xref: /linux/mm/filemap.c (revision 17b121ad0c43342bc894632f6710b894849ca372)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_rwsem
80  *    ->invalidate_lock		(acquired by fs in truncate path)
81  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
82  *
83  *  ->mmap_lock
84  *    ->i_mmap_rwsem
85  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
86  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
87  *
88  *  ->mmap_lock
89  *    ->invalidate_lock		(filemap_fault)
90  *      ->lock_page		(filemap_fault, access_process_vm)
91  *
92  *  ->i_rwsem			(generic_perform_write)
93  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
94  *
95  *  bdi->wb.list_lock
96  *    sb_lock			(fs/fs-writeback.c)
97  *    ->i_pages lock		(__sync_single_inode)
98  *
99  *  ->i_mmap_rwsem
100  *    ->anon_vma.lock		(vma_adjust)
101  *
102  *  ->anon_vma.lock
103  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
104  *
105  *  ->page_table_lock or pte_lock
106  *    ->swap_lock		(try_to_unmap_one)
107  *    ->private_lock		(try_to_unmap_one)
108  *    ->i_pages lock		(try_to_unmap_one)
109  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
110  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
111  *    ->private_lock		(page_remove_rmap->set_page_dirty)
112  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
113  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
114  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
115  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
116  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
117  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
118  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
119  *
120  * ->i_mmap_rwsem
121  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
122  */
123 
124 static void page_cache_delete(struct address_space *mapping,
125 				   struct page *page, void *shadow)
126 {
127 	XA_STATE(xas, &mapping->i_pages, page->index);
128 	unsigned int nr = 1;
129 
130 	mapping_set_update(&xas, mapping);
131 
132 	/* hugetlb pages are represented by a single entry in the xarray */
133 	if (!PageHuge(page)) {
134 		xas_set_order(&xas, page->index, compound_order(page));
135 		nr = compound_nr(page);
136 	}
137 
138 	VM_BUG_ON_PAGE(!PageLocked(page), page);
139 	VM_BUG_ON_PAGE(PageTail(page), page);
140 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
141 
142 	xas_store(&xas, shadow);
143 	xas_init_marks(&xas);
144 
145 	page->mapping = NULL;
146 	/* Leave page->index set: truncation lookup relies upon it */
147 	mapping->nrpages -= nr;
148 }
149 
150 static void unaccount_page_cache_page(struct address_space *mapping,
151 				      struct page *page)
152 {
153 	int nr;
154 
155 	/*
156 	 * if we're uptodate, flush out into the cleancache, otherwise
157 	 * invalidate any existing cleancache entries.  We can't leave
158 	 * stale data around in the cleancache once our page is gone
159 	 */
160 	if (PageUptodate(page) && PageMappedToDisk(page))
161 		cleancache_put_page(page);
162 	else
163 		cleancache_invalidate_page(mapping, page);
164 
165 	VM_BUG_ON_PAGE(PageTail(page), page);
166 	VM_BUG_ON_PAGE(page_mapped(page), page);
167 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
168 		int mapcount;
169 
170 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
171 			 current->comm, page_to_pfn(page));
172 		dump_page(page, "still mapped when deleted");
173 		dump_stack();
174 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
175 
176 		mapcount = page_mapcount(page);
177 		if (mapping_exiting(mapping) &&
178 		    page_count(page) >= mapcount + 2) {
179 			/*
180 			 * All vmas have already been torn down, so it's
181 			 * a good bet that actually the page is unmapped,
182 			 * and we'd prefer not to leak it: if we're wrong,
183 			 * some other bad page check should catch it later.
184 			 */
185 			page_mapcount_reset(page);
186 			page_ref_sub(page, mapcount);
187 		}
188 	}
189 
190 	/* hugetlb pages do not participate in page cache accounting. */
191 	if (PageHuge(page))
192 		return;
193 
194 	nr = thp_nr_pages(page);
195 
196 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
197 	if (PageSwapBacked(page)) {
198 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
199 		if (PageTransHuge(page))
200 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
201 	} else if (PageTransHuge(page)) {
202 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
203 		filemap_nr_thps_dec(mapping);
204 	}
205 
206 	/*
207 	 * At this point page must be either written or cleaned by
208 	 * truncate.  Dirty page here signals a bug and loss of
209 	 * unwritten data.
210 	 *
211 	 * This fixes dirty accounting after removing the page entirely
212 	 * but leaves PageDirty set: it has no effect for truncated
213 	 * page and anyway will be cleared before returning page into
214 	 * buddy allocator.
215 	 */
216 	if (WARN_ON_ONCE(PageDirty(page)))
217 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
218 }
219 
220 /*
221  * Delete a page from the page cache and free it. Caller has to make
222  * sure the page is locked and that nobody else uses it - or that usage
223  * is safe.  The caller must hold the i_pages lock.
224  */
225 void __delete_from_page_cache(struct page *page, void *shadow)
226 {
227 	struct address_space *mapping = page->mapping;
228 
229 	trace_mm_filemap_delete_from_page_cache(page);
230 
231 	unaccount_page_cache_page(mapping, page);
232 	page_cache_delete(mapping, page, shadow);
233 }
234 
235 static void page_cache_free_page(struct address_space *mapping,
236 				struct page *page)
237 {
238 	void (*freepage)(struct page *);
239 
240 	freepage = mapping->a_ops->freepage;
241 	if (freepage)
242 		freepage(page);
243 
244 	if (PageTransHuge(page) && !PageHuge(page)) {
245 		page_ref_sub(page, thp_nr_pages(page));
246 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
247 	} else {
248 		put_page(page);
249 	}
250 }
251 
252 /**
253  * delete_from_page_cache - delete page from page cache
254  * @page: the page which the kernel is trying to remove from page cache
255  *
256  * This must be called only on pages that have been verified to be in the page
257  * cache and locked.  It will never put the page into the free list, the caller
258  * has a reference on the page.
259  */
260 void delete_from_page_cache(struct page *page)
261 {
262 	struct address_space *mapping = page_mapping(page);
263 	unsigned long flags;
264 
265 	BUG_ON(!PageLocked(page));
266 	xa_lock_irqsave(&mapping->i_pages, flags);
267 	__delete_from_page_cache(page, NULL);
268 	xa_unlock_irqrestore(&mapping->i_pages, flags);
269 
270 	page_cache_free_page(mapping, page);
271 }
272 EXPORT_SYMBOL(delete_from_page_cache);
273 
274 /*
275  * page_cache_delete_batch - delete several pages from page cache
276  * @mapping: the mapping to which pages belong
277  * @pvec: pagevec with pages to delete
278  *
279  * The function walks over mapping->i_pages and removes pages passed in @pvec
280  * from the mapping. The function expects @pvec to be sorted by page index
281  * and is optimised for it to be dense.
282  * It tolerates holes in @pvec (mapping entries at those indices are not
283  * modified). The function expects only THP head pages to be present in the
284  * @pvec.
285  *
286  * The function expects the i_pages lock to be held.
287  */
288 static void page_cache_delete_batch(struct address_space *mapping,
289 			     struct pagevec *pvec)
290 {
291 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
292 	int total_pages = 0;
293 	int i = 0;
294 	struct page *page;
295 
296 	mapping_set_update(&xas, mapping);
297 	xas_for_each(&xas, page, ULONG_MAX) {
298 		if (i >= pagevec_count(pvec))
299 			break;
300 
301 		/* A swap/dax/shadow entry got inserted? Skip it. */
302 		if (xa_is_value(page))
303 			continue;
304 		/*
305 		 * A page got inserted in our range? Skip it. We have our
306 		 * pages locked so they are protected from being removed.
307 		 * If we see a page whose index is higher than ours, it
308 		 * means our page has been removed, which shouldn't be
309 		 * possible because we're holding the PageLock.
310 		 */
311 		if (page != pvec->pages[i]) {
312 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
313 					page);
314 			continue;
315 		}
316 
317 		WARN_ON_ONCE(!PageLocked(page));
318 
319 		if (page->index == xas.xa_index)
320 			page->mapping = NULL;
321 		/* Leave page->index set: truncation lookup relies on it */
322 
323 		/*
324 		 * Move to the next page in the vector if this is a regular
325 		 * page or the index is of the last sub-page of this compound
326 		 * page.
327 		 */
328 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
329 			i++;
330 		xas_store(&xas, NULL);
331 		total_pages++;
332 	}
333 	mapping->nrpages -= total_pages;
334 }
335 
336 void delete_from_page_cache_batch(struct address_space *mapping,
337 				  struct pagevec *pvec)
338 {
339 	int i;
340 	unsigned long flags;
341 
342 	if (!pagevec_count(pvec))
343 		return;
344 
345 	xa_lock_irqsave(&mapping->i_pages, flags);
346 	for (i = 0; i < pagevec_count(pvec); i++) {
347 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
348 
349 		unaccount_page_cache_page(mapping, pvec->pages[i]);
350 	}
351 	page_cache_delete_batch(mapping, pvec);
352 	xa_unlock_irqrestore(&mapping->i_pages, flags);
353 
354 	for (i = 0; i < pagevec_count(pvec); i++)
355 		page_cache_free_page(mapping, pvec->pages[i]);
356 }
357 
358 int filemap_check_errors(struct address_space *mapping)
359 {
360 	int ret = 0;
361 	/* Check for outstanding write errors */
362 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
363 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
364 		ret = -ENOSPC;
365 	if (test_bit(AS_EIO, &mapping->flags) &&
366 	    test_and_clear_bit(AS_EIO, &mapping->flags))
367 		ret = -EIO;
368 	return ret;
369 }
370 EXPORT_SYMBOL(filemap_check_errors);
371 
372 static int filemap_check_and_keep_errors(struct address_space *mapping)
373 {
374 	/* Check for outstanding write errors */
375 	if (test_bit(AS_EIO, &mapping->flags))
376 		return -EIO;
377 	if (test_bit(AS_ENOSPC, &mapping->flags))
378 		return -ENOSPC;
379 	return 0;
380 }
381 
382 /**
383  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
384  * @mapping:	address space structure to write
385  * @wbc:	the writeback_control controlling the writeout
386  *
387  * Call writepages on the mapping using the provided wbc to control the
388  * writeout.
389  *
390  * Return: %0 on success, negative error code otherwise.
391  */
392 int filemap_fdatawrite_wbc(struct address_space *mapping,
393 			   struct writeback_control *wbc)
394 {
395 	int ret;
396 
397 	if (!mapping_can_writeback(mapping) ||
398 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
399 		return 0;
400 
401 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
402 	ret = do_writepages(mapping, wbc);
403 	wbc_detach_inode(wbc);
404 	return ret;
405 }
406 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
407 
408 /**
409  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
410  * @mapping:	address space structure to write
411  * @start:	offset in bytes where the range starts
412  * @end:	offset in bytes where the range ends (inclusive)
413  * @sync_mode:	enable synchronous operation
414  *
415  * Start writeback against all of a mapping's dirty pages that lie
416  * within the byte offsets <start, end> inclusive.
417  *
418  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
419  * opposed to a regular memory cleansing writeback.  The difference between
420  * these two operations is that if a dirty page/buffer is encountered, it must
421  * be waited upon, and not just skipped over.
422  *
423  * Return: %0 on success, negative error code otherwise.
424  */
425 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
426 				loff_t end, int sync_mode)
427 {
428 	struct writeback_control wbc = {
429 		.sync_mode = sync_mode,
430 		.nr_to_write = LONG_MAX,
431 		.range_start = start,
432 		.range_end = end,
433 	};
434 
435 	return filemap_fdatawrite_wbc(mapping, &wbc);
436 }
437 
438 static inline int __filemap_fdatawrite(struct address_space *mapping,
439 	int sync_mode)
440 {
441 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
442 }
443 
444 int filemap_fdatawrite(struct address_space *mapping)
445 {
446 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
447 }
448 EXPORT_SYMBOL(filemap_fdatawrite);
449 
450 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
451 				loff_t end)
452 {
453 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
454 }
455 EXPORT_SYMBOL(filemap_fdatawrite_range);
456 
457 /**
458  * filemap_flush - mostly a non-blocking flush
459  * @mapping:	target address_space
460  *
461  * This is a mostly non-blocking flush.  Not suitable for data-integrity
462  * purposes - I/O may not be started against all dirty pages.
463  *
464  * Return: %0 on success, negative error code otherwise.
465  */
466 int filemap_flush(struct address_space *mapping)
467 {
468 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
469 }
470 EXPORT_SYMBOL(filemap_flush);
471 
472 /**
473  * filemap_range_has_page - check if a page exists in range.
474  * @mapping:           address space within which to check
475  * @start_byte:        offset in bytes where the range starts
476  * @end_byte:          offset in bytes where the range ends (inclusive)
477  *
478  * Find at least one page in the range supplied, usually used to check if
479  * direct writing in this range will trigger a writeback.
480  *
481  * Return: %true if at least one page exists in the specified range,
482  * %false otherwise.
483  */
484 bool filemap_range_has_page(struct address_space *mapping,
485 			   loff_t start_byte, loff_t end_byte)
486 {
487 	struct page *page;
488 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
489 	pgoff_t max = end_byte >> PAGE_SHIFT;
490 
491 	if (end_byte < start_byte)
492 		return false;
493 
494 	rcu_read_lock();
495 	for (;;) {
496 		page = xas_find(&xas, max);
497 		if (xas_retry(&xas, page))
498 			continue;
499 		/* Shadow entries don't count */
500 		if (xa_is_value(page))
501 			continue;
502 		/*
503 		 * We don't need to try to pin this page; we're about to
504 		 * release the RCU lock anyway.  It is enough to know that
505 		 * there was a page here recently.
506 		 */
507 		break;
508 	}
509 	rcu_read_unlock();
510 
511 	return page != NULL;
512 }
513 EXPORT_SYMBOL(filemap_range_has_page);
514 
515 static void __filemap_fdatawait_range(struct address_space *mapping,
516 				     loff_t start_byte, loff_t end_byte)
517 {
518 	pgoff_t index = start_byte >> PAGE_SHIFT;
519 	pgoff_t end = end_byte >> PAGE_SHIFT;
520 	struct pagevec pvec;
521 	int nr_pages;
522 
523 	if (end_byte < start_byte)
524 		return;
525 
526 	pagevec_init(&pvec);
527 	while (index <= end) {
528 		unsigned i;
529 
530 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
531 				end, PAGECACHE_TAG_WRITEBACK);
532 		if (!nr_pages)
533 			break;
534 
535 		for (i = 0; i < nr_pages; i++) {
536 			struct page *page = pvec.pages[i];
537 
538 			wait_on_page_writeback(page);
539 			ClearPageError(page);
540 		}
541 		pagevec_release(&pvec);
542 		cond_resched();
543 	}
544 }
545 
546 /**
547  * filemap_fdatawait_range - wait for writeback to complete
548  * @mapping:		address space structure to wait for
549  * @start_byte:		offset in bytes where the range starts
550  * @end_byte:		offset in bytes where the range ends (inclusive)
551  *
552  * Walk the list of under-writeback pages of the given address space
553  * in the given range and wait for all of them.  Check error status of
554  * the address space and return it.
555  *
556  * Since the error status of the address space is cleared by this function,
557  * callers are responsible for checking the return value and handling and/or
558  * reporting the error.
559  *
560  * Return: error status of the address space.
561  */
562 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
563 			    loff_t end_byte)
564 {
565 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
566 	return filemap_check_errors(mapping);
567 }
568 EXPORT_SYMBOL(filemap_fdatawait_range);
569 
570 /**
571  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
572  * @mapping:		address space structure to wait for
573  * @start_byte:		offset in bytes where the range starts
574  * @end_byte:		offset in bytes where the range ends (inclusive)
575  *
576  * Walk the list of under-writeback pages of the given address space in the
577  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
578  * this function does not clear error status of the address space.
579  *
580  * Use this function if callers don't handle errors themselves.  Expected
581  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
582  * fsfreeze(8)
583  */
584 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
585 		loff_t start_byte, loff_t end_byte)
586 {
587 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
588 	return filemap_check_and_keep_errors(mapping);
589 }
590 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
591 
592 /**
593  * file_fdatawait_range - wait for writeback to complete
594  * @file:		file pointing to address space structure to wait for
595  * @start_byte:		offset in bytes where the range starts
596  * @end_byte:		offset in bytes where the range ends (inclusive)
597  *
598  * Walk the list of under-writeback pages of the address space that file
599  * refers to, in the given range and wait for all of them.  Check error
600  * status of the address space vs. the file->f_wb_err cursor and return it.
601  *
602  * Since the error status of the file is advanced by this function,
603  * callers are responsible for checking the return value and handling and/or
604  * reporting the error.
605  *
606  * Return: error status of the address space vs. the file->f_wb_err cursor.
607  */
608 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
609 {
610 	struct address_space *mapping = file->f_mapping;
611 
612 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
613 	return file_check_and_advance_wb_err(file);
614 }
615 EXPORT_SYMBOL(file_fdatawait_range);
616 
617 /**
618  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
619  * @mapping: address space structure to wait for
620  *
621  * Walk the list of under-writeback pages of the given address space
622  * and wait for all of them.  Unlike filemap_fdatawait(), this function
623  * does not clear error status of the address space.
624  *
625  * Use this function if callers don't handle errors themselves.  Expected
626  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
627  * fsfreeze(8)
628  *
629  * Return: error status of the address space.
630  */
631 int filemap_fdatawait_keep_errors(struct address_space *mapping)
632 {
633 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
634 	return filemap_check_and_keep_errors(mapping);
635 }
636 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
637 
638 /* Returns true if writeback might be needed or already in progress. */
639 static bool mapping_needs_writeback(struct address_space *mapping)
640 {
641 	return mapping->nrpages;
642 }
643 
644 /**
645  * filemap_range_needs_writeback - check if range potentially needs writeback
646  * @mapping:           address space within which to check
647  * @start_byte:        offset in bytes where the range starts
648  * @end_byte:          offset in bytes where the range ends (inclusive)
649  *
650  * Find at least one page in the range supplied, usually used to check if
651  * direct writing in this range will trigger a writeback. Used by O_DIRECT
652  * read/write with IOCB_NOWAIT, to see if the caller needs to do
653  * filemap_write_and_wait_range() before proceeding.
654  *
655  * Return: %true if the caller should do filemap_write_and_wait_range() before
656  * doing O_DIRECT to a page in this range, %false otherwise.
657  */
658 bool filemap_range_needs_writeback(struct address_space *mapping,
659 				   loff_t start_byte, loff_t end_byte)
660 {
661 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
662 	pgoff_t max = end_byte >> PAGE_SHIFT;
663 	struct page *page;
664 
665 	if (!mapping_needs_writeback(mapping))
666 		return false;
667 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
668 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
669 		return false;
670 	if (end_byte < start_byte)
671 		return false;
672 
673 	rcu_read_lock();
674 	xas_for_each(&xas, page, max) {
675 		if (xas_retry(&xas, page))
676 			continue;
677 		if (xa_is_value(page))
678 			continue;
679 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
680 			break;
681 	}
682 	rcu_read_unlock();
683 	return page != NULL;
684 }
685 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
686 
687 /**
688  * filemap_write_and_wait_range - write out & wait on a file range
689  * @mapping:	the address_space for the pages
690  * @lstart:	offset in bytes where the range starts
691  * @lend:	offset in bytes where the range ends (inclusive)
692  *
693  * Write out and wait upon file offsets lstart->lend, inclusive.
694  *
695  * Note that @lend is inclusive (describes the last byte to be written) so
696  * that this function can be used to write to the very end-of-file (end = -1).
697  *
698  * Return: error status of the address space.
699  */
700 int filemap_write_and_wait_range(struct address_space *mapping,
701 				 loff_t lstart, loff_t lend)
702 {
703 	int err = 0;
704 
705 	if (mapping_needs_writeback(mapping)) {
706 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
707 						 WB_SYNC_ALL);
708 		/*
709 		 * Even if the above returned error, the pages may be
710 		 * written partially (e.g. -ENOSPC), so we wait for it.
711 		 * But the -EIO is special case, it may indicate the worst
712 		 * thing (e.g. bug) happened, so we avoid waiting for it.
713 		 */
714 		if (err != -EIO) {
715 			int err2 = filemap_fdatawait_range(mapping,
716 						lstart, lend);
717 			if (!err)
718 				err = err2;
719 		} else {
720 			/* Clear any previously stored errors */
721 			filemap_check_errors(mapping);
722 		}
723 	} else {
724 		err = filemap_check_errors(mapping);
725 	}
726 	return err;
727 }
728 EXPORT_SYMBOL(filemap_write_and_wait_range);
729 
730 void __filemap_set_wb_err(struct address_space *mapping, int err)
731 {
732 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
733 
734 	trace_filemap_set_wb_err(mapping, eseq);
735 }
736 EXPORT_SYMBOL(__filemap_set_wb_err);
737 
738 /**
739  * file_check_and_advance_wb_err - report wb error (if any) that was previously
740  * 				   and advance wb_err to current one
741  * @file: struct file on which the error is being reported
742  *
743  * When userland calls fsync (or something like nfsd does the equivalent), we
744  * want to report any writeback errors that occurred since the last fsync (or
745  * since the file was opened if there haven't been any).
746  *
747  * Grab the wb_err from the mapping. If it matches what we have in the file,
748  * then just quickly return 0. The file is all caught up.
749  *
750  * If it doesn't match, then take the mapping value, set the "seen" flag in
751  * it and try to swap it into place. If it works, or another task beat us
752  * to it with the new value, then update the f_wb_err and return the error
753  * portion. The error at this point must be reported via proper channels
754  * (a'la fsync, or NFS COMMIT operation, etc.).
755  *
756  * While we handle mapping->wb_err with atomic operations, the f_wb_err
757  * value is protected by the f_lock since we must ensure that it reflects
758  * the latest value swapped in for this file descriptor.
759  *
760  * Return: %0 on success, negative error code otherwise.
761  */
762 int file_check_and_advance_wb_err(struct file *file)
763 {
764 	int err = 0;
765 	errseq_t old = READ_ONCE(file->f_wb_err);
766 	struct address_space *mapping = file->f_mapping;
767 
768 	/* Locklessly handle the common case where nothing has changed */
769 	if (errseq_check(&mapping->wb_err, old)) {
770 		/* Something changed, must use slow path */
771 		spin_lock(&file->f_lock);
772 		old = file->f_wb_err;
773 		err = errseq_check_and_advance(&mapping->wb_err,
774 						&file->f_wb_err);
775 		trace_file_check_and_advance_wb_err(file, old);
776 		spin_unlock(&file->f_lock);
777 	}
778 
779 	/*
780 	 * We're mostly using this function as a drop in replacement for
781 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
782 	 * that the legacy code would have had on these flags.
783 	 */
784 	clear_bit(AS_EIO, &mapping->flags);
785 	clear_bit(AS_ENOSPC, &mapping->flags);
786 	return err;
787 }
788 EXPORT_SYMBOL(file_check_and_advance_wb_err);
789 
790 /**
791  * file_write_and_wait_range - write out & wait on a file range
792  * @file:	file pointing to address_space with pages
793  * @lstart:	offset in bytes where the range starts
794  * @lend:	offset in bytes where the range ends (inclusive)
795  *
796  * Write out and wait upon file offsets lstart->lend, inclusive.
797  *
798  * Note that @lend is inclusive (describes the last byte to be written) so
799  * that this function can be used to write to the very end-of-file (end = -1).
800  *
801  * After writing out and waiting on the data, we check and advance the
802  * f_wb_err cursor to the latest value, and return any errors detected there.
803  *
804  * Return: %0 on success, negative error code otherwise.
805  */
806 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
807 {
808 	int err = 0, err2;
809 	struct address_space *mapping = file->f_mapping;
810 
811 	if (mapping_needs_writeback(mapping)) {
812 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
813 						 WB_SYNC_ALL);
814 		/* See comment of filemap_write_and_wait() */
815 		if (err != -EIO)
816 			__filemap_fdatawait_range(mapping, lstart, lend);
817 	}
818 	err2 = file_check_and_advance_wb_err(file);
819 	if (!err)
820 		err = err2;
821 	return err;
822 }
823 EXPORT_SYMBOL(file_write_and_wait_range);
824 
825 /**
826  * replace_page_cache_page - replace a pagecache page with a new one
827  * @old:	page to be replaced
828  * @new:	page to replace with
829  *
830  * This function replaces a page in the pagecache with a new one.  On
831  * success it acquires the pagecache reference for the new page and
832  * drops it for the old page.  Both the old and new pages must be
833  * locked.  This function does not add the new page to the LRU, the
834  * caller must do that.
835  *
836  * The remove + add is atomic.  This function cannot fail.
837  */
838 void replace_page_cache_page(struct page *old, struct page *new)
839 {
840 	struct address_space *mapping = old->mapping;
841 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
842 	pgoff_t offset = old->index;
843 	XA_STATE(xas, &mapping->i_pages, offset);
844 	unsigned long flags;
845 
846 	VM_BUG_ON_PAGE(!PageLocked(old), old);
847 	VM_BUG_ON_PAGE(!PageLocked(new), new);
848 	VM_BUG_ON_PAGE(new->mapping, new);
849 
850 	get_page(new);
851 	new->mapping = mapping;
852 	new->index = offset;
853 
854 	mem_cgroup_migrate(old, new);
855 
856 	xas_lock_irqsave(&xas, flags);
857 	xas_store(&xas, new);
858 
859 	old->mapping = NULL;
860 	/* hugetlb pages do not participate in page cache accounting. */
861 	if (!PageHuge(old))
862 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
863 	if (!PageHuge(new))
864 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
865 	if (PageSwapBacked(old))
866 		__dec_lruvec_page_state(old, NR_SHMEM);
867 	if (PageSwapBacked(new))
868 		__inc_lruvec_page_state(new, NR_SHMEM);
869 	xas_unlock_irqrestore(&xas, flags);
870 	if (freepage)
871 		freepage(old);
872 	put_page(old);
873 }
874 EXPORT_SYMBOL_GPL(replace_page_cache_page);
875 
876 noinline int __add_to_page_cache_locked(struct page *page,
877 					struct address_space *mapping,
878 					pgoff_t offset, gfp_t gfp,
879 					void **shadowp)
880 {
881 	XA_STATE(xas, &mapping->i_pages, offset);
882 	int huge = PageHuge(page);
883 	int error;
884 	bool charged = false;
885 
886 	VM_BUG_ON_PAGE(!PageLocked(page), page);
887 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
888 	mapping_set_update(&xas, mapping);
889 
890 	get_page(page);
891 	page->mapping = mapping;
892 	page->index = offset;
893 
894 	if (!huge) {
895 		error = mem_cgroup_charge(page, NULL, gfp);
896 		if (error)
897 			goto error;
898 		charged = true;
899 	}
900 
901 	gfp &= GFP_RECLAIM_MASK;
902 
903 	do {
904 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
905 		void *entry, *old = NULL;
906 
907 		if (order > thp_order(page))
908 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
909 					order, gfp);
910 		xas_lock_irq(&xas);
911 		xas_for_each_conflict(&xas, entry) {
912 			old = entry;
913 			if (!xa_is_value(entry)) {
914 				xas_set_err(&xas, -EEXIST);
915 				goto unlock;
916 			}
917 		}
918 
919 		if (old) {
920 			if (shadowp)
921 				*shadowp = old;
922 			/* entry may have been split before we acquired lock */
923 			order = xa_get_order(xas.xa, xas.xa_index);
924 			if (order > thp_order(page)) {
925 				xas_split(&xas, old, order);
926 				xas_reset(&xas);
927 			}
928 		}
929 
930 		xas_store(&xas, page);
931 		if (xas_error(&xas))
932 			goto unlock;
933 
934 		mapping->nrpages++;
935 
936 		/* hugetlb pages do not participate in page cache accounting */
937 		if (!huge)
938 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
939 unlock:
940 		xas_unlock_irq(&xas);
941 	} while (xas_nomem(&xas, gfp));
942 
943 	if (xas_error(&xas)) {
944 		error = xas_error(&xas);
945 		if (charged)
946 			mem_cgroup_uncharge(page);
947 		goto error;
948 	}
949 
950 	trace_mm_filemap_add_to_page_cache(page);
951 	return 0;
952 error:
953 	page->mapping = NULL;
954 	/* Leave page->index set: truncation relies upon it */
955 	put_page(page);
956 	return error;
957 }
958 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
959 
960 /**
961  * add_to_page_cache_locked - add a locked page to the pagecache
962  * @page:	page to add
963  * @mapping:	the page's address_space
964  * @offset:	page index
965  * @gfp_mask:	page allocation mode
966  *
967  * This function is used to add a page to the pagecache. It must be locked.
968  * This function does not add the page to the LRU.  The caller must do that.
969  *
970  * Return: %0 on success, negative error code otherwise.
971  */
972 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
973 		pgoff_t offset, gfp_t gfp_mask)
974 {
975 	return __add_to_page_cache_locked(page, mapping, offset,
976 					  gfp_mask, NULL);
977 }
978 EXPORT_SYMBOL(add_to_page_cache_locked);
979 
980 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
981 				pgoff_t offset, gfp_t gfp_mask)
982 {
983 	void *shadow = NULL;
984 	int ret;
985 
986 	__SetPageLocked(page);
987 	ret = __add_to_page_cache_locked(page, mapping, offset,
988 					 gfp_mask, &shadow);
989 	if (unlikely(ret))
990 		__ClearPageLocked(page);
991 	else {
992 		/*
993 		 * The page might have been evicted from cache only
994 		 * recently, in which case it should be activated like
995 		 * any other repeatedly accessed page.
996 		 * The exception is pages getting rewritten; evicting other
997 		 * data from the working set, only to cache data that will
998 		 * get overwritten with something else, is a waste of memory.
999 		 */
1000 		WARN_ON_ONCE(PageActive(page));
1001 		if (!(gfp_mask & __GFP_WRITE) && shadow)
1002 			workingset_refault(page, shadow);
1003 		lru_cache_add(page);
1004 	}
1005 	return ret;
1006 }
1007 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1008 
1009 #ifdef CONFIG_NUMA
1010 struct page *__page_cache_alloc(gfp_t gfp)
1011 {
1012 	int n;
1013 	struct page *page;
1014 
1015 	if (cpuset_do_page_mem_spread()) {
1016 		unsigned int cpuset_mems_cookie;
1017 		do {
1018 			cpuset_mems_cookie = read_mems_allowed_begin();
1019 			n = cpuset_mem_spread_node();
1020 			page = __alloc_pages_node(n, gfp, 0);
1021 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1022 
1023 		return page;
1024 	}
1025 	return alloc_pages(gfp, 0);
1026 }
1027 EXPORT_SYMBOL(__page_cache_alloc);
1028 #endif
1029 
1030 /*
1031  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
1032  *
1033  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
1034  *
1035  * @mapping1: the first mapping to lock
1036  * @mapping2: the second mapping to lock
1037  */
1038 void filemap_invalidate_lock_two(struct address_space *mapping1,
1039 				 struct address_space *mapping2)
1040 {
1041 	if (mapping1 > mapping2)
1042 		swap(mapping1, mapping2);
1043 	if (mapping1)
1044 		down_write(&mapping1->invalidate_lock);
1045 	if (mapping2 && mapping1 != mapping2)
1046 		down_write_nested(&mapping2->invalidate_lock, 1);
1047 }
1048 EXPORT_SYMBOL(filemap_invalidate_lock_two);
1049 
1050 /*
1051  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1052  *
1053  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1054  *
1055  * @mapping1: the first mapping to unlock
1056  * @mapping2: the second mapping to unlock
1057  */
1058 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1059 				   struct address_space *mapping2)
1060 {
1061 	if (mapping1)
1062 		up_write(&mapping1->invalidate_lock);
1063 	if (mapping2 && mapping1 != mapping2)
1064 		up_write(&mapping2->invalidate_lock);
1065 }
1066 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1067 
1068 /*
1069  * In order to wait for pages to become available there must be
1070  * waitqueues associated with pages. By using a hash table of
1071  * waitqueues where the bucket discipline is to maintain all
1072  * waiters on the same queue and wake all when any of the pages
1073  * become available, and for the woken contexts to check to be
1074  * sure the appropriate page became available, this saves space
1075  * at a cost of "thundering herd" phenomena during rare hash
1076  * collisions.
1077  */
1078 #define PAGE_WAIT_TABLE_BITS 8
1079 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1080 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1081 
1082 static wait_queue_head_t *page_waitqueue(struct page *page)
1083 {
1084 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1085 }
1086 
1087 void __init pagecache_init(void)
1088 {
1089 	int i;
1090 
1091 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1092 		init_waitqueue_head(&page_wait_table[i]);
1093 
1094 	page_writeback_init();
1095 }
1096 
1097 /*
1098  * The page wait code treats the "wait->flags" somewhat unusually, because
1099  * we have multiple different kinds of waits, not just the usual "exclusive"
1100  * one.
1101  *
1102  * We have:
1103  *
1104  *  (a) no special bits set:
1105  *
1106  *	We're just waiting for the bit to be released, and when a waker
1107  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1108  *	and remove it from the wait queue.
1109  *
1110  *	Simple and straightforward.
1111  *
1112  *  (b) WQ_FLAG_EXCLUSIVE:
1113  *
1114  *	The waiter is waiting to get the lock, and only one waiter should
1115  *	be woken up to avoid any thundering herd behavior. We'll set the
1116  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1117  *
1118  *	This is the traditional exclusive wait.
1119  *
1120  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1121  *
1122  *	The waiter is waiting to get the bit, and additionally wants the
1123  *	lock to be transferred to it for fair lock behavior. If the lock
1124  *	cannot be taken, we stop walking the wait queue without waking
1125  *	the waiter.
1126  *
1127  *	This is the "fair lock handoff" case, and in addition to setting
1128  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1129  *	that it now has the lock.
1130  */
1131 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1132 {
1133 	unsigned int flags;
1134 	struct wait_page_key *key = arg;
1135 	struct wait_page_queue *wait_page
1136 		= container_of(wait, struct wait_page_queue, wait);
1137 
1138 	if (!wake_page_match(wait_page, key))
1139 		return 0;
1140 
1141 	/*
1142 	 * If it's a lock handoff wait, we get the bit for it, and
1143 	 * stop walking (and do not wake it up) if we can't.
1144 	 */
1145 	flags = wait->flags;
1146 	if (flags & WQ_FLAG_EXCLUSIVE) {
1147 		if (test_bit(key->bit_nr, &key->page->flags))
1148 			return -1;
1149 		if (flags & WQ_FLAG_CUSTOM) {
1150 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1151 				return -1;
1152 			flags |= WQ_FLAG_DONE;
1153 		}
1154 	}
1155 
1156 	/*
1157 	 * We are holding the wait-queue lock, but the waiter that
1158 	 * is waiting for this will be checking the flags without
1159 	 * any locking.
1160 	 *
1161 	 * So update the flags atomically, and wake up the waiter
1162 	 * afterwards to avoid any races. This store-release pairs
1163 	 * with the load-acquire in wait_on_page_bit_common().
1164 	 */
1165 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1166 	wake_up_state(wait->private, mode);
1167 
1168 	/*
1169 	 * Ok, we have successfully done what we're waiting for,
1170 	 * and we can unconditionally remove the wait entry.
1171 	 *
1172 	 * Note that this pairs with the "finish_wait()" in the
1173 	 * waiter, and has to be the absolute last thing we do.
1174 	 * After this list_del_init(&wait->entry) the wait entry
1175 	 * might be de-allocated and the process might even have
1176 	 * exited.
1177 	 */
1178 	list_del_init_careful(&wait->entry);
1179 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1180 }
1181 
1182 static void wake_up_page_bit(struct page *page, int bit_nr)
1183 {
1184 	wait_queue_head_t *q = page_waitqueue(page);
1185 	struct wait_page_key key;
1186 	unsigned long flags;
1187 	wait_queue_entry_t bookmark;
1188 
1189 	key.page = page;
1190 	key.bit_nr = bit_nr;
1191 	key.page_match = 0;
1192 
1193 	bookmark.flags = 0;
1194 	bookmark.private = NULL;
1195 	bookmark.func = NULL;
1196 	INIT_LIST_HEAD(&bookmark.entry);
1197 
1198 	spin_lock_irqsave(&q->lock, flags);
1199 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1200 
1201 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1202 		/*
1203 		 * Take a breather from holding the lock,
1204 		 * allow pages that finish wake up asynchronously
1205 		 * to acquire the lock and remove themselves
1206 		 * from wait queue
1207 		 */
1208 		spin_unlock_irqrestore(&q->lock, flags);
1209 		cpu_relax();
1210 		spin_lock_irqsave(&q->lock, flags);
1211 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1212 	}
1213 
1214 	/*
1215 	 * It is possible for other pages to have collided on the waitqueue
1216 	 * hash, so in that case check for a page match. That prevents a long-
1217 	 * term waiter
1218 	 *
1219 	 * It is still possible to miss a case here, when we woke page waiters
1220 	 * and removed them from the waitqueue, but there are still other
1221 	 * page waiters.
1222 	 */
1223 	if (!waitqueue_active(q) || !key.page_match) {
1224 		ClearPageWaiters(page);
1225 		/*
1226 		 * It's possible to miss clearing Waiters here, when we woke
1227 		 * our page waiters, but the hashed waitqueue has waiters for
1228 		 * other pages on it.
1229 		 *
1230 		 * That's okay, it's a rare case. The next waker will clear it.
1231 		 */
1232 	}
1233 	spin_unlock_irqrestore(&q->lock, flags);
1234 }
1235 
1236 static void wake_up_page(struct page *page, int bit)
1237 {
1238 	if (!PageWaiters(page))
1239 		return;
1240 	wake_up_page_bit(page, bit);
1241 }
1242 
1243 /*
1244  * A choice of three behaviors for wait_on_page_bit_common():
1245  */
1246 enum behavior {
1247 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1248 			 * __lock_page() waiting on then setting PG_locked.
1249 			 */
1250 	SHARED,		/* Hold ref to page and check the bit when woken, like
1251 			 * wait_on_page_writeback() waiting on PG_writeback.
1252 			 */
1253 	DROP,		/* Drop ref to page before wait, no check when woken,
1254 			 * like put_and_wait_on_page_locked() on PG_locked.
1255 			 */
1256 };
1257 
1258 /*
1259  * Attempt to check (or get) the page bit, and mark us done
1260  * if successful.
1261  */
1262 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1263 					struct wait_queue_entry *wait)
1264 {
1265 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1266 		if (test_and_set_bit(bit_nr, &page->flags))
1267 			return false;
1268 	} else if (test_bit(bit_nr, &page->flags))
1269 		return false;
1270 
1271 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1272 	return true;
1273 }
1274 
1275 /* How many times do we accept lock stealing from under a waiter? */
1276 int sysctl_page_lock_unfairness = 5;
1277 
1278 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1279 	struct page *page, int bit_nr, int state, enum behavior behavior)
1280 {
1281 	int unfairness = sysctl_page_lock_unfairness;
1282 	struct wait_page_queue wait_page;
1283 	wait_queue_entry_t *wait = &wait_page.wait;
1284 	bool thrashing = false;
1285 	bool delayacct = false;
1286 	unsigned long pflags;
1287 
1288 	if (bit_nr == PG_locked &&
1289 	    !PageUptodate(page) && PageWorkingset(page)) {
1290 		if (!PageSwapBacked(page)) {
1291 			delayacct_thrashing_start();
1292 			delayacct = true;
1293 		}
1294 		psi_memstall_enter(&pflags);
1295 		thrashing = true;
1296 	}
1297 
1298 	init_wait(wait);
1299 	wait->func = wake_page_function;
1300 	wait_page.page = page;
1301 	wait_page.bit_nr = bit_nr;
1302 
1303 repeat:
1304 	wait->flags = 0;
1305 	if (behavior == EXCLUSIVE) {
1306 		wait->flags = WQ_FLAG_EXCLUSIVE;
1307 		if (--unfairness < 0)
1308 			wait->flags |= WQ_FLAG_CUSTOM;
1309 	}
1310 
1311 	/*
1312 	 * Do one last check whether we can get the
1313 	 * page bit synchronously.
1314 	 *
1315 	 * Do the SetPageWaiters() marking before that
1316 	 * to let any waker we _just_ missed know they
1317 	 * need to wake us up (otherwise they'll never
1318 	 * even go to the slow case that looks at the
1319 	 * page queue), and add ourselves to the wait
1320 	 * queue if we need to sleep.
1321 	 *
1322 	 * This part needs to be done under the queue
1323 	 * lock to avoid races.
1324 	 */
1325 	spin_lock_irq(&q->lock);
1326 	SetPageWaiters(page);
1327 	if (!trylock_page_bit_common(page, bit_nr, wait))
1328 		__add_wait_queue_entry_tail(q, wait);
1329 	spin_unlock_irq(&q->lock);
1330 
1331 	/*
1332 	 * From now on, all the logic will be based on
1333 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1334 	 * see whether the page bit testing has already
1335 	 * been done by the wake function.
1336 	 *
1337 	 * We can drop our reference to the page.
1338 	 */
1339 	if (behavior == DROP)
1340 		put_page(page);
1341 
1342 	/*
1343 	 * Note that until the "finish_wait()", or until
1344 	 * we see the WQ_FLAG_WOKEN flag, we need to
1345 	 * be very careful with the 'wait->flags', because
1346 	 * we may race with a waker that sets them.
1347 	 */
1348 	for (;;) {
1349 		unsigned int flags;
1350 
1351 		set_current_state(state);
1352 
1353 		/* Loop until we've been woken or interrupted */
1354 		flags = smp_load_acquire(&wait->flags);
1355 		if (!(flags & WQ_FLAG_WOKEN)) {
1356 			if (signal_pending_state(state, current))
1357 				break;
1358 
1359 			io_schedule();
1360 			continue;
1361 		}
1362 
1363 		/* If we were non-exclusive, we're done */
1364 		if (behavior != EXCLUSIVE)
1365 			break;
1366 
1367 		/* If the waker got the lock for us, we're done */
1368 		if (flags & WQ_FLAG_DONE)
1369 			break;
1370 
1371 		/*
1372 		 * Otherwise, if we're getting the lock, we need to
1373 		 * try to get it ourselves.
1374 		 *
1375 		 * And if that fails, we'll have to retry this all.
1376 		 */
1377 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1378 			goto repeat;
1379 
1380 		wait->flags |= WQ_FLAG_DONE;
1381 		break;
1382 	}
1383 
1384 	/*
1385 	 * If a signal happened, this 'finish_wait()' may remove the last
1386 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1387 	 * set. That's ok. The next wakeup will take care of it, and trying
1388 	 * to do it here would be difficult and prone to races.
1389 	 */
1390 	finish_wait(q, wait);
1391 
1392 	if (thrashing) {
1393 		if (delayacct)
1394 			delayacct_thrashing_end();
1395 		psi_memstall_leave(&pflags);
1396 	}
1397 
1398 	/*
1399 	 * NOTE! The wait->flags weren't stable until we've done the
1400 	 * 'finish_wait()', and we could have exited the loop above due
1401 	 * to a signal, and had a wakeup event happen after the signal
1402 	 * test but before the 'finish_wait()'.
1403 	 *
1404 	 * So only after the finish_wait() can we reliably determine
1405 	 * if we got woken up or not, so we can now figure out the final
1406 	 * return value based on that state without races.
1407 	 *
1408 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1409 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1410 	 */
1411 	if (behavior == EXCLUSIVE)
1412 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1413 
1414 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1415 }
1416 
1417 void wait_on_page_bit(struct page *page, int bit_nr)
1418 {
1419 	wait_queue_head_t *q = page_waitqueue(page);
1420 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1421 }
1422 EXPORT_SYMBOL(wait_on_page_bit);
1423 
1424 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1425 {
1426 	wait_queue_head_t *q = page_waitqueue(page);
1427 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1428 }
1429 EXPORT_SYMBOL(wait_on_page_bit_killable);
1430 
1431 /**
1432  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1433  * @page: The page to wait for.
1434  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1435  *
1436  * The caller should hold a reference on @page.  They expect the page to
1437  * become unlocked relatively soon, but do not wish to hold up migration
1438  * (for example) by holding the reference while waiting for the page to
1439  * come unlocked.  After this function returns, the caller should not
1440  * dereference @page.
1441  *
1442  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1443  */
1444 int put_and_wait_on_page_locked(struct page *page, int state)
1445 {
1446 	wait_queue_head_t *q;
1447 
1448 	page = compound_head(page);
1449 	q = page_waitqueue(page);
1450 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1451 }
1452 
1453 /**
1454  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1455  * @page: Page defining the wait queue of interest
1456  * @waiter: Waiter to add to the queue
1457  *
1458  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1459  */
1460 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1461 {
1462 	wait_queue_head_t *q = page_waitqueue(page);
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&q->lock, flags);
1466 	__add_wait_queue_entry_tail(q, waiter);
1467 	SetPageWaiters(page);
1468 	spin_unlock_irqrestore(&q->lock, flags);
1469 }
1470 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1471 
1472 #ifndef clear_bit_unlock_is_negative_byte
1473 
1474 /*
1475  * PG_waiters is the high bit in the same byte as PG_lock.
1476  *
1477  * On x86 (and on many other architectures), we can clear PG_lock and
1478  * test the sign bit at the same time. But if the architecture does
1479  * not support that special operation, we just do this all by hand
1480  * instead.
1481  *
1482  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1483  * being cleared, but a memory barrier should be unnecessary since it is
1484  * in the same byte as PG_locked.
1485  */
1486 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1487 {
1488 	clear_bit_unlock(nr, mem);
1489 	/* smp_mb__after_atomic(); */
1490 	return test_bit(PG_waiters, mem);
1491 }
1492 
1493 #endif
1494 
1495 /**
1496  * unlock_page - unlock a locked page
1497  * @page: the page
1498  *
1499  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1500  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1501  * mechanism between PageLocked pages and PageWriteback pages is shared.
1502  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1503  *
1504  * Note that this depends on PG_waiters being the sign bit in the byte
1505  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1506  * clear the PG_locked bit and test PG_waiters at the same time fairly
1507  * portably (architectures that do LL/SC can test any bit, while x86 can
1508  * test the sign bit).
1509  */
1510 void unlock_page(struct page *page)
1511 {
1512 	BUILD_BUG_ON(PG_waiters != 7);
1513 	page = compound_head(page);
1514 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1515 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1516 		wake_up_page_bit(page, PG_locked);
1517 }
1518 EXPORT_SYMBOL(unlock_page);
1519 
1520 /**
1521  * end_page_private_2 - Clear PG_private_2 and release any waiters
1522  * @page: The page
1523  *
1524  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1525  * this.  The page ref held for PG_private_2 being set is released.
1526  *
1527  * This is, for example, used when a netfs page is being written to a local
1528  * disk cache, thereby allowing writes to the cache for the same page to be
1529  * serialised.
1530  */
1531 void end_page_private_2(struct page *page)
1532 {
1533 	page = compound_head(page);
1534 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1535 	clear_bit_unlock(PG_private_2, &page->flags);
1536 	wake_up_page_bit(page, PG_private_2);
1537 	put_page(page);
1538 }
1539 EXPORT_SYMBOL(end_page_private_2);
1540 
1541 /**
1542  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1543  * @page: The page to wait on
1544  *
1545  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1546  */
1547 void wait_on_page_private_2(struct page *page)
1548 {
1549 	page = compound_head(page);
1550 	while (PagePrivate2(page))
1551 		wait_on_page_bit(page, PG_private_2);
1552 }
1553 EXPORT_SYMBOL(wait_on_page_private_2);
1554 
1555 /**
1556  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1557  * @page: The page to wait on
1558  *
1559  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1560  * fatal signal is received by the calling task.
1561  *
1562  * Return:
1563  * - 0 if successful.
1564  * - -EINTR if a fatal signal was encountered.
1565  */
1566 int wait_on_page_private_2_killable(struct page *page)
1567 {
1568 	int ret = 0;
1569 
1570 	page = compound_head(page);
1571 	while (PagePrivate2(page)) {
1572 		ret = wait_on_page_bit_killable(page, PG_private_2);
1573 		if (ret < 0)
1574 			break;
1575 	}
1576 
1577 	return ret;
1578 }
1579 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1580 
1581 /**
1582  * end_page_writeback - end writeback against a page
1583  * @page: the page
1584  */
1585 void end_page_writeback(struct page *page)
1586 {
1587 	/*
1588 	 * TestClearPageReclaim could be used here but it is an atomic
1589 	 * operation and overkill in this particular case. Failing to
1590 	 * shuffle a page marked for immediate reclaim is too mild to
1591 	 * justify taking an atomic operation penalty at the end of
1592 	 * ever page writeback.
1593 	 */
1594 	if (PageReclaim(page)) {
1595 		ClearPageReclaim(page);
1596 		rotate_reclaimable_page(page);
1597 	}
1598 
1599 	/*
1600 	 * Writeback does not hold a page reference of its own, relying
1601 	 * on truncation to wait for the clearing of PG_writeback.
1602 	 * But here we must make sure that the page is not freed and
1603 	 * reused before the wake_up_page().
1604 	 */
1605 	get_page(page);
1606 	if (!test_clear_page_writeback(page))
1607 		BUG();
1608 
1609 	smp_mb__after_atomic();
1610 	wake_up_page(page, PG_writeback);
1611 	put_page(page);
1612 }
1613 EXPORT_SYMBOL(end_page_writeback);
1614 
1615 /*
1616  * After completing I/O on a page, call this routine to update the page
1617  * flags appropriately
1618  */
1619 void page_endio(struct page *page, bool is_write, int err)
1620 {
1621 	if (!is_write) {
1622 		if (!err) {
1623 			SetPageUptodate(page);
1624 		} else {
1625 			ClearPageUptodate(page);
1626 			SetPageError(page);
1627 		}
1628 		unlock_page(page);
1629 	} else {
1630 		if (err) {
1631 			struct address_space *mapping;
1632 
1633 			SetPageError(page);
1634 			mapping = page_mapping(page);
1635 			if (mapping)
1636 				mapping_set_error(mapping, err);
1637 		}
1638 		end_page_writeback(page);
1639 	}
1640 }
1641 EXPORT_SYMBOL_GPL(page_endio);
1642 
1643 /**
1644  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1645  * @__page: the page to lock
1646  */
1647 void __lock_page(struct page *__page)
1648 {
1649 	struct page *page = compound_head(__page);
1650 	wait_queue_head_t *q = page_waitqueue(page);
1651 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1652 				EXCLUSIVE);
1653 }
1654 EXPORT_SYMBOL(__lock_page);
1655 
1656 int __lock_page_killable(struct page *__page)
1657 {
1658 	struct page *page = compound_head(__page);
1659 	wait_queue_head_t *q = page_waitqueue(page);
1660 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1661 					EXCLUSIVE);
1662 }
1663 EXPORT_SYMBOL_GPL(__lock_page_killable);
1664 
1665 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1666 {
1667 	struct wait_queue_head *q = page_waitqueue(page);
1668 	int ret = 0;
1669 
1670 	wait->page = page;
1671 	wait->bit_nr = PG_locked;
1672 
1673 	spin_lock_irq(&q->lock);
1674 	__add_wait_queue_entry_tail(q, &wait->wait);
1675 	SetPageWaiters(page);
1676 	ret = !trylock_page(page);
1677 	/*
1678 	 * If we were successful now, we know we're still on the
1679 	 * waitqueue as we're still under the lock. This means it's
1680 	 * safe to remove and return success, we know the callback
1681 	 * isn't going to trigger.
1682 	 */
1683 	if (!ret)
1684 		__remove_wait_queue(q, &wait->wait);
1685 	else
1686 		ret = -EIOCBQUEUED;
1687 	spin_unlock_irq(&q->lock);
1688 	return ret;
1689 }
1690 
1691 /*
1692  * Return values:
1693  * 1 - page is locked; mmap_lock is still held.
1694  * 0 - page is not locked.
1695  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1696  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1697  *     which case mmap_lock is still held.
1698  *
1699  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1700  * with the page locked and the mmap_lock unperturbed.
1701  */
1702 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1703 			 unsigned int flags)
1704 {
1705 	if (fault_flag_allow_retry_first(flags)) {
1706 		/*
1707 		 * CAUTION! In this case, mmap_lock is not released
1708 		 * even though return 0.
1709 		 */
1710 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1711 			return 0;
1712 
1713 		mmap_read_unlock(mm);
1714 		if (flags & FAULT_FLAG_KILLABLE)
1715 			wait_on_page_locked_killable(page);
1716 		else
1717 			wait_on_page_locked(page);
1718 		return 0;
1719 	}
1720 	if (flags & FAULT_FLAG_KILLABLE) {
1721 		int ret;
1722 
1723 		ret = __lock_page_killable(page);
1724 		if (ret) {
1725 			mmap_read_unlock(mm);
1726 			return 0;
1727 		}
1728 	} else {
1729 		__lock_page(page);
1730 	}
1731 	return 1;
1732 
1733 }
1734 
1735 /**
1736  * page_cache_next_miss() - Find the next gap in the page cache.
1737  * @mapping: Mapping.
1738  * @index: Index.
1739  * @max_scan: Maximum range to search.
1740  *
1741  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1742  * gap with the lowest index.
1743  *
1744  * This function may be called under the rcu_read_lock.  However, this will
1745  * not atomically search a snapshot of the cache at a single point in time.
1746  * For example, if a gap is created at index 5, then subsequently a gap is
1747  * created at index 10, page_cache_next_miss covering both indices may
1748  * return 10 if called under the rcu_read_lock.
1749  *
1750  * Return: The index of the gap if found, otherwise an index outside the
1751  * range specified (in which case 'return - index >= max_scan' will be true).
1752  * In the rare case of index wrap-around, 0 will be returned.
1753  */
1754 pgoff_t page_cache_next_miss(struct address_space *mapping,
1755 			     pgoff_t index, unsigned long max_scan)
1756 {
1757 	XA_STATE(xas, &mapping->i_pages, index);
1758 
1759 	while (max_scan--) {
1760 		void *entry = xas_next(&xas);
1761 		if (!entry || xa_is_value(entry))
1762 			break;
1763 		if (xas.xa_index == 0)
1764 			break;
1765 	}
1766 
1767 	return xas.xa_index;
1768 }
1769 EXPORT_SYMBOL(page_cache_next_miss);
1770 
1771 /**
1772  * page_cache_prev_miss() - Find the previous gap in the page cache.
1773  * @mapping: Mapping.
1774  * @index: Index.
1775  * @max_scan: Maximum range to search.
1776  *
1777  * Search the range [max(index - max_scan + 1, 0), index] for the
1778  * gap with the highest index.
1779  *
1780  * This function may be called under the rcu_read_lock.  However, this will
1781  * not atomically search a snapshot of the cache at a single point in time.
1782  * For example, if a gap is created at index 10, then subsequently a gap is
1783  * created at index 5, page_cache_prev_miss() covering both indices may
1784  * return 5 if called under the rcu_read_lock.
1785  *
1786  * Return: The index of the gap if found, otherwise an index outside the
1787  * range specified (in which case 'index - return >= max_scan' will be true).
1788  * In the rare case of wrap-around, ULONG_MAX will be returned.
1789  */
1790 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1791 			     pgoff_t index, unsigned long max_scan)
1792 {
1793 	XA_STATE(xas, &mapping->i_pages, index);
1794 
1795 	while (max_scan--) {
1796 		void *entry = xas_prev(&xas);
1797 		if (!entry || xa_is_value(entry))
1798 			break;
1799 		if (xas.xa_index == ULONG_MAX)
1800 			break;
1801 	}
1802 
1803 	return xas.xa_index;
1804 }
1805 EXPORT_SYMBOL(page_cache_prev_miss);
1806 
1807 /*
1808  * mapping_get_entry - Get a page cache entry.
1809  * @mapping: the address_space to search
1810  * @index: The page cache index.
1811  *
1812  * Looks up the page cache slot at @mapping & @index.  If there is a
1813  * page cache page, the head page is returned with an increased refcount.
1814  *
1815  * If the slot holds a shadow entry of a previously evicted page, or a
1816  * swap entry from shmem/tmpfs, it is returned.
1817  *
1818  * Return: The head page or shadow entry, %NULL if nothing is found.
1819  */
1820 static struct page *mapping_get_entry(struct address_space *mapping,
1821 		pgoff_t index)
1822 {
1823 	XA_STATE(xas, &mapping->i_pages, index);
1824 	struct page *page;
1825 
1826 	rcu_read_lock();
1827 repeat:
1828 	xas_reset(&xas);
1829 	page = xas_load(&xas);
1830 	if (xas_retry(&xas, page))
1831 		goto repeat;
1832 	/*
1833 	 * A shadow entry of a recently evicted page, or a swap entry from
1834 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1835 	 */
1836 	if (!page || xa_is_value(page))
1837 		goto out;
1838 
1839 	if (!page_cache_get_speculative(page))
1840 		goto repeat;
1841 
1842 	/*
1843 	 * Has the page moved or been split?
1844 	 * This is part of the lockless pagecache protocol. See
1845 	 * include/linux/pagemap.h for details.
1846 	 */
1847 	if (unlikely(page != xas_reload(&xas))) {
1848 		put_page(page);
1849 		goto repeat;
1850 	}
1851 out:
1852 	rcu_read_unlock();
1853 
1854 	return page;
1855 }
1856 
1857 /**
1858  * pagecache_get_page - Find and get a reference to a page.
1859  * @mapping: The address_space to search.
1860  * @index: The page index.
1861  * @fgp_flags: %FGP flags modify how the page is returned.
1862  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1863  *
1864  * Looks up the page cache entry at @mapping & @index.
1865  *
1866  * @fgp_flags can be zero or more of these flags:
1867  *
1868  * * %FGP_ACCESSED - The page will be marked accessed.
1869  * * %FGP_LOCK - The page is returned locked.
1870  * * %FGP_HEAD - If the page is present and a THP, return the head page
1871  *   rather than the exact page specified by the index.
1872  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1873  *   instead of allocating a new page to replace it.
1874  * * %FGP_CREAT - If no page is present then a new page is allocated using
1875  *   @gfp_mask and added to the page cache and the VM's LRU list.
1876  *   The page is returned locked and with an increased refcount.
1877  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1878  *   page is already in cache.  If the page was allocated, unlock it before
1879  *   returning so the caller can do the same dance.
1880  * * %FGP_WRITE - The page will be written
1881  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1882  * * %FGP_NOWAIT - Don't get blocked by page lock
1883  *
1884  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1885  * if the %GFP flags specified for %FGP_CREAT are atomic.
1886  *
1887  * If there is a page cache page, it is returned with an increased refcount.
1888  *
1889  * Return: The found page or %NULL otherwise.
1890  */
1891 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1892 		int fgp_flags, gfp_t gfp_mask)
1893 {
1894 	struct page *page;
1895 
1896 repeat:
1897 	page = mapping_get_entry(mapping, index);
1898 	if (xa_is_value(page)) {
1899 		if (fgp_flags & FGP_ENTRY)
1900 			return page;
1901 		page = NULL;
1902 	}
1903 	if (!page)
1904 		goto no_page;
1905 
1906 	if (fgp_flags & FGP_LOCK) {
1907 		if (fgp_flags & FGP_NOWAIT) {
1908 			if (!trylock_page(page)) {
1909 				put_page(page);
1910 				return NULL;
1911 			}
1912 		} else {
1913 			lock_page(page);
1914 		}
1915 
1916 		/* Has the page been truncated? */
1917 		if (unlikely(page->mapping != mapping)) {
1918 			unlock_page(page);
1919 			put_page(page);
1920 			goto repeat;
1921 		}
1922 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1923 	}
1924 
1925 	if (fgp_flags & FGP_ACCESSED)
1926 		mark_page_accessed(page);
1927 	else if (fgp_flags & FGP_WRITE) {
1928 		/* Clear idle flag for buffer write */
1929 		if (page_is_idle(page))
1930 			clear_page_idle(page);
1931 	}
1932 	if (!(fgp_flags & FGP_HEAD))
1933 		page = find_subpage(page, index);
1934 
1935 no_page:
1936 	if (!page && (fgp_flags & FGP_CREAT)) {
1937 		int err;
1938 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1939 			gfp_mask |= __GFP_WRITE;
1940 		if (fgp_flags & FGP_NOFS)
1941 			gfp_mask &= ~__GFP_FS;
1942 
1943 		page = __page_cache_alloc(gfp_mask);
1944 		if (!page)
1945 			return NULL;
1946 
1947 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1948 			fgp_flags |= FGP_LOCK;
1949 
1950 		/* Init accessed so avoid atomic mark_page_accessed later */
1951 		if (fgp_flags & FGP_ACCESSED)
1952 			__SetPageReferenced(page);
1953 
1954 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1955 		if (unlikely(err)) {
1956 			put_page(page);
1957 			page = NULL;
1958 			if (err == -EEXIST)
1959 				goto repeat;
1960 		}
1961 
1962 		/*
1963 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1964 		 * an unlocked page.
1965 		 */
1966 		if (page && (fgp_flags & FGP_FOR_MMAP))
1967 			unlock_page(page);
1968 	}
1969 
1970 	return page;
1971 }
1972 EXPORT_SYMBOL(pagecache_get_page);
1973 
1974 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1975 		xa_mark_t mark)
1976 {
1977 	struct page *page;
1978 
1979 retry:
1980 	if (mark == XA_PRESENT)
1981 		page = xas_find(xas, max);
1982 	else
1983 		page = xas_find_marked(xas, max, mark);
1984 
1985 	if (xas_retry(xas, page))
1986 		goto retry;
1987 	/*
1988 	 * A shadow entry of a recently evicted page, a swap
1989 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1990 	 * without attempting to raise page count.
1991 	 */
1992 	if (!page || xa_is_value(page))
1993 		return page;
1994 
1995 	if (!page_cache_get_speculative(page))
1996 		goto reset;
1997 
1998 	/* Has the page moved or been split? */
1999 	if (unlikely(page != xas_reload(xas))) {
2000 		put_page(page);
2001 		goto reset;
2002 	}
2003 
2004 	return page;
2005 reset:
2006 	xas_reset(xas);
2007 	goto retry;
2008 }
2009 
2010 /**
2011  * find_get_entries - gang pagecache lookup
2012  * @mapping:	The address_space to search
2013  * @start:	The starting page cache index
2014  * @end:	The final page index (inclusive).
2015  * @pvec:	Where the resulting entries are placed.
2016  * @indices:	The cache indices corresponding to the entries in @entries
2017  *
2018  * find_get_entries() will search for and return a batch of entries in
2019  * the mapping.  The entries are placed in @pvec.  find_get_entries()
2020  * takes a reference on any actual pages it returns.
2021  *
2022  * The search returns a group of mapping-contiguous page cache entries
2023  * with ascending indexes.  There may be holes in the indices due to
2024  * not-present pages.
2025  *
2026  * Any shadow entries of evicted pages, or swap entries from
2027  * shmem/tmpfs, are included in the returned array.
2028  *
2029  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
2030  * stops at that page: the caller is likely to have a better way to handle
2031  * the compound page as a whole, and then skip its extent, than repeatedly
2032  * calling find_get_entries() to return all its tails.
2033  *
2034  * Return: the number of pages and shadow entries which were found.
2035  */
2036 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
2037 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2038 {
2039 	XA_STATE(xas, &mapping->i_pages, start);
2040 	struct page *page;
2041 	unsigned int ret = 0;
2042 	unsigned nr_entries = PAGEVEC_SIZE;
2043 
2044 	rcu_read_lock();
2045 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2046 		/*
2047 		 * Terminate early on finding a THP, to allow the caller to
2048 		 * handle it all at once; but continue if this is hugetlbfs.
2049 		 */
2050 		if (!xa_is_value(page) && PageTransHuge(page) &&
2051 				!PageHuge(page)) {
2052 			page = find_subpage(page, xas.xa_index);
2053 			nr_entries = ret + 1;
2054 		}
2055 
2056 		indices[ret] = xas.xa_index;
2057 		pvec->pages[ret] = page;
2058 		if (++ret == nr_entries)
2059 			break;
2060 	}
2061 	rcu_read_unlock();
2062 
2063 	pvec->nr = ret;
2064 	return ret;
2065 }
2066 
2067 /**
2068  * find_lock_entries - Find a batch of pagecache entries.
2069  * @mapping:	The address_space to search.
2070  * @start:	The starting page cache index.
2071  * @end:	The final page index (inclusive).
2072  * @pvec:	Where the resulting entries are placed.
2073  * @indices:	The cache indices of the entries in @pvec.
2074  *
2075  * find_lock_entries() will return a batch of entries from @mapping.
2076  * Swap, shadow and DAX entries are included.  Pages are returned
2077  * locked and with an incremented refcount.  Pages which are locked by
2078  * somebody else or under writeback are skipped.  Only the head page of
2079  * a THP is returned.  Pages which are partially outside the range are
2080  * not returned.
2081  *
2082  * The entries have ascending indexes.  The indices may not be consecutive
2083  * due to not-present entries, THP pages, pages which could not be locked
2084  * or pages under writeback.
2085  *
2086  * Return: The number of entries which were found.
2087  */
2088 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2089 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2090 {
2091 	XA_STATE(xas, &mapping->i_pages, start);
2092 	struct page *page;
2093 
2094 	rcu_read_lock();
2095 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2096 		if (!xa_is_value(page)) {
2097 			if (page->index < start)
2098 				goto put;
2099 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2100 			if (page->index + thp_nr_pages(page) - 1 > end)
2101 				goto put;
2102 			if (!trylock_page(page))
2103 				goto put;
2104 			if (page->mapping != mapping || PageWriteback(page))
2105 				goto unlock;
2106 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2107 					page);
2108 		}
2109 		indices[pvec->nr] = xas.xa_index;
2110 		if (!pagevec_add(pvec, page))
2111 			break;
2112 		goto next;
2113 unlock:
2114 		unlock_page(page);
2115 put:
2116 		put_page(page);
2117 next:
2118 		if (!xa_is_value(page) && PageTransHuge(page)) {
2119 			unsigned int nr_pages = thp_nr_pages(page);
2120 
2121 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2122 			xas_set(&xas, page->index + nr_pages);
2123 			if (xas.xa_index < nr_pages)
2124 				break;
2125 		}
2126 	}
2127 	rcu_read_unlock();
2128 
2129 	return pagevec_count(pvec);
2130 }
2131 
2132 /**
2133  * find_get_pages_range - gang pagecache lookup
2134  * @mapping:	The address_space to search
2135  * @start:	The starting page index
2136  * @end:	The final page index (inclusive)
2137  * @nr_pages:	The maximum number of pages
2138  * @pages:	Where the resulting pages are placed
2139  *
2140  * find_get_pages_range() will search for and return a group of up to @nr_pages
2141  * pages in the mapping starting at index @start and up to index @end
2142  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2143  * a reference against the returned pages.
2144  *
2145  * The search returns a group of mapping-contiguous pages with ascending
2146  * indexes.  There may be holes in the indices due to not-present pages.
2147  * We also update @start to index the next page for the traversal.
2148  *
2149  * Return: the number of pages which were found. If this number is
2150  * smaller than @nr_pages, the end of specified range has been
2151  * reached.
2152  */
2153 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2154 			      pgoff_t end, unsigned int nr_pages,
2155 			      struct page **pages)
2156 {
2157 	XA_STATE(xas, &mapping->i_pages, *start);
2158 	struct page *page;
2159 	unsigned ret = 0;
2160 
2161 	if (unlikely(!nr_pages))
2162 		return 0;
2163 
2164 	rcu_read_lock();
2165 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2166 		/* Skip over shadow, swap and DAX entries */
2167 		if (xa_is_value(page))
2168 			continue;
2169 
2170 		pages[ret] = find_subpage(page, xas.xa_index);
2171 		if (++ret == nr_pages) {
2172 			*start = xas.xa_index + 1;
2173 			goto out;
2174 		}
2175 	}
2176 
2177 	/*
2178 	 * We come here when there is no page beyond @end. We take care to not
2179 	 * overflow the index @start as it confuses some of the callers. This
2180 	 * breaks the iteration when there is a page at index -1 but that is
2181 	 * already broken anyway.
2182 	 */
2183 	if (end == (pgoff_t)-1)
2184 		*start = (pgoff_t)-1;
2185 	else
2186 		*start = end + 1;
2187 out:
2188 	rcu_read_unlock();
2189 
2190 	return ret;
2191 }
2192 
2193 /**
2194  * find_get_pages_contig - gang contiguous pagecache lookup
2195  * @mapping:	The address_space to search
2196  * @index:	The starting page index
2197  * @nr_pages:	The maximum number of pages
2198  * @pages:	Where the resulting pages are placed
2199  *
2200  * find_get_pages_contig() works exactly like find_get_pages(), except
2201  * that the returned number of pages are guaranteed to be contiguous.
2202  *
2203  * Return: the number of pages which were found.
2204  */
2205 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2206 			       unsigned int nr_pages, struct page **pages)
2207 {
2208 	XA_STATE(xas, &mapping->i_pages, index);
2209 	struct page *page;
2210 	unsigned int ret = 0;
2211 
2212 	if (unlikely(!nr_pages))
2213 		return 0;
2214 
2215 	rcu_read_lock();
2216 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2217 		if (xas_retry(&xas, page))
2218 			continue;
2219 		/*
2220 		 * If the entry has been swapped out, we can stop looking.
2221 		 * No current caller is looking for DAX entries.
2222 		 */
2223 		if (xa_is_value(page))
2224 			break;
2225 
2226 		if (!page_cache_get_speculative(page))
2227 			goto retry;
2228 
2229 		/* Has the page moved or been split? */
2230 		if (unlikely(page != xas_reload(&xas)))
2231 			goto put_page;
2232 
2233 		pages[ret] = find_subpage(page, xas.xa_index);
2234 		if (++ret == nr_pages)
2235 			break;
2236 		continue;
2237 put_page:
2238 		put_page(page);
2239 retry:
2240 		xas_reset(&xas);
2241 	}
2242 	rcu_read_unlock();
2243 	return ret;
2244 }
2245 EXPORT_SYMBOL(find_get_pages_contig);
2246 
2247 /**
2248  * find_get_pages_range_tag - Find and return head pages matching @tag.
2249  * @mapping:	the address_space to search
2250  * @index:	the starting page index
2251  * @end:	The final page index (inclusive)
2252  * @tag:	the tag index
2253  * @nr_pages:	the maximum number of pages
2254  * @pages:	where the resulting pages are placed
2255  *
2256  * Like find_get_pages(), except we only return head pages which are tagged
2257  * with @tag.  @index is updated to the index immediately after the last
2258  * page we return, ready for the next iteration.
2259  *
2260  * Return: the number of pages which were found.
2261  */
2262 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2263 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2264 			struct page **pages)
2265 {
2266 	XA_STATE(xas, &mapping->i_pages, *index);
2267 	struct page *page;
2268 	unsigned ret = 0;
2269 
2270 	if (unlikely(!nr_pages))
2271 		return 0;
2272 
2273 	rcu_read_lock();
2274 	while ((page = find_get_entry(&xas, end, tag))) {
2275 		/*
2276 		 * Shadow entries should never be tagged, but this iteration
2277 		 * is lockless so there is a window for page reclaim to evict
2278 		 * a page we saw tagged.  Skip over it.
2279 		 */
2280 		if (xa_is_value(page))
2281 			continue;
2282 
2283 		pages[ret] = page;
2284 		if (++ret == nr_pages) {
2285 			*index = page->index + thp_nr_pages(page);
2286 			goto out;
2287 		}
2288 	}
2289 
2290 	/*
2291 	 * We come here when we got to @end. We take care to not overflow the
2292 	 * index @index as it confuses some of the callers. This breaks the
2293 	 * iteration when there is a page at index -1 but that is already
2294 	 * broken anyway.
2295 	 */
2296 	if (end == (pgoff_t)-1)
2297 		*index = (pgoff_t)-1;
2298 	else
2299 		*index = end + 1;
2300 out:
2301 	rcu_read_unlock();
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL(find_get_pages_range_tag);
2306 
2307 /*
2308  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2309  * a _large_ part of the i/o request. Imagine the worst scenario:
2310  *
2311  *      ---R__________________________________________B__________
2312  *         ^ reading here                             ^ bad block(assume 4k)
2313  *
2314  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2315  * => failing the whole request => read(R) => read(R+1) =>
2316  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2317  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2318  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2319  *
2320  * It is going insane. Fix it by quickly scaling down the readahead size.
2321  */
2322 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2323 {
2324 	ra->ra_pages /= 4;
2325 }
2326 
2327 /*
2328  * filemap_get_read_batch - Get a batch of pages for read
2329  *
2330  * Get a batch of pages which represent a contiguous range of bytes
2331  * in the file.  No tail pages will be returned.  If @index is in the
2332  * middle of a THP, the entire THP will be returned.  The last page in
2333  * the batch may have Readahead set or be not Uptodate so that the
2334  * caller can take the appropriate action.
2335  */
2336 static void filemap_get_read_batch(struct address_space *mapping,
2337 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2338 {
2339 	XA_STATE(xas, &mapping->i_pages, index);
2340 	struct page *head;
2341 
2342 	rcu_read_lock();
2343 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2344 		if (xas_retry(&xas, head))
2345 			continue;
2346 		if (xas.xa_index > max || xa_is_value(head))
2347 			break;
2348 		if (!page_cache_get_speculative(head))
2349 			goto retry;
2350 
2351 		/* Has the page moved or been split? */
2352 		if (unlikely(head != xas_reload(&xas)))
2353 			goto put_page;
2354 
2355 		if (!pagevec_add(pvec, head))
2356 			break;
2357 		if (!PageUptodate(head))
2358 			break;
2359 		if (PageReadahead(head))
2360 			break;
2361 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2362 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2363 		continue;
2364 put_page:
2365 		put_page(head);
2366 retry:
2367 		xas_reset(&xas);
2368 	}
2369 	rcu_read_unlock();
2370 }
2371 
2372 static int filemap_read_page(struct file *file, struct address_space *mapping,
2373 		struct page *page)
2374 {
2375 	int error;
2376 
2377 	/*
2378 	 * A previous I/O error may have been due to temporary failures,
2379 	 * eg. multipath errors.  PG_error will be set again if readpage
2380 	 * fails.
2381 	 */
2382 	ClearPageError(page);
2383 	/* Start the actual read. The read will unlock the page. */
2384 	error = mapping->a_ops->readpage(file, page);
2385 	if (error)
2386 		return error;
2387 
2388 	error = wait_on_page_locked_killable(page);
2389 	if (error)
2390 		return error;
2391 	if (PageUptodate(page))
2392 		return 0;
2393 	shrink_readahead_size_eio(&file->f_ra);
2394 	return -EIO;
2395 }
2396 
2397 static bool filemap_range_uptodate(struct address_space *mapping,
2398 		loff_t pos, struct iov_iter *iter, struct page *page)
2399 {
2400 	int count;
2401 
2402 	if (PageUptodate(page))
2403 		return true;
2404 	/* pipes can't handle partially uptodate pages */
2405 	if (iov_iter_is_pipe(iter))
2406 		return false;
2407 	if (!mapping->a_ops->is_partially_uptodate)
2408 		return false;
2409 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2410 		return false;
2411 
2412 	count = iter->count;
2413 	if (page_offset(page) > pos) {
2414 		count -= page_offset(page) - pos;
2415 		pos = 0;
2416 	} else {
2417 		pos -= page_offset(page);
2418 	}
2419 
2420 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2421 }
2422 
2423 static int filemap_update_page(struct kiocb *iocb,
2424 		struct address_space *mapping, struct iov_iter *iter,
2425 		struct page *page)
2426 {
2427 	int error;
2428 
2429 	if (iocb->ki_flags & IOCB_NOWAIT) {
2430 		if (!filemap_invalidate_trylock_shared(mapping))
2431 			return -EAGAIN;
2432 	} else {
2433 		filemap_invalidate_lock_shared(mapping);
2434 	}
2435 
2436 	if (!trylock_page(page)) {
2437 		error = -EAGAIN;
2438 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2439 			goto unlock_mapping;
2440 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2441 			filemap_invalidate_unlock_shared(mapping);
2442 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2443 			return AOP_TRUNCATED_PAGE;
2444 		}
2445 		error = __lock_page_async(page, iocb->ki_waitq);
2446 		if (error)
2447 			goto unlock_mapping;
2448 	}
2449 
2450 	error = AOP_TRUNCATED_PAGE;
2451 	if (!page->mapping)
2452 		goto unlock;
2453 
2454 	error = 0;
2455 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2456 		goto unlock;
2457 
2458 	error = -EAGAIN;
2459 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2460 		goto unlock;
2461 
2462 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2463 	goto unlock_mapping;
2464 unlock:
2465 	unlock_page(page);
2466 unlock_mapping:
2467 	filemap_invalidate_unlock_shared(mapping);
2468 	if (error == AOP_TRUNCATED_PAGE)
2469 		put_page(page);
2470 	return error;
2471 }
2472 
2473 static int filemap_create_page(struct file *file,
2474 		struct address_space *mapping, pgoff_t index,
2475 		struct pagevec *pvec)
2476 {
2477 	struct page *page;
2478 	int error;
2479 
2480 	page = page_cache_alloc(mapping);
2481 	if (!page)
2482 		return -ENOMEM;
2483 
2484 	/*
2485 	 * Protect against truncate / hole punch. Grabbing invalidate_lock here
2486 	 * assures we cannot instantiate and bring uptodate new pagecache pages
2487 	 * after evicting page cache during truncate and before actually
2488 	 * freeing blocks.  Note that we could release invalidate_lock after
2489 	 * inserting the page into page cache as the locked page would then be
2490 	 * enough to synchronize with hole punching. But there are code paths
2491 	 * such as filemap_update_page() filling in partially uptodate pages or
2492 	 * ->readpages() that need to hold invalidate_lock while mapping blocks
2493 	 * for IO so let's hold the lock here as well to keep locking rules
2494 	 * simple.
2495 	 */
2496 	filemap_invalidate_lock_shared(mapping);
2497 	error = add_to_page_cache_lru(page, mapping, index,
2498 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2499 	if (error == -EEXIST)
2500 		error = AOP_TRUNCATED_PAGE;
2501 	if (error)
2502 		goto error;
2503 
2504 	error = filemap_read_page(file, mapping, page);
2505 	if (error)
2506 		goto error;
2507 
2508 	filemap_invalidate_unlock_shared(mapping);
2509 	pagevec_add(pvec, page);
2510 	return 0;
2511 error:
2512 	filemap_invalidate_unlock_shared(mapping);
2513 	put_page(page);
2514 	return error;
2515 }
2516 
2517 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2518 		struct address_space *mapping, struct page *page,
2519 		pgoff_t last_index)
2520 {
2521 	if (iocb->ki_flags & IOCB_NOIO)
2522 		return -EAGAIN;
2523 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2524 			page->index, last_index - page->index);
2525 	return 0;
2526 }
2527 
2528 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2529 		struct pagevec *pvec)
2530 {
2531 	struct file *filp = iocb->ki_filp;
2532 	struct address_space *mapping = filp->f_mapping;
2533 	struct file_ra_state *ra = &filp->f_ra;
2534 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2535 	pgoff_t last_index;
2536 	struct page *page;
2537 	int err = 0;
2538 
2539 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2540 retry:
2541 	if (fatal_signal_pending(current))
2542 		return -EINTR;
2543 
2544 	filemap_get_read_batch(mapping, index, last_index, pvec);
2545 	if (!pagevec_count(pvec)) {
2546 		if (iocb->ki_flags & IOCB_NOIO)
2547 			return -EAGAIN;
2548 		page_cache_sync_readahead(mapping, ra, filp, index,
2549 				last_index - index);
2550 		filemap_get_read_batch(mapping, index, last_index, pvec);
2551 	}
2552 	if (!pagevec_count(pvec)) {
2553 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2554 			return -EAGAIN;
2555 		err = filemap_create_page(filp, mapping,
2556 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2557 		if (err == AOP_TRUNCATED_PAGE)
2558 			goto retry;
2559 		return err;
2560 	}
2561 
2562 	page = pvec->pages[pagevec_count(pvec) - 1];
2563 	if (PageReadahead(page)) {
2564 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2565 		if (err)
2566 			goto err;
2567 	}
2568 	if (!PageUptodate(page)) {
2569 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2570 			iocb->ki_flags |= IOCB_NOWAIT;
2571 		err = filemap_update_page(iocb, mapping, iter, page);
2572 		if (err)
2573 			goto err;
2574 	}
2575 
2576 	return 0;
2577 err:
2578 	if (err < 0)
2579 		put_page(page);
2580 	if (likely(--pvec->nr))
2581 		return 0;
2582 	if (err == AOP_TRUNCATED_PAGE)
2583 		goto retry;
2584 	return err;
2585 }
2586 
2587 /**
2588  * filemap_read - Read data from the page cache.
2589  * @iocb: The iocb to read.
2590  * @iter: Destination for the data.
2591  * @already_read: Number of bytes already read by the caller.
2592  *
2593  * Copies data from the page cache.  If the data is not currently present,
2594  * uses the readahead and readpage address_space operations to fetch it.
2595  *
2596  * Return: Total number of bytes copied, including those already read by
2597  * the caller.  If an error happens before any bytes are copied, returns
2598  * a negative error number.
2599  */
2600 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2601 		ssize_t already_read)
2602 {
2603 	struct file *filp = iocb->ki_filp;
2604 	struct file_ra_state *ra = &filp->f_ra;
2605 	struct address_space *mapping = filp->f_mapping;
2606 	struct inode *inode = mapping->host;
2607 	struct pagevec pvec;
2608 	int i, error = 0;
2609 	bool writably_mapped;
2610 	loff_t isize, end_offset;
2611 
2612 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2613 		return 0;
2614 	if (unlikely(!iov_iter_count(iter)))
2615 		return 0;
2616 
2617 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2618 	pagevec_init(&pvec);
2619 
2620 	do {
2621 		cond_resched();
2622 
2623 		/*
2624 		 * If we've already successfully copied some data, then we
2625 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2626 		 * an async read NOWAIT at that point.
2627 		 */
2628 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2629 			iocb->ki_flags |= IOCB_NOWAIT;
2630 
2631 		error = filemap_get_pages(iocb, iter, &pvec);
2632 		if (error < 0)
2633 			break;
2634 
2635 		/*
2636 		 * i_size must be checked after we know the pages are Uptodate.
2637 		 *
2638 		 * Checking i_size after the check allows us to calculate
2639 		 * the correct value for "nr", which means the zero-filled
2640 		 * part of the page is not copied back to userspace (unless
2641 		 * another truncate extends the file - this is desired though).
2642 		 */
2643 		isize = i_size_read(inode);
2644 		if (unlikely(iocb->ki_pos >= isize))
2645 			goto put_pages;
2646 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2647 
2648 		/*
2649 		 * Once we start copying data, we don't want to be touching any
2650 		 * cachelines that might be contended:
2651 		 */
2652 		writably_mapped = mapping_writably_mapped(mapping);
2653 
2654 		/*
2655 		 * When a sequential read accesses a page several times, only
2656 		 * mark it as accessed the first time.
2657 		 */
2658 		if (iocb->ki_pos >> PAGE_SHIFT !=
2659 		    ra->prev_pos >> PAGE_SHIFT)
2660 			mark_page_accessed(pvec.pages[0]);
2661 
2662 		for (i = 0; i < pagevec_count(&pvec); i++) {
2663 			struct page *page = pvec.pages[i];
2664 			size_t page_size = thp_size(page);
2665 			size_t offset = iocb->ki_pos & (page_size - 1);
2666 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2667 					     page_size - offset);
2668 			size_t copied;
2669 
2670 			if (end_offset < page_offset(page))
2671 				break;
2672 			if (i > 0)
2673 				mark_page_accessed(page);
2674 			/*
2675 			 * If users can be writing to this page using arbitrary
2676 			 * virtual addresses, take care about potential aliasing
2677 			 * before reading the page on the kernel side.
2678 			 */
2679 			if (writably_mapped) {
2680 				int j;
2681 
2682 				for (j = 0; j < thp_nr_pages(page); j++)
2683 					flush_dcache_page(page + j);
2684 			}
2685 
2686 			copied = copy_page_to_iter(page, offset, bytes, iter);
2687 
2688 			already_read += copied;
2689 			iocb->ki_pos += copied;
2690 			ra->prev_pos = iocb->ki_pos;
2691 
2692 			if (copied < bytes) {
2693 				error = -EFAULT;
2694 				break;
2695 			}
2696 		}
2697 put_pages:
2698 		for (i = 0; i < pagevec_count(&pvec); i++)
2699 			put_page(pvec.pages[i]);
2700 		pagevec_reinit(&pvec);
2701 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2702 
2703 	file_accessed(filp);
2704 
2705 	return already_read ? already_read : error;
2706 }
2707 EXPORT_SYMBOL_GPL(filemap_read);
2708 
2709 /**
2710  * generic_file_read_iter - generic filesystem read routine
2711  * @iocb:	kernel I/O control block
2712  * @iter:	destination for the data read
2713  *
2714  * This is the "read_iter()" routine for all filesystems
2715  * that can use the page cache directly.
2716  *
2717  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2718  * be returned when no data can be read without waiting for I/O requests
2719  * to complete; it doesn't prevent readahead.
2720  *
2721  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2722  * requests shall be made for the read or for readahead.  When no data
2723  * can be read, -EAGAIN shall be returned.  When readahead would be
2724  * triggered, a partial, possibly empty read shall be returned.
2725  *
2726  * Return:
2727  * * number of bytes copied, even for partial reads
2728  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2729  */
2730 ssize_t
2731 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2732 {
2733 	size_t count = iov_iter_count(iter);
2734 	ssize_t retval = 0;
2735 
2736 	if (!count)
2737 		return 0; /* skip atime */
2738 
2739 	if (iocb->ki_flags & IOCB_DIRECT) {
2740 		struct file *file = iocb->ki_filp;
2741 		struct address_space *mapping = file->f_mapping;
2742 		struct inode *inode = mapping->host;
2743 		loff_t size;
2744 
2745 		size = i_size_read(inode);
2746 		if (iocb->ki_flags & IOCB_NOWAIT) {
2747 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2748 						iocb->ki_pos + count - 1))
2749 				return -EAGAIN;
2750 		} else {
2751 			retval = filemap_write_and_wait_range(mapping,
2752 						iocb->ki_pos,
2753 					        iocb->ki_pos + count - 1);
2754 			if (retval < 0)
2755 				return retval;
2756 		}
2757 
2758 		file_accessed(file);
2759 
2760 		retval = mapping->a_ops->direct_IO(iocb, iter);
2761 		if (retval >= 0) {
2762 			iocb->ki_pos += retval;
2763 			count -= retval;
2764 		}
2765 		if (retval != -EIOCBQUEUED)
2766 			iov_iter_revert(iter, count - iov_iter_count(iter));
2767 
2768 		/*
2769 		 * Btrfs can have a short DIO read if we encounter
2770 		 * compressed extents, so if there was an error, or if
2771 		 * we've already read everything we wanted to, or if
2772 		 * there was a short read because we hit EOF, go ahead
2773 		 * and return.  Otherwise fallthrough to buffered io for
2774 		 * the rest of the read.  Buffered reads will not work for
2775 		 * DAX files, so don't bother trying.
2776 		 */
2777 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2778 		    IS_DAX(inode))
2779 			return retval;
2780 	}
2781 
2782 	return filemap_read(iocb, iter, retval);
2783 }
2784 EXPORT_SYMBOL(generic_file_read_iter);
2785 
2786 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2787 		struct address_space *mapping, struct page *page,
2788 		loff_t start, loff_t end, bool seek_data)
2789 {
2790 	const struct address_space_operations *ops = mapping->a_ops;
2791 	size_t offset, bsz = i_blocksize(mapping->host);
2792 
2793 	if (xa_is_value(page) || PageUptodate(page))
2794 		return seek_data ? start : end;
2795 	if (!ops->is_partially_uptodate)
2796 		return seek_data ? end : start;
2797 
2798 	xas_pause(xas);
2799 	rcu_read_unlock();
2800 	lock_page(page);
2801 	if (unlikely(page->mapping != mapping))
2802 		goto unlock;
2803 
2804 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2805 
2806 	do {
2807 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2808 			break;
2809 		start = (start + bsz) & ~(bsz - 1);
2810 		offset += bsz;
2811 	} while (offset < thp_size(page));
2812 unlock:
2813 	unlock_page(page);
2814 	rcu_read_lock();
2815 	return start;
2816 }
2817 
2818 static inline
2819 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2820 {
2821 	if (xa_is_value(page))
2822 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2823 	return thp_size(page);
2824 }
2825 
2826 /**
2827  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2828  * @mapping: Address space to search.
2829  * @start: First byte to consider.
2830  * @end: Limit of search (exclusive).
2831  * @whence: Either SEEK_HOLE or SEEK_DATA.
2832  *
2833  * If the page cache knows which blocks contain holes and which blocks
2834  * contain data, your filesystem can use this function to implement
2835  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2836  * entirely memory-based such as tmpfs, and filesystems which support
2837  * unwritten extents.
2838  *
2839  * Return: The requested offset on success, or -ENXIO if @whence specifies
2840  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2841  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2842  * and @end contain data.
2843  */
2844 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2845 		loff_t end, int whence)
2846 {
2847 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2848 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2849 	bool seek_data = (whence == SEEK_DATA);
2850 	struct page *page;
2851 
2852 	if (end <= start)
2853 		return -ENXIO;
2854 
2855 	rcu_read_lock();
2856 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2857 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2858 		unsigned int seek_size;
2859 
2860 		if (start < pos) {
2861 			if (!seek_data)
2862 				goto unlock;
2863 			start = pos;
2864 		}
2865 
2866 		seek_size = seek_page_size(&xas, page);
2867 		pos = round_up(pos + 1, seek_size);
2868 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2869 				seek_data);
2870 		if (start < pos)
2871 			goto unlock;
2872 		if (start >= end)
2873 			break;
2874 		if (seek_size > PAGE_SIZE)
2875 			xas_set(&xas, pos >> PAGE_SHIFT);
2876 		if (!xa_is_value(page))
2877 			put_page(page);
2878 	}
2879 	if (seek_data)
2880 		start = -ENXIO;
2881 unlock:
2882 	rcu_read_unlock();
2883 	if (page && !xa_is_value(page))
2884 		put_page(page);
2885 	if (start > end)
2886 		return end;
2887 	return start;
2888 }
2889 
2890 #ifdef CONFIG_MMU
2891 #define MMAP_LOTSAMISS  (100)
2892 /*
2893  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2894  * @vmf - the vm_fault for this fault.
2895  * @page - the page to lock.
2896  * @fpin - the pointer to the file we may pin (or is already pinned).
2897  *
2898  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2899  * It differs in that it actually returns the page locked if it returns 1 and 0
2900  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2901  * will point to the pinned file and needs to be fput()'ed at a later point.
2902  */
2903 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2904 				     struct file **fpin)
2905 {
2906 	if (trylock_page(page))
2907 		return 1;
2908 
2909 	/*
2910 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2911 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2912 	 * is supposed to work. We have way too many special cases..
2913 	 */
2914 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2915 		return 0;
2916 
2917 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2918 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2919 		if (__lock_page_killable(page)) {
2920 			/*
2921 			 * We didn't have the right flags to drop the mmap_lock,
2922 			 * but all fault_handlers only check for fatal signals
2923 			 * if we return VM_FAULT_RETRY, so we need to drop the
2924 			 * mmap_lock here and return 0 if we don't have a fpin.
2925 			 */
2926 			if (*fpin == NULL)
2927 				mmap_read_unlock(vmf->vma->vm_mm);
2928 			return 0;
2929 		}
2930 	} else
2931 		__lock_page(page);
2932 	return 1;
2933 }
2934 
2935 
2936 /*
2937  * Synchronous readahead happens when we don't even find a page in the page
2938  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2939  * to drop the mmap sem we return the file that was pinned in order for us to do
2940  * that.  If we didn't pin a file then we return NULL.  The file that is
2941  * returned needs to be fput()'ed when we're done with it.
2942  */
2943 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2944 {
2945 	struct file *file = vmf->vma->vm_file;
2946 	struct file_ra_state *ra = &file->f_ra;
2947 	struct address_space *mapping = file->f_mapping;
2948 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2949 	struct file *fpin = NULL;
2950 	unsigned int mmap_miss;
2951 
2952 	/* If we don't want any read-ahead, don't bother */
2953 	if (vmf->vma->vm_flags & VM_RAND_READ)
2954 		return fpin;
2955 	if (!ra->ra_pages)
2956 		return fpin;
2957 
2958 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2959 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2960 		page_cache_sync_ra(&ractl, ra->ra_pages);
2961 		return fpin;
2962 	}
2963 
2964 	/* Avoid banging the cache line if not needed */
2965 	mmap_miss = READ_ONCE(ra->mmap_miss);
2966 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2967 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2968 
2969 	/*
2970 	 * Do we miss much more than hit in this file? If so,
2971 	 * stop bothering with read-ahead. It will only hurt.
2972 	 */
2973 	if (mmap_miss > MMAP_LOTSAMISS)
2974 		return fpin;
2975 
2976 	/*
2977 	 * mmap read-around
2978 	 */
2979 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2980 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2981 	ra->size = ra->ra_pages;
2982 	ra->async_size = ra->ra_pages / 4;
2983 	ractl._index = ra->start;
2984 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2985 	return fpin;
2986 }
2987 
2988 /*
2989  * Asynchronous readahead happens when we find the page and PG_readahead,
2990  * so we want to possibly extend the readahead further.  We return the file that
2991  * was pinned if we have to drop the mmap_lock in order to do IO.
2992  */
2993 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2994 					    struct page *page)
2995 {
2996 	struct file *file = vmf->vma->vm_file;
2997 	struct file_ra_state *ra = &file->f_ra;
2998 	struct address_space *mapping = file->f_mapping;
2999 	struct file *fpin = NULL;
3000 	unsigned int mmap_miss;
3001 	pgoff_t offset = vmf->pgoff;
3002 
3003 	/* If we don't want any read-ahead, don't bother */
3004 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3005 		return fpin;
3006 	mmap_miss = READ_ONCE(ra->mmap_miss);
3007 	if (mmap_miss)
3008 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3009 	if (PageReadahead(page)) {
3010 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3011 		page_cache_async_readahead(mapping, ra, file,
3012 					   page, offset, ra->ra_pages);
3013 	}
3014 	return fpin;
3015 }
3016 
3017 /**
3018  * filemap_fault - read in file data for page fault handling
3019  * @vmf:	struct vm_fault containing details of the fault
3020  *
3021  * filemap_fault() is invoked via the vma operations vector for a
3022  * mapped memory region to read in file data during a page fault.
3023  *
3024  * The goto's are kind of ugly, but this streamlines the normal case of having
3025  * it in the page cache, and handles the special cases reasonably without
3026  * having a lot of duplicated code.
3027  *
3028  * vma->vm_mm->mmap_lock must be held on entry.
3029  *
3030  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3031  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
3032  *
3033  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3034  * has not been released.
3035  *
3036  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3037  *
3038  * Return: bitwise-OR of %VM_FAULT_ codes.
3039  */
3040 vm_fault_t filemap_fault(struct vm_fault *vmf)
3041 {
3042 	int error;
3043 	struct file *file = vmf->vma->vm_file;
3044 	struct file *fpin = NULL;
3045 	struct address_space *mapping = file->f_mapping;
3046 	struct inode *inode = mapping->host;
3047 	pgoff_t offset = vmf->pgoff;
3048 	pgoff_t max_off;
3049 	struct page *page;
3050 	vm_fault_t ret = 0;
3051 	bool mapping_locked = false;
3052 
3053 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3054 	if (unlikely(offset >= max_off))
3055 		return VM_FAULT_SIGBUS;
3056 
3057 	/*
3058 	 * Do we have something in the page cache already?
3059 	 */
3060 	page = find_get_page(mapping, offset);
3061 	if (likely(page)) {
3062 		/*
3063 		 * We found the page, so try async readahead before waiting for
3064 		 * the lock.
3065 		 */
3066 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3067 			fpin = do_async_mmap_readahead(vmf, page);
3068 		if (unlikely(!PageUptodate(page))) {
3069 			filemap_invalidate_lock_shared(mapping);
3070 			mapping_locked = true;
3071 		}
3072 	} else {
3073 		/* No page in the page cache at all */
3074 		count_vm_event(PGMAJFAULT);
3075 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3076 		ret = VM_FAULT_MAJOR;
3077 		fpin = do_sync_mmap_readahead(vmf);
3078 retry_find:
3079 		/*
3080 		 * See comment in filemap_create_page() why we need
3081 		 * invalidate_lock
3082 		 */
3083 		if (!mapping_locked) {
3084 			filemap_invalidate_lock_shared(mapping);
3085 			mapping_locked = true;
3086 		}
3087 		page = pagecache_get_page(mapping, offset,
3088 					  FGP_CREAT|FGP_FOR_MMAP,
3089 					  vmf->gfp_mask);
3090 		if (!page) {
3091 			if (fpin)
3092 				goto out_retry;
3093 			filemap_invalidate_unlock_shared(mapping);
3094 			return VM_FAULT_OOM;
3095 		}
3096 	}
3097 
3098 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3099 		goto out_retry;
3100 
3101 	/* Did it get truncated? */
3102 	if (unlikely(compound_head(page)->mapping != mapping)) {
3103 		unlock_page(page);
3104 		put_page(page);
3105 		goto retry_find;
3106 	}
3107 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3108 
3109 	/*
3110 	 * We have a locked page in the page cache, now we need to check
3111 	 * that it's up-to-date. If not, it is going to be due to an error.
3112 	 */
3113 	if (unlikely(!PageUptodate(page))) {
3114 		/*
3115 		 * The page was in cache and uptodate and now it is not.
3116 		 * Strange but possible since we didn't hold the page lock all
3117 		 * the time. Let's drop everything get the invalidate lock and
3118 		 * try again.
3119 		 */
3120 		if (!mapping_locked) {
3121 			unlock_page(page);
3122 			put_page(page);
3123 			goto retry_find;
3124 		}
3125 		goto page_not_uptodate;
3126 	}
3127 
3128 	/*
3129 	 * We've made it this far and we had to drop our mmap_lock, now is the
3130 	 * time to return to the upper layer and have it re-find the vma and
3131 	 * redo the fault.
3132 	 */
3133 	if (fpin) {
3134 		unlock_page(page);
3135 		goto out_retry;
3136 	}
3137 	if (mapping_locked)
3138 		filemap_invalidate_unlock_shared(mapping);
3139 
3140 	/*
3141 	 * Found the page and have a reference on it.
3142 	 * We must recheck i_size under page lock.
3143 	 */
3144 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3145 	if (unlikely(offset >= max_off)) {
3146 		unlock_page(page);
3147 		put_page(page);
3148 		return VM_FAULT_SIGBUS;
3149 	}
3150 
3151 	vmf->page = page;
3152 	return ret | VM_FAULT_LOCKED;
3153 
3154 page_not_uptodate:
3155 	/*
3156 	 * Umm, take care of errors if the page isn't up-to-date.
3157 	 * Try to re-read it _once_. We do this synchronously,
3158 	 * because there really aren't any performance issues here
3159 	 * and we need to check for errors.
3160 	 */
3161 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3162 	error = filemap_read_page(file, mapping, page);
3163 	if (fpin)
3164 		goto out_retry;
3165 	put_page(page);
3166 
3167 	if (!error || error == AOP_TRUNCATED_PAGE)
3168 		goto retry_find;
3169 	filemap_invalidate_unlock_shared(mapping);
3170 
3171 	return VM_FAULT_SIGBUS;
3172 
3173 out_retry:
3174 	/*
3175 	 * We dropped the mmap_lock, we need to return to the fault handler to
3176 	 * re-find the vma and come back and find our hopefully still populated
3177 	 * page.
3178 	 */
3179 	if (page)
3180 		put_page(page);
3181 	if (mapping_locked)
3182 		filemap_invalidate_unlock_shared(mapping);
3183 	if (fpin)
3184 		fput(fpin);
3185 	return ret | VM_FAULT_RETRY;
3186 }
3187 EXPORT_SYMBOL(filemap_fault);
3188 
3189 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3190 {
3191 	struct mm_struct *mm = vmf->vma->vm_mm;
3192 
3193 	/* Huge page is mapped? No need to proceed. */
3194 	if (pmd_trans_huge(*vmf->pmd)) {
3195 		unlock_page(page);
3196 		put_page(page);
3197 		return true;
3198 	}
3199 
3200 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3201 	    vm_fault_t ret = do_set_pmd(vmf, page);
3202 	    if (!ret) {
3203 		    /* The page is mapped successfully, reference consumed. */
3204 		    unlock_page(page);
3205 		    return true;
3206 	    }
3207 	}
3208 
3209 	if (pmd_none(*vmf->pmd)) {
3210 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3211 		if (likely(pmd_none(*vmf->pmd))) {
3212 			mm_inc_nr_ptes(mm);
3213 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3214 			vmf->prealloc_pte = NULL;
3215 		}
3216 		spin_unlock(vmf->ptl);
3217 	}
3218 
3219 	/* See comment in handle_pte_fault() */
3220 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3221 		unlock_page(page);
3222 		put_page(page);
3223 		return true;
3224 	}
3225 
3226 	return false;
3227 }
3228 
3229 static struct page *next_uptodate_page(struct page *page,
3230 				       struct address_space *mapping,
3231 				       struct xa_state *xas, pgoff_t end_pgoff)
3232 {
3233 	unsigned long max_idx;
3234 
3235 	do {
3236 		if (!page)
3237 			return NULL;
3238 		if (xas_retry(xas, page))
3239 			continue;
3240 		if (xa_is_value(page))
3241 			continue;
3242 		if (PageLocked(page))
3243 			continue;
3244 		if (!page_cache_get_speculative(page))
3245 			continue;
3246 		/* Has the page moved or been split? */
3247 		if (unlikely(page != xas_reload(xas)))
3248 			goto skip;
3249 		if (!PageUptodate(page) || PageReadahead(page))
3250 			goto skip;
3251 		if (PageHWPoison(page))
3252 			goto skip;
3253 		if (!trylock_page(page))
3254 			goto skip;
3255 		if (page->mapping != mapping)
3256 			goto unlock;
3257 		if (!PageUptodate(page))
3258 			goto unlock;
3259 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3260 		if (xas->xa_index >= max_idx)
3261 			goto unlock;
3262 		return page;
3263 unlock:
3264 		unlock_page(page);
3265 skip:
3266 		put_page(page);
3267 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3268 
3269 	return NULL;
3270 }
3271 
3272 static inline struct page *first_map_page(struct address_space *mapping,
3273 					  struct xa_state *xas,
3274 					  pgoff_t end_pgoff)
3275 {
3276 	return next_uptodate_page(xas_find(xas, end_pgoff),
3277 				  mapping, xas, end_pgoff);
3278 }
3279 
3280 static inline struct page *next_map_page(struct address_space *mapping,
3281 					 struct xa_state *xas,
3282 					 pgoff_t end_pgoff)
3283 {
3284 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3285 				  mapping, xas, end_pgoff);
3286 }
3287 
3288 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3289 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3290 {
3291 	struct vm_area_struct *vma = vmf->vma;
3292 	struct file *file = vma->vm_file;
3293 	struct address_space *mapping = file->f_mapping;
3294 	pgoff_t last_pgoff = start_pgoff;
3295 	unsigned long addr;
3296 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3297 	struct page *head, *page;
3298 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3299 	vm_fault_t ret = 0;
3300 
3301 	rcu_read_lock();
3302 	head = first_map_page(mapping, &xas, end_pgoff);
3303 	if (!head)
3304 		goto out;
3305 
3306 	if (filemap_map_pmd(vmf, head)) {
3307 		ret = VM_FAULT_NOPAGE;
3308 		goto out;
3309 	}
3310 
3311 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3312 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3313 	do {
3314 		page = find_subpage(head, xas.xa_index);
3315 		if (PageHWPoison(page))
3316 			goto unlock;
3317 
3318 		if (mmap_miss > 0)
3319 			mmap_miss--;
3320 
3321 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3322 		vmf->pte += xas.xa_index - last_pgoff;
3323 		last_pgoff = xas.xa_index;
3324 
3325 		if (!pte_none(*vmf->pte))
3326 			goto unlock;
3327 
3328 		/* We're about to handle the fault */
3329 		if (vmf->address == addr)
3330 			ret = VM_FAULT_NOPAGE;
3331 
3332 		do_set_pte(vmf, page, addr);
3333 		/* no need to invalidate: a not-present page won't be cached */
3334 		update_mmu_cache(vma, addr, vmf->pte);
3335 		unlock_page(head);
3336 		continue;
3337 unlock:
3338 		unlock_page(head);
3339 		put_page(head);
3340 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3341 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3342 out:
3343 	rcu_read_unlock();
3344 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3345 	return ret;
3346 }
3347 EXPORT_SYMBOL(filemap_map_pages);
3348 
3349 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3350 {
3351 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3352 	struct page *page = vmf->page;
3353 	vm_fault_t ret = VM_FAULT_LOCKED;
3354 
3355 	sb_start_pagefault(mapping->host->i_sb);
3356 	file_update_time(vmf->vma->vm_file);
3357 	lock_page(page);
3358 	if (page->mapping != mapping) {
3359 		unlock_page(page);
3360 		ret = VM_FAULT_NOPAGE;
3361 		goto out;
3362 	}
3363 	/*
3364 	 * We mark the page dirty already here so that when freeze is in
3365 	 * progress, we are guaranteed that writeback during freezing will
3366 	 * see the dirty page and writeprotect it again.
3367 	 */
3368 	set_page_dirty(page);
3369 	wait_for_stable_page(page);
3370 out:
3371 	sb_end_pagefault(mapping->host->i_sb);
3372 	return ret;
3373 }
3374 
3375 const struct vm_operations_struct generic_file_vm_ops = {
3376 	.fault		= filemap_fault,
3377 	.map_pages	= filemap_map_pages,
3378 	.page_mkwrite	= filemap_page_mkwrite,
3379 };
3380 
3381 /* This is used for a general mmap of a disk file */
3382 
3383 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3384 {
3385 	struct address_space *mapping = file->f_mapping;
3386 
3387 	if (!mapping->a_ops->readpage)
3388 		return -ENOEXEC;
3389 	file_accessed(file);
3390 	vma->vm_ops = &generic_file_vm_ops;
3391 	return 0;
3392 }
3393 
3394 /*
3395  * This is for filesystems which do not implement ->writepage.
3396  */
3397 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3398 {
3399 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3400 		return -EINVAL;
3401 	return generic_file_mmap(file, vma);
3402 }
3403 #else
3404 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3405 {
3406 	return VM_FAULT_SIGBUS;
3407 }
3408 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3409 {
3410 	return -ENOSYS;
3411 }
3412 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3413 {
3414 	return -ENOSYS;
3415 }
3416 #endif /* CONFIG_MMU */
3417 
3418 EXPORT_SYMBOL(filemap_page_mkwrite);
3419 EXPORT_SYMBOL(generic_file_mmap);
3420 EXPORT_SYMBOL(generic_file_readonly_mmap);
3421 
3422 static struct page *wait_on_page_read(struct page *page)
3423 {
3424 	if (!IS_ERR(page)) {
3425 		wait_on_page_locked(page);
3426 		if (!PageUptodate(page)) {
3427 			put_page(page);
3428 			page = ERR_PTR(-EIO);
3429 		}
3430 	}
3431 	return page;
3432 }
3433 
3434 static struct page *do_read_cache_page(struct address_space *mapping,
3435 				pgoff_t index,
3436 				int (*filler)(void *, struct page *),
3437 				void *data,
3438 				gfp_t gfp)
3439 {
3440 	struct page *page;
3441 	int err;
3442 repeat:
3443 	page = find_get_page(mapping, index);
3444 	if (!page) {
3445 		page = __page_cache_alloc(gfp);
3446 		if (!page)
3447 			return ERR_PTR(-ENOMEM);
3448 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3449 		if (unlikely(err)) {
3450 			put_page(page);
3451 			if (err == -EEXIST)
3452 				goto repeat;
3453 			/* Presumably ENOMEM for xarray node */
3454 			return ERR_PTR(err);
3455 		}
3456 
3457 filler:
3458 		if (filler)
3459 			err = filler(data, page);
3460 		else
3461 			err = mapping->a_ops->readpage(data, page);
3462 
3463 		if (err < 0) {
3464 			put_page(page);
3465 			return ERR_PTR(err);
3466 		}
3467 
3468 		page = wait_on_page_read(page);
3469 		if (IS_ERR(page))
3470 			return page;
3471 		goto out;
3472 	}
3473 	if (PageUptodate(page))
3474 		goto out;
3475 
3476 	/*
3477 	 * Page is not up to date and may be locked due to one of the following
3478 	 * case a: Page is being filled and the page lock is held
3479 	 * case b: Read/write error clearing the page uptodate status
3480 	 * case c: Truncation in progress (page locked)
3481 	 * case d: Reclaim in progress
3482 	 *
3483 	 * Case a, the page will be up to date when the page is unlocked.
3484 	 *    There is no need to serialise on the page lock here as the page
3485 	 *    is pinned so the lock gives no additional protection. Even if the
3486 	 *    page is truncated, the data is still valid if PageUptodate as
3487 	 *    it's a race vs truncate race.
3488 	 * Case b, the page will not be up to date
3489 	 * Case c, the page may be truncated but in itself, the data may still
3490 	 *    be valid after IO completes as it's a read vs truncate race. The
3491 	 *    operation must restart if the page is not uptodate on unlock but
3492 	 *    otherwise serialising on page lock to stabilise the mapping gives
3493 	 *    no additional guarantees to the caller as the page lock is
3494 	 *    released before return.
3495 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3496 	 *    will be a race with remove_mapping that determines if the mapping
3497 	 *    is valid on unlock but otherwise the data is valid and there is
3498 	 *    no need to serialise with page lock.
3499 	 *
3500 	 * As the page lock gives no additional guarantee, we optimistically
3501 	 * wait on the page to be unlocked and check if it's up to date and
3502 	 * use the page if it is. Otherwise, the page lock is required to
3503 	 * distinguish between the different cases. The motivation is that we
3504 	 * avoid spurious serialisations and wakeups when multiple processes
3505 	 * wait on the same page for IO to complete.
3506 	 */
3507 	wait_on_page_locked(page);
3508 	if (PageUptodate(page))
3509 		goto out;
3510 
3511 	/* Distinguish between all the cases under the safety of the lock */
3512 	lock_page(page);
3513 
3514 	/* Case c or d, restart the operation */
3515 	if (!page->mapping) {
3516 		unlock_page(page);
3517 		put_page(page);
3518 		goto repeat;
3519 	}
3520 
3521 	/* Someone else locked and filled the page in a very small window */
3522 	if (PageUptodate(page)) {
3523 		unlock_page(page);
3524 		goto out;
3525 	}
3526 
3527 	/*
3528 	 * A previous I/O error may have been due to temporary
3529 	 * failures.
3530 	 * Clear page error before actual read, PG_error will be
3531 	 * set again if read page fails.
3532 	 */
3533 	ClearPageError(page);
3534 	goto filler;
3535 
3536 out:
3537 	mark_page_accessed(page);
3538 	return page;
3539 }
3540 
3541 /**
3542  * read_cache_page - read into page cache, fill it if needed
3543  * @mapping:	the page's address_space
3544  * @index:	the page index
3545  * @filler:	function to perform the read
3546  * @data:	first arg to filler(data, page) function, often left as NULL
3547  *
3548  * Read into the page cache. If a page already exists, and PageUptodate() is
3549  * not set, try to fill the page and wait for it to become unlocked.
3550  *
3551  * If the page does not get brought uptodate, return -EIO.
3552  *
3553  * The function expects mapping->invalidate_lock to be already held.
3554  *
3555  * Return: up to date page on success, ERR_PTR() on failure.
3556  */
3557 struct page *read_cache_page(struct address_space *mapping,
3558 				pgoff_t index,
3559 				int (*filler)(void *, struct page *),
3560 				void *data)
3561 {
3562 	return do_read_cache_page(mapping, index, filler, data,
3563 			mapping_gfp_mask(mapping));
3564 }
3565 EXPORT_SYMBOL(read_cache_page);
3566 
3567 /**
3568  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3569  * @mapping:	the page's address_space
3570  * @index:	the page index
3571  * @gfp:	the page allocator flags to use if allocating
3572  *
3573  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3574  * any new page allocations done using the specified allocation flags.
3575  *
3576  * If the page does not get brought uptodate, return -EIO.
3577  *
3578  * The function expects mapping->invalidate_lock to be already held.
3579  *
3580  * Return: up to date page on success, ERR_PTR() on failure.
3581  */
3582 struct page *read_cache_page_gfp(struct address_space *mapping,
3583 				pgoff_t index,
3584 				gfp_t gfp)
3585 {
3586 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3587 }
3588 EXPORT_SYMBOL(read_cache_page_gfp);
3589 
3590 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3591 				loff_t pos, unsigned len, unsigned flags,
3592 				struct page **pagep, void **fsdata)
3593 {
3594 	const struct address_space_operations *aops = mapping->a_ops;
3595 
3596 	return aops->write_begin(file, mapping, pos, len, flags,
3597 							pagep, fsdata);
3598 }
3599 EXPORT_SYMBOL(pagecache_write_begin);
3600 
3601 int pagecache_write_end(struct file *file, struct address_space *mapping,
3602 				loff_t pos, unsigned len, unsigned copied,
3603 				struct page *page, void *fsdata)
3604 {
3605 	const struct address_space_operations *aops = mapping->a_ops;
3606 
3607 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3608 }
3609 EXPORT_SYMBOL(pagecache_write_end);
3610 
3611 /*
3612  * Warn about a page cache invalidation failure during a direct I/O write.
3613  */
3614 void dio_warn_stale_pagecache(struct file *filp)
3615 {
3616 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3617 	char pathname[128];
3618 	char *path;
3619 
3620 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3621 	if (__ratelimit(&_rs)) {
3622 		path = file_path(filp, pathname, sizeof(pathname));
3623 		if (IS_ERR(path))
3624 			path = "(unknown)";
3625 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3626 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3627 			current->comm);
3628 	}
3629 }
3630 
3631 ssize_t
3632 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3633 {
3634 	struct file	*file = iocb->ki_filp;
3635 	struct address_space *mapping = file->f_mapping;
3636 	struct inode	*inode = mapping->host;
3637 	loff_t		pos = iocb->ki_pos;
3638 	ssize_t		written;
3639 	size_t		write_len;
3640 	pgoff_t		end;
3641 
3642 	write_len = iov_iter_count(from);
3643 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3644 
3645 	if (iocb->ki_flags & IOCB_NOWAIT) {
3646 		/* If there are pages to writeback, return */
3647 		if (filemap_range_has_page(file->f_mapping, pos,
3648 					   pos + write_len - 1))
3649 			return -EAGAIN;
3650 	} else {
3651 		written = filemap_write_and_wait_range(mapping, pos,
3652 							pos + write_len - 1);
3653 		if (written)
3654 			goto out;
3655 	}
3656 
3657 	/*
3658 	 * After a write we want buffered reads to be sure to go to disk to get
3659 	 * the new data.  We invalidate clean cached page from the region we're
3660 	 * about to write.  We do this *before* the write so that we can return
3661 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3662 	 */
3663 	written = invalidate_inode_pages2_range(mapping,
3664 					pos >> PAGE_SHIFT, end);
3665 	/*
3666 	 * If a page can not be invalidated, return 0 to fall back
3667 	 * to buffered write.
3668 	 */
3669 	if (written) {
3670 		if (written == -EBUSY)
3671 			return 0;
3672 		goto out;
3673 	}
3674 
3675 	written = mapping->a_ops->direct_IO(iocb, from);
3676 
3677 	/*
3678 	 * Finally, try again to invalidate clean pages which might have been
3679 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3680 	 * if the source of the write was an mmap'ed region of the file
3681 	 * we're writing.  Either one is a pretty crazy thing to do,
3682 	 * so we don't support it 100%.  If this invalidation
3683 	 * fails, tough, the write still worked...
3684 	 *
3685 	 * Most of the time we do not need this since dio_complete() will do
3686 	 * the invalidation for us. However there are some file systems that
3687 	 * do not end up with dio_complete() being called, so let's not break
3688 	 * them by removing it completely.
3689 	 *
3690 	 * Noticeable example is a blkdev_direct_IO().
3691 	 *
3692 	 * Skip invalidation for async writes or if mapping has no pages.
3693 	 */
3694 	if (written > 0 && mapping->nrpages &&
3695 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3696 		dio_warn_stale_pagecache(file);
3697 
3698 	if (written > 0) {
3699 		pos += written;
3700 		write_len -= written;
3701 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3702 			i_size_write(inode, pos);
3703 			mark_inode_dirty(inode);
3704 		}
3705 		iocb->ki_pos = pos;
3706 	}
3707 	if (written != -EIOCBQUEUED)
3708 		iov_iter_revert(from, write_len - iov_iter_count(from));
3709 out:
3710 	return written;
3711 }
3712 EXPORT_SYMBOL(generic_file_direct_write);
3713 
3714 /*
3715  * Find or create a page at the given pagecache position. Return the locked
3716  * page. This function is specifically for buffered writes.
3717  */
3718 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3719 					pgoff_t index, unsigned flags)
3720 {
3721 	struct page *page;
3722 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3723 
3724 	if (flags & AOP_FLAG_NOFS)
3725 		fgp_flags |= FGP_NOFS;
3726 
3727 	page = pagecache_get_page(mapping, index, fgp_flags,
3728 			mapping_gfp_mask(mapping));
3729 	if (page)
3730 		wait_for_stable_page(page);
3731 
3732 	return page;
3733 }
3734 EXPORT_SYMBOL(grab_cache_page_write_begin);
3735 
3736 ssize_t generic_perform_write(struct file *file,
3737 				struct iov_iter *i, loff_t pos)
3738 {
3739 	struct address_space *mapping = file->f_mapping;
3740 	const struct address_space_operations *a_ops = mapping->a_ops;
3741 	long status = 0;
3742 	ssize_t written = 0;
3743 	unsigned int flags = 0;
3744 
3745 	do {
3746 		struct page *page;
3747 		unsigned long offset;	/* Offset into pagecache page */
3748 		unsigned long bytes;	/* Bytes to write to page */
3749 		size_t copied;		/* Bytes copied from user */
3750 		void *fsdata;
3751 
3752 		offset = (pos & (PAGE_SIZE - 1));
3753 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3754 						iov_iter_count(i));
3755 
3756 again:
3757 		/*
3758 		 * Bring in the user page that we will copy from _first_.
3759 		 * Otherwise there's a nasty deadlock on copying from the
3760 		 * same page as we're writing to, without it being marked
3761 		 * up-to-date.
3762 		 */
3763 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3764 			status = -EFAULT;
3765 			break;
3766 		}
3767 
3768 		if (fatal_signal_pending(current)) {
3769 			status = -EINTR;
3770 			break;
3771 		}
3772 
3773 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3774 						&page, &fsdata);
3775 		if (unlikely(status < 0))
3776 			break;
3777 
3778 		if (mapping_writably_mapped(mapping))
3779 			flush_dcache_page(page);
3780 
3781 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3782 		flush_dcache_page(page);
3783 
3784 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3785 						page, fsdata);
3786 		if (unlikely(status != copied)) {
3787 			iov_iter_revert(i, copied - max(status, 0L));
3788 			if (unlikely(status < 0))
3789 				break;
3790 		}
3791 		cond_resched();
3792 
3793 		if (unlikely(status == 0)) {
3794 			/*
3795 			 * A short copy made ->write_end() reject the
3796 			 * thing entirely.  Might be memory poisoning
3797 			 * halfway through, might be a race with munmap,
3798 			 * might be severe memory pressure.
3799 			 */
3800 			if (copied)
3801 				bytes = copied;
3802 			goto again;
3803 		}
3804 		pos += status;
3805 		written += status;
3806 
3807 		balance_dirty_pages_ratelimited(mapping);
3808 	} while (iov_iter_count(i));
3809 
3810 	return written ? written : status;
3811 }
3812 EXPORT_SYMBOL(generic_perform_write);
3813 
3814 /**
3815  * __generic_file_write_iter - write data to a file
3816  * @iocb:	IO state structure (file, offset, etc.)
3817  * @from:	iov_iter with data to write
3818  *
3819  * This function does all the work needed for actually writing data to a
3820  * file. It does all basic checks, removes SUID from the file, updates
3821  * modification times and calls proper subroutines depending on whether we
3822  * do direct IO or a standard buffered write.
3823  *
3824  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3825  * object which does not need locking at all.
3826  *
3827  * This function does *not* take care of syncing data in case of O_SYNC write.
3828  * A caller has to handle it. This is mainly due to the fact that we want to
3829  * avoid syncing under i_rwsem.
3830  *
3831  * Return:
3832  * * number of bytes written, even for truncated writes
3833  * * negative error code if no data has been written at all
3834  */
3835 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3836 {
3837 	struct file *file = iocb->ki_filp;
3838 	struct address_space *mapping = file->f_mapping;
3839 	struct inode 	*inode = mapping->host;
3840 	ssize_t		written = 0;
3841 	ssize_t		err;
3842 	ssize_t		status;
3843 
3844 	/* We can write back this queue in page reclaim */
3845 	current->backing_dev_info = inode_to_bdi(inode);
3846 	err = file_remove_privs(file);
3847 	if (err)
3848 		goto out;
3849 
3850 	err = file_update_time(file);
3851 	if (err)
3852 		goto out;
3853 
3854 	if (iocb->ki_flags & IOCB_DIRECT) {
3855 		loff_t pos, endbyte;
3856 
3857 		written = generic_file_direct_write(iocb, from);
3858 		/*
3859 		 * If the write stopped short of completing, fall back to
3860 		 * buffered writes.  Some filesystems do this for writes to
3861 		 * holes, for example.  For DAX files, a buffered write will
3862 		 * not succeed (even if it did, DAX does not handle dirty
3863 		 * page-cache pages correctly).
3864 		 */
3865 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3866 			goto out;
3867 
3868 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3869 		/*
3870 		 * If generic_perform_write() returned a synchronous error
3871 		 * then we want to return the number of bytes which were
3872 		 * direct-written, or the error code if that was zero.  Note
3873 		 * that this differs from normal direct-io semantics, which
3874 		 * will return -EFOO even if some bytes were written.
3875 		 */
3876 		if (unlikely(status < 0)) {
3877 			err = status;
3878 			goto out;
3879 		}
3880 		/*
3881 		 * We need to ensure that the page cache pages are written to
3882 		 * disk and invalidated to preserve the expected O_DIRECT
3883 		 * semantics.
3884 		 */
3885 		endbyte = pos + status - 1;
3886 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3887 		if (err == 0) {
3888 			iocb->ki_pos = endbyte + 1;
3889 			written += status;
3890 			invalidate_mapping_pages(mapping,
3891 						 pos >> PAGE_SHIFT,
3892 						 endbyte >> PAGE_SHIFT);
3893 		} else {
3894 			/*
3895 			 * We don't know how much we wrote, so just return
3896 			 * the number of bytes which were direct-written
3897 			 */
3898 		}
3899 	} else {
3900 		written = generic_perform_write(file, from, iocb->ki_pos);
3901 		if (likely(written > 0))
3902 			iocb->ki_pos += written;
3903 	}
3904 out:
3905 	current->backing_dev_info = NULL;
3906 	return written ? written : err;
3907 }
3908 EXPORT_SYMBOL(__generic_file_write_iter);
3909 
3910 /**
3911  * generic_file_write_iter - write data to a file
3912  * @iocb:	IO state structure
3913  * @from:	iov_iter with data to write
3914  *
3915  * This is a wrapper around __generic_file_write_iter() to be used by most
3916  * filesystems. It takes care of syncing the file in case of O_SYNC file
3917  * and acquires i_rwsem as needed.
3918  * Return:
3919  * * negative error code if no data has been written at all of
3920  *   vfs_fsync_range() failed for a synchronous write
3921  * * number of bytes written, even for truncated writes
3922  */
3923 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3924 {
3925 	struct file *file = iocb->ki_filp;
3926 	struct inode *inode = file->f_mapping->host;
3927 	ssize_t ret;
3928 
3929 	inode_lock(inode);
3930 	ret = generic_write_checks(iocb, from);
3931 	if (ret > 0)
3932 		ret = __generic_file_write_iter(iocb, from);
3933 	inode_unlock(inode);
3934 
3935 	if (ret > 0)
3936 		ret = generic_write_sync(iocb, ret);
3937 	return ret;
3938 }
3939 EXPORT_SYMBOL(generic_file_write_iter);
3940 
3941 /**
3942  * try_to_release_page() - release old fs-specific metadata on a page
3943  *
3944  * @page: the page which the kernel is trying to free
3945  * @gfp_mask: memory allocation flags (and I/O mode)
3946  *
3947  * The address_space is to try to release any data against the page
3948  * (presumably at page->private).
3949  *
3950  * This may also be called if PG_fscache is set on a page, indicating that the
3951  * page is known to the local caching routines.
3952  *
3953  * The @gfp_mask argument specifies whether I/O may be performed to release
3954  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3955  *
3956  * Return: %1 if the release was successful, otherwise return zero.
3957  */
3958 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3959 {
3960 	struct address_space * const mapping = page->mapping;
3961 
3962 	BUG_ON(!PageLocked(page));
3963 	if (PageWriteback(page))
3964 		return 0;
3965 
3966 	if (mapping && mapping->a_ops->releasepage)
3967 		return mapping->a_ops->releasepage(page, gfp_mask);
3968 	return try_to_free_buffers(page);
3969 }
3970 
3971 EXPORT_SYMBOL(try_to_release_page);
3972