xref: /linux/mm/filemap.c (revision 1795cf48b322b4d19230a40dbe7181acedd34a94)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include "internal.h"
37 
38 /*
39  * FIXME: remove all knowledge of the buffer layer from the core VM
40  */
41 #include <linux/buffer_head.h> /* for generic_osync_inode */
42 
43 #include <asm/mman.h>
44 
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(vmtruncate)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  */
108 
109 /*
110  * Remove a page from the page cache and free it. Caller has to make
111  * sure the page is locked and that nobody else uses it - or that usage
112  * is safe.  The caller must hold the mapping's tree_lock.
113  */
114 void __remove_from_page_cache(struct page *page)
115 {
116 	struct address_space *mapping = page->mapping;
117 
118 	mem_cgroup_uncharge_cache_page(page);
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 	BUG_ON(page_mapped(page));
124 
125 	/*
126 	 * Some filesystems seem to re-dirty the page even after
127 	 * the VM has canceled the dirty bit (eg ext3 journaling).
128 	 *
129 	 * Fix it up by doing a final dirty accounting check after
130 	 * having removed the page entirely.
131 	 */
132 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 		dec_zone_page_state(page, NR_FILE_DIRTY);
134 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 	}
136 }
137 
138 void remove_from_page_cache(struct page *page)
139 {
140 	struct address_space *mapping = page->mapping;
141 
142 	BUG_ON(!PageLocked(page));
143 
144 	spin_lock_irq(&mapping->tree_lock);
145 	__remove_from_page_cache(page);
146 	spin_unlock_irq(&mapping->tree_lock);
147 }
148 
149 static int sync_page(void *word)
150 {
151 	struct address_space *mapping;
152 	struct page *page;
153 
154 	page = container_of((unsigned long *)word, struct page, flags);
155 
156 	/*
157 	 * page_mapping() is being called without PG_locked held.
158 	 * Some knowledge of the state and use of the page is used to
159 	 * reduce the requirements down to a memory barrier.
160 	 * The danger here is of a stale page_mapping() return value
161 	 * indicating a struct address_space different from the one it's
162 	 * associated with when it is associated with one.
163 	 * After smp_mb(), it's either the correct page_mapping() for
164 	 * the page, or an old page_mapping() and the page's own
165 	 * page_mapping() has gone NULL.
166 	 * The ->sync_page() address_space operation must tolerate
167 	 * page_mapping() going NULL. By an amazing coincidence,
168 	 * this comes about because none of the users of the page
169 	 * in the ->sync_page() methods make essential use of the
170 	 * page_mapping(), merely passing the page down to the backing
171 	 * device's unplug functions when it's non-NULL, which in turn
172 	 * ignore it for all cases but swap, where only page_private(page) is
173 	 * of interest. When page_mapping() does go NULL, the entire
174 	 * call stack gracefully ignores the page and returns.
175 	 * -- wli
176 	 */
177 	smp_mb();
178 	mapping = page_mapping(page);
179 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 		mapping->a_ops->sync_page(page);
181 	io_schedule();
182 	return 0;
183 }
184 
185 static int sync_page_killable(void *word)
186 {
187 	sync_page(word);
188 	return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190 
191 /**
192  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193  * @mapping:	address space structure to write
194  * @start:	offset in bytes where the range starts
195  * @end:	offset in bytes where the range ends (inclusive)
196  * @sync_mode:	enable synchronous operation
197  *
198  * Start writeback against all of a mapping's dirty pages that lie
199  * within the byte offsets <start, end> inclusive.
200  *
201  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202  * opposed to a regular memory cleansing writeback.  The difference between
203  * these two operations is that if a dirty page/buffer is encountered, it must
204  * be waited upon, and not just skipped over.
205  */
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 				loff_t end, int sync_mode)
208 {
209 	int ret;
210 	struct writeback_control wbc = {
211 		.sync_mode = sync_mode,
212 		.nr_to_write = mapping->nrpages * 2,
213 		.range_start = start,
214 		.range_end = end,
215 	};
216 
217 	if (!mapping_cap_writeback_dirty(mapping))
218 		return 0;
219 
220 	ret = do_writepages(mapping, &wbc);
221 	return ret;
222 }
223 
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 	int sync_mode)
226 {
227 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 }
229 
230 int filemap_fdatawrite(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233 }
234 EXPORT_SYMBOL(filemap_fdatawrite);
235 
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 				loff_t end)
238 {
239 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
242 
243 /**
244  * filemap_flush - mostly a non-blocking flush
245  * @mapping:	target address_space
246  *
247  * This is a mostly non-blocking flush.  Not suitable for data-integrity
248  * purposes - I/O may not be started against all dirty pages.
249  */
250 int filemap_flush(struct address_space *mapping)
251 {
252 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253 }
254 EXPORT_SYMBOL(filemap_flush);
255 
256 /**
257  * wait_on_page_writeback_range - wait for writeback to complete
258  * @mapping:	target address_space
259  * @start:	beginning page index
260  * @end:	ending page index
261  *
262  * Wait for writeback to complete against pages indexed by start->end
263  * inclusive
264  */
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 				pgoff_t start, pgoff_t end)
267 {
268 	struct pagevec pvec;
269 	int nr_pages;
270 	int ret = 0;
271 	pgoff_t index;
272 
273 	if (end < start)
274 		return 0;
275 
276 	pagevec_init(&pvec, 0);
277 	index = start;
278 	while ((index <= end) &&
279 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 			PAGECACHE_TAG_WRITEBACK,
281 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 		unsigned i;
283 
284 		for (i = 0; i < nr_pages; i++) {
285 			struct page *page = pvec.pages[i];
286 
287 			/* until radix tree lookup accepts end_index */
288 			if (page->index > end)
289 				continue;
290 
291 			wait_on_page_writeback(page);
292 			if (PageError(page))
293 				ret = -EIO;
294 		}
295 		pagevec_release(&pvec);
296 		cond_resched();
297 	}
298 
299 	/* Check for outstanding write errors */
300 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 		ret = -ENOSPC;
302 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 		ret = -EIO;
304 
305 	return ret;
306 }
307 
308 /**
309  * sync_page_range - write and wait on all pages in the passed range
310  * @inode:	target inode
311  * @mapping:	target address_space
312  * @pos:	beginning offset in pages to write
313  * @count:	number of bytes to write
314  *
315  * Write and wait upon all the pages in the passed range.  This is a "data
316  * integrity" operation.  It waits upon in-flight writeout before starting and
317  * waiting upon new writeout.  If there was an IO error, return it.
318  *
319  * We need to re-take i_mutex during the generic_osync_inode list walk because
320  * it is otherwise livelockable.
321  */
322 int sync_page_range(struct inode *inode, struct address_space *mapping,
323 			loff_t pos, loff_t count)
324 {
325 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 	int ret;
328 
329 	if (!mapping_cap_writeback_dirty(mapping) || !count)
330 		return 0;
331 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 	if (ret == 0) {
333 		mutex_lock(&inode->i_mutex);
334 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
335 		mutex_unlock(&inode->i_mutex);
336 	}
337 	if (ret == 0)
338 		ret = wait_on_page_writeback_range(mapping, start, end);
339 	return ret;
340 }
341 EXPORT_SYMBOL(sync_page_range);
342 
343 /**
344  * sync_page_range_nolock - write & wait on all pages in the passed range without locking
345  * @inode:	target inode
346  * @mapping:	target address_space
347  * @pos:	beginning offset in pages to write
348  * @count:	number of bytes to write
349  *
350  * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
351  * as it forces O_SYNC writers to different parts of the same file
352  * to be serialised right until io completion.
353  */
354 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 			   loff_t pos, loff_t count)
356 {
357 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 	int ret;
360 
361 	if (!mapping_cap_writeback_dirty(mapping) || !count)
362 		return 0;
363 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 	if (ret == 0)
365 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 	if (ret == 0)
367 		ret = wait_on_page_writeback_range(mapping, start, end);
368 	return ret;
369 }
370 EXPORT_SYMBOL(sync_page_range_nolock);
371 
372 /**
373  * filemap_fdatawait - wait for all under-writeback pages to complete
374  * @mapping: address space structure to wait for
375  *
376  * Walk the list of under-writeback pages of the given address space
377  * and wait for all of them.
378  */
379 int filemap_fdatawait(struct address_space *mapping)
380 {
381 	loff_t i_size = i_size_read(mapping->host);
382 
383 	if (i_size == 0)
384 		return 0;
385 
386 	return wait_on_page_writeback_range(mapping, 0,
387 				(i_size - 1) >> PAGE_CACHE_SHIFT);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390 
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 	int err = 0;
394 
395 	if (mapping->nrpages) {
396 		err = filemap_fdatawrite(mapping);
397 		/*
398 		 * Even if the above returned error, the pages may be
399 		 * written partially (e.g. -ENOSPC), so we wait for it.
400 		 * But the -EIO is special case, it may indicate the worst
401 		 * thing (e.g. bug) happened, so we avoid waiting for it.
402 		 */
403 		if (err != -EIO) {
404 			int err2 = filemap_fdatawait(mapping);
405 			if (!err)
406 				err = err2;
407 		}
408 	}
409 	return err;
410 }
411 EXPORT_SYMBOL(filemap_write_and_wait);
412 
413 /**
414  * filemap_write_and_wait_range - write out & wait on a file range
415  * @mapping:	the address_space for the pages
416  * @lstart:	offset in bytes where the range starts
417  * @lend:	offset in bytes where the range ends (inclusive)
418  *
419  * Write out and wait upon file offsets lstart->lend, inclusive.
420  *
421  * Note that `lend' is inclusive (describes the last byte to be written) so
422  * that this function can be used to write to the very end-of-file (end = -1).
423  */
424 int filemap_write_and_wait_range(struct address_space *mapping,
425 				 loff_t lstart, loff_t lend)
426 {
427 	int err = 0;
428 
429 	if (mapping->nrpages) {
430 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 						 WB_SYNC_ALL);
432 		/* See comment of filemap_write_and_wait() */
433 		if (err != -EIO) {
434 			int err2 = wait_on_page_writeback_range(mapping,
435 						lstart >> PAGE_CACHE_SHIFT,
436 						lend >> PAGE_CACHE_SHIFT);
437 			if (!err)
438 				err = err2;
439 		}
440 	}
441 	return err;
442 }
443 
444 /**
445  * add_to_page_cache_locked - add a locked page to the pagecache
446  * @page:	page to add
447  * @mapping:	the page's address_space
448  * @offset:	page index
449  * @gfp_mask:	page allocation mode
450  *
451  * This function is used to add a page to the pagecache. It must be locked.
452  * This function does not add the page to the LRU.  The caller must do that.
453  */
454 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
455 		pgoff_t offset, gfp_t gfp_mask)
456 {
457 	int error;
458 
459 	VM_BUG_ON(!PageLocked(page));
460 
461 	error = mem_cgroup_cache_charge(page, current->mm,
462 					gfp_mask & ~__GFP_HIGHMEM);
463 	if (error)
464 		goto out;
465 
466 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
467 	if (error == 0) {
468 		page_cache_get(page);
469 		page->mapping = mapping;
470 		page->index = offset;
471 
472 		spin_lock_irq(&mapping->tree_lock);
473 		error = radix_tree_insert(&mapping->page_tree, offset, page);
474 		if (likely(!error)) {
475 			mapping->nrpages++;
476 			__inc_zone_page_state(page, NR_FILE_PAGES);
477 		} else {
478 			page->mapping = NULL;
479 			mem_cgroup_uncharge_cache_page(page);
480 			page_cache_release(page);
481 		}
482 
483 		spin_unlock_irq(&mapping->tree_lock);
484 		radix_tree_preload_end();
485 	} else
486 		mem_cgroup_uncharge_cache_page(page);
487 out:
488 	return error;
489 }
490 EXPORT_SYMBOL(add_to_page_cache_locked);
491 
492 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
493 				pgoff_t offset, gfp_t gfp_mask)
494 {
495 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
496 	if (ret == 0)
497 		lru_cache_add(page);
498 	return ret;
499 }
500 
501 #ifdef CONFIG_NUMA
502 struct page *__page_cache_alloc(gfp_t gfp)
503 {
504 	if (cpuset_do_page_mem_spread()) {
505 		int n = cpuset_mem_spread_node();
506 		return alloc_pages_node(n, gfp, 0);
507 	}
508 	return alloc_pages(gfp, 0);
509 }
510 EXPORT_SYMBOL(__page_cache_alloc);
511 #endif
512 
513 static int __sleep_on_page_lock(void *word)
514 {
515 	io_schedule();
516 	return 0;
517 }
518 
519 /*
520  * In order to wait for pages to become available there must be
521  * waitqueues associated with pages. By using a hash table of
522  * waitqueues where the bucket discipline is to maintain all
523  * waiters on the same queue and wake all when any of the pages
524  * become available, and for the woken contexts to check to be
525  * sure the appropriate page became available, this saves space
526  * at a cost of "thundering herd" phenomena during rare hash
527  * collisions.
528  */
529 static wait_queue_head_t *page_waitqueue(struct page *page)
530 {
531 	const struct zone *zone = page_zone(page);
532 
533 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
534 }
535 
536 static inline void wake_up_page(struct page *page, int bit)
537 {
538 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
539 }
540 
541 void wait_on_page_bit(struct page *page, int bit_nr)
542 {
543 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
544 
545 	if (test_bit(bit_nr, &page->flags))
546 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
547 							TASK_UNINTERRUPTIBLE);
548 }
549 EXPORT_SYMBOL(wait_on_page_bit);
550 
551 /**
552  * unlock_page - unlock a locked page
553  * @page: the page
554  *
555  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
556  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
557  * mechananism between PageLocked pages and PageWriteback pages is shared.
558  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
559  *
560  * The first mb is necessary to safely close the critical section opened by the
561  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
562  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
563  * parallel wait_on_page_locked()).
564  */
565 void unlock_page(struct page *page)
566 {
567 	smp_mb__before_clear_bit();
568 	if (!TestClearPageLocked(page))
569 		BUG();
570 	smp_mb__after_clear_bit();
571 	wake_up_page(page, PG_locked);
572 }
573 EXPORT_SYMBOL(unlock_page);
574 
575 /**
576  * end_page_writeback - end writeback against a page
577  * @page: the page
578  */
579 void end_page_writeback(struct page *page)
580 {
581 	if (TestClearPageReclaim(page))
582 		rotate_reclaimable_page(page);
583 
584 	if (!test_clear_page_writeback(page))
585 		BUG();
586 
587 	smp_mb__after_clear_bit();
588 	wake_up_page(page, PG_writeback);
589 }
590 EXPORT_SYMBOL(end_page_writeback);
591 
592 /**
593  * __lock_page - get a lock on the page, assuming we need to sleep to get it
594  * @page: the page to lock
595  *
596  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
597  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
598  * chances are that on the second loop, the block layer's plug list is empty,
599  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
600  */
601 void __lock_page(struct page *page)
602 {
603 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
604 
605 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
606 							TASK_UNINTERRUPTIBLE);
607 }
608 EXPORT_SYMBOL(__lock_page);
609 
610 int __lock_page_killable(struct page *page)
611 {
612 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613 
614 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
615 					sync_page_killable, TASK_KILLABLE);
616 }
617 
618 /**
619  * __lock_page_nosync - get a lock on the page, without calling sync_page()
620  * @page: the page to lock
621  *
622  * Variant of lock_page that does not require the caller to hold a reference
623  * on the page's mapping.
624  */
625 void __lock_page_nosync(struct page *page)
626 {
627 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
629 							TASK_UNINTERRUPTIBLE);
630 }
631 
632 /**
633  * find_get_page - find and get a page reference
634  * @mapping: the address_space to search
635  * @offset: the page index
636  *
637  * Is there a pagecache struct page at the given (mapping, offset) tuple?
638  * If yes, increment its refcount and return it; if no, return NULL.
639  */
640 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
641 {
642 	void **pagep;
643 	struct page *page;
644 
645 	rcu_read_lock();
646 repeat:
647 	page = NULL;
648 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
649 	if (pagep) {
650 		page = radix_tree_deref_slot(pagep);
651 		if (unlikely(!page || page == RADIX_TREE_RETRY))
652 			goto repeat;
653 
654 		if (!page_cache_get_speculative(page))
655 			goto repeat;
656 
657 		/*
658 		 * Has the page moved?
659 		 * This is part of the lockless pagecache protocol. See
660 		 * include/linux/pagemap.h for details.
661 		 */
662 		if (unlikely(page != *pagep)) {
663 			page_cache_release(page);
664 			goto repeat;
665 		}
666 	}
667 	rcu_read_unlock();
668 
669 	return page;
670 }
671 EXPORT_SYMBOL(find_get_page);
672 
673 /**
674  * find_lock_page - locate, pin and lock a pagecache page
675  * @mapping: the address_space to search
676  * @offset: the page index
677  *
678  * Locates the desired pagecache page, locks it, increments its reference
679  * count and returns its address.
680  *
681  * Returns zero if the page was not present. find_lock_page() may sleep.
682  */
683 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
684 {
685 	struct page *page;
686 
687 repeat:
688 	page = find_get_page(mapping, offset);
689 	if (page) {
690 		lock_page(page);
691 		/* Has the page been truncated? */
692 		if (unlikely(page->mapping != mapping)) {
693 			unlock_page(page);
694 			page_cache_release(page);
695 			goto repeat;
696 		}
697 		VM_BUG_ON(page->index != offset);
698 	}
699 	return page;
700 }
701 EXPORT_SYMBOL(find_lock_page);
702 
703 /**
704  * find_or_create_page - locate or add a pagecache page
705  * @mapping: the page's address_space
706  * @index: the page's index into the mapping
707  * @gfp_mask: page allocation mode
708  *
709  * Locates a page in the pagecache.  If the page is not present, a new page
710  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
711  * LRU list.  The returned page is locked and has its reference count
712  * incremented.
713  *
714  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
715  * allocation!
716  *
717  * find_or_create_page() returns the desired page's address, or zero on
718  * memory exhaustion.
719  */
720 struct page *find_or_create_page(struct address_space *mapping,
721 		pgoff_t index, gfp_t gfp_mask)
722 {
723 	struct page *page;
724 	int err;
725 repeat:
726 	page = find_lock_page(mapping, index);
727 	if (!page) {
728 		page = __page_cache_alloc(gfp_mask);
729 		if (!page)
730 			return NULL;
731 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
732 		if (unlikely(err)) {
733 			page_cache_release(page);
734 			page = NULL;
735 			if (err == -EEXIST)
736 				goto repeat;
737 		}
738 	}
739 	return page;
740 }
741 EXPORT_SYMBOL(find_or_create_page);
742 
743 /**
744  * find_get_pages - gang pagecache lookup
745  * @mapping:	The address_space to search
746  * @start:	The starting page index
747  * @nr_pages:	The maximum number of pages
748  * @pages:	Where the resulting pages are placed
749  *
750  * find_get_pages() will search for and return a group of up to
751  * @nr_pages pages in the mapping.  The pages are placed at @pages.
752  * find_get_pages() takes a reference against the returned pages.
753  *
754  * The search returns a group of mapping-contiguous pages with ascending
755  * indexes.  There may be holes in the indices due to not-present pages.
756  *
757  * find_get_pages() returns the number of pages which were found.
758  */
759 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
760 			    unsigned int nr_pages, struct page **pages)
761 {
762 	unsigned int i;
763 	unsigned int ret;
764 	unsigned int nr_found;
765 
766 	rcu_read_lock();
767 restart:
768 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
769 				(void ***)pages, start, nr_pages);
770 	ret = 0;
771 	for (i = 0; i < nr_found; i++) {
772 		struct page *page;
773 repeat:
774 		page = radix_tree_deref_slot((void **)pages[i]);
775 		if (unlikely(!page))
776 			continue;
777 		/*
778 		 * this can only trigger if nr_found == 1, making livelock
779 		 * a non issue.
780 		 */
781 		if (unlikely(page == RADIX_TREE_RETRY))
782 			goto restart;
783 
784 		if (!page_cache_get_speculative(page))
785 			goto repeat;
786 
787 		/* Has the page moved? */
788 		if (unlikely(page != *((void **)pages[i]))) {
789 			page_cache_release(page);
790 			goto repeat;
791 		}
792 
793 		pages[ret] = page;
794 		ret++;
795 	}
796 	rcu_read_unlock();
797 	return ret;
798 }
799 
800 /**
801  * find_get_pages_contig - gang contiguous pagecache lookup
802  * @mapping:	The address_space to search
803  * @index:	The starting page index
804  * @nr_pages:	The maximum number of pages
805  * @pages:	Where the resulting pages are placed
806  *
807  * find_get_pages_contig() works exactly like find_get_pages(), except
808  * that the returned number of pages are guaranteed to be contiguous.
809  *
810  * find_get_pages_contig() returns the number of pages which were found.
811  */
812 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
813 			       unsigned int nr_pages, struct page **pages)
814 {
815 	unsigned int i;
816 	unsigned int ret;
817 	unsigned int nr_found;
818 
819 	rcu_read_lock();
820 restart:
821 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
822 				(void ***)pages, index, nr_pages);
823 	ret = 0;
824 	for (i = 0; i < nr_found; i++) {
825 		struct page *page;
826 repeat:
827 		page = radix_tree_deref_slot((void **)pages[i]);
828 		if (unlikely(!page))
829 			continue;
830 		/*
831 		 * this can only trigger if nr_found == 1, making livelock
832 		 * a non issue.
833 		 */
834 		if (unlikely(page == RADIX_TREE_RETRY))
835 			goto restart;
836 
837 		if (page->mapping == NULL || page->index != index)
838 			break;
839 
840 		if (!page_cache_get_speculative(page))
841 			goto repeat;
842 
843 		/* Has the page moved? */
844 		if (unlikely(page != *((void **)pages[i]))) {
845 			page_cache_release(page);
846 			goto repeat;
847 		}
848 
849 		pages[ret] = page;
850 		ret++;
851 		index++;
852 	}
853 	rcu_read_unlock();
854 	return ret;
855 }
856 EXPORT_SYMBOL(find_get_pages_contig);
857 
858 /**
859  * find_get_pages_tag - find and return pages that match @tag
860  * @mapping:	the address_space to search
861  * @index:	the starting page index
862  * @tag:	the tag index
863  * @nr_pages:	the maximum number of pages
864  * @pages:	where the resulting pages are placed
865  *
866  * Like find_get_pages, except we only return pages which are tagged with
867  * @tag.   We update @index to index the next page for the traversal.
868  */
869 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
870 			int tag, unsigned int nr_pages, struct page **pages)
871 {
872 	unsigned int i;
873 	unsigned int ret;
874 	unsigned int nr_found;
875 
876 	rcu_read_lock();
877 restart:
878 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
879 				(void ***)pages, *index, nr_pages, tag);
880 	ret = 0;
881 	for (i = 0; i < nr_found; i++) {
882 		struct page *page;
883 repeat:
884 		page = radix_tree_deref_slot((void **)pages[i]);
885 		if (unlikely(!page))
886 			continue;
887 		/*
888 		 * this can only trigger if nr_found == 1, making livelock
889 		 * a non issue.
890 		 */
891 		if (unlikely(page == RADIX_TREE_RETRY))
892 			goto restart;
893 
894 		if (!page_cache_get_speculative(page))
895 			goto repeat;
896 
897 		/* Has the page moved? */
898 		if (unlikely(page != *((void **)pages[i]))) {
899 			page_cache_release(page);
900 			goto repeat;
901 		}
902 
903 		pages[ret] = page;
904 		ret++;
905 	}
906 	rcu_read_unlock();
907 
908 	if (ret)
909 		*index = pages[ret - 1]->index + 1;
910 
911 	return ret;
912 }
913 EXPORT_SYMBOL(find_get_pages_tag);
914 
915 /**
916  * grab_cache_page_nowait - returns locked page at given index in given cache
917  * @mapping: target address_space
918  * @index: the page index
919  *
920  * Same as grab_cache_page(), but do not wait if the page is unavailable.
921  * This is intended for speculative data generators, where the data can
922  * be regenerated if the page couldn't be grabbed.  This routine should
923  * be safe to call while holding the lock for another page.
924  *
925  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
926  * and deadlock against the caller's locked page.
927  */
928 struct page *
929 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
930 {
931 	struct page *page = find_get_page(mapping, index);
932 
933 	if (page) {
934 		if (!TestSetPageLocked(page))
935 			return page;
936 		page_cache_release(page);
937 		return NULL;
938 	}
939 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
940 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
941 		page_cache_release(page);
942 		page = NULL;
943 	}
944 	return page;
945 }
946 EXPORT_SYMBOL(grab_cache_page_nowait);
947 
948 /*
949  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
950  * a _large_ part of the i/o request. Imagine the worst scenario:
951  *
952  *      ---R__________________________________________B__________
953  *         ^ reading here                             ^ bad block(assume 4k)
954  *
955  * read(R) => miss => readahead(R...B) => media error => frustrating retries
956  * => failing the whole request => read(R) => read(R+1) =>
957  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
958  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
959  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
960  *
961  * It is going insane. Fix it by quickly scaling down the readahead size.
962  */
963 static void shrink_readahead_size_eio(struct file *filp,
964 					struct file_ra_state *ra)
965 {
966 	if (!ra->ra_pages)
967 		return;
968 
969 	ra->ra_pages /= 4;
970 }
971 
972 /**
973  * do_generic_file_read - generic file read routine
974  * @filp:	the file to read
975  * @ppos:	current file position
976  * @desc:	read_descriptor
977  * @actor:	read method
978  *
979  * This is a generic file read routine, and uses the
980  * mapping->a_ops->readpage() function for the actual low-level stuff.
981  *
982  * This is really ugly. But the goto's actually try to clarify some
983  * of the logic when it comes to error handling etc.
984  */
985 static void do_generic_file_read(struct file *filp, loff_t *ppos,
986 		read_descriptor_t *desc, read_actor_t actor)
987 {
988 	struct address_space *mapping = filp->f_mapping;
989 	struct inode *inode = mapping->host;
990 	struct file_ra_state *ra = &filp->f_ra;
991 	pgoff_t index;
992 	pgoff_t last_index;
993 	pgoff_t prev_index;
994 	unsigned long offset;      /* offset into pagecache page */
995 	unsigned int prev_offset;
996 	int error;
997 
998 	index = *ppos >> PAGE_CACHE_SHIFT;
999 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1000 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1001 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1002 	offset = *ppos & ~PAGE_CACHE_MASK;
1003 
1004 	for (;;) {
1005 		struct page *page;
1006 		pgoff_t end_index;
1007 		loff_t isize;
1008 		unsigned long nr, ret;
1009 
1010 		cond_resched();
1011 find_page:
1012 		page = find_get_page(mapping, index);
1013 		if (!page) {
1014 			page_cache_sync_readahead(mapping,
1015 					ra, filp,
1016 					index, last_index - index);
1017 			page = find_get_page(mapping, index);
1018 			if (unlikely(page == NULL))
1019 				goto no_cached_page;
1020 		}
1021 		if (PageReadahead(page)) {
1022 			page_cache_async_readahead(mapping,
1023 					ra, filp, page,
1024 					index, last_index - index);
1025 		}
1026 		if (!PageUptodate(page))
1027 			goto page_not_up_to_date;
1028 page_ok:
1029 		/*
1030 		 * i_size must be checked after we know the page is Uptodate.
1031 		 *
1032 		 * Checking i_size after the check allows us to calculate
1033 		 * the correct value for "nr", which means the zero-filled
1034 		 * part of the page is not copied back to userspace (unless
1035 		 * another truncate extends the file - this is desired though).
1036 		 */
1037 
1038 		isize = i_size_read(inode);
1039 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1040 		if (unlikely(!isize || index > end_index)) {
1041 			page_cache_release(page);
1042 			goto out;
1043 		}
1044 
1045 		/* nr is the maximum number of bytes to copy from this page */
1046 		nr = PAGE_CACHE_SIZE;
1047 		if (index == end_index) {
1048 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1049 			if (nr <= offset) {
1050 				page_cache_release(page);
1051 				goto out;
1052 			}
1053 		}
1054 		nr = nr - offset;
1055 
1056 		/* If users can be writing to this page using arbitrary
1057 		 * virtual addresses, take care about potential aliasing
1058 		 * before reading the page on the kernel side.
1059 		 */
1060 		if (mapping_writably_mapped(mapping))
1061 			flush_dcache_page(page);
1062 
1063 		/*
1064 		 * When a sequential read accesses a page several times,
1065 		 * only mark it as accessed the first time.
1066 		 */
1067 		if (prev_index != index || offset != prev_offset)
1068 			mark_page_accessed(page);
1069 		prev_index = index;
1070 
1071 		/*
1072 		 * Ok, we have the page, and it's up-to-date, so
1073 		 * now we can copy it to user space...
1074 		 *
1075 		 * The actor routine returns how many bytes were actually used..
1076 		 * NOTE! This may not be the same as how much of a user buffer
1077 		 * we filled up (we may be padding etc), so we can only update
1078 		 * "pos" here (the actor routine has to update the user buffer
1079 		 * pointers and the remaining count).
1080 		 */
1081 		ret = actor(desc, page, offset, nr);
1082 		offset += ret;
1083 		index += offset >> PAGE_CACHE_SHIFT;
1084 		offset &= ~PAGE_CACHE_MASK;
1085 		prev_offset = offset;
1086 
1087 		page_cache_release(page);
1088 		if (ret == nr && desc->count)
1089 			continue;
1090 		goto out;
1091 
1092 page_not_up_to_date:
1093 		/* Get exclusive access to the page ... */
1094 		if (lock_page_killable(page))
1095 			goto readpage_eio;
1096 
1097 		/* Did it get truncated before we got the lock? */
1098 		if (!page->mapping) {
1099 			unlock_page(page);
1100 			page_cache_release(page);
1101 			continue;
1102 		}
1103 
1104 		/* Did somebody else fill it already? */
1105 		if (PageUptodate(page)) {
1106 			unlock_page(page);
1107 			goto page_ok;
1108 		}
1109 
1110 readpage:
1111 		/* Start the actual read. The read will unlock the page. */
1112 		error = mapping->a_ops->readpage(filp, page);
1113 
1114 		if (unlikely(error)) {
1115 			if (error == AOP_TRUNCATED_PAGE) {
1116 				page_cache_release(page);
1117 				goto find_page;
1118 			}
1119 			goto readpage_error;
1120 		}
1121 
1122 		if (!PageUptodate(page)) {
1123 			if (lock_page_killable(page))
1124 				goto readpage_eio;
1125 			if (!PageUptodate(page)) {
1126 				if (page->mapping == NULL) {
1127 					/*
1128 					 * invalidate_inode_pages got it
1129 					 */
1130 					unlock_page(page);
1131 					page_cache_release(page);
1132 					goto find_page;
1133 				}
1134 				unlock_page(page);
1135 				shrink_readahead_size_eio(filp, ra);
1136 				goto readpage_eio;
1137 			}
1138 			unlock_page(page);
1139 		}
1140 
1141 		goto page_ok;
1142 
1143 readpage_eio:
1144 		error = -EIO;
1145 readpage_error:
1146 		/* UHHUH! A synchronous read error occurred. Report it */
1147 		desc->error = error;
1148 		page_cache_release(page);
1149 		goto out;
1150 
1151 no_cached_page:
1152 		/*
1153 		 * Ok, it wasn't cached, so we need to create a new
1154 		 * page..
1155 		 */
1156 		page = page_cache_alloc_cold(mapping);
1157 		if (!page) {
1158 			desc->error = -ENOMEM;
1159 			goto out;
1160 		}
1161 		error = add_to_page_cache_lru(page, mapping,
1162 						index, GFP_KERNEL);
1163 		if (error) {
1164 			page_cache_release(page);
1165 			if (error == -EEXIST)
1166 				goto find_page;
1167 			desc->error = error;
1168 			goto out;
1169 		}
1170 		goto readpage;
1171 	}
1172 
1173 out:
1174 	ra->prev_pos = prev_index;
1175 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1176 	ra->prev_pos |= prev_offset;
1177 
1178 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1179 	if (filp)
1180 		file_accessed(filp);
1181 }
1182 
1183 int file_read_actor(read_descriptor_t *desc, struct page *page,
1184 			unsigned long offset, unsigned long size)
1185 {
1186 	char *kaddr;
1187 	unsigned long left, count = desc->count;
1188 
1189 	if (size > count)
1190 		size = count;
1191 
1192 	/*
1193 	 * Faults on the destination of a read are common, so do it before
1194 	 * taking the kmap.
1195 	 */
1196 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1197 		kaddr = kmap_atomic(page, KM_USER0);
1198 		left = __copy_to_user_inatomic(desc->arg.buf,
1199 						kaddr + offset, size);
1200 		kunmap_atomic(kaddr, KM_USER0);
1201 		if (left == 0)
1202 			goto success;
1203 	}
1204 
1205 	/* Do it the slow way */
1206 	kaddr = kmap(page);
1207 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1208 	kunmap(page);
1209 
1210 	if (left) {
1211 		size -= left;
1212 		desc->error = -EFAULT;
1213 	}
1214 success:
1215 	desc->count = count - size;
1216 	desc->written += size;
1217 	desc->arg.buf += size;
1218 	return size;
1219 }
1220 
1221 /*
1222  * Performs necessary checks before doing a write
1223  * @iov:	io vector request
1224  * @nr_segs:	number of segments in the iovec
1225  * @count:	number of bytes to write
1226  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1227  *
1228  * Adjust number of segments and amount of bytes to write (nr_segs should be
1229  * properly initialized first). Returns appropriate error code that caller
1230  * should return or zero in case that write should be allowed.
1231  */
1232 int generic_segment_checks(const struct iovec *iov,
1233 			unsigned long *nr_segs, size_t *count, int access_flags)
1234 {
1235 	unsigned long   seg;
1236 	size_t cnt = 0;
1237 	for (seg = 0; seg < *nr_segs; seg++) {
1238 		const struct iovec *iv = &iov[seg];
1239 
1240 		/*
1241 		 * If any segment has a negative length, or the cumulative
1242 		 * length ever wraps negative then return -EINVAL.
1243 		 */
1244 		cnt += iv->iov_len;
1245 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1246 			return -EINVAL;
1247 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1248 			continue;
1249 		if (seg == 0)
1250 			return -EFAULT;
1251 		*nr_segs = seg;
1252 		cnt -= iv->iov_len;	/* This segment is no good */
1253 		break;
1254 	}
1255 	*count = cnt;
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL(generic_segment_checks);
1259 
1260 /**
1261  * generic_file_aio_read - generic filesystem read routine
1262  * @iocb:	kernel I/O control block
1263  * @iov:	io vector request
1264  * @nr_segs:	number of segments in the iovec
1265  * @pos:	current file position
1266  *
1267  * This is the "read()" routine for all filesystems
1268  * that can use the page cache directly.
1269  */
1270 ssize_t
1271 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1272 		unsigned long nr_segs, loff_t pos)
1273 {
1274 	struct file *filp = iocb->ki_filp;
1275 	ssize_t retval;
1276 	unsigned long seg;
1277 	size_t count;
1278 	loff_t *ppos = &iocb->ki_pos;
1279 
1280 	count = 0;
1281 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1282 	if (retval)
1283 		return retval;
1284 
1285 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1286 	if (filp->f_flags & O_DIRECT) {
1287 		loff_t size;
1288 		struct address_space *mapping;
1289 		struct inode *inode;
1290 
1291 		mapping = filp->f_mapping;
1292 		inode = mapping->host;
1293 		if (!count)
1294 			goto out; /* skip atime */
1295 		size = i_size_read(inode);
1296 		if (pos < size) {
1297 			retval = filemap_write_and_wait(mapping);
1298 			if (!retval) {
1299 				retval = mapping->a_ops->direct_IO(READ, iocb,
1300 							iov, pos, nr_segs);
1301 			}
1302 			if (retval > 0)
1303 				*ppos = pos + retval;
1304 			if (retval) {
1305 				file_accessed(filp);
1306 				goto out;
1307 			}
1308 		}
1309 	}
1310 
1311 	for (seg = 0; seg < nr_segs; seg++) {
1312 		read_descriptor_t desc;
1313 
1314 		desc.written = 0;
1315 		desc.arg.buf = iov[seg].iov_base;
1316 		desc.count = iov[seg].iov_len;
1317 		if (desc.count == 0)
1318 			continue;
1319 		desc.error = 0;
1320 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1321 		retval += desc.written;
1322 		if (desc.error) {
1323 			retval = retval ?: desc.error;
1324 			break;
1325 		}
1326 		if (desc.count > 0)
1327 			break;
1328 	}
1329 out:
1330 	return retval;
1331 }
1332 EXPORT_SYMBOL(generic_file_aio_read);
1333 
1334 static ssize_t
1335 do_readahead(struct address_space *mapping, struct file *filp,
1336 	     pgoff_t index, unsigned long nr)
1337 {
1338 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1339 		return -EINVAL;
1340 
1341 	force_page_cache_readahead(mapping, filp, index,
1342 					max_sane_readahead(nr));
1343 	return 0;
1344 }
1345 
1346 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1347 {
1348 	ssize_t ret;
1349 	struct file *file;
1350 
1351 	ret = -EBADF;
1352 	file = fget(fd);
1353 	if (file) {
1354 		if (file->f_mode & FMODE_READ) {
1355 			struct address_space *mapping = file->f_mapping;
1356 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1357 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1358 			unsigned long len = end - start + 1;
1359 			ret = do_readahead(mapping, file, start, len);
1360 		}
1361 		fput(file);
1362 	}
1363 	return ret;
1364 }
1365 
1366 #ifdef CONFIG_MMU
1367 /**
1368  * page_cache_read - adds requested page to the page cache if not already there
1369  * @file:	file to read
1370  * @offset:	page index
1371  *
1372  * This adds the requested page to the page cache if it isn't already there,
1373  * and schedules an I/O to read in its contents from disk.
1374  */
1375 static int page_cache_read(struct file *file, pgoff_t offset)
1376 {
1377 	struct address_space *mapping = file->f_mapping;
1378 	struct page *page;
1379 	int ret;
1380 
1381 	do {
1382 		page = page_cache_alloc_cold(mapping);
1383 		if (!page)
1384 			return -ENOMEM;
1385 
1386 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1387 		if (ret == 0)
1388 			ret = mapping->a_ops->readpage(file, page);
1389 		else if (ret == -EEXIST)
1390 			ret = 0; /* losing race to add is OK */
1391 
1392 		page_cache_release(page);
1393 
1394 	} while (ret == AOP_TRUNCATED_PAGE);
1395 
1396 	return ret;
1397 }
1398 
1399 #define MMAP_LOTSAMISS  (100)
1400 
1401 /**
1402  * filemap_fault - read in file data for page fault handling
1403  * @vma:	vma in which the fault was taken
1404  * @vmf:	struct vm_fault containing details of the fault
1405  *
1406  * filemap_fault() is invoked via the vma operations vector for a
1407  * mapped memory region to read in file data during a page fault.
1408  *
1409  * The goto's are kind of ugly, but this streamlines the normal case of having
1410  * it in the page cache, and handles the special cases reasonably without
1411  * having a lot of duplicated code.
1412  */
1413 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1414 {
1415 	int error;
1416 	struct file *file = vma->vm_file;
1417 	struct address_space *mapping = file->f_mapping;
1418 	struct file_ra_state *ra = &file->f_ra;
1419 	struct inode *inode = mapping->host;
1420 	struct page *page;
1421 	pgoff_t size;
1422 	int did_readaround = 0;
1423 	int ret = 0;
1424 
1425 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1426 	if (vmf->pgoff >= size)
1427 		return VM_FAULT_SIGBUS;
1428 
1429 	/* If we don't want any read-ahead, don't bother */
1430 	if (VM_RandomReadHint(vma))
1431 		goto no_cached_page;
1432 
1433 	/*
1434 	 * Do we have something in the page cache already?
1435 	 */
1436 retry_find:
1437 	page = find_lock_page(mapping, vmf->pgoff);
1438 	/*
1439 	 * For sequential accesses, we use the generic readahead logic.
1440 	 */
1441 	if (VM_SequentialReadHint(vma)) {
1442 		if (!page) {
1443 			page_cache_sync_readahead(mapping, ra, file,
1444 							   vmf->pgoff, 1);
1445 			page = find_lock_page(mapping, vmf->pgoff);
1446 			if (!page)
1447 				goto no_cached_page;
1448 		}
1449 		if (PageReadahead(page)) {
1450 			page_cache_async_readahead(mapping, ra, file, page,
1451 							   vmf->pgoff, 1);
1452 		}
1453 	}
1454 
1455 	if (!page) {
1456 		unsigned long ra_pages;
1457 
1458 		ra->mmap_miss++;
1459 
1460 		/*
1461 		 * Do we miss much more than hit in this file? If so,
1462 		 * stop bothering with read-ahead. It will only hurt.
1463 		 */
1464 		if (ra->mmap_miss > MMAP_LOTSAMISS)
1465 			goto no_cached_page;
1466 
1467 		/*
1468 		 * To keep the pgmajfault counter straight, we need to
1469 		 * check did_readaround, as this is an inner loop.
1470 		 */
1471 		if (!did_readaround) {
1472 			ret = VM_FAULT_MAJOR;
1473 			count_vm_event(PGMAJFAULT);
1474 		}
1475 		did_readaround = 1;
1476 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1477 		if (ra_pages) {
1478 			pgoff_t start = 0;
1479 
1480 			if (vmf->pgoff > ra_pages / 2)
1481 				start = vmf->pgoff - ra_pages / 2;
1482 			do_page_cache_readahead(mapping, file, start, ra_pages);
1483 		}
1484 		page = find_lock_page(mapping, vmf->pgoff);
1485 		if (!page)
1486 			goto no_cached_page;
1487 	}
1488 
1489 	if (!did_readaround)
1490 		ra->mmap_miss--;
1491 
1492 	/*
1493 	 * We have a locked page in the page cache, now we need to check
1494 	 * that it's up-to-date. If not, it is going to be due to an error.
1495 	 */
1496 	if (unlikely(!PageUptodate(page)))
1497 		goto page_not_uptodate;
1498 
1499 	/* Must recheck i_size under page lock */
1500 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1501 	if (unlikely(vmf->pgoff >= size)) {
1502 		unlock_page(page);
1503 		page_cache_release(page);
1504 		return VM_FAULT_SIGBUS;
1505 	}
1506 
1507 	/*
1508 	 * Found the page and have a reference on it.
1509 	 */
1510 	mark_page_accessed(page);
1511 	ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1512 	vmf->page = page;
1513 	return ret | VM_FAULT_LOCKED;
1514 
1515 no_cached_page:
1516 	/*
1517 	 * We're only likely to ever get here if MADV_RANDOM is in
1518 	 * effect.
1519 	 */
1520 	error = page_cache_read(file, vmf->pgoff);
1521 
1522 	/*
1523 	 * The page we want has now been added to the page cache.
1524 	 * In the unlikely event that someone removed it in the
1525 	 * meantime, we'll just come back here and read it again.
1526 	 */
1527 	if (error >= 0)
1528 		goto retry_find;
1529 
1530 	/*
1531 	 * An error return from page_cache_read can result if the
1532 	 * system is low on memory, or a problem occurs while trying
1533 	 * to schedule I/O.
1534 	 */
1535 	if (error == -ENOMEM)
1536 		return VM_FAULT_OOM;
1537 	return VM_FAULT_SIGBUS;
1538 
1539 page_not_uptodate:
1540 	/* IO error path */
1541 	if (!did_readaround) {
1542 		ret = VM_FAULT_MAJOR;
1543 		count_vm_event(PGMAJFAULT);
1544 	}
1545 
1546 	/*
1547 	 * Umm, take care of errors if the page isn't up-to-date.
1548 	 * Try to re-read it _once_. We do this synchronously,
1549 	 * because there really aren't any performance issues here
1550 	 * and we need to check for errors.
1551 	 */
1552 	ClearPageError(page);
1553 	error = mapping->a_ops->readpage(file, page);
1554 	if (!error) {
1555 		wait_on_page_locked(page);
1556 		if (!PageUptodate(page))
1557 			error = -EIO;
1558 	}
1559 	page_cache_release(page);
1560 
1561 	if (!error || error == AOP_TRUNCATED_PAGE)
1562 		goto retry_find;
1563 
1564 	/* Things didn't work out. Return zero to tell the mm layer so. */
1565 	shrink_readahead_size_eio(file, ra);
1566 	return VM_FAULT_SIGBUS;
1567 }
1568 EXPORT_SYMBOL(filemap_fault);
1569 
1570 struct vm_operations_struct generic_file_vm_ops = {
1571 	.fault		= filemap_fault,
1572 };
1573 
1574 /* This is used for a general mmap of a disk file */
1575 
1576 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1577 {
1578 	struct address_space *mapping = file->f_mapping;
1579 
1580 	if (!mapping->a_ops->readpage)
1581 		return -ENOEXEC;
1582 	file_accessed(file);
1583 	vma->vm_ops = &generic_file_vm_ops;
1584 	vma->vm_flags |= VM_CAN_NONLINEAR;
1585 	return 0;
1586 }
1587 
1588 /*
1589  * This is for filesystems which do not implement ->writepage.
1590  */
1591 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1592 {
1593 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1594 		return -EINVAL;
1595 	return generic_file_mmap(file, vma);
1596 }
1597 #else
1598 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1599 {
1600 	return -ENOSYS;
1601 }
1602 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1603 {
1604 	return -ENOSYS;
1605 }
1606 #endif /* CONFIG_MMU */
1607 
1608 EXPORT_SYMBOL(generic_file_mmap);
1609 EXPORT_SYMBOL(generic_file_readonly_mmap);
1610 
1611 static struct page *__read_cache_page(struct address_space *mapping,
1612 				pgoff_t index,
1613 				int (*filler)(void *,struct page*),
1614 				void *data)
1615 {
1616 	struct page *page;
1617 	int err;
1618 repeat:
1619 	page = find_get_page(mapping, index);
1620 	if (!page) {
1621 		page = page_cache_alloc_cold(mapping);
1622 		if (!page)
1623 			return ERR_PTR(-ENOMEM);
1624 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1625 		if (unlikely(err)) {
1626 			page_cache_release(page);
1627 			if (err == -EEXIST)
1628 				goto repeat;
1629 			/* Presumably ENOMEM for radix tree node */
1630 			return ERR_PTR(err);
1631 		}
1632 		err = filler(data, page);
1633 		if (err < 0) {
1634 			page_cache_release(page);
1635 			page = ERR_PTR(err);
1636 		}
1637 	}
1638 	return page;
1639 }
1640 
1641 /**
1642  * read_cache_page_async - read into page cache, fill it if needed
1643  * @mapping:	the page's address_space
1644  * @index:	the page index
1645  * @filler:	function to perform the read
1646  * @data:	destination for read data
1647  *
1648  * Same as read_cache_page, but don't wait for page to become unlocked
1649  * after submitting it to the filler.
1650  *
1651  * Read into the page cache. If a page already exists, and PageUptodate() is
1652  * not set, try to fill the page but don't wait for it to become unlocked.
1653  *
1654  * If the page does not get brought uptodate, return -EIO.
1655  */
1656 struct page *read_cache_page_async(struct address_space *mapping,
1657 				pgoff_t index,
1658 				int (*filler)(void *,struct page*),
1659 				void *data)
1660 {
1661 	struct page *page;
1662 	int err;
1663 
1664 retry:
1665 	page = __read_cache_page(mapping, index, filler, data);
1666 	if (IS_ERR(page))
1667 		return page;
1668 	if (PageUptodate(page))
1669 		goto out;
1670 
1671 	lock_page(page);
1672 	if (!page->mapping) {
1673 		unlock_page(page);
1674 		page_cache_release(page);
1675 		goto retry;
1676 	}
1677 	if (PageUptodate(page)) {
1678 		unlock_page(page);
1679 		goto out;
1680 	}
1681 	err = filler(data, page);
1682 	if (err < 0) {
1683 		page_cache_release(page);
1684 		return ERR_PTR(err);
1685 	}
1686 out:
1687 	mark_page_accessed(page);
1688 	return page;
1689 }
1690 EXPORT_SYMBOL(read_cache_page_async);
1691 
1692 /**
1693  * read_cache_page - read into page cache, fill it if needed
1694  * @mapping:	the page's address_space
1695  * @index:	the page index
1696  * @filler:	function to perform the read
1697  * @data:	destination for read data
1698  *
1699  * Read into the page cache. If a page already exists, and PageUptodate() is
1700  * not set, try to fill the page then wait for it to become unlocked.
1701  *
1702  * If the page does not get brought uptodate, return -EIO.
1703  */
1704 struct page *read_cache_page(struct address_space *mapping,
1705 				pgoff_t index,
1706 				int (*filler)(void *,struct page*),
1707 				void *data)
1708 {
1709 	struct page *page;
1710 
1711 	page = read_cache_page_async(mapping, index, filler, data);
1712 	if (IS_ERR(page))
1713 		goto out;
1714 	wait_on_page_locked(page);
1715 	if (!PageUptodate(page)) {
1716 		page_cache_release(page);
1717 		page = ERR_PTR(-EIO);
1718 	}
1719  out:
1720 	return page;
1721 }
1722 EXPORT_SYMBOL(read_cache_page);
1723 
1724 /*
1725  * The logic we want is
1726  *
1727  *	if suid or (sgid and xgrp)
1728  *		remove privs
1729  */
1730 int should_remove_suid(struct dentry *dentry)
1731 {
1732 	mode_t mode = dentry->d_inode->i_mode;
1733 	int kill = 0;
1734 
1735 	/* suid always must be killed */
1736 	if (unlikely(mode & S_ISUID))
1737 		kill = ATTR_KILL_SUID;
1738 
1739 	/*
1740 	 * sgid without any exec bits is just a mandatory locking mark; leave
1741 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1742 	 */
1743 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1744 		kill |= ATTR_KILL_SGID;
1745 
1746 	if (unlikely(kill && !capable(CAP_FSETID)))
1747 		return kill;
1748 
1749 	return 0;
1750 }
1751 EXPORT_SYMBOL(should_remove_suid);
1752 
1753 static int __remove_suid(struct dentry *dentry, int kill)
1754 {
1755 	struct iattr newattrs;
1756 
1757 	newattrs.ia_valid = ATTR_FORCE | kill;
1758 	return notify_change(dentry, &newattrs);
1759 }
1760 
1761 int file_remove_suid(struct file *file)
1762 {
1763 	struct dentry *dentry = file->f_path.dentry;
1764 	int killsuid = should_remove_suid(dentry);
1765 	int killpriv = security_inode_need_killpriv(dentry);
1766 	int error = 0;
1767 
1768 	if (killpriv < 0)
1769 		return killpriv;
1770 	if (killpriv)
1771 		error = security_inode_killpriv(dentry);
1772 	if (!error && killsuid)
1773 		error = __remove_suid(dentry, killsuid);
1774 
1775 	return error;
1776 }
1777 EXPORT_SYMBOL(file_remove_suid);
1778 
1779 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1780 			const struct iovec *iov, size_t base, size_t bytes)
1781 {
1782 	size_t copied = 0, left = 0;
1783 
1784 	while (bytes) {
1785 		char __user *buf = iov->iov_base + base;
1786 		int copy = min(bytes, iov->iov_len - base);
1787 
1788 		base = 0;
1789 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1790 		copied += copy;
1791 		bytes -= copy;
1792 		vaddr += copy;
1793 		iov++;
1794 
1795 		if (unlikely(left))
1796 			break;
1797 	}
1798 	return copied - left;
1799 }
1800 
1801 /*
1802  * Copy as much as we can into the page and return the number of bytes which
1803  * were sucessfully copied.  If a fault is encountered then return the number of
1804  * bytes which were copied.
1805  */
1806 size_t iov_iter_copy_from_user_atomic(struct page *page,
1807 		struct iov_iter *i, unsigned long offset, size_t bytes)
1808 {
1809 	char *kaddr;
1810 	size_t copied;
1811 
1812 	BUG_ON(!in_atomic());
1813 	kaddr = kmap_atomic(page, KM_USER0);
1814 	if (likely(i->nr_segs == 1)) {
1815 		int left;
1816 		char __user *buf = i->iov->iov_base + i->iov_offset;
1817 		left = __copy_from_user_inatomic_nocache(kaddr + offset,
1818 							buf, bytes);
1819 		copied = bytes - left;
1820 	} else {
1821 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1822 						i->iov, i->iov_offset, bytes);
1823 	}
1824 	kunmap_atomic(kaddr, KM_USER0);
1825 
1826 	return copied;
1827 }
1828 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1829 
1830 /*
1831  * This has the same sideeffects and return value as
1832  * iov_iter_copy_from_user_atomic().
1833  * The difference is that it attempts to resolve faults.
1834  * Page must not be locked.
1835  */
1836 size_t iov_iter_copy_from_user(struct page *page,
1837 		struct iov_iter *i, unsigned long offset, size_t bytes)
1838 {
1839 	char *kaddr;
1840 	size_t copied;
1841 
1842 	kaddr = kmap(page);
1843 	if (likely(i->nr_segs == 1)) {
1844 		int left;
1845 		char __user *buf = i->iov->iov_base + i->iov_offset;
1846 		left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1847 		copied = bytes - left;
1848 	} else {
1849 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1850 						i->iov, i->iov_offset, bytes);
1851 	}
1852 	kunmap(page);
1853 	return copied;
1854 }
1855 EXPORT_SYMBOL(iov_iter_copy_from_user);
1856 
1857 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1858 {
1859 	BUG_ON(i->count < bytes);
1860 
1861 	if (likely(i->nr_segs == 1)) {
1862 		i->iov_offset += bytes;
1863 		i->count -= bytes;
1864 	} else {
1865 		const struct iovec *iov = i->iov;
1866 		size_t base = i->iov_offset;
1867 
1868 		/*
1869 		 * The !iov->iov_len check ensures we skip over unlikely
1870 		 * zero-length segments (without overruning the iovec).
1871 		 */
1872 		while (bytes || unlikely(!iov->iov_len && i->count)) {
1873 			int copy;
1874 
1875 			copy = min(bytes, iov->iov_len - base);
1876 			BUG_ON(!i->count || i->count < copy);
1877 			i->count -= copy;
1878 			bytes -= copy;
1879 			base += copy;
1880 			if (iov->iov_len == base) {
1881 				iov++;
1882 				base = 0;
1883 			}
1884 		}
1885 		i->iov = iov;
1886 		i->iov_offset = base;
1887 	}
1888 }
1889 EXPORT_SYMBOL(iov_iter_advance);
1890 
1891 /*
1892  * Fault in the first iovec of the given iov_iter, to a maximum length
1893  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1894  * accessed (ie. because it is an invalid address).
1895  *
1896  * writev-intensive code may want this to prefault several iovecs -- that
1897  * would be possible (callers must not rely on the fact that _only_ the
1898  * first iovec will be faulted with the current implementation).
1899  */
1900 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1901 {
1902 	char __user *buf = i->iov->iov_base + i->iov_offset;
1903 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1904 	return fault_in_pages_readable(buf, bytes);
1905 }
1906 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1907 
1908 /*
1909  * Return the count of just the current iov_iter segment.
1910  */
1911 size_t iov_iter_single_seg_count(struct iov_iter *i)
1912 {
1913 	const struct iovec *iov = i->iov;
1914 	if (i->nr_segs == 1)
1915 		return i->count;
1916 	else
1917 		return min(i->count, iov->iov_len - i->iov_offset);
1918 }
1919 EXPORT_SYMBOL(iov_iter_single_seg_count);
1920 
1921 /*
1922  * Performs necessary checks before doing a write
1923  *
1924  * Can adjust writing position or amount of bytes to write.
1925  * Returns appropriate error code that caller should return or
1926  * zero in case that write should be allowed.
1927  */
1928 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1929 {
1930 	struct inode *inode = file->f_mapping->host;
1931 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1932 
1933         if (unlikely(*pos < 0))
1934                 return -EINVAL;
1935 
1936 	if (!isblk) {
1937 		/* FIXME: this is for backwards compatibility with 2.4 */
1938 		if (file->f_flags & O_APPEND)
1939                         *pos = i_size_read(inode);
1940 
1941 		if (limit != RLIM_INFINITY) {
1942 			if (*pos >= limit) {
1943 				send_sig(SIGXFSZ, current, 0);
1944 				return -EFBIG;
1945 			}
1946 			if (*count > limit - (typeof(limit))*pos) {
1947 				*count = limit - (typeof(limit))*pos;
1948 			}
1949 		}
1950 	}
1951 
1952 	/*
1953 	 * LFS rule
1954 	 */
1955 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1956 				!(file->f_flags & O_LARGEFILE))) {
1957 		if (*pos >= MAX_NON_LFS) {
1958 			return -EFBIG;
1959 		}
1960 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1961 			*count = MAX_NON_LFS - (unsigned long)*pos;
1962 		}
1963 	}
1964 
1965 	/*
1966 	 * Are we about to exceed the fs block limit ?
1967 	 *
1968 	 * If we have written data it becomes a short write.  If we have
1969 	 * exceeded without writing data we send a signal and return EFBIG.
1970 	 * Linus frestrict idea will clean these up nicely..
1971 	 */
1972 	if (likely(!isblk)) {
1973 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1974 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1975 				return -EFBIG;
1976 			}
1977 			/* zero-length writes at ->s_maxbytes are OK */
1978 		}
1979 
1980 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1981 			*count = inode->i_sb->s_maxbytes - *pos;
1982 	} else {
1983 #ifdef CONFIG_BLOCK
1984 		loff_t isize;
1985 		if (bdev_read_only(I_BDEV(inode)))
1986 			return -EPERM;
1987 		isize = i_size_read(inode);
1988 		if (*pos >= isize) {
1989 			if (*count || *pos > isize)
1990 				return -ENOSPC;
1991 		}
1992 
1993 		if (*pos + *count > isize)
1994 			*count = isize - *pos;
1995 #else
1996 		return -EPERM;
1997 #endif
1998 	}
1999 	return 0;
2000 }
2001 EXPORT_SYMBOL(generic_write_checks);
2002 
2003 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2004 				loff_t pos, unsigned len, unsigned flags,
2005 				struct page **pagep, void **fsdata)
2006 {
2007 	const struct address_space_operations *aops = mapping->a_ops;
2008 
2009 	if (aops->write_begin) {
2010 		return aops->write_begin(file, mapping, pos, len, flags,
2011 							pagep, fsdata);
2012 	} else {
2013 		int ret;
2014 		pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2015 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2016 		struct inode *inode = mapping->host;
2017 		struct page *page;
2018 again:
2019 		page = __grab_cache_page(mapping, index);
2020 		*pagep = page;
2021 		if (!page)
2022 			return -ENOMEM;
2023 
2024 		if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
2025 			/*
2026 			 * There is no way to resolve a short write situation
2027 			 * for a !Uptodate page (except by double copying in
2028 			 * the caller done by generic_perform_write_2copy).
2029 			 *
2030 			 * Instead, we have to bring it uptodate here.
2031 			 */
2032 			ret = aops->readpage(file, page);
2033 			page_cache_release(page);
2034 			if (ret) {
2035 				if (ret == AOP_TRUNCATED_PAGE)
2036 					goto again;
2037 				return ret;
2038 			}
2039 			goto again;
2040 		}
2041 
2042 		ret = aops->prepare_write(file, page, offset, offset+len);
2043 		if (ret) {
2044 			unlock_page(page);
2045 			page_cache_release(page);
2046 			if (pos + len > inode->i_size)
2047 				vmtruncate(inode, inode->i_size);
2048 		}
2049 		return ret;
2050 	}
2051 }
2052 EXPORT_SYMBOL(pagecache_write_begin);
2053 
2054 int pagecache_write_end(struct file *file, struct address_space *mapping,
2055 				loff_t pos, unsigned len, unsigned copied,
2056 				struct page *page, void *fsdata)
2057 {
2058 	const struct address_space_operations *aops = mapping->a_ops;
2059 	int ret;
2060 
2061 	if (aops->write_end) {
2062 		mark_page_accessed(page);
2063 		ret = aops->write_end(file, mapping, pos, len, copied,
2064 							page, fsdata);
2065 	} else {
2066 		unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
2067 		struct inode *inode = mapping->host;
2068 
2069 		flush_dcache_page(page);
2070 		ret = aops->commit_write(file, page, offset, offset+len);
2071 		unlock_page(page);
2072 		mark_page_accessed(page);
2073 		page_cache_release(page);
2074 
2075 		if (ret < 0) {
2076 			if (pos + len > inode->i_size)
2077 				vmtruncate(inode, inode->i_size);
2078 		} else if (ret > 0)
2079 			ret = min_t(size_t, copied, ret);
2080 		else
2081 			ret = copied;
2082 	}
2083 
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(pagecache_write_end);
2087 
2088 ssize_t
2089 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2090 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2091 		size_t count, size_t ocount)
2092 {
2093 	struct file	*file = iocb->ki_filp;
2094 	struct address_space *mapping = file->f_mapping;
2095 	struct inode	*inode = mapping->host;
2096 	ssize_t		written;
2097 	size_t		write_len;
2098 	pgoff_t		end;
2099 
2100 	if (count != ocount)
2101 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2102 
2103 	/*
2104 	 * Unmap all mmappings of the file up-front.
2105 	 *
2106 	 * This will cause any pte dirty bits to be propagated into the
2107 	 * pageframes for the subsequent filemap_write_and_wait().
2108 	 */
2109 	write_len = iov_length(iov, *nr_segs);
2110 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2111 	if (mapping_mapped(mapping))
2112 		unmap_mapping_range(mapping, pos, write_len, 0);
2113 
2114 	written = filemap_write_and_wait(mapping);
2115 	if (written)
2116 		goto out;
2117 
2118 	/*
2119 	 * After a write we want buffered reads to be sure to go to disk to get
2120 	 * the new data.  We invalidate clean cached page from the region we're
2121 	 * about to write.  We do this *before* the write so that we can return
2122 	 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2123 	 */
2124 	if (mapping->nrpages) {
2125 		written = invalidate_inode_pages2_range(mapping,
2126 					pos >> PAGE_CACHE_SHIFT, end);
2127 		if (written)
2128 			goto out;
2129 	}
2130 
2131 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2132 
2133 	/*
2134 	 * Finally, try again to invalidate clean pages which might have been
2135 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2136 	 * if the source of the write was an mmap'ed region of the file
2137 	 * we're writing.  Either one is a pretty crazy thing to do,
2138 	 * so we don't support it 100%.  If this invalidation
2139 	 * fails, tough, the write still worked...
2140 	 */
2141 	if (mapping->nrpages) {
2142 		invalidate_inode_pages2_range(mapping,
2143 					      pos >> PAGE_CACHE_SHIFT, end);
2144 	}
2145 
2146 	if (written > 0) {
2147 		loff_t end = pos + written;
2148 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2149 			i_size_write(inode,  end);
2150 			mark_inode_dirty(inode);
2151 		}
2152 		*ppos = end;
2153 	}
2154 
2155 	/*
2156 	 * Sync the fs metadata but not the minor inode changes and
2157 	 * of course not the data as we did direct DMA for the IO.
2158 	 * i_mutex is held, which protects generic_osync_inode() from
2159 	 * livelocking.  AIO O_DIRECT ops attempt to sync metadata here.
2160 	 */
2161 out:
2162 	if ((written >= 0 || written == -EIOCBQUEUED) &&
2163 	    ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2164 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2165 		if (err < 0)
2166 			written = err;
2167 	}
2168 	return written;
2169 }
2170 EXPORT_SYMBOL(generic_file_direct_write);
2171 
2172 /*
2173  * Find or create a page at the given pagecache position. Return the locked
2174  * page. This function is specifically for buffered writes.
2175  */
2176 struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
2177 {
2178 	int status;
2179 	struct page *page;
2180 repeat:
2181 	page = find_lock_page(mapping, index);
2182 	if (likely(page))
2183 		return page;
2184 
2185 	page = page_cache_alloc(mapping);
2186 	if (!page)
2187 		return NULL;
2188 	status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2189 	if (unlikely(status)) {
2190 		page_cache_release(page);
2191 		if (status == -EEXIST)
2192 			goto repeat;
2193 		return NULL;
2194 	}
2195 	return page;
2196 }
2197 EXPORT_SYMBOL(__grab_cache_page);
2198 
2199 static ssize_t generic_perform_write_2copy(struct file *file,
2200 				struct iov_iter *i, loff_t pos)
2201 {
2202 	struct address_space *mapping = file->f_mapping;
2203 	const struct address_space_operations *a_ops = mapping->a_ops;
2204 	struct inode *inode = mapping->host;
2205 	long status = 0;
2206 	ssize_t written = 0;
2207 
2208 	do {
2209 		struct page *src_page;
2210 		struct page *page;
2211 		pgoff_t index;		/* Pagecache index for current page */
2212 		unsigned long offset;	/* Offset into pagecache page */
2213 		unsigned long bytes;	/* Bytes to write to page */
2214 		size_t copied;		/* Bytes copied from user */
2215 
2216 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2217 		index = pos >> PAGE_CACHE_SHIFT;
2218 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2219 						iov_iter_count(i));
2220 
2221 		/*
2222 		 * a non-NULL src_page indicates that we're doing the
2223 		 * copy via get_user_pages and kmap.
2224 		 */
2225 		src_page = NULL;
2226 
2227 		/*
2228 		 * Bring in the user page that we will copy from _first_.
2229 		 * Otherwise there's a nasty deadlock on copying from the
2230 		 * same page as we're writing to, without it being marked
2231 		 * up-to-date.
2232 		 *
2233 		 * Not only is this an optimisation, but it is also required
2234 		 * to check that the address is actually valid, when atomic
2235 		 * usercopies are used, below.
2236 		 */
2237 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2238 			status = -EFAULT;
2239 			break;
2240 		}
2241 
2242 		page = __grab_cache_page(mapping, index);
2243 		if (!page) {
2244 			status = -ENOMEM;
2245 			break;
2246 		}
2247 
2248 		/*
2249 		 * non-uptodate pages cannot cope with short copies, and we
2250 		 * cannot take a pagefault with the destination page locked.
2251 		 * So pin the source page to copy it.
2252 		 */
2253 		if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
2254 			unlock_page(page);
2255 
2256 			src_page = alloc_page(GFP_KERNEL);
2257 			if (!src_page) {
2258 				page_cache_release(page);
2259 				status = -ENOMEM;
2260 				break;
2261 			}
2262 
2263 			/*
2264 			 * Cannot get_user_pages with a page locked for the
2265 			 * same reason as we can't take a page fault with a
2266 			 * page locked (as explained below).
2267 			 */
2268 			copied = iov_iter_copy_from_user(src_page, i,
2269 								offset, bytes);
2270 			if (unlikely(copied == 0)) {
2271 				status = -EFAULT;
2272 				page_cache_release(page);
2273 				page_cache_release(src_page);
2274 				break;
2275 			}
2276 			bytes = copied;
2277 
2278 			lock_page(page);
2279 			/*
2280 			 * Can't handle the page going uptodate here, because
2281 			 * that means we would use non-atomic usercopies, which
2282 			 * zero out the tail of the page, which can cause
2283 			 * zeroes to become transiently visible. We could just
2284 			 * use a non-zeroing copy, but the APIs aren't too
2285 			 * consistent.
2286 			 */
2287 			if (unlikely(!page->mapping || PageUptodate(page))) {
2288 				unlock_page(page);
2289 				page_cache_release(page);
2290 				page_cache_release(src_page);
2291 				continue;
2292 			}
2293 		}
2294 
2295 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2296 		if (unlikely(status))
2297 			goto fs_write_aop_error;
2298 
2299 		if (!src_page) {
2300 			/*
2301 			 * Must not enter the pagefault handler here, because
2302 			 * we hold the page lock, so we might recursively
2303 			 * deadlock on the same lock, or get an ABBA deadlock
2304 			 * against a different lock, or against the mmap_sem
2305 			 * (which nests outside the page lock).  So increment
2306 			 * preempt count, and use _atomic usercopies.
2307 			 *
2308 			 * The page is uptodate so we are OK to encounter a
2309 			 * short copy: if unmodified parts of the page are
2310 			 * marked dirty and written out to disk, it doesn't
2311 			 * really matter.
2312 			 */
2313 			pagefault_disable();
2314 			copied = iov_iter_copy_from_user_atomic(page, i,
2315 								offset, bytes);
2316 			pagefault_enable();
2317 		} else {
2318 			void *src, *dst;
2319 			src = kmap_atomic(src_page, KM_USER0);
2320 			dst = kmap_atomic(page, KM_USER1);
2321 			memcpy(dst + offset, src + offset, bytes);
2322 			kunmap_atomic(dst, KM_USER1);
2323 			kunmap_atomic(src, KM_USER0);
2324 			copied = bytes;
2325 		}
2326 		flush_dcache_page(page);
2327 
2328 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2329 		if (unlikely(status < 0))
2330 			goto fs_write_aop_error;
2331 		if (unlikely(status > 0)) /* filesystem did partial write */
2332 			copied = min_t(size_t, copied, status);
2333 
2334 		unlock_page(page);
2335 		mark_page_accessed(page);
2336 		page_cache_release(page);
2337 		if (src_page)
2338 			page_cache_release(src_page);
2339 
2340 		iov_iter_advance(i, copied);
2341 		pos += copied;
2342 		written += copied;
2343 
2344 		balance_dirty_pages_ratelimited(mapping);
2345 		cond_resched();
2346 		continue;
2347 
2348 fs_write_aop_error:
2349 		unlock_page(page);
2350 		page_cache_release(page);
2351 		if (src_page)
2352 			page_cache_release(src_page);
2353 
2354 		/*
2355 		 * prepare_write() may have instantiated a few blocks
2356 		 * outside i_size.  Trim these off again. Don't need
2357 		 * i_size_read because we hold i_mutex.
2358 		 */
2359 		if (pos + bytes > inode->i_size)
2360 			vmtruncate(inode, inode->i_size);
2361 		break;
2362 	} while (iov_iter_count(i));
2363 
2364 	return written ? written : status;
2365 }
2366 
2367 static ssize_t generic_perform_write(struct file *file,
2368 				struct iov_iter *i, loff_t pos)
2369 {
2370 	struct address_space *mapping = file->f_mapping;
2371 	const struct address_space_operations *a_ops = mapping->a_ops;
2372 	long status = 0;
2373 	ssize_t written = 0;
2374 	unsigned int flags = 0;
2375 
2376 	/*
2377 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2378 	 */
2379 	if (segment_eq(get_fs(), KERNEL_DS))
2380 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2381 
2382 	do {
2383 		struct page *page;
2384 		pgoff_t index;		/* Pagecache index for current page */
2385 		unsigned long offset;	/* Offset into pagecache page */
2386 		unsigned long bytes;	/* Bytes to write to page */
2387 		size_t copied;		/* Bytes copied from user */
2388 		void *fsdata;
2389 
2390 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2391 		index = pos >> PAGE_CACHE_SHIFT;
2392 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2393 						iov_iter_count(i));
2394 
2395 again:
2396 
2397 		/*
2398 		 * Bring in the user page that we will copy from _first_.
2399 		 * Otherwise there's a nasty deadlock on copying from the
2400 		 * same page as we're writing to, without it being marked
2401 		 * up-to-date.
2402 		 *
2403 		 * Not only is this an optimisation, but it is also required
2404 		 * to check that the address is actually valid, when atomic
2405 		 * usercopies are used, below.
2406 		 */
2407 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2408 			status = -EFAULT;
2409 			break;
2410 		}
2411 
2412 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2413 						&page, &fsdata);
2414 		if (unlikely(status))
2415 			break;
2416 
2417 		pagefault_disable();
2418 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2419 		pagefault_enable();
2420 		flush_dcache_page(page);
2421 
2422 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2423 						page, fsdata);
2424 		if (unlikely(status < 0))
2425 			break;
2426 		copied = status;
2427 
2428 		cond_resched();
2429 
2430 		iov_iter_advance(i, copied);
2431 		if (unlikely(copied == 0)) {
2432 			/*
2433 			 * If we were unable to copy any data at all, we must
2434 			 * fall back to a single segment length write.
2435 			 *
2436 			 * If we didn't fallback here, we could livelock
2437 			 * because not all segments in the iov can be copied at
2438 			 * once without a pagefault.
2439 			 */
2440 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2441 						iov_iter_single_seg_count(i));
2442 			goto again;
2443 		}
2444 		pos += copied;
2445 		written += copied;
2446 
2447 		balance_dirty_pages_ratelimited(mapping);
2448 
2449 	} while (iov_iter_count(i));
2450 
2451 	return written ? written : status;
2452 }
2453 
2454 ssize_t
2455 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2456 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2457 		size_t count, ssize_t written)
2458 {
2459 	struct file *file = iocb->ki_filp;
2460 	struct address_space *mapping = file->f_mapping;
2461 	const struct address_space_operations *a_ops = mapping->a_ops;
2462 	struct inode *inode = mapping->host;
2463 	ssize_t status;
2464 	struct iov_iter i;
2465 
2466 	iov_iter_init(&i, iov, nr_segs, count, written);
2467 	if (a_ops->write_begin)
2468 		status = generic_perform_write(file, &i, pos);
2469 	else
2470 		status = generic_perform_write_2copy(file, &i, pos);
2471 
2472 	if (likely(status >= 0)) {
2473 		written += status;
2474 		*ppos = pos + status;
2475 
2476 		/*
2477 		 * For now, when the user asks for O_SYNC, we'll actually give
2478 		 * O_DSYNC
2479 		 */
2480 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2481 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2482 				status = generic_osync_inode(inode, mapping,
2483 						OSYNC_METADATA|OSYNC_DATA);
2484 		}
2485   	}
2486 
2487 	/*
2488 	 * If we get here for O_DIRECT writes then we must have fallen through
2489 	 * to buffered writes (block instantiation inside i_size).  So we sync
2490 	 * the file data here, to try to honour O_DIRECT expectations.
2491 	 */
2492 	if (unlikely(file->f_flags & O_DIRECT) && written)
2493 		status = filemap_write_and_wait(mapping);
2494 
2495 	return written ? written : status;
2496 }
2497 EXPORT_SYMBOL(generic_file_buffered_write);
2498 
2499 static ssize_t
2500 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2501 				unsigned long nr_segs, loff_t *ppos)
2502 {
2503 	struct file *file = iocb->ki_filp;
2504 	struct address_space * mapping = file->f_mapping;
2505 	size_t ocount;		/* original count */
2506 	size_t count;		/* after file limit checks */
2507 	struct inode 	*inode = mapping->host;
2508 	loff_t		pos;
2509 	ssize_t		written;
2510 	ssize_t		err;
2511 
2512 	ocount = 0;
2513 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2514 	if (err)
2515 		return err;
2516 
2517 	count = ocount;
2518 	pos = *ppos;
2519 
2520 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2521 
2522 	/* We can write back this queue in page reclaim */
2523 	current->backing_dev_info = mapping->backing_dev_info;
2524 	written = 0;
2525 
2526 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2527 	if (err)
2528 		goto out;
2529 
2530 	if (count == 0)
2531 		goto out;
2532 
2533 	err = file_remove_suid(file);
2534 	if (err)
2535 		goto out;
2536 
2537 	file_update_time(file);
2538 
2539 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2540 	if (unlikely(file->f_flags & O_DIRECT)) {
2541 		loff_t endbyte;
2542 		ssize_t written_buffered;
2543 
2544 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2545 							ppos, count, ocount);
2546 		if (written < 0 || written == count)
2547 			goto out;
2548 		/*
2549 		 * direct-io write to a hole: fall through to buffered I/O
2550 		 * for completing the rest of the request.
2551 		 */
2552 		pos += written;
2553 		count -= written;
2554 		written_buffered = generic_file_buffered_write(iocb, iov,
2555 						nr_segs, pos, ppos, count,
2556 						written);
2557 		/*
2558 		 * If generic_file_buffered_write() retuned a synchronous error
2559 		 * then we want to return the number of bytes which were
2560 		 * direct-written, or the error code if that was zero.  Note
2561 		 * that this differs from normal direct-io semantics, which
2562 		 * will return -EFOO even if some bytes were written.
2563 		 */
2564 		if (written_buffered < 0) {
2565 			err = written_buffered;
2566 			goto out;
2567 		}
2568 
2569 		/*
2570 		 * We need to ensure that the page cache pages are written to
2571 		 * disk and invalidated to preserve the expected O_DIRECT
2572 		 * semantics.
2573 		 */
2574 		endbyte = pos + written_buffered - written - 1;
2575 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2576 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2577 					    SYNC_FILE_RANGE_WRITE|
2578 					    SYNC_FILE_RANGE_WAIT_AFTER);
2579 		if (err == 0) {
2580 			written = written_buffered;
2581 			invalidate_mapping_pages(mapping,
2582 						 pos >> PAGE_CACHE_SHIFT,
2583 						 endbyte >> PAGE_CACHE_SHIFT);
2584 		} else {
2585 			/*
2586 			 * We don't know how much we wrote, so just return
2587 			 * the number of bytes which were direct-written
2588 			 */
2589 		}
2590 	} else {
2591 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2592 				pos, ppos, count, written);
2593 	}
2594 out:
2595 	current->backing_dev_info = NULL;
2596 	return written ? written : err;
2597 }
2598 
2599 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2600 		const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2601 {
2602 	struct file *file = iocb->ki_filp;
2603 	struct address_space *mapping = file->f_mapping;
2604 	struct inode *inode = mapping->host;
2605 	ssize_t ret;
2606 
2607 	BUG_ON(iocb->ki_pos != pos);
2608 
2609 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2610 			&iocb->ki_pos);
2611 
2612 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2613 		ssize_t err;
2614 
2615 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2616 		if (err < 0)
2617 			ret = err;
2618 	}
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2622 
2623 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2624 		unsigned long nr_segs, loff_t pos)
2625 {
2626 	struct file *file = iocb->ki_filp;
2627 	struct address_space *mapping = file->f_mapping;
2628 	struct inode *inode = mapping->host;
2629 	ssize_t ret;
2630 
2631 	BUG_ON(iocb->ki_pos != pos);
2632 
2633 	mutex_lock(&inode->i_mutex);
2634 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2635 			&iocb->ki_pos);
2636 	mutex_unlock(&inode->i_mutex);
2637 
2638 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2639 		ssize_t err;
2640 
2641 		err = sync_page_range(inode, mapping, pos, ret);
2642 		if (err < 0)
2643 			ret = err;
2644 	}
2645 	return ret;
2646 }
2647 EXPORT_SYMBOL(generic_file_aio_write);
2648 
2649 /**
2650  * try_to_release_page() - release old fs-specific metadata on a page
2651  *
2652  * @page: the page which the kernel is trying to free
2653  * @gfp_mask: memory allocation flags (and I/O mode)
2654  *
2655  * The address_space is to try to release any data against the page
2656  * (presumably at page->private).  If the release was successful, return `1'.
2657  * Otherwise return zero.
2658  *
2659  * The @gfp_mask argument specifies whether I/O may be performed to release
2660  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2661  *
2662  */
2663 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2664 {
2665 	struct address_space * const mapping = page->mapping;
2666 
2667 	BUG_ON(!PageLocked(page));
2668 	if (PageWriteback(page))
2669 		return 0;
2670 
2671 	if (mapping && mapping->a_ops->releasepage)
2672 		return mapping->a_ops->releasepage(page, gfp_mask);
2673 	return try_to_free_buffers(page);
2674 }
2675 
2676 EXPORT_SYMBOL(try_to_release_page);
2677