xref: /linux/mm/filemap.c (revision 185000fc556372b7fb7f26516c325f212030dbd3)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 static ssize_t
46 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
47 	loff_t offset, unsigned long nr_segs);
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_lock		(vmtruncate)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_lock
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_file_buffered_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  ->i_mutex
84  *    ->i_alloc_sem             (various)
85  *
86  *  ->inode_lock
87  *    ->sb_lock			(fs/fs-writeback.c)
88  *    ->mapping->tree_lock	(__sync_single_inode)
89  *
90  *  ->i_mmap_lock
91  *    ->anon_vma.lock		(vma_adjust)
92  *
93  *  ->anon_vma.lock
94  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
95  *
96  *  ->page_table_lock or pte_lock
97  *    ->swap_lock		(try_to_unmap_one)
98  *    ->private_lock		(try_to_unmap_one)
99  *    ->tree_lock		(try_to_unmap_one)
100  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
101  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
102  *    ->private_lock		(page_remove_rmap->set_page_dirty)
103  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
105  *    ->inode_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  *  ->task->proc_lock
109  *    ->dcache_lock		(proc_pid_lookup)
110  */
111 
112 /*
113  * Remove a page from the page cache and free it. Caller has to make
114  * sure the page is locked and that nobody else uses it - or that usage
115  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
116  */
117 void __remove_from_page_cache(struct page *page)
118 {
119 	struct address_space *mapping = page->mapping;
120 
121 	mem_cgroup_uncharge_page(page);
122 	radix_tree_delete(&mapping->page_tree, page->index);
123 	page->mapping = NULL;
124 	mapping->nrpages--;
125 	__dec_zone_page_state(page, NR_FILE_PAGES);
126 	BUG_ON(page_mapped(page));
127 
128 	/*
129 	 * Some filesystems seem to re-dirty the page even after
130 	 * the VM has canceled the dirty bit (eg ext3 journaling).
131 	 *
132 	 * Fix it up by doing a final dirty accounting check after
133 	 * having removed the page entirely.
134 	 */
135 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
136 		dec_zone_page_state(page, NR_FILE_DIRTY);
137 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
138 	}
139 }
140 
141 void remove_from_page_cache(struct page *page)
142 {
143 	struct address_space *mapping = page->mapping;
144 
145 	BUG_ON(!PageLocked(page));
146 
147 	write_lock_irq(&mapping->tree_lock);
148 	__remove_from_page_cache(page);
149 	write_unlock_irq(&mapping->tree_lock);
150 }
151 
152 static int sync_page(void *word)
153 {
154 	struct address_space *mapping;
155 	struct page *page;
156 
157 	page = container_of((unsigned long *)word, struct page, flags);
158 
159 	/*
160 	 * page_mapping() is being called without PG_locked held.
161 	 * Some knowledge of the state and use of the page is used to
162 	 * reduce the requirements down to a memory barrier.
163 	 * The danger here is of a stale page_mapping() return value
164 	 * indicating a struct address_space different from the one it's
165 	 * associated with when it is associated with one.
166 	 * After smp_mb(), it's either the correct page_mapping() for
167 	 * the page, or an old page_mapping() and the page's own
168 	 * page_mapping() has gone NULL.
169 	 * The ->sync_page() address_space operation must tolerate
170 	 * page_mapping() going NULL. By an amazing coincidence,
171 	 * this comes about because none of the users of the page
172 	 * in the ->sync_page() methods make essential use of the
173 	 * page_mapping(), merely passing the page down to the backing
174 	 * device's unplug functions when it's non-NULL, which in turn
175 	 * ignore it for all cases but swap, where only page_private(page) is
176 	 * of interest. When page_mapping() does go NULL, the entire
177 	 * call stack gracefully ignores the page and returns.
178 	 * -- wli
179 	 */
180 	smp_mb();
181 	mapping = page_mapping(page);
182 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
183 		mapping->a_ops->sync_page(page);
184 	io_schedule();
185 	return 0;
186 }
187 
188 static int sync_page_killable(void *word)
189 {
190 	sync_page(word);
191 	return fatal_signal_pending(current) ? -EINTR : 0;
192 }
193 
194 /**
195  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
196  * @mapping:	address space structure to write
197  * @start:	offset in bytes where the range starts
198  * @end:	offset in bytes where the range ends (inclusive)
199  * @sync_mode:	enable synchronous operation
200  *
201  * Start writeback against all of a mapping's dirty pages that lie
202  * within the byte offsets <start, end> inclusive.
203  *
204  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
205  * opposed to a regular memory cleansing writeback.  The difference between
206  * these two operations is that if a dirty page/buffer is encountered, it must
207  * be waited upon, and not just skipped over.
208  */
209 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
210 				loff_t end, int sync_mode)
211 {
212 	int ret;
213 	struct writeback_control wbc = {
214 		.sync_mode = sync_mode,
215 		.nr_to_write = mapping->nrpages * 2,
216 		.range_start = start,
217 		.range_end = end,
218 	};
219 
220 	if (!mapping_cap_writeback_dirty(mapping))
221 		return 0;
222 
223 	ret = do_writepages(mapping, &wbc);
224 	return ret;
225 }
226 
227 static inline int __filemap_fdatawrite(struct address_space *mapping,
228 	int sync_mode)
229 {
230 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
231 }
232 
233 int filemap_fdatawrite(struct address_space *mapping)
234 {
235 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
236 }
237 EXPORT_SYMBOL(filemap_fdatawrite);
238 
239 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 				loff_t end)
241 {
242 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
243 }
244 EXPORT_SYMBOL(filemap_fdatawrite_range);
245 
246 /**
247  * filemap_flush - mostly a non-blocking flush
248  * @mapping:	target address_space
249  *
250  * This is a mostly non-blocking flush.  Not suitable for data-integrity
251  * purposes - I/O may not be started against all dirty pages.
252  */
253 int filemap_flush(struct address_space *mapping)
254 {
255 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
256 }
257 EXPORT_SYMBOL(filemap_flush);
258 
259 /**
260  * wait_on_page_writeback_range - wait for writeback to complete
261  * @mapping:	target address_space
262  * @start:	beginning page index
263  * @end:	ending page index
264  *
265  * Wait for writeback to complete against pages indexed by start->end
266  * inclusive
267  */
268 int wait_on_page_writeback_range(struct address_space *mapping,
269 				pgoff_t start, pgoff_t end)
270 {
271 	struct pagevec pvec;
272 	int nr_pages;
273 	int ret = 0;
274 	pgoff_t index;
275 
276 	if (end < start)
277 		return 0;
278 
279 	pagevec_init(&pvec, 0);
280 	index = start;
281 	while ((index <= end) &&
282 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
283 			PAGECACHE_TAG_WRITEBACK,
284 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
285 		unsigned i;
286 
287 		for (i = 0; i < nr_pages; i++) {
288 			struct page *page = pvec.pages[i];
289 
290 			/* until radix tree lookup accepts end_index */
291 			if (page->index > end)
292 				continue;
293 
294 			wait_on_page_writeback(page);
295 			if (PageError(page))
296 				ret = -EIO;
297 		}
298 		pagevec_release(&pvec);
299 		cond_resched();
300 	}
301 
302 	/* Check for outstanding write errors */
303 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
304 		ret = -ENOSPC;
305 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
306 		ret = -EIO;
307 
308 	return ret;
309 }
310 
311 /**
312  * sync_page_range - write and wait on all pages in the passed range
313  * @inode:	target inode
314  * @mapping:	target address_space
315  * @pos:	beginning offset in pages to write
316  * @count:	number of bytes to write
317  *
318  * Write and wait upon all the pages in the passed range.  This is a "data
319  * integrity" operation.  It waits upon in-flight writeout before starting and
320  * waiting upon new writeout.  If there was an IO error, return it.
321  *
322  * We need to re-take i_mutex during the generic_osync_inode list walk because
323  * it is otherwise livelockable.
324  */
325 int sync_page_range(struct inode *inode, struct address_space *mapping,
326 			loff_t pos, loff_t count)
327 {
328 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
329 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
330 	int ret;
331 
332 	if (!mapping_cap_writeback_dirty(mapping) || !count)
333 		return 0;
334 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
335 	if (ret == 0) {
336 		mutex_lock(&inode->i_mutex);
337 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
338 		mutex_unlock(&inode->i_mutex);
339 	}
340 	if (ret == 0)
341 		ret = wait_on_page_writeback_range(mapping, start, end);
342 	return ret;
343 }
344 EXPORT_SYMBOL(sync_page_range);
345 
346 /**
347  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
348  * @inode:	target inode
349  * @mapping:	target address_space
350  * @pos:	beginning offset in pages to write
351  * @count:	number of bytes to write
352  *
353  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
354  * as it forces O_SYNC writers to different parts of the same file
355  * to be serialised right until io completion.
356  */
357 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
358 			   loff_t pos, loff_t count)
359 {
360 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
361 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
362 	int ret;
363 
364 	if (!mapping_cap_writeback_dirty(mapping) || !count)
365 		return 0;
366 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
367 	if (ret == 0)
368 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
369 	if (ret == 0)
370 		ret = wait_on_page_writeback_range(mapping, start, end);
371 	return ret;
372 }
373 EXPORT_SYMBOL(sync_page_range_nolock);
374 
375 /**
376  * filemap_fdatawait - wait for all under-writeback pages to complete
377  * @mapping: address space structure to wait for
378  *
379  * Walk the list of under-writeback pages of the given address space
380  * and wait for all of them.
381  */
382 int filemap_fdatawait(struct address_space *mapping)
383 {
384 	loff_t i_size = i_size_read(mapping->host);
385 
386 	if (i_size == 0)
387 		return 0;
388 
389 	return wait_on_page_writeback_range(mapping, 0,
390 				(i_size - 1) >> PAGE_CACHE_SHIFT);
391 }
392 EXPORT_SYMBOL(filemap_fdatawait);
393 
394 int filemap_write_and_wait(struct address_space *mapping)
395 {
396 	int err = 0;
397 
398 	if (mapping->nrpages) {
399 		err = filemap_fdatawrite(mapping);
400 		/*
401 		 * Even if the above returned error, the pages may be
402 		 * written partially (e.g. -ENOSPC), so we wait for it.
403 		 * But the -EIO is special case, it may indicate the worst
404 		 * thing (e.g. bug) happened, so we avoid waiting for it.
405 		 */
406 		if (err != -EIO) {
407 			int err2 = filemap_fdatawait(mapping);
408 			if (!err)
409 				err = err2;
410 		}
411 	}
412 	return err;
413 }
414 EXPORT_SYMBOL(filemap_write_and_wait);
415 
416 /**
417  * filemap_write_and_wait_range - write out & wait on a file range
418  * @mapping:	the address_space for the pages
419  * @lstart:	offset in bytes where the range starts
420  * @lend:	offset in bytes where the range ends (inclusive)
421  *
422  * Write out and wait upon file offsets lstart->lend, inclusive.
423  *
424  * Note that `lend' is inclusive (describes the last byte to be written) so
425  * that this function can be used to write to the very end-of-file (end = -1).
426  */
427 int filemap_write_and_wait_range(struct address_space *mapping,
428 				 loff_t lstart, loff_t lend)
429 {
430 	int err = 0;
431 
432 	if (mapping->nrpages) {
433 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
434 						 WB_SYNC_ALL);
435 		/* See comment of filemap_write_and_wait() */
436 		if (err != -EIO) {
437 			int err2 = wait_on_page_writeback_range(mapping,
438 						lstart >> PAGE_CACHE_SHIFT,
439 						lend >> PAGE_CACHE_SHIFT);
440 			if (!err)
441 				err = err2;
442 		}
443 	}
444 	return err;
445 }
446 
447 /**
448  * add_to_page_cache - add newly allocated pagecache pages
449  * @page:	page to add
450  * @mapping:	the page's address_space
451  * @offset:	page index
452  * @gfp_mask:	page allocation mode
453  *
454  * This function is used to add newly allocated pagecache pages;
455  * the page is new, so we can just run SetPageLocked() against it.
456  * The other page state flags were set by rmqueue().
457  *
458  * This function does not add the page to the LRU.  The caller must do that.
459  */
460 int add_to_page_cache(struct page *page, struct address_space *mapping,
461 		pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int error = mem_cgroup_cache_charge(page, current->mm,
464 					gfp_mask & ~__GFP_HIGHMEM);
465 	if (error)
466 		goto out;
467 
468 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
469 	if (error == 0) {
470 		write_lock_irq(&mapping->tree_lock);
471 		error = radix_tree_insert(&mapping->page_tree, offset, page);
472 		if (!error) {
473 			page_cache_get(page);
474 			SetPageLocked(page);
475 			page->mapping = mapping;
476 			page->index = offset;
477 			mapping->nrpages++;
478 			__inc_zone_page_state(page, NR_FILE_PAGES);
479 		} else
480 			mem_cgroup_uncharge_page(page);
481 
482 		write_unlock_irq(&mapping->tree_lock);
483 		radix_tree_preload_end();
484 	} else
485 		mem_cgroup_uncharge_page(page);
486 out:
487 	return error;
488 }
489 EXPORT_SYMBOL(add_to_page_cache);
490 
491 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
492 				pgoff_t offset, gfp_t gfp_mask)
493 {
494 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
495 	if (ret == 0)
496 		lru_cache_add(page);
497 	return ret;
498 }
499 
500 #ifdef CONFIG_NUMA
501 struct page *__page_cache_alloc(gfp_t gfp)
502 {
503 	if (cpuset_do_page_mem_spread()) {
504 		int n = cpuset_mem_spread_node();
505 		return alloc_pages_node(n, gfp, 0);
506 	}
507 	return alloc_pages(gfp, 0);
508 }
509 EXPORT_SYMBOL(__page_cache_alloc);
510 #endif
511 
512 static int __sleep_on_page_lock(void *word)
513 {
514 	io_schedule();
515 	return 0;
516 }
517 
518 /*
519  * In order to wait for pages to become available there must be
520  * waitqueues associated with pages. By using a hash table of
521  * waitqueues where the bucket discipline is to maintain all
522  * waiters on the same queue and wake all when any of the pages
523  * become available, and for the woken contexts to check to be
524  * sure the appropriate page became available, this saves space
525  * at a cost of "thundering herd" phenomena during rare hash
526  * collisions.
527  */
528 static wait_queue_head_t *page_waitqueue(struct page *page)
529 {
530 	const struct zone *zone = page_zone(page);
531 
532 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
533 }
534 
535 static inline void wake_up_page(struct page *page, int bit)
536 {
537 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
538 }
539 
540 void wait_on_page_bit(struct page *page, int bit_nr)
541 {
542 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
543 
544 	if (test_bit(bit_nr, &page->flags))
545 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
546 							TASK_UNINTERRUPTIBLE);
547 }
548 EXPORT_SYMBOL(wait_on_page_bit);
549 
550 /**
551  * unlock_page - unlock a locked page
552  * @page: the page
553  *
554  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
555  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
556  * mechananism between PageLocked pages and PageWriteback pages is shared.
557  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
558  *
559  * The first mb is necessary to safely close the critical section opened by the
560  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
561  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
562  * parallel wait_on_page_locked()).
563  */
564 void unlock_page(struct page *page)
565 {
566 	smp_mb__before_clear_bit();
567 	if (!TestClearPageLocked(page))
568 		BUG();
569 	smp_mb__after_clear_bit();
570 	wake_up_page(page, PG_locked);
571 }
572 EXPORT_SYMBOL(unlock_page);
573 
574 /**
575  * end_page_writeback - end writeback against a page
576  * @page: the page
577  */
578 void end_page_writeback(struct page *page)
579 {
580 	if (TestClearPageReclaim(page))
581 		rotate_reclaimable_page(page);
582 
583 	if (!test_clear_page_writeback(page))
584 		BUG();
585 
586 	smp_mb__after_clear_bit();
587 	wake_up_page(page, PG_writeback);
588 }
589 EXPORT_SYMBOL(end_page_writeback);
590 
591 /**
592  * __lock_page - get a lock on the page, assuming we need to sleep to get it
593  * @page: the page to lock
594  *
595  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
596  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
597  * chances are that on the second loop, the block layer's plug list is empty,
598  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
599  */
600 void __lock_page(struct page *page)
601 {
602 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
603 
604 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
605 							TASK_UNINTERRUPTIBLE);
606 }
607 EXPORT_SYMBOL(__lock_page);
608 
609 int __lock_page_killable(struct page *page)
610 {
611 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
612 
613 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
614 					sync_page_killable, TASK_KILLABLE);
615 }
616 
617 /**
618  * __lock_page_nosync - get a lock on the page, without calling sync_page()
619  * @page: the page to lock
620  *
621  * Variant of lock_page that does not require the caller to hold a reference
622  * on the page's mapping.
623  */
624 void __lock_page_nosync(struct page *page)
625 {
626 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
627 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
628 							TASK_UNINTERRUPTIBLE);
629 }
630 
631 /**
632  * find_get_page - find and get a page reference
633  * @mapping: the address_space to search
634  * @offset: the page index
635  *
636  * Is there a pagecache struct page at the given (mapping, offset) tuple?
637  * If yes, increment its refcount and return it; if no, return NULL.
638  */
639 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
640 {
641 	struct page *page;
642 
643 	read_lock_irq(&mapping->tree_lock);
644 	page = radix_tree_lookup(&mapping->page_tree, offset);
645 	if (page)
646 		page_cache_get(page);
647 	read_unlock_irq(&mapping->tree_lock);
648 	return page;
649 }
650 EXPORT_SYMBOL(find_get_page);
651 
652 /**
653  * find_lock_page - locate, pin and lock a pagecache page
654  * @mapping: the address_space to search
655  * @offset: the page index
656  *
657  * Locates the desired pagecache page, locks it, increments its reference
658  * count and returns its address.
659  *
660  * Returns zero if the page was not present. find_lock_page() may sleep.
661  */
662 struct page *find_lock_page(struct address_space *mapping,
663 				pgoff_t offset)
664 {
665 	struct page *page;
666 
667 repeat:
668 	read_lock_irq(&mapping->tree_lock);
669 	page = radix_tree_lookup(&mapping->page_tree, offset);
670 	if (page) {
671 		page_cache_get(page);
672 		if (TestSetPageLocked(page)) {
673 			read_unlock_irq(&mapping->tree_lock);
674 			__lock_page(page);
675 
676 			/* Has the page been truncated while we slept? */
677 			if (unlikely(page->mapping != mapping)) {
678 				unlock_page(page);
679 				page_cache_release(page);
680 				goto repeat;
681 			}
682 			VM_BUG_ON(page->index != offset);
683 			goto out;
684 		}
685 	}
686 	read_unlock_irq(&mapping->tree_lock);
687 out:
688 	return page;
689 }
690 EXPORT_SYMBOL(find_lock_page);
691 
692 /**
693  * find_or_create_page - locate or add a pagecache page
694  * @mapping: the page's address_space
695  * @index: the page's index into the mapping
696  * @gfp_mask: page allocation mode
697  *
698  * Locates a page in the pagecache.  If the page is not present, a new page
699  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
700  * LRU list.  The returned page is locked and has its reference count
701  * incremented.
702  *
703  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
704  * allocation!
705  *
706  * find_or_create_page() returns the desired page's address, or zero on
707  * memory exhaustion.
708  */
709 struct page *find_or_create_page(struct address_space *mapping,
710 		pgoff_t index, gfp_t gfp_mask)
711 {
712 	struct page *page;
713 	int err;
714 repeat:
715 	page = find_lock_page(mapping, index);
716 	if (!page) {
717 		page = __page_cache_alloc(gfp_mask);
718 		if (!page)
719 			return NULL;
720 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
721 		if (unlikely(err)) {
722 			page_cache_release(page);
723 			page = NULL;
724 			if (err == -EEXIST)
725 				goto repeat;
726 		}
727 	}
728 	return page;
729 }
730 EXPORT_SYMBOL(find_or_create_page);
731 
732 /**
733  * find_get_pages - gang pagecache lookup
734  * @mapping:	The address_space to search
735  * @start:	The starting page index
736  * @nr_pages:	The maximum number of pages
737  * @pages:	Where the resulting pages are placed
738  *
739  * find_get_pages() will search for and return a group of up to
740  * @nr_pages pages in the mapping.  The pages are placed at @pages.
741  * find_get_pages() takes a reference against the returned pages.
742  *
743  * The search returns a group of mapping-contiguous pages with ascending
744  * indexes.  There may be holes in the indices due to not-present pages.
745  *
746  * find_get_pages() returns the number of pages which were found.
747  */
748 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
749 			    unsigned int nr_pages, struct page **pages)
750 {
751 	unsigned int i;
752 	unsigned int ret;
753 
754 	read_lock_irq(&mapping->tree_lock);
755 	ret = radix_tree_gang_lookup(&mapping->page_tree,
756 				(void **)pages, start, nr_pages);
757 	for (i = 0; i < ret; i++)
758 		page_cache_get(pages[i]);
759 	read_unlock_irq(&mapping->tree_lock);
760 	return ret;
761 }
762 
763 /**
764  * find_get_pages_contig - gang contiguous pagecache lookup
765  * @mapping:	The address_space to search
766  * @index:	The starting page index
767  * @nr_pages:	The maximum number of pages
768  * @pages:	Where the resulting pages are placed
769  *
770  * find_get_pages_contig() works exactly like find_get_pages(), except
771  * that the returned number of pages are guaranteed to be contiguous.
772  *
773  * find_get_pages_contig() returns the number of pages which were found.
774  */
775 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
776 			       unsigned int nr_pages, struct page **pages)
777 {
778 	unsigned int i;
779 	unsigned int ret;
780 
781 	read_lock_irq(&mapping->tree_lock);
782 	ret = radix_tree_gang_lookup(&mapping->page_tree,
783 				(void **)pages, index, nr_pages);
784 	for (i = 0; i < ret; i++) {
785 		if (pages[i]->mapping == NULL || pages[i]->index != index)
786 			break;
787 
788 		page_cache_get(pages[i]);
789 		index++;
790 	}
791 	read_unlock_irq(&mapping->tree_lock);
792 	return i;
793 }
794 EXPORT_SYMBOL(find_get_pages_contig);
795 
796 /**
797  * find_get_pages_tag - find and return pages that match @tag
798  * @mapping:	the address_space to search
799  * @index:	the starting page index
800  * @tag:	the tag index
801  * @nr_pages:	the maximum number of pages
802  * @pages:	where the resulting pages are placed
803  *
804  * Like find_get_pages, except we only return pages which are tagged with
805  * @tag.   We update @index to index the next page for the traversal.
806  */
807 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
808 			int tag, unsigned int nr_pages, struct page **pages)
809 {
810 	unsigned int i;
811 	unsigned int ret;
812 
813 	read_lock_irq(&mapping->tree_lock);
814 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
815 				(void **)pages, *index, nr_pages, tag);
816 	for (i = 0; i < ret; i++)
817 		page_cache_get(pages[i]);
818 	if (ret)
819 		*index = pages[ret - 1]->index + 1;
820 	read_unlock_irq(&mapping->tree_lock);
821 	return ret;
822 }
823 EXPORT_SYMBOL(find_get_pages_tag);
824 
825 /**
826  * grab_cache_page_nowait - returns locked page at given index in given cache
827  * @mapping: target address_space
828  * @index: the page index
829  *
830  * Same as grab_cache_page(), but do not wait if the page is unavailable.
831  * This is intended for speculative data generators, where the data can
832  * be regenerated if the page couldn't be grabbed.  This routine should
833  * be safe to call while holding the lock for another page.
834  *
835  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
836  * and deadlock against the caller's locked page.
837  */
838 struct page *
839 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
840 {
841 	struct page *page = find_get_page(mapping, index);
842 
843 	if (page) {
844 		if (!TestSetPageLocked(page))
845 			return page;
846 		page_cache_release(page);
847 		return NULL;
848 	}
849 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
850 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
851 		page_cache_release(page);
852 		page = NULL;
853 	}
854 	return page;
855 }
856 EXPORT_SYMBOL(grab_cache_page_nowait);
857 
858 /*
859  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
860  * a _large_ part of the i/o request. Imagine the worst scenario:
861  *
862  *      ---R__________________________________________B__________
863  *         ^ reading here                             ^ bad block(assume 4k)
864  *
865  * read(R) => miss => readahead(R...B) => media error => frustrating retries
866  * => failing the whole request => read(R) => read(R+1) =>
867  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
868  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
869  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
870  *
871  * It is going insane. Fix it by quickly scaling down the readahead size.
872  */
873 static void shrink_readahead_size_eio(struct file *filp,
874 					struct file_ra_state *ra)
875 {
876 	if (!ra->ra_pages)
877 		return;
878 
879 	ra->ra_pages /= 4;
880 }
881 
882 /**
883  * do_generic_file_read - generic file read routine
884  * @filp:	the file to read
885  * @ppos:	current file position
886  * @desc:	read_descriptor
887  * @actor:	read method
888  *
889  * This is a generic file read routine, and uses the
890  * mapping->a_ops->readpage() function for the actual low-level stuff.
891  *
892  * This is really ugly. But the goto's actually try to clarify some
893  * of the logic when it comes to error handling etc.
894  */
895 static void do_generic_file_read(struct file *filp, loff_t *ppos,
896 		read_descriptor_t *desc, read_actor_t actor)
897 {
898 	struct address_space *mapping = filp->f_mapping;
899 	struct inode *inode = mapping->host;
900 	struct file_ra_state *ra = &filp->f_ra;
901 	pgoff_t index;
902 	pgoff_t last_index;
903 	pgoff_t prev_index;
904 	unsigned long offset;      /* offset into pagecache page */
905 	unsigned int prev_offset;
906 	int error;
907 
908 	index = *ppos >> PAGE_CACHE_SHIFT;
909 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
910 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
911 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
912 	offset = *ppos & ~PAGE_CACHE_MASK;
913 
914 	for (;;) {
915 		struct page *page;
916 		pgoff_t end_index;
917 		loff_t isize;
918 		unsigned long nr, ret;
919 
920 		cond_resched();
921 find_page:
922 		page = find_get_page(mapping, index);
923 		if (!page) {
924 			page_cache_sync_readahead(mapping,
925 					ra, filp,
926 					index, last_index - index);
927 			page = find_get_page(mapping, index);
928 			if (unlikely(page == NULL))
929 				goto no_cached_page;
930 		}
931 		if (PageReadahead(page)) {
932 			page_cache_async_readahead(mapping,
933 					ra, filp, page,
934 					index, last_index - index);
935 		}
936 		if (!PageUptodate(page))
937 			goto page_not_up_to_date;
938 page_ok:
939 		/*
940 		 * i_size must be checked after we know the page is Uptodate.
941 		 *
942 		 * Checking i_size after the check allows us to calculate
943 		 * the correct value for "nr", which means the zero-filled
944 		 * part of the page is not copied back to userspace (unless
945 		 * another truncate extends the file - this is desired though).
946 		 */
947 
948 		isize = i_size_read(inode);
949 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
950 		if (unlikely(!isize || index > end_index)) {
951 			page_cache_release(page);
952 			goto out;
953 		}
954 
955 		/* nr is the maximum number of bytes to copy from this page */
956 		nr = PAGE_CACHE_SIZE;
957 		if (index == end_index) {
958 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
959 			if (nr <= offset) {
960 				page_cache_release(page);
961 				goto out;
962 			}
963 		}
964 		nr = nr - offset;
965 
966 		/* If users can be writing to this page using arbitrary
967 		 * virtual addresses, take care about potential aliasing
968 		 * before reading the page on the kernel side.
969 		 */
970 		if (mapping_writably_mapped(mapping))
971 			flush_dcache_page(page);
972 
973 		/*
974 		 * When a sequential read accesses a page several times,
975 		 * only mark it as accessed the first time.
976 		 */
977 		if (prev_index != index || offset != prev_offset)
978 			mark_page_accessed(page);
979 		prev_index = index;
980 
981 		/*
982 		 * Ok, we have the page, and it's up-to-date, so
983 		 * now we can copy it to user space...
984 		 *
985 		 * The actor routine returns how many bytes were actually used..
986 		 * NOTE! This may not be the same as how much of a user buffer
987 		 * we filled up (we may be padding etc), so we can only update
988 		 * "pos" here (the actor routine has to update the user buffer
989 		 * pointers and the remaining count).
990 		 */
991 		ret = actor(desc, page, offset, nr);
992 		offset += ret;
993 		index += offset >> PAGE_CACHE_SHIFT;
994 		offset &= ~PAGE_CACHE_MASK;
995 		prev_offset = offset;
996 
997 		page_cache_release(page);
998 		if (ret == nr && desc->count)
999 			continue;
1000 		goto out;
1001 
1002 page_not_up_to_date:
1003 		/* Get exclusive access to the page ... */
1004 		if (lock_page_killable(page))
1005 			goto readpage_eio;
1006 
1007 		/* Did it get truncated before we got the lock? */
1008 		if (!page->mapping) {
1009 			unlock_page(page);
1010 			page_cache_release(page);
1011 			continue;
1012 		}
1013 
1014 		/* Did somebody else fill it already? */
1015 		if (PageUptodate(page)) {
1016 			unlock_page(page);
1017 			goto page_ok;
1018 		}
1019 
1020 readpage:
1021 		/* Start the actual read. The read will unlock the page. */
1022 		error = mapping->a_ops->readpage(filp, page);
1023 
1024 		if (unlikely(error)) {
1025 			if (error == AOP_TRUNCATED_PAGE) {
1026 				page_cache_release(page);
1027 				goto find_page;
1028 			}
1029 			goto readpage_error;
1030 		}
1031 
1032 		if (!PageUptodate(page)) {
1033 			if (lock_page_killable(page))
1034 				goto readpage_eio;
1035 			if (!PageUptodate(page)) {
1036 				if (page->mapping == NULL) {
1037 					/*
1038 					 * invalidate_inode_pages got it
1039 					 */
1040 					unlock_page(page);
1041 					page_cache_release(page);
1042 					goto find_page;
1043 				}
1044 				unlock_page(page);
1045 				shrink_readahead_size_eio(filp, ra);
1046 				goto readpage_eio;
1047 			}
1048 			unlock_page(page);
1049 		}
1050 
1051 		goto page_ok;
1052 
1053 readpage_eio:
1054 		error = -EIO;
1055 readpage_error:
1056 		/* UHHUH! A synchronous read error occurred. Report it */
1057 		desc->error = error;
1058 		page_cache_release(page);
1059 		goto out;
1060 
1061 no_cached_page:
1062 		/*
1063 		 * Ok, it wasn't cached, so we need to create a new
1064 		 * page..
1065 		 */
1066 		page = page_cache_alloc_cold(mapping);
1067 		if (!page) {
1068 			desc->error = -ENOMEM;
1069 			goto out;
1070 		}
1071 		error = add_to_page_cache_lru(page, mapping,
1072 						index, GFP_KERNEL);
1073 		if (error) {
1074 			page_cache_release(page);
1075 			if (error == -EEXIST)
1076 				goto find_page;
1077 			desc->error = error;
1078 			goto out;
1079 		}
1080 		goto readpage;
1081 	}
1082 
1083 out:
1084 	ra->prev_pos = prev_index;
1085 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1086 	ra->prev_pos |= prev_offset;
1087 
1088 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1089 	if (filp)
1090 		file_accessed(filp);
1091 }
1092 
1093 int file_read_actor(read_descriptor_t *desc, struct page *page,
1094 			unsigned long offset, unsigned long size)
1095 {
1096 	char *kaddr;
1097 	unsigned long left, count = desc->count;
1098 
1099 	if (size > count)
1100 		size = count;
1101 
1102 	/*
1103 	 * Faults on the destination of a read are common, so do it before
1104 	 * taking the kmap.
1105 	 */
1106 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1107 		kaddr = kmap_atomic(page, KM_USER0);
1108 		left = __copy_to_user_inatomic(desc->arg.buf,
1109 						kaddr + offset, size);
1110 		kunmap_atomic(kaddr, KM_USER0);
1111 		if (left == 0)
1112 			goto success;
1113 	}
1114 
1115 	/* Do it the slow way */
1116 	kaddr = kmap(page);
1117 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1118 	kunmap(page);
1119 
1120 	if (left) {
1121 		size -= left;
1122 		desc->error = -EFAULT;
1123 	}
1124 success:
1125 	desc->count = count - size;
1126 	desc->written += size;
1127 	desc->arg.buf += size;
1128 	return size;
1129 }
1130 
1131 /*
1132  * Performs necessary checks before doing a write
1133  * @iov:	io vector request
1134  * @nr_segs:	number of segments in the iovec
1135  * @count:	number of bytes to write
1136  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1137  *
1138  * Adjust number of segments and amount of bytes to write (nr_segs should be
1139  * properly initialized first). Returns appropriate error code that caller
1140  * should return or zero in case that write should be allowed.
1141  */
1142 int generic_segment_checks(const struct iovec *iov,
1143 			unsigned long *nr_segs, size_t *count, int access_flags)
1144 {
1145 	unsigned long   seg;
1146 	size_t cnt = 0;
1147 	for (seg = 0; seg < *nr_segs; seg++) {
1148 		const struct iovec *iv = &iov[seg];
1149 
1150 		/*
1151 		 * If any segment has a negative length, or the cumulative
1152 		 * length ever wraps negative then return -EINVAL.
1153 		 */
1154 		cnt += iv->iov_len;
1155 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1156 			return -EINVAL;
1157 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1158 			continue;
1159 		if (seg == 0)
1160 			return -EFAULT;
1161 		*nr_segs = seg;
1162 		cnt -= iv->iov_len;	/* This segment is no good */
1163 		break;
1164 	}
1165 	*count = cnt;
1166 	return 0;
1167 }
1168 EXPORT_SYMBOL(generic_segment_checks);
1169 
1170 /**
1171  * generic_file_aio_read - generic filesystem read routine
1172  * @iocb:	kernel I/O control block
1173  * @iov:	io vector request
1174  * @nr_segs:	number of segments in the iovec
1175  * @pos:	current file position
1176  *
1177  * This is the "read()" routine for all filesystems
1178  * that can use the page cache directly.
1179  */
1180 ssize_t
1181 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1182 		unsigned long nr_segs, loff_t pos)
1183 {
1184 	struct file *filp = iocb->ki_filp;
1185 	ssize_t retval;
1186 	unsigned long seg;
1187 	size_t count;
1188 	loff_t *ppos = &iocb->ki_pos;
1189 
1190 	count = 0;
1191 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1192 	if (retval)
1193 		return retval;
1194 
1195 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1196 	if (filp->f_flags & O_DIRECT) {
1197 		loff_t size;
1198 		struct address_space *mapping;
1199 		struct inode *inode;
1200 
1201 		mapping = filp->f_mapping;
1202 		inode = mapping->host;
1203 		retval = 0;
1204 		if (!count)
1205 			goto out; /* skip atime */
1206 		size = i_size_read(inode);
1207 		if (pos < size) {
1208 			retval = generic_file_direct_IO(READ, iocb,
1209 						iov, pos, nr_segs);
1210 			if (retval > 0)
1211 				*ppos = pos + retval;
1212 		}
1213 		if (likely(retval != 0)) {
1214 			file_accessed(filp);
1215 			goto out;
1216 		}
1217 	}
1218 
1219 	retval = 0;
1220 	if (count) {
1221 		for (seg = 0; seg < nr_segs; seg++) {
1222 			read_descriptor_t desc;
1223 
1224 			desc.written = 0;
1225 			desc.arg.buf = iov[seg].iov_base;
1226 			desc.count = iov[seg].iov_len;
1227 			if (desc.count == 0)
1228 				continue;
1229 			desc.error = 0;
1230 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1231 			retval += desc.written;
1232 			if (desc.error) {
1233 				retval = retval ?: desc.error;
1234 				break;
1235 			}
1236 			if (desc.count > 0)
1237 				break;
1238 		}
1239 	}
1240 out:
1241 	return retval;
1242 }
1243 EXPORT_SYMBOL(generic_file_aio_read);
1244 
1245 static ssize_t
1246 do_readahead(struct address_space *mapping, struct file *filp,
1247 	     pgoff_t index, unsigned long nr)
1248 {
1249 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1250 		return -EINVAL;
1251 
1252 	force_page_cache_readahead(mapping, filp, index,
1253 					max_sane_readahead(nr));
1254 	return 0;
1255 }
1256 
1257 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1258 {
1259 	ssize_t ret;
1260 	struct file *file;
1261 
1262 	ret = -EBADF;
1263 	file = fget(fd);
1264 	if (file) {
1265 		if (file->f_mode & FMODE_READ) {
1266 			struct address_space *mapping = file->f_mapping;
1267 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1268 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1269 			unsigned long len = end - start + 1;
1270 			ret = do_readahead(mapping, file, start, len);
1271 		}
1272 		fput(file);
1273 	}
1274 	return ret;
1275 }
1276 
1277 #ifdef CONFIG_MMU
1278 /**
1279  * page_cache_read - adds requested page to the page cache if not already there
1280  * @file:	file to read
1281  * @offset:	page index
1282  *
1283  * This adds the requested page to the page cache if it isn't already there,
1284  * and schedules an I/O to read in its contents from disk.
1285  */
1286 static int page_cache_read(struct file *file, pgoff_t offset)
1287 {
1288 	struct address_space *mapping = file->f_mapping;
1289 	struct page *page;
1290 	int ret;
1291 
1292 	do {
1293 		page = page_cache_alloc_cold(mapping);
1294 		if (!page)
1295 			return -ENOMEM;
1296 
1297 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1298 		if (ret == 0)
1299 			ret = mapping->a_ops->readpage(file, page);
1300 		else if (ret == -EEXIST)
1301 			ret = 0; /* losing race to add is OK */
1302 
1303 		page_cache_release(page);
1304 
1305 	} while (ret == AOP_TRUNCATED_PAGE);
1306 
1307 	return ret;
1308 }
1309 
1310 #define MMAP_LOTSAMISS  (100)
1311 
1312 /**
1313  * filemap_fault - read in file data for page fault handling
1314  * @vma:	vma in which the fault was taken
1315  * @vmf:	struct vm_fault containing details of the fault
1316  *
1317  * filemap_fault() is invoked via the vma operations vector for a
1318  * mapped memory region to read in file data during a page fault.
1319  *
1320  * The goto's are kind of ugly, but this streamlines the normal case of having
1321  * it in the page cache, and handles the special cases reasonably without
1322  * having a lot of duplicated code.
1323  */
1324 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1325 {
1326 	int error;
1327 	struct file *file = vma->vm_file;
1328 	struct address_space *mapping = file->f_mapping;
1329 	struct file_ra_state *ra = &file->f_ra;
1330 	struct inode *inode = mapping->host;
1331 	struct page *page;
1332 	pgoff_t size;
1333 	int did_readaround = 0;
1334 	int ret = 0;
1335 
1336 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1337 	if (vmf->pgoff >= size)
1338 		return VM_FAULT_SIGBUS;
1339 
1340 	/* If we don't want any read-ahead, don't bother */
1341 	if (VM_RandomReadHint(vma))
1342 		goto no_cached_page;
1343 
1344 	/*
1345 	 * Do we have something in the page cache already?
1346 	 */
1347 retry_find:
1348 	page = find_lock_page(mapping, vmf->pgoff);
1349 	/*
1350 	 * For sequential accesses, we use the generic readahead logic.
1351 	 */
1352 	if (VM_SequentialReadHint(vma)) {
1353 		if (!page) {
1354 			page_cache_sync_readahead(mapping, ra, file,
1355 							   vmf->pgoff, 1);
1356 			page = find_lock_page(mapping, vmf->pgoff);
1357 			if (!page)
1358 				goto no_cached_page;
1359 		}
1360 		if (PageReadahead(page)) {
1361 			page_cache_async_readahead(mapping, ra, file, page,
1362 							   vmf->pgoff, 1);
1363 		}
1364 	}
1365 
1366 	if (!page) {
1367 		unsigned long ra_pages;
1368 
1369 		ra->mmap_miss++;
1370 
1371 		/*
1372 		 * Do we miss much more than hit in this file? If so,
1373 		 * stop bothering with read-ahead. It will only hurt.
1374 		 */
1375 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1376 			goto no_cached_page;
1377 
1378 		/*
1379 		 * To keep the pgmajfault counter straight, we need to
1380 		 * check did_readaround, as this is an inner loop.
1381 		 */
1382 		if (!did_readaround) {
1383 			ret = VM_FAULT_MAJOR;
1384 			count_vm_event(PGMAJFAULT);
1385 		}
1386 		did_readaround = 1;
1387 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1388 		if (ra_pages) {
1389 			pgoff_t start = 0;
1390 
1391 			if (vmf->pgoff > ra_pages / 2)
1392 				start = vmf->pgoff - ra_pages / 2;
1393 			do_page_cache_readahead(mapping, file, start, ra_pages);
1394 		}
1395 		page = find_lock_page(mapping, vmf->pgoff);
1396 		if (!page)
1397 			goto no_cached_page;
1398 	}
1399 
1400 	if (!did_readaround)
1401 		ra->mmap_miss--;
1402 
1403 	/*
1404 	 * We have a locked page in the page cache, now we need to check
1405 	 * that it's up-to-date. If not, it is going to be due to an error.
1406 	 */
1407 	if (unlikely(!PageUptodate(page)))
1408 		goto page_not_uptodate;
1409 
1410 	/* Must recheck i_size under page lock */
1411 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1412 	if (unlikely(vmf->pgoff >= size)) {
1413 		unlock_page(page);
1414 		page_cache_release(page);
1415 		return VM_FAULT_SIGBUS;
1416 	}
1417 
1418 	/*
1419 	 * Found the page and have a reference on it.
1420 	 */
1421 	mark_page_accessed(page);
1422 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1423 	vmf->page = page;
1424 	return ret | VM_FAULT_LOCKED;
1425 
1426 no_cached_page:
1427 	/*
1428 	 * We're only likely to ever get here if MADV_RANDOM is in
1429 	 * effect.
1430 	 */
1431 	error = page_cache_read(file, vmf->pgoff);
1432 
1433 	/*
1434 	 * The page we want has now been added to the page cache.
1435 	 * In the unlikely event that someone removed it in the
1436 	 * meantime, we'll just come back here and read it again.
1437 	 */
1438 	if (error >= 0)
1439 		goto retry_find;
1440 
1441 	/*
1442 	 * An error return from page_cache_read can result if the
1443 	 * system is low on memory, or a problem occurs while trying
1444 	 * to schedule I/O.
1445 	 */
1446 	if (error == -ENOMEM)
1447 		return VM_FAULT_OOM;
1448 	return VM_FAULT_SIGBUS;
1449 
1450 page_not_uptodate:
1451 	/* IO error path */
1452 	if (!did_readaround) {
1453 		ret = VM_FAULT_MAJOR;
1454 		count_vm_event(PGMAJFAULT);
1455 	}
1456 
1457 	/*
1458 	 * Umm, take care of errors if the page isn't up-to-date.
1459 	 * Try to re-read it _once_. We do this synchronously,
1460 	 * because there really aren't any performance issues here
1461 	 * and we need to check for errors.
1462 	 */
1463 	ClearPageError(page);
1464 	error = mapping->a_ops->readpage(file, page);
1465 	if (!error) {
1466 		wait_on_page_locked(page);
1467 		if (!PageUptodate(page))
1468 			error = -EIO;
1469 	}
1470 	page_cache_release(page);
1471 
1472 	if (!error || error == AOP_TRUNCATED_PAGE)
1473 		goto retry_find;
1474 
1475 	/* Things didn't work out. Return zero to tell the mm layer so. */
1476 	shrink_readahead_size_eio(file, ra);
1477 	return VM_FAULT_SIGBUS;
1478 }
1479 EXPORT_SYMBOL(filemap_fault);
1480 
1481 struct vm_operations_struct generic_file_vm_ops = {
1482 	.fault		= filemap_fault,
1483 };
1484 
1485 /* This is used for a general mmap of a disk file */
1486 
1487 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1488 {
1489 	struct address_space *mapping = file->f_mapping;
1490 
1491 	if (!mapping->a_ops->readpage)
1492 		return -ENOEXEC;
1493 	file_accessed(file);
1494 	vma->vm_ops = &generic_file_vm_ops;
1495 	vma->vm_flags |= VM_CAN_NONLINEAR;
1496 	return 0;
1497 }
1498 
1499 /*
1500  * This is for filesystems which do not implement ->writepage.
1501  */
1502 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1503 {
1504 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1505 		return -EINVAL;
1506 	return generic_file_mmap(file, vma);
1507 }
1508 #else
1509 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1510 {
1511 	return -ENOSYS;
1512 }
1513 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1514 {
1515 	return -ENOSYS;
1516 }
1517 #endif /* CONFIG_MMU */
1518 
1519 EXPORT_SYMBOL(generic_file_mmap);
1520 EXPORT_SYMBOL(generic_file_readonly_mmap);
1521 
1522 static struct page *__read_cache_page(struct address_space *mapping,
1523 				pgoff_t index,
1524 				int (*filler)(void *,struct page*),
1525 				void *data)
1526 {
1527 	struct page *page;
1528 	int err;
1529 repeat:
1530 	page = find_get_page(mapping, index);
1531 	if (!page) {
1532 		page = page_cache_alloc_cold(mapping);
1533 		if (!page)
1534 			return ERR_PTR(-ENOMEM);
1535 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1536 		if (unlikely(err)) {
1537 			page_cache_release(page);
1538 			if (err == -EEXIST)
1539 				goto repeat;
1540 			/* Presumably ENOMEM for radix tree node */
1541 			return ERR_PTR(err);
1542 		}
1543 		err = filler(data, page);
1544 		if (err < 0) {
1545 			page_cache_release(page);
1546 			page = ERR_PTR(err);
1547 		}
1548 	}
1549 	return page;
1550 }
1551 
1552 /**
1553  * read_cache_page_async - read into page cache, fill it if needed
1554  * @mapping:	the page's address_space
1555  * @index:	the page index
1556  * @filler:	function to perform the read
1557  * @data:	destination for read data
1558  *
1559  * Same as read_cache_page, but don't wait for page to become unlocked
1560  * after submitting it to the filler.
1561  *
1562  * Read into the page cache. If a page already exists, and PageUptodate() is
1563  * not set, try to fill the page but don't wait for it to become unlocked.
1564  *
1565  * If the page does not get brought uptodate, return -EIO.
1566  */
1567 struct page *read_cache_page_async(struct address_space *mapping,
1568 				pgoff_t index,
1569 				int (*filler)(void *,struct page*),
1570 				void *data)
1571 {
1572 	struct page *page;
1573 	int err;
1574 
1575 retry:
1576 	page = __read_cache_page(mapping, index, filler, data);
1577 	if (IS_ERR(page))
1578 		return page;
1579 	if (PageUptodate(page))
1580 		goto out;
1581 
1582 	lock_page(page);
1583 	if (!page->mapping) {
1584 		unlock_page(page);
1585 		page_cache_release(page);
1586 		goto retry;
1587 	}
1588 	if (PageUptodate(page)) {
1589 		unlock_page(page);
1590 		goto out;
1591 	}
1592 	err = filler(data, page);
1593 	if (err < 0) {
1594 		page_cache_release(page);
1595 		return ERR_PTR(err);
1596 	}
1597 out:
1598 	mark_page_accessed(page);
1599 	return page;
1600 }
1601 EXPORT_SYMBOL(read_cache_page_async);
1602 
1603 /**
1604  * read_cache_page - read into page cache, fill it if needed
1605  * @mapping:	the page's address_space
1606  * @index:	the page index
1607  * @filler:	function to perform the read
1608  * @data:	destination for read data
1609  *
1610  * Read into the page cache. If a page already exists, and PageUptodate() is
1611  * not set, try to fill the page then wait for it to become unlocked.
1612  *
1613  * If the page does not get brought uptodate, return -EIO.
1614  */
1615 struct page *read_cache_page(struct address_space *mapping,
1616 				pgoff_t index,
1617 				int (*filler)(void *,struct page*),
1618 				void *data)
1619 {
1620 	struct page *page;
1621 
1622 	page = read_cache_page_async(mapping, index, filler, data);
1623 	if (IS_ERR(page))
1624 		goto out;
1625 	wait_on_page_locked(page);
1626 	if (!PageUptodate(page)) {
1627 		page_cache_release(page);
1628 		page = ERR_PTR(-EIO);
1629 	}
1630  out:
1631 	return page;
1632 }
1633 EXPORT_SYMBOL(read_cache_page);
1634 
1635 /*
1636  * The logic we want is
1637  *
1638  *	if suid or (sgid and xgrp)
1639  *		remove privs
1640  */
1641 int should_remove_suid(struct dentry *dentry)
1642 {
1643 	mode_t mode = dentry->d_inode->i_mode;
1644 	int kill = 0;
1645 
1646 	/* suid always must be killed */
1647 	if (unlikely(mode & S_ISUID))
1648 		kill = ATTR_KILL_SUID;
1649 
1650 	/*
1651 	 * sgid without any exec bits is just a mandatory locking mark; leave
1652 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1653 	 */
1654 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1655 		kill |= ATTR_KILL_SGID;
1656 
1657 	if (unlikely(kill && !capable(CAP_FSETID)))
1658 		return kill;
1659 
1660 	return 0;
1661 }
1662 EXPORT_SYMBOL(should_remove_suid);
1663 
1664 static int __remove_suid(struct dentry *dentry, int kill)
1665 {
1666 	struct iattr newattrs;
1667 
1668 	newattrs.ia_valid = ATTR_FORCE | kill;
1669 	return notify_change(dentry, &newattrs);
1670 }
1671 
1672 int remove_suid(struct dentry *dentry)
1673 {
1674 	int killsuid = should_remove_suid(dentry);
1675 	int killpriv = security_inode_need_killpriv(dentry);
1676 	int error = 0;
1677 
1678 	if (killpriv < 0)
1679 		return killpriv;
1680 	if (killpriv)
1681 		error = security_inode_killpriv(dentry);
1682 	if (!error && killsuid)
1683 		error = __remove_suid(dentry, killsuid);
1684 
1685 	return error;
1686 }
1687 EXPORT_SYMBOL(remove_suid);
1688 
1689 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1690 			const struct iovec *iov, size_t base, size_t bytes)
1691 {
1692 	size_t copied = 0, left = 0;
1693 
1694 	while (bytes) {
1695 		char __user *buf = iov->iov_base + base;
1696 		int copy = min(bytes, iov->iov_len - base);
1697 
1698 		base = 0;
1699 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1700 		copied += copy;
1701 		bytes -= copy;
1702 		vaddr += copy;
1703 		iov++;
1704 
1705 		if (unlikely(left))
1706 			break;
1707 	}
1708 	return copied - left;
1709 }
1710 
1711 /*
1712  * Copy as much as we can into the page and return the number of bytes which
1713  * were sucessfully copied.  If a fault is encountered then return the number of
1714  * bytes which were copied.
1715  */
1716 size_t iov_iter_copy_from_user_atomic(struct page *page,
1717 		struct iov_iter *i, unsigned long offset, size_t bytes)
1718 {
1719 	char *kaddr;
1720 	size_t copied;
1721 
1722 	BUG_ON(!in_atomic());
1723 	kaddr = kmap_atomic(page, KM_USER0);
1724 	if (likely(i->nr_segs == 1)) {
1725 		int left;
1726 		char __user *buf = i->iov->iov_base + i->iov_offset;
1727 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1728 							buf, bytes);
1729 		copied = bytes - left;
1730 	} else {
1731 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1732 						i->iov, i->iov_offset, bytes);
1733 	}
1734 	kunmap_atomic(kaddr, KM_USER0);
1735 
1736 	return copied;
1737 }
1738 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1739 
1740 /*
1741  * This has the same sideeffects and return value as
1742  * iov_iter_copy_from_user_atomic().
1743  * The difference is that it attempts to resolve faults.
1744  * Page must not be locked.
1745  */
1746 size_t iov_iter_copy_from_user(struct page *page,
1747 		struct iov_iter *i, unsigned long offset, size_t bytes)
1748 {
1749 	char *kaddr;
1750 	size_t copied;
1751 
1752 	kaddr = kmap(page);
1753 	if (likely(i->nr_segs == 1)) {
1754 		int left;
1755 		char __user *buf = i->iov->iov_base + i->iov_offset;
1756 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1757 		copied = bytes - left;
1758 	} else {
1759 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1760 						i->iov, i->iov_offset, bytes);
1761 	}
1762 	kunmap(page);
1763 	return copied;
1764 }
1765 EXPORT_SYMBOL(iov_iter_copy_from_user);
1766 
1767 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1768 {
1769 	BUG_ON(i->count < bytes);
1770 
1771 	if (likely(i->nr_segs == 1)) {
1772 		i->iov_offset += bytes;
1773 		i->count -= bytes;
1774 	} else {
1775 		const struct iovec *iov = i->iov;
1776 		size_t base = i->iov_offset;
1777 
1778 		/*
1779 		 * The !iov->iov_len check ensures we skip over unlikely
1780 		 * zero-length segments (without overruning the iovec).
1781 		 */
1782 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1783 			int copy;
1784 
1785 			copy = min(bytes, iov->iov_len - base);
1786 			BUG_ON(!i->count || i->count < copy);
1787 			i->count -= copy;
1788 			bytes -= copy;
1789 			base += copy;
1790 			if (iov->iov_len == base) {
1791 				iov++;
1792 				base = 0;
1793 			}
1794 		}
1795 		i->iov = iov;
1796 		i->iov_offset = base;
1797 	}
1798 }
1799 EXPORT_SYMBOL(iov_iter_advance);
1800 
1801 /*
1802  * Fault in the first iovec of the given iov_iter, to a maximum length
1803  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1804  * accessed (ie. because it is an invalid address).
1805  *
1806  * writev-intensive code may want this to prefault several iovecs -- that
1807  * would be possible (callers must not rely on the fact that _only_ the
1808  * first iovec will be faulted with the current implementation).
1809  */
1810 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1811 {
1812 	char __user *buf = i->iov->iov_base + i->iov_offset;
1813 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1814 	return fault_in_pages_readable(buf, bytes);
1815 }
1816 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1817 
1818 /*
1819  * Return the count of just the current iov_iter segment.
1820  */
1821 size_t iov_iter_single_seg_count(struct iov_iter *i)
1822 {
1823 	const struct iovec *iov = i->iov;
1824 	if (i->nr_segs == 1)
1825 		return i->count;
1826 	else
1827 		return min(i->count, iov->iov_len - i->iov_offset);
1828 }
1829 EXPORT_SYMBOL(iov_iter_single_seg_count);
1830 
1831 /*
1832  * Performs necessary checks before doing a write
1833  *
1834  * Can adjust writing position or amount of bytes to write.
1835  * Returns appropriate error code that caller should return or
1836  * zero in case that write should be allowed.
1837  */
1838 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1839 {
1840 	struct inode *inode = file->f_mapping->host;
1841 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1842 
1843         if (unlikely(*pos < 0))
1844                 return -EINVAL;
1845 
1846 	if (!isblk) {
1847 		/* FIXME: this is for backwards compatibility with 2.4 */
1848 		if (file->f_flags & O_APPEND)
1849                         *pos = i_size_read(inode);
1850 
1851 		if (limit != RLIM_INFINITY) {
1852 			if (*pos >= limit) {
1853 				send_sig(SIGXFSZ, current, 0);
1854 				return -EFBIG;
1855 			}
1856 			if (*count > limit - (typeof(limit))*pos) {
1857 				*count = limit - (typeof(limit))*pos;
1858 			}
1859 		}
1860 	}
1861 
1862 	/*
1863 	 * LFS rule
1864 	 */
1865 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1866 				!(file->f_flags & O_LARGEFILE))) {
1867 		if (*pos >= MAX_NON_LFS) {
1868 			return -EFBIG;
1869 		}
1870 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1871 			*count = MAX_NON_LFS - (unsigned long)*pos;
1872 		}
1873 	}
1874 
1875 	/*
1876 	 * Are we about to exceed the fs block limit ?
1877 	 *
1878 	 * If we have written data it becomes a short write.  If we have
1879 	 * exceeded without writing data we send a signal and return EFBIG.
1880 	 * Linus frestrict idea will clean these up nicely..
1881 	 */
1882 	if (likely(!isblk)) {
1883 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1884 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1885 				return -EFBIG;
1886 			}
1887 			/* zero-length writes at ->s_maxbytes are OK */
1888 		}
1889 
1890 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1891 			*count = inode->i_sb->s_maxbytes - *pos;
1892 	} else {
1893 #ifdef CONFIG_BLOCK
1894 		loff_t isize;
1895 		if (bdev_read_only(I_BDEV(inode)))
1896 			return -EPERM;
1897 		isize = i_size_read(inode);
1898 		if (*pos >= isize) {
1899 			if (*count || *pos > isize)
1900 				return -ENOSPC;
1901 		}
1902 
1903 		if (*pos + *count > isize)
1904 			*count = isize - *pos;
1905 #else
1906 		return -EPERM;
1907 #endif
1908 	}
1909 	return 0;
1910 }
1911 EXPORT_SYMBOL(generic_write_checks);
1912 
1913 int pagecache_write_begin(struct file *file, struct address_space *mapping,
1914 				loff_t pos, unsigned len, unsigned flags,
1915 				struct page **pagep, void **fsdata)
1916 {
1917 	const struct address_space_operations *aops = mapping->a_ops;
1918 
1919 	if (aops->write_begin) {
1920 		return aops->write_begin(file, mapping, pos, len, flags,
1921 							pagep, fsdata);
1922 	} else {
1923 		int ret;
1924 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1925 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1926 		struct inode *inode = mapping->host;
1927 		struct page *page;
1928 again:
1929 		page = __grab_cache_page(mapping, index);
1930 		*pagep = page;
1931 		if (!page)
1932 			return -ENOMEM;
1933 
1934 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1935 			/*
1936 			 * There is no way to resolve a short write situation
1937 			 * for a !Uptodate page (except by double copying in
1938 			 * the caller done by generic_perform_write_2copy).
1939 			 *
1940 			 * Instead, we have to bring it uptodate here.
1941 			 */
1942 			ret = aops->readpage(file, page);
1943 			page_cache_release(page);
1944 			if (ret) {
1945 				if (ret == AOP_TRUNCATED_PAGE)
1946 					goto again;
1947 				return ret;
1948 			}
1949 			goto again;
1950 		}
1951 
1952 		ret = aops->prepare_write(file, page, offset, offset+len);
1953 		if (ret) {
1954 			unlock_page(page);
1955 			page_cache_release(page);
1956 			if (pos + len > inode->i_size)
1957 				vmtruncate(inode, inode->i_size);
1958 		}
1959 		return ret;
1960 	}
1961 }
1962 EXPORT_SYMBOL(pagecache_write_begin);
1963 
1964 int pagecache_write_end(struct file *file, struct address_space *mapping,
1965 				loff_t pos, unsigned len, unsigned copied,
1966 				struct page *page, void *fsdata)
1967 {
1968 	const struct address_space_operations *aops = mapping->a_ops;
1969 	int ret;
1970 
1971 	if (aops->write_end) {
1972 		mark_page_accessed(page);
1973 		ret = aops->write_end(file, mapping, pos, len, copied,
1974 							page, fsdata);
1975 	} else {
1976 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1977 		struct inode *inode = mapping->host;
1978 
1979 		flush_dcache_page(page);
1980 		ret = aops->commit_write(file, page, offset, offset+len);
1981 		unlock_page(page);
1982 		mark_page_accessed(page);
1983 		page_cache_release(page);
1984 
1985 		if (ret < 0) {
1986 			if (pos + len > inode->i_size)
1987 				vmtruncate(inode, inode->i_size);
1988 		} else if (ret > 0)
1989 			ret = min_t(size_t, copied, ret);
1990 		else
1991 			ret = copied;
1992 	}
1993 
1994 	return ret;
1995 }
1996 EXPORT_SYMBOL(pagecache_write_end);
1997 
1998 ssize_t
1999 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2000 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2001 		size_t count, size_t ocount)
2002 {
2003 	struct file	*file = iocb->ki_filp;
2004 	struct address_space *mapping = file->f_mapping;
2005 	struct inode	*inode = mapping->host;
2006 	ssize_t		written;
2007 
2008 	if (count != ocount)
2009 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2010 
2011 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2012 	if (written > 0) {
2013 		loff_t end = pos + written;
2014 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2015 			i_size_write(inode,  end);
2016 			mark_inode_dirty(inode);
2017 		}
2018 		*ppos = end;
2019 	}
2020 
2021 	/*
2022 	 * Sync the fs metadata but not the minor inode changes and
2023 	 * of course not the data as we did direct DMA for the IO.
2024 	 * i_mutex is held, which protects generic_osync_inode() from
2025 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2026 	 */
2027 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2028 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2029 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2030 		if (err < 0)
2031 			written = err;
2032 	}
2033 	return written;
2034 }
2035 EXPORT_SYMBOL(generic_file_direct_write);
2036 
2037 /*
2038  * Find or create a page at the given pagecache position. Return the locked
2039  * page. This function is specifically for buffered writes.
2040  */
2041 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2042 {
2043 	int status;
2044 	struct page *page;
2045 repeat:
2046 	page = find_lock_page(mapping, index);
2047 	if (likely(page))
2048 		return page;
2049 
2050 	page = page_cache_alloc(mapping);
2051 	if (!page)
2052 		return NULL;
2053 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2054 	if (unlikely(status)) {
2055 		page_cache_release(page);
2056 		if (status == -EEXIST)
2057 			goto repeat;
2058 		return NULL;
2059 	}
2060 	return page;
2061 }
2062 EXPORT_SYMBOL(__grab_cache_page);
2063 
2064 static ssize_t generic_perform_write_2copy(struct file *file,
2065 				struct iov_iter *i, loff_t pos)
2066 {
2067 	struct address_space *mapping = file->f_mapping;
2068 	const struct address_space_operations *a_ops = mapping->a_ops;
2069 	struct inode *inode = mapping->host;
2070 	long status = 0;
2071 	ssize_t written = 0;
2072 
2073 	do {
2074 		struct page *src_page;
2075 		struct page *page;
2076 		pgoff_t index;		/* Pagecache index for current page */
2077 		unsigned long offset;	/* Offset into pagecache page */
2078 		unsigned long bytes;	/* Bytes to write to page */
2079 		size_t copied;		/* Bytes copied from user */
2080 
2081 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2082 		index = pos >> PAGE_CACHE_SHIFT;
2083 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2084 						iov_iter_count(i));
2085 
2086 		/*
2087 		 * a non-NULL src_page indicates that we're doing the
2088 		 * copy via get_user_pages and kmap.
2089 		 */
2090 		src_page = NULL;
2091 
2092 		/*
2093 		 * Bring in the user page that we will copy from _first_.
2094 		 * Otherwise there's a nasty deadlock on copying from the
2095 		 * same page as we're writing to, without it being marked
2096 		 * up-to-date.
2097 		 *
2098 		 * Not only is this an optimisation, but it is also required
2099 		 * to check that the address is actually valid, when atomic
2100 		 * usercopies are used, below.
2101 		 */
2102 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2103 			status = -EFAULT;
2104 			break;
2105 		}
2106 
2107 		page = __grab_cache_page(mapping, index);
2108 		if (!page) {
2109 			status = -ENOMEM;
2110 			break;
2111 		}
2112 
2113 		/*
2114 		 * non-uptodate pages cannot cope with short copies, and we
2115 		 * cannot take a pagefault with the destination page locked.
2116 		 * So pin the source page to copy it.
2117 		 */
2118 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2119 			unlock_page(page);
2120 
2121 			src_page = alloc_page(GFP_KERNEL);
2122 			if (!src_page) {
2123 				page_cache_release(page);
2124 				status = -ENOMEM;
2125 				break;
2126 			}
2127 
2128 			/*
2129 			 * Cannot get_user_pages with a page locked for the
2130 			 * same reason as we can't take a page fault with a
2131 			 * page locked (as explained below).
2132 			 */
2133 			copied = iov_iter_copy_from_user(src_page, i,
2134 								offset, bytes);
2135 			if (unlikely(copied == 0)) {
2136 				status = -EFAULT;
2137 				page_cache_release(page);
2138 				page_cache_release(src_page);
2139 				break;
2140 			}
2141 			bytes = copied;
2142 
2143 			lock_page(page);
2144 			/*
2145 			 * Can't handle the page going uptodate here, because
2146 			 * that means we would use non-atomic usercopies, which
2147 			 * zero out the tail of the page, which can cause
2148 			 * zeroes to become transiently visible. We could just
2149 			 * use a non-zeroing copy, but the APIs aren't too
2150 			 * consistent.
2151 			 */
2152 			if (unlikely(!page->mapping || PageUptodate(page))) {
2153 				unlock_page(page);
2154 				page_cache_release(page);
2155 				page_cache_release(src_page);
2156 				continue;
2157 			}
2158 		}
2159 
2160 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2161 		if (unlikely(status))
2162 			goto fs_write_aop_error;
2163 
2164 		if (!src_page) {
2165 			/*
2166 			 * Must not enter the pagefault handler here, because
2167 			 * we hold the page lock, so we might recursively
2168 			 * deadlock on the same lock, or get an ABBA deadlock
2169 			 * against a different lock, or against the mmap_sem
2170 			 * (which nests outside the page lock).  So increment
2171 			 * preempt count, and use _atomic usercopies.
2172 			 *
2173 			 * The page is uptodate so we are OK to encounter a
2174 			 * short copy: if unmodified parts of the page are
2175 			 * marked dirty and written out to disk, it doesn't
2176 			 * really matter.
2177 			 */
2178 			pagefault_disable();
2179 			copied = iov_iter_copy_from_user_atomic(page, i,
2180 								offset, bytes);
2181 			pagefault_enable();
2182 		} else {
2183 			void *src, *dst;
2184 			src = kmap_atomic(src_page, KM_USER0);
2185 			dst = kmap_atomic(page, KM_USER1);
2186 			memcpy(dst + offset, src + offset, bytes);
2187 			kunmap_atomic(dst, KM_USER1);
2188 			kunmap_atomic(src, KM_USER0);
2189 			copied = bytes;
2190 		}
2191 		flush_dcache_page(page);
2192 
2193 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2194 		if (unlikely(status < 0))
2195 			goto fs_write_aop_error;
2196 		if (unlikely(status > 0)) /* filesystem did partial write */
2197 			copied = min_t(size_t, copied, status);
2198 
2199 		unlock_page(page);
2200 		mark_page_accessed(page);
2201 		page_cache_release(page);
2202 		if (src_page)
2203 			page_cache_release(src_page);
2204 
2205 		iov_iter_advance(i, copied);
2206 		pos += copied;
2207 		written += copied;
2208 
2209 		balance_dirty_pages_ratelimited(mapping);
2210 		cond_resched();
2211 		continue;
2212 
2213 fs_write_aop_error:
2214 		unlock_page(page);
2215 		page_cache_release(page);
2216 		if (src_page)
2217 			page_cache_release(src_page);
2218 
2219 		/*
2220 		 * prepare_write() may have instantiated a few blocks
2221 		 * outside i_size.  Trim these off again. Don't need
2222 		 * i_size_read because we hold i_mutex.
2223 		 */
2224 		if (pos + bytes > inode->i_size)
2225 			vmtruncate(inode, inode->i_size);
2226 		break;
2227 	} while (iov_iter_count(i));
2228 
2229 	return written ? written : status;
2230 }
2231 
2232 static ssize_t generic_perform_write(struct file *file,
2233 				struct iov_iter *i, loff_t pos)
2234 {
2235 	struct address_space *mapping = file->f_mapping;
2236 	const struct address_space_operations *a_ops = mapping->a_ops;
2237 	long status = 0;
2238 	ssize_t written = 0;
2239 	unsigned int flags = 0;
2240 
2241 	/*
2242 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2243 	 */
2244 	if (segment_eq(get_fs(), KERNEL_DS))
2245 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2246 
2247 	do {
2248 		struct page *page;
2249 		pgoff_t index;		/* Pagecache index for current page */
2250 		unsigned long offset;	/* Offset into pagecache page */
2251 		unsigned long bytes;	/* Bytes to write to page */
2252 		size_t copied;		/* Bytes copied from user */
2253 		void *fsdata;
2254 
2255 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2256 		index = pos >> PAGE_CACHE_SHIFT;
2257 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2258 						iov_iter_count(i));
2259 
2260 again:
2261 
2262 		/*
2263 		 * Bring in the user page that we will copy from _first_.
2264 		 * Otherwise there's a nasty deadlock on copying from the
2265 		 * same page as we're writing to, without it being marked
2266 		 * up-to-date.
2267 		 *
2268 		 * Not only is this an optimisation, but it is also required
2269 		 * to check that the address is actually valid, when atomic
2270 		 * usercopies are used, below.
2271 		 */
2272 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2273 			status = -EFAULT;
2274 			break;
2275 		}
2276 
2277 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2278 						&page, &fsdata);
2279 		if (unlikely(status))
2280 			break;
2281 
2282 		pagefault_disable();
2283 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2284 		pagefault_enable();
2285 		flush_dcache_page(page);
2286 
2287 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2288 						page, fsdata);
2289 		if (unlikely(status < 0))
2290 			break;
2291 		copied = status;
2292 
2293 		cond_resched();
2294 
2295 		iov_iter_advance(i, copied);
2296 		if (unlikely(copied == 0)) {
2297 			/*
2298 			 * If we were unable to copy any data at all, we must
2299 			 * fall back to a single segment length write.
2300 			 *
2301 			 * If we didn't fallback here, we could livelock
2302 			 * because not all segments in the iov can be copied at
2303 			 * once without a pagefault.
2304 			 */
2305 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2306 						iov_iter_single_seg_count(i));
2307 			goto again;
2308 		}
2309 		pos += copied;
2310 		written += copied;
2311 
2312 		balance_dirty_pages_ratelimited(mapping);
2313 
2314 	} while (iov_iter_count(i));
2315 
2316 	return written ? written : status;
2317 }
2318 
2319 ssize_t
2320 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2321 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2322 		size_t count, ssize_t written)
2323 {
2324 	struct file *file = iocb->ki_filp;
2325 	struct address_space *mapping = file->f_mapping;
2326 	const struct address_space_operations *a_ops = mapping->a_ops;
2327 	struct inode *inode = mapping->host;
2328 	ssize_t status;
2329 	struct iov_iter i;
2330 
2331 	iov_iter_init(&i, iov, nr_segs, count, written);
2332 	if (a_ops->write_begin)
2333 		status = generic_perform_write(file, &i, pos);
2334 	else
2335 		status = generic_perform_write_2copy(file, &i, pos);
2336 
2337 	if (likely(status >= 0)) {
2338 		written += status;
2339 		*ppos = pos + status;
2340 
2341 		/*
2342 		 * For now, when the user asks for O_SYNC, we'll actually give
2343 		 * O_DSYNC
2344 		 */
2345 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2346 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2347 				status = generic_osync_inode(inode, mapping,
2348 						OSYNC_METADATA|OSYNC_DATA);
2349 		}
2350   	}
2351 
2352 	/*
2353 	 * If we get here for O_DIRECT writes then we must have fallen through
2354 	 * to buffered writes (block instantiation inside i_size).  So we sync
2355 	 * the file data here, to try to honour O_DIRECT expectations.
2356 	 */
2357 	if (unlikely(file->f_flags & O_DIRECT) && written)
2358 		status = filemap_write_and_wait(mapping);
2359 
2360 	return written ? written : status;
2361 }
2362 EXPORT_SYMBOL(generic_file_buffered_write);
2363 
2364 static ssize_t
2365 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2366 				unsigned long nr_segs, loff_t *ppos)
2367 {
2368 	struct file *file = iocb->ki_filp;
2369 	struct address_space * mapping = file->f_mapping;
2370 	size_t ocount;		/* original count */
2371 	size_t count;		/* after file limit checks */
2372 	struct inode 	*inode = mapping->host;
2373 	loff_t		pos;
2374 	ssize_t		written;
2375 	ssize_t		err;
2376 
2377 	ocount = 0;
2378 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2379 	if (err)
2380 		return err;
2381 
2382 	count = ocount;
2383 	pos = *ppos;
2384 
2385 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2386 
2387 	/* We can write back this queue in page reclaim */
2388 	current->backing_dev_info = mapping->backing_dev_info;
2389 	written = 0;
2390 
2391 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2392 	if (err)
2393 		goto out;
2394 
2395 	if (count == 0)
2396 		goto out;
2397 
2398 	err = remove_suid(file->f_path.dentry);
2399 	if (err)
2400 		goto out;
2401 
2402 	file_update_time(file);
2403 
2404 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2405 	if (unlikely(file->f_flags & O_DIRECT)) {
2406 		loff_t endbyte;
2407 		ssize_t written_buffered;
2408 
2409 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2410 							ppos, count, ocount);
2411 		if (written < 0 || written == count)
2412 			goto out;
2413 		/*
2414 		 * direct-io write to a hole: fall through to buffered I/O
2415 		 * for completing the rest of the request.
2416 		 */
2417 		pos += written;
2418 		count -= written;
2419 		written_buffered = generic_file_buffered_write(iocb, iov,
2420 						nr_segs, pos, ppos, count,
2421 						written);
2422 		/*
2423 		 * If generic_file_buffered_write() retuned a synchronous error
2424 		 * then we want to return the number of bytes which were
2425 		 * direct-written, or the error code if that was zero.  Note
2426 		 * that this differs from normal direct-io semantics, which
2427 		 * will return -EFOO even if some bytes were written.
2428 		 */
2429 		if (written_buffered < 0) {
2430 			err = written_buffered;
2431 			goto out;
2432 		}
2433 
2434 		/*
2435 		 * We need to ensure that the page cache pages are written to
2436 		 * disk and invalidated to preserve the expected O_DIRECT
2437 		 * semantics.
2438 		 */
2439 		endbyte = pos + written_buffered - written - 1;
2440 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2441 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2442 					    SYNC_FILE_RANGE_WRITE|
2443 					    SYNC_FILE_RANGE_WAIT_AFTER);
2444 		if (err == 0) {
2445 			written = written_buffered;
2446 			invalidate_mapping_pages(mapping,
2447 						 pos >> PAGE_CACHE_SHIFT,
2448 						 endbyte >> PAGE_CACHE_SHIFT);
2449 		} else {
2450 			/*
2451 			 * We don't know how much we wrote, so just return
2452 			 * the number of bytes which were direct-written
2453 			 */
2454 		}
2455 	} else {
2456 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2457 				pos, ppos, count, written);
2458 	}
2459 out:
2460 	current->backing_dev_info = NULL;
2461 	return written ? written : err;
2462 }
2463 
2464 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2465 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2466 {
2467 	struct file *file = iocb->ki_filp;
2468 	struct address_space *mapping = file->f_mapping;
2469 	struct inode *inode = mapping->host;
2470 	ssize_t ret;
2471 
2472 	BUG_ON(iocb->ki_pos != pos);
2473 
2474 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2475 			&iocb->ki_pos);
2476 
2477 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2478 		ssize_t err;
2479 
2480 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2481 		if (err < 0)
2482 			ret = err;
2483 	}
2484 	return ret;
2485 }
2486 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2487 
2488 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2489 		unsigned long nr_segs, loff_t pos)
2490 {
2491 	struct file *file = iocb->ki_filp;
2492 	struct address_space *mapping = file->f_mapping;
2493 	struct inode *inode = mapping->host;
2494 	ssize_t ret;
2495 
2496 	BUG_ON(iocb->ki_pos != pos);
2497 
2498 	mutex_lock(&inode->i_mutex);
2499 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2500 			&iocb->ki_pos);
2501 	mutex_unlock(&inode->i_mutex);
2502 
2503 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2504 		ssize_t err;
2505 
2506 		err = sync_page_range(inode, mapping, pos, ret);
2507 		if (err < 0)
2508 			ret = err;
2509 	}
2510 	return ret;
2511 }
2512 EXPORT_SYMBOL(generic_file_aio_write);
2513 
2514 /*
2515  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2516  * went wrong during pagecache shootdown.
2517  */
2518 static ssize_t
2519 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2520 	loff_t offset, unsigned long nr_segs)
2521 {
2522 	struct file *file = iocb->ki_filp;
2523 	struct address_space *mapping = file->f_mapping;
2524 	ssize_t retval;
2525 	size_t write_len;
2526 	pgoff_t end = 0; /* silence gcc */
2527 
2528 	/*
2529 	 * If it's a write, unmap all mmappings of the file up-front.  This
2530 	 * will cause any pte dirty bits to be propagated into the pageframes
2531 	 * for the subsequent filemap_write_and_wait().
2532 	 */
2533 	if (rw == WRITE) {
2534 		write_len = iov_length(iov, nr_segs);
2535 		end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2536 	       	if (mapping_mapped(mapping))
2537 			unmap_mapping_range(mapping, offset, write_len, 0);
2538 	}
2539 
2540 	retval = filemap_write_and_wait(mapping);
2541 	if (retval)
2542 		goto out;
2543 
2544 	/*
2545 	 * After a write we want buffered reads to be sure to go to disk to get
2546 	 * the new data.  We invalidate clean cached page from the region we're
2547 	 * about to write.  We do this *before* the write so that we can return
2548 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2549 	 */
2550 	if (rw == WRITE && mapping->nrpages) {
2551 		retval = invalidate_inode_pages2_range(mapping,
2552 					offset >> PAGE_CACHE_SHIFT, end);
2553 		if (retval)
2554 			goto out;
2555 	}
2556 
2557 	retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2558 
2559 	/*
2560 	 * Finally, try again to invalidate clean pages which might have been
2561 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2562 	 * if the source of the write was an mmap'ed region of the file
2563 	 * we're writing.  Either one is a pretty crazy thing to do,
2564 	 * so we don't support it 100%.  If this invalidation
2565 	 * fails, tough, the write still worked...
2566 	 */
2567 	if (rw == WRITE && mapping->nrpages) {
2568 		invalidate_inode_pages2_range(mapping, offset >> PAGE_CACHE_SHIFT, end);
2569 	}
2570 out:
2571 	return retval;
2572 }
2573 
2574 /**
2575  * try_to_release_page() - release old fs-specific metadata on a page
2576  *
2577  * @page: the page which the kernel is trying to free
2578  * @gfp_mask: memory allocation flags (and I/O mode)
2579  *
2580  * The address_space is to try to release any data against the page
2581  * (presumably at page->private).  If the release was successful, return `1'.
2582  * Otherwise return zero.
2583  *
2584  * The @gfp_mask argument specifies whether I/O may be performed to release
2585  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2586  *
2587  * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2588  */
2589 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2590 {
2591 	struct address_space * const mapping = page->mapping;
2592 
2593 	BUG_ON(!PageLocked(page));
2594 	if (PageWriteback(page))
2595 		return 0;
2596 
2597 	if (mapping && mapping->a_ops->releasepage)
2598 		return mapping->a_ops->releasepage(page, gfp_mask);
2599 	return try_to_free_buffers(page);
2600 }
2601 
2602 EXPORT_SYMBOL(try_to_release_page);
2603