1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/mman.h> 26 #include <linux/pagemap.h> 27 #include <linux/file.h> 28 #include <linux/uio.h> 29 #include <linux/error-injection.h> 30 #include <linux/hash.h> 31 #include <linux/writeback.h> 32 #include <linux/backing-dev.h> 33 #include <linux/pagevec.h> 34 #include <linux/security.h> 35 #include <linux/cpuset.h> 36 #include <linux/hugetlb.h> 37 #include <linux/memcontrol.h> 38 #include <linux/shmem_fs.h> 39 #include <linux/rmap.h> 40 #include <linux/delayacct.h> 41 #include <linux/psi.h> 42 #include <linux/ramfs.h> 43 #include <linux/page_idle.h> 44 #include <linux/migrate.h> 45 #include <asm/pgalloc.h> 46 #include <asm/tlbflush.h> 47 #include "internal.h" 48 49 #define CREATE_TRACE_POINTS 50 #include <trace/events/filemap.h> 51 52 /* 53 * FIXME: remove all knowledge of the buffer layer from the core VM 54 */ 55 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 56 57 #include <asm/mman.h> 58 59 /* 60 * Shared mappings implemented 30.11.1994. It's not fully working yet, 61 * though. 62 * 63 * Shared mappings now work. 15.8.1995 Bruno. 64 * 65 * finished 'unifying' the page and buffer cache and SMP-threaded the 66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 67 * 68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 69 */ 70 71 /* 72 * Lock ordering: 73 * 74 * ->i_mmap_rwsem (truncate_pagecache) 75 * ->private_lock (__free_pte->__set_page_dirty_buffers) 76 * ->swap_lock (exclusive_swap_page, others) 77 * ->i_pages lock 78 * 79 * ->i_rwsem 80 * ->invalidate_lock (acquired by fs in truncate path) 81 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 82 * 83 * ->mmap_lock 84 * ->i_mmap_rwsem 85 * ->page_table_lock or pte_lock (various, mainly in memory.c) 86 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 87 * 88 * ->mmap_lock 89 * ->invalidate_lock (filemap_fault) 90 * ->lock_page (filemap_fault, access_process_vm) 91 * 92 * ->i_rwsem (generic_perform_write) 93 * ->mmap_lock (fault_in_readable->do_page_fault) 94 * 95 * bdi->wb.list_lock 96 * sb_lock (fs/fs-writeback.c) 97 * ->i_pages lock (__sync_single_inode) 98 * 99 * ->i_mmap_rwsem 100 * ->anon_vma.lock (vma_adjust) 101 * 102 * ->anon_vma.lock 103 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 104 * 105 * ->page_table_lock or pte_lock 106 * ->swap_lock (try_to_unmap_one) 107 * ->private_lock (try_to_unmap_one) 108 * ->i_pages lock (try_to_unmap_one) 109 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 110 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 111 * ->private_lock (page_remove_rmap->set_page_dirty) 112 * ->i_pages lock (page_remove_rmap->set_page_dirty) 113 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 114 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 115 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 116 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 117 * ->inode->i_lock (zap_pte_range->set_page_dirty) 118 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 119 * 120 * ->i_mmap_rwsem 121 * ->tasklist_lock (memory_failure, collect_procs_ao) 122 */ 123 124 static void page_cache_delete(struct address_space *mapping, 125 struct folio *folio, void *shadow) 126 { 127 XA_STATE(xas, &mapping->i_pages, folio->index); 128 long nr = 1; 129 130 mapping_set_update(&xas, mapping); 131 132 /* hugetlb pages are represented by a single entry in the xarray */ 133 if (!folio_test_hugetlb(folio)) { 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 } 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 int mapcount; 156 157 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 158 current->comm, folio_pfn(folio)); 159 dump_page(&folio->page, "still mapped when deleted"); 160 dump_stack(); 161 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 162 163 mapcount = page_mapcount(&folio->page); 164 if (mapping_exiting(mapping) && 165 folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the folio is unmapped, 169 * and we'd prefer not to leak it: if we're wrong, 170 * some other bad page check should catch it later. 171 */ 172 page_mapcount_reset(&folio->page); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data. 197 * 198 * This fixes dirty accounting after removing the folio entirely 199 * but leaves the dirty flag set: it has no effect for truncated 200 * folio and anyway will be cleared before returning folio to 201 * buddy allocator. 202 */ 203 if (WARN_ON_ONCE(folio_test_dirty(folio))) 204 folio_account_cleaned(folio, mapping, 205 inode_to_wb(mapping->host)); 206 } 207 208 /* 209 * Delete a page from the page cache and free it. Caller has to make 210 * sure the page is locked and that nobody else uses it - or that usage 211 * is safe. The caller must hold the i_pages lock. 212 */ 213 void __filemap_remove_folio(struct folio *folio, void *shadow) 214 { 215 struct address_space *mapping = folio->mapping; 216 217 trace_mm_filemap_delete_from_page_cache(folio); 218 filemap_unaccount_folio(mapping, folio); 219 page_cache_delete(mapping, folio, shadow); 220 } 221 222 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 223 { 224 void (*freepage)(struct page *); 225 int refs = 1; 226 227 freepage = mapping->a_ops->freepage; 228 if (freepage) 229 freepage(&folio->page); 230 231 if (folio_test_large(folio) && !folio_test_hugetlb(folio)) 232 refs = folio_nr_pages(folio); 233 folio_put_refs(folio, refs); 234 } 235 236 /** 237 * filemap_remove_folio - Remove folio from page cache. 238 * @folio: The folio. 239 * 240 * This must be called only on folios that are locked and have been 241 * verified to be in the page cache. It will never put the folio into 242 * the free list because the caller has a reference on the page. 243 */ 244 void filemap_remove_folio(struct folio *folio) 245 { 246 struct address_space *mapping = folio->mapping; 247 248 BUG_ON(!folio_test_locked(folio)); 249 spin_lock(&mapping->host->i_lock); 250 xa_lock_irq(&mapping->i_pages); 251 __filemap_remove_folio(folio, NULL); 252 xa_unlock_irq(&mapping->i_pages); 253 if (mapping_shrinkable(mapping)) 254 inode_add_lru(mapping->host); 255 spin_unlock(&mapping->host->i_lock); 256 257 filemap_free_folio(mapping, folio); 258 } 259 260 /* 261 * page_cache_delete_batch - delete several folios from page cache 262 * @mapping: the mapping to which folios belong 263 * @fbatch: batch of folios to delete 264 * 265 * The function walks over mapping->i_pages and removes folios passed in 266 * @fbatch from the mapping. The function expects @fbatch to be sorted 267 * by page index and is optimised for it to be dense. 268 * It tolerates holes in @fbatch (mapping entries at those indices are not 269 * modified). 270 * 271 * The function expects the i_pages lock to be held. 272 */ 273 static void page_cache_delete_batch(struct address_space *mapping, 274 struct folio_batch *fbatch) 275 { 276 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 277 long total_pages = 0; 278 int i = 0; 279 struct folio *folio; 280 281 mapping_set_update(&xas, mapping); 282 xas_for_each(&xas, folio, ULONG_MAX) { 283 if (i >= folio_batch_count(fbatch)) 284 break; 285 286 /* A swap/dax/shadow entry got inserted? Skip it. */ 287 if (xa_is_value(folio)) 288 continue; 289 /* 290 * A page got inserted in our range? Skip it. We have our 291 * pages locked so they are protected from being removed. 292 * If we see a page whose index is higher than ours, it 293 * means our page has been removed, which shouldn't be 294 * possible because we're holding the PageLock. 295 */ 296 if (folio != fbatch->folios[i]) { 297 VM_BUG_ON_FOLIO(folio->index > 298 fbatch->folios[i]->index, folio); 299 continue; 300 } 301 302 WARN_ON_ONCE(!folio_test_locked(folio)); 303 304 folio->mapping = NULL; 305 /* Leave folio->index set: truncation lookup relies on it */ 306 307 i++; 308 xas_store(&xas, NULL); 309 total_pages += folio_nr_pages(folio); 310 } 311 mapping->nrpages -= total_pages; 312 } 313 314 void delete_from_page_cache_batch(struct address_space *mapping, 315 struct folio_batch *fbatch) 316 { 317 int i; 318 319 if (!folio_batch_count(fbatch)) 320 return; 321 322 spin_lock(&mapping->host->i_lock); 323 xa_lock_irq(&mapping->i_pages); 324 for (i = 0; i < folio_batch_count(fbatch); i++) { 325 struct folio *folio = fbatch->folios[i]; 326 327 trace_mm_filemap_delete_from_page_cache(folio); 328 filemap_unaccount_folio(mapping, folio); 329 } 330 page_cache_delete_batch(mapping, fbatch); 331 xa_unlock_irq(&mapping->i_pages); 332 if (mapping_shrinkable(mapping)) 333 inode_add_lru(mapping->host); 334 spin_unlock(&mapping->host->i_lock); 335 336 for (i = 0; i < folio_batch_count(fbatch); i++) 337 filemap_free_folio(mapping, fbatch->folios[i]); 338 } 339 340 int filemap_check_errors(struct address_space *mapping) 341 { 342 int ret = 0; 343 /* Check for outstanding write errors */ 344 if (test_bit(AS_ENOSPC, &mapping->flags) && 345 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 346 ret = -ENOSPC; 347 if (test_bit(AS_EIO, &mapping->flags) && 348 test_and_clear_bit(AS_EIO, &mapping->flags)) 349 ret = -EIO; 350 return ret; 351 } 352 EXPORT_SYMBOL(filemap_check_errors); 353 354 static int filemap_check_and_keep_errors(struct address_space *mapping) 355 { 356 /* Check for outstanding write errors */ 357 if (test_bit(AS_EIO, &mapping->flags)) 358 return -EIO; 359 if (test_bit(AS_ENOSPC, &mapping->flags)) 360 return -ENOSPC; 361 return 0; 362 } 363 364 /** 365 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 366 * @mapping: address space structure to write 367 * @wbc: the writeback_control controlling the writeout 368 * 369 * Call writepages on the mapping using the provided wbc to control the 370 * writeout. 371 * 372 * Return: %0 on success, negative error code otherwise. 373 */ 374 int filemap_fdatawrite_wbc(struct address_space *mapping, 375 struct writeback_control *wbc) 376 { 377 int ret; 378 379 if (!mapping_can_writeback(mapping) || 380 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 381 return 0; 382 383 wbc_attach_fdatawrite_inode(wbc, mapping->host); 384 ret = do_writepages(mapping, wbc); 385 wbc_detach_inode(wbc); 386 return ret; 387 } 388 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 389 390 /** 391 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 392 * @mapping: address space structure to write 393 * @start: offset in bytes where the range starts 394 * @end: offset in bytes where the range ends (inclusive) 395 * @sync_mode: enable synchronous operation 396 * 397 * Start writeback against all of a mapping's dirty pages that lie 398 * within the byte offsets <start, end> inclusive. 399 * 400 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 401 * opposed to a regular memory cleansing writeback. The difference between 402 * these two operations is that if a dirty page/buffer is encountered, it must 403 * be waited upon, and not just skipped over. 404 * 405 * Return: %0 on success, negative error code otherwise. 406 */ 407 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 408 loff_t end, int sync_mode) 409 { 410 struct writeback_control wbc = { 411 .sync_mode = sync_mode, 412 .nr_to_write = LONG_MAX, 413 .range_start = start, 414 .range_end = end, 415 }; 416 417 return filemap_fdatawrite_wbc(mapping, &wbc); 418 } 419 420 static inline int __filemap_fdatawrite(struct address_space *mapping, 421 int sync_mode) 422 { 423 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 424 } 425 426 int filemap_fdatawrite(struct address_space *mapping) 427 { 428 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 429 } 430 EXPORT_SYMBOL(filemap_fdatawrite); 431 432 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 433 loff_t end) 434 { 435 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 436 } 437 EXPORT_SYMBOL(filemap_fdatawrite_range); 438 439 /** 440 * filemap_flush - mostly a non-blocking flush 441 * @mapping: target address_space 442 * 443 * This is a mostly non-blocking flush. Not suitable for data-integrity 444 * purposes - I/O may not be started against all dirty pages. 445 * 446 * Return: %0 on success, negative error code otherwise. 447 */ 448 int filemap_flush(struct address_space *mapping) 449 { 450 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 451 } 452 EXPORT_SYMBOL(filemap_flush); 453 454 /** 455 * filemap_range_has_page - check if a page exists in range. 456 * @mapping: address space within which to check 457 * @start_byte: offset in bytes where the range starts 458 * @end_byte: offset in bytes where the range ends (inclusive) 459 * 460 * Find at least one page in the range supplied, usually used to check if 461 * direct writing in this range will trigger a writeback. 462 * 463 * Return: %true if at least one page exists in the specified range, 464 * %false otherwise. 465 */ 466 bool filemap_range_has_page(struct address_space *mapping, 467 loff_t start_byte, loff_t end_byte) 468 { 469 struct page *page; 470 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 471 pgoff_t max = end_byte >> PAGE_SHIFT; 472 473 if (end_byte < start_byte) 474 return false; 475 476 rcu_read_lock(); 477 for (;;) { 478 page = xas_find(&xas, max); 479 if (xas_retry(&xas, page)) 480 continue; 481 /* Shadow entries don't count */ 482 if (xa_is_value(page)) 483 continue; 484 /* 485 * We don't need to try to pin this page; we're about to 486 * release the RCU lock anyway. It is enough to know that 487 * there was a page here recently. 488 */ 489 break; 490 } 491 rcu_read_unlock(); 492 493 return page != NULL; 494 } 495 EXPORT_SYMBOL(filemap_range_has_page); 496 497 static void __filemap_fdatawait_range(struct address_space *mapping, 498 loff_t start_byte, loff_t end_byte) 499 { 500 pgoff_t index = start_byte >> PAGE_SHIFT; 501 pgoff_t end = end_byte >> PAGE_SHIFT; 502 struct pagevec pvec; 503 int nr_pages; 504 505 if (end_byte < start_byte) 506 return; 507 508 pagevec_init(&pvec); 509 while (index <= end) { 510 unsigned i; 511 512 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, 513 end, PAGECACHE_TAG_WRITEBACK); 514 if (!nr_pages) 515 break; 516 517 for (i = 0; i < nr_pages; i++) { 518 struct page *page = pvec.pages[i]; 519 520 wait_on_page_writeback(page); 521 ClearPageError(page); 522 } 523 pagevec_release(&pvec); 524 cond_resched(); 525 } 526 } 527 528 /** 529 * filemap_fdatawait_range - wait for writeback to complete 530 * @mapping: address space structure to wait for 531 * @start_byte: offset in bytes where the range starts 532 * @end_byte: offset in bytes where the range ends (inclusive) 533 * 534 * Walk the list of under-writeback pages of the given address space 535 * in the given range and wait for all of them. Check error status of 536 * the address space and return it. 537 * 538 * Since the error status of the address space is cleared by this function, 539 * callers are responsible for checking the return value and handling and/or 540 * reporting the error. 541 * 542 * Return: error status of the address space. 543 */ 544 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 545 loff_t end_byte) 546 { 547 __filemap_fdatawait_range(mapping, start_byte, end_byte); 548 return filemap_check_errors(mapping); 549 } 550 EXPORT_SYMBOL(filemap_fdatawait_range); 551 552 /** 553 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 554 * @mapping: address space structure to wait for 555 * @start_byte: offset in bytes where the range starts 556 * @end_byte: offset in bytes where the range ends (inclusive) 557 * 558 * Walk the list of under-writeback pages of the given address space in the 559 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 560 * this function does not clear error status of the address space. 561 * 562 * Use this function if callers don't handle errors themselves. Expected 563 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 564 * fsfreeze(8) 565 */ 566 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 567 loff_t start_byte, loff_t end_byte) 568 { 569 __filemap_fdatawait_range(mapping, start_byte, end_byte); 570 return filemap_check_and_keep_errors(mapping); 571 } 572 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 573 574 /** 575 * file_fdatawait_range - wait for writeback to complete 576 * @file: file pointing to address space structure to wait for 577 * @start_byte: offset in bytes where the range starts 578 * @end_byte: offset in bytes where the range ends (inclusive) 579 * 580 * Walk the list of under-writeback pages of the address space that file 581 * refers to, in the given range and wait for all of them. Check error 582 * status of the address space vs. the file->f_wb_err cursor and return it. 583 * 584 * Since the error status of the file is advanced by this function, 585 * callers are responsible for checking the return value and handling and/or 586 * reporting the error. 587 * 588 * Return: error status of the address space vs. the file->f_wb_err cursor. 589 */ 590 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 591 { 592 struct address_space *mapping = file->f_mapping; 593 594 __filemap_fdatawait_range(mapping, start_byte, end_byte); 595 return file_check_and_advance_wb_err(file); 596 } 597 EXPORT_SYMBOL(file_fdatawait_range); 598 599 /** 600 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 601 * @mapping: address space structure to wait for 602 * 603 * Walk the list of under-writeback pages of the given address space 604 * and wait for all of them. Unlike filemap_fdatawait(), this function 605 * does not clear error status of the address space. 606 * 607 * Use this function if callers don't handle errors themselves. Expected 608 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 609 * fsfreeze(8) 610 * 611 * Return: error status of the address space. 612 */ 613 int filemap_fdatawait_keep_errors(struct address_space *mapping) 614 { 615 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 616 return filemap_check_and_keep_errors(mapping); 617 } 618 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 619 620 /* Returns true if writeback might be needed or already in progress. */ 621 static bool mapping_needs_writeback(struct address_space *mapping) 622 { 623 return mapping->nrpages; 624 } 625 626 bool filemap_range_has_writeback(struct address_space *mapping, 627 loff_t start_byte, loff_t end_byte) 628 { 629 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 630 pgoff_t max = end_byte >> PAGE_SHIFT; 631 struct page *page; 632 633 if (end_byte < start_byte) 634 return false; 635 636 rcu_read_lock(); 637 xas_for_each(&xas, page, max) { 638 if (xas_retry(&xas, page)) 639 continue; 640 if (xa_is_value(page)) 641 continue; 642 if (PageDirty(page) || PageLocked(page) || PageWriteback(page)) 643 break; 644 } 645 rcu_read_unlock(); 646 return page != NULL; 647 } 648 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 649 650 /** 651 * filemap_write_and_wait_range - write out & wait on a file range 652 * @mapping: the address_space for the pages 653 * @lstart: offset in bytes where the range starts 654 * @lend: offset in bytes where the range ends (inclusive) 655 * 656 * Write out and wait upon file offsets lstart->lend, inclusive. 657 * 658 * Note that @lend is inclusive (describes the last byte to be written) so 659 * that this function can be used to write to the very end-of-file (end = -1). 660 * 661 * Return: error status of the address space. 662 */ 663 int filemap_write_and_wait_range(struct address_space *mapping, 664 loff_t lstart, loff_t lend) 665 { 666 int err = 0; 667 668 if (mapping_needs_writeback(mapping)) { 669 err = __filemap_fdatawrite_range(mapping, lstart, lend, 670 WB_SYNC_ALL); 671 /* 672 * Even if the above returned error, the pages may be 673 * written partially (e.g. -ENOSPC), so we wait for it. 674 * But the -EIO is special case, it may indicate the worst 675 * thing (e.g. bug) happened, so we avoid waiting for it. 676 */ 677 if (err != -EIO) { 678 int err2 = filemap_fdatawait_range(mapping, 679 lstart, lend); 680 if (!err) 681 err = err2; 682 } else { 683 /* Clear any previously stored errors */ 684 filemap_check_errors(mapping); 685 } 686 } else { 687 err = filemap_check_errors(mapping); 688 } 689 return err; 690 } 691 EXPORT_SYMBOL(filemap_write_and_wait_range); 692 693 void __filemap_set_wb_err(struct address_space *mapping, int err) 694 { 695 errseq_t eseq = errseq_set(&mapping->wb_err, err); 696 697 trace_filemap_set_wb_err(mapping, eseq); 698 } 699 EXPORT_SYMBOL(__filemap_set_wb_err); 700 701 /** 702 * file_check_and_advance_wb_err - report wb error (if any) that was previously 703 * and advance wb_err to current one 704 * @file: struct file on which the error is being reported 705 * 706 * When userland calls fsync (or something like nfsd does the equivalent), we 707 * want to report any writeback errors that occurred since the last fsync (or 708 * since the file was opened if there haven't been any). 709 * 710 * Grab the wb_err from the mapping. If it matches what we have in the file, 711 * then just quickly return 0. The file is all caught up. 712 * 713 * If it doesn't match, then take the mapping value, set the "seen" flag in 714 * it and try to swap it into place. If it works, or another task beat us 715 * to it with the new value, then update the f_wb_err and return the error 716 * portion. The error at this point must be reported via proper channels 717 * (a'la fsync, or NFS COMMIT operation, etc.). 718 * 719 * While we handle mapping->wb_err with atomic operations, the f_wb_err 720 * value is protected by the f_lock since we must ensure that it reflects 721 * the latest value swapped in for this file descriptor. 722 * 723 * Return: %0 on success, negative error code otherwise. 724 */ 725 int file_check_and_advance_wb_err(struct file *file) 726 { 727 int err = 0; 728 errseq_t old = READ_ONCE(file->f_wb_err); 729 struct address_space *mapping = file->f_mapping; 730 731 /* Locklessly handle the common case where nothing has changed */ 732 if (errseq_check(&mapping->wb_err, old)) { 733 /* Something changed, must use slow path */ 734 spin_lock(&file->f_lock); 735 old = file->f_wb_err; 736 err = errseq_check_and_advance(&mapping->wb_err, 737 &file->f_wb_err); 738 trace_file_check_and_advance_wb_err(file, old); 739 spin_unlock(&file->f_lock); 740 } 741 742 /* 743 * We're mostly using this function as a drop in replacement for 744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 745 * that the legacy code would have had on these flags. 746 */ 747 clear_bit(AS_EIO, &mapping->flags); 748 clear_bit(AS_ENOSPC, &mapping->flags); 749 return err; 750 } 751 EXPORT_SYMBOL(file_check_and_advance_wb_err); 752 753 /** 754 * file_write_and_wait_range - write out & wait on a file range 755 * @file: file pointing to address_space with pages 756 * @lstart: offset in bytes where the range starts 757 * @lend: offset in bytes where the range ends (inclusive) 758 * 759 * Write out and wait upon file offsets lstart->lend, inclusive. 760 * 761 * Note that @lend is inclusive (describes the last byte to be written) so 762 * that this function can be used to write to the very end-of-file (end = -1). 763 * 764 * After writing out and waiting on the data, we check and advance the 765 * f_wb_err cursor to the latest value, and return any errors detected there. 766 * 767 * Return: %0 on success, negative error code otherwise. 768 */ 769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 770 { 771 int err = 0, err2; 772 struct address_space *mapping = file->f_mapping; 773 774 if (mapping_needs_writeback(mapping)) { 775 err = __filemap_fdatawrite_range(mapping, lstart, lend, 776 WB_SYNC_ALL); 777 /* See comment of filemap_write_and_wait() */ 778 if (err != -EIO) 779 __filemap_fdatawait_range(mapping, lstart, lend); 780 } 781 err2 = file_check_and_advance_wb_err(file); 782 if (!err) 783 err = err2; 784 return err; 785 } 786 EXPORT_SYMBOL(file_write_and_wait_range); 787 788 /** 789 * replace_page_cache_page - replace a pagecache page with a new one 790 * @old: page to be replaced 791 * @new: page to replace with 792 * 793 * This function replaces a page in the pagecache with a new one. On 794 * success it acquires the pagecache reference for the new page and 795 * drops it for the old page. Both the old and new pages must be 796 * locked. This function does not add the new page to the LRU, the 797 * caller must do that. 798 * 799 * The remove + add is atomic. This function cannot fail. 800 */ 801 void replace_page_cache_page(struct page *old, struct page *new) 802 { 803 struct folio *fold = page_folio(old); 804 struct folio *fnew = page_folio(new); 805 struct address_space *mapping = old->mapping; 806 void (*freepage)(struct page *) = mapping->a_ops->freepage; 807 pgoff_t offset = old->index; 808 XA_STATE(xas, &mapping->i_pages, offset); 809 810 VM_BUG_ON_PAGE(!PageLocked(old), old); 811 VM_BUG_ON_PAGE(!PageLocked(new), new); 812 VM_BUG_ON_PAGE(new->mapping, new); 813 814 get_page(new); 815 new->mapping = mapping; 816 new->index = offset; 817 818 mem_cgroup_migrate(fold, fnew); 819 820 xas_lock_irq(&xas); 821 xas_store(&xas, new); 822 823 old->mapping = NULL; 824 /* hugetlb pages do not participate in page cache accounting. */ 825 if (!PageHuge(old)) 826 __dec_lruvec_page_state(old, NR_FILE_PAGES); 827 if (!PageHuge(new)) 828 __inc_lruvec_page_state(new, NR_FILE_PAGES); 829 if (PageSwapBacked(old)) 830 __dec_lruvec_page_state(old, NR_SHMEM); 831 if (PageSwapBacked(new)) 832 __inc_lruvec_page_state(new, NR_SHMEM); 833 xas_unlock_irq(&xas); 834 if (freepage) 835 freepage(old); 836 put_page(old); 837 } 838 EXPORT_SYMBOL_GPL(replace_page_cache_page); 839 840 noinline int __filemap_add_folio(struct address_space *mapping, 841 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 842 { 843 XA_STATE(xas, &mapping->i_pages, index); 844 int huge = folio_test_hugetlb(folio); 845 int error; 846 bool charged = false; 847 848 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 849 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 850 mapping_set_update(&xas, mapping); 851 852 folio_get(folio); 853 folio->mapping = mapping; 854 folio->index = index; 855 856 if (!huge) { 857 error = mem_cgroup_charge(folio, NULL, gfp); 858 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 859 if (error) 860 goto error; 861 charged = true; 862 } 863 864 gfp &= GFP_RECLAIM_MASK; 865 866 do { 867 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 868 void *entry, *old = NULL; 869 870 if (order > folio_order(folio)) 871 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 872 order, gfp); 873 xas_lock_irq(&xas); 874 xas_for_each_conflict(&xas, entry) { 875 old = entry; 876 if (!xa_is_value(entry)) { 877 xas_set_err(&xas, -EEXIST); 878 goto unlock; 879 } 880 } 881 882 if (old) { 883 if (shadowp) 884 *shadowp = old; 885 /* entry may have been split before we acquired lock */ 886 order = xa_get_order(xas.xa, xas.xa_index); 887 if (order > folio_order(folio)) { 888 xas_split(&xas, old, order); 889 xas_reset(&xas); 890 } 891 } 892 893 xas_store(&xas, folio); 894 if (xas_error(&xas)) 895 goto unlock; 896 897 mapping->nrpages++; 898 899 /* hugetlb pages do not participate in page cache accounting */ 900 if (!huge) 901 __lruvec_stat_add_folio(folio, NR_FILE_PAGES); 902 unlock: 903 xas_unlock_irq(&xas); 904 } while (xas_nomem(&xas, gfp)); 905 906 if (xas_error(&xas)) { 907 error = xas_error(&xas); 908 if (charged) 909 mem_cgroup_uncharge(folio); 910 goto error; 911 } 912 913 trace_mm_filemap_add_to_page_cache(folio); 914 return 0; 915 error: 916 folio->mapping = NULL; 917 /* Leave page->index set: truncation relies upon it */ 918 folio_put(folio); 919 return error; 920 } 921 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 922 923 /** 924 * add_to_page_cache_locked - add a locked page to the pagecache 925 * @page: page to add 926 * @mapping: the page's address_space 927 * @offset: page index 928 * @gfp_mask: page allocation mode 929 * 930 * This function is used to add a page to the pagecache. It must be locked. 931 * This function does not add the page to the LRU. The caller must do that. 932 * 933 * Return: %0 on success, negative error code otherwise. 934 */ 935 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 936 pgoff_t offset, gfp_t gfp_mask) 937 { 938 return __filemap_add_folio(mapping, page_folio(page), offset, 939 gfp_mask, NULL); 940 } 941 EXPORT_SYMBOL(add_to_page_cache_locked); 942 943 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 944 pgoff_t index, gfp_t gfp) 945 { 946 void *shadow = NULL; 947 int ret; 948 949 __folio_set_locked(folio); 950 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 951 if (unlikely(ret)) 952 __folio_clear_locked(folio); 953 else { 954 /* 955 * The folio might have been evicted from cache only 956 * recently, in which case it should be activated like 957 * any other repeatedly accessed folio. 958 * The exception is folios getting rewritten; evicting other 959 * data from the working set, only to cache data that will 960 * get overwritten with something else, is a waste of memory. 961 */ 962 WARN_ON_ONCE(folio_test_active(folio)); 963 if (!(gfp & __GFP_WRITE) && shadow) 964 workingset_refault(folio, shadow); 965 folio_add_lru(folio); 966 } 967 return ret; 968 } 969 EXPORT_SYMBOL_GPL(filemap_add_folio); 970 971 #ifdef CONFIG_NUMA 972 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 973 { 974 int n; 975 struct folio *folio; 976 977 if (cpuset_do_page_mem_spread()) { 978 unsigned int cpuset_mems_cookie; 979 do { 980 cpuset_mems_cookie = read_mems_allowed_begin(); 981 n = cpuset_mem_spread_node(); 982 folio = __folio_alloc_node(gfp, order, n); 983 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 984 985 return folio; 986 } 987 return folio_alloc(gfp, order); 988 } 989 EXPORT_SYMBOL(filemap_alloc_folio); 990 #endif 991 992 /* 993 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 994 * 995 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 996 * 997 * @mapping1: the first mapping to lock 998 * @mapping2: the second mapping to lock 999 */ 1000 void filemap_invalidate_lock_two(struct address_space *mapping1, 1001 struct address_space *mapping2) 1002 { 1003 if (mapping1 > mapping2) 1004 swap(mapping1, mapping2); 1005 if (mapping1) 1006 down_write(&mapping1->invalidate_lock); 1007 if (mapping2 && mapping1 != mapping2) 1008 down_write_nested(&mapping2->invalidate_lock, 1); 1009 } 1010 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1011 1012 /* 1013 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1014 * 1015 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1016 * 1017 * @mapping1: the first mapping to unlock 1018 * @mapping2: the second mapping to unlock 1019 */ 1020 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1021 struct address_space *mapping2) 1022 { 1023 if (mapping1) 1024 up_write(&mapping1->invalidate_lock); 1025 if (mapping2 && mapping1 != mapping2) 1026 up_write(&mapping2->invalidate_lock); 1027 } 1028 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1029 1030 /* 1031 * In order to wait for pages to become available there must be 1032 * waitqueues associated with pages. By using a hash table of 1033 * waitqueues where the bucket discipline is to maintain all 1034 * waiters on the same queue and wake all when any of the pages 1035 * become available, and for the woken contexts to check to be 1036 * sure the appropriate page became available, this saves space 1037 * at a cost of "thundering herd" phenomena during rare hash 1038 * collisions. 1039 */ 1040 #define PAGE_WAIT_TABLE_BITS 8 1041 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1042 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1043 1044 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1045 { 1046 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1047 } 1048 1049 void __init pagecache_init(void) 1050 { 1051 int i; 1052 1053 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1054 init_waitqueue_head(&folio_wait_table[i]); 1055 1056 page_writeback_init(); 1057 } 1058 1059 /* 1060 * The page wait code treats the "wait->flags" somewhat unusually, because 1061 * we have multiple different kinds of waits, not just the usual "exclusive" 1062 * one. 1063 * 1064 * We have: 1065 * 1066 * (a) no special bits set: 1067 * 1068 * We're just waiting for the bit to be released, and when a waker 1069 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1070 * and remove it from the wait queue. 1071 * 1072 * Simple and straightforward. 1073 * 1074 * (b) WQ_FLAG_EXCLUSIVE: 1075 * 1076 * The waiter is waiting to get the lock, and only one waiter should 1077 * be woken up to avoid any thundering herd behavior. We'll set the 1078 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1079 * 1080 * This is the traditional exclusive wait. 1081 * 1082 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1083 * 1084 * The waiter is waiting to get the bit, and additionally wants the 1085 * lock to be transferred to it for fair lock behavior. If the lock 1086 * cannot be taken, we stop walking the wait queue without waking 1087 * the waiter. 1088 * 1089 * This is the "fair lock handoff" case, and in addition to setting 1090 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1091 * that it now has the lock. 1092 */ 1093 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1094 { 1095 unsigned int flags; 1096 struct wait_page_key *key = arg; 1097 struct wait_page_queue *wait_page 1098 = container_of(wait, struct wait_page_queue, wait); 1099 1100 if (!wake_page_match(wait_page, key)) 1101 return 0; 1102 1103 /* 1104 * If it's a lock handoff wait, we get the bit for it, and 1105 * stop walking (and do not wake it up) if we can't. 1106 */ 1107 flags = wait->flags; 1108 if (flags & WQ_FLAG_EXCLUSIVE) { 1109 if (test_bit(key->bit_nr, &key->folio->flags)) 1110 return -1; 1111 if (flags & WQ_FLAG_CUSTOM) { 1112 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1113 return -1; 1114 flags |= WQ_FLAG_DONE; 1115 } 1116 } 1117 1118 /* 1119 * We are holding the wait-queue lock, but the waiter that 1120 * is waiting for this will be checking the flags without 1121 * any locking. 1122 * 1123 * So update the flags atomically, and wake up the waiter 1124 * afterwards to avoid any races. This store-release pairs 1125 * with the load-acquire in folio_wait_bit_common(). 1126 */ 1127 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1128 wake_up_state(wait->private, mode); 1129 1130 /* 1131 * Ok, we have successfully done what we're waiting for, 1132 * and we can unconditionally remove the wait entry. 1133 * 1134 * Note that this pairs with the "finish_wait()" in the 1135 * waiter, and has to be the absolute last thing we do. 1136 * After this list_del_init(&wait->entry) the wait entry 1137 * might be de-allocated and the process might even have 1138 * exited. 1139 */ 1140 list_del_init_careful(&wait->entry); 1141 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1142 } 1143 1144 static void folio_wake_bit(struct folio *folio, int bit_nr) 1145 { 1146 wait_queue_head_t *q = folio_waitqueue(folio); 1147 struct wait_page_key key; 1148 unsigned long flags; 1149 wait_queue_entry_t bookmark; 1150 1151 key.folio = folio; 1152 key.bit_nr = bit_nr; 1153 key.page_match = 0; 1154 1155 bookmark.flags = 0; 1156 bookmark.private = NULL; 1157 bookmark.func = NULL; 1158 INIT_LIST_HEAD(&bookmark.entry); 1159 1160 spin_lock_irqsave(&q->lock, flags); 1161 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1162 1163 while (bookmark.flags & WQ_FLAG_BOOKMARK) { 1164 /* 1165 * Take a breather from holding the lock, 1166 * allow pages that finish wake up asynchronously 1167 * to acquire the lock and remove themselves 1168 * from wait queue 1169 */ 1170 spin_unlock_irqrestore(&q->lock, flags); 1171 cpu_relax(); 1172 spin_lock_irqsave(&q->lock, flags); 1173 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark); 1174 } 1175 1176 /* 1177 * It is possible for other pages to have collided on the waitqueue 1178 * hash, so in that case check for a page match. That prevents a long- 1179 * term waiter 1180 * 1181 * It is still possible to miss a case here, when we woke page waiters 1182 * and removed them from the waitqueue, but there are still other 1183 * page waiters. 1184 */ 1185 if (!waitqueue_active(q) || !key.page_match) { 1186 folio_clear_waiters(folio); 1187 /* 1188 * It's possible to miss clearing Waiters here, when we woke 1189 * our page waiters, but the hashed waitqueue has waiters for 1190 * other pages on it. 1191 * 1192 * That's okay, it's a rare case. The next waker will clear it. 1193 */ 1194 } 1195 spin_unlock_irqrestore(&q->lock, flags); 1196 } 1197 1198 static void folio_wake(struct folio *folio, int bit) 1199 { 1200 if (!folio_test_waiters(folio)) 1201 return; 1202 folio_wake_bit(folio, bit); 1203 } 1204 1205 /* 1206 * A choice of three behaviors for folio_wait_bit_common(): 1207 */ 1208 enum behavior { 1209 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1210 * __folio_lock() waiting on then setting PG_locked. 1211 */ 1212 SHARED, /* Hold ref to page and check the bit when woken, like 1213 * folio_wait_writeback() waiting on PG_writeback. 1214 */ 1215 DROP, /* Drop ref to page before wait, no check when woken, 1216 * like folio_put_wait_locked() on PG_locked. 1217 */ 1218 }; 1219 1220 /* 1221 * Attempt to check (or get) the folio flag, and mark us done 1222 * if successful. 1223 */ 1224 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1225 struct wait_queue_entry *wait) 1226 { 1227 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1228 if (test_and_set_bit(bit_nr, &folio->flags)) 1229 return false; 1230 } else if (test_bit(bit_nr, &folio->flags)) 1231 return false; 1232 1233 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1234 return true; 1235 } 1236 1237 /* How many times do we accept lock stealing from under a waiter? */ 1238 int sysctl_page_lock_unfairness = 5; 1239 1240 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1241 int state, enum behavior behavior) 1242 { 1243 wait_queue_head_t *q = folio_waitqueue(folio); 1244 int unfairness = sysctl_page_lock_unfairness; 1245 struct wait_page_queue wait_page; 1246 wait_queue_entry_t *wait = &wait_page.wait; 1247 bool thrashing = false; 1248 bool delayacct = false; 1249 unsigned long pflags; 1250 1251 if (bit_nr == PG_locked && 1252 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1253 if (!folio_test_swapbacked(folio)) { 1254 delayacct_thrashing_start(); 1255 delayacct = true; 1256 } 1257 psi_memstall_enter(&pflags); 1258 thrashing = true; 1259 } 1260 1261 init_wait(wait); 1262 wait->func = wake_page_function; 1263 wait_page.folio = folio; 1264 wait_page.bit_nr = bit_nr; 1265 1266 repeat: 1267 wait->flags = 0; 1268 if (behavior == EXCLUSIVE) { 1269 wait->flags = WQ_FLAG_EXCLUSIVE; 1270 if (--unfairness < 0) 1271 wait->flags |= WQ_FLAG_CUSTOM; 1272 } 1273 1274 /* 1275 * Do one last check whether we can get the 1276 * page bit synchronously. 1277 * 1278 * Do the folio_set_waiters() marking before that 1279 * to let any waker we _just_ missed know they 1280 * need to wake us up (otherwise they'll never 1281 * even go to the slow case that looks at the 1282 * page queue), and add ourselves to the wait 1283 * queue if we need to sleep. 1284 * 1285 * This part needs to be done under the queue 1286 * lock to avoid races. 1287 */ 1288 spin_lock_irq(&q->lock); 1289 folio_set_waiters(folio); 1290 if (!folio_trylock_flag(folio, bit_nr, wait)) 1291 __add_wait_queue_entry_tail(q, wait); 1292 spin_unlock_irq(&q->lock); 1293 1294 /* 1295 * From now on, all the logic will be based on 1296 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1297 * see whether the page bit testing has already 1298 * been done by the wake function. 1299 * 1300 * We can drop our reference to the folio. 1301 */ 1302 if (behavior == DROP) 1303 folio_put(folio); 1304 1305 /* 1306 * Note that until the "finish_wait()", or until 1307 * we see the WQ_FLAG_WOKEN flag, we need to 1308 * be very careful with the 'wait->flags', because 1309 * we may race with a waker that sets them. 1310 */ 1311 for (;;) { 1312 unsigned int flags; 1313 1314 set_current_state(state); 1315 1316 /* Loop until we've been woken or interrupted */ 1317 flags = smp_load_acquire(&wait->flags); 1318 if (!(flags & WQ_FLAG_WOKEN)) { 1319 if (signal_pending_state(state, current)) 1320 break; 1321 1322 io_schedule(); 1323 continue; 1324 } 1325 1326 /* If we were non-exclusive, we're done */ 1327 if (behavior != EXCLUSIVE) 1328 break; 1329 1330 /* If the waker got the lock for us, we're done */ 1331 if (flags & WQ_FLAG_DONE) 1332 break; 1333 1334 /* 1335 * Otherwise, if we're getting the lock, we need to 1336 * try to get it ourselves. 1337 * 1338 * And if that fails, we'll have to retry this all. 1339 */ 1340 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1341 goto repeat; 1342 1343 wait->flags |= WQ_FLAG_DONE; 1344 break; 1345 } 1346 1347 /* 1348 * If a signal happened, this 'finish_wait()' may remove the last 1349 * waiter from the wait-queues, but the folio waiters bit will remain 1350 * set. That's ok. The next wakeup will take care of it, and trying 1351 * to do it here would be difficult and prone to races. 1352 */ 1353 finish_wait(q, wait); 1354 1355 if (thrashing) { 1356 if (delayacct) 1357 delayacct_thrashing_end(); 1358 psi_memstall_leave(&pflags); 1359 } 1360 1361 /* 1362 * NOTE! The wait->flags weren't stable until we've done the 1363 * 'finish_wait()', and we could have exited the loop above due 1364 * to a signal, and had a wakeup event happen after the signal 1365 * test but before the 'finish_wait()'. 1366 * 1367 * So only after the finish_wait() can we reliably determine 1368 * if we got woken up or not, so we can now figure out the final 1369 * return value based on that state without races. 1370 * 1371 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1372 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1373 */ 1374 if (behavior == EXCLUSIVE) 1375 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1376 1377 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1378 } 1379 1380 #ifdef CONFIG_MIGRATION 1381 /** 1382 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1383 * @entry: migration swap entry. 1384 * @ptep: mapped pte pointer. Will return with the ptep unmapped. Only required 1385 * for pte entries, pass NULL for pmd entries. 1386 * @ptl: already locked ptl. This function will drop the lock. 1387 * 1388 * Wait for a migration entry referencing the given page to be removed. This is 1389 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1390 * this can be called without taking a reference on the page. Instead this 1391 * should be called while holding the ptl for the migration entry referencing 1392 * the page. 1393 * 1394 * Returns after unmapping and unlocking the pte/ptl with pte_unmap_unlock(). 1395 * 1396 * This follows the same logic as folio_wait_bit_common() so see the comments 1397 * there. 1398 */ 1399 void migration_entry_wait_on_locked(swp_entry_t entry, pte_t *ptep, 1400 spinlock_t *ptl) 1401 { 1402 struct wait_page_queue wait_page; 1403 wait_queue_entry_t *wait = &wait_page.wait; 1404 bool thrashing = false; 1405 bool delayacct = false; 1406 unsigned long pflags; 1407 wait_queue_head_t *q; 1408 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1409 1410 q = folio_waitqueue(folio); 1411 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1412 if (!folio_test_swapbacked(folio)) { 1413 delayacct_thrashing_start(); 1414 delayacct = true; 1415 } 1416 psi_memstall_enter(&pflags); 1417 thrashing = true; 1418 } 1419 1420 init_wait(wait); 1421 wait->func = wake_page_function; 1422 wait_page.folio = folio; 1423 wait_page.bit_nr = PG_locked; 1424 wait->flags = 0; 1425 1426 spin_lock_irq(&q->lock); 1427 folio_set_waiters(folio); 1428 if (!folio_trylock_flag(folio, PG_locked, wait)) 1429 __add_wait_queue_entry_tail(q, wait); 1430 spin_unlock_irq(&q->lock); 1431 1432 /* 1433 * If a migration entry exists for the page the migration path must hold 1434 * a valid reference to the page, and it must take the ptl to remove the 1435 * migration entry. So the page is valid until the ptl is dropped. 1436 */ 1437 if (ptep) 1438 pte_unmap_unlock(ptep, ptl); 1439 else 1440 spin_unlock(ptl); 1441 1442 for (;;) { 1443 unsigned int flags; 1444 1445 set_current_state(TASK_UNINTERRUPTIBLE); 1446 1447 /* Loop until we've been woken or interrupted */ 1448 flags = smp_load_acquire(&wait->flags); 1449 if (!(flags & WQ_FLAG_WOKEN)) { 1450 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1451 break; 1452 1453 io_schedule(); 1454 continue; 1455 } 1456 break; 1457 } 1458 1459 finish_wait(q, wait); 1460 1461 if (thrashing) { 1462 if (delayacct) 1463 delayacct_thrashing_end(); 1464 psi_memstall_leave(&pflags); 1465 } 1466 } 1467 #endif 1468 1469 void folio_wait_bit(struct folio *folio, int bit_nr) 1470 { 1471 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1472 } 1473 EXPORT_SYMBOL(folio_wait_bit); 1474 1475 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1476 { 1477 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1478 } 1479 EXPORT_SYMBOL(folio_wait_bit_killable); 1480 1481 /** 1482 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1483 * @folio: The folio to wait for. 1484 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1485 * 1486 * The caller should hold a reference on @folio. They expect the page to 1487 * become unlocked relatively soon, but do not wish to hold up migration 1488 * (for example) by holding the reference while waiting for the folio to 1489 * come unlocked. After this function returns, the caller should not 1490 * dereference @folio. 1491 * 1492 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1493 */ 1494 int folio_put_wait_locked(struct folio *folio, int state) 1495 { 1496 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1497 } 1498 1499 /** 1500 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1501 * @folio: Folio defining the wait queue of interest 1502 * @waiter: Waiter to add to the queue 1503 * 1504 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1505 */ 1506 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1507 { 1508 wait_queue_head_t *q = folio_waitqueue(folio); 1509 unsigned long flags; 1510 1511 spin_lock_irqsave(&q->lock, flags); 1512 __add_wait_queue_entry_tail(q, waiter); 1513 folio_set_waiters(folio); 1514 spin_unlock_irqrestore(&q->lock, flags); 1515 } 1516 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1517 1518 #ifndef clear_bit_unlock_is_negative_byte 1519 1520 /* 1521 * PG_waiters is the high bit in the same byte as PG_lock. 1522 * 1523 * On x86 (and on many other architectures), we can clear PG_lock and 1524 * test the sign bit at the same time. But if the architecture does 1525 * not support that special operation, we just do this all by hand 1526 * instead. 1527 * 1528 * The read of PG_waiters has to be after (or concurrently with) PG_locked 1529 * being cleared, but a memory barrier should be unnecessary since it is 1530 * in the same byte as PG_locked. 1531 */ 1532 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem) 1533 { 1534 clear_bit_unlock(nr, mem); 1535 /* smp_mb__after_atomic(); */ 1536 return test_bit(PG_waiters, mem); 1537 } 1538 1539 #endif 1540 1541 /** 1542 * folio_unlock - Unlock a locked folio. 1543 * @folio: The folio. 1544 * 1545 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1546 * 1547 * Context: May be called from interrupt or process context. May not be 1548 * called from NMI context. 1549 */ 1550 void folio_unlock(struct folio *folio) 1551 { 1552 /* Bit 7 allows x86 to check the byte's sign bit */ 1553 BUILD_BUG_ON(PG_waiters != 7); 1554 BUILD_BUG_ON(PG_locked > 7); 1555 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1556 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0))) 1557 folio_wake_bit(folio, PG_locked); 1558 } 1559 EXPORT_SYMBOL(folio_unlock); 1560 1561 /** 1562 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1563 * @folio: The folio. 1564 * 1565 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1566 * it. The folio reference held for PG_private_2 being set is released. 1567 * 1568 * This is, for example, used when a netfs folio is being written to a local 1569 * disk cache, thereby allowing writes to the cache for the same folio to be 1570 * serialised. 1571 */ 1572 void folio_end_private_2(struct folio *folio) 1573 { 1574 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1575 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1576 folio_wake_bit(folio, PG_private_2); 1577 folio_put(folio); 1578 } 1579 EXPORT_SYMBOL(folio_end_private_2); 1580 1581 /** 1582 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1583 * @folio: The folio to wait on. 1584 * 1585 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1586 */ 1587 void folio_wait_private_2(struct folio *folio) 1588 { 1589 while (folio_test_private_2(folio)) 1590 folio_wait_bit(folio, PG_private_2); 1591 } 1592 EXPORT_SYMBOL(folio_wait_private_2); 1593 1594 /** 1595 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1596 * @folio: The folio to wait on. 1597 * 1598 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1599 * fatal signal is received by the calling task. 1600 * 1601 * Return: 1602 * - 0 if successful. 1603 * - -EINTR if a fatal signal was encountered. 1604 */ 1605 int folio_wait_private_2_killable(struct folio *folio) 1606 { 1607 int ret = 0; 1608 1609 while (folio_test_private_2(folio)) { 1610 ret = folio_wait_bit_killable(folio, PG_private_2); 1611 if (ret < 0) 1612 break; 1613 } 1614 1615 return ret; 1616 } 1617 EXPORT_SYMBOL(folio_wait_private_2_killable); 1618 1619 /** 1620 * folio_end_writeback - End writeback against a folio. 1621 * @folio: The folio. 1622 */ 1623 void folio_end_writeback(struct folio *folio) 1624 { 1625 /* 1626 * folio_test_clear_reclaim() could be used here but it is an 1627 * atomic operation and overkill in this particular case. Failing 1628 * to shuffle a folio marked for immediate reclaim is too mild 1629 * a gain to justify taking an atomic operation penalty at the 1630 * end of every folio writeback. 1631 */ 1632 if (folio_test_reclaim(folio)) { 1633 folio_clear_reclaim(folio); 1634 folio_rotate_reclaimable(folio); 1635 } 1636 1637 /* 1638 * Writeback does not hold a folio reference of its own, relying 1639 * on truncation to wait for the clearing of PG_writeback. 1640 * But here we must make sure that the folio is not freed and 1641 * reused before the folio_wake(). 1642 */ 1643 folio_get(folio); 1644 if (!__folio_end_writeback(folio)) 1645 BUG(); 1646 1647 smp_mb__after_atomic(); 1648 folio_wake(folio, PG_writeback); 1649 acct_reclaim_writeback(folio); 1650 folio_put(folio); 1651 } 1652 EXPORT_SYMBOL(folio_end_writeback); 1653 1654 /* 1655 * After completing I/O on a page, call this routine to update the page 1656 * flags appropriately 1657 */ 1658 void page_endio(struct page *page, bool is_write, int err) 1659 { 1660 if (!is_write) { 1661 if (!err) { 1662 SetPageUptodate(page); 1663 } else { 1664 ClearPageUptodate(page); 1665 SetPageError(page); 1666 } 1667 unlock_page(page); 1668 } else { 1669 if (err) { 1670 struct address_space *mapping; 1671 1672 SetPageError(page); 1673 mapping = page_mapping(page); 1674 if (mapping) 1675 mapping_set_error(mapping, err); 1676 } 1677 end_page_writeback(page); 1678 } 1679 } 1680 EXPORT_SYMBOL_GPL(page_endio); 1681 1682 /** 1683 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1684 * @folio: The folio to lock 1685 */ 1686 void __folio_lock(struct folio *folio) 1687 { 1688 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1689 EXCLUSIVE); 1690 } 1691 EXPORT_SYMBOL(__folio_lock); 1692 1693 int __folio_lock_killable(struct folio *folio) 1694 { 1695 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1696 EXCLUSIVE); 1697 } 1698 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1699 1700 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1701 { 1702 struct wait_queue_head *q = folio_waitqueue(folio); 1703 int ret = 0; 1704 1705 wait->folio = folio; 1706 wait->bit_nr = PG_locked; 1707 1708 spin_lock_irq(&q->lock); 1709 __add_wait_queue_entry_tail(q, &wait->wait); 1710 folio_set_waiters(folio); 1711 ret = !folio_trylock(folio); 1712 /* 1713 * If we were successful now, we know we're still on the 1714 * waitqueue as we're still under the lock. This means it's 1715 * safe to remove and return success, we know the callback 1716 * isn't going to trigger. 1717 */ 1718 if (!ret) 1719 __remove_wait_queue(q, &wait->wait); 1720 else 1721 ret = -EIOCBQUEUED; 1722 spin_unlock_irq(&q->lock); 1723 return ret; 1724 } 1725 1726 /* 1727 * Return values: 1728 * true - folio is locked; mmap_lock is still held. 1729 * false - folio is not locked. 1730 * mmap_lock has been released (mmap_read_unlock(), unless flags had both 1731 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 1732 * which case mmap_lock is still held. 1733 * 1734 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true 1735 * with the folio locked and the mmap_lock unperturbed. 1736 */ 1737 bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm, 1738 unsigned int flags) 1739 { 1740 if (fault_flag_allow_retry_first(flags)) { 1741 /* 1742 * CAUTION! In this case, mmap_lock is not released 1743 * even though return 0. 1744 */ 1745 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1746 return false; 1747 1748 mmap_read_unlock(mm); 1749 if (flags & FAULT_FLAG_KILLABLE) 1750 folio_wait_locked_killable(folio); 1751 else 1752 folio_wait_locked(folio); 1753 return false; 1754 } 1755 if (flags & FAULT_FLAG_KILLABLE) { 1756 bool ret; 1757 1758 ret = __folio_lock_killable(folio); 1759 if (ret) { 1760 mmap_read_unlock(mm); 1761 return false; 1762 } 1763 } else { 1764 __folio_lock(folio); 1765 } 1766 1767 return true; 1768 } 1769 1770 /** 1771 * page_cache_next_miss() - Find the next gap in the page cache. 1772 * @mapping: Mapping. 1773 * @index: Index. 1774 * @max_scan: Maximum range to search. 1775 * 1776 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1777 * gap with the lowest index. 1778 * 1779 * This function may be called under the rcu_read_lock. However, this will 1780 * not atomically search a snapshot of the cache at a single point in time. 1781 * For example, if a gap is created at index 5, then subsequently a gap is 1782 * created at index 10, page_cache_next_miss covering both indices may 1783 * return 10 if called under the rcu_read_lock. 1784 * 1785 * Return: The index of the gap if found, otherwise an index outside the 1786 * range specified (in which case 'return - index >= max_scan' will be true). 1787 * In the rare case of index wrap-around, 0 will be returned. 1788 */ 1789 pgoff_t page_cache_next_miss(struct address_space *mapping, 1790 pgoff_t index, unsigned long max_scan) 1791 { 1792 XA_STATE(xas, &mapping->i_pages, index); 1793 1794 while (max_scan--) { 1795 void *entry = xas_next(&xas); 1796 if (!entry || xa_is_value(entry)) 1797 break; 1798 if (xas.xa_index == 0) 1799 break; 1800 } 1801 1802 return xas.xa_index; 1803 } 1804 EXPORT_SYMBOL(page_cache_next_miss); 1805 1806 /** 1807 * page_cache_prev_miss() - Find the previous gap in the page cache. 1808 * @mapping: Mapping. 1809 * @index: Index. 1810 * @max_scan: Maximum range to search. 1811 * 1812 * Search the range [max(index - max_scan + 1, 0), index] for the 1813 * gap with the highest index. 1814 * 1815 * This function may be called under the rcu_read_lock. However, this will 1816 * not atomically search a snapshot of the cache at a single point in time. 1817 * For example, if a gap is created at index 10, then subsequently a gap is 1818 * created at index 5, page_cache_prev_miss() covering both indices may 1819 * return 5 if called under the rcu_read_lock. 1820 * 1821 * Return: The index of the gap if found, otherwise an index outside the 1822 * range specified (in which case 'index - return >= max_scan' will be true). 1823 * In the rare case of wrap-around, ULONG_MAX will be returned. 1824 */ 1825 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1826 pgoff_t index, unsigned long max_scan) 1827 { 1828 XA_STATE(xas, &mapping->i_pages, index); 1829 1830 while (max_scan--) { 1831 void *entry = xas_prev(&xas); 1832 if (!entry || xa_is_value(entry)) 1833 break; 1834 if (xas.xa_index == ULONG_MAX) 1835 break; 1836 } 1837 1838 return xas.xa_index; 1839 } 1840 EXPORT_SYMBOL(page_cache_prev_miss); 1841 1842 /* 1843 * Lockless page cache protocol: 1844 * On the lookup side: 1845 * 1. Load the folio from i_pages 1846 * 2. Increment the refcount if it's not zero 1847 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1848 * 1849 * On the removal side: 1850 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1851 * B. Remove the page from i_pages 1852 * C. Return the page to the page allocator 1853 * 1854 * This means that any page may have its reference count temporarily 1855 * increased by a speculative page cache (or fast GUP) lookup as it can 1856 * be allocated by another user before the RCU grace period expires. 1857 * Because the refcount temporarily acquired here may end up being the 1858 * last refcount on the page, any page allocation must be freeable by 1859 * folio_put(). 1860 */ 1861 1862 /* 1863 * mapping_get_entry - Get a page cache entry. 1864 * @mapping: the address_space to search 1865 * @index: The page cache index. 1866 * 1867 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1868 * it is returned with an increased refcount. If it is a shadow entry 1869 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1870 * it is returned without further action. 1871 * 1872 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1873 */ 1874 static void *mapping_get_entry(struct address_space *mapping, pgoff_t index) 1875 { 1876 XA_STATE(xas, &mapping->i_pages, index); 1877 struct folio *folio; 1878 1879 rcu_read_lock(); 1880 repeat: 1881 xas_reset(&xas); 1882 folio = xas_load(&xas); 1883 if (xas_retry(&xas, folio)) 1884 goto repeat; 1885 /* 1886 * A shadow entry of a recently evicted page, or a swap entry from 1887 * shmem/tmpfs. Return it without attempting to raise page count. 1888 */ 1889 if (!folio || xa_is_value(folio)) 1890 goto out; 1891 1892 if (!folio_try_get_rcu(folio)) 1893 goto repeat; 1894 1895 if (unlikely(folio != xas_reload(&xas))) { 1896 folio_put(folio); 1897 goto repeat; 1898 } 1899 out: 1900 rcu_read_unlock(); 1901 1902 return folio; 1903 } 1904 1905 /** 1906 * __filemap_get_folio - Find and get a reference to a folio. 1907 * @mapping: The address_space to search. 1908 * @index: The page index. 1909 * @fgp_flags: %FGP flags modify how the folio is returned. 1910 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1911 * 1912 * Looks up the page cache entry at @mapping & @index. 1913 * 1914 * @fgp_flags can be zero or more of these flags: 1915 * 1916 * * %FGP_ACCESSED - The folio will be marked accessed. 1917 * * %FGP_LOCK - The folio is returned locked. 1918 * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it 1919 * instead of allocating a new folio to replace it. 1920 * * %FGP_CREAT - If no page is present then a new page is allocated using 1921 * @gfp and added to the page cache and the VM's LRU list. 1922 * The page is returned locked and with an increased refcount. 1923 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the 1924 * page is already in cache. If the page was allocated, unlock it before 1925 * returning so the caller can do the same dance. 1926 * * %FGP_WRITE - The page will be written to by the caller. 1927 * * %FGP_NOFS - __GFP_FS will get cleared in gfp. 1928 * * %FGP_NOWAIT - Don't get blocked by page lock. 1929 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback) 1930 * 1931 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1932 * if the %GFP flags specified for %FGP_CREAT are atomic. 1933 * 1934 * If there is a page cache page, it is returned with an increased refcount. 1935 * 1936 * Return: The found folio or %NULL otherwise. 1937 */ 1938 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1939 int fgp_flags, gfp_t gfp) 1940 { 1941 struct folio *folio; 1942 1943 repeat: 1944 folio = mapping_get_entry(mapping, index); 1945 if (xa_is_value(folio)) { 1946 if (fgp_flags & FGP_ENTRY) 1947 return folio; 1948 folio = NULL; 1949 } 1950 if (!folio) 1951 goto no_page; 1952 1953 if (fgp_flags & FGP_LOCK) { 1954 if (fgp_flags & FGP_NOWAIT) { 1955 if (!folio_trylock(folio)) { 1956 folio_put(folio); 1957 return NULL; 1958 } 1959 } else { 1960 folio_lock(folio); 1961 } 1962 1963 /* Has the page been truncated? */ 1964 if (unlikely(folio->mapping != mapping)) { 1965 folio_unlock(folio); 1966 folio_put(folio); 1967 goto repeat; 1968 } 1969 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1970 } 1971 1972 if (fgp_flags & FGP_ACCESSED) 1973 folio_mark_accessed(folio); 1974 else if (fgp_flags & FGP_WRITE) { 1975 /* Clear idle flag for buffer write */ 1976 if (folio_test_idle(folio)) 1977 folio_clear_idle(folio); 1978 } 1979 1980 if (fgp_flags & FGP_STABLE) 1981 folio_wait_stable(folio); 1982 no_page: 1983 if (!folio && (fgp_flags & FGP_CREAT)) { 1984 int err; 1985 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1986 gfp |= __GFP_WRITE; 1987 if (fgp_flags & FGP_NOFS) 1988 gfp &= ~__GFP_FS; 1989 1990 folio = filemap_alloc_folio(gfp, 0); 1991 if (!folio) 1992 return NULL; 1993 1994 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1995 fgp_flags |= FGP_LOCK; 1996 1997 /* Init accessed so avoid atomic mark_page_accessed later */ 1998 if (fgp_flags & FGP_ACCESSED) 1999 __folio_set_referenced(folio); 2000 2001 err = filemap_add_folio(mapping, folio, index, gfp); 2002 if (unlikely(err)) { 2003 folio_put(folio); 2004 folio = NULL; 2005 if (err == -EEXIST) 2006 goto repeat; 2007 } 2008 2009 /* 2010 * filemap_add_folio locks the page, and for mmap 2011 * we expect an unlocked page. 2012 */ 2013 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2014 folio_unlock(folio); 2015 } 2016 2017 return folio; 2018 } 2019 EXPORT_SYMBOL(__filemap_get_folio); 2020 2021 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2022 xa_mark_t mark) 2023 { 2024 struct folio *folio; 2025 2026 retry: 2027 if (mark == XA_PRESENT) 2028 folio = xas_find(xas, max); 2029 else 2030 folio = xas_find_marked(xas, max, mark); 2031 2032 if (xas_retry(xas, folio)) 2033 goto retry; 2034 /* 2035 * A shadow entry of a recently evicted page, a swap 2036 * entry from shmem/tmpfs or a DAX entry. Return it 2037 * without attempting to raise page count. 2038 */ 2039 if (!folio || xa_is_value(folio)) 2040 return folio; 2041 2042 if (!folio_try_get_rcu(folio)) 2043 goto reset; 2044 2045 if (unlikely(folio != xas_reload(xas))) { 2046 folio_put(folio); 2047 goto reset; 2048 } 2049 2050 return folio; 2051 reset: 2052 xas_reset(xas); 2053 goto retry; 2054 } 2055 2056 /** 2057 * find_get_entries - gang pagecache lookup 2058 * @mapping: The address_space to search 2059 * @start: The starting page cache index 2060 * @end: The final page index (inclusive). 2061 * @fbatch: Where the resulting entries are placed. 2062 * @indices: The cache indices corresponding to the entries in @entries 2063 * 2064 * find_get_entries() will search for and return a batch of entries in 2065 * the mapping. The entries are placed in @fbatch. find_get_entries() 2066 * takes a reference on any actual folios it returns. 2067 * 2068 * The entries have ascending indexes. The indices may not be consecutive 2069 * due to not-present entries or large folios. 2070 * 2071 * Any shadow entries of evicted folios, or swap entries from 2072 * shmem/tmpfs, are included in the returned array. 2073 * 2074 * Return: The number of entries which were found. 2075 */ 2076 unsigned find_get_entries(struct address_space *mapping, pgoff_t start, 2077 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2078 { 2079 XA_STATE(xas, &mapping->i_pages, start); 2080 struct folio *folio; 2081 2082 rcu_read_lock(); 2083 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2084 indices[fbatch->nr] = xas.xa_index; 2085 if (!folio_batch_add(fbatch, folio)) 2086 break; 2087 } 2088 rcu_read_unlock(); 2089 2090 return folio_batch_count(fbatch); 2091 } 2092 2093 /** 2094 * find_lock_entries - Find a batch of pagecache entries. 2095 * @mapping: The address_space to search. 2096 * @start: The starting page cache index. 2097 * @end: The final page index (inclusive). 2098 * @fbatch: Where the resulting entries are placed. 2099 * @indices: The cache indices of the entries in @fbatch. 2100 * 2101 * find_lock_entries() will return a batch of entries from @mapping. 2102 * Swap, shadow and DAX entries are included. Folios are returned 2103 * locked and with an incremented refcount. Folios which are locked 2104 * by somebody else or under writeback are skipped. Folios which are 2105 * partially outside the range are not returned. 2106 * 2107 * The entries have ascending indexes. The indices may not be consecutive 2108 * due to not-present entries, large folios, folios which could not be 2109 * locked or folios under writeback. 2110 * 2111 * Return: The number of entries which were found. 2112 */ 2113 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start, 2114 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2115 { 2116 XA_STATE(xas, &mapping->i_pages, start); 2117 struct folio *folio; 2118 2119 rcu_read_lock(); 2120 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2121 if (!xa_is_value(folio)) { 2122 if (folio->index < start) 2123 goto put; 2124 if (folio->index + folio_nr_pages(folio) - 1 > end) 2125 goto put; 2126 if (!folio_trylock(folio)) 2127 goto put; 2128 if (folio->mapping != mapping || 2129 folio_test_writeback(folio)) 2130 goto unlock; 2131 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2132 folio); 2133 } 2134 indices[fbatch->nr] = xas.xa_index; 2135 if (!folio_batch_add(fbatch, folio)) 2136 break; 2137 continue; 2138 unlock: 2139 folio_unlock(folio); 2140 put: 2141 folio_put(folio); 2142 } 2143 rcu_read_unlock(); 2144 2145 return folio_batch_count(fbatch); 2146 } 2147 2148 static inline 2149 bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max) 2150 { 2151 if (!folio_test_large(folio) || folio_test_hugetlb(folio)) 2152 return false; 2153 if (index >= max) 2154 return false; 2155 return index < folio->index + folio_nr_pages(folio) - 1; 2156 } 2157 2158 /** 2159 * find_get_pages_range - gang pagecache lookup 2160 * @mapping: The address_space to search 2161 * @start: The starting page index 2162 * @end: The final page index (inclusive) 2163 * @nr_pages: The maximum number of pages 2164 * @pages: Where the resulting pages are placed 2165 * 2166 * find_get_pages_range() will search for and return a group of up to @nr_pages 2167 * pages in the mapping starting at index @start and up to index @end 2168 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes 2169 * a reference against the returned pages. 2170 * 2171 * The search returns a group of mapping-contiguous pages with ascending 2172 * indexes. There may be holes in the indices due to not-present pages. 2173 * We also update @start to index the next page for the traversal. 2174 * 2175 * Return: the number of pages which were found. If this number is 2176 * smaller than @nr_pages, the end of specified range has been 2177 * reached. 2178 */ 2179 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start, 2180 pgoff_t end, unsigned int nr_pages, 2181 struct page **pages) 2182 { 2183 XA_STATE(xas, &mapping->i_pages, *start); 2184 struct folio *folio; 2185 unsigned ret = 0; 2186 2187 if (unlikely(!nr_pages)) 2188 return 0; 2189 2190 rcu_read_lock(); 2191 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2192 /* Skip over shadow, swap and DAX entries */ 2193 if (xa_is_value(folio)) 2194 continue; 2195 2196 again: 2197 pages[ret] = folio_file_page(folio, xas.xa_index); 2198 if (++ret == nr_pages) { 2199 *start = xas.xa_index + 1; 2200 goto out; 2201 } 2202 if (folio_more_pages(folio, xas.xa_index, end)) { 2203 xas.xa_index++; 2204 folio_ref_inc(folio); 2205 goto again; 2206 } 2207 } 2208 2209 /* 2210 * We come here when there is no page beyond @end. We take care to not 2211 * overflow the index @start as it confuses some of the callers. This 2212 * breaks the iteration when there is a page at index -1 but that is 2213 * already broken anyway. 2214 */ 2215 if (end == (pgoff_t)-1) 2216 *start = (pgoff_t)-1; 2217 else 2218 *start = end + 1; 2219 out: 2220 rcu_read_unlock(); 2221 2222 return ret; 2223 } 2224 2225 /** 2226 * find_get_pages_contig - gang contiguous pagecache lookup 2227 * @mapping: The address_space to search 2228 * @index: The starting page index 2229 * @nr_pages: The maximum number of pages 2230 * @pages: Where the resulting pages are placed 2231 * 2232 * find_get_pages_contig() works exactly like find_get_pages(), except 2233 * that the returned number of pages are guaranteed to be contiguous. 2234 * 2235 * Return: the number of pages which were found. 2236 */ 2237 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 2238 unsigned int nr_pages, struct page **pages) 2239 { 2240 XA_STATE(xas, &mapping->i_pages, index); 2241 struct folio *folio; 2242 unsigned int ret = 0; 2243 2244 if (unlikely(!nr_pages)) 2245 return 0; 2246 2247 rcu_read_lock(); 2248 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2249 if (xas_retry(&xas, folio)) 2250 continue; 2251 /* 2252 * If the entry has been swapped out, we can stop looking. 2253 * No current caller is looking for DAX entries. 2254 */ 2255 if (xa_is_value(folio)) 2256 break; 2257 2258 if (!folio_try_get_rcu(folio)) 2259 goto retry; 2260 2261 if (unlikely(folio != xas_reload(&xas))) 2262 goto put_page; 2263 2264 again: 2265 pages[ret] = folio_file_page(folio, xas.xa_index); 2266 if (++ret == nr_pages) 2267 break; 2268 if (folio_more_pages(folio, xas.xa_index, ULONG_MAX)) { 2269 xas.xa_index++; 2270 folio_ref_inc(folio); 2271 goto again; 2272 } 2273 continue; 2274 put_page: 2275 folio_put(folio); 2276 retry: 2277 xas_reset(&xas); 2278 } 2279 rcu_read_unlock(); 2280 return ret; 2281 } 2282 EXPORT_SYMBOL(find_get_pages_contig); 2283 2284 /** 2285 * find_get_pages_range_tag - Find and return head pages matching @tag. 2286 * @mapping: the address_space to search 2287 * @index: the starting page index 2288 * @end: The final page index (inclusive) 2289 * @tag: the tag index 2290 * @nr_pages: the maximum number of pages 2291 * @pages: where the resulting pages are placed 2292 * 2293 * Like find_get_pages(), except we only return head pages which are tagged 2294 * with @tag. @index is updated to the index immediately after the last 2295 * page we return, ready for the next iteration. 2296 * 2297 * Return: the number of pages which were found. 2298 */ 2299 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index, 2300 pgoff_t end, xa_mark_t tag, unsigned int nr_pages, 2301 struct page **pages) 2302 { 2303 XA_STATE(xas, &mapping->i_pages, *index); 2304 struct folio *folio; 2305 unsigned ret = 0; 2306 2307 if (unlikely(!nr_pages)) 2308 return 0; 2309 2310 rcu_read_lock(); 2311 while ((folio = find_get_entry(&xas, end, tag))) { 2312 /* 2313 * Shadow entries should never be tagged, but this iteration 2314 * is lockless so there is a window for page reclaim to evict 2315 * a page we saw tagged. Skip over it. 2316 */ 2317 if (xa_is_value(folio)) 2318 continue; 2319 2320 pages[ret] = &folio->page; 2321 if (++ret == nr_pages) { 2322 *index = folio->index + folio_nr_pages(folio); 2323 goto out; 2324 } 2325 } 2326 2327 /* 2328 * We come here when we got to @end. We take care to not overflow the 2329 * index @index as it confuses some of the callers. This breaks the 2330 * iteration when there is a page at index -1 but that is already 2331 * broken anyway. 2332 */ 2333 if (end == (pgoff_t)-1) 2334 *index = (pgoff_t)-1; 2335 else 2336 *index = end + 1; 2337 out: 2338 rcu_read_unlock(); 2339 2340 return ret; 2341 } 2342 EXPORT_SYMBOL(find_get_pages_range_tag); 2343 2344 /* 2345 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2346 * a _large_ part of the i/o request. Imagine the worst scenario: 2347 * 2348 * ---R__________________________________________B__________ 2349 * ^ reading here ^ bad block(assume 4k) 2350 * 2351 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2352 * => failing the whole request => read(R) => read(R+1) => 2353 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2354 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2355 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2356 * 2357 * It is going insane. Fix it by quickly scaling down the readahead size. 2358 */ 2359 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2360 { 2361 ra->ra_pages /= 4; 2362 } 2363 2364 /* 2365 * filemap_get_read_batch - Get a batch of folios for read 2366 * 2367 * Get a batch of folios which represent a contiguous range of bytes in 2368 * the file. No exceptional entries will be returned. If @index is in 2369 * the middle of a folio, the entire folio will be returned. The last 2370 * folio in the batch may have the readahead flag set or the uptodate flag 2371 * clear so that the caller can take the appropriate action. 2372 */ 2373 static void filemap_get_read_batch(struct address_space *mapping, 2374 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2375 { 2376 XA_STATE(xas, &mapping->i_pages, index); 2377 struct folio *folio; 2378 2379 rcu_read_lock(); 2380 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2381 if (xas_retry(&xas, folio)) 2382 continue; 2383 if (xas.xa_index > max || xa_is_value(folio)) 2384 break; 2385 if (!folio_try_get_rcu(folio)) 2386 goto retry; 2387 2388 if (unlikely(folio != xas_reload(&xas))) 2389 goto put_folio; 2390 2391 if (!folio_batch_add(fbatch, folio)) 2392 break; 2393 if (!folio_test_uptodate(folio)) 2394 break; 2395 if (folio_test_readahead(folio)) 2396 break; 2397 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1); 2398 continue; 2399 put_folio: 2400 folio_put(folio); 2401 retry: 2402 xas_reset(&xas); 2403 } 2404 rcu_read_unlock(); 2405 } 2406 2407 static int filemap_read_folio(struct file *file, struct address_space *mapping, 2408 struct folio *folio) 2409 { 2410 int error; 2411 2412 /* 2413 * A previous I/O error may have been due to temporary failures, 2414 * eg. multipath errors. PG_error will be set again if readpage 2415 * fails. 2416 */ 2417 folio_clear_error(folio); 2418 /* Start the actual read. The read will unlock the page. */ 2419 error = mapping->a_ops->readpage(file, &folio->page); 2420 if (error) 2421 return error; 2422 2423 error = folio_wait_locked_killable(folio); 2424 if (error) 2425 return error; 2426 if (folio_test_uptodate(folio)) 2427 return 0; 2428 shrink_readahead_size_eio(&file->f_ra); 2429 return -EIO; 2430 } 2431 2432 static bool filemap_range_uptodate(struct address_space *mapping, 2433 loff_t pos, struct iov_iter *iter, struct folio *folio) 2434 { 2435 int count; 2436 2437 if (folio_test_uptodate(folio)) 2438 return true; 2439 /* pipes can't handle partially uptodate pages */ 2440 if (iov_iter_is_pipe(iter)) 2441 return false; 2442 if (!mapping->a_ops->is_partially_uptodate) 2443 return false; 2444 if (mapping->host->i_blkbits >= folio_shift(folio)) 2445 return false; 2446 2447 count = iter->count; 2448 if (folio_pos(folio) > pos) { 2449 count -= folio_pos(folio) - pos; 2450 pos = 0; 2451 } else { 2452 pos -= folio_pos(folio); 2453 } 2454 2455 return mapping->a_ops->is_partially_uptodate(&folio->page, pos, count); 2456 } 2457 2458 static int filemap_update_page(struct kiocb *iocb, 2459 struct address_space *mapping, struct iov_iter *iter, 2460 struct folio *folio) 2461 { 2462 int error; 2463 2464 if (iocb->ki_flags & IOCB_NOWAIT) { 2465 if (!filemap_invalidate_trylock_shared(mapping)) 2466 return -EAGAIN; 2467 } else { 2468 filemap_invalidate_lock_shared(mapping); 2469 } 2470 2471 if (!folio_trylock(folio)) { 2472 error = -EAGAIN; 2473 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2474 goto unlock_mapping; 2475 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2476 filemap_invalidate_unlock_shared(mapping); 2477 /* 2478 * This is where we usually end up waiting for a 2479 * previously submitted readahead to finish. 2480 */ 2481 folio_put_wait_locked(folio, TASK_KILLABLE); 2482 return AOP_TRUNCATED_PAGE; 2483 } 2484 error = __folio_lock_async(folio, iocb->ki_waitq); 2485 if (error) 2486 goto unlock_mapping; 2487 } 2488 2489 error = AOP_TRUNCATED_PAGE; 2490 if (!folio->mapping) 2491 goto unlock; 2492 2493 error = 0; 2494 if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, folio)) 2495 goto unlock; 2496 2497 error = -EAGAIN; 2498 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2499 goto unlock; 2500 2501 error = filemap_read_folio(iocb->ki_filp, mapping, folio); 2502 goto unlock_mapping; 2503 unlock: 2504 folio_unlock(folio); 2505 unlock_mapping: 2506 filemap_invalidate_unlock_shared(mapping); 2507 if (error == AOP_TRUNCATED_PAGE) 2508 folio_put(folio); 2509 return error; 2510 } 2511 2512 static int filemap_create_folio(struct file *file, 2513 struct address_space *mapping, pgoff_t index, 2514 struct folio_batch *fbatch) 2515 { 2516 struct folio *folio; 2517 int error; 2518 2519 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2520 if (!folio) 2521 return -ENOMEM; 2522 2523 /* 2524 * Protect against truncate / hole punch. Grabbing invalidate_lock 2525 * here assures we cannot instantiate and bring uptodate new 2526 * pagecache folios after evicting page cache during truncate 2527 * and before actually freeing blocks. Note that we could 2528 * release invalidate_lock after inserting the folio into 2529 * the page cache as the locked folio would then be enough to 2530 * synchronize with hole punching. But there are code paths 2531 * such as filemap_update_page() filling in partially uptodate 2532 * pages or ->readpages() that need to hold invalidate_lock 2533 * while mapping blocks for IO so let's hold the lock here as 2534 * well to keep locking rules simple. 2535 */ 2536 filemap_invalidate_lock_shared(mapping); 2537 error = filemap_add_folio(mapping, folio, index, 2538 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2539 if (error == -EEXIST) 2540 error = AOP_TRUNCATED_PAGE; 2541 if (error) 2542 goto error; 2543 2544 error = filemap_read_folio(file, mapping, folio); 2545 if (error) 2546 goto error; 2547 2548 filemap_invalidate_unlock_shared(mapping); 2549 folio_batch_add(fbatch, folio); 2550 return 0; 2551 error: 2552 filemap_invalidate_unlock_shared(mapping); 2553 folio_put(folio); 2554 return error; 2555 } 2556 2557 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2558 struct address_space *mapping, struct folio *folio, 2559 pgoff_t last_index) 2560 { 2561 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2562 2563 if (iocb->ki_flags & IOCB_NOIO) 2564 return -EAGAIN; 2565 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2566 return 0; 2567 } 2568 2569 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter, 2570 struct folio_batch *fbatch) 2571 { 2572 struct file *filp = iocb->ki_filp; 2573 struct address_space *mapping = filp->f_mapping; 2574 struct file_ra_state *ra = &filp->f_ra; 2575 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2576 pgoff_t last_index; 2577 struct folio *folio; 2578 int err = 0; 2579 2580 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE); 2581 retry: 2582 if (fatal_signal_pending(current)) 2583 return -EINTR; 2584 2585 filemap_get_read_batch(mapping, index, last_index, fbatch); 2586 if (!folio_batch_count(fbatch)) { 2587 if (iocb->ki_flags & IOCB_NOIO) 2588 return -EAGAIN; 2589 page_cache_sync_readahead(mapping, ra, filp, index, 2590 last_index - index); 2591 filemap_get_read_batch(mapping, index, last_index, fbatch); 2592 } 2593 if (!folio_batch_count(fbatch)) { 2594 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2595 return -EAGAIN; 2596 err = filemap_create_folio(filp, mapping, 2597 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2598 if (err == AOP_TRUNCATED_PAGE) 2599 goto retry; 2600 return err; 2601 } 2602 2603 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2604 if (folio_test_readahead(folio)) { 2605 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2606 if (err) 2607 goto err; 2608 } 2609 if (!folio_test_uptodate(folio)) { 2610 if ((iocb->ki_flags & IOCB_WAITQ) && 2611 folio_batch_count(fbatch) > 1) 2612 iocb->ki_flags |= IOCB_NOWAIT; 2613 err = filemap_update_page(iocb, mapping, iter, folio); 2614 if (err) 2615 goto err; 2616 } 2617 2618 return 0; 2619 err: 2620 if (err < 0) 2621 folio_put(folio); 2622 if (likely(--fbatch->nr)) 2623 return 0; 2624 if (err == AOP_TRUNCATED_PAGE) 2625 goto retry; 2626 return err; 2627 } 2628 2629 /** 2630 * filemap_read - Read data from the page cache. 2631 * @iocb: The iocb to read. 2632 * @iter: Destination for the data. 2633 * @already_read: Number of bytes already read by the caller. 2634 * 2635 * Copies data from the page cache. If the data is not currently present, 2636 * uses the readahead and readpage address_space operations to fetch it. 2637 * 2638 * Return: Total number of bytes copied, including those already read by 2639 * the caller. If an error happens before any bytes are copied, returns 2640 * a negative error number. 2641 */ 2642 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2643 ssize_t already_read) 2644 { 2645 struct file *filp = iocb->ki_filp; 2646 struct file_ra_state *ra = &filp->f_ra; 2647 struct address_space *mapping = filp->f_mapping; 2648 struct inode *inode = mapping->host; 2649 struct folio_batch fbatch; 2650 int i, error = 0; 2651 bool writably_mapped; 2652 loff_t isize, end_offset; 2653 2654 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2655 return 0; 2656 if (unlikely(!iov_iter_count(iter))) 2657 return 0; 2658 2659 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2660 folio_batch_init(&fbatch); 2661 2662 do { 2663 cond_resched(); 2664 2665 /* 2666 * If we've already successfully copied some data, then we 2667 * can no longer safely return -EIOCBQUEUED. Hence mark 2668 * an async read NOWAIT at that point. 2669 */ 2670 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2671 iocb->ki_flags |= IOCB_NOWAIT; 2672 2673 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2674 break; 2675 2676 error = filemap_get_pages(iocb, iter, &fbatch); 2677 if (error < 0) 2678 break; 2679 2680 /* 2681 * i_size must be checked after we know the pages are Uptodate. 2682 * 2683 * Checking i_size after the check allows us to calculate 2684 * the correct value for "nr", which means the zero-filled 2685 * part of the page is not copied back to userspace (unless 2686 * another truncate extends the file - this is desired though). 2687 */ 2688 isize = i_size_read(inode); 2689 if (unlikely(iocb->ki_pos >= isize)) 2690 goto put_folios; 2691 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2692 2693 /* 2694 * Once we start copying data, we don't want to be touching any 2695 * cachelines that might be contended: 2696 */ 2697 writably_mapped = mapping_writably_mapped(mapping); 2698 2699 /* 2700 * When a sequential read accesses a page several times, only 2701 * mark it as accessed the first time. 2702 */ 2703 if (iocb->ki_pos >> PAGE_SHIFT != 2704 ra->prev_pos >> PAGE_SHIFT) 2705 folio_mark_accessed(fbatch.folios[0]); 2706 2707 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2708 struct folio *folio = fbatch.folios[i]; 2709 size_t fsize = folio_size(folio); 2710 size_t offset = iocb->ki_pos & (fsize - 1); 2711 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2712 fsize - offset); 2713 size_t copied; 2714 2715 if (end_offset < folio_pos(folio)) 2716 break; 2717 if (i > 0) 2718 folio_mark_accessed(folio); 2719 /* 2720 * If users can be writing to this folio using arbitrary 2721 * virtual addresses, take care of potential aliasing 2722 * before reading the folio on the kernel side. 2723 */ 2724 if (writably_mapped) 2725 flush_dcache_folio(folio); 2726 2727 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2728 2729 already_read += copied; 2730 iocb->ki_pos += copied; 2731 ra->prev_pos = iocb->ki_pos; 2732 2733 if (copied < bytes) { 2734 error = -EFAULT; 2735 break; 2736 } 2737 } 2738 put_folios: 2739 for (i = 0; i < folio_batch_count(&fbatch); i++) 2740 folio_put(fbatch.folios[i]); 2741 folio_batch_init(&fbatch); 2742 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2743 2744 file_accessed(filp); 2745 2746 return already_read ? already_read : error; 2747 } 2748 EXPORT_SYMBOL_GPL(filemap_read); 2749 2750 /** 2751 * generic_file_read_iter - generic filesystem read routine 2752 * @iocb: kernel I/O control block 2753 * @iter: destination for the data read 2754 * 2755 * This is the "read_iter()" routine for all filesystems 2756 * that can use the page cache directly. 2757 * 2758 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2759 * be returned when no data can be read without waiting for I/O requests 2760 * to complete; it doesn't prevent readahead. 2761 * 2762 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2763 * requests shall be made for the read or for readahead. When no data 2764 * can be read, -EAGAIN shall be returned. When readahead would be 2765 * triggered, a partial, possibly empty read shall be returned. 2766 * 2767 * Return: 2768 * * number of bytes copied, even for partial reads 2769 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2770 */ 2771 ssize_t 2772 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2773 { 2774 size_t count = iov_iter_count(iter); 2775 ssize_t retval = 0; 2776 2777 if (!count) 2778 return 0; /* skip atime */ 2779 2780 if (iocb->ki_flags & IOCB_DIRECT) { 2781 struct file *file = iocb->ki_filp; 2782 struct address_space *mapping = file->f_mapping; 2783 struct inode *inode = mapping->host; 2784 2785 if (iocb->ki_flags & IOCB_NOWAIT) { 2786 if (filemap_range_needs_writeback(mapping, iocb->ki_pos, 2787 iocb->ki_pos + count - 1)) 2788 return -EAGAIN; 2789 } else { 2790 retval = filemap_write_and_wait_range(mapping, 2791 iocb->ki_pos, 2792 iocb->ki_pos + count - 1); 2793 if (retval < 0) 2794 return retval; 2795 } 2796 2797 file_accessed(file); 2798 2799 retval = mapping->a_ops->direct_IO(iocb, iter); 2800 if (retval >= 0) { 2801 iocb->ki_pos += retval; 2802 count -= retval; 2803 } 2804 if (retval != -EIOCBQUEUED) 2805 iov_iter_revert(iter, count - iov_iter_count(iter)); 2806 2807 /* 2808 * Btrfs can have a short DIO read if we encounter 2809 * compressed extents, so if there was an error, or if 2810 * we've already read everything we wanted to, or if 2811 * there was a short read because we hit EOF, go ahead 2812 * and return. Otherwise fallthrough to buffered io for 2813 * the rest of the read. Buffered reads will not work for 2814 * DAX files, so don't bother trying. 2815 */ 2816 if (retval < 0 || !count || IS_DAX(inode)) 2817 return retval; 2818 if (iocb->ki_pos >= i_size_read(inode)) 2819 return retval; 2820 } 2821 2822 return filemap_read(iocb, iter, retval); 2823 } 2824 EXPORT_SYMBOL(generic_file_read_iter); 2825 2826 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2827 struct address_space *mapping, struct folio *folio, 2828 loff_t start, loff_t end, bool seek_data) 2829 { 2830 const struct address_space_operations *ops = mapping->a_ops; 2831 size_t offset, bsz = i_blocksize(mapping->host); 2832 2833 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2834 return seek_data ? start : end; 2835 if (!ops->is_partially_uptodate) 2836 return seek_data ? end : start; 2837 2838 xas_pause(xas); 2839 rcu_read_unlock(); 2840 folio_lock(folio); 2841 if (unlikely(folio->mapping != mapping)) 2842 goto unlock; 2843 2844 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2845 2846 do { 2847 if (ops->is_partially_uptodate(&folio->page, offset, bsz) == 2848 seek_data) 2849 break; 2850 start = (start + bsz) & ~(bsz - 1); 2851 offset += bsz; 2852 } while (offset < folio_size(folio)); 2853 unlock: 2854 folio_unlock(folio); 2855 rcu_read_lock(); 2856 return start; 2857 } 2858 2859 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2860 { 2861 if (xa_is_value(folio)) 2862 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2863 return folio_size(folio); 2864 } 2865 2866 /** 2867 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2868 * @mapping: Address space to search. 2869 * @start: First byte to consider. 2870 * @end: Limit of search (exclusive). 2871 * @whence: Either SEEK_HOLE or SEEK_DATA. 2872 * 2873 * If the page cache knows which blocks contain holes and which blocks 2874 * contain data, your filesystem can use this function to implement 2875 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2876 * entirely memory-based such as tmpfs, and filesystems which support 2877 * unwritten extents. 2878 * 2879 * Return: The requested offset on success, or -ENXIO if @whence specifies 2880 * SEEK_DATA and there is no data after @start. There is an implicit hole 2881 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2882 * and @end contain data. 2883 */ 2884 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2885 loff_t end, int whence) 2886 { 2887 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2888 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2889 bool seek_data = (whence == SEEK_DATA); 2890 struct folio *folio; 2891 2892 if (end <= start) 2893 return -ENXIO; 2894 2895 rcu_read_lock(); 2896 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 2897 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 2898 size_t seek_size; 2899 2900 if (start < pos) { 2901 if (!seek_data) 2902 goto unlock; 2903 start = pos; 2904 } 2905 2906 seek_size = seek_folio_size(&xas, folio); 2907 pos = round_up((u64)pos + 1, seek_size); 2908 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 2909 seek_data); 2910 if (start < pos) 2911 goto unlock; 2912 if (start >= end) 2913 break; 2914 if (seek_size > PAGE_SIZE) 2915 xas_set(&xas, pos >> PAGE_SHIFT); 2916 if (!xa_is_value(folio)) 2917 folio_put(folio); 2918 } 2919 if (seek_data) 2920 start = -ENXIO; 2921 unlock: 2922 rcu_read_unlock(); 2923 if (folio && !xa_is_value(folio)) 2924 folio_put(folio); 2925 if (start > end) 2926 return end; 2927 return start; 2928 } 2929 2930 #ifdef CONFIG_MMU 2931 #define MMAP_LOTSAMISS (100) 2932 /* 2933 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 2934 * @vmf - the vm_fault for this fault. 2935 * @folio - the folio to lock. 2936 * @fpin - the pointer to the file we may pin (or is already pinned). 2937 * 2938 * This works similar to lock_folio_or_retry in that it can drop the 2939 * mmap_lock. It differs in that it actually returns the folio locked 2940 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 2941 * to drop the mmap_lock then fpin will point to the pinned file and 2942 * needs to be fput()'ed at a later point. 2943 */ 2944 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 2945 struct file **fpin) 2946 { 2947 if (folio_trylock(folio)) 2948 return 1; 2949 2950 /* 2951 * NOTE! This will make us return with VM_FAULT_RETRY, but with 2952 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 2953 * is supposed to work. We have way too many special cases.. 2954 */ 2955 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 2956 return 0; 2957 2958 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 2959 if (vmf->flags & FAULT_FLAG_KILLABLE) { 2960 if (__folio_lock_killable(folio)) { 2961 /* 2962 * We didn't have the right flags to drop the mmap_lock, 2963 * but all fault_handlers only check for fatal signals 2964 * if we return VM_FAULT_RETRY, so we need to drop the 2965 * mmap_lock here and return 0 if we don't have a fpin. 2966 */ 2967 if (*fpin == NULL) 2968 mmap_read_unlock(vmf->vma->vm_mm); 2969 return 0; 2970 } 2971 } else 2972 __folio_lock(folio); 2973 2974 return 1; 2975 } 2976 2977 /* 2978 * Synchronous readahead happens when we don't even find a page in the page 2979 * cache at all. We don't want to perform IO under the mmap sem, so if we have 2980 * to drop the mmap sem we return the file that was pinned in order for us to do 2981 * that. If we didn't pin a file then we return NULL. The file that is 2982 * returned needs to be fput()'ed when we're done with it. 2983 */ 2984 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 2985 { 2986 struct file *file = vmf->vma->vm_file; 2987 struct file_ra_state *ra = &file->f_ra; 2988 struct address_space *mapping = file->f_mapping; 2989 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 2990 struct file *fpin = NULL; 2991 unsigned int mmap_miss; 2992 2993 /* If we don't want any read-ahead, don't bother */ 2994 if (vmf->vma->vm_flags & VM_RAND_READ) 2995 return fpin; 2996 if (!ra->ra_pages) 2997 return fpin; 2998 2999 if (vmf->vma->vm_flags & VM_SEQ_READ) { 3000 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3001 page_cache_sync_ra(&ractl, ra->ra_pages); 3002 return fpin; 3003 } 3004 3005 /* Avoid banging the cache line if not needed */ 3006 mmap_miss = READ_ONCE(ra->mmap_miss); 3007 if (mmap_miss < MMAP_LOTSAMISS * 10) 3008 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3009 3010 /* 3011 * Do we miss much more than hit in this file? If so, 3012 * stop bothering with read-ahead. It will only hurt. 3013 */ 3014 if (mmap_miss > MMAP_LOTSAMISS) 3015 return fpin; 3016 3017 /* 3018 * mmap read-around 3019 */ 3020 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3021 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3022 ra->size = ra->ra_pages; 3023 ra->async_size = ra->ra_pages / 4; 3024 ractl._index = ra->start; 3025 do_page_cache_ra(&ractl, ra->size, ra->async_size); 3026 return fpin; 3027 } 3028 3029 /* 3030 * Asynchronous readahead happens when we find the page and PG_readahead, 3031 * so we want to possibly extend the readahead further. We return the file that 3032 * was pinned if we have to drop the mmap_lock in order to do IO. 3033 */ 3034 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3035 struct folio *folio) 3036 { 3037 struct file *file = vmf->vma->vm_file; 3038 struct file_ra_state *ra = &file->f_ra; 3039 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3040 struct file *fpin = NULL; 3041 unsigned int mmap_miss; 3042 3043 /* If we don't want any read-ahead, don't bother */ 3044 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3045 return fpin; 3046 3047 mmap_miss = READ_ONCE(ra->mmap_miss); 3048 if (mmap_miss) 3049 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3050 3051 if (folio_test_readahead(folio)) { 3052 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3053 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3054 } 3055 return fpin; 3056 } 3057 3058 /** 3059 * filemap_fault - read in file data for page fault handling 3060 * @vmf: struct vm_fault containing details of the fault 3061 * 3062 * filemap_fault() is invoked via the vma operations vector for a 3063 * mapped memory region to read in file data during a page fault. 3064 * 3065 * The goto's are kind of ugly, but this streamlines the normal case of having 3066 * it in the page cache, and handles the special cases reasonably without 3067 * having a lot of duplicated code. 3068 * 3069 * vma->vm_mm->mmap_lock must be held on entry. 3070 * 3071 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3072 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3073 * 3074 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3075 * has not been released. 3076 * 3077 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3078 * 3079 * Return: bitwise-OR of %VM_FAULT_ codes. 3080 */ 3081 vm_fault_t filemap_fault(struct vm_fault *vmf) 3082 { 3083 int error; 3084 struct file *file = vmf->vma->vm_file; 3085 struct file *fpin = NULL; 3086 struct address_space *mapping = file->f_mapping; 3087 struct inode *inode = mapping->host; 3088 pgoff_t max_idx, index = vmf->pgoff; 3089 struct folio *folio; 3090 vm_fault_t ret = 0; 3091 bool mapping_locked = false; 3092 3093 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3094 if (unlikely(index >= max_idx)) 3095 return VM_FAULT_SIGBUS; 3096 3097 /* 3098 * Do we have something in the page cache already? 3099 */ 3100 folio = filemap_get_folio(mapping, index); 3101 if (likely(folio)) { 3102 /* 3103 * We found the page, so try async readahead before waiting for 3104 * the lock. 3105 */ 3106 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3107 fpin = do_async_mmap_readahead(vmf, folio); 3108 if (unlikely(!folio_test_uptodate(folio))) { 3109 filemap_invalidate_lock_shared(mapping); 3110 mapping_locked = true; 3111 } 3112 } else { 3113 /* No page in the page cache at all */ 3114 count_vm_event(PGMAJFAULT); 3115 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3116 ret = VM_FAULT_MAJOR; 3117 fpin = do_sync_mmap_readahead(vmf); 3118 retry_find: 3119 /* 3120 * See comment in filemap_create_folio() why we need 3121 * invalidate_lock 3122 */ 3123 if (!mapping_locked) { 3124 filemap_invalidate_lock_shared(mapping); 3125 mapping_locked = true; 3126 } 3127 folio = __filemap_get_folio(mapping, index, 3128 FGP_CREAT|FGP_FOR_MMAP, 3129 vmf->gfp_mask); 3130 if (!folio) { 3131 if (fpin) 3132 goto out_retry; 3133 filemap_invalidate_unlock_shared(mapping); 3134 return VM_FAULT_OOM; 3135 } 3136 } 3137 3138 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3139 goto out_retry; 3140 3141 /* Did it get truncated? */ 3142 if (unlikely(folio->mapping != mapping)) { 3143 folio_unlock(folio); 3144 folio_put(folio); 3145 goto retry_find; 3146 } 3147 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3148 3149 /* 3150 * We have a locked page in the page cache, now we need to check 3151 * that it's up-to-date. If not, it is going to be due to an error. 3152 */ 3153 if (unlikely(!folio_test_uptodate(folio))) { 3154 /* 3155 * The page was in cache and uptodate and now it is not. 3156 * Strange but possible since we didn't hold the page lock all 3157 * the time. Let's drop everything get the invalidate lock and 3158 * try again. 3159 */ 3160 if (!mapping_locked) { 3161 folio_unlock(folio); 3162 folio_put(folio); 3163 goto retry_find; 3164 } 3165 goto page_not_uptodate; 3166 } 3167 3168 /* 3169 * We've made it this far and we had to drop our mmap_lock, now is the 3170 * time to return to the upper layer and have it re-find the vma and 3171 * redo the fault. 3172 */ 3173 if (fpin) { 3174 folio_unlock(folio); 3175 goto out_retry; 3176 } 3177 if (mapping_locked) 3178 filemap_invalidate_unlock_shared(mapping); 3179 3180 /* 3181 * Found the page and have a reference on it. 3182 * We must recheck i_size under page lock. 3183 */ 3184 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3185 if (unlikely(index >= max_idx)) { 3186 folio_unlock(folio); 3187 folio_put(folio); 3188 return VM_FAULT_SIGBUS; 3189 } 3190 3191 vmf->page = folio_file_page(folio, index); 3192 return ret | VM_FAULT_LOCKED; 3193 3194 page_not_uptodate: 3195 /* 3196 * Umm, take care of errors if the page isn't up-to-date. 3197 * Try to re-read it _once_. We do this synchronously, 3198 * because there really aren't any performance issues here 3199 * and we need to check for errors. 3200 */ 3201 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3202 error = filemap_read_folio(file, mapping, folio); 3203 if (fpin) 3204 goto out_retry; 3205 folio_put(folio); 3206 3207 if (!error || error == AOP_TRUNCATED_PAGE) 3208 goto retry_find; 3209 filemap_invalidate_unlock_shared(mapping); 3210 3211 return VM_FAULT_SIGBUS; 3212 3213 out_retry: 3214 /* 3215 * We dropped the mmap_lock, we need to return to the fault handler to 3216 * re-find the vma and come back and find our hopefully still populated 3217 * page. 3218 */ 3219 if (folio) 3220 folio_put(folio); 3221 if (mapping_locked) 3222 filemap_invalidate_unlock_shared(mapping); 3223 if (fpin) 3224 fput(fpin); 3225 return ret | VM_FAULT_RETRY; 3226 } 3227 EXPORT_SYMBOL(filemap_fault); 3228 3229 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page) 3230 { 3231 struct mm_struct *mm = vmf->vma->vm_mm; 3232 3233 /* Huge page is mapped? No need to proceed. */ 3234 if (pmd_trans_huge(*vmf->pmd)) { 3235 unlock_page(page); 3236 put_page(page); 3237 return true; 3238 } 3239 3240 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) { 3241 vm_fault_t ret = do_set_pmd(vmf, page); 3242 if (!ret) { 3243 /* The page is mapped successfully, reference consumed. */ 3244 unlock_page(page); 3245 return true; 3246 } 3247 } 3248 3249 if (pmd_none(*vmf->pmd)) 3250 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3251 3252 /* See comment in handle_pte_fault() */ 3253 if (pmd_devmap_trans_unstable(vmf->pmd)) { 3254 unlock_page(page); 3255 put_page(page); 3256 return true; 3257 } 3258 3259 return false; 3260 } 3261 3262 static struct folio *next_uptodate_page(struct folio *folio, 3263 struct address_space *mapping, 3264 struct xa_state *xas, pgoff_t end_pgoff) 3265 { 3266 unsigned long max_idx; 3267 3268 do { 3269 if (!folio) 3270 return NULL; 3271 if (xas_retry(xas, folio)) 3272 continue; 3273 if (xa_is_value(folio)) 3274 continue; 3275 if (folio_test_locked(folio)) 3276 continue; 3277 if (!folio_try_get_rcu(folio)) 3278 continue; 3279 /* Has the page moved or been split? */ 3280 if (unlikely(folio != xas_reload(xas))) 3281 goto skip; 3282 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3283 goto skip; 3284 if (!folio_trylock(folio)) 3285 goto skip; 3286 if (folio->mapping != mapping) 3287 goto unlock; 3288 if (!folio_test_uptodate(folio)) 3289 goto unlock; 3290 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3291 if (xas->xa_index >= max_idx) 3292 goto unlock; 3293 return folio; 3294 unlock: 3295 folio_unlock(folio); 3296 skip: 3297 folio_put(folio); 3298 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3299 3300 return NULL; 3301 } 3302 3303 static inline struct folio *first_map_page(struct address_space *mapping, 3304 struct xa_state *xas, 3305 pgoff_t end_pgoff) 3306 { 3307 return next_uptodate_page(xas_find(xas, end_pgoff), 3308 mapping, xas, end_pgoff); 3309 } 3310 3311 static inline struct folio *next_map_page(struct address_space *mapping, 3312 struct xa_state *xas, 3313 pgoff_t end_pgoff) 3314 { 3315 return next_uptodate_page(xas_next_entry(xas, end_pgoff), 3316 mapping, xas, end_pgoff); 3317 } 3318 3319 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3320 pgoff_t start_pgoff, pgoff_t end_pgoff) 3321 { 3322 struct vm_area_struct *vma = vmf->vma; 3323 struct file *file = vma->vm_file; 3324 struct address_space *mapping = file->f_mapping; 3325 pgoff_t last_pgoff = start_pgoff; 3326 unsigned long addr; 3327 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3328 struct folio *folio; 3329 struct page *page; 3330 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss); 3331 vm_fault_t ret = 0; 3332 3333 rcu_read_lock(); 3334 folio = first_map_page(mapping, &xas, end_pgoff); 3335 if (!folio) 3336 goto out; 3337 3338 if (filemap_map_pmd(vmf, &folio->page)) { 3339 ret = VM_FAULT_NOPAGE; 3340 goto out; 3341 } 3342 3343 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3344 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3345 do { 3346 again: 3347 page = folio_file_page(folio, xas.xa_index); 3348 if (PageHWPoison(page)) 3349 goto unlock; 3350 3351 if (mmap_miss > 0) 3352 mmap_miss--; 3353 3354 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3355 vmf->pte += xas.xa_index - last_pgoff; 3356 last_pgoff = xas.xa_index; 3357 3358 if (!pte_none(*vmf->pte)) 3359 goto unlock; 3360 3361 /* We're about to handle the fault */ 3362 if (vmf->address == addr) 3363 ret = VM_FAULT_NOPAGE; 3364 3365 do_set_pte(vmf, page, addr); 3366 /* no need to invalidate: a not-present page won't be cached */ 3367 update_mmu_cache(vma, addr, vmf->pte); 3368 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3369 xas.xa_index++; 3370 folio_ref_inc(folio); 3371 goto again; 3372 } 3373 folio_unlock(folio); 3374 continue; 3375 unlock: 3376 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) { 3377 xas.xa_index++; 3378 goto again; 3379 } 3380 folio_unlock(folio); 3381 folio_put(folio); 3382 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL); 3383 pte_unmap_unlock(vmf->pte, vmf->ptl); 3384 out: 3385 rcu_read_unlock(); 3386 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss); 3387 return ret; 3388 } 3389 EXPORT_SYMBOL(filemap_map_pages); 3390 3391 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3392 { 3393 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3394 struct folio *folio = page_folio(vmf->page); 3395 vm_fault_t ret = VM_FAULT_LOCKED; 3396 3397 sb_start_pagefault(mapping->host->i_sb); 3398 file_update_time(vmf->vma->vm_file); 3399 folio_lock(folio); 3400 if (folio->mapping != mapping) { 3401 folio_unlock(folio); 3402 ret = VM_FAULT_NOPAGE; 3403 goto out; 3404 } 3405 /* 3406 * We mark the folio dirty already here so that when freeze is in 3407 * progress, we are guaranteed that writeback during freezing will 3408 * see the dirty folio and writeprotect it again. 3409 */ 3410 folio_mark_dirty(folio); 3411 folio_wait_stable(folio); 3412 out: 3413 sb_end_pagefault(mapping->host->i_sb); 3414 return ret; 3415 } 3416 3417 const struct vm_operations_struct generic_file_vm_ops = { 3418 .fault = filemap_fault, 3419 .map_pages = filemap_map_pages, 3420 .page_mkwrite = filemap_page_mkwrite, 3421 }; 3422 3423 /* This is used for a general mmap of a disk file */ 3424 3425 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3426 { 3427 struct address_space *mapping = file->f_mapping; 3428 3429 if (!mapping->a_ops->readpage) 3430 return -ENOEXEC; 3431 file_accessed(file); 3432 vma->vm_ops = &generic_file_vm_ops; 3433 return 0; 3434 } 3435 3436 /* 3437 * This is for filesystems which do not implement ->writepage. 3438 */ 3439 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3440 { 3441 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 3442 return -EINVAL; 3443 return generic_file_mmap(file, vma); 3444 } 3445 #else 3446 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3447 { 3448 return VM_FAULT_SIGBUS; 3449 } 3450 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3451 { 3452 return -ENOSYS; 3453 } 3454 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3455 { 3456 return -ENOSYS; 3457 } 3458 #endif /* CONFIG_MMU */ 3459 3460 EXPORT_SYMBOL(filemap_page_mkwrite); 3461 EXPORT_SYMBOL(generic_file_mmap); 3462 EXPORT_SYMBOL(generic_file_readonly_mmap); 3463 3464 static struct folio *do_read_cache_folio(struct address_space *mapping, 3465 pgoff_t index, filler_t filler, void *data, gfp_t gfp) 3466 { 3467 struct folio *folio; 3468 int err; 3469 repeat: 3470 folio = filemap_get_folio(mapping, index); 3471 if (!folio) { 3472 folio = filemap_alloc_folio(gfp, 0); 3473 if (!folio) 3474 return ERR_PTR(-ENOMEM); 3475 err = filemap_add_folio(mapping, folio, index, gfp); 3476 if (unlikely(err)) { 3477 folio_put(folio); 3478 if (err == -EEXIST) 3479 goto repeat; 3480 /* Presumably ENOMEM for xarray node */ 3481 return ERR_PTR(err); 3482 } 3483 3484 filler: 3485 if (filler) 3486 err = filler(data, &folio->page); 3487 else 3488 err = mapping->a_ops->readpage(data, &folio->page); 3489 3490 if (err < 0) { 3491 folio_put(folio); 3492 return ERR_PTR(err); 3493 } 3494 3495 folio_wait_locked(folio); 3496 if (!folio_test_uptodate(folio)) { 3497 folio_put(folio); 3498 return ERR_PTR(-EIO); 3499 } 3500 3501 goto out; 3502 } 3503 if (folio_test_uptodate(folio)) 3504 goto out; 3505 3506 if (!folio_trylock(folio)) { 3507 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3508 goto repeat; 3509 } 3510 3511 /* Folio was truncated from mapping */ 3512 if (!folio->mapping) { 3513 folio_unlock(folio); 3514 folio_put(folio); 3515 goto repeat; 3516 } 3517 3518 /* Someone else locked and filled the page in a very small window */ 3519 if (folio_test_uptodate(folio)) { 3520 folio_unlock(folio); 3521 goto out; 3522 } 3523 3524 /* 3525 * A previous I/O error may have been due to temporary 3526 * failures. 3527 * Clear page error before actual read, PG_error will be 3528 * set again if read page fails. 3529 */ 3530 folio_clear_error(folio); 3531 goto filler; 3532 3533 out: 3534 folio_mark_accessed(folio); 3535 return folio; 3536 } 3537 3538 /** 3539 * read_cache_folio - read into page cache, fill it if needed 3540 * @mapping: the page's address_space 3541 * @index: the page index 3542 * @filler: function to perform the read 3543 * @data: first arg to filler(data, page) function, often left as NULL 3544 * 3545 * Read into the page cache. If a page already exists, and PageUptodate() is 3546 * not set, try to fill the page and wait for it to become unlocked. 3547 * 3548 * If the page does not get brought uptodate, return -EIO. 3549 * 3550 * The function expects mapping->invalidate_lock to be already held. 3551 * 3552 * Return: up to date page on success, ERR_PTR() on failure. 3553 */ 3554 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3555 filler_t filler, void *data) 3556 { 3557 return do_read_cache_folio(mapping, index, filler, data, 3558 mapping_gfp_mask(mapping)); 3559 } 3560 EXPORT_SYMBOL(read_cache_folio); 3561 3562 static struct page *do_read_cache_page(struct address_space *mapping, 3563 pgoff_t index, filler_t *filler, void *data, gfp_t gfp) 3564 { 3565 struct folio *folio; 3566 3567 folio = do_read_cache_folio(mapping, index, filler, data, gfp); 3568 if (IS_ERR(folio)) 3569 return &folio->page; 3570 return folio_file_page(folio, index); 3571 } 3572 3573 struct page *read_cache_page(struct address_space *mapping, 3574 pgoff_t index, filler_t *filler, void *data) 3575 { 3576 return do_read_cache_page(mapping, index, filler, data, 3577 mapping_gfp_mask(mapping)); 3578 } 3579 EXPORT_SYMBOL(read_cache_page); 3580 3581 /** 3582 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3583 * @mapping: the page's address_space 3584 * @index: the page index 3585 * @gfp: the page allocator flags to use if allocating 3586 * 3587 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3588 * any new page allocations done using the specified allocation flags. 3589 * 3590 * If the page does not get brought uptodate, return -EIO. 3591 * 3592 * The function expects mapping->invalidate_lock to be already held. 3593 * 3594 * Return: up to date page on success, ERR_PTR() on failure. 3595 */ 3596 struct page *read_cache_page_gfp(struct address_space *mapping, 3597 pgoff_t index, 3598 gfp_t gfp) 3599 { 3600 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3601 } 3602 EXPORT_SYMBOL(read_cache_page_gfp); 3603 3604 int pagecache_write_begin(struct file *file, struct address_space *mapping, 3605 loff_t pos, unsigned len, unsigned flags, 3606 struct page **pagep, void **fsdata) 3607 { 3608 const struct address_space_operations *aops = mapping->a_ops; 3609 3610 return aops->write_begin(file, mapping, pos, len, flags, 3611 pagep, fsdata); 3612 } 3613 EXPORT_SYMBOL(pagecache_write_begin); 3614 3615 int pagecache_write_end(struct file *file, struct address_space *mapping, 3616 loff_t pos, unsigned len, unsigned copied, 3617 struct page *page, void *fsdata) 3618 { 3619 const struct address_space_operations *aops = mapping->a_ops; 3620 3621 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 3622 } 3623 EXPORT_SYMBOL(pagecache_write_end); 3624 3625 /* 3626 * Warn about a page cache invalidation failure during a direct I/O write. 3627 */ 3628 void dio_warn_stale_pagecache(struct file *filp) 3629 { 3630 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3631 char pathname[128]; 3632 char *path; 3633 3634 errseq_set(&filp->f_mapping->wb_err, -EIO); 3635 if (__ratelimit(&_rs)) { 3636 path = file_path(filp, pathname, sizeof(pathname)); 3637 if (IS_ERR(path)) 3638 path = "(unknown)"; 3639 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3640 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3641 current->comm); 3642 } 3643 } 3644 3645 ssize_t 3646 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3647 { 3648 struct file *file = iocb->ki_filp; 3649 struct address_space *mapping = file->f_mapping; 3650 struct inode *inode = mapping->host; 3651 loff_t pos = iocb->ki_pos; 3652 ssize_t written; 3653 size_t write_len; 3654 pgoff_t end; 3655 3656 write_len = iov_iter_count(from); 3657 end = (pos + write_len - 1) >> PAGE_SHIFT; 3658 3659 if (iocb->ki_flags & IOCB_NOWAIT) { 3660 /* If there are pages to writeback, return */ 3661 if (filemap_range_has_page(file->f_mapping, pos, 3662 pos + write_len - 1)) 3663 return -EAGAIN; 3664 } else { 3665 written = filemap_write_and_wait_range(mapping, pos, 3666 pos + write_len - 1); 3667 if (written) 3668 goto out; 3669 } 3670 3671 /* 3672 * After a write we want buffered reads to be sure to go to disk to get 3673 * the new data. We invalidate clean cached page from the region we're 3674 * about to write. We do this *before* the write so that we can return 3675 * without clobbering -EIOCBQUEUED from ->direct_IO(). 3676 */ 3677 written = invalidate_inode_pages2_range(mapping, 3678 pos >> PAGE_SHIFT, end); 3679 /* 3680 * If a page can not be invalidated, return 0 to fall back 3681 * to buffered write. 3682 */ 3683 if (written) { 3684 if (written == -EBUSY) 3685 return 0; 3686 goto out; 3687 } 3688 3689 written = mapping->a_ops->direct_IO(iocb, from); 3690 3691 /* 3692 * Finally, try again to invalidate clean pages which might have been 3693 * cached by non-direct readahead, or faulted in by get_user_pages() 3694 * if the source of the write was an mmap'ed region of the file 3695 * we're writing. Either one is a pretty crazy thing to do, 3696 * so we don't support it 100%. If this invalidation 3697 * fails, tough, the write still worked... 3698 * 3699 * Most of the time we do not need this since dio_complete() will do 3700 * the invalidation for us. However there are some file systems that 3701 * do not end up with dio_complete() being called, so let's not break 3702 * them by removing it completely. 3703 * 3704 * Noticeable example is a blkdev_direct_IO(). 3705 * 3706 * Skip invalidation for async writes or if mapping has no pages. 3707 */ 3708 if (written > 0 && mapping->nrpages && 3709 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end)) 3710 dio_warn_stale_pagecache(file); 3711 3712 if (written > 0) { 3713 pos += written; 3714 write_len -= written; 3715 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3716 i_size_write(inode, pos); 3717 mark_inode_dirty(inode); 3718 } 3719 iocb->ki_pos = pos; 3720 } 3721 if (written != -EIOCBQUEUED) 3722 iov_iter_revert(from, write_len - iov_iter_count(from)); 3723 out: 3724 return written; 3725 } 3726 EXPORT_SYMBOL(generic_file_direct_write); 3727 3728 ssize_t generic_perform_write(struct file *file, 3729 struct iov_iter *i, loff_t pos) 3730 { 3731 struct address_space *mapping = file->f_mapping; 3732 const struct address_space_operations *a_ops = mapping->a_ops; 3733 long status = 0; 3734 ssize_t written = 0; 3735 unsigned int flags = 0; 3736 3737 do { 3738 struct page *page; 3739 unsigned long offset; /* Offset into pagecache page */ 3740 unsigned long bytes; /* Bytes to write to page */ 3741 size_t copied; /* Bytes copied from user */ 3742 void *fsdata; 3743 3744 offset = (pos & (PAGE_SIZE - 1)); 3745 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3746 iov_iter_count(i)); 3747 3748 again: 3749 /* 3750 * Bring in the user page that we will copy from _first_. 3751 * Otherwise there's a nasty deadlock on copying from the 3752 * same page as we're writing to, without it being marked 3753 * up-to-date. 3754 */ 3755 if (unlikely(fault_in_iov_iter_readable(i, bytes))) { 3756 status = -EFAULT; 3757 break; 3758 } 3759 3760 if (fatal_signal_pending(current)) { 3761 status = -EINTR; 3762 break; 3763 } 3764 3765 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 3766 &page, &fsdata); 3767 if (unlikely(status < 0)) 3768 break; 3769 3770 if (mapping_writably_mapped(mapping)) 3771 flush_dcache_page(page); 3772 3773 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3774 flush_dcache_page(page); 3775 3776 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3777 page, fsdata); 3778 if (unlikely(status != copied)) { 3779 iov_iter_revert(i, copied - max(status, 0L)); 3780 if (unlikely(status < 0)) 3781 break; 3782 } 3783 cond_resched(); 3784 3785 if (unlikely(status == 0)) { 3786 /* 3787 * A short copy made ->write_end() reject the 3788 * thing entirely. Might be memory poisoning 3789 * halfway through, might be a race with munmap, 3790 * might be severe memory pressure. 3791 */ 3792 if (copied) 3793 bytes = copied; 3794 goto again; 3795 } 3796 pos += status; 3797 written += status; 3798 3799 balance_dirty_pages_ratelimited(mapping); 3800 } while (iov_iter_count(i)); 3801 3802 return written ? written : status; 3803 } 3804 EXPORT_SYMBOL(generic_perform_write); 3805 3806 /** 3807 * __generic_file_write_iter - write data to a file 3808 * @iocb: IO state structure (file, offset, etc.) 3809 * @from: iov_iter with data to write 3810 * 3811 * This function does all the work needed for actually writing data to a 3812 * file. It does all basic checks, removes SUID from the file, updates 3813 * modification times and calls proper subroutines depending on whether we 3814 * do direct IO or a standard buffered write. 3815 * 3816 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3817 * object which does not need locking at all. 3818 * 3819 * This function does *not* take care of syncing data in case of O_SYNC write. 3820 * A caller has to handle it. This is mainly due to the fact that we want to 3821 * avoid syncing under i_rwsem. 3822 * 3823 * Return: 3824 * * number of bytes written, even for truncated writes 3825 * * negative error code if no data has been written at all 3826 */ 3827 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3828 { 3829 struct file *file = iocb->ki_filp; 3830 struct address_space *mapping = file->f_mapping; 3831 struct inode *inode = mapping->host; 3832 ssize_t written = 0; 3833 ssize_t err; 3834 ssize_t status; 3835 3836 /* We can write back this queue in page reclaim */ 3837 current->backing_dev_info = inode_to_bdi(inode); 3838 err = file_remove_privs(file); 3839 if (err) 3840 goto out; 3841 3842 err = file_update_time(file); 3843 if (err) 3844 goto out; 3845 3846 if (iocb->ki_flags & IOCB_DIRECT) { 3847 loff_t pos, endbyte; 3848 3849 written = generic_file_direct_write(iocb, from); 3850 /* 3851 * If the write stopped short of completing, fall back to 3852 * buffered writes. Some filesystems do this for writes to 3853 * holes, for example. For DAX files, a buffered write will 3854 * not succeed (even if it did, DAX does not handle dirty 3855 * page-cache pages correctly). 3856 */ 3857 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 3858 goto out; 3859 3860 status = generic_perform_write(file, from, pos = iocb->ki_pos); 3861 /* 3862 * If generic_perform_write() returned a synchronous error 3863 * then we want to return the number of bytes which were 3864 * direct-written, or the error code if that was zero. Note 3865 * that this differs from normal direct-io semantics, which 3866 * will return -EFOO even if some bytes were written. 3867 */ 3868 if (unlikely(status < 0)) { 3869 err = status; 3870 goto out; 3871 } 3872 /* 3873 * We need to ensure that the page cache pages are written to 3874 * disk and invalidated to preserve the expected O_DIRECT 3875 * semantics. 3876 */ 3877 endbyte = pos + status - 1; 3878 err = filemap_write_and_wait_range(mapping, pos, endbyte); 3879 if (err == 0) { 3880 iocb->ki_pos = endbyte + 1; 3881 written += status; 3882 invalidate_mapping_pages(mapping, 3883 pos >> PAGE_SHIFT, 3884 endbyte >> PAGE_SHIFT); 3885 } else { 3886 /* 3887 * We don't know how much we wrote, so just return 3888 * the number of bytes which were direct-written 3889 */ 3890 } 3891 } else { 3892 written = generic_perform_write(file, from, iocb->ki_pos); 3893 if (likely(written > 0)) 3894 iocb->ki_pos += written; 3895 } 3896 out: 3897 current->backing_dev_info = NULL; 3898 return written ? written : err; 3899 } 3900 EXPORT_SYMBOL(__generic_file_write_iter); 3901 3902 /** 3903 * generic_file_write_iter - write data to a file 3904 * @iocb: IO state structure 3905 * @from: iov_iter with data to write 3906 * 3907 * This is a wrapper around __generic_file_write_iter() to be used by most 3908 * filesystems. It takes care of syncing the file in case of O_SYNC file 3909 * and acquires i_rwsem as needed. 3910 * Return: 3911 * * negative error code if no data has been written at all of 3912 * vfs_fsync_range() failed for a synchronous write 3913 * * number of bytes written, even for truncated writes 3914 */ 3915 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3916 { 3917 struct file *file = iocb->ki_filp; 3918 struct inode *inode = file->f_mapping->host; 3919 ssize_t ret; 3920 3921 inode_lock(inode); 3922 ret = generic_write_checks(iocb, from); 3923 if (ret > 0) 3924 ret = __generic_file_write_iter(iocb, from); 3925 inode_unlock(inode); 3926 3927 if (ret > 0) 3928 ret = generic_write_sync(iocb, ret); 3929 return ret; 3930 } 3931 EXPORT_SYMBOL(generic_file_write_iter); 3932 3933 /** 3934 * filemap_release_folio() - Release fs-specific metadata on a folio. 3935 * @folio: The folio which the kernel is trying to free. 3936 * @gfp: Memory allocation flags (and I/O mode). 3937 * 3938 * The address_space is trying to release any data attached to a folio 3939 * (presumably at folio->private). 3940 * 3941 * This will also be called if the private_2 flag is set on a page, 3942 * indicating that the folio has other metadata associated with it. 3943 * 3944 * The @gfp argument specifies whether I/O may be performed to release 3945 * this page (__GFP_IO), and whether the call may block 3946 * (__GFP_RECLAIM & __GFP_FS). 3947 * 3948 * Return: %true if the release was successful, otherwise %false. 3949 */ 3950 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 3951 { 3952 struct address_space * const mapping = folio->mapping; 3953 3954 BUG_ON(!folio_test_locked(folio)); 3955 if (folio_test_writeback(folio)) 3956 return false; 3957 3958 if (mapping && mapping->a_ops->releasepage) 3959 return mapping->a_ops->releasepage(&folio->page, gfp); 3960 return try_to_free_buffers(&folio->page); 3961 } 3962 EXPORT_SYMBOL(filemap_release_folio); 3963