't support it 100%.  If this invalidation
3981 	 * fails, tough, the write still worked...
3982 	 *
3983 	 * Most of the time we do not need this since dio_complete() will do
3984 	 * the invalidation for us. However there are some file systems that
3985 	 * do not end up with dio_complete() being called, so let's not break
3986 	 * them by removing it completely.
3987 	 *
3988 	 * Noticeable example is a blkdev_direct_IO().
3989 	 *
3990 	 * Skip invalidation for async writes or if mapping has no pages.
3991 	 */
3992 	if (written > 0) {
3993 		struct inode *inode = mapping->host;
3994 		loff_t pos = iocb->ki_pos;
3995 
3996 		kiocb_invalidate_post_direct_write(iocb, written);
3997 		pos += written;
3998 		write_len -= written;
3999 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
4000 			i_size_write(inode, pos);
4001 			mark_inode_dirty(inode);
4002 		}
4003 		iocb->ki_pos = pos;
4004 	}
4005 	if (written != -EIOCBQUEUED)
4006 		iov_iter_revert(from, write_len - iov_iter_count(from));
4007 	return written;
4008 }
4009 EXPORT_SYMBOL(generic_file_direct_write);
4010 
4011 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
4012 {
4013 	struct file *file = iocb->ki_filp;
4014 	loff_t pos = iocb->ki_pos;
4015 	struct address_space *mapping = file->f_mapping;
4016 	const struct address_space_operations *a_ops = mapping->a_ops;
4017 	size_t chunk = mapping_max_folio_size(mapping);
4018 	long status = 0;
4019 	ssize_t written = 0;
4020 
4021 	do {
4022 		struct folio *folio;
4023 		size_t offset;		/* Offset into folio */
4024 		size_t bytes;		/* Bytes to write to folio */
4025 		size_t copied;		/* Bytes copied from user */
4026 		void *fsdata = NULL;
4027 
4028 		bytes = iov_iter_count(i);
4029 retry:
4030 		offset = pos & (chunk - 1);
4031 		bytes = min(chunk - offset, bytes);
4032 		balance_dirty_pages_ratelimited(mapping);
4033 
4034 		/*
4035 		 * Bring in the user page that we will copy from _first_.
4036 		 * Otherwise there's a nasty deadlock on copying from the
4037 		 * same page as we're writing to, without it being marked
4038 		 * up-to-date.
4039 		 */
4040 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
4041 			status = -EFAULT;
4042 			break;
4043 		}
4044 
4045 		if (fatal_signal_pending(current)) {
4046 			status = -EINTR;
4047 			break;
4048 		}
4049 
4050 		status = a_ops->write_begin(file, mapping, pos, bytes,
4051 						&folio, &fsdata);
4052 		if (unlikely(status < 0))
4053 			break;
4054 
4055 		offset = offset_in_folio(folio, pos);
4056 		if (bytes > folio_size(folio) - offset)
4057 			bytes = folio_size(folio) - offset;
4058 
4059 		if (mapping_writably_mapped(mapping))
4060 			flush_dcache_folio(folio);
4061 
4062 		copied = copy_folio_from_iter_atomic(folio, offset, bytes, i);
4063 		flush_dcache_folio(folio);
4064 
4065 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
4066 						folio, fsdata);
4067 		if (unlikely(status != copied)) {
4068 			iov_iter_revert(i, copied - max(status, 0L));
4069 			if (unlikely(status < 0))
4070 				break;
4071 		}
4072 		cond_resched();
4073 
4074 		if (unlikely(status == 0)) {
4075 			/*
4076 			 * A short copy made ->write_end() reject the
4077 			 * thing entirely.  Might be memory poisoning
4078 			 * halfway through, might be a race with munmap,
4079 			 * might be severe memory pressure.
4080 			 */
4081 			if (chunk > PAGE_SIZE)
4082 				chunk /= 2;
4083 			if (copied) {
4084 				bytes = copied;
4085 				goto retry;
4086 			}
4087 		} else {
4088 			pos += status;
4089 			written += status;
4090 		}
4091 	} while (iov_iter_count(i));
4092 
4093 	if (!written)
4094 		return status;
4095 	iocb->ki_pos += written;
4096 	return written;
4097 }
4098 EXPORT_SYMBOL(generic_perform_write);
4099 
4100 /**
4101  * __generic_file_write_iter - write data to a file
4102  * @iocb:	IO state structure (file, offset, etc.)
4103  * @from:	iov_iter with data to write
4104  *
4105  * This function does all the work needed for actually writing data to a
4106  * file. It does all basic checks, removes SUID from the file, updates
4107  * modification times and calls proper subroutines depending on whether we
4108  * do direct IO or a standard buffered write.
4109  *
4110  * It expects i_rwsem to be grabbed unless we work on a block device or similar
4111  * object which does not need locking at all.
4112  *
4113  * This function does *not* take care of syncing data in case of O_SYNC write.
4114  * A caller has to handle it. This is mainly due to the fact that we want to
4115  * avoid syncing under i_rwsem.
4116  *
4117  * Return:
4118  * * number of bytes written, even for truncated writes
4119  * * negative error code if no data has been written at all
4120  */
4121 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4122 {
4123 	struct file *file = iocb->ki_filp;
4124 	struct address_space *mapping = file->f_mapping;
4125 	struct inode *inode = mapping->host;
4126 	ssize_t ret;
4127 
4128 	ret = file_remove_privs(file);
4129 	if (ret)
4130 		return ret;
4131 
4132 	ret = file_update_time(file);
4133 	if (ret)
4134 		return ret;
4135 
4136 	if (iocb->ki_flags & IOCB_DIRECT) {
4137 		ret = generic_file_direct_write(iocb, from);
4138 		/*
4139 		 * If the write stopped short of completing, fall back to
4140 		 * buffered writes.  Some filesystems do this for writes to
4141 		 * holes, for example.  For DAX files, a buffered write will
4142 		 * not succeed (even if it did, DAX does not handle dirty
4143 		 * page-cache pages correctly).
4144 		 */
4145 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4146 			return ret;
4147 		return direct_write_fallback(iocb, from, ret,
4148 				generic_perform_write(iocb, from));
4149 	}
4150 
4151 	return generic_perform_write(iocb, from);
4152 }
4153 EXPORT_SYMBOL(__generic_file_write_iter);
4154 
4155 /**
4156  * generic_file_write_iter - write data to a file
4157  * @iocb:	IO state structure
4158  * @from:	iov_iter with data to write
4159  *
4160  * This is a wrapper around __generic_file_write_iter() to be used by most
4161  * filesystems. It takes care of syncing the file in case of O_SYNC file
4162  * and acquires i_rwsem as needed.
4163  * Return:
4164  * * negative error code if no data has been written at all of
4165  *   vfs_fsync_range() failed for a synchronous write
4166  * * number of bytes written, even for truncated writes
4167  */
4168 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4169 {
4170 	struct file *file = iocb->ki_filp;
4171 	struct inode *inode = file->f_mapping->host;
4172 	ssize_t ret;
4173 
4174 	inode_lock(inode);
4175 	ret = generic_write_checks(iocb, from);
4176 	if (ret > 0)
4177 		ret = __generic_file_write_iter(iocb, from);
4178 	inode_unlock(inode);
4179 
4180 	if (ret > 0)
4181 		ret = generic_write_sync(iocb, ret);
4182 	return ret;
4183 }
4184 EXPORT_SYMBOL(generic_file_write_iter);
4185 
4186 /**
4187  * filemap_release_folio() - Release fs-specific metadata on a folio.
4188  * @folio: The folio which the kernel is trying to free.
4189  * @gfp: Memory allocation flags (and I/O mode).
4190  *
4191  * The address_space is trying to release any data attached to a folio
4192  * (presumably at folio->private).
4193  *
4194  * This will also be called if the private_2 flag is set on a page,
4195  * indicating that the folio has other metadata associated with it.
4196  *
4197  * The @gfp argument specifies whether I/O may be performed to release
4198  * this page (__GFP_IO), and whether the call may block
4199  * (__GFP_RECLAIM & __GFP_FS).
4200  *
4201  * Return: %true if the release was successful, otherwise %false.
4202  */
4203 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4204 {
4205 	struct address_space * const mapping = folio->mapping;
4206 
4207 	BUG_ON(!folio_test_locked(folio));
4208 	if (!folio_needs_release(folio))
4209 		return true;
4210 	if (folio_test_writeback(folio))
4211 		return false;
4212 
4213 	if (mapping && mapping->a_ops->release_folio)
4214 		return mapping->a_ops->release_folio(folio, gfp);
4215 	return try_to_free_buffers(folio);
4216 }
4217 EXPORT_SYMBOL(filemap_release_folio);
4218 
4219 /**
4220  * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache
4221  * @inode: The inode to flush
4222  * @flush: Set to write back rather than simply invalidate.
4223  * @start: First byte to in range.
4224  * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start
4225  *       onwards.
4226  *
4227  * Invalidate all the folios on an inode that contribute to the specified
4228  * range, possibly writing them back first.  Whilst the operation is
4229  * undertaken, the invalidate lock is held to prevent new folios from being
4230  * installed.
4231  */
4232 int filemap_invalidate_inode(struct inode *inode, bool flush,
4233 			     loff_t start, loff_t end)
4234 {
4235 	struct address_space *mapping = inode->i_mapping;
4236 	pgoff_t first = start >> PAGE_SHIFT;
4237 	pgoff_t last = end >> PAGE_SHIFT;
4238 	pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1;
4239 
4240 	if (!mapping || !mapping->nrpages || end < start)
4241 		goto out;
4242 
4243 	/* Prevent new folios from being added to the inode. */
4244 	filemap_invalidate_lock(mapping);
4245 
4246 	if (!mapping->nrpages)
4247 		goto unlock;
4248 
4249 	unmap_mapping_pages(mapping, first, nr, false);
4250 
4251 	/* Write back the data if we're asked to. */
4252 	if (flush) {
4253 		struct writeback_control wbc = {
4254 			.sync_mode	= WB_SYNC_ALL,
4255 			.nr_to_write	= LONG_MAX,
4256 			.range_start	= start,
4257 			.range_end	= end,
4258 		};
4259 
4260 		filemap_fdatawrite_wbc(mapping, &wbc);
4261 	}
4262 
4263 	/* Wait for writeback to complete on all folios and discard. */
4264 	invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE);
4265 
4266 unlock:
4267 	filemap_invalidate_unlock(mapping);
4268 out:
4269 	return filemap_check_errors(mapping);
4270 }
4271 EXPORT_SYMBOL_GPL(filemap_invalidate_inode);
4272 
4273 #ifdef CONFIG_CACHESTAT_SYSCALL
4274 /**
4275  * filemap_cachestat() - compute the page cache statistics of a mapping
4276  * @mapping:	The mapping to compute the statistics for.
4277  * @first_index:	The starting page cache index.
4278  * @last_index:	The final page index (inclusive).
4279  * @cs:	the cachestat struct to write the result to.
4280  *
4281  * This will query the page cache statistics of a mapping in the
4282  * page range of [first_index, last_index] (inclusive). The statistics
4283  * queried include: number of dirty pages, number of pages marked for
4284  * writeback, and the number of (recently) evicted pages.
4285  */
4286 static void filemap_cachestat(struct address_space *mapping,
4287 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4288 {
4289 	XA_STATE(xas, &mapping->i_pages, first_index);
4290 	struct folio *folio;
4291 
4292 	/* Flush stats (and potentially sleep) outside the RCU read section. */
4293 	mem_cgroup_flush_stats_ratelimited(NULL);
4294 
4295 	rcu_read_lock();
4296 	xas_for_each(&xas, folio, last_index) {
4297 		int order;
4298 		unsigned long nr_pages;
4299 		pgoff_t folio_first_index, folio_last_index;
4300 
4301 		/*
4302 		 * Don't deref the folio. It is not pinned, and might
4303 		 * get freed (and reused) underneath us.
4304 		 *
4305 		 * We *could* pin it, but that would be expensive for
4306 		 * what should be a fast and lightweight syscall.
4307 		 *
4308 		 * Instead, derive all information of interest from
4309 		 * the rcu-protected xarray.
4310 		 */
4311 
4312 		if (xas_retry(&xas, folio))
4313 			continue;
4314 
4315 		order = xas_get_order(&xas);
4316 		nr_pages = 1 << order;
4317 		folio_first_index = round_down(xas.xa_index, 1 << order);
4318 		folio_last_index = folio_first_index + nr_pages - 1;
4319 
4320 		/* Folios might straddle the range boundaries, only count covered pages */
4321 		if (folio_first_index < first_index)
4322 			nr_pages -= first_index - folio_first_index;
4323 
4324 		if (folio_last_index > last_index)
4325 			nr_pages -= folio_last_index - last_index;
4326 
4327 		if (xa_is_value(folio)) {
4328 			/* page is evicted */
4329 			void *shadow = (void *)folio;
4330 			bool workingset; /* not used */
4331 
4332 			cs->nr_evicted += nr_pages;
4333 
4334 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4335 			if (shmem_mapping(mapping)) {
4336 				/* shmem file - in swap cache */
4337 				swp_entry_t swp = radix_to_swp_entry(folio);
4338 
4339 				/* swapin error results in poisoned entry */
4340 				if (non_swap_entry(swp))
4341 					goto resched;
4342 
4343 				/*
4344 				 * Getting a swap entry from the shmem
4345 				 * inode means we beat
4346 				 * shmem_unuse(). rcu_read_lock()
4347 				 * ensures swapoff waits for us before
4348 				 * freeing the swapper space. However,
4349 				 * we can race with swapping and
4350 				 * invalidation, so there might not be
4351 				 * a shadow in the swapcache (yet).
4352 				 */
4353 				shadow = get_shadow_from_swap_cache(swp);
4354 				if (!shadow)
4355 					goto resched;
4356 			}
4357 #endif
4358 			if (workingset_test_recent(shadow, true, &workingset, false))
4359 				cs->nr_recently_evicted += nr_pages;
4360 
4361 			goto resched;
4362 		}
4363 
4364 		/* page is in cache */
4365 		cs->nr_cache += nr_pages;
4366 
4367 		if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY))
4368 			cs->nr_dirty += nr_pages;
4369 
4370 		if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK))
4371 			cs->nr_writeback += nr_pages;
4372 
4373 resched:
4374 		if (need_resched()) {
4375 			xas_pause(&xas);
4376 			cond_resched_rcu();
4377 		}
4378 	}
4379 	rcu_read_unlock();
4380 }
4381 
4382 /*
4383  * The cachestat(2) system call.
4384  *
4385  * cachestat() returns the page cache statistics of a file in the
4386  * bytes range specified by `off` and `len`: number of cached pages,
4387  * number of dirty pages, number of pages marked for writeback,
4388  * number of evicted pages, and number of recently evicted pages.
4389  *
4390  * An evicted page is a page that is previously in the page cache
4391  * but has been evicted since. A page is recently evicted if its last
4392  * eviction was recent enough that its reentry to the cache would
4393  * indicate that it is actively being used by the system, and that
4394  * there is memory pressure on the system.
4395  *
4396  * `off` and `len` must be non-negative integers. If `len` > 0,
4397  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4398  * we will query in the range from `off` to the end of the file.
4399  *
4400  * The `flags` argument is unused for now, but is included for future
4401  * extensibility. User should pass 0 (i.e no flag specified).
4402  *
4403  * Currently, hugetlbfs is not supported.
4404  *
4405  * Because the status of a page can change after cachestat() checks it
4406  * but before it returns to the application, the returned values may
4407  * contain stale information.
4408  *
4409  * return values:
4410  *  zero        - success
4411  *  -EFAULT     - cstat or cstat_range points to an illegal address
4412  *  -EINVAL     - invalid flags
4413  *  -EBADF      - invalid file descriptor
4414  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4415  */
4416 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4417 		struct cachestat_range __user *, cstat_range,
4418 		struct cachestat __user *, cstat, unsigned int, flags)
4419 {
4420 	struct fd f = fdget(fd);
4421 	struct address_space *mapping;
4422 	struct cachestat_range csr;
4423 	struct cachestat cs;
4424 	pgoff_t first_index, last_index;
4425 
4426 	if (!fd_file(f))
4427 		return -EBADF;
4428 
4429 	if (copy_from_user(&csr, cstat_range,
4430 			sizeof(struct cachestat_range))) {
4431 		fdput(f);
4432 		return -EFAULT;
4433 	}
4434 
4435 	/* hugetlbfs is not supported */
4436 	if (is_file_hugepages(fd_file(f))) {
4437 		fdput(f);
4438 		return -EOPNOTSUPP;
4439 	}
4440 
4441 	if (flags != 0) {
4442 		fdput(f);
4443 		return -EINVAL;
4444 	}
4445 
4446 	first_index = csr.off >> PAGE_SHIFT;
4447 	last_index =
4448 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4449 	memset(&cs, 0, sizeof(struct cachestat));
4450 	mapping = fd_file(f)->f_mapping;
4451 	filemap_cachestat(mapping, first_index, last_index, &cs);
4452 	fdput(f);
4453 
4454 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4455 		return -EFAULT;
4456 
4457 	return 0;
4458 }
4459 #endif /* CONFIG_CACHESTAT_SYSCALL */
4460