1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <asm/pgalloc.h> 51 #include <asm/tlbflush.h> 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 56 57 /* 58 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 60 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 62 #include <asm/mman.h> 63 64 #include "swap.h" 65 66 /* 67 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 69 * 70 * Shared mappings now work. 15.8.1995 Bruno. 71 * 72 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 77 78 /* 79 * Lock ordering: 80 * 81 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->block_dirty_folio) 83 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 85 * 86 * ->i_rwsem 87 * ->invalidate_lock (acquired by fs in truncate path) 88 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 89 * 90 * ->mmap_lock 91 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 95 * ->mmap_lock 96 * ->invalidate_lock (filemap_fault) 97 * ->lock_page (filemap_fault, access_process_vm) 98 * 99 * ->i_rwsem (generic_perform_write) 100 * ->mmap_lock (fault_in_readable->do_page_fault) 101 * 102 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single_inode) 105 * 106 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) 108 * 109 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 112 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void mapping_set_update(struct xa_state *xas, 129 struct address_space *mapping) 130 { 131 if (dax_mapping(mapping) || shmem_mapping(mapping)) 132 return; 133 xas_set_update(xas, workingset_update_node); 134 xas_set_lru(xas, &shadow_nodes); 135 } 136 137 static void page_cache_delete(struct address_space *mapping, 138 struct folio *folio, void *shadow) 139 { 140 XA_STATE(xas, &mapping->i_pages, folio->index); 141 long nr = 1; 142 143 mapping_set_update(&xas, mapping); 144 145 xas_set_order(&xas, folio->index, folio_order(folio)); 146 nr = folio_nr_pages(folio); 147 148 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 149 150 xas_store(&xas, shadow); 151 xas_init_marks(&xas); 152 153 folio->mapping = NULL; 154 /* Leave page->index set: truncation lookup relies upon it */ 155 mapping->nrpages -= nr; 156 } 157 158 static void filemap_unaccount_folio(struct address_space *mapping, 159 struct folio *folio) 160 { 161 long nr; 162 163 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 165 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_pfn(folio)); 167 dump_page(&folio->page, "still mapped when deleted"); 168 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 171 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 172 int mapcount = folio_mapcount(folio); 173 174 if (folio_ref_count(folio) >= mapcount + 2) { 175 /* 176 * All vmas have already been torn down, so it's 177 * a good bet that actually the page is unmapped 178 * and we'd rather not leak it: if we're wrong, 179 * another bad page check should catch it later. 180 */ 181 atomic_set(&folio->_mapcount, -1); 182 folio_ref_sub(folio, mapcount); 183 } 184 } 185 } 186 187 /* hugetlb folios do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) 189 return; 190 191 nr = folio_nr_pages(folio); 192 193 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { 195 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(folio)) 197 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 198 } else if (folio_test_pmd_mappable(folio)) { 199 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 200 filemap_nr_thps_dec(mapping); 201 } 202 203 /* 204 * At this point folio must be either written or cleaned by 205 * truncate. Dirty folio here signals a bug and loss of 206 * unwritten data - on ordinary filesystems. 207 * 208 * But it's harmless on in-memory filesystems like tmpfs; and can 209 * occur when a driver which did get_user_pages() sets page dirty 210 * before putting it, while the inode is being finally evicted. 211 * 212 * Below fixes dirty accounting after removing the folio entirely 213 * but leaves the dirty flag set: it has no effect for truncated 214 * folio and anyway will be cleared before returning folio to 215 * buddy allocator. 216 */ 217 if (WARN_ON_ONCE(folio_test_dirty(folio) && 218 mapping_can_writeback(mapping))) 219 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __filemap_remove_folio(struct folio *folio, void *shadow) 228 { 229 struct address_space *mapping = folio->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(folio); 232 filemap_unaccount_folio(mapping, folio); 233 page_cache_delete(mapping, folio, shadow); 234 } 235 236 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 237 { 238 void (*free_folio)(struct folio *); 239 int refs = 1; 240 241 free_folio = mapping->a_ops->free_folio; 242 if (free_folio) 243 free_folio(folio); 244 245 if (folio_test_large(folio)) 246 refs = folio_nr_pages(folio); 247 folio_put_refs(folio, refs); 248 } 249 250 /** 251 * filemap_remove_folio - Remove folio from page cache. 252 * @folio: The folio. 253 * 254 * This must be called only on folios that are locked and have been 255 * verified to be in the page cache. It will never put the folio into 256 * the free list because the caller has a reference on the page. 257 */ 258 void filemap_remove_folio(struct folio *folio) 259 { 260 struct address_space *mapping = folio->mapping; 261 262 BUG_ON(!folio_test_locked(folio)); 263 spin_lock(&mapping->host->i_lock); 264 xa_lock_irq(&mapping->i_pages); 265 __filemap_remove_folio(folio, NULL); 266 xa_unlock_irq(&mapping->i_pages); 267 if (mapping_shrinkable(mapping)) 268 inode_add_lru(mapping->host); 269 spin_unlock(&mapping->host->i_lock); 270 271 filemap_free_folio(mapping, folio); 272 } 273 274 /* 275 * page_cache_delete_batch - delete several folios from page cache 276 * @mapping: the mapping to which folios belong 277 * @fbatch: batch of folios to delete 278 * 279 * The function walks over mapping->i_pages and removes folios passed in 280 * @fbatch from the mapping. The function expects @fbatch to be sorted 281 * by page index and is optimised for it to be dense. 282 * It tolerates holes in @fbatch (mapping entries at those indices are not 283 * modified). 284 * 285 * The function expects the i_pages lock to be held. 286 */ 287 static void page_cache_delete_batch(struct address_space *mapping, 288 struct folio_batch *fbatch) 289 { 290 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 291 long total_pages = 0; 292 int i = 0; 293 struct folio *folio; 294 295 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, folio, ULONG_MAX) { 297 if (i >= folio_batch_count(fbatch)) 298 break; 299 300 /* A swap/dax/shadow entry got inserted? Skip it. */ 301 if (xa_is_value(folio)) 302 continue; 303 /* 304 * A page got inserted in our range? Skip it. We have our 305 * pages locked so they are protected from being removed. 306 * If we see a page whose index is higher than ours, it 307 * means our page has been removed, which shouldn't be 308 * possible because we're holding the PageLock. 309 */ 310 if (folio != fbatch->folios[i]) { 311 VM_BUG_ON_FOLIO(folio->index > 312 fbatch->folios[i]->index, folio); 313 continue; 314 } 315 316 WARN_ON_ONCE(!folio_test_locked(folio)); 317 318 folio->mapping = NULL; 319 /* Leave folio->index set: truncation lookup relies on it */ 320 321 i++; 322 xas_store(&xas, NULL); 323 total_pages += folio_nr_pages(folio); 324 } 325 mapping->nrpages -= total_pages; 326 } 327 328 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio_batch *fbatch) 330 { 331 int i; 332 333 if (!folio_batch_count(fbatch)) 334 return; 335 336 spin_lock(&mapping->host->i_lock); 337 xa_lock_irq(&mapping->i_pages); 338 for (i = 0; i < folio_batch_count(fbatch); i++) { 339 struct folio *folio = fbatch->folios[i]; 340 341 trace_mm_filemap_delete_from_page_cache(folio); 342 filemap_unaccount_folio(mapping, folio); 343 } 344 page_cache_delete_batch(mapping, fbatch); 345 xa_unlock_irq(&mapping->i_pages); 346 if (mapping_shrinkable(mapping)) 347 inode_add_lru(mapping->host); 348 spin_unlock(&mapping->host->i_lock); 349 350 for (i = 0; i < folio_batch_count(fbatch); i++) 351 filemap_free_folio(mapping, fbatch->folios[i]); 352 } 353 354 int filemap_check_errors(struct address_space *mapping) 355 { 356 int ret = 0; 357 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 364 return ret; 365 } 366 EXPORT_SYMBOL(filemap_check_errors); 367 368 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 375 return 0; 376 } 377 378 /** 379 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 380 * @mapping: address space structure to write 381 * @wbc: the writeback_control controlling the writeout 382 * 383 * Call writepages on the mapping using the provided wbc to control the 384 * writeout. 385 * 386 * Return: %0 on success, negative error code otherwise. 387 */ 388 int filemap_fdatawrite_wbc(struct address_space *mapping, 389 struct writeback_control *wbc) 390 { 391 int ret; 392 393 if (!mapping_can_writeback(mapping) || 394 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 395 return 0; 396 397 wbc_attach_fdatawrite_inode(wbc, mapping->host); 398 ret = do_writepages(mapping, wbc); 399 wbc_detach_inode(wbc); 400 return ret; 401 } 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 403 404 /** 405 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to write 407 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 410 * 411 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclusive. 413 * 414 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 418 * 419 * Return: %0 on success, negative error code otherwise. 420 */ 421 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, int sync_mode) 423 { 424 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 427 .range_start = start, 428 .range_end = end, 429 }; 430 431 return filemap_fdatawrite_wbc(mapping, &wbc); 432 } 433 434 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 436 { 437 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 439 440 int filemap_fdatawrite(struct address_space *mapping) 441 { 442 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 445 446 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 448 { 449 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 453 /** 454 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 456 * 457 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against all dirty pages. 459 * 460 * Return: %0 on success, negative error code otherwise. 461 */ 462 int filemap_flush(struct address_space *mapping) 463 { 464 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 466 EXPORT_SYMBOL(filemap_flush); 467 468 /** 469 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 474 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a writeback. 476 * 477 * Return: %true if at least one page exists in the specified range, 478 * %false otherwise. 479 */ 480 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, loff_t end_byte) 482 { 483 struct folio *folio; 484 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 485 pgoff_t max = end_byte >> PAGE_SHIFT; 486 487 if (end_byte < start_byte) 488 return false; 489 490 rcu_read_lock(); 491 for (;;) { 492 folio = xas_find(&xas, max); 493 if (xas_retry(&xas, folio)) 494 continue; 495 /* Shadow entries don't count */ 496 if (xa_is_value(folio)) 497 continue; 498 /* 499 * We don't need to try to pin this page; we're about to 500 * release the RCU lock anyway. It is enough to know that 501 * there was a page here recently. 502 */ 503 break; 504 } 505 rcu_read_unlock(); 506 507 return folio != NULL; 508 } 509 EXPORT_SYMBOL(filemap_range_has_page); 510 511 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t start_byte, loff_t end_byte) 513 { 514 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; 517 unsigned nr_folios; 518 519 folio_batch_init(&fbatch); 520 521 while (index <= end) { 522 unsigned i; 523 524 nr_folios = filemap_get_folios_tag(mapping, &index, end, 525 PAGECACHE_TAG_WRITEBACK, &fbatch); 526 527 if (!nr_folios) 528 break; 529 530 for (i = 0; i < nr_folios; i++) { 531 struct folio *folio = fbatch.folios[i]; 532 533 folio_wait_writeback(folio); 534 } 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 } 539 540 /** 541 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 546 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 549 * 550 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 553 * 554 * Return: error status of the address space. 555 */ 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 558 { 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 570 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status of the address space. 573 * 574 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 577 */ 578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_byte) 580 { 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(mapping); 583 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 586 /** 587 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 592 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 596 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 599 * 600 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 604 struct address_space *mapping = file->f_mapping; 605 606 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(file); 608 } 609 EXPORT_SYMBOL(file_fdatawait_range); 610 611 /** 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait for 614 * 615 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address space. 618 * 619 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 622 * 623 * Return: error status of the address space. 624 */ 625 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(mapping); 629 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 632 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 635 return mapping->nrpages; 636 } 637 638 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; 644 645 if (end_byte < start_byte) 646 return false; 647 648 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { 650 if (xas_retry(&xas, folio)) 651 continue; 652 if (xa_is_value(folio)) 653 continue; 654 if (folio_test_dirty(folio) || folio_test_locked(folio) || 655 folio_test_writeback(folio)) 656 break; 657 } 658 rcu_read_unlock(); 659 return folio != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0, err2; 680 681 if (lend < lstart) 682 return 0; 683 684 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 WB_SYNC_ALL); 687 /* 688 * Even if the above returned error, the pages may be 689 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 693 if (err != -EIO) 694 __filemap_fdatawait_range(mapping, lstart, lend); 695 } 696 err2 = filemap_check_errors(mapping); 697 if (!err) 698 err = err2; 699 return err; 700 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 703 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 705 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 707 trace_filemap_set_wb_err(mapping, eseq); 708 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 710 711 /** 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance wb_err to current one 714 * @file: struct file on which the error is being reported 715 * 716 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't been any). 719 * 720 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all caught up. 722 * 723 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file descriptor. 732 * 733 * Return: %0 on success, negative error code otherwise. 734 */ 735 int file_check_and_advance_wb_err(struct file *file) 736 { 737 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file->f_mapping; 740 741 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 746 err = errseq_check_and_advance(&mapping->wb_err, 747 &file->f_wb_err); 748 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 750 } 751 752 /* 753 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had on these flags. 756 */ 757 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 760 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 763 /** 764 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the range ends (inclusive) 768 * 769 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 771 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to the very end-of-file (end = -1). 773 * 774 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 777 * Return: %0 on success, negative error code otherwise. 778 */ 779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 781 int err = 0, err2; 782 struct address_space *mapping = file->f_mapping; 783 784 if (lend < lstart) 785 return 0; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_folio - replace a pagecache folio with a new one 803 * @old: folio to be replaced 804 * @new: folio to replace with 805 * 806 * This function replaces a folio in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new folio and 808 * drops it for the old folio. Both the old and new folios must be 809 * locked. This function does not add the new folio to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_folio(struct folio *old, struct folio *new) 815 { 816 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offset); 820 821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); 824 825 folio_get(new); 826 new->mapping = mapping; 827 new->index = offset; 828 829 mem_cgroup_replace_folio(old, new); 830 831 xas_lock_irq(&xas); 832 xas_store(&xas, new); 833 834 old->mapping = NULL; 835 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) 837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) 839 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) 841 __lruvec_stat_sub_folio(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) 843 __lruvec_stat_add_folio(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 845 if (free_folio) 846 free_folio(old); 847 folio_put(old); 848 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 850 851 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, index); 855 void *alloced_shadow = NULL; 856 int alloced_order = 0; 857 bool huge; 858 long nr; 859 860 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 862 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 863 folio); 864 mapping_set_update(&xas, mapping); 865 866 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 867 xas_set_order(&xas, index, folio_order(folio)); 868 huge = folio_test_hugetlb(folio); 869 nr = folio_nr_pages(folio); 870 871 gfp &= GFP_RECLAIM_MASK; 872 folio_ref_add(folio, nr); 873 folio->mapping = mapping; 874 folio->index = xas.xa_index; 875 876 for (;;) { 877 int order = -1, split_order = 0; 878 void *entry, *old = NULL; 879 880 xas_lock_irq(&xas); 881 xas_for_each_conflict(&xas, entry) { 882 old = entry; 883 if (!xa_is_value(entry)) { 884 xas_set_err(&xas, -EEXIST); 885 goto unlock; 886 } 887 /* 888 * If a larger entry exists, 889 * it will be the first and only entry iterated. 890 */ 891 if (order == -1) 892 order = xas_get_order(&xas); 893 } 894 895 /* entry may have changed before we re-acquire the lock */ 896 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 897 xas_destroy(&xas); 898 alloced_order = 0; 899 } 900 901 if (old) { 902 if (order > 0 && order > folio_order(folio)) { 903 /* How to handle large swap entries? */ 904 BUG_ON(shmem_mapping(mapping)); 905 if (!alloced_order) { 906 split_order = order; 907 goto unlock; 908 } 909 xas_split(&xas, old, order); 910 xas_reset(&xas); 911 } 912 if (shadowp) 913 *shadowp = old; 914 } 915 916 xas_store(&xas, folio); 917 if (xas_error(&xas)) 918 goto unlock; 919 920 mapping->nrpages += nr; 921 922 /* hugetlb pages do not participate in page cache accounting */ 923 if (!huge) { 924 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 925 if (folio_test_pmd_mappable(folio)) 926 __lruvec_stat_mod_folio(folio, 927 NR_FILE_THPS, nr); 928 } 929 930 unlock: 931 xas_unlock_irq(&xas); 932 933 /* split needed, alloc here and retry. */ 934 if (split_order) { 935 xas_split_alloc(&xas, old, split_order, gfp); 936 if (xas_error(&xas)) 937 goto error; 938 alloced_shadow = old; 939 alloced_order = split_order; 940 xas_reset(&xas); 941 continue; 942 } 943 944 if (!xas_nomem(&xas, gfp)) 945 break; 946 } 947 948 if (xas_error(&xas)) 949 goto error; 950 951 trace_mm_filemap_add_to_page_cache(folio); 952 return 0; 953 error: 954 folio->mapping = NULL; 955 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); 957 return xas_error(&xas); 958 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 960 961 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, gfp_t gfp) 963 { 964 void *shadow = NULL; 965 int ret; 966 967 ret = mem_cgroup_charge(folio, NULL, gfp); 968 if (ret) 969 return ret; 970 971 __folio_set_locked(folio); 972 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 973 if (unlikely(ret)) { 974 mem_cgroup_uncharge(folio); 975 __folio_clear_locked(folio); 976 } else { 977 /* 978 * The folio might have been evicted from cache only 979 * recently, in which case it should be activated like 980 * any other repeatedly accessed folio. 981 * The exception is folios getting rewritten; evicting other 982 * data from the working set, only to cache data that will 983 * get overwritten with something else, is a waste of memory. 984 */ 985 WARN_ON_ONCE(folio_test_active(folio)); 986 if (!(gfp & __GFP_WRITE) && shadow) 987 workingset_refault(folio, shadow); 988 folio_add_lru(folio); 989 } 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); 993 994 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 996 { 997 int n; 998 struct folio *folio; 999 1000 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cookie; 1002 do { 1003 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc_node_noprof(gfp, order, n); 1006 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 1008 return folio; 1009 } 1010 return folio_alloc_noprof(gfp, order); 1011 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1013 #endif 1014 1015 /* 1016 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1017 * 1018 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1019 * 1020 * @mapping1: the first mapping to lock 1021 * @mapping2: the second mapping to lock 1022 */ 1023 void filemap_invalidate_lock_two(struct address_space *mapping1, 1024 struct address_space *mapping2) 1025 { 1026 if (mapping1 > mapping2) 1027 swap(mapping1, mapping2); 1028 if (mapping1) 1029 down_write(&mapping1->invalidate_lock); 1030 if (mapping2 && mapping1 != mapping2) 1031 down_write_nested(&mapping2->invalidate_lock, 1); 1032 } 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1034 1035 /* 1036 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1037 * 1038 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1039 * 1040 * @mapping1: the first mapping to unlock 1041 * @mapping2: the second mapping to unlock 1042 */ 1043 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1044 struct address_space *mapping2) 1045 { 1046 if (mapping1) 1047 up_write(&mapping1->invalidate_lock); 1048 if (mapping2 && mapping1 != mapping2) 1049 up_write(&mapping2->invalidate_lock); 1050 } 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1052 1053 /* 1054 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 1062 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 1067 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1068 { 1069 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1070 } 1071 1072 void __init pagecache_init(void) 1073 { 1074 int i; 1075 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wait_table[i]); 1078 1079 page_writeback_init(); 1080 } 1081 1082 /* 1083 * The page wait code treats the "wait->flags" somewhat unusually, because 1084 * we have multiple different kinds of waits, not just the usual "exclusive" 1085 * one. 1086 * 1087 * We have: 1088 * 1089 * (a) no special bits set: 1090 * 1091 * We're just waiting for the bit to be released, and when a waker 1092 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1093 * and remove it from the wait queue. 1094 * 1095 * Simple and straightforward. 1096 * 1097 * (b) WQ_FLAG_EXCLUSIVE: 1098 * 1099 * The waiter is waiting to get the lock, and only one waiter should 1100 * be woken up to avoid any thundering herd behavior. We'll set the 1101 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1102 * 1103 * This is the traditional exclusive wait. 1104 * 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1106 * 1107 * The waiter is waiting to get the bit, and additionally wants the 1108 * lock to be transferred to it for fair lock behavior. If the lock 1109 * cannot be taken, we stop walking the wait queue without waking 1110 * the waiter. 1111 * 1112 * This is the "fair lock handoff" case, and in addition to setting 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1114 * that it now has the lock. 1115 */ 1116 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 1118 unsigned int flags; 1119 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 1121 = container_of(wait, struct wait_page_queue, wait); 1122 1123 if (!wake_page_match(wait_page, key)) 1124 return 0; 1125 1126 /* 1127 * If it's a lock handoff wait, we get the bit for it, and 1128 * stop walking (and do not wake it up) if we can't. 1129 */ 1130 flags = wait->flags; 1131 if (flags & WQ_FLAG_EXCLUSIVE) { 1132 if (test_bit(key->bit_nr, &key->folio->flags)) 1133 return -1; 1134 if (flags & WQ_FLAG_CUSTOM) { 1135 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1136 return -1; 1137 flags |= WQ_FLAG_DONE; 1138 } 1139 } 1140 1141 /* 1142 * We are holding the wait-queue lock, but the waiter that 1143 * is waiting for this will be checking the flags without 1144 * any locking. 1145 * 1146 * So update the flags atomically, and wake up the waiter 1147 * afterwards to avoid any races. This store-release pairs 1148 * with the load-acquire in folio_wait_bit_common(). 1149 */ 1150 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1151 wake_up_state(wait->private, mode); 1152 1153 /* 1154 * Ok, we have successfully done what we're waiting for, 1155 * and we can unconditionally remove the wait entry. 1156 * 1157 * Note that this pairs with the "finish_wait()" in the 1158 * waiter, and has to be the absolute last thing we do. 1159 * After this list_del_init(&wait->entry) the wait entry 1160 * might be de-allocated and the process might even have 1161 * exited. 1162 */ 1163 list_del_init_careful(&wait->entry); 1164 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1165 } 1166 1167 static void folio_wake_bit(struct folio *folio, int bit_nr) 1168 { 1169 wait_queue_head_t *q = folio_waitqueue(folio); 1170 struct wait_page_key key; 1171 unsigned long flags; 1172 1173 key.folio = folio; 1174 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1176 1177 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, &key); 1179 1180 /* 1181 * It's possible to miss clearing waiters here, when we woke our page 1182 * waiters, but the hashed waitqueue has waiters for other pages on it. 1183 * That's okay, it's a rare case. The next waker will clear it. 1184 * 1185 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1186 * other), the flag may be cleared in the course of freeing the page; 1187 * but that is not required for correctness. 1188 */ 1189 if (!waitqueue_active(q) || !key.page_match) 1190 folio_clear_waiters(folio); 1191 1192 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1194 1195 /* 1196 * A choice of three behaviors for folio_wait_bit_common(): 1197 */ 1198 enum behavior { 1199 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1200 * __folio_lock() waiting on then setting PG_locked. 1201 */ 1202 SHARED, /* Hold ref to page and check the bit when woken, like 1203 * folio_wait_writeback() waiting on PG_writeback. 1204 */ 1205 DROP, /* Drop ref to page before wait, no check when woken, 1206 * like folio_put_wait_locked() on PG_locked. 1207 */ 1208 }; 1209 1210 /* 1211 * Attempt to check (or get) the folio flag, and mark us done 1212 * if successful. 1213 */ 1214 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1215 struct wait_queue_entry *wait) 1216 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1218 if (test_and_set_bit(bit_nr, &folio->flags)) 1219 return false; 1220 } else if (test_bit(bit_nr, &folio->flags)) 1221 return false; 1222 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1224 return true; 1225 } 1226 1227 /* How many times do we accept lock stealing from under a waiter? */ 1228 int sysctl_page_lock_unfairness = 5; 1229 1230 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1231 int state, enum behavior behavior) 1232 { 1233 wait_queue_head_t *q = folio_waitqueue(folio); 1234 int unfairness = sysctl_page_lock_unfairness; 1235 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page.wait; 1237 bool thrashing = false; 1238 unsigned long pflags; 1239 bool in_thrashing; 1240 1241 if (bit_nr == PG_locked && 1242 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1243 delayacct_thrashing_start(&in_thrashing); 1244 psi_memstall_enter(&pflags); 1245 thrashing = true; 1246 } 1247 1248 init_wait(wait); 1249 wait->func = wake_page_function; 1250 wait_page.folio = folio; 1251 wait_page.bit_nr = bit_nr; 1252 1253 repeat: 1254 wait->flags = 0; 1255 if (behavior == EXCLUSIVE) { 1256 wait->flags = WQ_FLAG_EXCLUSIVE; 1257 if (--unfairness < 0) 1258 wait->flags |= WQ_FLAG_CUSTOM; 1259 } 1260 1261 /* 1262 * Do one last check whether we can get the 1263 * page bit synchronously. 1264 * 1265 * Do the folio_set_waiters() marking before that 1266 * to let any waker we _just_ missed know they 1267 * need to wake us up (otherwise they'll never 1268 * even go to the slow case that looks at the 1269 * page queue), and add ourselves to the wait 1270 * queue if we need to sleep. 1271 * 1272 * This part needs to be done under the queue 1273 * lock to avoid races. 1274 */ 1275 spin_lock_irq(&q->lock); 1276 folio_set_waiters(folio); 1277 if (!folio_trylock_flag(folio, bit_nr, wait)) 1278 __add_wait_queue_entry_tail(q, wait); 1279 spin_unlock_irq(&q->lock); 1280 1281 /* 1282 * From now on, all the logic will be based on 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1284 * see whether the page bit testing has already 1285 * been done by the wake function. 1286 * 1287 * We can drop our reference to the folio. 1288 */ 1289 if (behavior == DROP) 1290 folio_put(folio); 1291 1292 /* 1293 * Note that until the "finish_wait()", or until 1294 * we see the WQ_FLAG_WOKEN flag, we need to 1295 * be very careful with the 'wait->flags', because 1296 * we may race with a waker that sets them. 1297 */ 1298 for (;;) { 1299 unsigned int flags; 1300 1301 set_current_state(state); 1302 1303 /* Loop until we've been woken or interrupted */ 1304 flags = smp_load_acquire(&wait->flags); 1305 if (!(flags & WQ_FLAG_WOKEN)) { 1306 if (signal_pending_state(state, current)) 1307 break; 1308 1309 io_schedule(); 1310 continue; 1311 } 1312 1313 /* If we were non-exclusive, we're done */ 1314 if (behavior != EXCLUSIVE) 1315 break; 1316 1317 /* If the waker got the lock for us, we're done */ 1318 if (flags & WQ_FLAG_DONE) 1319 break; 1320 1321 /* 1322 * Otherwise, if we're getting the lock, we need to 1323 * try to get it ourselves. 1324 * 1325 * And if that fails, we'll have to retry this all. 1326 */ 1327 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1328 goto repeat; 1329 1330 wait->flags |= WQ_FLAG_DONE; 1331 break; 1332 } 1333 1334 /* 1335 * If a signal happened, this 'finish_wait()' may remove the last 1336 * waiter from the wait-queues, but the folio waiters bit will remain 1337 * set. That's ok. The next wakeup will take care of it, and trying 1338 * to do it here would be difficult and prone to races. 1339 */ 1340 finish_wait(q, wait); 1341 1342 if (thrashing) { 1343 delayacct_thrashing_end(&in_thrashing); 1344 psi_memstall_leave(&pflags); 1345 } 1346 1347 /* 1348 * NOTE! The wait->flags weren't stable until we've done the 1349 * 'finish_wait()', and we could have exited the loop above due 1350 * to a signal, and had a wakeup event happen after the signal 1351 * test but before the 'finish_wait()'. 1352 * 1353 * So only after the finish_wait() can we reliably determine 1354 * if we got woken up or not, so we can now figure out the final 1355 * return value based on that state without races. 1356 * 1357 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1358 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1359 */ 1360 if (behavior == EXCLUSIVE) 1361 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1362 1363 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1364 } 1365 1366 #ifdef CONFIG_MIGRATION 1367 /** 1368 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1369 * @entry: migration swap entry. 1370 * @ptl: already locked ptl. This function will drop the lock. 1371 * 1372 * Wait for a migration entry referencing the given page to be removed. This is 1373 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1374 * this can be called without taking a reference on the page. Instead this 1375 * should be called while holding the ptl for the migration entry referencing 1376 * the page. 1377 * 1378 * Returns after unlocking the ptl. 1379 * 1380 * This follows the same logic as folio_wait_bit_common() so see the comments 1381 * there. 1382 */ 1383 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1384 __releases(ptl) 1385 { 1386 struct wait_page_queue wait_page; 1387 wait_queue_entry_t *wait = &wait_page.wait; 1388 bool thrashing = false; 1389 unsigned long pflags; 1390 bool in_thrashing; 1391 wait_queue_head_t *q; 1392 struct folio *folio = pfn_swap_entry_folio(entry); 1393 1394 q = folio_waitqueue(folio); 1395 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1396 delayacct_thrashing_start(&in_thrashing); 1397 psi_memstall_enter(&pflags); 1398 thrashing = true; 1399 } 1400 1401 init_wait(wait); 1402 wait->func = wake_page_function; 1403 wait_page.folio = folio; 1404 wait_page.bit_nr = PG_locked; 1405 wait->flags = 0; 1406 1407 spin_lock_irq(&q->lock); 1408 folio_set_waiters(folio); 1409 if (!folio_trylock_flag(folio, PG_locked, wait)) 1410 __add_wait_queue_entry_tail(q, wait); 1411 spin_unlock_irq(&q->lock); 1412 1413 /* 1414 * If a migration entry exists for the page the migration path must hold 1415 * a valid reference to the page, and it must take the ptl to remove the 1416 * migration entry. So the page is valid until the ptl is dropped. 1417 */ 1418 spin_unlock(ptl); 1419 1420 for (;;) { 1421 unsigned int flags; 1422 1423 set_current_state(TASK_UNINTERRUPTIBLE); 1424 1425 /* Loop until we've been woken or interrupted */ 1426 flags = smp_load_acquire(&wait->flags); 1427 if (!(flags & WQ_FLAG_WOKEN)) { 1428 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1429 break; 1430 1431 io_schedule(); 1432 continue; 1433 } 1434 break; 1435 } 1436 1437 finish_wait(q, wait); 1438 1439 if (thrashing) { 1440 delayacct_thrashing_end(&in_thrashing); 1441 psi_memstall_leave(&pflags); 1442 } 1443 } 1444 #endif 1445 1446 void folio_wait_bit(struct folio *folio, int bit_nr) 1447 { 1448 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1450 EXPORT_SYMBOL(folio_wait_bit); 1451 1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1453 { 1454 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); 1457 1458 /** 1459 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1462 * 1463 * The caller should hold a reference on @folio. They expect the page to 1464 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference while waiting for the folio to 1466 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. 1468 * 1469 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1470 */ 1471 static int folio_put_wait_locked(struct folio *folio, int state) 1472 { 1473 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1474 } 1475 1476 /** 1477 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1478 * @folio: Folio defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1480 * 1481 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1482 */ 1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1484 { 1485 wait_queue_head_t *q = folio_waitqueue(folio); 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); 1491 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1494 1495 /** 1496 * folio_unlock - Unlock a locked folio. 1497 * @folio: The folio. 1498 * 1499 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1500 * 1501 * Context: May be called from interrupt or process context. May not be 1502 * called from NMI context. 1503 */ 1504 void folio_unlock(struct folio *folio) 1505 { 1506 /* Bit 7 allows x86 to check the byte's sign bit */ 1507 BUILD_BUG_ON(PG_waiters != 7); 1508 BUILD_BUG_ON(PG_locked > 7); 1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1510 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1511 folio_wake_bit(folio, PG_locked); 1512 } 1513 EXPORT_SYMBOL(folio_unlock); 1514 1515 /** 1516 * folio_end_read - End read on a folio. 1517 * @folio: The folio. 1518 * @success: True if all reads completed successfully. 1519 * 1520 * When all reads against a folio have completed, filesystems should 1521 * call this function to let the pagecache know that no more reads 1522 * are outstanding. This will unlock the folio and wake up any thread 1523 * sleeping on the lock. The folio will also be marked uptodate if all 1524 * reads succeeded. 1525 * 1526 * Context: May be called from interrupt or process context. May not be 1527 * called from NMI context. 1528 */ 1529 void folio_end_read(struct folio *folio, bool success) 1530 { 1531 unsigned long mask = 1 << PG_locked; 1532 1533 /* Must be in bottom byte for x86 to work */ 1534 BUILD_BUG_ON(PG_uptodate > 7); 1535 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1537 1538 if (likely(success)) 1539 mask |= 1 << PG_uptodate; 1540 if (folio_xor_flags_has_waiters(folio, mask)) 1541 folio_wake_bit(folio, PG_locked); 1542 } 1543 EXPORT_SYMBOL(folio_end_read); 1544 1545 /** 1546 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1547 * @folio: The folio. 1548 * 1549 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1550 * it. The folio reference held for PG_private_2 being set is released. 1551 * 1552 * This is, for example, used when a netfs folio is being written to a local 1553 * disk cache, thereby allowing writes to the cache for the same folio to be 1554 * serialised. 1555 */ 1556 void folio_end_private_2(struct folio *folio) 1557 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1559 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1560 folio_wake_bit(folio, PG_private_2); 1561 folio_put(folio); 1562 } 1563 EXPORT_SYMBOL(folio_end_private_2); 1564 1565 /** 1566 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1567 * @folio: The folio to wait on. 1568 * 1569 * Wait for PG_private_2 to be cleared on a folio. 1570 */ 1571 void folio_wait_private_2(struct folio *folio) 1572 { 1573 while (folio_test_private_2(folio)) 1574 folio_wait_bit(folio, PG_private_2); 1575 } 1576 EXPORT_SYMBOL(folio_wait_private_2); 1577 1578 /** 1579 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1580 * @folio: The folio to wait on. 1581 * 1582 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1583 * received by the calling task. 1584 * 1585 * Return: 1586 * - 0 if successful. 1587 * - -EINTR if a fatal signal was encountered. 1588 */ 1589 int folio_wait_private_2_killable(struct folio *folio) 1590 { 1591 int ret = 0; 1592 1593 while (folio_test_private_2(folio)) { 1594 ret = folio_wait_bit_killable(folio, PG_private_2); 1595 if (ret < 0) 1596 break; 1597 } 1598 1599 return ret; 1600 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); 1602 1603 /** 1604 * folio_end_writeback - End writeback against a folio. 1605 * @folio: The folio. 1606 * 1607 * The folio must actually be under writeback. 1608 * 1609 * Context: May be called from process or interrupt context. 1610 */ 1611 void folio_end_writeback(struct folio *folio) 1612 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1614 1615 /* 1616 * folio_test_clear_reclaim() could be used here but it is an 1617 * atomic operation and overkill in this particular case. Failing 1618 * to shuffle a folio marked for immediate reclaim is too mild 1619 * a gain to justify taking an atomic operation penalty at the 1620 * end of every folio writeback. 1621 */ 1622 if (folio_test_reclaim(folio)) { 1623 folio_clear_reclaim(folio); 1624 folio_rotate_reclaimable(folio); 1625 } 1626 1627 /* 1628 * Writeback does not hold a folio reference of its own, relying 1629 * on truncation to wait for the clearing of PG_writeback. 1630 * But here we must make sure that the folio is not freed and 1631 * reused before the folio_wake_bit(). 1632 */ 1633 folio_get(folio); 1634 if (__folio_end_writeback(folio)) 1635 folio_wake_bit(folio, PG_writeback); 1636 acct_reclaim_writeback(folio); 1637 folio_put(folio); 1638 } 1639 EXPORT_SYMBOL(folio_end_writeback); 1640 1641 /** 1642 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1643 * @folio: The folio to lock 1644 */ 1645 void __folio_lock(struct folio *folio) 1646 { 1647 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1648 EXCLUSIVE); 1649 } 1650 EXPORT_SYMBOL(__folio_lock); 1651 1652 int __folio_lock_killable(struct folio *folio) 1653 { 1654 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1655 EXCLUSIVE); 1656 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1658 1659 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1660 { 1661 struct wait_queue_head *q = folio_waitqueue(folio); 1662 int ret; 1663 1664 wait->folio = folio; 1665 wait->bit_nr = PG_locked; 1666 1667 spin_lock_irq(&q->lock); 1668 __add_wait_queue_entry_tail(q, &wait->wait); 1669 folio_set_waiters(folio); 1670 ret = !folio_trylock(folio); 1671 /* 1672 * If we were successful now, we know we're still on the 1673 * waitqueue as we're still under the lock. This means it's 1674 * safe to remove and return success, we know the callback 1675 * isn't going to trigger. 1676 */ 1677 if (!ret) 1678 __remove_wait_queue(q, &wait->wait); 1679 else 1680 ret = -EIOCBQUEUED; 1681 spin_unlock_irq(&q->lock); 1682 return ret; 1683 } 1684 1685 /* 1686 * Return values: 1687 * 0 - folio is locked. 1688 * non-zero - folio is not locked. 1689 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1690 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1692 * 1693 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1694 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1695 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1697 { 1698 unsigned int flags = vmf->flags; 1699 1700 if (fault_flag_allow_retry_first(flags)) { 1701 /* 1702 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1703 * released even though returning VM_FAULT_RETRY. 1704 */ 1705 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY; 1707 1708 release_fault_lock(vmf); 1709 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_killable(folio); 1711 else 1712 folio_wait_locked(folio); 1713 return VM_FAULT_RETRY; 1714 } 1715 if (flags & FAULT_FLAG_KILLABLE) { 1716 bool ret; 1717 1718 ret = __folio_lock_killable(folio); 1719 if (ret) { 1720 release_fault_lock(vmf); 1721 return VM_FAULT_RETRY; 1722 } 1723 } else { 1724 __folio_lock(folio); 1725 } 1726 1727 return 0; 1728 } 1729 1730 /** 1731 * page_cache_next_miss() - Find the next gap in the page cache. 1732 * @mapping: Mapping. 1733 * @index: Index. 1734 * @max_scan: Maximum range to search. 1735 * 1736 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1737 * gap with the lowest index. 1738 * 1739 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 5, then subsequently a gap is 1742 * created at index 10, page_cache_next_miss covering both indices may 1743 * return 10 if called under the rcu_read_lock. 1744 * 1745 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'return - index >= max_scan' will be true). 1747 * In the rare case of index wrap-around, 0 will be returned. 1748 */ 1749 pgoff_t page_cache_next_miss(struct address_space *mapping, 1750 pgoff_t index, unsigned long max_scan) 1751 { 1752 XA_STATE(xas, &mapping->i_pages, index); 1753 1754 while (max_scan--) { 1755 void *entry = xas_next(&xas); 1756 if (!entry || xa_is_value(entry)) 1757 return xas.xa_index; 1758 if (xas.xa_index == 0) 1759 return 0; 1760 } 1761 1762 return index + max_scan; 1763 } 1764 EXPORT_SYMBOL(page_cache_next_miss); 1765 1766 /** 1767 * page_cache_prev_miss() - Find the previous gap in the page cache. 1768 * @mapping: Mapping. 1769 * @index: Index. 1770 * @max_scan: Maximum range to search. 1771 * 1772 * Search the range [max(index - max_scan + 1, 0), index] for the 1773 * gap with the highest index. 1774 * 1775 * This function may be called under the rcu_read_lock. However, this will 1776 * not atomically search a snapshot of the cache at a single point in time. 1777 * For example, if a gap is created at index 10, then subsequently a gap is 1778 * created at index 5, page_cache_prev_miss() covering both indices may 1779 * return 5 if called under the rcu_read_lock. 1780 * 1781 * Return: The index of the gap if found, otherwise an index outside the 1782 * range specified (in which case 'index - return >= max_scan' will be true). 1783 * In the rare case of wrap-around, ULONG_MAX will be returned. 1784 */ 1785 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1786 pgoff_t index, unsigned long max_scan) 1787 { 1788 XA_STATE(xas, &mapping->i_pages, index); 1789 1790 while (max_scan--) { 1791 void *entry = xas_prev(&xas); 1792 if (!entry || xa_is_value(entry)) 1793 break; 1794 if (xas.xa_index == ULONG_MAX) 1795 break; 1796 } 1797 1798 return xas.xa_index; 1799 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); 1801 1802 /* 1803 * Lockless page cache protocol: 1804 * On the lookup side: 1805 * 1. Load the folio from i_pages 1806 * 2. Increment the refcount if it's not zero 1807 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1808 * 1809 * On the removal side: 1810 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1811 * B. Remove the page from i_pages 1812 * C. Return the page to the page allocator 1813 * 1814 * This means that any page may have its reference count temporarily 1815 * increased by a speculative page cache (or GUP-fast) lookup as it can 1816 * be allocated by another user before the RCU grace period expires. 1817 * Because the refcount temporarily acquired here may end up being the 1818 * last refcount on the page, any page allocation must be freeable by 1819 * folio_put(). 1820 */ 1821 1822 /* 1823 * filemap_get_entry - Get a page cache entry. 1824 * @mapping: the address_space to search 1825 * @index: The page cache index. 1826 * 1827 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1828 * it is returned with an increased refcount. If it is a shadow entry 1829 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1830 * it is returned without further action. 1831 * 1832 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1833 */ 1834 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1835 { 1836 XA_STATE(xas, &mapping->i_pages, index); 1837 struct folio *folio; 1838 1839 rcu_read_lock(); 1840 repeat: 1841 xas_reset(&xas); 1842 folio = xas_load(&xas); 1843 if (xas_retry(&xas, folio)) 1844 goto repeat; 1845 /* 1846 * A shadow entry of a recently evicted page, or a swap entry from 1847 * shmem/tmpfs. Return it without attempting to raise page count. 1848 */ 1849 if (!folio || xa_is_value(folio)) 1850 goto out; 1851 1852 if (!folio_try_get(folio)) 1853 goto repeat; 1854 1855 if (unlikely(folio != xas_reload(&xas))) { 1856 folio_put(folio); 1857 goto repeat; 1858 } 1859 out: 1860 rcu_read_unlock(); 1861 1862 return folio; 1863 } 1864 1865 /** 1866 * __filemap_get_folio - Find and get a reference to a folio. 1867 * @mapping: The address_space to search. 1868 * @index: The page index. 1869 * @fgp_flags: %FGP flags modify how the folio is returned. 1870 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1871 * 1872 * Looks up the page cache entry at @mapping & @index. 1873 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1875 * if the %GFP flags specified for %FGP_CREAT are atomic. 1876 * 1877 * If this function returns a folio, it is returned with an increased refcount. 1878 * 1879 * Return: The found folio or an ERR_PTR() otherwise. 1880 */ 1881 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1882 fgf_t fgp_flags, gfp_t gfp) 1883 { 1884 struct folio *folio; 1885 1886 repeat: 1887 folio = filemap_get_entry(mapping, index); 1888 if (xa_is_value(folio)) 1889 folio = NULL; 1890 if (!folio) 1891 goto no_page; 1892 1893 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(folio)) { 1896 folio_put(folio); 1897 return ERR_PTR(-EAGAIN); 1898 } 1899 } else { 1900 folio_lock(folio); 1901 } 1902 1903 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping != mapping)) { 1905 folio_unlock(folio); 1906 folio_put(folio); 1907 goto repeat; 1908 } 1909 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1910 } 1911 1912 if (fgp_flags & FGP_ACCESSED) 1913 folio_mark_accessed(folio); 1914 else if (fgp_flags & FGP_WRITE) { 1915 /* Clear idle flag for buffer write */ 1916 if (folio_test_idle(folio)) 1917 folio_clear_idle(folio); 1918 } 1919 1920 if (fgp_flags & FGP_STABLE) 1921 folio_wait_stable(folio); 1922 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapping_min_folio_order(mapping); 1925 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1926 int err; 1927 index = mapping_align_index(mapping, index); 1928 1929 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1930 gfp |= __GFP_WRITE; 1931 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { 1934 gfp &= ~GFP_KERNEL; 1935 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1936 } 1937 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1938 fgp_flags |= FGP_LOCK; 1939 1940 if (order > mapping_max_folio_order(mapping)) 1941 order = mapping_max_folio_order(mapping); 1942 /* If we're not aligned, allocate a smaller folio */ 1943 if (index & ((1UL << order) - 1)) 1944 order = __ffs(index); 1945 1946 do { 1947 gfp_t alloc_gfp = gfp; 1948 1949 err = -ENOMEM; 1950 if (order > min_order) 1951 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1952 folio = filemap_alloc_folio(alloc_gfp, order); 1953 if (!folio) 1954 continue; 1955 1956 /* Init accessed so avoid atomic mark_page_accessed later */ 1957 if (fgp_flags & FGP_ACCESSED) 1958 __folio_set_referenced(folio); 1959 1960 err = filemap_add_folio(mapping, folio, index, gfp); 1961 if (!err) 1962 break; 1963 folio_put(folio); 1964 folio = NULL; 1965 } while (order-- > min_order); 1966 1967 if (err == -EEXIST) 1968 goto repeat; 1969 if (err) 1970 return ERR_PTR(err); 1971 /* 1972 * filemap_add_folio locks the page, and for mmap 1973 * we expect an unlocked page. 1974 */ 1975 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1976 folio_unlock(folio); 1977 } 1978 1979 if (!folio) 1980 return ERR_PTR(-ENOENT); 1981 return folio; 1982 } 1983 EXPORT_SYMBOL(__filemap_get_folio); 1984 1985 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1986 xa_mark_t mark) 1987 { 1988 struct folio *folio; 1989 1990 retry: 1991 if (mark == XA_PRESENT) 1992 folio = xas_find(xas, max); 1993 else 1994 folio = xas_find_marked(xas, max, mark); 1995 1996 if (xas_retry(xas, folio)) 1997 goto retry; 1998 /* 1999 * A shadow entry of a recently evicted page, a swap 2000 * entry from shmem/tmpfs or a DAX entry. Return it 2001 * without attempting to raise page count. 2002 */ 2003 if (!folio || xa_is_value(folio)) 2004 return folio; 2005 2006 if (!folio_try_get(folio)) 2007 goto reset; 2008 2009 if (unlikely(folio != xas_reload(xas))) { 2010 folio_put(folio); 2011 goto reset; 2012 } 2013 2014 return folio; 2015 reset: 2016 xas_reset(xas); 2017 goto retry; 2018 } 2019 2020 /** 2021 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 2023 * @start: The starting page cache index 2024 * @end: The final page index (inclusive). 2025 * @fbatch: Where the resulting entries are placed. 2026 * @indices: The cache indices corresponding to the entries in @entries 2027 * 2028 * find_get_entries() will search for and return a batch of entries in 2029 * the mapping. The entries are placed in @fbatch. find_get_entries() 2030 * takes a reference on any actual folios it returns. 2031 * 2032 * The entries have ascending indexes. The indices may not be consecutive 2033 * due to not-present entries or large folios. 2034 * 2035 * Any shadow entries of evicted folios, or swap entries from 2036 * shmem/tmpfs, are included in the returned array. 2037 * 2038 * Return: The number of entries which were found. 2039 */ 2040 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2041 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2042 { 2043 XA_STATE(xas, &mapping->i_pages, *start); 2044 struct folio *folio; 2045 2046 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2048 indices[fbatch->nr] = xas.xa_index; 2049 if (!folio_batch_add(fbatch, folio)) 2050 break; 2051 } 2052 2053 if (folio_batch_count(fbatch)) { 2054 unsigned long nr; 2055 int idx = folio_batch_count(fbatch) - 1; 2056 2057 folio = fbatch->folios[idx]; 2058 if (!xa_is_value(folio)) 2059 nr = folio_nr_pages(folio); 2060 else 2061 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2062 *start = round_down(indices[idx] + nr, nr); 2063 } 2064 rcu_read_unlock(); 2065 2066 return folio_batch_count(fbatch); 2067 } 2068 2069 /** 2070 * find_lock_entries - Find a batch of pagecache entries. 2071 * @mapping: The address_space to search. 2072 * @start: The starting page cache index. 2073 * @end: The final page index (inclusive). 2074 * @fbatch: Where the resulting entries are placed. 2075 * @indices: The cache indices of the entries in @fbatch. 2076 * 2077 * find_lock_entries() will return a batch of entries from @mapping. 2078 * Swap, shadow and DAX entries are included. Folios are returned 2079 * locked and with an incremented refcount. Folios which are locked 2080 * by somebody else or under writeback are skipped. Folios which are 2081 * partially outside the range are not returned. 2082 * 2083 * The entries have ascending indexes. The indices may not be consecutive 2084 * due to not-present entries, large folios, folios which could not be 2085 * locked or folios under writeback. 2086 * 2087 * Return: The number of entries which were found. 2088 */ 2089 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2090 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2091 { 2092 XA_STATE(xas, &mapping->i_pages, *start); 2093 struct folio *folio; 2094 2095 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2097 unsigned long base; 2098 unsigned long nr; 2099 2100 if (!xa_is_value(folio)) { 2101 nr = folio_nr_pages(folio); 2102 base = folio->index; 2103 /* Omit large folio which begins before the start */ 2104 if (base < *start) 2105 goto put; 2106 /* Omit large folio which extends beyond the end */ 2107 if (base + nr - 1 > end) 2108 goto put; 2109 if (!folio_trylock(folio)) 2110 goto put; 2111 if (folio->mapping != mapping || 2112 folio_test_writeback(folio)) 2113 goto unlock; 2114 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2115 folio); 2116 } else { 2117 nr = 1 << xas_get_order(&xas); 2118 base = xas.xa_index & ~(nr - 1); 2119 /* Omit order>0 value which begins before the start */ 2120 if (base < *start) 2121 continue; 2122 /* Omit order>0 value which extends beyond the end */ 2123 if (base + nr - 1 > end) 2124 break; 2125 } 2126 2127 /* Update start now so that last update is correct on return */ 2128 *start = base + nr; 2129 indices[fbatch->nr] = xas.xa_index; 2130 if (!folio_batch_add(fbatch, folio)) 2131 break; 2132 continue; 2133 unlock: 2134 folio_unlock(folio); 2135 put: 2136 folio_put(folio); 2137 } 2138 rcu_read_unlock(); 2139 2140 return folio_batch_count(fbatch); 2141 } 2142 2143 /** 2144 * filemap_get_folios - Get a batch of folios 2145 * @mapping: The address_space to search 2146 * @start: The starting page index 2147 * @end: The final page index (inclusive) 2148 * @fbatch: The batch to fill. 2149 * 2150 * Search for and return a batch of folios in the mapping starting at 2151 * index @start and up to index @end (inclusive). The folios are returned 2152 * in @fbatch with an elevated reference count. 2153 * 2154 * Return: The number of folios which were found. 2155 * We also update @start to index the next folio for the traversal. 2156 */ 2157 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2158 pgoff_t end, struct folio_batch *fbatch) 2159 { 2160 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2161 } 2162 EXPORT_SYMBOL(filemap_get_folios); 2163 2164 /** 2165 * filemap_get_folios_contig - Get a batch of contiguous folios 2166 * @mapping: The address_space to search 2167 * @start: The starting page index 2168 * @end: The final page index (inclusive) 2169 * @fbatch: The batch to fill 2170 * 2171 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2172 * except the returned folios are guaranteed to be contiguous. This may 2173 * not return all contiguous folios if the batch gets filled up. 2174 * 2175 * Return: The number of folios found. 2176 * Also update @start to be positioned for traversal of the next folio. 2177 */ 2178 2179 unsigned filemap_get_folios_contig(struct address_space *mapping, 2180 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2181 { 2182 XA_STATE(xas, &mapping->i_pages, *start); 2183 unsigned long nr; 2184 struct folio *folio; 2185 2186 rcu_read_lock(); 2187 2188 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2189 folio = xas_next(&xas)) { 2190 if (xas_retry(&xas, folio)) 2191 continue; 2192 /* 2193 * If the entry has been swapped out, we can stop looking. 2194 * No current caller is looking for DAX entries. 2195 */ 2196 if (xa_is_value(folio)) 2197 goto update_start; 2198 2199 if (!folio_try_get(folio)) 2200 goto retry; 2201 2202 if (unlikely(folio != xas_reload(&xas))) 2203 goto put_folio; 2204 2205 if (!folio_batch_add(fbatch, folio)) { 2206 nr = folio_nr_pages(folio); 2207 *start = folio->index + nr; 2208 goto out; 2209 } 2210 continue; 2211 put_folio: 2212 folio_put(folio); 2213 2214 retry: 2215 xas_reset(&xas); 2216 } 2217 2218 update_start: 2219 nr = folio_batch_count(fbatch); 2220 2221 if (nr) { 2222 folio = fbatch->folios[nr - 1]; 2223 *start = folio_next_index(folio); 2224 } 2225 out: 2226 rcu_read_unlock(); 2227 return folio_batch_count(fbatch); 2228 } 2229 EXPORT_SYMBOL(filemap_get_folios_contig); 2230 2231 /** 2232 * filemap_get_folios_tag - Get a batch of folios matching @tag 2233 * @mapping: The address_space to search 2234 * @start: The starting page index 2235 * @end: The final page index (inclusive) 2236 * @tag: The tag index 2237 * @fbatch: The batch to fill 2238 * 2239 * The first folio may start before @start; if it does, it will contain 2240 * @start. The final folio may extend beyond @end; if it does, it will 2241 * contain @end. The folios have ascending indices. There may be gaps 2242 * between the folios if there are indices which have no folio in the 2243 * page cache. If folios are added to or removed from the page cache 2244 * while this is running, they may or may not be found by this call. 2245 * Only returns folios that are tagged with @tag. 2246 * 2247 * Return: The number of folios found. 2248 * Also update @start to index the next folio for traversal. 2249 */ 2250 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2251 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2252 { 2253 XA_STATE(xas, &mapping->i_pages, *start); 2254 struct folio *folio; 2255 2256 rcu_read_lock(); 2257 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2258 /* 2259 * Shadow entries should never be tagged, but this iteration 2260 * is lockless so there is a window for page reclaim to evict 2261 * a page we saw tagged. Skip over it. 2262 */ 2263 if (xa_is_value(folio)) 2264 continue; 2265 if (!folio_batch_add(fbatch, folio)) { 2266 unsigned long nr = folio_nr_pages(folio); 2267 *start = folio->index + nr; 2268 goto out; 2269 } 2270 } 2271 /* 2272 * We come here when there is no page beyond @end. We take care to not 2273 * overflow the index @start as it confuses some of the callers. This 2274 * breaks the iteration when there is a page at index -1 but that is 2275 * already broke anyway. 2276 */ 2277 if (end == (pgoff_t)-1) 2278 *start = (pgoff_t)-1; 2279 else 2280 *start = end + 1; 2281 out: 2282 rcu_read_unlock(); 2283 2284 return folio_batch_count(fbatch); 2285 } 2286 EXPORT_SYMBOL(filemap_get_folios_tag); 2287 2288 /* 2289 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2290 * a _large_ part of the i/o request. Imagine the worst scenario: 2291 * 2292 * ---R__________________________________________B__________ 2293 * ^ reading here ^ bad block(assume 4k) 2294 * 2295 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2296 * => failing the whole request => read(R) => read(R+1) => 2297 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2298 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2299 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2300 * 2301 * It is going insane. Fix it by quickly scaling down the readahead size. 2302 */ 2303 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2304 { 2305 ra->ra_pages /= 4; 2306 } 2307 2308 /* 2309 * filemap_get_read_batch - Get a batch of folios for read 2310 * 2311 * Get a batch of folios which represent a contiguous range of bytes in 2312 * the file. No exceptional entries will be returned. If @index is in 2313 * the middle of a folio, the entire folio will be returned. The last 2314 * folio in the batch may have the readahead flag set or the uptodate flag 2315 * clear so that the caller can take the appropriate action. 2316 */ 2317 static void filemap_get_read_batch(struct address_space *mapping, 2318 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2319 { 2320 XA_STATE(xas, &mapping->i_pages, index); 2321 struct folio *folio; 2322 2323 rcu_read_lock(); 2324 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2325 if (xas_retry(&xas, folio)) 2326 continue; 2327 if (xas.xa_index > max || xa_is_value(folio)) 2328 break; 2329 if (xa_is_sibling(folio)) 2330 break; 2331 if (!folio_try_get(folio)) 2332 goto retry; 2333 2334 if (unlikely(folio != xas_reload(&xas))) 2335 goto put_folio; 2336 2337 if (!folio_batch_add(fbatch, folio)) 2338 break; 2339 if (!folio_test_uptodate(folio)) 2340 break; 2341 if (folio_test_readahead(folio)) 2342 break; 2343 xas_advance(&xas, folio_next_index(folio) - 1); 2344 continue; 2345 put_folio: 2346 folio_put(folio); 2347 retry: 2348 xas_reset(&xas); 2349 } 2350 rcu_read_unlock(); 2351 } 2352 2353 static int filemap_read_folio(struct file *file, filler_t filler, 2354 struct folio *folio) 2355 { 2356 bool workingset = folio_test_workingset(folio); 2357 unsigned long pflags; 2358 int error; 2359 2360 /* Start the actual read. The read will unlock the page. */ 2361 if (unlikely(workingset)) 2362 psi_memstall_enter(&pflags); 2363 error = filler(file, folio); 2364 if (unlikely(workingset)) 2365 psi_memstall_leave(&pflags); 2366 if (error) 2367 return error; 2368 2369 error = folio_wait_locked_killable(folio); 2370 if (error) 2371 return error; 2372 if (folio_test_uptodate(folio)) 2373 return 0; 2374 if (file) 2375 shrink_readahead_size_eio(&file->f_ra); 2376 return -EIO; 2377 } 2378 2379 static bool filemap_range_uptodate(struct address_space *mapping, 2380 loff_t pos, size_t count, struct folio *folio, 2381 bool need_uptodate) 2382 { 2383 if (folio_test_uptodate(folio)) 2384 return true; 2385 /* pipes can't handle partially uptodate pages */ 2386 if (need_uptodate) 2387 return false; 2388 if (!mapping->a_ops->is_partially_uptodate) 2389 return false; 2390 if (mapping->host->i_blkbits >= folio_shift(folio)) 2391 return false; 2392 2393 if (folio_pos(folio) > pos) { 2394 count -= folio_pos(folio) - pos; 2395 pos = 0; 2396 } else { 2397 pos -= folio_pos(folio); 2398 } 2399 2400 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2401 } 2402 2403 static int filemap_update_page(struct kiocb *iocb, 2404 struct address_space *mapping, size_t count, 2405 struct folio *folio, bool need_uptodate) 2406 { 2407 int error; 2408 2409 if (iocb->ki_flags & IOCB_NOWAIT) { 2410 if (!filemap_invalidate_trylock_shared(mapping)) 2411 return -EAGAIN; 2412 } else { 2413 filemap_invalidate_lock_shared(mapping); 2414 } 2415 2416 if (!folio_trylock(folio)) { 2417 error = -EAGAIN; 2418 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2419 goto unlock_mapping; 2420 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2421 filemap_invalidate_unlock_shared(mapping); 2422 /* 2423 * This is where we usually end up waiting for a 2424 * previously submitted readahead to finish. 2425 */ 2426 folio_put_wait_locked(folio, TASK_KILLABLE); 2427 return AOP_TRUNCATED_PAGE; 2428 } 2429 error = __folio_lock_async(folio, iocb->ki_waitq); 2430 if (error) 2431 goto unlock_mapping; 2432 } 2433 2434 error = AOP_TRUNCATED_PAGE; 2435 if (!folio->mapping) 2436 goto unlock; 2437 2438 error = 0; 2439 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2440 need_uptodate)) 2441 goto unlock; 2442 2443 error = -EAGAIN; 2444 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2445 goto unlock; 2446 2447 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2448 folio); 2449 goto unlock_mapping; 2450 unlock: 2451 folio_unlock(folio); 2452 unlock_mapping: 2453 filemap_invalidate_unlock_shared(mapping); 2454 if (error == AOP_TRUNCATED_PAGE) 2455 folio_put(folio); 2456 return error; 2457 } 2458 2459 static int filemap_create_folio(struct file *file, 2460 struct address_space *mapping, loff_t pos, 2461 struct folio_batch *fbatch) 2462 { 2463 struct folio *folio; 2464 int error; 2465 unsigned int min_order = mapping_min_folio_order(mapping); 2466 pgoff_t index; 2467 2468 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2469 if (!folio) 2470 return -ENOMEM; 2471 2472 /* 2473 * Protect against truncate / hole punch. Grabbing invalidate_lock 2474 * here assures we cannot instantiate and bring uptodate new 2475 * pagecache folios after evicting page cache during truncate 2476 * and before actually freeing blocks. Note that we could 2477 * release invalidate_lock after inserting the folio into 2478 * the page cache as the locked folio would then be enough to 2479 * synchronize with hole punching. But there are code paths 2480 * such as filemap_update_page() filling in partially uptodate 2481 * pages or ->readahead() that need to hold invalidate_lock 2482 * while mapping blocks for IO so let's hold the lock here as 2483 * well to keep locking rules simple. 2484 */ 2485 filemap_invalidate_lock_shared(mapping); 2486 index = (pos >> (PAGE_SHIFT + min_order)) << min_order; 2487 error = filemap_add_folio(mapping, folio, index, 2488 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2489 if (error == -EEXIST) 2490 error = AOP_TRUNCATED_PAGE; 2491 if (error) 2492 goto error; 2493 2494 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2495 if (error) 2496 goto error; 2497 2498 filemap_invalidate_unlock_shared(mapping); 2499 folio_batch_add(fbatch, folio); 2500 return 0; 2501 error: 2502 filemap_invalidate_unlock_shared(mapping); 2503 folio_put(folio); 2504 return error; 2505 } 2506 2507 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2508 struct address_space *mapping, struct folio *folio, 2509 pgoff_t last_index) 2510 { 2511 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2512 2513 if (iocb->ki_flags & IOCB_NOIO) 2514 return -EAGAIN; 2515 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2516 return 0; 2517 } 2518 2519 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2520 struct folio_batch *fbatch, bool need_uptodate) 2521 { 2522 struct file *filp = iocb->ki_filp; 2523 struct address_space *mapping = filp->f_mapping; 2524 struct file_ra_state *ra = &filp->f_ra; 2525 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2526 pgoff_t last_index; 2527 struct folio *folio; 2528 unsigned int flags; 2529 int err = 0; 2530 2531 /* "last_index" is the index of the page beyond the end of the read */ 2532 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2533 retry: 2534 if (fatal_signal_pending(current)) 2535 return -EINTR; 2536 2537 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2538 if (!folio_batch_count(fbatch)) { 2539 if (iocb->ki_flags & IOCB_NOIO) 2540 return -EAGAIN; 2541 if (iocb->ki_flags & IOCB_NOWAIT) 2542 flags = memalloc_noio_save(); 2543 page_cache_sync_readahead(mapping, ra, filp, index, 2544 last_index - index); 2545 if (iocb->ki_flags & IOCB_NOWAIT) 2546 memalloc_noio_restore(flags); 2547 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2548 } 2549 if (!folio_batch_count(fbatch)) { 2550 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2551 return -EAGAIN; 2552 err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch); 2553 if (err == AOP_TRUNCATED_PAGE) 2554 goto retry; 2555 return err; 2556 } 2557 2558 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2559 if (folio_test_readahead(folio)) { 2560 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2561 if (err) 2562 goto err; 2563 } 2564 if (!folio_test_uptodate(folio)) { 2565 if ((iocb->ki_flags & IOCB_WAITQ) && 2566 folio_batch_count(fbatch) > 1) 2567 iocb->ki_flags |= IOCB_NOWAIT; 2568 err = filemap_update_page(iocb, mapping, count, folio, 2569 need_uptodate); 2570 if (err) 2571 goto err; 2572 } 2573 2574 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2575 return 0; 2576 err: 2577 if (err < 0) 2578 folio_put(folio); 2579 if (likely(--fbatch->nr)) 2580 return 0; 2581 if (err == AOP_TRUNCATED_PAGE) 2582 goto retry; 2583 return err; 2584 } 2585 2586 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2587 { 2588 unsigned int shift = folio_shift(folio); 2589 2590 return (pos1 >> shift == pos2 >> shift); 2591 } 2592 2593 /** 2594 * filemap_read - Read data from the page cache. 2595 * @iocb: The iocb to read. 2596 * @iter: Destination for the data. 2597 * @already_read: Number of bytes already read by the caller. 2598 * 2599 * Copies data from the page cache. If the data is not currently present, 2600 * uses the readahead and read_folio address_space operations to fetch it. 2601 * 2602 * Return: Total number of bytes copied, including those already read by 2603 * the caller. If an error happens before any bytes are copied, returns 2604 * a negative error number. 2605 */ 2606 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2607 ssize_t already_read) 2608 { 2609 struct file *filp = iocb->ki_filp; 2610 struct file_ra_state *ra = &filp->f_ra; 2611 struct address_space *mapping = filp->f_mapping; 2612 struct inode *inode = mapping->host; 2613 struct folio_batch fbatch; 2614 int i, error = 0; 2615 bool writably_mapped; 2616 loff_t isize, end_offset; 2617 loff_t last_pos = ra->prev_pos; 2618 2619 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2620 return 0; 2621 if (unlikely(!iov_iter_count(iter))) 2622 return 0; 2623 2624 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2625 folio_batch_init(&fbatch); 2626 2627 do { 2628 cond_resched(); 2629 2630 /* 2631 * If we've already successfully copied some data, then we 2632 * can no longer safely return -EIOCBQUEUED. Hence mark 2633 * an async read NOWAIT at that point. 2634 */ 2635 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2636 iocb->ki_flags |= IOCB_NOWAIT; 2637 2638 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2639 break; 2640 2641 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2642 if (error < 0) 2643 break; 2644 2645 /* 2646 * i_size must be checked after we know the pages are Uptodate. 2647 * 2648 * Checking i_size after the check allows us to calculate 2649 * the correct value for "nr", which means the zero-filled 2650 * part of the page is not copied back to userspace (unless 2651 * another truncate extends the file - this is desired though). 2652 */ 2653 isize = i_size_read(inode); 2654 if (unlikely(iocb->ki_pos >= isize)) 2655 goto put_folios; 2656 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2657 2658 /* 2659 * Once we start copying data, we don't want to be touching any 2660 * cachelines that might be contended: 2661 */ 2662 writably_mapped = mapping_writably_mapped(mapping); 2663 2664 /* 2665 * When a read accesses the same folio several times, only 2666 * mark it as accessed the first time. 2667 */ 2668 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2669 fbatch.folios[0])) 2670 folio_mark_accessed(fbatch.folios[0]); 2671 2672 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2673 struct folio *folio = fbatch.folios[i]; 2674 size_t fsize = folio_size(folio); 2675 size_t offset = iocb->ki_pos & (fsize - 1); 2676 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2677 fsize - offset); 2678 size_t copied; 2679 2680 if (end_offset < folio_pos(folio)) 2681 break; 2682 if (i > 0) 2683 folio_mark_accessed(folio); 2684 /* 2685 * If users can be writing to this folio using arbitrary 2686 * virtual addresses, take care of potential aliasing 2687 * before reading the folio on the kernel side. 2688 */ 2689 if (writably_mapped) 2690 flush_dcache_folio(folio); 2691 2692 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2693 2694 already_read += copied; 2695 iocb->ki_pos += copied; 2696 last_pos = iocb->ki_pos; 2697 2698 if (copied < bytes) { 2699 error = -EFAULT; 2700 break; 2701 } 2702 } 2703 put_folios: 2704 for (i = 0; i < folio_batch_count(&fbatch); i++) 2705 folio_put(fbatch.folios[i]); 2706 folio_batch_init(&fbatch); 2707 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2708 2709 file_accessed(filp); 2710 ra->prev_pos = last_pos; 2711 return already_read ? already_read : error; 2712 } 2713 EXPORT_SYMBOL_GPL(filemap_read); 2714 2715 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2716 { 2717 struct address_space *mapping = iocb->ki_filp->f_mapping; 2718 loff_t pos = iocb->ki_pos; 2719 loff_t end = pos + count - 1; 2720 2721 if (iocb->ki_flags & IOCB_NOWAIT) { 2722 if (filemap_range_needs_writeback(mapping, pos, end)) 2723 return -EAGAIN; 2724 return 0; 2725 } 2726 2727 return filemap_write_and_wait_range(mapping, pos, end); 2728 } 2729 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2730 2731 int filemap_invalidate_pages(struct address_space *mapping, 2732 loff_t pos, loff_t end, bool nowait) 2733 { 2734 int ret; 2735 2736 if (nowait) { 2737 /* we could block if there are any pages in the range */ 2738 if (filemap_range_has_page(mapping, pos, end)) 2739 return -EAGAIN; 2740 } else { 2741 ret = filemap_write_and_wait_range(mapping, pos, end); 2742 if (ret) 2743 return ret; 2744 } 2745 2746 /* 2747 * After a write we want buffered reads to be sure to go to disk to get 2748 * the new data. We invalidate clean cached page from the region we're 2749 * about to write. We do this *before* the write so that we can return 2750 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2751 */ 2752 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2753 end >> PAGE_SHIFT); 2754 } 2755 2756 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2757 { 2758 struct address_space *mapping = iocb->ki_filp->f_mapping; 2759 2760 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2761 iocb->ki_pos + count - 1, 2762 iocb->ki_flags & IOCB_NOWAIT); 2763 } 2764 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2765 2766 /** 2767 * generic_file_read_iter - generic filesystem read routine 2768 * @iocb: kernel I/O control block 2769 * @iter: destination for the data read 2770 * 2771 * This is the "read_iter()" routine for all filesystems 2772 * that can use the page cache directly. 2773 * 2774 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2775 * be returned when no data can be read without waiting for I/O requests 2776 * to complete; it doesn't prevent readahead. 2777 * 2778 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2779 * requests shall be made for the read or for readahead. When no data 2780 * can be read, -EAGAIN shall be returned. When readahead would be 2781 * triggered, a partial, possibly empty read shall be returned. 2782 * 2783 * Return: 2784 * * number of bytes copied, even for partial reads 2785 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2786 */ 2787 ssize_t 2788 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2789 { 2790 size_t count = iov_iter_count(iter); 2791 ssize_t retval = 0; 2792 2793 if (!count) 2794 return 0; /* skip atime */ 2795 2796 if (iocb->ki_flags & IOCB_DIRECT) { 2797 struct file *file = iocb->ki_filp; 2798 struct address_space *mapping = file->f_mapping; 2799 struct inode *inode = mapping->host; 2800 2801 retval = kiocb_write_and_wait(iocb, count); 2802 if (retval < 0) 2803 return retval; 2804 file_accessed(file); 2805 2806 retval = mapping->a_ops->direct_IO(iocb, iter); 2807 if (retval >= 0) { 2808 iocb->ki_pos += retval; 2809 count -= retval; 2810 } 2811 if (retval != -EIOCBQUEUED) 2812 iov_iter_revert(iter, count - iov_iter_count(iter)); 2813 2814 /* 2815 * Btrfs can have a short DIO read if we encounter 2816 * compressed extents, so if there was an error, or if 2817 * we've already read everything we wanted to, or if 2818 * there was a short read because we hit EOF, go ahead 2819 * and return. Otherwise fallthrough to buffered io for 2820 * the rest of the read. Buffered reads will not work for 2821 * DAX files, so don't bother trying. 2822 */ 2823 if (retval < 0 || !count || IS_DAX(inode)) 2824 return retval; 2825 if (iocb->ki_pos >= i_size_read(inode)) 2826 return retval; 2827 } 2828 2829 return filemap_read(iocb, iter, retval); 2830 } 2831 EXPORT_SYMBOL(generic_file_read_iter); 2832 2833 /* 2834 * Splice subpages from a folio into a pipe. 2835 */ 2836 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2837 struct folio *folio, loff_t fpos, size_t size) 2838 { 2839 struct page *page; 2840 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2841 2842 page = folio_page(folio, offset / PAGE_SIZE); 2843 size = min(size, folio_size(folio) - offset); 2844 offset %= PAGE_SIZE; 2845 2846 while (spliced < size && 2847 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2848 struct pipe_buffer *buf = pipe_head_buf(pipe); 2849 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2850 2851 *buf = (struct pipe_buffer) { 2852 .ops = &page_cache_pipe_buf_ops, 2853 .page = page, 2854 .offset = offset, 2855 .len = part, 2856 }; 2857 folio_get(folio); 2858 pipe->head++; 2859 page++; 2860 spliced += part; 2861 offset = 0; 2862 } 2863 2864 return spliced; 2865 } 2866 2867 /** 2868 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2869 * @in: The file to read from 2870 * @ppos: Pointer to the file position to read from 2871 * @pipe: The pipe to splice into 2872 * @len: The amount to splice 2873 * @flags: The SPLICE_F_* flags 2874 * 2875 * This function gets folios from a file's pagecache and splices them into the 2876 * pipe. Readahead will be called as necessary to fill more folios. This may 2877 * be used for blockdevs also. 2878 * 2879 * Return: On success, the number of bytes read will be returned and *@ppos 2880 * will be updated if appropriate; 0 will be returned if there is no more data 2881 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2882 * other negative error code will be returned on error. A short read may occur 2883 * if the pipe has insufficient space, we reach the end of the data or we hit a 2884 * hole. 2885 */ 2886 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2887 struct pipe_inode_info *pipe, 2888 size_t len, unsigned int flags) 2889 { 2890 struct folio_batch fbatch; 2891 struct kiocb iocb; 2892 size_t total_spliced = 0, used, npages; 2893 loff_t isize, end_offset; 2894 bool writably_mapped; 2895 int i, error = 0; 2896 2897 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2898 return 0; 2899 2900 init_sync_kiocb(&iocb, in); 2901 iocb.ki_pos = *ppos; 2902 2903 /* Work out how much data we can actually add into the pipe */ 2904 used = pipe_occupancy(pipe->head, pipe->tail); 2905 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2906 len = min_t(size_t, len, npages * PAGE_SIZE); 2907 2908 folio_batch_init(&fbatch); 2909 2910 do { 2911 cond_resched(); 2912 2913 if (*ppos >= i_size_read(in->f_mapping->host)) 2914 break; 2915 2916 iocb.ki_pos = *ppos; 2917 error = filemap_get_pages(&iocb, len, &fbatch, true); 2918 if (error < 0) 2919 break; 2920 2921 /* 2922 * i_size must be checked after we know the pages are Uptodate. 2923 * 2924 * Checking i_size after the check allows us to calculate 2925 * the correct value for "nr", which means the zero-filled 2926 * part of the page is not copied back to userspace (unless 2927 * another truncate extends the file - this is desired though). 2928 */ 2929 isize = i_size_read(in->f_mapping->host); 2930 if (unlikely(*ppos >= isize)) 2931 break; 2932 end_offset = min_t(loff_t, isize, *ppos + len); 2933 2934 /* 2935 * Once we start copying data, we don't want to be touching any 2936 * cachelines that might be contended: 2937 */ 2938 writably_mapped = mapping_writably_mapped(in->f_mapping); 2939 2940 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2941 struct folio *folio = fbatch.folios[i]; 2942 size_t n; 2943 2944 if (folio_pos(folio) >= end_offset) 2945 goto out; 2946 folio_mark_accessed(folio); 2947 2948 /* 2949 * If users can be writing to this folio using arbitrary 2950 * virtual addresses, take care of potential aliasing 2951 * before reading the folio on the kernel side. 2952 */ 2953 if (writably_mapped) 2954 flush_dcache_folio(folio); 2955 2956 n = min_t(loff_t, len, isize - *ppos); 2957 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2958 if (!n) 2959 goto out; 2960 len -= n; 2961 total_spliced += n; 2962 *ppos += n; 2963 in->f_ra.prev_pos = *ppos; 2964 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2965 goto out; 2966 } 2967 2968 folio_batch_release(&fbatch); 2969 } while (len); 2970 2971 out: 2972 folio_batch_release(&fbatch); 2973 file_accessed(in); 2974 2975 return total_spliced ? total_spliced : error; 2976 } 2977 EXPORT_SYMBOL(filemap_splice_read); 2978 2979 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2980 struct address_space *mapping, struct folio *folio, 2981 loff_t start, loff_t end, bool seek_data) 2982 { 2983 const struct address_space_operations *ops = mapping->a_ops; 2984 size_t offset, bsz = i_blocksize(mapping->host); 2985 2986 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2987 return seek_data ? start : end; 2988 if (!ops->is_partially_uptodate) 2989 return seek_data ? end : start; 2990 2991 xas_pause(xas); 2992 rcu_read_unlock(); 2993 folio_lock(folio); 2994 if (unlikely(folio->mapping != mapping)) 2995 goto unlock; 2996 2997 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2998 2999 do { 3000 if (ops->is_partially_uptodate(folio, offset, bsz) == 3001 seek_data) 3002 break; 3003 start = (start + bsz) & ~(bsz - 1); 3004 offset += bsz; 3005 } while (offset < folio_size(folio)); 3006 unlock: 3007 folio_unlock(folio); 3008 rcu_read_lock(); 3009 return start; 3010 } 3011 3012 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3013 { 3014 if (xa_is_value(folio)) 3015 return PAGE_SIZE << xas_get_order(xas); 3016 return folio_size(folio); 3017 } 3018 3019 /** 3020 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3021 * @mapping: Address space to search. 3022 * @start: First byte to consider. 3023 * @end: Limit of search (exclusive). 3024 * @whence: Either SEEK_HOLE or SEEK_DATA. 3025 * 3026 * If the page cache knows which blocks contain holes and which blocks 3027 * contain data, your filesystem can use this function to implement 3028 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3029 * entirely memory-based such as tmpfs, and filesystems which support 3030 * unwritten extents. 3031 * 3032 * Return: The requested offset on success, or -ENXIO if @whence specifies 3033 * SEEK_DATA and there is no data after @start. There is an implicit hole 3034 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3035 * and @end contain data. 3036 */ 3037 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3038 loff_t end, int whence) 3039 { 3040 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3041 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3042 bool seek_data = (whence == SEEK_DATA); 3043 struct folio *folio; 3044 3045 if (end <= start) 3046 return -ENXIO; 3047 3048 rcu_read_lock(); 3049 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3050 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3051 size_t seek_size; 3052 3053 if (start < pos) { 3054 if (!seek_data) 3055 goto unlock; 3056 start = pos; 3057 } 3058 3059 seek_size = seek_folio_size(&xas, folio); 3060 pos = round_up((u64)pos + 1, seek_size); 3061 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3062 seek_data); 3063 if (start < pos) 3064 goto unlock; 3065 if (start >= end) 3066 break; 3067 if (seek_size > PAGE_SIZE) 3068 xas_set(&xas, pos >> PAGE_SHIFT); 3069 if (!xa_is_value(folio)) 3070 folio_put(folio); 3071 } 3072 if (seek_data) 3073 start = -ENXIO; 3074 unlock: 3075 rcu_read_unlock(); 3076 if (folio && !xa_is_value(folio)) 3077 folio_put(folio); 3078 if (start > end) 3079 return end; 3080 return start; 3081 } 3082 3083 #ifdef CONFIG_MMU 3084 #define MMAP_LOTSAMISS (100) 3085 /* 3086 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3087 * @vmf - the vm_fault for this fault. 3088 * @folio - the folio to lock. 3089 * @fpin - the pointer to the file we may pin (or is already pinned). 3090 * 3091 * This works similar to lock_folio_or_retry in that it can drop the 3092 * mmap_lock. It differs in that it actually returns the folio locked 3093 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3094 * to drop the mmap_lock then fpin will point to the pinned file and 3095 * needs to be fput()'ed at a later point. 3096 */ 3097 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3098 struct file **fpin) 3099 { 3100 if (folio_trylock(folio)) 3101 return 1; 3102 3103 /* 3104 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3105 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3106 * is supposed to work. We have way too many special cases.. 3107 */ 3108 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3109 return 0; 3110 3111 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3112 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3113 if (__folio_lock_killable(folio)) { 3114 /* 3115 * We didn't have the right flags to drop the 3116 * fault lock, but all fault_handlers only check 3117 * for fatal signals if we return VM_FAULT_RETRY, 3118 * so we need to drop the fault lock here and 3119 * return 0 if we don't have a fpin. 3120 */ 3121 if (*fpin == NULL) 3122 release_fault_lock(vmf); 3123 return 0; 3124 } 3125 } else 3126 __folio_lock(folio); 3127 3128 return 1; 3129 } 3130 3131 /* 3132 * Synchronous readahead happens when we don't even find a page in the page 3133 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3134 * to drop the mmap sem we return the file that was pinned in order for us to do 3135 * that. If we didn't pin a file then we return NULL. The file that is 3136 * returned needs to be fput()'ed when we're done with it. 3137 */ 3138 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3139 { 3140 struct file *file = vmf->vma->vm_file; 3141 struct file_ra_state *ra = &file->f_ra; 3142 struct address_space *mapping = file->f_mapping; 3143 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3144 struct file *fpin = NULL; 3145 unsigned long vm_flags = vmf->vma->vm_flags; 3146 unsigned int mmap_miss; 3147 3148 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3149 /* Use the readahead code, even if readahead is disabled */ 3150 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3151 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3152 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3153 ra->size = HPAGE_PMD_NR; 3154 /* 3155 * Fetch two PMD folios, so we get the chance to actually 3156 * readahead, unless we've been told not to. 3157 */ 3158 if (!(vm_flags & VM_RAND_READ)) 3159 ra->size *= 2; 3160 ra->async_size = HPAGE_PMD_NR; 3161 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3162 return fpin; 3163 } 3164 #endif 3165 3166 /* If we don't want any read-ahead, don't bother */ 3167 if (vm_flags & VM_RAND_READ) 3168 return fpin; 3169 if (!ra->ra_pages) 3170 return fpin; 3171 3172 if (vm_flags & VM_SEQ_READ) { 3173 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3174 page_cache_sync_ra(&ractl, ra->ra_pages); 3175 return fpin; 3176 } 3177 3178 /* Avoid banging the cache line if not needed */ 3179 mmap_miss = READ_ONCE(ra->mmap_miss); 3180 if (mmap_miss < MMAP_LOTSAMISS * 10) 3181 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3182 3183 /* 3184 * Do we miss much more than hit in this file? If so, 3185 * stop bothering with read-ahead. It will only hurt. 3186 */ 3187 if (mmap_miss > MMAP_LOTSAMISS) 3188 return fpin; 3189 3190 /* 3191 * mmap read-around 3192 */ 3193 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3194 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3195 ra->size = ra->ra_pages; 3196 ra->async_size = ra->ra_pages / 4; 3197 ractl._index = ra->start; 3198 page_cache_ra_order(&ractl, ra, 0); 3199 return fpin; 3200 } 3201 3202 /* 3203 * Asynchronous readahead happens when we find the page and PG_readahead, 3204 * so we want to possibly extend the readahead further. We return the file that 3205 * was pinned if we have to drop the mmap_lock in order to do IO. 3206 */ 3207 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3208 struct folio *folio) 3209 { 3210 struct file *file = vmf->vma->vm_file; 3211 struct file_ra_state *ra = &file->f_ra; 3212 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3213 struct file *fpin = NULL; 3214 unsigned int mmap_miss; 3215 3216 /* If we don't want any read-ahead, don't bother */ 3217 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3218 return fpin; 3219 3220 mmap_miss = READ_ONCE(ra->mmap_miss); 3221 if (mmap_miss) 3222 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3223 3224 if (folio_test_readahead(folio)) { 3225 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3226 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3227 } 3228 return fpin; 3229 } 3230 3231 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3232 { 3233 struct vm_area_struct *vma = vmf->vma; 3234 vm_fault_t ret = 0; 3235 pte_t *ptep; 3236 3237 /* 3238 * We might have COW'ed a pagecache folio and might now have an mlocked 3239 * anon folio mapped. The original pagecache folio is not mlocked and 3240 * might have been evicted. During a read+clear/modify/write update of 3241 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3242 * temporarily clear the PTE under PT lock and might detect it here as 3243 * "none" when not holding the PT lock. 3244 * 3245 * Not rechecking the PTE under PT lock could result in an unexpected 3246 * major fault in an mlock'ed region. Recheck only for this special 3247 * scenario while holding the PT lock, to not degrade non-mlocked 3248 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3249 * the number of times we hold PT lock. 3250 */ 3251 if (!(vma->vm_flags & VM_LOCKED)) 3252 return 0; 3253 3254 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3255 return 0; 3256 3257 ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3258 &vmf->ptl); 3259 if (unlikely(!ptep)) 3260 return VM_FAULT_NOPAGE; 3261 3262 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3263 ret = VM_FAULT_NOPAGE; 3264 } else { 3265 spin_lock(vmf->ptl); 3266 if (unlikely(!pte_none(ptep_get(ptep)))) 3267 ret = VM_FAULT_NOPAGE; 3268 spin_unlock(vmf->ptl); 3269 } 3270 pte_unmap(ptep); 3271 return ret; 3272 } 3273 3274 /** 3275 * filemap_fault - read in file data for page fault handling 3276 * @vmf: struct vm_fault containing details of the fault 3277 * 3278 * filemap_fault() is invoked via the vma operations vector for a 3279 * mapped memory region to read in file data during a page fault. 3280 * 3281 * The goto's are kind of ugly, but this streamlines the normal case of having 3282 * it in the page cache, and handles the special cases reasonably without 3283 * having a lot of duplicated code. 3284 * 3285 * vma->vm_mm->mmap_lock must be held on entry. 3286 * 3287 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3288 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3289 * 3290 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3291 * has not been released. 3292 * 3293 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3294 * 3295 * Return: bitwise-OR of %VM_FAULT_ codes. 3296 */ 3297 vm_fault_t filemap_fault(struct vm_fault *vmf) 3298 { 3299 int error; 3300 struct file *file = vmf->vma->vm_file; 3301 struct file *fpin = NULL; 3302 struct address_space *mapping = file->f_mapping; 3303 struct inode *inode = mapping->host; 3304 pgoff_t max_idx, index = vmf->pgoff; 3305 struct folio *folio; 3306 vm_fault_t ret = 0; 3307 bool mapping_locked = false; 3308 3309 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3310 if (unlikely(index >= max_idx)) 3311 return VM_FAULT_SIGBUS; 3312 3313 trace_mm_filemap_fault(mapping, index); 3314 3315 /* 3316 * Do we have something in the page cache already? 3317 */ 3318 folio = filemap_get_folio(mapping, index); 3319 if (likely(!IS_ERR(folio))) { 3320 /* 3321 * We found the page, so try async readahead before waiting for 3322 * the lock. 3323 */ 3324 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3325 fpin = do_async_mmap_readahead(vmf, folio); 3326 if (unlikely(!folio_test_uptodate(folio))) { 3327 filemap_invalidate_lock_shared(mapping); 3328 mapping_locked = true; 3329 } 3330 } else { 3331 ret = filemap_fault_recheck_pte_none(vmf); 3332 if (unlikely(ret)) 3333 return ret; 3334 3335 /* No page in the page cache at all */ 3336 count_vm_event(PGMAJFAULT); 3337 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3338 ret = VM_FAULT_MAJOR; 3339 fpin = do_sync_mmap_readahead(vmf); 3340 retry_find: 3341 /* 3342 * See comment in filemap_create_folio() why we need 3343 * invalidate_lock 3344 */ 3345 if (!mapping_locked) { 3346 filemap_invalidate_lock_shared(mapping); 3347 mapping_locked = true; 3348 } 3349 folio = __filemap_get_folio(mapping, index, 3350 FGP_CREAT|FGP_FOR_MMAP, 3351 vmf->gfp_mask); 3352 if (IS_ERR(folio)) { 3353 if (fpin) 3354 goto out_retry; 3355 filemap_invalidate_unlock_shared(mapping); 3356 return VM_FAULT_OOM; 3357 } 3358 } 3359 3360 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3361 goto out_retry; 3362 3363 /* Did it get truncated? */ 3364 if (unlikely(folio->mapping != mapping)) { 3365 folio_unlock(folio); 3366 folio_put(folio); 3367 goto retry_find; 3368 } 3369 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3370 3371 /* 3372 * We have a locked folio in the page cache, now we need to check 3373 * that it's up-to-date. If not, it is going to be due to an error, 3374 * or because readahead was otherwise unable to retrieve it. 3375 */ 3376 if (unlikely(!folio_test_uptodate(folio))) { 3377 /* 3378 * If the invalidate lock is not held, the folio was in cache 3379 * and uptodate and now it is not. Strange but possible since we 3380 * didn't hold the page lock all the time. Let's drop 3381 * everything, get the invalidate lock and try again. 3382 */ 3383 if (!mapping_locked) { 3384 folio_unlock(folio); 3385 folio_put(folio); 3386 goto retry_find; 3387 } 3388 3389 /* 3390 * OK, the folio is really not uptodate. This can be because the 3391 * VMA has the VM_RAND_READ flag set, or because an error 3392 * arose. Let's read it in directly. 3393 */ 3394 goto page_not_uptodate; 3395 } 3396 3397 /* 3398 * We've made it this far and we had to drop our mmap_lock, now is the 3399 * time to return to the upper layer and have it re-find the vma and 3400 * redo the fault. 3401 */ 3402 if (fpin) { 3403 folio_unlock(folio); 3404 goto out_retry; 3405 } 3406 if (mapping_locked) 3407 filemap_invalidate_unlock_shared(mapping); 3408 3409 /* 3410 * Found the page and have a reference on it. 3411 * We must recheck i_size under page lock. 3412 */ 3413 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3414 if (unlikely(index >= max_idx)) { 3415 folio_unlock(folio); 3416 folio_put(folio); 3417 return VM_FAULT_SIGBUS; 3418 } 3419 3420 vmf->page = folio_file_page(folio, index); 3421 return ret | VM_FAULT_LOCKED; 3422 3423 page_not_uptodate: 3424 /* 3425 * Umm, take care of errors if the page isn't up-to-date. 3426 * Try to re-read it _once_. We do this synchronously, 3427 * because there really aren't any performance issues here 3428 * and we need to check for errors. 3429 */ 3430 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3431 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3432 if (fpin) 3433 goto out_retry; 3434 folio_put(folio); 3435 3436 if (!error || error == AOP_TRUNCATED_PAGE) 3437 goto retry_find; 3438 filemap_invalidate_unlock_shared(mapping); 3439 3440 return VM_FAULT_SIGBUS; 3441 3442 out_retry: 3443 /* 3444 * We dropped the mmap_lock, we need to return to the fault handler to 3445 * re-find the vma and come back and find our hopefully still populated 3446 * page. 3447 */ 3448 if (!IS_ERR(folio)) 3449 folio_put(folio); 3450 if (mapping_locked) 3451 filemap_invalidate_unlock_shared(mapping); 3452 if (fpin) 3453 fput(fpin); 3454 return ret | VM_FAULT_RETRY; 3455 } 3456 EXPORT_SYMBOL(filemap_fault); 3457 3458 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3459 pgoff_t start) 3460 { 3461 struct mm_struct *mm = vmf->vma->vm_mm; 3462 3463 /* Huge page is mapped? No need to proceed. */ 3464 if (pmd_trans_huge(*vmf->pmd)) { 3465 folio_unlock(folio); 3466 folio_put(folio); 3467 return true; 3468 } 3469 3470 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3471 struct page *page = folio_file_page(folio, start); 3472 vm_fault_t ret = do_set_pmd(vmf, page); 3473 if (!ret) { 3474 /* The page is mapped successfully, reference consumed. */ 3475 folio_unlock(folio); 3476 return true; 3477 } 3478 } 3479 3480 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3481 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3482 3483 return false; 3484 } 3485 3486 static struct folio *next_uptodate_folio(struct xa_state *xas, 3487 struct address_space *mapping, pgoff_t end_pgoff) 3488 { 3489 struct folio *folio = xas_next_entry(xas, end_pgoff); 3490 unsigned long max_idx; 3491 3492 do { 3493 if (!folio) 3494 return NULL; 3495 if (xas_retry(xas, folio)) 3496 continue; 3497 if (xa_is_value(folio)) 3498 continue; 3499 if (folio_test_locked(folio)) 3500 continue; 3501 if (!folio_try_get(folio)) 3502 continue; 3503 /* Has the page moved or been split? */ 3504 if (unlikely(folio != xas_reload(xas))) 3505 goto skip; 3506 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3507 goto skip; 3508 if (!folio_trylock(folio)) 3509 goto skip; 3510 if (folio->mapping != mapping) 3511 goto unlock; 3512 if (!folio_test_uptodate(folio)) 3513 goto unlock; 3514 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3515 if (xas->xa_index >= max_idx) 3516 goto unlock; 3517 return folio; 3518 unlock: 3519 folio_unlock(folio); 3520 skip: 3521 folio_put(folio); 3522 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3523 3524 return NULL; 3525 } 3526 3527 /* 3528 * Map page range [start_page, start_page + nr_pages) of folio. 3529 * start_page is gotten from start by folio_page(folio, start) 3530 */ 3531 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3532 struct folio *folio, unsigned long start, 3533 unsigned long addr, unsigned int nr_pages, 3534 unsigned long *rss, unsigned int *mmap_miss) 3535 { 3536 vm_fault_t ret = 0; 3537 struct page *page = folio_page(folio, start); 3538 unsigned int count = 0; 3539 pte_t *old_ptep = vmf->pte; 3540 3541 do { 3542 if (PageHWPoison(page + count)) 3543 goto skip; 3544 3545 /* 3546 * If there are too many folios that are recently evicted 3547 * in a file, they will probably continue to be evicted. 3548 * In such situation, read-ahead is only a waste of IO. 3549 * Don't decrease mmap_miss in this scenario to make sure 3550 * we can stop read-ahead. 3551 */ 3552 if (!folio_test_workingset(folio)) 3553 (*mmap_miss)++; 3554 3555 /* 3556 * NOTE: If there're PTE markers, we'll leave them to be 3557 * handled in the specific fault path, and it'll prohibit the 3558 * fault-around logic. 3559 */ 3560 if (!pte_none(ptep_get(&vmf->pte[count]))) 3561 goto skip; 3562 3563 count++; 3564 continue; 3565 skip: 3566 if (count) { 3567 set_pte_range(vmf, folio, page, count, addr); 3568 *rss += count; 3569 folio_ref_add(folio, count); 3570 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3571 ret = VM_FAULT_NOPAGE; 3572 } 3573 3574 count++; 3575 page += count; 3576 vmf->pte += count; 3577 addr += count * PAGE_SIZE; 3578 count = 0; 3579 } while (--nr_pages > 0); 3580 3581 if (count) { 3582 set_pte_range(vmf, folio, page, count, addr); 3583 *rss += count; 3584 folio_ref_add(folio, count); 3585 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3586 ret = VM_FAULT_NOPAGE; 3587 } 3588 3589 vmf->pte = old_ptep; 3590 3591 return ret; 3592 } 3593 3594 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3595 struct folio *folio, unsigned long addr, 3596 unsigned long *rss, unsigned int *mmap_miss) 3597 { 3598 vm_fault_t ret = 0; 3599 struct page *page = &folio->page; 3600 3601 if (PageHWPoison(page)) 3602 return ret; 3603 3604 /* See comment of filemap_map_folio_range() */ 3605 if (!folio_test_workingset(folio)) 3606 (*mmap_miss)++; 3607 3608 /* 3609 * NOTE: If there're PTE markers, we'll leave them to be 3610 * handled in the specific fault path, and it'll prohibit 3611 * the fault-around logic. 3612 */ 3613 if (!pte_none(ptep_get(vmf->pte))) 3614 return ret; 3615 3616 if (vmf->address == addr) 3617 ret = VM_FAULT_NOPAGE; 3618 3619 set_pte_range(vmf, folio, page, 1, addr); 3620 (*rss)++; 3621 folio_ref_inc(folio); 3622 3623 return ret; 3624 } 3625 3626 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3627 pgoff_t start_pgoff, pgoff_t end_pgoff) 3628 { 3629 struct vm_area_struct *vma = vmf->vma; 3630 struct file *file = vma->vm_file; 3631 struct address_space *mapping = file->f_mapping; 3632 pgoff_t file_end, last_pgoff = start_pgoff; 3633 unsigned long addr; 3634 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3635 struct folio *folio; 3636 vm_fault_t ret = 0; 3637 unsigned long rss = 0; 3638 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3639 3640 rcu_read_lock(); 3641 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3642 if (!folio) 3643 goto out; 3644 3645 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3646 ret = VM_FAULT_NOPAGE; 3647 goto out; 3648 } 3649 3650 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3651 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3652 if (!vmf->pte) { 3653 folio_unlock(folio); 3654 folio_put(folio); 3655 goto out; 3656 } 3657 3658 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3659 if (end_pgoff > file_end) 3660 end_pgoff = file_end; 3661 3662 folio_type = mm_counter_file(folio); 3663 do { 3664 unsigned long end; 3665 3666 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3667 vmf->pte += xas.xa_index - last_pgoff; 3668 last_pgoff = xas.xa_index; 3669 end = folio_next_index(folio) - 1; 3670 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3671 3672 if (!folio_test_large(folio)) 3673 ret |= filemap_map_order0_folio(vmf, 3674 folio, addr, &rss, &mmap_miss); 3675 else 3676 ret |= filemap_map_folio_range(vmf, folio, 3677 xas.xa_index - folio->index, addr, 3678 nr_pages, &rss, &mmap_miss); 3679 3680 folio_unlock(folio); 3681 folio_put(folio); 3682 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3683 add_mm_counter(vma->vm_mm, folio_type, rss); 3684 pte_unmap_unlock(vmf->pte, vmf->ptl); 3685 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3686 out: 3687 rcu_read_unlock(); 3688 3689 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3690 if (mmap_miss >= mmap_miss_saved) 3691 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3692 else 3693 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3694 3695 return ret; 3696 } 3697 EXPORT_SYMBOL(filemap_map_pages); 3698 3699 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3700 { 3701 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3702 struct folio *folio = page_folio(vmf->page); 3703 vm_fault_t ret = VM_FAULT_LOCKED; 3704 3705 sb_start_pagefault(mapping->host->i_sb); 3706 file_update_time(vmf->vma->vm_file); 3707 folio_lock(folio); 3708 if (folio->mapping != mapping) { 3709 folio_unlock(folio); 3710 ret = VM_FAULT_NOPAGE; 3711 goto out; 3712 } 3713 /* 3714 * We mark the folio dirty already here so that when freeze is in 3715 * progress, we are guaranteed that writeback during freezing will 3716 * see the dirty folio and writeprotect it again. 3717 */ 3718 folio_mark_dirty(folio); 3719 folio_wait_stable(folio); 3720 out: 3721 sb_end_pagefault(mapping->host->i_sb); 3722 return ret; 3723 } 3724 3725 const struct vm_operations_struct generic_file_vm_ops = { 3726 .fault = filemap_fault, 3727 .map_pages = filemap_map_pages, 3728 .page_mkwrite = filemap_page_mkwrite, 3729 }; 3730 3731 /* This is used for a general mmap of a disk file */ 3732 3733 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3734 { 3735 struct address_space *mapping = file->f_mapping; 3736 3737 if (!mapping->a_ops->read_folio) 3738 return -ENOEXEC; 3739 file_accessed(file); 3740 vma->vm_ops = &generic_file_vm_ops; 3741 return 0; 3742 } 3743 3744 /* 3745 * This is for filesystems which do not implement ->writepage. 3746 */ 3747 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3748 { 3749 if (vma_is_shared_maywrite(vma)) 3750 return -EINVAL; 3751 return generic_file_mmap(file, vma); 3752 } 3753 #else 3754 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3755 { 3756 return VM_FAULT_SIGBUS; 3757 } 3758 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3759 { 3760 return -ENOSYS; 3761 } 3762 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3763 { 3764 return -ENOSYS; 3765 } 3766 #endif /* CONFIG_MMU */ 3767 3768 EXPORT_SYMBOL(filemap_page_mkwrite); 3769 EXPORT_SYMBOL(generic_file_mmap); 3770 EXPORT_SYMBOL(generic_file_readonly_mmap); 3771 3772 static struct folio *do_read_cache_folio(struct address_space *mapping, 3773 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3774 { 3775 struct folio *folio; 3776 int err; 3777 3778 if (!filler) 3779 filler = mapping->a_ops->read_folio; 3780 repeat: 3781 folio = filemap_get_folio(mapping, index); 3782 if (IS_ERR(folio)) { 3783 folio = filemap_alloc_folio(gfp, 3784 mapping_min_folio_order(mapping)); 3785 if (!folio) 3786 return ERR_PTR(-ENOMEM); 3787 index = mapping_align_index(mapping, index); 3788 err = filemap_add_folio(mapping, folio, index, gfp); 3789 if (unlikely(err)) { 3790 folio_put(folio); 3791 if (err == -EEXIST) 3792 goto repeat; 3793 /* Presumably ENOMEM for xarray node */ 3794 return ERR_PTR(err); 3795 } 3796 3797 goto filler; 3798 } 3799 if (folio_test_uptodate(folio)) 3800 goto out; 3801 3802 if (!folio_trylock(folio)) { 3803 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3804 goto repeat; 3805 } 3806 3807 /* Folio was truncated from mapping */ 3808 if (!folio->mapping) { 3809 folio_unlock(folio); 3810 folio_put(folio); 3811 goto repeat; 3812 } 3813 3814 /* Someone else locked and filled the page in a very small window */ 3815 if (folio_test_uptodate(folio)) { 3816 folio_unlock(folio); 3817 goto out; 3818 } 3819 3820 filler: 3821 err = filemap_read_folio(file, filler, folio); 3822 if (err) { 3823 folio_put(folio); 3824 if (err == AOP_TRUNCATED_PAGE) 3825 goto repeat; 3826 return ERR_PTR(err); 3827 } 3828 3829 out: 3830 folio_mark_accessed(folio); 3831 return folio; 3832 } 3833 3834 /** 3835 * read_cache_folio - Read into page cache, fill it if needed. 3836 * @mapping: The address_space to read from. 3837 * @index: The index to read. 3838 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3839 * @file: Passed to filler function, may be NULL if not required. 3840 * 3841 * Read one page into the page cache. If it succeeds, the folio returned 3842 * will contain @index, but it may not be the first page of the folio. 3843 * 3844 * If the filler function returns an error, it will be returned to the 3845 * caller. 3846 * 3847 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3848 * Return: An uptodate folio on success, ERR_PTR() on failure. 3849 */ 3850 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3851 filler_t filler, struct file *file) 3852 { 3853 return do_read_cache_folio(mapping, index, filler, file, 3854 mapping_gfp_mask(mapping)); 3855 } 3856 EXPORT_SYMBOL(read_cache_folio); 3857 3858 /** 3859 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3860 * @mapping: The address_space for the folio. 3861 * @index: The index that the allocated folio will contain. 3862 * @gfp: The page allocator flags to use if allocating. 3863 * 3864 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3865 * any new memory allocations done using the specified allocation flags. 3866 * 3867 * The most likely error from this function is EIO, but ENOMEM is 3868 * possible and so is EINTR. If ->read_folio returns another error, 3869 * that will be returned to the caller. 3870 * 3871 * The function expects mapping->invalidate_lock to be already held. 3872 * 3873 * Return: Uptodate folio on success, ERR_PTR() on failure. 3874 */ 3875 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3876 pgoff_t index, gfp_t gfp) 3877 { 3878 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3879 } 3880 EXPORT_SYMBOL(mapping_read_folio_gfp); 3881 3882 static struct page *do_read_cache_page(struct address_space *mapping, 3883 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3884 { 3885 struct folio *folio; 3886 3887 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3888 if (IS_ERR(folio)) 3889 return &folio->page; 3890 return folio_file_page(folio, index); 3891 } 3892 3893 struct page *read_cache_page(struct address_space *mapping, 3894 pgoff_t index, filler_t *filler, struct file *file) 3895 { 3896 return do_read_cache_page(mapping, index, filler, file, 3897 mapping_gfp_mask(mapping)); 3898 } 3899 EXPORT_SYMBOL(read_cache_page); 3900 3901 /** 3902 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3903 * @mapping: the page's address_space 3904 * @index: the page index 3905 * @gfp: the page allocator flags to use if allocating 3906 * 3907 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3908 * any new page allocations done using the specified allocation flags. 3909 * 3910 * If the page does not get brought uptodate, return -EIO. 3911 * 3912 * The function expects mapping->invalidate_lock to be already held. 3913 * 3914 * Return: up to date page on success, ERR_PTR() on failure. 3915 */ 3916 struct page *read_cache_page_gfp(struct address_space *mapping, 3917 pgoff_t index, 3918 gfp_t gfp) 3919 { 3920 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3921 } 3922 EXPORT_SYMBOL(read_cache_page_gfp); 3923 3924 /* 3925 * Warn about a page cache invalidation failure during a direct I/O write. 3926 */ 3927 static void dio_warn_stale_pagecache(struct file *filp) 3928 { 3929 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3930 char pathname[128]; 3931 char *path; 3932 3933 errseq_set(&filp->f_mapping->wb_err, -EIO); 3934 if (__ratelimit(&_rs)) { 3935 path = file_path(filp, pathname, sizeof(pathname)); 3936 if (IS_ERR(path)) 3937 path = "(unknown)"; 3938 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3939 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3940 current->comm); 3941 } 3942 } 3943 3944 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3945 { 3946 struct address_space *mapping = iocb->ki_filp->f_mapping; 3947 3948 if (mapping->nrpages && 3949 invalidate_inode_pages2_range(mapping, 3950 iocb->ki_pos >> PAGE_SHIFT, 3951 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3952 dio_warn_stale_pagecache(iocb->ki_filp); 3953 } 3954 3955 ssize_t 3956 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3957 { 3958 struct address_space *mapping = iocb->ki_filp->f_mapping; 3959 size_t write_len = iov_iter_count(from); 3960 ssize_t written; 3961 3962 /* 3963 * If a page can not be invalidated, return 0 to fall back 3964 * to buffered write. 3965 */ 3966 written = kiocb_invalidate_pages(iocb, write_len); 3967 if (written) { 3968 if (written == -EBUSY) 3969 return 0; 3970 return written; 3971 } 3972 3973 written = mapping->a_ops->direct_IO(iocb, from); 3974 3975 /* 3976 * Finally, try again to invalidate clean pages which might have been 3977 * cached by non-direct readahead, or faulted in by get_user_pages() 3978 * if the source of the write was an mmap'ed region of the file 3979 * we're writing. Either one is a pretty crazy thing to do, 3980 * so we don't support it 100%. If this invalidation 3981 * fails, tough, the write still worked... 3982 * 3983 * Most of the time we do not need this since dio_complete() will do 3984 * the invalidation for us. However there are some file systems that 3985 * do not end up with dio_complete() being called, so let's not break 3986 * them by removing it completely. 3987 * 3988 * Noticeable example is a blkdev_direct_IO(). 3989 * 3990 * Skip invalidation for async writes or if mapping has no pages. 3991 */ 3992 if (written > 0) { 3993 struct inode *inode = mapping->host; 3994 loff_t pos = iocb->ki_pos; 3995 3996 kiocb_invalidate_post_direct_write(iocb, written); 3997 pos += written; 3998 write_len -= written; 3999 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4000 i_size_write(inode, pos); 4001 mark_inode_dirty(inode); 4002 } 4003 iocb->ki_pos = pos; 4004 } 4005 if (written != -EIOCBQUEUED) 4006 iov_iter_revert(from, write_len - iov_iter_count(from)); 4007 return written; 4008 } 4009 EXPORT_SYMBOL(generic_file_direct_write); 4010 4011 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4012 { 4013 struct file *file = iocb->ki_filp; 4014 loff_t pos = iocb->ki_pos; 4015 struct address_space *mapping = file->f_mapping; 4016 const struct address_space_operations *a_ops = mapping->a_ops; 4017 size_t chunk = mapping_max_folio_size(mapping); 4018 long status = 0; 4019 ssize_t written = 0; 4020 4021 do { 4022 struct folio *folio; 4023 size_t offset; /* Offset into folio */ 4024 size_t bytes; /* Bytes to write to folio */ 4025 size_t copied; /* Bytes copied from user */ 4026 void *fsdata = NULL; 4027 4028 bytes = iov_iter_count(i); 4029 retry: 4030 offset = pos & (chunk - 1); 4031 bytes = min(chunk - offset, bytes); 4032 balance_dirty_pages_ratelimited(mapping); 4033 4034 /* 4035 * Bring in the user page that we will copy from _first_. 4036 * Otherwise there's a nasty deadlock on copying from the 4037 * same page as we're writing to, without it being marked 4038 * up-to-date. 4039 */ 4040 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4041 status = -EFAULT; 4042 break; 4043 } 4044 4045 if (fatal_signal_pending(current)) { 4046 status = -EINTR; 4047 break; 4048 } 4049 4050 status = a_ops->write_begin(file, mapping, pos, bytes, 4051 &folio, &fsdata); 4052 if (unlikely(status < 0)) 4053 break; 4054 4055 offset = offset_in_folio(folio, pos); 4056 if (bytes > folio_size(folio) - offset) 4057 bytes = folio_size(folio) - offset; 4058 4059 if (mapping_writably_mapped(mapping)) 4060 flush_dcache_folio(folio); 4061 4062 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4063 flush_dcache_folio(folio); 4064 4065 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4066 folio, fsdata); 4067 if (unlikely(status != copied)) { 4068 iov_iter_revert(i, copied - max(status, 0L)); 4069 if (unlikely(status < 0)) 4070 break; 4071 } 4072 cond_resched(); 4073 4074 if (unlikely(status == 0)) { 4075 /* 4076 * A short copy made ->write_end() reject the 4077 * thing entirely. Might be memory poisoning 4078 * halfway through, might be a race with munmap, 4079 * might be severe memory pressure. 4080 */ 4081 if (chunk > PAGE_SIZE) 4082 chunk /= 2; 4083 if (copied) { 4084 bytes = copied; 4085 goto retry; 4086 } 4087 } else { 4088 pos += status; 4089 written += status; 4090 } 4091 } while (iov_iter_count(i)); 4092 4093 if (!written) 4094 return status; 4095 iocb->ki_pos += written; 4096 return written; 4097 } 4098 EXPORT_SYMBOL(generic_perform_write); 4099 4100 /** 4101 * __generic_file_write_iter - write data to a file 4102 * @iocb: IO state structure (file, offset, etc.) 4103 * @from: iov_iter with data to write 4104 * 4105 * This function does all the work needed for actually writing data to a 4106 * file. It does all basic checks, removes SUID from the file, updates 4107 * modification times and calls proper subroutines depending on whether we 4108 * do direct IO or a standard buffered write. 4109 * 4110 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4111 * object which does not need locking at all. 4112 * 4113 * This function does *not* take care of syncing data in case of O_SYNC write. 4114 * A caller has to handle it. This is mainly due to the fact that we want to 4115 * avoid syncing under i_rwsem. 4116 * 4117 * Return: 4118 * * number of bytes written, even for truncated writes 4119 * * negative error code if no data has been written at all 4120 */ 4121 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4122 { 4123 struct file *file = iocb->ki_filp; 4124 struct address_space *mapping = file->f_mapping; 4125 struct inode *inode = mapping->host; 4126 ssize_t ret; 4127 4128 ret = file_remove_privs(file); 4129 if (ret) 4130 return ret; 4131 4132 ret = file_update_time(file); 4133 if (ret) 4134 return ret; 4135 4136 if (iocb->ki_flags & IOCB_DIRECT) { 4137 ret = generic_file_direct_write(iocb, from); 4138 /* 4139 * If the write stopped short of completing, fall back to 4140 * buffered writes. Some filesystems do this for writes to 4141 * holes, for example. For DAX files, a buffered write will 4142 * not succeed (even if it did, DAX does not handle dirty 4143 * page-cache pages correctly). 4144 */ 4145 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4146 return ret; 4147 return direct_write_fallback(iocb, from, ret, 4148 generic_perform_write(iocb, from)); 4149 } 4150 4151 return generic_perform_write(iocb, from); 4152 } 4153 EXPORT_SYMBOL(__generic_file_write_iter); 4154 4155 /** 4156 * generic_file_write_iter - write data to a file 4157 * @iocb: IO state structure 4158 * @from: iov_iter with data to write 4159 * 4160 * This is a wrapper around __generic_file_write_iter() to be used by most 4161 * filesystems. It takes care of syncing the file in case of O_SYNC file 4162 * and acquires i_rwsem as needed. 4163 * Return: 4164 * * negative error code if no data has been written at all of 4165 * vfs_fsync_range() failed for a synchronous write 4166 * * number of bytes written, even for truncated writes 4167 */ 4168 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4169 { 4170 struct file *file = iocb->ki_filp; 4171 struct inode *inode = file->f_mapping->host; 4172 ssize_t ret; 4173 4174 inode_lock(inode); 4175 ret = generic_write_checks(iocb, from); 4176 if (ret > 0) 4177 ret = __generic_file_write_iter(iocb, from); 4178 inode_unlock(inode); 4179 4180 if (ret > 0) 4181 ret = generic_write_sync(iocb, ret); 4182 return ret; 4183 } 4184 EXPORT_SYMBOL(generic_file_write_iter); 4185 4186 /** 4187 * filemap_release_folio() - Release fs-specific metadata on a folio. 4188 * @folio: The folio which the kernel is trying to free. 4189 * @gfp: Memory allocation flags (and I/O mode). 4190 * 4191 * The address_space is trying to release any data attached to a folio 4192 * (presumably at folio->private). 4193 * 4194 * This will also be called if the private_2 flag is set on a page, 4195 * indicating that the folio has other metadata associated with it. 4196 * 4197 * The @gfp argument specifies whether I/O may be performed to release 4198 * this page (__GFP_IO), and whether the call may block 4199 * (__GFP_RECLAIM & __GFP_FS). 4200 * 4201 * Return: %true if the release was successful, otherwise %false. 4202 */ 4203 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4204 { 4205 struct address_space * const mapping = folio->mapping; 4206 4207 BUG_ON(!folio_test_locked(folio)); 4208 if (!folio_needs_release(folio)) 4209 return true; 4210 if (folio_test_writeback(folio)) 4211 return false; 4212 4213 if (mapping && mapping->a_ops->release_folio) 4214 return mapping->a_ops->release_folio(folio, gfp); 4215 return try_to_free_buffers(folio); 4216 } 4217 EXPORT_SYMBOL(filemap_release_folio); 4218 4219 /** 4220 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4221 * @inode: The inode to flush 4222 * @flush: Set to write back rather than simply invalidate. 4223 * @start: First byte to in range. 4224 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4225 * onwards. 4226 * 4227 * Invalidate all the folios on an inode that contribute to the specified 4228 * range, possibly writing them back first. Whilst the operation is 4229 * undertaken, the invalidate lock is held to prevent new folios from being 4230 * installed. 4231 */ 4232 int filemap_invalidate_inode(struct inode *inode, bool flush, 4233 loff_t start, loff_t end) 4234 { 4235 struct address_space *mapping = inode->i_mapping; 4236 pgoff_t first = start >> PAGE_SHIFT; 4237 pgoff_t last = end >> PAGE_SHIFT; 4238 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4239 4240 if (!mapping || !mapping->nrpages || end < start) 4241 goto out; 4242 4243 /* Prevent new folios from being added to the inode. */ 4244 filemap_invalidate_lock(mapping); 4245 4246 if (!mapping->nrpages) 4247 goto unlock; 4248 4249 unmap_mapping_pages(mapping, first, nr, false); 4250 4251 /* Write back the data if we're asked to. */ 4252 if (flush) { 4253 struct writeback_control wbc = { 4254 .sync_mode = WB_SYNC_ALL, 4255 .nr_to_write = LONG_MAX, 4256 .range_start = start, 4257 .range_end = end, 4258 }; 4259 4260 filemap_fdatawrite_wbc(mapping, &wbc); 4261 } 4262 4263 /* Wait for writeback to complete on all folios and discard. */ 4264 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4265 4266 unlock: 4267 filemap_invalidate_unlock(mapping); 4268 out: 4269 return filemap_check_errors(mapping); 4270 } 4271 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4272 4273 #ifdef CONFIG_CACHESTAT_SYSCALL 4274 /** 4275 * filemap_cachestat() - compute the page cache statistics of a mapping 4276 * @mapping: The mapping to compute the statistics for. 4277 * @first_index: The starting page cache index. 4278 * @last_index: The final page index (inclusive). 4279 * @cs: the cachestat struct to write the result to. 4280 * 4281 * This will query the page cache statistics of a mapping in the 4282 * page range of [first_index, last_index] (inclusive). The statistics 4283 * queried include: number of dirty pages, number of pages marked for 4284 * writeback, and the number of (recently) evicted pages. 4285 */ 4286 static void filemap_cachestat(struct address_space *mapping, 4287 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4288 { 4289 XA_STATE(xas, &mapping->i_pages, first_index); 4290 struct folio *folio; 4291 4292 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4293 mem_cgroup_flush_stats_ratelimited(NULL); 4294 4295 rcu_read_lock(); 4296 xas_for_each(&xas, folio, last_index) { 4297 int order; 4298 unsigned long nr_pages; 4299 pgoff_t folio_first_index, folio_last_index; 4300 4301 /* 4302 * Don't deref the folio. It is not pinned, and might 4303 * get freed (and reused) underneath us. 4304 * 4305 * We *could* pin it, but that would be expensive for 4306 * what should be a fast and lightweight syscall. 4307 * 4308 * Instead, derive all information of interest from 4309 * the rcu-protected xarray. 4310 */ 4311 4312 if (xas_retry(&xas, folio)) 4313 continue; 4314 4315 order = xas_get_order(&xas); 4316 nr_pages = 1 << order; 4317 folio_first_index = round_down(xas.xa_index, 1 << order); 4318 folio_last_index = folio_first_index + nr_pages - 1; 4319 4320 /* Folios might straddle the range boundaries, only count covered pages */ 4321 if (folio_first_index < first_index) 4322 nr_pages -= first_index - folio_first_index; 4323 4324 if (folio_last_index > last_index) 4325 nr_pages -= folio_last_index - last_index; 4326 4327 if (xa_is_value(folio)) { 4328 /* page is evicted */ 4329 void *shadow = (void *)folio; 4330 bool workingset; /* not used */ 4331 4332 cs->nr_evicted += nr_pages; 4333 4334 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4335 if (shmem_mapping(mapping)) { 4336 /* shmem file - in swap cache */ 4337 swp_entry_t swp = radix_to_swp_entry(folio); 4338 4339 /* swapin error results in poisoned entry */ 4340 if (non_swap_entry(swp)) 4341 goto resched; 4342 4343 /* 4344 * Getting a swap entry from the shmem 4345 * inode means we beat 4346 * shmem_unuse(). rcu_read_lock() 4347 * ensures swapoff waits for us before 4348 * freeing the swapper space. However, 4349 * we can race with swapping and 4350 * invalidation, so there might not be 4351 * a shadow in the swapcache (yet). 4352 */ 4353 shadow = get_shadow_from_swap_cache(swp); 4354 if (!shadow) 4355 goto resched; 4356 } 4357 #endif 4358 if (workingset_test_recent(shadow, true, &workingset, false)) 4359 cs->nr_recently_evicted += nr_pages; 4360 4361 goto resched; 4362 } 4363 4364 /* page is in cache */ 4365 cs->nr_cache += nr_pages; 4366 4367 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4368 cs->nr_dirty += nr_pages; 4369 4370 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4371 cs->nr_writeback += nr_pages; 4372 4373 resched: 4374 if (need_resched()) { 4375 xas_pause(&xas); 4376 cond_resched_rcu(); 4377 } 4378 } 4379 rcu_read_unlock(); 4380 } 4381 4382 /* 4383 * The cachestat(2) system call. 4384 * 4385 * cachestat() returns the page cache statistics of a file in the 4386 * bytes range specified by `off` and `len`: number of cached pages, 4387 * number of dirty pages, number of pages marked for writeback, 4388 * number of evicted pages, and number of recently evicted pages. 4389 * 4390 * An evicted page is a page that is previously in the page cache 4391 * but has been evicted since. A page is recently evicted if its last 4392 * eviction was recent enough that its reentry to the cache would 4393 * indicate that it is actively being used by the system, and that 4394 * there is memory pressure on the system. 4395 * 4396 * `off` and `len` must be non-negative integers. If `len` > 0, 4397 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4398 * we will query in the range from `off` to the end of the file. 4399 * 4400 * The `flags` argument is unused for now, but is included for future 4401 * extensibility. User should pass 0 (i.e no flag specified). 4402 * 4403 * Currently, hugetlbfs is not supported. 4404 * 4405 * Because the status of a page can change after cachestat() checks it 4406 * but before it returns to the application, the returned values may 4407 * contain stale information. 4408 * 4409 * return values: 4410 * zero - success 4411 * -EFAULT - cstat or cstat_range points to an illegal address 4412 * -EINVAL - invalid flags 4413 * -EBADF - invalid file descriptor 4414 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4415 */ 4416 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4417 struct cachestat_range __user *, cstat_range, 4418 struct cachestat __user *, cstat, unsigned int, flags) 4419 { 4420 struct fd f = fdget(fd); 4421 struct address_space *mapping; 4422 struct cachestat_range csr; 4423 struct cachestat cs; 4424 pgoff_t first_index, last_index; 4425 4426 if (!fd_file(f)) 4427 return -EBADF; 4428 4429 if (copy_from_user(&csr, cstat_range, 4430 sizeof(struct cachestat_range))) { 4431 fdput(f); 4432 return -EFAULT; 4433 } 4434 4435 /* hugetlbfs is not supported */ 4436 if (is_file_hugepages(fd_file(f))) { 4437 fdput(f); 4438 return -EOPNOTSUPP; 4439 } 4440 4441 if (flags != 0) { 4442 fdput(f); 4443 return -EINVAL; 4444 } 4445 4446 first_index = csr.off >> PAGE_SHIFT; 4447 last_index = 4448 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4449 memset(&cs, 0, sizeof(struct cachestat)); 4450 mapping = fd_file(f)->f_mapping; 4451 filemap_cachestat(mapping, first_index, last_index, &cs); 4452 fdput(f); 4453 4454 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4455 return -EFAULT; 4456 4457 return 0; 4458 } 4459 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4460