xref: /linux/mm/filemap.c (revision 172cdcaefea5c297fdb3d20b7d5aff60ae4fbce6)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <asm/pgalloc.h>
46 #include <asm/tlbflush.h>
47 #include "internal.h"
48 
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/filemap.h>
51 
52 /*
53  * FIXME: remove all knowledge of the buffer layer from the core VM
54  */
55 #include <linux/buffer_head.h> /* for try_to_free_buffers */
56 
57 #include <asm/mman.h>
58 
59 /*
60  * Shared mappings implemented 30.11.1994. It's not fully working yet,
61  * though.
62  *
63  * Shared mappings now work. 15.8.1995  Bruno.
64  *
65  * finished 'unifying' the page and buffer cache and SMP-threaded the
66  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67  *
68  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69  */
70 
71 /*
72  * Lock ordering:
73  *
74  *  ->i_mmap_rwsem		(truncate_pagecache)
75  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
76  *      ->swap_lock		(exclusive_swap_page, others)
77  *        ->i_pages lock
78  *
79  *  ->i_mutex
80  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
81  *
82  *  ->mmap_lock
83  *    ->i_mmap_rwsem
84  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
85  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
86  *
87  *  ->mmap_lock
88  *    ->lock_page		(access_process_vm)
89  *
90  *  ->i_mutex			(generic_perform_write)
91  *    ->mmap_lock		(fault_in_pages_readable->do_page_fault)
92  *
93  *  bdi->wb.list_lock
94  *    sb_lock			(fs/fs-writeback.c)
95  *    ->i_pages lock		(__sync_single_inode)
96  *
97  *  ->i_mmap_rwsem
98  *    ->anon_vma.lock		(vma_adjust)
99  *
100  *  ->anon_vma.lock
101  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
102  *
103  *  ->page_table_lock or pte_lock
104  *    ->swap_lock		(try_to_unmap_one)
105  *    ->private_lock		(try_to_unmap_one)
106  *    ->i_pages lock		(try_to_unmap_one)
107  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
108  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
109  *    ->private_lock		(page_remove_rmap->set_page_dirty)
110  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
111  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
112  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
113  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
114  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
115  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
116  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
117  *
118  * ->i_mmap_rwsem
119  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
120  */
121 
122 static void page_cache_delete(struct address_space *mapping,
123 				   struct page *page, void *shadow)
124 {
125 	XA_STATE(xas, &mapping->i_pages, page->index);
126 	unsigned int nr = 1;
127 
128 	mapping_set_update(&xas, mapping);
129 
130 	/* hugetlb pages are represented by a single entry in the xarray */
131 	if (!PageHuge(page)) {
132 		xas_set_order(&xas, page->index, compound_order(page));
133 		nr = compound_nr(page);
134 	}
135 
136 	VM_BUG_ON_PAGE(!PageLocked(page), page);
137 	VM_BUG_ON_PAGE(PageTail(page), page);
138 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
139 
140 	xas_store(&xas, shadow);
141 	xas_init_marks(&xas);
142 
143 	page->mapping = NULL;
144 	/* Leave page->index set: truncation lookup relies upon it */
145 	mapping->nrpages -= nr;
146 }
147 
148 static void unaccount_page_cache_page(struct address_space *mapping,
149 				      struct page *page)
150 {
151 	int nr;
152 
153 	/*
154 	 * if we're uptodate, flush out into the cleancache, otherwise
155 	 * invalidate any existing cleancache entries.  We can't leave
156 	 * stale data around in the cleancache once our page is gone
157 	 */
158 	if (PageUptodate(page) && PageMappedToDisk(page))
159 		cleancache_put_page(page);
160 	else
161 		cleancache_invalidate_page(mapping, page);
162 
163 	VM_BUG_ON_PAGE(PageTail(page), page);
164 	VM_BUG_ON_PAGE(page_mapped(page), page);
165 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
166 		int mapcount;
167 
168 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
169 			 current->comm, page_to_pfn(page));
170 		dump_page(page, "still mapped when deleted");
171 		dump_stack();
172 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
173 
174 		mapcount = page_mapcount(page);
175 		if (mapping_exiting(mapping) &&
176 		    page_count(page) >= mapcount + 2) {
177 			/*
178 			 * All vmas have already been torn down, so it's
179 			 * a good bet that actually the page is unmapped,
180 			 * and we'd prefer not to leak it: if we're wrong,
181 			 * some other bad page check should catch it later.
182 			 */
183 			page_mapcount_reset(page);
184 			page_ref_sub(page, mapcount);
185 		}
186 	}
187 
188 	/* hugetlb pages do not participate in page cache accounting. */
189 	if (PageHuge(page))
190 		return;
191 
192 	nr = thp_nr_pages(page);
193 
194 	__mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
195 	if (PageSwapBacked(page)) {
196 		__mod_lruvec_page_state(page, NR_SHMEM, -nr);
197 		if (PageTransHuge(page))
198 			__mod_lruvec_page_state(page, NR_SHMEM_THPS, -nr);
199 	} else if (PageTransHuge(page)) {
200 		__mod_lruvec_page_state(page, NR_FILE_THPS, -nr);
201 		filemap_nr_thps_dec(mapping);
202 	}
203 
204 	/*
205 	 * At this point page must be either written or cleaned by
206 	 * truncate.  Dirty page here signals a bug and loss of
207 	 * unwritten data.
208 	 *
209 	 * This fixes dirty accounting after removing the page entirely
210 	 * but leaves PageDirty set: it has no effect for truncated
211 	 * page and anyway will be cleared before returning page into
212 	 * buddy allocator.
213 	 */
214 	if (WARN_ON_ONCE(PageDirty(page)))
215 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
216 }
217 
218 /*
219  * Delete a page from the page cache and free it. Caller has to make
220  * sure the page is locked and that nobody else uses it - or that usage
221  * is safe.  The caller must hold the i_pages lock.
222  */
223 void __delete_from_page_cache(struct page *page, void *shadow)
224 {
225 	struct address_space *mapping = page->mapping;
226 
227 	trace_mm_filemap_delete_from_page_cache(page);
228 
229 	unaccount_page_cache_page(mapping, page);
230 	page_cache_delete(mapping, page, shadow);
231 }
232 
233 static void page_cache_free_page(struct address_space *mapping,
234 				struct page *page)
235 {
236 	void (*freepage)(struct page *);
237 
238 	freepage = mapping->a_ops->freepage;
239 	if (freepage)
240 		freepage(page);
241 
242 	if (PageTransHuge(page) && !PageHuge(page)) {
243 		page_ref_sub(page, thp_nr_pages(page));
244 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
245 	} else {
246 		put_page(page);
247 	}
248 }
249 
250 /**
251  * delete_from_page_cache - delete page from page cache
252  * @page: the page which the kernel is trying to remove from page cache
253  *
254  * This must be called only on pages that have been verified to be in the page
255  * cache and locked.  It will never put the page into the free list, the caller
256  * has a reference on the page.
257  */
258 void delete_from_page_cache(struct page *page)
259 {
260 	struct address_space *mapping = page_mapping(page);
261 	unsigned long flags;
262 
263 	BUG_ON(!PageLocked(page));
264 	xa_lock_irqsave(&mapping->i_pages, flags);
265 	__delete_from_page_cache(page, NULL);
266 	xa_unlock_irqrestore(&mapping->i_pages, flags);
267 
268 	page_cache_free_page(mapping, page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271 
272 /*
273  * page_cache_delete_batch - delete several pages from page cache
274  * @mapping: the mapping to which pages belong
275  * @pvec: pagevec with pages to delete
276  *
277  * The function walks over mapping->i_pages and removes pages passed in @pvec
278  * from the mapping. The function expects @pvec to be sorted by page index
279  * and is optimised for it to be dense.
280  * It tolerates holes in @pvec (mapping entries at those indices are not
281  * modified). The function expects only THP head pages to be present in the
282  * @pvec.
283  *
284  * The function expects the i_pages lock to be held.
285  */
286 static void page_cache_delete_batch(struct address_space *mapping,
287 			     struct pagevec *pvec)
288 {
289 	XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
290 	int total_pages = 0;
291 	int i = 0;
292 	struct page *page;
293 
294 	mapping_set_update(&xas, mapping);
295 	xas_for_each(&xas, page, ULONG_MAX) {
296 		if (i >= pagevec_count(pvec))
297 			break;
298 
299 		/* A swap/dax/shadow entry got inserted? Skip it. */
300 		if (xa_is_value(page))
301 			continue;
302 		/*
303 		 * A page got inserted in our range? Skip it. We have our
304 		 * pages locked so they are protected from being removed.
305 		 * If we see a page whose index is higher than ours, it
306 		 * means our page has been removed, which shouldn't be
307 		 * possible because we're holding the PageLock.
308 		 */
309 		if (page != pvec->pages[i]) {
310 			VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
311 					page);
312 			continue;
313 		}
314 
315 		WARN_ON_ONCE(!PageLocked(page));
316 
317 		if (page->index == xas.xa_index)
318 			page->mapping = NULL;
319 		/* Leave page->index set: truncation lookup relies on it */
320 
321 		/*
322 		 * Move to the next page in the vector if this is a regular
323 		 * page or the index is of the last sub-page of this compound
324 		 * page.
325 		 */
326 		if (page->index + compound_nr(page) - 1 == xas.xa_index)
327 			i++;
328 		xas_store(&xas, NULL);
329 		total_pages++;
330 	}
331 	mapping->nrpages -= total_pages;
332 }
333 
334 void delete_from_page_cache_batch(struct address_space *mapping,
335 				  struct pagevec *pvec)
336 {
337 	int i;
338 	unsigned long flags;
339 
340 	if (!pagevec_count(pvec))
341 		return;
342 
343 	xa_lock_irqsave(&mapping->i_pages, flags);
344 	for (i = 0; i < pagevec_count(pvec); i++) {
345 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
346 
347 		unaccount_page_cache_page(mapping, pvec->pages[i]);
348 	}
349 	page_cache_delete_batch(mapping, pvec);
350 	xa_unlock_irqrestore(&mapping->i_pages, flags);
351 
352 	for (i = 0; i < pagevec_count(pvec); i++)
353 		page_cache_free_page(mapping, pvec->pages[i]);
354 }
355 
356 int filemap_check_errors(struct address_space *mapping)
357 {
358 	int ret = 0;
359 	/* Check for outstanding write errors */
360 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
361 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
362 		ret = -ENOSPC;
363 	if (test_bit(AS_EIO, &mapping->flags) &&
364 	    test_and_clear_bit(AS_EIO, &mapping->flags))
365 		ret = -EIO;
366 	return ret;
367 }
368 EXPORT_SYMBOL(filemap_check_errors);
369 
370 static int filemap_check_and_keep_errors(struct address_space *mapping)
371 {
372 	/* Check for outstanding write errors */
373 	if (test_bit(AS_EIO, &mapping->flags))
374 		return -EIO;
375 	if (test_bit(AS_ENOSPC, &mapping->flags))
376 		return -ENOSPC;
377 	return 0;
378 }
379 
380 /**
381  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
382  * @mapping:	address space structure to write
383  * @start:	offset in bytes where the range starts
384  * @end:	offset in bytes where the range ends (inclusive)
385  * @sync_mode:	enable synchronous operation
386  *
387  * Start writeback against all of a mapping's dirty pages that lie
388  * within the byte offsets <start, end> inclusive.
389  *
390  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
391  * opposed to a regular memory cleansing writeback.  The difference between
392  * these two operations is that if a dirty page/buffer is encountered, it must
393  * be waited upon, and not just skipped over.
394  *
395  * Return: %0 on success, negative error code otherwise.
396  */
397 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
398 				loff_t end, int sync_mode)
399 {
400 	int ret;
401 	struct writeback_control wbc = {
402 		.sync_mode = sync_mode,
403 		.nr_to_write = LONG_MAX,
404 		.range_start = start,
405 		.range_end = end,
406 	};
407 
408 	if (!mapping_can_writeback(mapping) ||
409 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
410 		return 0;
411 
412 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
413 	ret = do_writepages(mapping, &wbc);
414 	wbc_detach_inode(&wbc);
415 	return ret;
416 }
417 
418 static inline int __filemap_fdatawrite(struct address_space *mapping,
419 	int sync_mode)
420 {
421 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
422 }
423 
424 int filemap_fdatawrite(struct address_space *mapping)
425 {
426 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
427 }
428 EXPORT_SYMBOL(filemap_fdatawrite);
429 
430 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
431 				loff_t end)
432 {
433 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
434 }
435 EXPORT_SYMBOL(filemap_fdatawrite_range);
436 
437 /**
438  * filemap_flush - mostly a non-blocking flush
439  * @mapping:	target address_space
440  *
441  * This is a mostly non-blocking flush.  Not suitable for data-integrity
442  * purposes - I/O may not be started against all dirty pages.
443  *
444  * Return: %0 on success, negative error code otherwise.
445  */
446 int filemap_flush(struct address_space *mapping)
447 {
448 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
449 }
450 EXPORT_SYMBOL(filemap_flush);
451 
452 /**
453  * filemap_range_has_page - check if a page exists in range.
454  * @mapping:           address space within which to check
455  * @start_byte:        offset in bytes where the range starts
456  * @end_byte:          offset in bytes where the range ends (inclusive)
457  *
458  * Find at least one page in the range supplied, usually used to check if
459  * direct writing in this range will trigger a writeback.
460  *
461  * Return: %true if at least one page exists in the specified range,
462  * %false otherwise.
463  */
464 bool filemap_range_has_page(struct address_space *mapping,
465 			   loff_t start_byte, loff_t end_byte)
466 {
467 	struct page *page;
468 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
469 	pgoff_t max = end_byte >> PAGE_SHIFT;
470 
471 	if (end_byte < start_byte)
472 		return false;
473 
474 	rcu_read_lock();
475 	for (;;) {
476 		page = xas_find(&xas, max);
477 		if (xas_retry(&xas, page))
478 			continue;
479 		/* Shadow entries don't count */
480 		if (xa_is_value(page))
481 			continue;
482 		/*
483 		 * We don't need to try to pin this page; we're about to
484 		 * release the RCU lock anyway.  It is enough to know that
485 		 * there was a page here recently.
486 		 */
487 		break;
488 	}
489 	rcu_read_unlock();
490 
491 	return page != NULL;
492 }
493 EXPORT_SYMBOL(filemap_range_has_page);
494 
495 static void __filemap_fdatawait_range(struct address_space *mapping,
496 				     loff_t start_byte, loff_t end_byte)
497 {
498 	pgoff_t index = start_byte >> PAGE_SHIFT;
499 	pgoff_t end = end_byte >> PAGE_SHIFT;
500 	struct pagevec pvec;
501 	int nr_pages;
502 
503 	if (end_byte < start_byte)
504 		return;
505 
506 	pagevec_init(&pvec);
507 	while (index <= end) {
508 		unsigned i;
509 
510 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
511 				end, PAGECACHE_TAG_WRITEBACK);
512 		if (!nr_pages)
513 			break;
514 
515 		for (i = 0; i < nr_pages; i++) {
516 			struct page *page = pvec.pages[i];
517 
518 			wait_on_page_writeback(page);
519 			ClearPageError(page);
520 		}
521 		pagevec_release(&pvec);
522 		cond_resched();
523 	}
524 }
525 
526 /**
527  * filemap_fdatawait_range - wait for writeback to complete
528  * @mapping:		address space structure to wait for
529  * @start_byte:		offset in bytes where the range starts
530  * @end_byte:		offset in bytes where the range ends (inclusive)
531  *
532  * Walk the list of under-writeback pages of the given address space
533  * in the given range and wait for all of them.  Check error status of
534  * the address space and return it.
535  *
536  * Since the error status of the address space is cleared by this function,
537  * callers are responsible for checking the return value and handling and/or
538  * reporting the error.
539  *
540  * Return: error status of the address space.
541  */
542 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
543 			    loff_t end_byte)
544 {
545 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
546 	return filemap_check_errors(mapping);
547 }
548 EXPORT_SYMBOL(filemap_fdatawait_range);
549 
550 /**
551  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
552  * @mapping:		address space structure to wait for
553  * @start_byte:		offset in bytes where the range starts
554  * @end_byte:		offset in bytes where the range ends (inclusive)
555  *
556  * Walk the list of under-writeback pages of the given address space in the
557  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
558  * this function does not clear error status of the address space.
559  *
560  * Use this function if callers don't handle errors themselves.  Expected
561  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
562  * fsfreeze(8)
563  */
564 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
565 		loff_t start_byte, loff_t end_byte)
566 {
567 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
568 	return filemap_check_and_keep_errors(mapping);
569 }
570 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
571 
572 /**
573  * file_fdatawait_range - wait for writeback to complete
574  * @file:		file pointing to address space structure to wait for
575  * @start_byte:		offset in bytes where the range starts
576  * @end_byte:		offset in bytes where the range ends (inclusive)
577  *
578  * Walk the list of under-writeback pages of the address space that file
579  * refers to, in the given range and wait for all of them.  Check error
580  * status of the address space vs. the file->f_wb_err cursor and return it.
581  *
582  * Since the error status of the file is advanced by this function,
583  * callers are responsible for checking the return value and handling and/or
584  * reporting the error.
585  *
586  * Return: error status of the address space vs. the file->f_wb_err cursor.
587  */
588 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
589 {
590 	struct address_space *mapping = file->f_mapping;
591 
592 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
593 	return file_check_and_advance_wb_err(file);
594 }
595 EXPORT_SYMBOL(file_fdatawait_range);
596 
597 /**
598  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
599  * @mapping: address space structure to wait for
600  *
601  * Walk the list of under-writeback pages of the given address space
602  * and wait for all of them.  Unlike filemap_fdatawait(), this function
603  * does not clear error status of the address space.
604  *
605  * Use this function if callers don't handle errors themselves.  Expected
606  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
607  * fsfreeze(8)
608  *
609  * Return: error status of the address space.
610  */
611 int filemap_fdatawait_keep_errors(struct address_space *mapping)
612 {
613 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
614 	return filemap_check_and_keep_errors(mapping);
615 }
616 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
617 
618 /* Returns true if writeback might be needed or already in progress. */
619 static bool mapping_needs_writeback(struct address_space *mapping)
620 {
621 	return mapping->nrpages;
622 }
623 
624 /**
625  * filemap_range_needs_writeback - check if range potentially needs writeback
626  * @mapping:           address space within which to check
627  * @start_byte:        offset in bytes where the range starts
628  * @end_byte:          offset in bytes where the range ends (inclusive)
629  *
630  * Find at least one page in the range supplied, usually used to check if
631  * direct writing in this range will trigger a writeback. Used by O_DIRECT
632  * read/write with IOCB_NOWAIT, to see if the caller needs to do
633  * filemap_write_and_wait_range() before proceeding.
634  *
635  * Return: %true if the caller should do filemap_write_and_wait_range() before
636  * doing O_DIRECT to a page in this range, %false otherwise.
637  */
638 bool filemap_range_needs_writeback(struct address_space *mapping,
639 				   loff_t start_byte, loff_t end_byte)
640 {
641 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
642 	pgoff_t max = end_byte >> PAGE_SHIFT;
643 	struct page *page;
644 
645 	if (!mapping_needs_writeback(mapping))
646 		return false;
647 	if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
648 	    !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
649 		return false;
650 	if (end_byte < start_byte)
651 		return false;
652 
653 	rcu_read_lock();
654 	xas_for_each(&xas, page, max) {
655 		if (xas_retry(&xas, page))
656 			continue;
657 		if (xa_is_value(page))
658 			continue;
659 		if (PageDirty(page) || PageLocked(page) || PageWriteback(page))
660 			break;
661 	}
662 	rcu_read_unlock();
663 	return page != NULL;
664 }
665 EXPORT_SYMBOL_GPL(filemap_range_needs_writeback);
666 
667 /**
668  * filemap_write_and_wait_range - write out & wait on a file range
669  * @mapping:	the address_space for the pages
670  * @lstart:	offset in bytes where the range starts
671  * @lend:	offset in bytes where the range ends (inclusive)
672  *
673  * Write out and wait upon file offsets lstart->lend, inclusive.
674  *
675  * Note that @lend is inclusive (describes the last byte to be written) so
676  * that this function can be used to write to the very end-of-file (end = -1).
677  *
678  * Return: error status of the address space.
679  */
680 int filemap_write_and_wait_range(struct address_space *mapping,
681 				 loff_t lstart, loff_t lend)
682 {
683 	int err = 0;
684 
685 	if (mapping_needs_writeback(mapping)) {
686 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
687 						 WB_SYNC_ALL);
688 		/*
689 		 * Even if the above returned error, the pages may be
690 		 * written partially (e.g. -ENOSPC), so we wait for it.
691 		 * But the -EIO is special case, it may indicate the worst
692 		 * thing (e.g. bug) happened, so we avoid waiting for it.
693 		 */
694 		if (err != -EIO) {
695 			int err2 = filemap_fdatawait_range(mapping,
696 						lstart, lend);
697 			if (!err)
698 				err = err2;
699 		} else {
700 			/* Clear any previously stored errors */
701 			filemap_check_errors(mapping);
702 		}
703 	} else {
704 		err = filemap_check_errors(mapping);
705 	}
706 	return err;
707 }
708 EXPORT_SYMBOL(filemap_write_and_wait_range);
709 
710 void __filemap_set_wb_err(struct address_space *mapping, int err)
711 {
712 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
713 
714 	trace_filemap_set_wb_err(mapping, eseq);
715 }
716 EXPORT_SYMBOL(__filemap_set_wb_err);
717 
718 /**
719  * file_check_and_advance_wb_err - report wb error (if any) that was previously
720  * 				   and advance wb_err to current one
721  * @file: struct file on which the error is being reported
722  *
723  * When userland calls fsync (or something like nfsd does the equivalent), we
724  * want to report any writeback errors that occurred since the last fsync (or
725  * since the file was opened if there haven't been any).
726  *
727  * Grab the wb_err from the mapping. If it matches what we have in the file,
728  * then just quickly return 0. The file is all caught up.
729  *
730  * If it doesn't match, then take the mapping value, set the "seen" flag in
731  * it and try to swap it into place. If it works, or another task beat us
732  * to it with the new value, then update the f_wb_err and return the error
733  * portion. The error at this point must be reported via proper channels
734  * (a'la fsync, or NFS COMMIT operation, etc.).
735  *
736  * While we handle mapping->wb_err with atomic operations, the f_wb_err
737  * value is protected by the f_lock since we must ensure that it reflects
738  * the latest value swapped in for this file descriptor.
739  *
740  * Return: %0 on success, negative error code otherwise.
741  */
742 int file_check_and_advance_wb_err(struct file *file)
743 {
744 	int err = 0;
745 	errseq_t old = READ_ONCE(file->f_wb_err);
746 	struct address_space *mapping = file->f_mapping;
747 
748 	/* Locklessly handle the common case where nothing has changed */
749 	if (errseq_check(&mapping->wb_err, old)) {
750 		/* Something changed, must use slow path */
751 		spin_lock(&file->f_lock);
752 		old = file->f_wb_err;
753 		err = errseq_check_and_advance(&mapping->wb_err,
754 						&file->f_wb_err);
755 		trace_file_check_and_advance_wb_err(file, old);
756 		spin_unlock(&file->f_lock);
757 	}
758 
759 	/*
760 	 * We're mostly using this function as a drop in replacement for
761 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
762 	 * that the legacy code would have had on these flags.
763 	 */
764 	clear_bit(AS_EIO, &mapping->flags);
765 	clear_bit(AS_ENOSPC, &mapping->flags);
766 	return err;
767 }
768 EXPORT_SYMBOL(file_check_and_advance_wb_err);
769 
770 /**
771  * file_write_and_wait_range - write out & wait on a file range
772  * @file:	file pointing to address_space with pages
773  * @lstart:	offset in bytes where the range starts
774  * @lend:	offset in bytes where the range ends (inclusive)
775  *
776  * Write out and wait upon file offsets lstart->lend, inclusive.
777  *
778  * Note that @lend is inclusive (describes the last byte to be written) so
779  * that this function can be used to write to the very end-of-file (end = -1).
780  *
781  * After writing out and waiting on the data, we check and advance the
782  * f_wb_err cursor to the latest value, and return any errors detected there.
783  *
784  * Return: %0 on success, negative error code otherwise.
785  */
786 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
787 {
788 	int err = 0, err2;
789 	struct address_space *mapping = file->f_mapping;
790 
791 	if (mapping_needs_writeback(mapping)) {
792 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
793 						 WB_SYNC_ALL);
794 		/* See comment of filemap_write_and_wait() */
795 		if (err != -EIO)
796 			__filemap_fdatawait_range(mapping, lstart, lend);
797 	}
798 	err2 = file_check_and_advance_wb_err(file);
799 	if (!err)
800 		err = err2;
801 	return err;
802 }
803 EXPORT_SYMBOL(file_write_and_wait_range);
804 
805 /**
806  * replace_page_cache_page - replace a pagecache page with a new one
807  * @old:	page to be replaced
808  * @new:	page to replace with
809  *
810  * This function replaces a page in the pagecache with a new one.  On
811  * success it acquires the pagecache reference for the new page and
812  * drops it for the old page.  Both the old and new pages must be
813  * locked.  This function does not add the new page to the LRU, the
814  * caller must do that.
815  *
816  * The remove + add is atomic.  This function cannot fail.
817  */
818 void replace_page_cache_page(struct page *old, struct page *new)
819 {
820 	struct address_space *mapping = old->mapping;
821 	void (*freepage)(struct page *) = mapping->a_ops->freepage;
822 	pgoff_t offset = old->index;
823 	XA_STATE(xas, &mapping->i_pages, offset);
824 	unsigned long flags;
825 
826 	VM_BUG_ON_PAGE(!PageLocked(old), old);
827 	VM_BUG_ON_PAGE(!PageLocked(new), new);
828 	VM_BUG_ON_PAGE(new->mapping, new);
829 
830 	get_page(new);
831 	new->mapping = mapping;
832 	new->index = offset;
833 
834 	mem_cgroup_migrate(old, new);
835 
836 	xas_lock_irqsave(&xas, flags);
837 	xas_store(&xas, new);
838 
839 	old->mapping = NULL;
840 	/* hugetlb pages do not participate in page cache accounting. */
841 	if (!PageHuge(old))
842 		__dec_lruvec_page_state(old, NR_FILE_PAGES);
843 	if (!PageHuge(new))
844 		__inc_lruvec_page_state(new, NR_FILE_PAGES);
845 	if (PageSwapBacked(old))
846 		__dec_lruvec_page_state(old, NR_SHMEM);
847 	if (PageSwapBacked(new))
848 		__inc_lruvec_page_state(new, NR_SHMEM);
849 	xas_unlock_irqrestore(&xas, flags);
850 	if (freepage)
851 		freepage(old);
852 	put_page(old);
853 }
854 EXPORT_SYMBOL_GPL(replace_page_cache_page);
855 
856 noinline int __add_to_page_cache_locked(struct page *page,
857 					struct address_space *mapping,
858 					pgoff_t offset, gfp_t gfp,
859 					void **shadowp)
860 {
861 	XA_STATE(xas, &mapping->i_pages, offset);
862 	int huge = PageHuge(page);
863 	int error;
864 	bool charged = false;
865 
866 	VM_BUG_ON_PAGE(!PageLocked(page), page);
867 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
868 	mapping_set_update(&xas, mapping);
869 
870 	get_page(page);
871 	page->mapping = mapping;
872 	page->index = offset;
873 
874 	if (!huge) {
875 		error = mem_cgroup_charge(page, current->mm, gfp);
876 		if (error)
877 			goto error;
878 		charged = true;
879 	}
880 
881 	gfp &= GFP_RECLAIM_MASK;
882 
883 	do {
884 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
885 		void *entry, *old = NULL;
886 
887 		if (order > thp_order(page))
888 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
889 					order, gfp);
890 		xas_lock_irq(&xas);
891 		xas_for_each_conflict(&xas, entry) {
892 			old = entry;
893 			if (!xa_is_value(entry)) {
894 				xas_set_err(&xas, -EEXIST);
895 				goto unlock;
896 			}
897 		}
898 
899 		if (old) {
900 			if (shadowp)
901 				*shadowp = old;
902 			/* entry may have been split before we acquired lock */
903 			order = xa_get_order(xas.xa, xas.xa_index);
904 			if (order > thp_order(page)) {
905 				xas_split(&xas, old, order);
906 				xas_reset(&xas);
907 			}
908 		}
909 
910 		xas_store(&xas, page);
911 		if (xas_error(&xas))
912 			goto unlock;
913 
914 		mapping->nrpages++;
915 
916 		/* hugetlb pages do not participate in page cache accounting */
917 		if (!huge)
918 			__inc_lruvec_page_state(page, NR_FILE_PAGES);
919 unlock:
920 		xas_unlock_irq(&xas);
921 	} while (xas_nomem(&xas, gfp));
922 
923 	if (xas_error(&xas)) {
924 		error = xas_error(&xas);
925 		if (charged)
926 			mem_cgroup_uncharge(page);
927 		goto error;
928 	}
929 
930 	trace_mm_filemap_add_to_page_cache(page);
931 	return 0;
932 error:
933 	page->mapping = NULL;
934 	/* Leave page->index set: truncation relies upon it */
935 	put_page(page);
936 	return error;
937 }
938 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
939 
940 /**
941  * add_to_page_cache_locked - add a locked page to the pagecache
942  * @page:	page to add
943  * @mapping:	the page's address_space
944  * @offset:	page index
945  * @gfp_mask:	page allocation mode
946  *
947  * This function is used to add a page to the pagecache. It must be locked.
948  * This function does not add the page to the LRU.  The caller must do that.
949  *
950  * Return: %0 on success, negative error code otherwise.
951  */
952 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
953 		pgoff_t offset, gfp_t gfp_mask)
954 {
955 	return __add_to_page_cache_locked(page, mapping, offset,
956 					  gfp_mask, NULL);
957 }
958 EXPORT_SYMBOL(add_to_page_cache_locked);
959 
960 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
961 				pgoff_t offset, gfp_t gfp_mask)
962 {
963 	void *shadow = NULL;
964 	int ret;
965 
966 	__SetPageLocked(page);
967 	ret = __add_to_page_cache_locked(page, mapping, offset,
968 					 gfp_mask, &shadow);
969 	if (unlikely(ret))
970 		__ClearPageLocked(page);
971 	else {
972 		/*
973 		 * The page might have been evicted from cache only
974 		 * recently, in which case it should be activated like
975 		 * any other repeatedly accessed page.
976 		 * The exception is pages getting rewritten; evicting other
977 		 * data from the working set, only to cache data that will
978 		 * get overwritten with something else, is a waste of memory.
979 		 */
980 		WARN_ON_ONCE(PageActive(page));
981 		if (!(gfp_mask & __GFP_WRITE) && shadow)
982 			workingset_refault(page, shadow);
983 		lru_cache_add(page);
984 	}
985 	return ret;
986 }
987 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
988 
989 #ifdef CONFIG_NUMA
990 struct page *__page_cache_alloc(gfp_t gfp)
991 {
992 	int n;
993 	struct page *page;
994 
995 	if (cpuset_do_page_mem_spread()) {
996 		unsigned int cpuset_mems_cookie;
997 		do {
998 			cpuset_mems_cookie = read_mems_allowed_begin();
999 			n = cpuset_mem_spread_node();
1000 			page = __alloc_pages_node(n, gfp, 0);
1001 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
1002 
1003 		return page;
1004 	}
1005 	return alloc_pages(gfp, 0);
1006 }
1007 EXPORT_SYMBOL(__page_cache_alloc);
1008 #endif
1009 
1010 /*
1011  * In order to wait for pages to become available there must be
1012  * waitqueues associated with pages. By using a hash table of
1013  * waitqueues where the bucket discipline is to maintain all
1014  * waiters on the same queue and wake all when any of the pages
1015  * become available, and for the woken contexts to check to be
1016  * sure the appropriate page became available, this saves space
1017  * at a cost of "thundering herd" phenomena during rare hash
1018  * collisions.
1019  */
1020 #define PAGE_WAIT_TABLE_BITS 8
1021 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1022 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1023 
1024 static wait_queue_head_t *page_waitqueue(struct page *page)
1025 {
1026 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1027 }
1028 
1029 void __init pagecache_init(void)
1030 {
1031 	int i;
1032 
1033 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1034 		init_waitqueue_head(&page_wait_table[i]);
1035 
1036 	page_writeback_init();
1037 }
1038 
1039 /*
1040  * The page wait code treats the "wait->flags" somewhat unusually, because
1041  * we have multiple different kinds of waits, not just the usual "exclusive"
1042  * one.
1043  *
1044  * We have:
1045  *
1046  *  (a) no special bits set:
1047  *
1048  *	We're just waiting for the bit to be released, and when a waker
1049  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1050  *	and remove it from the wait queue.
1051  *
1052  *	Simple and straightforward.
1053  *
1054  *  (b) WQ_FLAG_EXCLUSIVE:
1055  *
1056  *	The waiter is waiting to get the lock, and only one waiter should
1057  *	be woken up to avoid any thundering herd behavior. We'll set the
1058  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1059  *
1060  *	This is the traditional exclusive wait.
1061  *
1062  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1063  *
1064  *	The waiter is waiting to get the bit, and additionally wants the
1065  *	lock to be transferred to it for fair lock behavior. If the lock
1066  *	cannot be taken, we stop walking the wait queue without waking
1067  *	the waiter.
1068  *
1069  *	This is the "fair lock handoff" case, and in addition to setting
1070  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1071  *	that it now has the lock.
1072  */
1073 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1074 {
1075 	unsigned int flags;
1076 	struct wait_page_key *key = arg;
1077 	struct wait_page_queue *wait_page
1078 		= container_of(wait, struct wait_page_queue, wait);
1079 
1080 	if (!wake_page_match(wait_page, key))
1081 		return 0;
1082 
1083 	/*
1084 	 * If it's a lock handoff wait, we get the bit for it, and
1085 	 * stop walking (and do not wake it up) if we can't.
1086 	 */
1087 	flags = wait->flags;
1088 	if (flags & WQ_FLAG_EXCLUSIVE) {
1089 		if (test_bit(key->bit_nr, &key->page->flags))
1090 			return -1;
1091 		if (flags & WQ_FLAG_CUSTOM) {
1092 			if (test_and_set_bit(key->bit_nr, &key->page->flags))
1093 				return -1;
1094 			flags |= WQ_FLAG_DONE;
1095 		}
1096 	}
1097 
1098 	/*
1099 	 * We are holding the wait-queue lock, but the waiter that
1100 	 * is waiting for this will be checking the flags without
1101 	 * any locking.
1102 	 *
1103 	 * So update the flags atomically, and wake up the waiter
1104 	 * afterwards to avoid any races. This store-release pairs
1105 	 * with the load-acquire in wait_on_page_bit_common().
1106 	 */
1107 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1108 	wake_up_state(wait->private, mode);
1109 
1110 	/*
1111 	 * Ok, we have successfully done what we're waiting for,
1112 	 * and we can unconditionally remove the wait entry.
1113 	 *
1114 	 * Note that this pairs with the "finish_wait()" in the
1115 	 * waiter, and has to be the absolute last thing we do.
1116 	 * After this list_del_init(&wait->entry) the wait entry
1117 	 * might be de-allocated and the process might even have
1118 	 * exited.
1119 	 */
1120 	list_del_init_careful(&wait->entry);
1121 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1122 }
1123 
1124 static void wake_up_page_bit(struct page *page, int bit_nr)
1125 {
1126 	wait_queue_head_t *q = page_waitqueue(page);
1127 	struct wait_page_key key;
1128 	unsigned long flags;
1129 	wait_queue_entry_t bookmark;
1130 
1131 	key.page = page;
1132 	key.bit_nr = bit_nr;
1133 	key.page_match = 0;
1134 
1135 	bookmark.flags = 0;
1136 	bookmark.private = NULL;
1137 	bookmark.func = NULL;
1138 	INIT_LIST_HEAD(&bookmark.entry);
1139 
1140 	spin_lock_irqsave(&q->lock, flags);
1141 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1142 
1143 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1144 		/*
1145 		 * Take a breather from holding the lock,
1146 		 * allow pages that finish wake up asynchronously
1147 		 * to acquire the lock and remove themselves
1148 		 * from wait queue
1149 		 */
1150 		spin_unlock_irqrestore(&q->lock, flags);
1151 		cpu_relax();
1152 		spin_lock_irqsave(&q->lock, flags);
1153 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154 	}
1155 
1156 	/*
1157 	 * It is possible for other pages to have collided on the waitqueue
1158 	 * hash, so in that case check for a page match. That prevents a long-
1159 	 * term waiter
1160 	 *
1161 	 * It is still possible to miss a case here, when we woke page waiters
1162 	 * and removed them from the waitqueue, but there are still other
1163 	 * page waiters.
1164 	 */
1165 	if (!waitqueue_active(q) || !key.page_match) {
1166 		ClearPageWaiters(page);
1167 		/*
1168 		 * It's possible to miss clearing Waiters here, when we woke
1169 		 * our page waiters, but the hashed waitqueue has waiters for
1170 		 * other pages on it.
1171 		 *
1172 		 * That's okay, it's a rare case. The next waker will clear it.
1173 		 */
1174 	}
1175 	spin_unlock_irqrestore(&q->lock, flags);
1176 }
1177 
1178 static void wake_up_page(struct page *page, int bit)
1179 {
1180 	if (!PageWaiters(page))
1181 		return;
1182 	wake_up_page_bit(page, bit);
1183 }
1184 
1185 /*
1186  * A choice of three behaviors for wait_on_page_bit_common():
1187  */
1188 enum behavior {
1189 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1190 			 * __lock_page() waiting on then setting PG_locked.
1191 			 */
1192 	SHARED,		/* Hold ref to page and check the bit when woken, like
1193 			 * wait_on_page_writeback() waiting on PG_writeback.
1194 			 */
1195 	DROP,		/* Drop ref to page before wait, no check when woken,
1196 			 * like put_and_wait_on_page_locked() on PG_locked.
1197 			 */
1198 };
1199 
1200 /*
1201  * Attempt to check (or get) the page bit, and mark us done
1202  * if successful.
1203  */
1204 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1205 					struct wait_queue_entry *wait)
1206 {
1207 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1208 		if (test_and_set_bit(bit_nr, &page->flags))
1209 			return false;
1210 	} else if (test_bit(bit_nr, &page->flags))
1211 		return false;
1212 
1213 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1214 	return true;
1215 }
1216 
1217 /* How many times do we accept lock stealing from under a waiter? */
1218 int sysctl_page_lock_unfairness = 5;
1219 
1220 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1221 	struct page *page, int bit_nr, int state, enum behavior behavior)
1222 {
1223 	int unfairness = sysctl_page_lock_unfairness;
1224 	struct wait_page_queue wait_page;
1225 	wait_queue_entry_t *wait = &wait_page.wait;
1226 	bool thrashing = false;
1227 	bool delayacct = false;
1228 	unsigned long pflags;
1229 
1230 	if (bit_nr == PG_locked &&
1231 	    !PageUptodate(page) && PageWorkingset(page)) {
1232 		if (!PageSwapBacked(page)) {
1233 			delayacct_thrashing_start();
1234 			delayacct = true;
1235 		}
1236 		psi_memstall_enter(&pflags);
1237 		thrashing = true;
1238 	}
1239 
1240 	init_wait(wait);
1241 	wait->func = wake_page_function;
1242 	wait_page.page = page;
1243 	wait_page.bit_nr = bit_nr;
1244 
1245 repeat:
1246 	wait->flags = 0;
1247 	if (behavior == EXCLUSIVE) {
1248 		wait->flags = WQ_FLAG_EXCLUSIVE;
1249 		if (--unfairness < 0)
1250 			wait->flags |= WQ_FLAG_CUSTOM;
1251 	}
1252 
1253 	/*
1254 	 * Do one last check whether we can get the
1255 	 * page bit synchronously.
1256 	 *
1257 	 * Do the SetPageWaiters() marking before that
1258 	 * to let any waker we _just_ missed know they
1259 	 * need to wake us up (otherwise they'll never
1260 	 * even go to the slow case that looks at the
1261 	 * page queue), and add ourselves to the wait
1262 	 * queue if we need to sleep.
1263 	 *
1264 	 * This part needs to be done under the queue
1265 	 * lock to avoid races.
1266 	 */
1267 	spin_lock_irq(&q->lock);
1268 	SetPageWaiters(page);
1269 	if (!trylock_page_bit_common(page, bit_nr, wait))
1270 		__add_wait_queue_entry_tail(q, wait);
1271 	spin_unlock_irq(&q->lock);
1272 
1273 	/*
1274 	 * From now on, all the logic will be based on
1275 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1276 	 * see whether the page bit testing has already
1277 	 * been done by the wake function.
1278 	 *
1279 	 * We can drop our reference to the page.
1280 	 */
1281 	if (behavior == DROP)
1282 		put_page(page);
1283 
1284 	/*
1285 	 * Note that until the "finish_wait()", or until
1286 	 * we see the WQ_FLAG_WOKEN flag, we need to
1287 	 * be very careful with the 'wait->flags', because
1288 	 * we may race with a waker that sets them.
1289 	 */
1290 	for (;;) {
1291 		unsigned int flags;
1292 
1293 		set_current_state(state);
1294 
1295 		/* Loop until we've been woken or interrupted */
1296 		flags = smp_load_acquire(&wait->flags);
1297 		if (!(flags & WQ_FLAG_WOKEN)) {
1298 			if (signal_pending_state(state, current))
1299 				break;
1300 
1301 			io_schedule();
1302 			continue;
1303 		}
1304 
1305 		/* If we were non-exclusive, we're done */
1306 		if (behavior != EXCLUSIVE)
1307 			break;
1308 
1309 		/* If the waker got the lock for us, we're done */
1310 		if (flags & WQ_FLAG_DONE)
1311 			break;
1312 
1313 		/*
1314 		 * Otherwise, if we're getting the lock, we need to
1315 		 * try to get it ourselves.
1316 		 *
1317 		 * And if that fails, we'll have to retry this all.
1318 		 */
1319 		if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1320 			goto repeat;
1321 
1322 		wait->flags |= WQ_FLAG_DONE;
1323 		break;
1324 	}
1325 
1326 	/*
1327 	 * If a signal happened, this 'finish_wait()' may remove the last
1328 	 * waiter from the wait-queues, but the PageWaiters bit will remain
1329 	 * set. That's ok. The next wakeup will take care of it, and trying
1330 	 * to do it here would be difficult and prone to races.
1331 	 */
1332 	finish_wait(q, wait);
1333 
1334 	if (thrashing) {
1335 		if (delayacct)
1336 			delayacct_thrashing_end();
1337 		psi_memstall_leave(&pflags);
1338 	}
1339 
1340 	/*
1341 	 * NOTE! The wait->flags weren't stable until we've done the
1342 	 * 'finish_wait()', and we could have exited the loop above due
1343 	 * to a signal, and had a wakeup event happen after the signal
1344 	 * test but before the 'finish_wait()'.
1345 	 *
1346 	 * So only after the finish_wait() can we reliably determine
1347 	 * if we got woken up or not, so we can now figure out the final
1348 	 * return value based on that state without races.
1349 	 *
1350 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1351 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1352 	 */
1353 	if (behavior == EXCLUSIVE)
1354 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1355 
1356 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1357 }
1358 
1359 void wait_on_page_bit(struct page *page, int bit_nr)
1360 {
1361 	wait_queue_head_t *q = page_waitqueue(page);
1362 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1363 }
1364 EXPORT_SYMBOL(wait_on_page_bit);
1365 
1366 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1367 {
1368 	wait_queue_head_t *q = page_waitqueue(page);
1369 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1370 }
1371 EXPORT_SYMBOL(wait_on_page_bit_killable);
1372 
1373 /**
1374  * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1375  * @page: The page to wait for.
1376  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1377  *
1378  * The caller should hold a reference on @page.  They expect the page to
1379  * become unlocked relatively soon, but do not wish to hold up migration
1380  * (for example) by holding the reference while waiting for the page to
1381  * come unlocked.  After this function returns, the caller should not
1382  * dereference @page.
1383  *
1384  * Return: 0 if the page was unlocked or -EINTR if interrupted by a signal.
1385  */
1386 int put_and_wait_on_page_locked(struct page *page, int state)
1387 {
1388 	wait_queue_head_t *q;
1389 
1390 	page = compound_head(page);
1391 	q = page_waitqueue(page);
1392 	return wait_on_page_bit_common(q, page, PG_locked, state, DROP);
1393 }
1394 
1395 /**
1396  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1397  * @page: Page defining the wait queue of interest
1398  * @waiter: Waiter to add to the queue
1399  *
1400  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1401  */
1402 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1403 {
1404 	wait_queue_head_t *q = page_waitqueue(page);
1405 	unsigned long flags;
1406 
1407 	spin_lock_irqsave(&q->lock, flags);
1408 	__add_wait_queue_entry_tail(q, waiter);
1409 	SetPageWaiters(page);
1410 	spin_unlock_irqrestore(&q->lock, flags);
1411 }
1412 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1413 
1414 #ifndef clear_bit_unlock_is_negative_byte
1415 
1416 /*
1417  * PG_waiters is the high bit in the same byte as PG_lock.
1418  *
1419  * On x86 (and on many other architectures), we can clear PG_lock and
1420  * test the sign bit at the same time. But if the architecture does
1421  * not support that special operation, we just do this all by hand
1422  * instead.
1423  *
1424  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1425  * being cleared, but a memory barrier should be unnecessary since it is
1426  * in the same byte as PG_locked.
1427  */
1428 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1429 {
1430 	clear_bit_unlock(nr, mem);
1431 	/* smp_mb__after_atomic(); */
1432 	return test_bit(PG_waiters, mem);
1433 }
1434 
1435 #endif
1436 
1437 /**
1438  * unlock_page - unlock a locked page
1439  * @page: the page
1440  *
1441  * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1442  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1443  * mechanism between PageLocked pages and PageWriteback pages is shared.
1444  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1445  *
1446  * Note that this depends on PG_waiters being the sign bit in the byte
1447  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1448  * clear the PG_locked bit and test PG_waiters at the same time fairly
1449  * portably (architectures that do LL/SC can test any bit, while x86 can
1450  * test the sign bit).
1451  */
1452 void unlock_page(struct page *page)
1453 {
1454 	BUILD_BUG_ON(PG_waiters != 7);
1455 	page = compound_head(page);
1456 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1457 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1458 		wake_up_page_bit(page, PG_locked);
1459 }
1460 EXPORT_SYMBOL(unlock_page);
1461 
1462 /**
1463  * end_page_private_2 - Clear PG_private_2 and release any waiters
1464  * @page: The page
1465  *
1466  * Clear the PG_private_2 bit on a page and wake up any sleepers waiting for
1467  * this.  The page ref held for PG_private_2 being set is released.
1468  *
1469  * This is, for example, used when a netfs page is being written to a local
1470  * disk cache, thereby allowing writes to the cache for the same page to be
1471  * serialised.
1472  */
1473 void end_page_private_2(struct page *page)
1474 {
1475 	page = compound_head(page);
1476 	VM_BUG_ON_PAGE(!PagePrivate2(page), page);
1477 	clear_bit_unlock(PG_private_2, &page->flags);
1478 	wake_up_page_bit(page, PG_private_2);
1479 	put_page(page);
1480 }
1481 EXPORT_SYMBOL(end_page_private_2);
1482 
1483 /**
1484  * wait_on_page_private_2 - Wait for PG_private_2 to be cleared on a page
1485  * @page: The page to wait on
1486  *
1487  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page.
1488  */
1489 void wait_on_page_private_2(struct page *page)
1490 {
1491 	page = compound_head(page);
1492 	while (PagePrivate2(page))
1493 		wait_on_page_bit(page, PG_private_2);
1494 }
1495 EXPORT_SYMBOL(wait_on_page_private_2);
1496 
1497 /**
1498  * wait_on_page_private_2_killable - Wait for PG_private_2 to be cleared on a page
1499  * @page: The page to wait on
1500  *
1501  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a page or until a
1502  * fatal signal is received by the calling task.
1503  *
1504  * Return:
1505  * - 0 if successful.
1506  * - -EINTR if a fatal signal was encountered.
1507  */
1508 int wait_on_page_private_2_killable(struct page *page)
1509 {
1510 	int ret = 0;
1511 
1512 	page = compound_head(page);
1513 	while (PagePrivate2(page)) {
1514 		ret = wait_on_page_bit_killable(page, PG_private_2);
1515 		if (ret < 0)
1516 			break;
1517 	}
1518 
1519 	return ret;
1520 }
1521 EXPORT_SYMBOL(wait_on_page_private_2_killable);
1522 
1523 /**
1524  * end_page_writeback - end writeback against a page
1525  * @page: the page
1526  */
1527 void end_page_writeback(struct page *page)
1528 {
1529 	/*
1530 	 * TestClearPageReclaim could be used here but it is an atomic
1531 	 * operation and overkill in this particular case. Failing to
1532 	 * shuffle a page marked for immediate reclaim is too mild to
1533 	 * justify taking an atomic operation penalty at the end of
1534 	 * ever page writeback.
1535 	 */
1536 	if (PageReclaim(page)) {
1537 		ClearPageReclaim(page);
1538 		rotate_reclaimable_page(page);
1539 	}
1540 
1541 	/*
1542 	 * Writeback does not hold a page reference of its own, relying
1543 	 * on truncation to wait for the clearing of PG_writeback.
1544 	 * But here we must make sure that the page is not freed and
1545 	 * reused before the wake_up_page().
1546 	 */
1547 	get_page(page);
1548 	if (!test_clear_page_writeback(page))
1549 		BUG();
1550 
1551 	smp_mb__after_atomic();
1552 	wake_up_page(page, PG_writeback);
1553 	put_page(page);
1554 }
1555 EXPORT_SYMBOL(end_page_writeback);
1556 
1557 /*
1558  * After completing I/O on a page, call this routine to update the page
1559  * flags appropriately
1560  */
1561 void page_endio(struct page *page, bool is_write, int err)
1562 {
1563 	if (!is_write) {
1564 		if (!err) {
1565 			SetPageUptodate(page);
1566 		} else {
1567 			ClearPageUptodate(page);
1568 			SetPageError(page);
1569 		}
1570 		unlock_page(page);
1571 	} else {
1572 		if (err) {
1573 			struct address_space *mapping;
1574 
1575 			SetPageError(page);
1576 			mapping = page_mapping(page);
1577 			if (mapping)
1578 				mapping_set_error(mapping, err);
1579 		}
1580 		end_page_writeback(page);
1581 	}
1582 }
1583 EXPORT_SYMBOL_GPL(page_endio);
1584 
1585 /**
1586  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1587  * @__page: the page to lock
1588  */
1589 void __lock_page(struct page *__page)
1590 {
1591 	struct page *page = compound_head(__page);
1592 	wait_queue_head_t *q = page_waitqueue(page);
1593 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1594 				EXCLUSIVE);
1595 }
1596 EXPORT_SYMBOL(__lock_page);
1597 
1598 int __lock_page_killable(struct page *__page)
1599 {
1600 	struct page *page = compound_head(__page);
1601 	wait_queue_head_t *q = page_waitqueue(page);
1602 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1603 					EXCLUSIVE);
1604 }
1605 EXPORT_SYMBOL_GPL(__lock_page_killable);
1606 
1607 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1608 {
1609 	struct wait_queue_head *q = page_waitqueue(page);
1610 	int ret = 0;
1611 
1612 	wait->page = page;
1613 	wait->bit_nr = PG_locked;
1614 
1615 	spin_lock_irq(&q->lock);
1616 	__add_wait_queue_entry_tail(q, &wait->wait);
1617 	SetPageWaiters(page);
1618 	ret = !trylock_page(page);
1619 	/*
1620 	 * If we were successful now, we know we're still on the
1621 	 * waitqueue as we're still under the lock. This means it's
1622 	 * safe to remove and return success, we know the callback
1623 	 * isn't going to trigger.
1624 	 */
1625 	if (!ret)
1626 		__remove_wait_queue(q, &wait->wait);
1627 	else
1628 		ret = -EIOCBQUEUED;
1629 	spin_unlock_irq(&q->lock);
1630 	return ret;
1631 }
1632 
1633 /*
1634  * Return values:
1635  * 1 - page is locked; mmap_lock is still held.
1636  * 0 - page is not locked.
1637  *     mmap_lock has been released (mmap_read_unlock(), unless flags had both
1638  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1639  *     which case mmap_lock is still held.
1640  *
1641  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1642  * with the page locked and the mmap_lock unperturbed.
1643  */
1644 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1645 			 unsigned int flags)
1646 {
1647 	if (fault_flag_allow_retry_first(flags)) {
1648 		/*
1649 		 * CAUTION! In this case, mmap_lock is not released
1650 		 * even though return 0.
1651 		 */
1652 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1653 			return 0;
1654 
1655 		mmap_read_unlock(mm);
1656 		if (flags & FAULT_FLAG_KILLABLE)
1657 			wait_on_page_locked_killable(page);
1658 		else
1659 			wait_on_page_locked(page);
1660 		return 0;
1661 	}
1662 	if (flags & FAULT_FLAG_KILLABLE) {
1663 		int ret;
1664 
1665 		ret = __lock_page_killable(page);
1666 		if (ret) {
1667 			mmap_read_unlock(mm);
1668 			return 0;
1669 		}
1670 	} else {
1671 		__lock_page(page);
1672 	}
1673 	return 1;
1674 
1675 }
1676 
1677 /**
1678  * page_cache_next_miss() - Find the next gap in the page cache.
1679  * @mapping: Mapping.
1680  * @index: Index.
1681  * @max_scan: Maximum range to search.
1682  *
1683  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1684  * gap with the lowest index.
1685  *
1686  * This function may be called under the rcu_read_lock.  However, this will
1687  * not atomically search a snapshot of the cache at a single point in time.
1688  * For example, if a gap is created at index 5, then subsequently a gap is
1689  * created at index 10, page_cache_next_miss covering both indices may
1690  * return 10 if called under the rcu_read_lock.
1691  *
1692  * Return: The index of the gap if found, otherwise an index outside the
1693  * range specified (in which case 'return - index >= max_scan' will be true).
1694  * In the rare case of index wrap-around, 0 will be returned.
1695  */
1696 pgoff_t page_cache_next_miss(struct address_space *mapping,
1697 			     pgoff_t index, unsigned long max_scan)
1698 {
1699 	XA_STATE(xas, &mapping->i_pages, index);
1700 
1701 	while (max_scan--) {
1702 		void *entry = xas_next(&xas);
1703 		if (!entry || xa_is_value(entry))
1704 			break;
1705 		if (xas.xa_index == 0)
1706 			break;
1707 	}
1708 
1709 	return xas.xa_index;
1710 }
1711 EXPORT_SYMBOL(page_cache_next_miss);
1712 
1713 /**
1714  * page_cache_prev_miss() - Find the previous gap in the page cache.
1715  * @mapping: Mapping.
1716  * @index: Index.
1717  * @max_scan: Maximum range to search.
1718  *
1719  * Search the range [max(index - max_scan + 1, 0), index] for the
1720  * gap with the highest index.
1721  *
1722  * This function may be called under the rcu_read_lock.  However, this will
1723  * not atomically search a snapshot of the cache at a single point in time.
1724  * For example, if a gap is created at index 10, then subsequently a gap is
1725  * created at index 5, page_cache_prev_miss() covering both indices may
1726  * return 5 if called under the rcu_read_lock.
1727  *
1728  * Return: The index of the gap if found, otherwise an index outside the
1729  * range specified (in which case 'index - return >= max_scan' will be true).
1730  * In the rare case of wrap-around, ULONG_MAX will be returned.
1731  */
1732 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1733 			     pgoff_t index, unsigned long max_scan)
1734 {
1735 	XA_STATE(xas, &mapping->i_pages, index);
1736 
1737 	while (max_scan--) {
1738 		void *entry = xas_prev(&xas);
1739 		if (!entry || xa_is_value(entry))
1740 			break;
1741 		if (xas.xa_index == ULONG_MAX)
1742 			break;
1743 	}
1744 
1745 	return xas.xa_index;
1746 }
1747 EXPORT_SYMBOL(page_cache_prev_miss);
1748 
1749 /*
1750  * mapping_get_entry - Get a page cache entry.
1751  * @mapping: the address_space to search
1752  * @index: The page cache index.
1753  *
1754  * Looks up the page cache slot at @mapping & @index.  If there is a
1755  * page cache page, the head page is returned with an increased refcount.
1756  *
1757  * If the slot holds a shadow entry of a previously evicted page, or a
1758  * swap entry from shmem/tmpfs, it is returned.
1759  *
1760  * Return: The head page or shadow entry, %NULL if nothing is found.
1761  */
1762 static struct page *mapping_get_entry(struct address_space *mapping,
1763 		pgoff_t index)
1764 {
1765 	XA_STATE(xas, &mapping->i_pages, index);
1766 	struct page *page;
1767 
1768 	rcu_read_lock();
1769 repeat:
1770 	xas_reset(&xas);
1771 	page = xas_load(&xas);
1772 	if (xas_retry(&xas, page))
1773 		goto repeat;
1774 	/*
1775 	 * A shadow entry of a recently evicted page, or a swap entry from
1776 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1777 	 */
1778 	if (!page || xa_is_value(page))
1779 		goto out;
1780 
1781 	if (!page_cache_get_speculative(page))
1782 		goto repeat;
1783 
1784 	/*
1785 	 * Has the page moved or been split?
1786 	 * This is part of the lockless pagecache protocol. See
1787 	 * include/linux/pagemap.h for details.
1788 	 */
1789 	if (unlikely(page != xas_reload(&xas))) {
1790 		put_page(page);
1791 		goto repeat;
1792 	}
1793 out:
1794 	rcu_read_unlock();
1795 
1796 	return page;
1797 }
1798 
1799 /**
1800  * pagecache_get_page - Find and get a reference to a page.
1801  * @mapping: The address_space to search.
1802  * @index: The page index.
1803  * @fgp_flags: %FGP flags modify how the page is returned.
1804  * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1805  *
1806  * Looks up the page cache entry at @mapping & @index.
1807  *
1808  * @fgp_flags can be zero or more of these flags:
1809  *
1810  * * %FGP_ACCESSED - The page will be marked accessed.
1811  * * %FGP_LOCK - The page is returned locked.
1812  * * %FGP_HEAD - If the page is present and a THP, return the head page
1813  *   rather than the exact page specified by the index.
1814  * * %FGP_ENTRY - If there is a shadow / swap / DAX entry, return it
1815  *   instead of allocating a new page to replace it.
1816  * * %FGP_CREAT - If no page is present then a new page is allocated using
1817  *   @gfp_mask and added to the page cache and the VM's LRU list.
1818  *   The page is returned locked and with an increased refcount.
1819  * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1820  *   page is already in cache.  If the page was allocated, unlock it before
1821  *   returning so the caller can do the same dance.
1822  * * %FGP_WRITE - The page will be written
1823  * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1824  * * %FGP_NOWAIT - Don't get blocked by page lock
1825  *
1826  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1827  * if the %GFP flags specified for %FGP_CREAT are atomic.
1828  *
1829  * If there is a page cache page, it is returned with an increased refcount.
1830  *
1831  * Return: The found page or %NULL otherwise.
1832  */
1833 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1834 		int fgp_flags, gfp_t gfp_mask)
1835 {
1836 	struct page *page;
1837 
1838 repeat:
1839 	page = mapping_get_entry(mapping, index);
1840 	if (xa_is_value(page)) {
1841 		if (fgp_flags & FGP_ENTRY)
1842 			return page;
1843 		page = NULL;
1844 	}
1845 	if (!page)
1846 		goto no_page;
1847 
1848 	if (fgp_flags & FGP_LOCK) {
1849 		if (fgp_flags & FGP_NOWAIT) {
1850 			if (!trylock_page(page)) {
1851 				put_page(page);
1852 				return NULL;
1853 			}
1854 		} else {
1855 			lock_page(page);
1856 		}
1857 
1858 		/* Has the page been truncated? */
1859 		if (unlikely(page->mapping != mapping)) {
1860 			unlock_page(page);
1861 			put_page(page);
1862 			goto repeat;
1863 		}
1864 		VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1865 	}
1866 
1867 	if (fgp_flags & FGP_ACCESSED)
1868 		mark_page_accessed(page);
1869 	else if (fgp_flags & FGP_WRITE) {
1870 		/* Clear idle flag for buffer write */
1871 		if (page_is_idle(page))
1872 			clear_page_idle(page);
1873 	}
1874 	if (!(fgp_flags & FGP_HEAD))
1875 		page = find_subpage(page, index);
1876 
1877 no_page:
1878 	if (!page && (fgp_flags & FGP_CREAT)) {
1879 		int err;
1880 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1881 			gfp_mask |= __GFP_WRITE;
1882 		if (fgp_flags & FGP_NOFS)
1883 			gfp_mask &= ~__GFP_FS;
1884 
1885 		page = __page_cache_alloc(gfp_mask);
1886 		if (!page)
1887 			return NULL;
1888 
1889 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1890 			fgp_flags |= FGP_LOCK;
1891 
1892 		/* Init accessed so avoid atomic mark_page_accessed later */
1893 		if (fgp_flags & FGP_ACCESSED)
1894 			__SetPageReferenced(page);
1895 
1896 		err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1897 		if (unlikely(err)) {
1898 			put_page(page);
1899 			page = NULL;
1900 			if (err == -EEXIST)
1901 				goto repeat;
1902 		}
1903 
1904 		/*
1905 		 * add_to_page_cache_lru locks the page, and for mmap we expect
1906 		 * an unlocked page.
1907 		 */
1908 		if (page && (fgp_flags & FGP_FOR_MMAP))
1909 			unlock_page(page);
1910 	}
1911 
1912 	return page;
1913 }
1914 EXPORT_SYMBOL(pagecache_get_page);
1915 
1916 static inline struct page *find_get_entry(struct xa_state *xas, pgoff_t max,
1917 		xa_mark_t mark)
1918 {
1919 	struct page *page;
1920 
1921 retry:
1922 	if (mark == XA_PRESENT)
1923 		page = xas_find(xas, max);
1924 	else
1925 		page = xas_find_marked(xas, max, mark);
1926 
1927 	if (xas_retry(xas, page))
1928 		goto retry;
1929 	/*
1930 	 * A shadow entry of a recently evicted page, a swap
1931 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1932 	 * without attempting to raise page count.
1933 	 */
1934 	if (!page || xa_is_value(page))
1935 		return page;
1936 
1937 	if (!page_cache_get_speculative(page))
1938 		goto reset;
1939 
1940 	/* Has the page moved or been split? */
1941 	if (unlikely(page != xas_reload(xas))) {
1942 		put_page(page);
1943 		goto reset;
1944 	}
1945 
1946 	return page;
1947 reset:
1948 	xas_reset(xas);
1949 	goto retry;
1950 }
1951 
1952 /**
1953  * find_get_entries - gang pagecache lookup
1954  * @mapping:	The address_space to search
1955  * @start:	The starting page cache index
1956  * @end:	The final page index (inclusive).
1957  * @pvec:	Where the resulting entries are placed.
1958  * @indices:	The cache indices corresponding to the entries in @entries
1959  *
1960  * find_get_entries() will search for and return a batch of entries in
1961  * the mapping.  The entries are placed in @pvec.  find_get_entries()
1962  * takes a reference on any actual pages it returns.
1963  *
1964  * The search returns a group of mapping-contiguous page cache entries
1965  * with ascending indexes.  There may be holes in the indices due to
1966  * not-present pages.
1967  *
1968  * Any shadow entries of evicted pages, or swap entries from
1969  * shmem/tmpfs, are included in the returned array.
1970  *
1971  * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1972  * stops at that page: the caller is likely to have a better way to handle
1973  * the compound page as a whole, and then skip its extent, than repeatedly
1974  * calling find_get_entries() to return all its tails.
1975  *
1976  * Return: the number of pages and shadow entries which were found.
1977  */
1978 unsigned find_get_entries(struct address_space *mapping, pgoff_t start,
1979 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
1980 {
1981 	XA_STATE(xas, &mapping->i_pages, start);
1982 	struct page *page;
1983 	unsigned int ret = 0;
1984 	unsigned nr_entries = PAGEVEC_SIZE;
1985 
1986 	rcu_read_lock();
1987 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
1988 		/*
1989 		 * Terminate early on finding a THP, to allow the caller to
1990 		 * handle it all at once; but continue if this is hugetlbfs.
1991 		 */
1992 		if (!xa_is_value(page) && PageTransHuge(page) &&
1993 				!PageHuge(page)) {
1994 			page = find_subpage(page, xas.xa_index);
1995 			nr_entries = ret + 1;
1996 		}
1997 
1998 		indices[ret] = xas.xa_index;
1999 		pvec->pages[ret] = page;
2000 		if (++ret == nr_entries)
2001 			break;
2002 	}
2003 	rcu_read_unlock();
2004 
2005 	pvec->nr = ret;
2006 	return ret;
2007 }
2008 
2009 /**
2010  * find_lock_entries - Find a batch of pagecache entries.
2011  * @mapping:	The address_space to search.
2012  * @start:	The starting page cache index.
2013  * @end:	The final page index (inclusive).
2014  * @pvec:	Where the resulting entries are placed.
2015  * @indices:	The cache indices of the entries in @pvec.
2016  *
2017  * find_lock_entries() will return a batch of entries from @mapping.
2018  * Swap, shadow and DAX entries are included.  Pages are returned
2019  * locked and with an incremented refcount.  Pages which are locked by
2020  * somebody else or under writeback are skipped.  Only the head page of
2021  * a THP is returned.  Pages which are partially outside the range are
2022  * not returned.
2023  *
2024  * The entries have ascending indexes.  The indices may not be consecutive
2025  * due to not-present entries, THP pages, pages which could not be locked
2026  * or pages under writeback.
2027  *
2028  * Return: The number of entries which were found.
2029  */
2030 unsigned find_lock_entries(struct address_space *mapping, pgoff_t start,
2031 		pgoff_t end, struct pagevec *pvec, pgoff_t *indices)
2032 {
2033 	XA_STATE(xas, &mapping->i_pages, start);
2034 	struct page *page;
2035 
2036 	rcu_read_lock();
2037 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2038 		if (!xa_is_value(page)) {
2039 			if (page->index < start)
2040 				goto put;
2041 			VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2042 			if (page->index + thp_nr_pages(page) - 1 > end)
2043 				goto put;
2044 			if (!trylock_page(page))
2045 				goto put;
2046 			if (page->mapping != mapping || PageWriteback(page))
2047 				goto unlock;
2048 			VM_BUG_ON_PAGE(!thp_contains(page, xas.xa_index),
2049 					page);
2050 		}
2051 		indices[pvec->nr] = xas.xa_index;
2052 		if (!pagevec_add(pvec, page))
2053 			break;
2054 		goto next;
2055 unlock:
2056 		unlock_page(page);
2057 put:
2058 		put_page(page);
2059 next:
2060 		if (!xa_is_value(page) && PageTransHuge(page)) {
2061 			unsigned int nr_pages = thp_nr_pages(page);
2062 
2063 			/* Final THP may cross MAX_LFS_FILESIZE on 32-bit */
2064 			xas_set(&xas, page->index + nr_pages);
2065 			if (xas.xa_index < nr_pages)
2066 				break;
2067 		}
2068 	}
2069 	rcu_read_unlock();
2070 
2071 	return pagevec_count(pvec);
2072 }
2073 
2074 /**
2075  * find_get_pages_range - gang pagecache lookup
2076  * @mapping:	The address_space to search
2077  * @start:	The starting page index
2078  * @end:	The final page index (inclusive)
2079  * @nr_pages:	The maximum number of pages
2080  * @pages:	Where the resulting pages are placed
2081  *
2082  * find_get_pages_range() will search for and return a group of up to @nr_pages
2083  * pages in the mapping starting at index @start and up to index @end
2084  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
2085  * a reference against the returned pages.
2086  *
2087  * The search returns a group of mapping-contiguous pages with ascending
2088  * indexes.  There may be holes in the indices due to not-present pages.
2089  * We also update @start to index the next page for the traversal.
2090  *
2091  * Return: the number of pages which were found. If this number is
2092  * smaller than @nr_pages, the end of specified range has been
2093  * reached.
2094  */
2095 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
2096 			      pgoff_t end, unsigned int nr_pages,
2097 			      struct page **pages)
2098 {
2099 	XA_STATE(xas, &mapping->i_pages, *start);
2100 	struct page *page;
2101 	unsigned ret = 0;
2102 
2103 	if (unlikely(!nr_pages))
2104 		return 0;
2105 
2106 	rcu_read_lock();
2107 	while ((page = find_get_entry(&xas, end, XA_PRESENT))) {
2108 		/* Skip over shadow, swap and DAX entries */
2109 		if (xa_is_value(page))
2110 			continue;
2111 
2112 		pages[ret] = find_subpage(page, xas.xa_index);
2113 		if (++ret == nr_pages) {
2114 			*start = xas.xa_index + 1;
2115 			goto out;
2116 		}
2117 	}
2118 
2119 	/*
2120 	 * We come here when there is no page beyond @end. We take care to not
2121 	 * overflow the index @start as it confuses some of the callers. This
2122 	 * breaks the iteration when there is a page at index -1 but that is
2123 	 * already broken anyway.
2124 	 */
2125 	if (end == (pgoff_t)-1)
2126 		*start = (pgoff_t)-1;
2127 	else
2128 		*start = end + 1;
2129 out:
2130 	rcu_read_unlock();
2131 
2132 	return ret;
2133 }
2134 
2135 /**
2136  * find_get_pages_contig - gang contiguous pagecache lookup
2137  * @mapping:	The address_space to search
2138  * @index:	The starting page index
2139  * @nr_pages:	The maximum number of pages
2140  * @pages:	Where the resulting pages are placed
2141  *
2142  * find_get_pages_contig() works exactly like find_get_pages(), except
2143  * that the returned number of pages are guaranteed to be contiguous.
2144  *
2145  * Return: the number of pages which were found.
2146  */
2147 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2148 			       unsigned int nr_pages, struct page **pages)
2149 {
2150 	XA_STATE(xas, &mapping->i_pages, index);
2151 	struct page *page;
2152 	unsigned int ret = 0;
2153 
2154 	if (unlikely(!nr_pages))
2155 		return 0;
2156 
2157 	rcu_read_lock();
2158 	for (page = xas_load(&xas); page; page = xas_next(&xas)) {
2159 		if (xas_retry(&xas, page))
2160 			continue;
2161 		/*
2162 		 * If the entry has been swapped out, we can stop looking.
2163 		 * No current caller is looking for DAX entries.
2164 		 */
2165 		if (xa_is_value(page))
2166 			break;
2167 
2168 		if (!page_cache_get_speculative(page))
2169 			goto retry;
2170 
2171 		/* Has the page moved or been split? */
2172 		if (unlikely(page != xas_reload(&xas)))
2173 			goto put_page;
2174 
2175 		pages[ret] = find_subpage(page, xas.xa_index);
2176 		if (++ret == nr_pages)
2177 			break;
2178 		continue;
2179 put_page:
2180 		put_page(page);
2181 retry:
2182 		xas_reset(&xas);
2183 	}
2184 	rcu_read_unlock();
2185 	return ret;
2186 }
2187 EXPORT_SYMBOL(find_get_pages_contig);
2188 
2189 /**
2190  * find_get_pages_range_tag - Find and return head pages matching @tag.
2191  * @mapping:	the address_space to search
2192  * @index:	the starting page index
2193  * @end:	The final page index (inclusive)
2194  * @tag:	the tag index
2195  * @nr_pages:	the maximum number of pages
2196  * @pages:	where the resulting pages are placed
2197  *
2198  * Like find_get_pages(), except we only return head pages which are tagged
2199  * with @tag.  @index is updated to the index immediately after the last
2200  * page we return, ready for the next iteration.
2201  *
2202  * Return: the number of pages which were found.
2203  */
2204 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
2205 			pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
2206 			struct page **pages)
2207 {
2208 	XA_STATE(xas, &mapping->i_pages, *index);
2209 	struct page *page;
2210 	unsigned ret = 0;
2211 
2212 	if (unlikely(!nr_pages))
2213 		return 0;
2214 
2215 	rcu_read_lock();
2216 	while ((page = find_get_entry(&xas, end, tag))) {
2217 		/*
2218 		 * Shadow entries should never be tagged, but this iteration
2219 		 * is lockless so there is a window for page reclaim to evict
2220 		 * a page we saw tagged.  Skip over it.
2221 		 */
2222 		if (xa_is_value(page))
2223 			continue;
2224 
2225 		pages[ret] = page;
2226 		if (++ret == nr_pages) {
2227 			*index = page->index + thp_nr_pages(page);
2228 			goto out;
2229 		}
2230 	}
2231 
2232 	/*
2233 	 * We come here when we got to @end. We take care to not overflow the
2234 	 * index @index as it confuses some of the callers. This breaks the
2235 	 * iteration when there is a page at index -1 but that is already
2236 	 * broken anyway.
2237 	 */
2238 	if (end == (pgoff_t)-1)
2239 		*index = (pgoff_t)-1;
2240 	else
2241 		*index = end + 1;
2242 out:
2243 	rcu_read_unlock();
2244 
2245 	return ret;
2246 }
2247 EXPORT_SYMBOL(find_get_pages_range_tag);
2248 
2249 /*
2250  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2251  * a _large_ part of the i/o request. Imagine the worst scenario:
2252  *
2253  *      ---R__________________________________________B__________
2254  *         ^ reading here                             ^ bad block(assume 4k)
2255  *
2256  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2257  * => failing the whole request => read(R) => read(R+1) =>
2258  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2259  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2260  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2261  *
2262  * It is going insane. Fix it by quickly scaling down the readahead size.
2263  */
2264 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2265 {
2266 	ra->ra_pages /= 4;
2267 }
2268 
2269 /*
2270  * filemap_get_read_batch - Get a batch of pages for read
2271  *
2272  * Get a batch of pages which represent a contiguous range of bytes
2273  * in the file.  No tail pages will be returned.  If @index is in the
2274  * middle of a THP, the entire THP will be returned.  The last page in
2275  * the batch may have Readahead set or be not Uptodate so that the
2276  * caller can take the appropriate action.
2277  */
2278 static void filemap_get_read_batch(struct address_space *mapping,
2279 		pgoff_t index, pgoff_t max, struct pagevec *pvec)
2280 {
2281 	XA_STATE(xas, &mapping->i_pages, index);
2282 	struct page *head;
2283 
2284 	rcu_read_lock();
2285 	for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2286 		if (xas_retry(&xas, head))
2287 			continue;
2288 		if (xas.xa_index > max || xa_is_value(head))
2289 			break;
2290 		if (!page_cache_get_speculative(head))
2291 			goto retry;
2292 
2293 		/* Has the page moved or been split? */
2294 		if (unlikely(head != xas_reload(&xas)))
2295 			goto put_page;
2296 
2297 		if (!pagevec_add(pvec, head))
2298 			break;
2299 		if (!PageUptodate(head))
2300 			break;
2301 		if (PageReadahead(head))
2302 			break;
2303 		xas.xa_index = head->index + thp_nr_pages(head) - 1;
2304 		xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2305 		continue;
2306 put_page:
2307 		put_page(head);
2308 retry:
2309 		xas_reset(&xas);
2310 	}
2311 	rcu_read_unlock();
2312 }
2313 
2314 static int filemap_read_page(struct file *file, struct address_space *mapping,
2315 		struct page *page)
2316 {
2317 	int error;
2318 
2319 	/*
2320 	 * A previous I/O error may have been due to temporary failures,
2321 	 * eg. multipath errors.  PG_error will be set again if readpage
2322 	 * fails.
2323 	 */
2324 	ClearPageError(page);
2325 	/* Start the actual read. The read will unlock the page. */
2326 	error = mapping->a_ops->readpage(file, page);
2327 	if (error)
2328 		return error;
2329 
2330 	error = wait_on_page_locked_killable(page);
2331 	if (error)
2332 		return error;
2333 	if (PageUptodate(page))
2334 		return 0;
2335 	shrink_readahead_size_eio(&file->f_ra);
2336 	return -EIO;
2337 }
2338 
2339 static bool filemap_range_uptodate(struct address_space *mapping,
2340 		loff_t pos, struct iov_iter *iter, struct page *page)
2341 {
2342 	int count;
2343 
2344 	if (PageUptodate(page))
2345 		return true;
2346 	/* pipes can't handle partially uptodate pages */
2347 	if (iov_iter_is_pipe(iter))
2348 		return false;
2349 	if (!mapping->a_ops->is_partially_uptodate)
2350 		return false;
2351 	if (mapping->host->i_blkbits >= (PAGE_SHIFT + thp_order(page)))
2352 		return false;
2353 
2354 	count = iter->count;
2355 	if (page_offset(page) > pos) {
2356 		count -= page_offset(page) - pos;
2357 		pos = 0;
2358 	} else {
2359 		pos -= page_offset(page);
2360 	}
2361 
2362 	return mapping->a_ops->is_partially_uptodate(page, pos, count);
2363 }
2364 
2365 static int filemap_update_page(struct kiocb *iocb,
2366 		struct address_space *mapping, struct iov_iter *iter,
2367 		struct page *page)
2368 {
2369 	int error;
2370 
2371 	if (!trylock_page(page)) {
2372 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2373 			return -EAGAIN;
2374 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2375 			put_and_wait_on_page_locked(page, TASK_KILLABLE);
2376 			return AOP_TRUNCATED_PAGE;
2377 		}
2378 		error = __lock_page_async(page, iocb->ki_waitq);
2379 		if (error)
2380 			return error;
2381 	}
2382 
2383 	if (!page->mapping)
2384 		goto truncated;
2385 
2386 	error = 0;
2387 	if (filemap_range_uptodate(mapping, iocb->ki_pos, iter, page))
2388 		goto unlock;
2389 
2390 	error = -EAGAIN;
2391 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2392 		goto unlock;
2393 
2394 	error = filemap_read_page(iocb->ki_filp, mapping, page);
2395 	if (error == AOP_TRUNCATED_PAGE)
2396 		put_page(page);
2397 	return error;
2398 truncated:
2399 	unlock_page(page);
2400 	put_page(page);
2401 	return AOP_TRUNCATED_PAGE;
2402 unlock:
2403 	unlock_page(page);
2404 	return error;
2405 }
2406 
2407 static int filemap_create_page(struct file *file,
2408 		struct address_space *mapping, pgoff_t index,
2409 		struct pagevec *pvec)
2410 {
2411 	struct page *page;
2412 	int error;
2413 
2414 	page = page_cache_alloc(mapping);
2415 	if (!page)
2416 		return -ENOMEM;
2417 
2418 	error = add_to_page_cache_lru(page, mapping, index,
2419 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2420 	if (error == -EEXIST)
2421 		error = AOP_TRUNCATED_PAGE;
2422 	if (error)
2423 		goto error;
2424 
2425 	error = filemap_read_page(file, mapping, page);
2426 	if (error)
2427 		goto error;
2428 
2429 	pagevec_add(pvec, page);
2430 	return 0;
2431 error:
2432 	put_page(page);
2433 	return error;
2434 }
2435 
2436 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2437 		struct address_space *mapping, struct page *page,
2438 		pgoff_t last_index)
2439 {
2440 	if (iocb->ki_flags & IOCB_NOIO)
2441 		return -EAGAIN;
2442 	page_cache_async_readahead(mapping, &file->f_ra, file, page,
2443 			page->index, last_index - page->index);
2444 	return 0;
2445 }
2446 
2447 static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
2448 		struct pagevec *pvec)
2449 {
2450 	struct file *filp = iocb->ki_filp;
2451 	struct address_space *mapping = filp->f_mapping;
2452 	struct file_ra_state *ra = &filp->f_ra;
2453 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2454 	pgoff_t last_index;
2455 	struct page *page;
2456 	int err = 0;
2457 
2458 	last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
2459 retry:
2460 	if (fatal_signal_pending(current))
2461 		return -EINTR;
2462 
2463 	filemap_get_read_batch(mapping, index, last_index, pvec);
2464 	if (!pagevec_count(pvec)) {
2465 		if (iocb->ki_flags & IOCB_NOIO)
2466 			return -EAGAIN;
2467 		page_cache_sync_readahead(mapping, ra, filp, index,
2468 				last_index - index);
2469 		filemap_get_read_batch(mapping, index, last_index, pvec);
2470 	}
2471 	if (!pagevec_count(pvec)) {
2472 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2473 			return -EAGAIN;
2474 		err = filemap_create_page(filp, mapping,
2475 				iocb->ki_pos >> PAGE_SHIFT, pvec);
2476 		if (err == AOP_TRUNCATED_PAGE)
2477 			goto retry;
2478 		return err;
2479 	}
2480 
2481 	page = pvec->pages[pagevec_count(pvec) - 1];
2482 	if (PageReadahead(page)) {
2483 		err = filemap_readahead(iocb, filp, mapping, page, last_index);
2484 		if (err)
2485 			goto err;
2486 	}
2487 	if (!PageUptodate(page)) {
2488 		if ((iocb->ki_flags & IOCB_WAITQ) && pagevec_count(pvec) > 1)
2489 			iocb->ki_flags |= IOCB_NOWAIT;
2490 		err = filemap_update_page(iocb, mapping, iter, page);
2491 		if (err)
2492 			goto err;
2493 	}
2494 
2495 	return 0;
2496 err:
2497 	if (err < 0)
2498 		put_page(page);
2499 	if (likely(--pvec->nr))
2500 		return 0;
2501 	if (err == AOP_TRUNCATED_PAGE)
2502 		goto retry;
2503 	return err;
2504 }
2505 
2506 /**
2507  * filemap_read - Read data from the page cache.
2508  * @iocb: The iocb to read.
2509  * @iter: Destination for the data.
2510  * @already_read: Number of bytes already read by the caller.
2511  *
2512  * Copies data from the page cache.  If the data is not currently present,
2513  * uses the readahead and readpage address_space operations to fetch it.
2514  *
2515  * Return: Total number of bytes copied, including those already read by
2516  * the caller.  If an error happens before any bytes are copied, returns
2517  * a negative error number.
2518  */
2519 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2520 		ssize_t already_read)
2521 {
2522 	struct file *filp = iocb->ki_filp;
2523 	struct file_ra_state *ra = &filp->f_ra;
2524 	struct address_space *mapping = filp->f_mapping;
2525 	struct inode *inode = mapping->host;
2526 	struct pagevec pvec;
2527 	int i, error = 0;
2528 	bool writably_mapped;
2529 	loff_t isize, end_offset;
2530 
2531 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2532 		return 0;
2533 	if (unlikely(!iov_iter_count(iter)))
2534 		return 0;
2535 
2536 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2537 	pagevec_init(&pvec);
2538 
2539 	do {
2540 		cond_resched();
2541 
2542 		/*
2543 		 * If we've already successfully copied some data, then we
2544 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2545 		 * an async read NOWAIT at that point.
2546 		 */
2547 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2548 			iocb->ki_flags |= IOCB_NOWAIT;
2549 
2550 		error = filemap_get_pages(iocb, iter, &pvec);
2551 		if (error < 0)
2552 			break;
2553 
2554 		/*
2555 		 * i_size must be checked after we know the pages are Uptodate.
2556 		 *
2557 		 * Checking i_size after the check allows us to calculate
2558 		 * the correct value for "nr", which means the zero-filled
2559 		 * part of the page is not copied back to userspace (unless
2560 		 * another truncate extends the file - this is desired though).
2561 		 */
2562 		isize = i_size_read(inode);
2563 		if (unlikely(iocb->ki_pos >= isize))
2564 			goto put_pages;
2565 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2566 
2567 		/*
2568 		 * Once we start copying data, we don't want to be touching any
2569 		 * cachelines that might be contended:
2570 		 */
2571 		writably_mapped = mapping_writably_mapped(mapping);
2572 
2573 		/*
2574 		 * When a sequential read accesses a page several times, only
2575 		 * mark it as accessed the first time.
2576 		 */
2577 		if (iocb->ki_pos >> PAGE_SHIFT !=
2578 		    ra->prev_pos >> PAGE_SHIFT)
2579 			mark_page_accessed(pvec.pages[0]);
2580 
2581 		for (i = 0; i < pagevec_count(&pvec); i++) {
2582 			struct page *page = pvec.pages[i];
2583 			size_t page_size = thp_size(page);
2584 			size_t offset = iocb->ki_pos & (page_size - 1);
2585 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2586 					     page_size - offset);
2587 			size_t copied;
2588 
2589 			if (end_offset < page_offset(page))
2590 				break;
2591 			if (i > 0)
2592 				mark_page_accessed(page);
2593 			/*
2594 			 * If users can be writing to this page using arbitrary
2595 			 * virtual addresses, take care about potential aliasing
2596 			 * before reading the page on the kernel side.
2597 			 */
2598 			if (writably_mapped) {
2599 				int j;
2600 
2601 				for (j = 0; j < thp_nr_pages(page); j++)
2602 					flush_dcache_page(page + j);
2603 			}
2604 
2605 			copied = copy_page_to_iter(page, offset, bytes, iter);
2606 
2607 			already_read += copied;
2608 			iocb->ki_pos += copied;
2609 			ra->prev_pos = iocb->ki_pos;
2610 
2611 			if (copied < bytes) {
2612 				error = -EFAULT;
2613 				break;
2614 			}
2615 		}
2616 put_pages:
2617 		for (i = 0; i < pagevec_count(&pvec); i++)
2618 			put_page(pvec.pages[i]);
2619 		pagevec_reinit(&pvec);
2620 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2621 
2622 	file_accessed(filp);
2623 
2624 	return already_read ? already_read : error;
2625 }
2626 EXPORT_SYMBOL_GPL(filemap_read);
2627 
2628 /**
2629  * generic_file_read_iter - generic filesystem read routine
2630  * @iocb:	kernel I/O control block
2631  * @iter:	destination for the data read
2632  *
2633  * This is the "read_iter()" routine for all filesystems
2634  * that can use the page cache directly.
2635  *
2636  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2637  * be returned when no data can be read without waiting for I/O requests
2638  * to complete; it doesn't prevent readahead.
2639  *
2640  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2641  * requests shall be made for the read or for readahead.  When no data
2642  * can be read, -EAGAIN shall be returned.  When readahead would be
2643  * triggered, a partial, possibly empty read shall be returned.
2644  *
2645  * Return:
2646  * * number of bytes copied, even for partial reads
2647  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2648  */
2649 ssize_t
2650 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2651 {
2652 	size_t count = iov_iter_count(iter);
2653 	ssize_t retval = 0;
2654 
2655 	if (!count)
2656 		return 0; /* skip atime */
2657 
2658 	if (iocb->ki_flags & IOCB_DIRECT) {
2659 		struct file *file = iocb->ki_filp;
2660 		struct address_space *mapping = file->f_mapping;
2661 		struct inode *inode = mapping->host;
2662 		loff_t size;
2663 
2664 		size = i_size_read(inode);
2665 		if (iocb->ki_flags & IOCB_NOWAIT) {
2666 			if (filemap_range_needs_writeback(mapping, iocb->ki_pos,
2667 						iocb->ki_pos + count - 1))
2668 				return -EAGAIN;
2669 		} else {
2670 			retval = filemap_write_and_wait_range(mapping,
2671 						iocb->ki_pos,
2672 					        iocb->ki_pos + count - 1);
2673 			if (retval < 0)
2674 				return retval;
2675 		}
2676 
2677 		file_accessed(file);
2678 
2679 		retval = mapping->a_ops->direct_IO(iocb, iter);
2680 		if (retval >= 0) {
2681 			iocb->ki_pos += retval;
2682 			count -= retval;
2683 		}
2684 		if (retval != -EIOCBQUEUED)
2685 			iov_iter_revert(iter, count - iov_iter_count(iter));
2686 
2687 		/*
2688 		 * Btrfs can have a short DIO read if we encounter
2689 		 * compressed extents, so if there was an error, or if
2690 		 * we've already read everything we wanted to, or if
2691 		 * there was a short read because we hit EOF, go ahead
2692 		 * and return.  Otherwise fallthrough to buffered io for
2693 		 * the rest of the read.  Buffered reads will not work for
2694 		 * DAX files, so don't bother trying.
2695 		 */
2696 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2697 		    IS_DAX(inode))
2698 			return retval;
2699 	}
2700 
2701 	return filemap_read(iocb, iter, retval);
2702 }
2703 EXPORT_SYMBOL(generic_file_read_iter);
2704 
2705 static inline loff_t page_seek_hole_data(struct xa_state *xas,
2706 		struct address_space *mapping, struct page *page,
2707 		loff_t start, loff_t end, bool seek_data)
2708 {
2709 	const struct address_space_operations *ops = mapping->a_ops;
2710 	size_t offset, bsz = i_blocksize(mapping->host);
2711 
2712 	if (xa_is_value(page) || PageUptodate(page))
2713 		return seek_data ? start : end;
2714 	if (!ops->is_partially_uptodate)
2715 		return seek_data ? end : start;
2716 
2717 	xas_pause(xas);
2718 	rcu_read_unlock();
2719 	lock_page(page);
2720 	if (unlikely(page->mapping != mapping))
2721 		goto unlock;
2722 
2723 	offset = offset_in_thp(page, start) & ~(bsz - 1);
2724 
2725 	do {
2726 		if (ops->is_partially_uptodate(page, offset, bsz) == seek_data)
2727 			break;
2728 		start = (start + bsz) & ~(bsz - 1);
2729 		offset += bsz;
2730 	} while (offset < thp_size(page));
2731 unlock:
2732 	unlock_page(page);
2733 	rcu_read_lock();
2734 	return start;
2735 }
2736 
2737 static inline
2738 unsigned int seek_page_size(struct xa_state *xas, struct page *page)
2739 {
2740 	if (xa_is_value(page))
2741 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2742 	return thp_size(page);
2743 }
2744 
2745 /**
2746  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2747  * @mapping: Address space to search.
2748  * @start: First byte to consider.
2749  * @end: Limit of search (exclusive).
2750  * @whence: Either SEEK_HOLE or SEEK_DATA.
2751  *
2752  * If the page cache knows which blocks contain holes and which blocks
2753  * contain data, your filesystem can use this function to implement
2754  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2755  * entirely memory-based such as tmpfs, and filesystems which support
2756  * unwritten extents.
2757  *
2758  * Return: The requested offset on success, or -ENXIO if @whence specifies
2759  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2760  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2761  * and @end contain data.
2762  */
2763 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2764 		loff_t end, int whence)
2765 {
2766 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2767 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2768 	bool seek_data = (whence == SEEK_DATA);
2769 	struct page *page;
2770 
2771 	if (end <= start)
2772 		return -ENXIO;
2773 
2774 	rcu_read_lock();
2775 	while ((page = find_get_entry(&xas, max, XA_PRESENT))) {
2776 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
2777 		unsigned int seek_size;
2778 
2779 		if (start < pos) {
2780 			if (!seek_data)
2781 				goto unlock;
2782 			start = pos;
2783 		}
2784 
2785 		seek_size = seek_page_size(&xas, page);
2786 		pos = round_up(pos + 1, seek_size);
2787 		start = page_seek_hole_data(&xas, mapping, page, start, pos,
2788 				seek_data);
2789 		if (start < pos)
2790 			goto unlock;
2791 		if (start >= end)
2792 			break;
2793 		if (seek_size > PAGE_SIZE)
2794 			xas_set(&xas, pos >> PAGE_SHIFT);
2795 		if (!xa_is_value(page))
2796 			put_page(page);
2797 	}
2798 	if (seek_data)
2799 		start = -ENXIO;
2800 unlock:
2801 	rcu_read_unlock();
2802 	if (page && !xa_is_value(page))
2803 		put_page(page);
2804 	if (start > end)
2805 		return end;
2806 	return start;
2807 }
2808 
2809 #ifdef CONFIG_MMU
2810 #define MMAP_LOTSAMISS  (100)
2811 /*
2812  * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2813  * @vmf - the vm_fault for this fault.
2814  * @page - the page to lock.
2815  * @fpin - the pointer to the file we may pin (or is already pinned).
2816  *
2817  * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2818  * It differs in that it actually returns the page locked if it returns 1 and 0
2819  * if it couldn't lock the page.  If we did have to drop the mmap_lock then fpin
2820  * will point to the pinned file and needs to be fput()'ed at a later point.
2821  */
2822 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2823 				     struct file **fpin)
2824 {
2825 	if (trylock_page(page))
2826 		return 1;
2827 
2828 	/*
2829 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2830 	 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2831 	 * is supposed to work. We have way too many special cases..
2832 	 */
2833 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2834 		return 0;
2835 
2836 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2837 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
2838 		if (__lock_page_killable(page)) {
2839 			/*
2840 			 * We didn't have the right flags to drop the mmap_lock,
2841 			 * but all fault_handlers only check for fatal signals
2842 			 * if we return VM_FAULT_RETRY, so we need to drop the
2843 			 * mmap_lock here and return 0 if we don't have a fpin.
2844 			 */
2845 			if (*fpin == NULL)
2846 				mmap_read_unlock(vmf->vma->vm_mm);
2847 			return 0;
2848 		}
2849 	} else
2850 		__lock_page(page);
2851 	return 1;
2852 }
2853 
2854 
2855 /*
2856  * Synchronous readahead happens when we don't even find a page in the page
2857  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
2858  * to drop the mmap sem we return the file that was pinned in order for us to do
2859  * that.  If we didn't pin a file then we return NULL.  The file that is
2860  * returned needs to be fput()'ed when we're done with it.
2861  */
2862 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2863 {
2864 	struct file *file = vmf->vma->vm_file;
2865 	struct file_ra_state *ra = &file->f_ra;
2866 	struct address_space *mapping = file->f_mapping;
2867 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
2868 	struct file *fpin = NULL;
2869 	unsigned int mmap_miss;
2870 
2871 	/* If we don't want any read-ahead, don't bother */
2872 	if (vmf->vma->vm_flags & VM_RAND_READ)
2873 		return fpin;
2874 	if (!ra->ra_pages)
2875 		return fpin;
2876 
2877 	if (vmf->vma->vm_flags & VM_SEQ_READ) {
2878 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2879 		page_cache_sync_ra(&ractl, ra->ra_pages);
2880 		return fpin;
2881 	}
2882 
2883 	/* Avoid banging the cache line if not needed */
2884 	mmap_miss = READ_ONCE(ra->mmap_miss);
2885 	if (mmap_miss < MMAP_LOTSAMISS * 10)
2886 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2887 
2888 	/*
2889 	 * Do we miss much more than hit in this file? If so,
2890 	 * stop bothering with read-ahead. It will only hurt.
2891 	 */
2892 	if (mmap_miss > MMAP_LOTSAMISS)
2893 		return fpin;
2894 
2895 	/*
2896 	 * mmap read-around
2897 	 */
2898 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2899 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
2900 	ra->size = ra->ra_pages;
2901 	ra->async_size = ra->ra_pages / 4;
2902 	ractl._index = ra->start;
2903 	do_page_cache_ra(&ractl, ra->size, ra->async_size);
2904 	return fpin;
2905 }
2906 
2907 /*
2908  * Asynchronous readahead happens when we find the page and PG_readahead,
2909  * so we want to possibly extend the readahead further.  We return the file that
2910  * was pinned if we have to drop the mmap_lock in order to do IO.
2911  */
2912 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2913 					    struct page *page)
2914 {
2915 	struct file *file = vmf->vma->vm_file;
2916 	struct file_ra_state *ra = &file->f_ra;
2917 	struct address_space *mapping = file->f_mapping;
2918 	struct file *fpin = NULL;
2919 	unsigned int mmap_miss;
2920 	pgoff_t offset = vmf->pgoff;
2921 
2922 	/* If we don't want any read-ahead, don't bother */
2923 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2924 		return fpin;
2925 	mmap_miss = READ_ONCE(ra->mmap_miss);
2926 	if (mmap_miss)
2927 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2928 	if (PageReadahead(page)) {
2929 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2930 		page_cache_async_readahead(mapping, ra, file,
2931 					   page, offset, ra->ra_pages);
2932 	}
2933 	return fpin;
2934 }
2935 
2936 /**
2937  * filemap_fault - read in file data for page fault handling
2938  * @vmf:	struct vm_fault containing details of the fault
2939  *
2940  * filemap_fault() is invoked via the vma operations vector for a
2941  * mapped memory region to read in file data during a page fault.
2942  *
2943  * The goto's are kind of ugly, but this streamlines the normal case of having
2944  * it in the page cache, and handles the special cases reasonably without
2945  * having a lot of duplicated code.
2946  *
2947  * vma->vm_mm->mmap_lock must be held on entry.
2948  *
2949  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2950  * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2951  *
2952  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2953  * has not been released.
2954  *
2955  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2956  *
2957  * Return: bitwise-OR of %VM_FAULT_ codes.
2958  */
2959 vm_fault_t filemap_fault(struct vm_fault *vmf)
2960 {
2961 	int error;
2962 	struct file *file = vmf->vma->vm_file;
2963 	struct file *fpin = NULL;
2964 	struct address_space *mapping = file->f_mapping;
2965 	struct inode *inode = mapping->host;
2966 	pgoff_t offset = vmf->pgoff;
2967 	pgoff_t max_off;
2968 	struct page *page;
2969 	vm_fault_t ret = 0;
2970 
2971 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2972 	if (unlikely(offset >= max_off))
2973 		return VM_FAULT_SIGBUS;
2974 
2975 	/*
2976 	 * Do we have something in the page cache already?
2977 	 */
2978 	page = find_get_page(mapping, offset);
2979 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2980 		/*
2981 		 * We found the page, so try async readahead before
2982 		 * waiting for the lock.
2983 		 */
2984 		fpin = do_async_mmap_readahead(vmf, page);
2985 	} else if (!page) {
2986 		/* No page in the page cache at all */
2987 		count_vm_event(PGMAJFAULT);
2988 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2989 		ret = VM_FAULT_MAJOR;
2990 		fpin = do_sync_mmap_readahead(vmf);
2991 retry_find:
2992 		page = pagecache_get_page(mapping, offset,
2993 					  FGP_CREAT|FGP_FOR_MMAP,
2994 					  vmf->gfp_mask);
2995 		if (!page) {
2996 			if (fpin)
2997 				goto out_retry;
2998 			return VM_FAULT_OOM;
2999 		}
3000 	}
3001 
3002 	if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
3003 		goto out_retry;
3004 
3005 	/* Did it get truncated? */
3006 	if (unlikely(compound_head(page)->mapping != mapping)) {
3007 		unlock_page(page);
3008 		put_page(page);
3009 		goto retry_find;
3010 	}
3011 	VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
3012 
3013 	/*
3014 	 * We have a locked page in the page cache, now we need to check
3015 	 * that it's up-to-date. If not, it is going to be due to an error.
3016 	 */
3017 	if (unlikely(!PageUptodate(page)))
3018 		goto page_not_uptodate;
3019 
3020 	/*
3021 	 * We've made it this far and we had to drop our mmap_lock, now is the
3022 	 * time to return to the upper layer and have it re-find the vma and
3023 	 * redo the fault.
3024 	 */
3025 	if (fpin) {
3026 		unlock_page(page);
3027 		goto out_retry;
3028 	}
3029 
3030 	/*
3031 	 * Found the page and have a reference on it.
3032 	 * We must recheck i_size under page lock.
3033 	 */
3034 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3035 	if (unlikely(offset >= max_off)) {
3036 		unlock_page(page);
3037 		put_page(page);
3038 		return VM_FAULT_SIGBUS;
3039 	}
3040 
3041 	vmf->page = page;
3042 	return ret | VM_FAULT_LOCKED;
3043 
3044 page_not_uptodate:
3045 	/*
3046 	 * Umm, take care of errors if the page isn't up-to-date.
3047 	 * Try to re-read it _once_. We do this synchronously,
3048 	 * because there really aren't any performance issues here
3049 	 * and we need to check for errors.
3050 	 */
3051 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3052 	error = filemap_read_page(file, mapping, page);
3053 	if (fpin)
3054 		goto out_retry;
3055 	put_page(page);
3056 
3057 	if (!error || error == AOP_TRUNCATED_PAGE)
3058 		goto retry_find;
3059 
3060 	return VM_FAULT_SIGBUS;
3061 
3062 out_retry:
3063 	/*
3064 	 * We dropped the mmap_lock, we need to return to the fault handler to
3065 	 * re-find the vma and come back and find our hopefully still populated
3066 	 * page.
3067 	 */
3068 	if (page)
3069 		put_page(page);
3070 	if (fpin)
3071 		fput(fpin);
3072 	return ret | VM_FAULT_RETRY;
3073 }
3074 EXPORT_SYMBOL(filemap_fault);
3075 
3076 static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
3077 {
3078 	struct mm_struct *mm = vmf->vma->vm_mm;
3079 
3080 	/* Huge page is mapped? No need to proceed. */
3081 	if (pmd_trans_huge(*vmf->pmd)) {
3082 		unlock_page(page);
3083 		put_page(page);
3084 		return true;
3085 	}
3086 
3087 	if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
3088 	    vm_fault_t ret = do_set_pmd(vmf, page);
3089 	    if (!ret) {
3090 		    /* The page is mapped successfully, reference consumed. */
3091 		    unlock_page(page);
3092 		    return true;
3093 	    }
3094 	}
3095 
3096 	if (pmd_none(*vmf->pmd)) {
3097 		vmf->ptl = pmd_lock(mm, vmf->pmd);
3098 		if (likely(pmd_none(*vmf->pmd))) {
3099 			mm_inc_nr_ptes(mm);
3100 			pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
3101 			vmf->prealloc_pte = NULL;
3102 		}
3103 		spin_unlock(vmf->ptl);
3104 	}
3105 
3106 	/* See comment in handle_pte_fault() */
3107 	if (pmd_devmap_trans_unstable(vmf->pmd)) {
3108 		unlock_page(page);
3109 		put_page(page);
3110 		return true;
3111 	}
3112 
3113 	return false;
3114 }
3115 
3116 static struct page *next_uptodate_page(struct page *page,
3117 				       struct address_space *mapping,
3118 				       struct xa_state *xas, pgoff_t end_pgoff)
3119 {
3120 	unsigned long max_idx;
3121 
3122 	do {
3123 		if (!page)
3124 			return NULL;
3125 		if (xas_retry(xas, page))
3126 			continue;
3127 		if (xa_is_value(page))
3128 			continue;
3129 		if (PageLocked(page))
3130 			continue;
3131 		if (!page_cache_get_speculative(page))
3132 			continue;
3133 		/* Has the page moved or been split? */
3134 		if (unlikely(page != xas_reload(xas)))
3135 			goto skip;
3136 		if (!PageUptodate(page) || PageReadahead(page))
3137 			goto skip;
3138 		if (PageHWPoison(page))
3139 			goto skip;
3140 		if (!trylock_page(page))
3141 			goto skip;
3142 		if (page->mapping != mapping)
3143 			goto unlock;
3144 		if (!PageUptodate(page))
3145 			goto unlock;
3146 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3147 		if (xas->xa_index >= max_idx)
3148 			goto unlock;
3149 		return page;
3150 unlock:
3151 		unlock_page(page);
3152 skip:
3153 		put_page(page);
3154 	} while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3155 
3156 	return NULL;
3157 }
3158 
3159 static inline struct page *first_map_page(struct address_space *mapping,
3160 					  struct xa_state *xas,
3161 					  pgoff_t end_pgoff)
3162 {
3163 	return next_uptodate_page(xas_find(xas, end_pgoff),
3164 				  mapping, xas, end_pgoff);
3165 }
3166 
3167 static inline struct page *next_map_page(struct address_space *mapping,
3168 					 struct xa_state *xas,
3169 					 pgoff_t end_pgoff)
3170 {
3171 	return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3172 				  mapping, xas, end_pgoff);
3173 }
3174 
3175 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3176 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3177 {
3178 	struct vm_area_struct *vma = vmf->vma;
3179 	struct file *file = vma->vm_file;
3180 	struct address_space *mapping = file->f_mapping;
3181 	pgoff_t last_pgoff = start_pgoff;
3182 	unsigned long addr;
3183 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3184 	struct page *head, *page;
3185 	unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3186 	vm_fault_t ret = 0;
3187 
3188 	rcu_read_lock();
3189 	head = first_map_page(mapping, &xas, end_pgoff);
3190 	if (!head)
3191 		goto out;
3192 
3193 	if (filemap_map_pmd(vmf, head)) {
3194 		ret = VM_FAULT_NOPAGE;
3195 		goto out;
3196 	}
3197 
3198 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3199 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3200 	do {
3201 		page = find_subpage(head, xas.xa_index);
3202 		if (PageHWPoison(page))
3203 			goto unlock;
3204 
3205 		if (mmap_miss > 0)
3206 			mmap_miss--;
3207 
3208 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3209 		vmf->pte += xas.xa_index - last_pgoff;
3210 		last_pgoff = xas.xa_index;
3211 
3212 		if (!pte_none(*vmf->pte))
3213 			goto unlock;
3214 
3215 		/* We're about to handle the fault */
3216 		if (vmf->address == addr)
3217 			ret = VM_FAULT_NOPAGE;
3218 
3219 		do_set_pte(vmf, page, addr);
3220 		/* no need to invalidate: a not-present page won't be cached */
3221 		update_mmu_cache(vma, addr, vmf->pte);
3222 		unlock_page(head);
3223 		continue;
3224 unlock:
3225 		unlock_page(head);
3226 		put_page(head);
3227 	} while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3228 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3229 out:
3230 	rcu_read_unlock();
3231 	WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(filemap_map_pages);
3235 
3236 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3237 {
3238 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3239 	struct page *page = vmf->page;
3240 	vm_fault_t ret = VM_FAULT_LOCKED;
3241 
3242 	sb_start_pagefault(mapping->host->i_sb);
3243 	file_update_time(vmf->vma->vm_file);
3244 	lock_page(page);
3245 	if (page->mapping != mapping) {
3246 		unlock_page(page);
3247 		ret = VM_FAULT_NOPAGE;
3248 		goto out;
3249 	}
3250 	/*
3251 	 * We mark the page dirty already here so that when freeze is in
3252 	 * progress, we are guaranteed that writeback during freezing will
3253 	 * see the dirty page and writeprotect it again.
3254 	 */
3255 	set_page_dirty(page);
3256 	wait_for_stable_page(page);
3257 out:
3258 	sb_end_pagefault(mapping->host->i_sb);
3259 	return ret;
3260 }
3261 
3262 const struct vm_operations_struct generic_file_vm_ops = {
3263 	.fault		= filemap_fault,
3264 	.map_pages	= filemap_map_pages,
3265 	.page_mkwrite	= filemap_page_mkwrite,
3266 };
3267 
3268 /* This is used for a general mmap of a disk file */
3269 
3270 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3271 {
3272 	struct address_space *mapping = file->f_mapping;
3273 
3274 	if (!mapping->a_ops->readpage)
3275 		return -ENOEXEC;
3276 	file_accessed(file);
3277 	vma->vm_ops = &generic_file_vm_ops;
3278 	return 0;
3279 }
3280 
3281 /*
3282  * This is for filesystems which do not implement ->writepage.
3283  */
3284 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3285 {
3286 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3287 		return -EINVAL;
3288 	return generic_file_mmap(file, vma);
3289 }
3290 #else
3291 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3292 {
3293 	return VM_FAULT_SIGBUS;
3294 }
3295 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3296 {
3297 	return -ENOSYS;
3298 }
3299 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3300 {
3301 	return -ENOSYS;
3302 }
3303 #endif /* CONFIG_MMU */
3304 
3305 EXPORT_SYMBOL(filemap_page_mkwrite);
3306 EXPORT_SYMBOL(generic_file_mmap);
3307 EXPORT_SYMBOL(generic_file_readonly_mmap);
3308 
3309 static struct page *wait_on_page_read(struct page *page)
3310 {
3311 	if (!IS_ERR(page)) {
3312 		wait_on_page_locked(page);
3313 		if (!PageUptodate(page)) {
3314 			put_page(page);
3315 			page = ERR_PTR(-EIO);
3316 		}
3317 	}
3318 	return page;
3319 }
3320 
3321 static struct page *do_read_cache_page(struct address_space *mapping,
3322 				pgoff_t index,
3323 				int (*filler)(void *, struct page *),
3324 				void *data,
3325 				gfp_t gfp)
3326 {
3327 	struct page *page;
3328 	int err;
3329 repeat:
3330 	page = find_get_page(mapping, index);
3331 	if (!page) {
3332 		page = __page_cache_alloc(gfp);
3333 		if (!page)
3334 			return ERR_PTR(-ENOMEM);
3335 		err = add_to_page_cache_lru(page, mapping, index, gfp);
3336 		if (unlikely(err)) {
3337 			put_page(page);
3338 			if (err == -EEXIST)
3339 				goto repeat;
3340 			/* Presumably ENOMEM for xarray node */
3341 			return ERR_PTR(err);
3342 		}
3343 
3344 filler:
3345 		if (filler)
3346 			err = filler(data, page);
3347 		else
3348 			err = mapping->a_ops->readpage(data, page);
3349 
3350 		if (err < 0) {
3351 			put_page(page);
3352 			return ERR_PTR(err);
3353 		}
3354 
3355 		page = wait_on_page_read(page);
3356 		if (IS_ERR(page))
3357 			return page;
3358 		goto out;
3359 	}
3360 	if (PageUptodate(page))
3361 		goto out;
3362 
3363 	/*
3364 	 * Page is not up to date and may be locked due to one of the following
3365 	 * case a: Page is being filled and the page lock is held
3366 	 * case b: Read/write error clearing the page uptodate status
3367 	 * case c: Truncation in progress (page locked)
3368 	 * case d: Reclaim in progress
3369 	 *
3370 	 * Case a, the page will be up to date when the page is unlocked.
3371 	 *    There is no need to serialise on the page lock here as the page
3372 	 *    is pinned so the lock gives no additional protection. Even if the
3373 	 *    page is truncated, the data is still valid if PageUptodate as
3374 	 *    it's a race vs truncate race.
3375 	 * Case b, the page will not be up to date
3376 	 * Case c, the page may be truncated but in itself, the data may still
3377 	 *    be valid after IO completes as it's a read vs truncate race. The
3378 	 *    operation must restart if the page is not uptodate on unlock but
3379 	 *    otherwise serialising on page lock to stabilise the mapping gives
3380 	 *    no additional guarantees to the caller as the page lock is
3381 	 *    released before return.
3382 	 * Case d, similar to truncation. If reclaim holds the page lock, it
3383 	 *    will be a race with remove_mapping that determines if the mapping
3384 	 *    is valid on unlock but otherwise the data is valid and there is
3385 	 *    no need to serialise with page lock.
3386 	 *
3387 	 * As the page lock gives no additional guarantee, we optimistically
3388 	 * wait on the page to be unlocked and check if it's up to date and
3389 	 * use the page if it is. Otherwise, the page lock is required to
3390 	 * distinguish between the different cases. The motivation is that we
3391 	 * avoid spurious serialisations and wakeups when multiple processes
3392 	 * wait on the same page for IO to complete.
3393 	 */
3394 	wait_on_page_locked(page);
3395 	if (PageUptodate(page))
3396 		goto out;
3397 
3398 	/* Distinguish between all the cases under the safety of the lock */
3399 	lock_page(page);
3400 
3401 	/* Case c or d, restart the operation */
3402 	if (!page->mapping) {
3403 		unlock_page(page);
3404 		put_page(page);
3405 		goto repeat;
3406 	}
3407 
3408 	/* Someone else locked and filled the page in a very small window */
3409 	if (PageUptodate(page)) {
3410 		unlock_page(page);
3411 		goto out;
3412 	}
3413 
3414 	/*
3415 	 * A previous I/O error may have been due to temporary
3416 	 * failures.
3417 	 * Clear page error before actual read, PG_error will be
3418 	 * set again if read page fails.
3419 	 */
3420 	ClearPageError(page);
3421 	goto filler;
3422 
3423 out:
3424 	mark_page_accessed(page);
3425 	return page;
3426 }
3427 
3428 /**
3429  * read_cache_page - read into page cache, fill it if needed
3430  * @mapping:	the page's address_space
3431  * @index:	the page index
3432  * @filler:	function to perform the read
3433  * @data:	first arg to filler(data, page) function, often left as NULL
3434  *
3435  * Read into the page cache. If a page already exists, and PageUptodate() is
3436  * not set, try to fill the page and wait for it to become unlocked.
3437  *
3438  * If the page does not get brought uptodate, return -EIO.
3439  *
3440  * Return: up to date page on success, ERR_PTR() on failure.
3441  */
3442 struct page *read_cache_page(struct address_space *mapping,
3443 				pgoff_t index,
3444 				int (*filler)(void *, struct page *),
3445 				void *data)
3446 {
3447 	return do_read_cache_page(mapping, index, filler, data,
3448 			mapping_gfp_mask(mapping));
3449 }
3450 EXPORT_SYMBOL(read_cache_page);
3451 
3452 /**
3453  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3454  * @mapping:	the page's address_space
3455  * @index:	the page index
3456  * @gfp:	the page allocator flags to use if allocating
3457  *
3458  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3459  * any new page allocations done using the specified allocation flags.
3460  *
3461  * If the page does not get brought uptodate, return -EIO.
3462  *
3463  * Return: up to date page on success, ERR_PTR() on failure.
3464  */
3465 struct page *read_cache_page_gfp(struct address_space *mapping,
3466 				pgoff_t index,
3467 				gfp_t gfp)
3468 {
3469 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3470 }
3471 EXPORT_SYMBOL(read_cache_page_gfp);
3472 
3473 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3474 				loff_t pos, unsigned len, unsigned flags,
3475 				struct page **pagep, void **fsdata)
3476 {
3477 	const struct address_space_operations *aops = mapping->a_ops;
3478 
3479 	return aops->write_begin(file, mapping, pos, len, flags,
3480 							pagep, fsdata);
3481 }
3482 EXPORT_SYMBOL(pagecache_write_begin);
3483 
3484 int pagecache_write_end(struct file *file, struct address_space *mapping,
3485 				loff_t pos, unsigned len, unsigned copied,
3486 				struct page *page, void *fsdata)
3487 {
3488 	const struct address_space_operations *aops = mapping->a_ops;
3489 
3490 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3491 }
3492 EXPORT_SYMBOL(pagecache_write_end);
3493 
3494 /*
3495  * Warn about a page cache invalidation failure during a direct I/O write.
3496  */
3497 void dio_warn_stale_pagecache(struct file *filp)
3498 {
3499 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3500 	char pathname[128];
3501 	char *path;
3502 
3503 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3504 	if (__ratelimit(&_rs)) {
3505 		path = file_path(filp, pathname, sizeof(pathname));
3506 		if (IS_ERR(path))
3507 			path = "(unknown)";
3508 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3509 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3510 			current->comm);
3511 	}
3512 }
3513 
3514 ssize_t
3515 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3516 {
3517 	struct file	*file = iocb->ki_filp;
3518 	struct address_space *mapping = file->f_mapping;
3519 	struct inode	*inode = mapping->host;
3520 	loff_t		pos = iocb->ki_pos;
3521 	ssize_t		written;
3522 	size_t		write_len;
3523 	pgoff_t		end;
3524 
3525 	write_len = iov_iter_count(from);
3526 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3527 
3528 	if (iocb->ki_flags & IOCB_NOWAIT) {
3529 		/* If there are pages to writeback, return */
3530 		if (filemap_range_has_page(file->f_mapping, pos,
3531 					   pos + write_len - 1))
3532 			return -EAGAIN;
3533 	} else {
3534 		written = filemap_write_and_wait_range(mapping, pos,
3535 							pos + write_len - 1);
3536 		if (written)
3537 			goto out;
3538 	}
3539 
3540 	/*
3541 	 * After a write we want buffered reads to be sure to go to disk to get
3542 	 * the new data.  We invalidate clean cached page from the region we're
3543 	 * about to write.  We do this *before* the write so that we can return
3544 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3545 	 */
3546 	written = invalidate_inode_pages2_range(mapping,
3547 					pos >> PAGE_SHIFT, end);
3548 	/*
3549 	 * If a page can not be invalidated, return 0 to fall back
3550 	 * to buffered write.
3551 	 */
3552 	if (written) {
3553 		if (written == -EBUSY)
3554 			return 0;
3555 		goto out;
3556 	}
3557 
3558 	written = mapping->a_ops->direct_IO(iocb, from);
3559 
3560 	/*
3561 	 * Finally, try again to invalidate clean pages which might have been
3562 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3563 	 * if the source of the write was an mmap'ed region of the file
3564 	 * we're writing.  Either one is a pretty crazy thing to do,
3565 	 * so we don't support it 100%.  If this invalidation
3566 	 * fails, tough, the write still worked...
3567 	 *
3568 	 * Most of the time we do not need this since dio_complete() will do
3569 	 * the invalidation for us. However there are some file systems that
3570 	 * do not end up with dio_complete() being called, so let's not break
3571 	 * them by removing it completely.
3572 	 *
3573 	 * Noticeable example is a blkdev_direct_IO().
3574 	 *
3575 	 * Skip invalidation for async writes or if mapping has no pages.
3576 	 */
3577 	if (written > 0 && mapping->nrpages &&
3578 	    invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3579 		dio_warn_stale_pagecache(file);
3580 
3581 	if (written > 0) {
3582 		pos += written;
3583 		write_len -= written;
3584 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3585 			i_size_write(inode, pos);
3586 			mark_inode_dirty(inode);
3587 		}
3588 		iocb->ki_pos = pos;
3589 	}
3590 	if (written != -EIOCBQUEUED)
3591 		iov_iter_revert(from, write_len - iov_iter_count(from));
3592 out:
3593 	return written;
3594 }
3595 EXPORT_SYMBOL(generic_file_direct_write);
3596 
3597 /*
3598  * Find or create a page at the given pagecache position. Return the locked
3599  * page. This function is specifically for buffered writes.
3600  */
3601 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3602 					pgoff_t index, unsigned flags)
3603 {
3604 	struct page *page;
3605 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3606 
3607 	if (flags & AOP_FLAG_NOFS)
3608 		fgp_flags |= FGP_NOFS;
3609 
3610 	page = pagecache_get_page(mapping, index, fgp_flags,
3611 			mapping_gfp_mask(mapping));
3612 	if (page)
3613 		wait_for_stable_page(page);
3614 
3615 	return page;
3616 }
3617 EXPORT_SYMBOL(grab_cache_page_write_begin);
3618 
3619 ssize_t generic_perform_write(struct file *file,
3620 				struct iov_iter *i, loff_t pos)
3621 {
3622 	struct address_space *mapping = file->f_mapping;
3623 	const struct address_space_operations *a_ops = mapping->a_ops;
3624 	long status = 0;
3625 	ssize_t written = 0;
3626 	unsigned int flags = 0;
3627 
3628 	do {
3629 		struct page *page;
3630 		unsigned long offset;	/* Offset into pagecache page */
3631 		unsigned long bytes;	/* Bytes to write to page */
3632 		size_t copied;		/* Bytes copied from user */
3633 		void *fsdata;
3634 
3635 		offset = (pos & (PAGE_SIZE - 1));
3636 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3637 						iov_iter_count(i));
3638 
3639 again:
3640 		/*
3641 		 * Bring in the user page that we will copy from _first_.
3642 		 * Otherwise there's a nasty deadlock on copying from the
3643 		 * same page as we're writing to, without it being marked
3644 		 * up-to-date.
3645 		 *
3646 		 * Not only is this an optimisation, but it is also required
3647 		 * to check that the address is actually valid, when atomic
3648 		 * usercopies are used, below.
3649 		 */
3650 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3651 			status = -EFAULT;
3652 			break;
3653 		}
3654 
3655 		if (fatal_signal_pending(current)) {
3656 			status = -EINTR;
3657 			break;
3658 		}
3659 
3660 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3661 						&page, &fsdata);
3662 		if (unlikely(status < 0))
3663 			break;
3664 
3665 		if (mapping_writably_mapped(mapping))
3666 			flush_dcache_page(page);
3667 
3668 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3669 		flush_dcache_page(page);
3670 
3671 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3672 						page, fsdata);
3673 		if (unlikely(status < 0))
3674 			break;
3675 		copied = status;
3676 
3677 		cond_resched();
3678 
3679 		iov_iter_advance(i, copied);
3680 		if (unlikely(copied == 0)) {
3681 			/*
3682 			 * If we were unable to copy any data at all, we must
3683 			 * fall back to a single segment length write.
3684 			 *
3685 			 * If we didn't fallback here, we could livelock
3686 			 * because not all segments in the iov can be copied at
3687 			 * once without a pagefault.
3688 			 */
3689 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3690 						iov_iter_single_seg_count(i));
3691 			goto again;
3692 		}
3693 		pos += copied;
3694 		written += copied;
3695 
3696 		balance_dirty_pages_ratelimited(mapping);
3697 	} while (iov_iter_count(i));
3698 
3699 	return written ? written : status;
3700 }
3701 EXPORT_SYMBOL(generic_perform_write);
3702 
3703 /**
3704  * __generic_file_write_iter - write data to a file
3705  * @iocb:	IO state structure (file, offset, etc.)
3706  * @from:	iov_iter with data to write
3707  *
3708  * This function does all the work needed for actually writing data to a
3709  * file. It does all basic checks, removes SUID from the file, updates
3710  * modification times and calls proper subroutines depending on whether we
3711  * do direct IO or a standard buffered write.
3712  *
3713  * It expects i_mutex to be grabbed unless we work on a block device or similar
3714  * object which does not need locking at all.
3715  *
3716  * This function does *not* take care of syncing data in case of O_SYNC write.
3717  * A caller has to handle it. This is mainly due to the fact that we want to
3718  * avoid syncing under i_mutex.
3719  *
3720  * Return:
3721  * * number of bytes written, even for truncated writes
3722  * * negative error code if no data has been written at all
3723  */
3724 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3725 {
3726 	struct file *file = iocb->ki_filp;
3727 	struct address_space *mapping = file->f_mapping;
3728 	struct inode 	*inode = mapping->host;
3729 	ssize_t		written = 0;
3730 	ssize_t		err;
3731 	ssize_t		status;
3732 
3733 	/* We can write back this queue in page reclaim */
3734 	current->backing_dev_info = inode_to_bdi(inode);
3735 	err = file_remove_privs(file);
3736 	if (err)
3737 		goto out;
3738 
3739 	err = file_update_time(file);
3740 	if (err)
3741 		goto out;
3742 
3743 	if (iocb->ki_flags & IOCB_DIRECT) {
3744 		loff_t pos, endbyte;
3745 
3746 		written = generic_file_direct_write(iocb, from);
3747 		/*
3748 		 * If the write stopped short of completing, fall back to
3749 		 * buffered writes.  Some filesystems do this for writes to
3750 		 * holes, for example.  For DAX files, a buffered write will
3751 		 * not succeed (even if it did, DAX does not handle dirty
3752 		 * page-cache pages correctly).
3753 		 */
3754 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3755 			goto out;
3756 
3757 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3758 		/*
3759 		 * If generic_perform_write() returned a synchronous error
3760 		 * then we want to return the number of bytes which were
3761 		 * direct-written, or the error code if that was zero.  Note
3762 		 * that this differs from normal direct-io semantics, which
3763 		 * will return -EFOO even if some bytes were written.
3764 		 */
3765 		if (unlikely(status < 0)) {
3766 			err = status;
3767 			goto out;
3768 		}
3769 		/*
3770 		 * We need to ensure that the page cache pages are written to
3771 		 * disk and invalidated to preserve the expected O_DIRECT
3772 		 * semantics.
3773 		 */
3774 		endbyte = pos + status - 1;
3775 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3776 		if (err == 0) {
3777 			iocb->ki_pos = endbyte + 1;
3778 			written += status;
3779 			invalidate_mapping_pages(mapping,
3780 						 pos >> PAGE_SHIFT,
3781 						 endbyte >> PAGE_SHIFT);
3782 		} else {
3783 			/*
3784 			 * We don't know how much we wrote, so just return
3785 			 * the number of bytes which were direct-written
3786 			 */
3787 		}
3788 	} else {
3789 		written = generic_perform_write(file, from, iocb->ki_pos);
3790 		if (likely(written > 0))
3791 			iocb->ki_pos += written;
3792 	}
3793 out:
3794 	current->backing_dev_info = NULL;
3795 	return written ? written : err;
3796 }
3797 EXPORT_SYMBOL(__generic_file_write_iter);
3798 
3799 /**
3800  * generic_file_write_iter - write data to a file
3801  * @iocb:	IO state structure
3802  * @from:	iov_iter with data to write
3803  *
3804  * This is a wrapper around __generic_file_write_iter() to be used by most
3805  * filesystems. It takes care of syncing the file in case of O_SYNC file
3806  * and acquires i_mutex as needed.
3807  * Return:
3808  * * negative error code if no data has been written at all of
3809  *   vfs_fsync_range() failed for a synchronous write
3810  * * number of bytes written, even for truncated writes
3811  */
3812 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3813 {
3814 	struct file *file = iocb->ki_filp;
3815 	struct inode *inode = file->f_mapping->host;
3816 	ssize_t ret;
3817 
3818 	inode_lock(inode);
3819 	ret = generic_write_checks(iocb, from);
3820 	if (ret > 0)
3821 		ret = __generic_file_write_iter(iocb, from);
3822 	inode_unlock(inode);
3823 
3824 	if (ret > 0)
3825 		ret = generic_write_sync(iocb, ret);
3826 	return ret;
3827 }
3828 EXPORT_SYMBOL(generic_file_write_iter);
3829 
3830 /**
3831  * try_to_release_page() - release old fs-specific metadata on a page
3832  *
3833  * @page: the page which the kernel is trying to free
3834  * @gfp_mask: memory allocation flags (and I/O mode)
3835  *
3836  * The address_space is to try to release any data against the page
3837  * (presumably at page->private).
3838  *
3839  * This may also be called if PG_fscache is set on a page, indicating that the
3840  * page is known to the local caching routines.
3841  *
3842  * The @gfp_mask argument specifies whether I/O may be performed to release
3843  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3844  *
3845  * Return: %1 if the release was successful, otherwise return zero.
3846  */
3847 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3848 {
3849 	struct address_space * const mapping = page->mapping;
3850 
3851 	BUG_ON(!PageLocked(page));
3852 	if (PageWriteback(page))
3853 		return 0;
3854 
3855 	if (mapping && mapping->a_ops->releasepage)
3856 		return mapping->a_ops->releasepage(page, gfp_mask);
3857 	return try_to_free_buffers(page);
3858 }
3859 
3860 EXPORT_SYMBOL(try_to_release_page);
3861