xref: /linux/mm/filemap.c (revision 160b8e75932fd51a49607d32dbfa1d417977b79c)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/shmem_fs.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (shadowp)
134 			*shadowp = p;
135 	}
136 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
137 			     workingset_lookup_update(mapping));
138 	mapping->nrpages++;
139 	return 0;
140 }
141 
142 static void page_cache_tree_delete(struct address_space *mapping,
143 				   struct page *page, void *shadow)
144 {
145 	int i, nr;
146 
147 	/* hugetlb pages are represented by one entry in the radix tree */
148 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(PageTail(page), page);
152 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153 
154 	for (i = 0; i < nr; i++) {
155 		struct radix_tree_node *node;
156 		void **slot;
157 
158 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
159 				    &node, &slot);
160 
161 		VM_BUG_ON_PAGE(!node && nr != 1, page);
162 
163 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 				workingset_lookup_update(mapping));
166 	}
167 
168 	page->mapping = NULL;
169 	/* Leave page->index set: truncation lookup relies upon it */
170 
171 	if (shadow) {
172 		mapping->nrexceptional += nr;
173 		/*
174 		 * Make sure the nrexceptional update is committed before
175 		 * the nrpages update so that final truncate racing
176 		 * with reclaim does not see both counters 0 at the
177 		 * same time and miss a shadow entry.
178 		 */
179 		smp_wmb();
180 	}
181 	mapping->nrpages -= nr;
182 }
183 
184 static void unaccount_page_cache_page(struct address_space *mapping,
185 				      struct page *page)
186 {
187 	int nr;
188 
189 	/*
190 	 * if we're uptodate, flush out into the cleancache, otherwise
191 	 * invalidate any existing cleancache entries.  We can't leave
192 	 * stale data around in the cleancache once our page is gone
193 	 */
194 	if (PageUptodate(page) && PageMappedToDisk(page))
195 		cleancache_put_page(page);
196 	else
197 		cleancache_invalidate_page(mapping, page);
198 
199 	VM_BUG_ON_PAGE(PageTail(page), page);
200 	VM_BUG_ON_PAGE(page_mapped(page), page);
201 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
202 		int mapcount;
203 
204 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
205 			 current->comm, page_to_pfn(page));
206 		dump_page(page, "still mapped when deleted");
207 		dump_stack();
208 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
209 
210 		mapcount = page_mapcount(page);
211 		if (mapping_exiting(mapping) &&
212 		    page_count(page) >= mapcount + 2) {
213 			/*
214 			 * All vmas have already been torn down, so it's
215 			 * a good bet that actually the page is unmapped,
216 			 * and we'd prefer not to leak it: if we're wrong,
217 			 * some other bad page check should catch it later.
218 			 */
219 			page_mapcount_reset(page);
220 			page_ref_sub(page, mapcount);
221 		}
222 	}
223 
224 	/* hugetlb pages do not participate in page cache accounting. */
225 	if (PageHuge(page))
226 		return;
227 
228 	nr = hpage_nr_pages(page);
229 
230 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
231 	if (PageSwapBacked(page)) {
232 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
233 		if (PageTransHuge(page))
234 			__dec_node_page_state(page, NR_SHMEM_THPS);
235 	} else {
236 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
237 	}
238 
239 	/*
240 	 * At this point page must be either written or cleaned by
241 	 * truncate.  Dirty page here signals a bug and loss of
242 	 * unwritten data.
243 	 *
244 	 * This fixes dirty accounting after removing the page entirely
245 	 * but leaves PageDirty set: it has no effect for truncated
246 	 * page and anyway will be cleared before returning page into
247 	 * buddy allocator.
248 	 */
249 	if (WARN_ON_ONCE(PageDirty(page)))
250 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
251 }
252 
253 /*
254  * Delete a page from the page cache and free it. Caller has to make
255  * sure the page is locked and that nobody else uses it - or that usage
256  * is safe.  The caller must hold the mapping's tree_lock.
257  */
258 void __delete_from_page_cache(struct page *page, void *shadow)
259 {
260 	struct address_space *mapping = page->mapping;
261 
262 	trace_mm_filemap_delete_from_page_cache(page);
263 
264 	unaccount_page_cache_page(mapping, page);
265 	page_cache_tree_delete(mapping, page, shadow);
266 }
267 
268 static void page_cache_free_page(struct address_space *mapping,
269 				struct page *page)
270 {
271 	void (*freepage)(struct page *);
272 
273 	freepage = mapping->a_ops->freepage;
274 	if (freepage)
275 		freepage(page);
276 
277 	if (PageTransHuge(page) && !PageHuge(page)) {
278 		page_ref_sub(page, HPAGE_PMD_NR);
279 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
280 	} else {
281 		put_page(page);
282 	}
283 }
284 
285 /**
286  * delete_from_page_cache - delete page from page cache
287  * @page: the page which the kernel is trying to remove from page cache
288  *
289  * This must be called only on pages that have been verified to be in the page
290  * cache and locked.  It will never put the page into the free list, the caller
291  * has a reference on the page.
292  */
293 void delete_from_page_cache(struct page *page)
294 {
295 	struct address_space *mapping = page_mapping(page);
296 	unsigned long flags;
297 
298 	BUG_ON(!PageLocked(page));
299 	spin_lock_irqsave(&mapping->tree_lock, flags);
300 	__delete_from_page_cache(page, NULL);
301 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
302 
303 	page_cache_free_page(mapping, page);
304 }
305 EXPORT_SYMBOL(delete_from_page_cache);
306 
307 /*
308  * page_cache_tree_delete_batch - delete several pages from page cache
309  * @mapping: the mapping to which pages belong
310  * @pvec: pagevec with pages to delete
311  *
312  * The function walks over mapping->page_tree and removes pages passed in @pvec
313  * from the radix tree. The function expects @pvec to be sorted by page index.
314  * It tolerates holes in @pvec (radix tree entries at those indices are not
315  * modified). The function expects only THP head pages to be present in the
316  * @pvec and takes care to delete all corresponding tail pages from the radix
317  * tree as well.
318  *
319  * The function expects mapping->tree_lock to be held.
320  */
321 static void
322 page_cache_tree_delete_batch(struct address_space *mapping,
323 			     struct pagevec *pvec)
324 {
325 	struct radix_tree_iter iter;
326 	void **slot;
327 	int total_pages = 0;
328 	int i = 0, tail_pages = 0;
329 	struct page *page;
330 	pgoff_t start;
331 
332 	start = pvec->pages[0]->index;
333 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
334 		if (i >= pagevec_count(pvec) && !tail_pages)
335 			break;
336 		page = radix_tree_deref_slot_protected(slot,
337 						       &mapping->tree_lock);
338 		if (radix_tree_exceptional_entry(page))
339 			continue;
340 		if (!tail_pages) {
341 			/*
342 			 * Some page got inserted in our range? Skip it. We
343 			 * have our pages locked so they are protected from
344 			 * being removed.
345 			 */
346 			if (page != pvec->pages[i])
347 				continue;
348 			WARN_ON_ONCE(!PageLocked(page));
349 			if (PageTransHuge(page) && !PageHuge(page))
350 				tail_pages = HPAGE_PMD_NR - 1;
351 			page->mapping = NULL;
352 			/*
353 			 * Leave page->index set: truncation lookup relies
354 			 * upon it
355 			 */
356 			i++;
357 		} else {
358 			tail_pages--;
359 		}
360 		radix_tree_clear_tags(&mapping->page_tree, iter.node, slot);
361 		__radix_tree_replace(&mapping->page_tree, iter.node, slot, NULL,
362 				workingset_lookup_update(mapping));
363 		total_pages++;
364 	}
365 	mapping->nrpages -= total_pages;
366 }
367 
368 void delete_from_page_cache_batch(struct address_space *mapping,
369 				  struct pagevec *pvec)
370 {
371 	int i;
372 	unsigned long flags;
373 
374 	if (!pagevec_count(pvec))
375 		return;
376 
377 	spin_lock_irqsave(&mapping->tree_lock, flags);
378 	for (i = 0; i < pagevec_count(pvec); i++) {
379 		trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
380 
381 		unaccount_page_cache_page(mapping, pvec->pages[i]);
382 	}
383 	page_cache_tree_delete_batch(mapping, pvec);
384 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
385 
386 	for (i = 0; i < pagevec_count(pvec); i++)
387 		page_cache_free_page(mapping, pvec->pages[i]);
388 }
389 
390 int filemap_check_errors(struct address_space *mapping)
391 {
392 	int ret = 0;
393 	/* Check for outstanding write errors */
394 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
395 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
396 		ret = -ENOSPC;
397 	if (test_bit(AS_EIO, &mapping->flags) &&
398 	    test_and_clear_bit(AS_EIO, &mapping->flags))
399 		ret = -EIO;
400 	return ret;
401 }
402 EXPORT_SYMBOL(filemap_check_errors);
403 
404 static int filemap_check_and_keep_errors(struct address_space *mapping)
405 {
406 	/* Check for outstanding write errors */
407 	if (test_bit(AS_EIO, &mapping->flags))
408 		return -EIO;
409 	if (test_bit(AS_ENOSPC, &mapping->flags))
410 		return -ENOSPC;
411 	return 0;
412 }
413 
414 /**
415  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
416  * @mapping:	address space structure to write
417  * @start:	offset in bytes where the range starts
418  * @end:	offset in bytes where the range ends (inclusive)
419  * @sync_mode:	enable synchronous operation
420  *
421  * Start writeback against all of a mapping's dirty pages that lie
422  * within the byte offsets <start, end> inclusive.
423  *
424  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
425  * opposed to a regular memory cleansing writeback.  The difference between
426  * these two operations is that if a dirty page/buffer is encountered, it must
427  * be waited upon, and not just skipped over.
428  */
429 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
430 				loff_t end, int sync_mode)
431 {
432 	int ret;
433 	struct writeback_control wbc = {
434 		.sync_mode = sync_mode,
435 		.nr_to_write = LONG_MAX,
436 		.range_start = start,
437 		.range_end = end,
438 	};
439 
440 	if (!mapping_cap_writeback_dirty(mapping))
441 		return 0;
442 
443 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
444 	ret = do_writepages(mapping, &wbc);
445 	wbc_detach_inode(&wbc);
446 	return ret;
447 }
448 
449 static inline int __filemap_fdatawrite(struct address_space *mapping,
450 	int sync_mode)
451 {
452 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
453 }
454 
455 int filemap_fdatawrite(struct address_space *mapping)
456 {
457 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
458 }
459 EXPORT_SYMBOL(filemap_fdatawrite);
460 
461 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
462 				loff_t end)
463 {
464 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
465 }
466 EXPORT_SYMBOL(filemap_fdatawrite_range);
467 
468 /**
469  * filemap_flush - mostly a non-blocking flush
470  * @mapping:	target address_space
471  *
472  * This is a mostly non-blocking flush.  Not suitable for data-integrity
473  * purposes - I/O may not be started against all dirty pages.
474  */
475 int filemap_flush(struct address_space *mapping)
476 {
477 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
478 }
479 EXPORT_SYMBOL(filemap_flush);
480 
481 /**
482  * filemap_range_has_page - check if a page exists in range.
483  * @mapping:           address space within which to check
484  * @start_byte:        offset in bytes where the range starts
485  * @end_byte:          offset in bytes where the range ends (inclusive)
486  *
487  * Find at least one page in the range supplied, usually used to check if
488  * direct writing in this range will trigger a writeback.
489  */
490 bool filemap_range_has_page(struct address_space *mapping,
491 			   loff_t start_byte, loff_t end_byte)
492 {
493 	pgoff_t index = start_byte >> PAGE_SHIFT;
494 	pgoff_t end = end_byte >> PAGE_SHIFT;
495 	struct page *page;
496 
497 	if (end_byte < start_byte)
498 		return false;
499 
500 	if (mapping->nrpages == 0)
501 		return false;
502 
503 	if (!find_get_pages_range(mapping, &index, end, 1, &page))
504 		return false;
505 	put_page(page);
506 	return true;
507 }
508 EXPORT_SYMBOL(filemap_range_has_page);
509 
510 static void __filemap_fdatawait_range(struct address_space *mapping,
511 				     loff_t start_byte, loff_t end_byte)
512 {
513 	pgoff_t index = start_byte >> PAGE_SHIFT;
514 	pgoff_t end = end_byte >> PAGE_SHIFT;
515 	struct pagevec pvec;
516 	int nr_pages;
517 
518 	if (end_byte < start_byte)
519 		return;
520 
521 	pagevec_init(&pvec);
522 	while (index <= end) {
523 		unsigned i;
524 
525 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
526 				end, PAGECACHE_TAG_WRITEBACK);
527 		if (!nr_pages)
528 			break;
529 
530 		for (i = 0; i < nr_pages; i++) {
531 			struct page *page = pvec.pages[i];
532 
533 			wait_on_page_writeback(page);
534 			ClearPageError(page);
535 		}
536 		pagevec_release(&pvec);
537 		cond_resched();
538 	}
539 }
540 
541 /**
542  * filemap_fdatawait_range - wait for writeback to complete
543  * @mapping:		address space structure to wait for
544  * @start_byte:		offset in bytes where the range starts
545  * @end_byte:		offset in bytes where the range ends (inclusive)
546  *
547  * Walk the list of under-writeback pages of the given address space
548  * in the given range and wait for all of them.  Check error status of
549  * the address space and return it.
550  *
551  * Since the error status of the address space is cleared by this function,
552  * callers are responsible for checking the return value and handling and/or
553  * reporting the error.
554  */
555 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
556 			    loff_t end_byte)
557 {
558 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
559 	return filemap_check_errors(mapping);
560 }
561 EXPORT_SYMBOL(filemap_fdatawait_range);
562 
563 /**
564  * file_fdatawait_range - wait for writeback to complete
565  * @file:		file pointing to address space structure to wait for
566  * @start_byte:		offset in bytes where the range starts
567  * @end_byte:		offset in bytes where the range ends (inclusive)
568  *
569  * Walk the list of under-writeback pages of the address space that file
570  * refers to, in the given range and wait for all of them.  Check error
571  * status of the address space vs. the file->f_wb_err cursor and return it.
572  *
573  * Since the error status of the file is advanced by this function,
574  * callers are responsible for checking the return value and handling and/or
575  * reporting the error.
576  */
577 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
578 {
579 	struct address_space *mapping = file->f_mapping;
580 
581 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
582 	return file_check_and_advance_wb_err(file);
583 }
584 EXPORT_SYMBOL(file_fdatawait_range);
585 
586 /**
587  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
588  * @mapping: address space structure to wait for
589  *
590  * Walk the list of under-writeback pages of the given address space
591  * and wait for all of them.  Unlike filemap_fdatawait(), this function
592  * does not clear error status of the address space.
593  *
594  * Use this function if callers don't handle errors themselves.  Expected
595  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
596  * fsfreeze(8)
597  */
598 int filemap_fdatawait_keep_errors(struct address_space *mapping)
599 {
600 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
601 	return filemap_check_and_keep_errors(mapping);
602 }
603 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
604 
605 static bool mapping_needs_writeback(struct address_space *mapping)
606 {
607 	return (!dax_mapping(mapping) && mapping->nrpages) ||
608 	    (dax_mapping(mapping) && mapping->nrexceptional);
609 }
610 
611 int filemap_write_and_wait(struct address_space *mapping)
612 {
613 	int err = 0;
614 
615 	if (mapping_needs_writeback(mapping)) {
616 		err = filemap_fdatawrite(mapping);
617 		/*
618 		 * Even if the above returned error, the pages may be
619 		 * written partially (e.g. -ENOSPC), so we wait for it.
620 		 * But the -EIO is special case, it may indicate the worst
621 		 * thing (e.g. bug) happened, so we avoid waiting for it.
622 		 */
623 		if (err != -EIO) {
624 			int err2 = filemap_fdatawait(mapping);
625 			if (!err)
626 				err = err2;
627 		} else {
628 			/* Clear any previously stored errors */
629 			filemap_check_errors(mapping);
630 		}
631 	} else {
632 		err = filemap_check_errors(mapping);
633 	}
634 	return err;
635 }
636 EXPORT_SYMBOL(filemap_write_and_wait);
637 
638 /**
639  * filemap_write_and_wait_range - write out & wait on a file range
640  * @mapping:	the address_space for the pages
641  * @lstart:	offset in bytes where the range starts
642  * @lend:	offset in bytes where the range ends (inclusive)
643  *
644  * Write out and wait upon file offsets lstart->lend, inclusive.
645  *
646  * Note that @lend is inclusive (describes the last byte to be written) so
647  * that this function can be used to write to the very end-of-file (end = -1).
648  */
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 				 loff_t lstart, loff_t lend)
651 {
652 	int err = 0;
653 
654 	if (mapping_needs_writeback(mapping)) {
655 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 						 WB_SYNC_ALL);
657 		/* See comment of filemap_write_and_wait() */
658 		if (err != -EIO) {
659 			int err2 = filemap_fdatawait_range(mapping,
660 						lstart, lend);
661 			if (!err)
662 				err = err2;
663 		} else {
664 			/* Clear any previously stored errors */
665 			filemap_check_errors(mapping);
666 		}
667 	} else {
668 		err = filemap_check_errors(mapping);
669 	}
670 	return err;
671 }
672 EXPORT_SYMBOL(filemap_write_and_wait_range);
673 
674 void __filemap_set_wb_err(struct address_space *mapping, int err)
675 {
676 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
677 
678 	trace_filemap_set_wb_err(mapping, eseq);
679 }
680 EXPORT_SYMBOL(__filemap_set_wb_err);
681 
682 /**
683  * file_check_and_advance_wb_err - report wb error (if any) that was previously
684  * 				   and advance wb_err to current one
685  * @file: struct file on which the error is being reported
686  *
687  * When userland calls fsync (or something like nfsd does the equivalent), we
688  * want to report any writeback errors that occurred since the last fsync (or
689  * since the file was opened if there haven't been any).
690  *
691  * Grab the wb_err from the mapping. If it matches what we have in the file,
692  * then just quickly return 0. The file is all caught up.
693  *
694  * If it doesn't match, then take the mapping value, set the "seen" flag in
695  * it and try to swap it into place. If it works, or another task beat us
696  * to it with the new value, then update the f_wb_err and return the error
697  * portion. The error at this point must be reported via proper channels
698  * (a'la fsync, or NFS COMMIT operation, etc.).
699  *
700  * While we handle mapping->wb_err with atomic operations, the f_wb_err
701  * value is protected by the f_lock since we must ensure that it reflects
702  * the latest value swapped in for this file descriptor.
703  */
704 int file_check_and_advance_wb_err(struct file *file)
705 {
706 	int err = 0;
707 	errseq_t old = READ_ONCE(file->f_wb_err);
708 	struct address_space *mapping = file->f_mapping;
709 
710 	/* Locklessly handle the common case where nothing has changed */
711 	if (errseq_check(&mapping->wb_err, old)) {
712 		/* Something changed, must use slow path */
713 		spin_lock(&file->f_lock);
714 		old = file->f_wb_err;
715 		err = errseq_check_and_advance(&mapping->wb_err,
716 						&file->f_wb_err);
717 		trace_file_check_and_advance_wb_err(file, old);
718 		spin_unlock(&file->f_lock);
719 	}
720 
721 	/*
722 	 * We're mostly using this function as a drop in replacement for
723 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
724 	 * that the legacy code would have had on these flags.
725 	 */
726 	clear_bit(AS_EIO, &mapping->flags);
727 	clear_bit(AS_ENOSPC, &mapping->flags);
728 	return err;
729 }
730 EXPORT_SYMBOL(file_check_and_advance_wb_err);
731 
732 /**
733  * file_write_and_wait_range - write out & wait on a file range
734  * @file:	file pointing to address_space with pages
735  * @lstart:	offset in bytes where the range starts
736  * @lend:	offset in bytes where the range ends (inclusive)
737  *
738  * Write out and wait upon file offsets lstart->lend, inclusive.
739  *
740  * Note that @lend is inclusive (describes the last byte to be written) so
741  * that this function can be used to write to the very end-of-file (end = -1).
742  *
743  * After writing out and waiting on the data, we check and advance the
744  * f_wb_err cursor to the latest value, and return any errors detected there.
745  */
746 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
747 {
748 	int err = 0, err2;
749 	struct address_space *mapping = file->f_mapping;
750 
751 	if (mapping_needs_writeback(mapping)) {
752 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
753 						 WB_SYNC_ALL);
754 		/* See comment of filemap_write_and_wait() */
755 		if (err != -EIO)
756 			__filemap_fdatawait_range(mapping, lstart, lend);
757 	}
758 	err2 = file_check_and_advance_wb_err(file);
759 	if (!err)
760 		err = err2;
761 	return err;
762 }
763 EXPORT_SYMBOL(file_write_and_wait_range);
764 
765 /**
766  * replace_page_cache_page - replace a pagecache page with a new one
767  * @old:	page to be replaced
768  * @new:	page to replace with
769  * @gfp_mask:	allocation mode
770  *
771  * This function replaces a page in the pagecache with a new one.  On
772  * success it acquires the pagecache reference for the new page and
773  * drops it for the old page.  Both the old and new pages must be
774  * locked.  This function does not add the new page to the LRU, the
775  * caller must do that.
776  *
777  * The remove + add is atomic.  The only way this function can fail is
778  * memory allocation failure.
779  */
780 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
781 {
782 	int error;
783 
784 	VM_BUG_ON_PAGE(!PageLocked(old), old);
785 	VM_BUG_ON_PAGE(!PageLocked(new), new);
786 	VM_BUG_ON_PAGE(new->mapping, new);
787 
788 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
789 	if (!error) {
790 		struct address_space *mapping = old->mapping;
791 		void (*freepage)(struct page *);
792 		unsigned long flags;
793 
794 		pgoff_t offset = old->index;
795 		freepage = mapping->a_ops->freepage;
796 
797 		get_page(new);
798 		new->mapping = mapping;
799 		new->index = offset;
800 
801 		spin_lock_irqsave(&mapping->tree_lock, flags);
802 		__delete_from_page_cache(old, NULL);
803 		error = page_cache_tree_insert(mapping, new, NULL);
804 		BUG_ON(error);
805 
806 		/*
807 		 * hugetlb pages do not participate in page cache accounting.
808 		 */
809 		if (!PageHuge(new))
810 			__inc_node_page_state(new, NR_FILE_PAGES);
811 		if (PageSwapBacked(new))
812 			__inc_node_page_state(new, NR_SHMEM);
813 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
814 		mem_cgroup_migrate(old, new);
815 		radix_tree_preload_end();
816 		if (freepage)
817 			freepage(old);
818 		put_page(old);
819 	}
820 
821 	return error;
822 }
823 EXPORT_SYMBOL_GPL(replace_page_cache_page);
824 
825 static int __add_to_page_cache_locked(struct page *page,
826 				      struct address_space *mapping,
827 				      pgoff_t offset, gfp_t gfp_mask,
828 				      void **shadowp)
829 {
830 	int huge = PageHuge(page);
831 	struct mem_cgroup *memcg;
832 	int error;
833 
834 	VM_BUG_ON_PAGE(!PageLocked(page), page);
835 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
836 
837 	if (!huge) {
838 		error = mem_cgroup_try_charge(page, current->mm,
839 					      gfp_mask, &memcg, false);
840 		if (error)
841 			return error;
842 	}
843 
844 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
845 	if (error) {
846 		if (!huge)
847 			mem_cgroup_cancel_charge(page, memcg, false);
848 		return error;
849 	}
850 
851 	get_page(page);
852 	page->mapping = mapping;
853 	page->index = offset;
854 
855 	spin_lock_irq(&mapping->tree_lock);
856 	error = page_cache_tree_insert(mapping, page, shadowp);
857 	radix_tree_preload_end();
858 	if (unlikely(error))
859 		goto err_insert;
860 
861 	/* hugetlb pages do not participate in page cache accounting. */
862 	if (!huge)
863 		__inc_node_page_state(page, NR_FILE_PAGES);
864 	spin_unlock_irq(&mapping->tree_lock);
865 	if (!huge)
866 		mem_cgroup_commit_charge(page, memcg, false, false);
867 	trace_mm_filemap_add_to_page_cache(page);
868 	return 0;
869 err_insert:
870 	page->mapping = NULL;
871 	/* Leave page->index set: truncation relies upon it */
872 	spin_unlock_irq(&mapping->tree_lock);
873 	if (!huge)
874 		mem_cgroup_cancel_charge(page, memcg, false);
875 	put_page(page);
876 	return error;
877 }
878 
879 /**
880  * add_to_page_cache_locked - add a locked page to the pagecache
881  * @page:	page to add
882  * @mapping:	the page's address_space
883  * @offset:	page index
884  * @gfp_mask:	page allocation mode
885  *
886  * This function is used to add a page to the pagecache. It must be locked.
887  * This function does not add the page to the LRU.  The caller must do that.
888  */
889 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
890 		pgoff_t offset, gfp_t gfp_mask)
891 {
892 	return __add_to_page_cache_locked(page, mapping, offset,
893 					  gfp_mask, NULL);
894 }
895 EXPORT_SYMBOL(add_to_page_cache_locked);
896 
897 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
898 				pgoff_t offset, gfp_t gfp_mask)
899 {
900 	void *shadow = NULL;
901 	int ret;
902 
903 	__SetPageLocked(page);
904 	ret = __add_to_page_cache_locked(page, mapping, offset,
905 					 gfp_mask, &shadow);
906 	if (unlikely(ret))
907 		__ClearPageLocked(page);
908 	else {
909 		/*
910 		 * The page might have been evicted from cache only
911 		 * recently, in which case it should be activated like
912 		 * any other repeatedly accessed page.
913 		 * The exception is pages getting rewritten; evicting other
914 		 * data from the working set, only to cache data that will
915 		 * get overwritten with something else, is a waste of memory.
916 		 */
917 		if (!(gfp_mask & __GFP_WRITE) &&
918 		    shadow && workingset_refault(shadow)) {
919 			SetPageActive(page);
920 			workingset_activation(page);
921 		} else
922 			ClearPageActive(page);
923 		lru_cache_add(page);
924 	}
925 	return ret;
926 }
927 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
928 
929 #ifdef CONFIG_NUMA
930 struct page *__page_cache_alloc(gfp_t gfp)
931 {
932 	int n;
933 	struct page *page;
934 
935 	if (cpuset_do_page_mem_spread()) {
936 		unsigned int cpuset_mems_cookie;
937 		do {
938 			cpuset_mems_cookie = read_mems_allowed_begin();
939 			n = cpuset_mem_spread_node();
940 			page = __alloc_pages_node(n, gfp, 0);
941 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
942 
943 		return page;
944 	}
945 	return alloc_pages(gfp, 0);
946 }
947 EXPORT_SYMBOL(__page_cache_alloc);
948 #endif
949 
950 /*
951  * In order to wait for pages to become available there must be
952  * waitqueues associated with pages. By using a hash table of
953  * waitqueues where the bucket discipline is to maintain all
954  * waiters on the same queue and wake all when any of the pages
955  * become available, and for the woken contexts to check to be
956  * sure the appropriate page became available, this saves space
957  * at a cost of "thundering herd" phenomena during rare hash
958  * collisions.
959  */
960 #define PAGE_WAIT_TABLE_BITS 8
961 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
962 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
963 
964 static wait_queue_head_t *page_waitqueue(struct page *page)
965 {
966 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
967 }
968 
969 void __init pagecache_init(void)
970 {
971 	int i;
972 
973 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
974 		init_waitqueue_head(&page_wait_table[i]);
975 
976 	page_writeback_init();
977 }
978 
979 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
980 struct wait_page_key {
981 	struct page *page;
982 	int bit_nr;
983 	int page_match;
984 };
985 
986 struct wait_page_queue {
987 	struct page *page;
988 	int bit_nr;
989 	wait_queue_entry_t wait;
990 };
991 
992 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
993 {
994 	struct wait_page_key *key = arg;
995 	struct wait_page_queue *wait_page
996 		= container_of(wait, struct wait_page_queue, wait);
997 
998 	if (wait_page->page != key->page)
999 	       return 0;
1000 	key->page_match = 1;
1001 
1002 	if (wait_page->bit_nr != key->bit_nr)
1003 		return 0;
1004 
1005 	/* Stop walking if it's locked */
1006 	if (test_bit(key->bit_nr, &key->page->flags))
1007 		return -1;
1008 
1009 	return autoremove_wake_function(wait, mode, sync, key);
1010 }
1011 
1012 static void wake_up_page_bit(struct page *page, int bit_nr)
1013 {
1014 	wait_queue_head_t *q = page_waitqueue(page);
1015 	struct wait_page_key key;
1016 	unsigned long flags;
1017 	wait_queue_entry_t bookmark;
1018 
1019 	key.page = page;
1020 	key.bit_nr = bit_nr;
1021 	key.page_match = 0;
1022 
1023 	bookmark.flags = 0;
1024 	bookmark.private = NULL;
1025 	bookmark.func = NULL;
1026 	INIT_LIST_HEAD(&bookmark.entry);
1027 
1028 	spin_lock_irqsave(&q->lock, flags);
1029 	__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1030 
1031 	while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1032 		/*
1033 		 * Take a breather from holding the lock,
1034 		 * allow pages that finish wake up asynchronously
1035 		 * to acquire the lock and remove themselves
1036 		 * from wait queue
1037 		 */
1038 		spin_unlock_irqrestore(&q->lock, flags);
1039 		cpu_relax();
1040 		spin_lock_irqsave(&q->lock, flags);
1041 		__wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1042 	}
1043 
1044 	/*
1045 	 * It is possible for other pages to have collided on the waitqueue
1046 	 * hash, so in that case check for a page match. That prevents a long-
1047 	 * term waiter
1048 	 *
1049 	 * It is still possible to miss a case here, when we woke page waiters
1050 	 * and removed them from the waitqueue, but there are still other
1051 	 * page waiters.
1052 	 */
1053 	if (!waitqueue_active(q) || !key.page_match) {
1054 		ClearPageWaiters(page);
1055 		/*
1056 		 * It's possible to miss clearing Waiters here, when we woke
1057 		 * our page waiters, but the hashed waitqueue has waiters for
1058 		 * other pages on it.
1059 		 *
1060 		 * That's okay, it's a rare case. The next waker will clear it.
1061 		 */
1062 	}
1063 	spin_unlock_irqrestore(&q->lock, flags);
1064 }
1065 
1066 static void wake_up_page(struct page *page, int bit)
1067 {
1068 	if (!PageWaiters(page))
1069 		return;
1070 	wake_up_page_bit(page, bit);
1071 }
1072 
1073 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1074 		struct page *page, int bit_nr, int state, bool lock)
1075 {
1076 	struct wait_page_queue wait_page;
1077 	wait_queue_entry_t *wait = &wait_page.wait;
1078 	int ret = 0;
1079 
1080 	init_wait(wait);
1081 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1082 	wait->func = wake_page_function;
1083 	wait_page.page = page;
1084 	wait_page.bit_nr = bit_nr;
1085 
1086 	for (;;) {
1087 		spin_lock_irq(&q->lock);
1088 
1089 		if (likely(list_empty(&wait->entry))) {
1090 			__add_wait_queue_entry_tail(q, wait);
1091 			SetPageWaiters(page);
1092 		}
1093 
1094 		set_current_state(state);
1095 
1096 		spin_unlock_irq(&q->lock);
1097 
1098 		if (likely(test_bit(bit_nr, &page->flags))) {
1099 			io_schedule();
1100 		}
1101 
1102 		if (lock) {
1103 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
1104 				break;
1105 		} else {
1106 			if (!test_bit(bit_nr, &page->flags))
1107 				break;
1108 		}
1109 
1110 		if (unlikely(signal_pending_state(state, current))) {
1111 			ret = -EINTR;
1112 			break;
1113 		}
1114 	}
1115 
1116 	finish_wait(q, wait);
1117 
1118 	/*
1119 	 * A signal could leave PageWaiters set. Clearing it here if
1120 	 * !waitqueue_active would be possible (by open-coding finish_wait),
1121 	 * but still fail to catch it in the case of wait hash collision. We
1122 	 * already can fail to clear wait hash collision cases, so don't
1123 	 * bother with signals either.
1124 	 */
1125 
1126 	return ret;
1127 }
1128 
1129 void wait_on_page_bit(struct page *page, int bit_nr)
1130 {
1131 	wait_queue_head_t *q = page_waitqueue(page);
1132 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1133 }
1134 EXPORT_SYMBOL(wait_on_page_bit);
1135 
1136 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1137 {
1138 	wait_queue_head_t *q = page_waitqueue(page);
1139 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1140 }
1141 EXPORT_SYMBOL(wait_on_page_bit_killable);
1142 
1143 /**
1144  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1145  * @page: Page defining the wait queue of interest
1146  * @waiter: Waiter to add to the queue
1147  *
1148  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1149  */
1150 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1151 {
1152 	wait_queue_head_t *q = page_waitqueue(page);
1153 	unsigned long flags;
1154 
1155 	spin_lock_irqsave(&q->lock, flags);
1156 	__add_wait_queue_entry_tail(q, waiter);
1157 	SetPageWaiters(page);
1158 	spin_unlock_irqrestore(&q->lock, flags);
1159 }
1160 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1161 
1162 #ifndef clear_bit_unlock_is_negative_byte
1163 
1164 /*
1165  * PG_waiters is the high bit in the same byte as PG_lock.
1166  *
1167  * On x86 (and on many other architectures), we can clear PG_lock and
1168  * test the sign bit at the same time. But if the architecture does
1169  * not support that special operation, we just do this all by hand
1170  * instead.
1171  *
1172  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1173  * being cleared, but a memory barrier should be unneccssary since it is
1174  * in the same byte as PG_locked.
1175  */
1176 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1177 {
1178 	clear_bit_unlock(nr, mem);
1179 	/* smp_mb__after_atomic(); */
1180 	return test_bit(PG_waiters, mem);
1181 }
1182 
1183 #endif
1184 
1185 /**
1186  * unlock_page - unlock a locked page
1187  * @page: the page
1188  *
1189  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1190  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1191  * mechanism between PageLocked pages and PageWriteback pages is shared.
1192  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1193  *
1194  * Note that this depends on PG_waiters being the sign bit in the byte
1195  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1196  * clear the PG_locked bit and test PG_waiters at the same time fairly
1197  * portably (architectures that do LL/SC can test any bit, while x86 can
1198  * test the sign bit).
1199  */
1200 void unlock_page(struct page *page)
1201 {
1202 	BUILD_BUG_ON(PG_waiters != 7);
1203 	page = compound_head(page);
1204 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1205 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1206 		wake_up_page_bit(page, PG_locked);
1207 }
1208 EXPORT_SYMBOL(unlock_page);
1209 
1210 /**
1211  * end_page_writeback - end writeback against a page
1212  * @page: the page
1213  */
1214 void end_page_writeback(struct page *page)
1215 {
1216 	/*
1217 	 * TestClearPageReclaim could be used here but it is an atomic
1218 	 * operation and overkill in this particular case. Failing to
1219 	 * shuffle a page marked for immediate reclaim is too mild to
1220 	 * justify taking an atomic operation penalty at the end of
1221 	 * ever page writeback.
1222 	 */
1223 	if (PageReclaim(page)) {
1224 		ClearPageReclaim(page);
1225 		rotate_reclaimable_page(page);
1226 	}
1227 
1228 	if (!test_clear_page_writeback(page))
1229 		BUG();
1230 
1231 	smp_mb__after_atomic();
1232 	wake_up_page(page, PG_writeback);
1233 }
1234 EXPORT_SYMBOL(end_page_writeback);
1235 
1236 /*
1237  * After completing I/O on a page, call this routine to update the page
1238  * flags appropriately
1239  */
1240 void page_endio(struct page *page, bool is_write, int err)
1241 {
1242 	if (!is_write) {
1243 		if (!err) {
1244 			SetPageUptodate(page);
1245 		} else {
1246 			ClearPageUptodate(page);
1247 			SetPageError(page);
1248 		}
1249 		unlock_page(page);
1250 	} else {
1251 		if (err) {
1252 			struct address_space *mapping;
1253 
1254 			SetPageError(page);
1255 			mapping = page_mapping(page);
1256 			if (mapping)
1257 				mapping_set_error(mapping, err);
1258 		}
1259 		end_page_writeback(page);
1260 	}
1261 }
1262 EXPORT_SYMBOL_GPL(page_endio);
1263 
1264 /**
1265  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1266  * @__page: the page to lock
1267  */
1268 void __lock_page(struct page *__page)
1269 {
1270 	struct page *page = compound_head(__page);
1271 	wait_queue_head_t *q = page_waitqueue(page);
1272 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1273 }
1274 EXPORT_SYMBOL(__lock_page);
1275 
1276 int __lock_page_killable(struct page *__page)
1277 {
1278 	struct page *page = compound_head(__page);
1279 	wait_queue_head_t *q = page_waitqueue(page);
1280 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1281 }
1282 EXPORT_SYMBOL_GPL(__lock_page_killable);
1283 
1284 /*
1285  * Return values:
1286  * 1 - page is locked; mmap_sem is still held.
1287  * 0 - page is not locked.
1288  *     mmap_sem has been released (up_read()), unless flags had both
1289  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1290  *     which case mmap_sem is still held.
1291  *
1292  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1293  * with the page locked and the mmap_sem unperturbed.
1294  */
1295 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1296 			 unsigned int flags)
1297 {
1298 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1299 		/*
1300 		 * CAUTION! In this case, mmap_sem is not released
1301 		 * even though return 0.
1302 		 */
1303 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1304 			return 0;
1305 
1306 		up_read(&mm->mmap_sem);
1307 		if (flags & FAULT_FLAG_KILLABLE)
1308 			wait_on_page_locked_killable(page);
1309 		else
1310 			wait_on_page_locked(page);
1311 		return 0;
1312 	} else {
1313 		if (flags & FAULT_FLAG_KILLABLE) {
1314 			int ret;
1315 
1316 			ret = __lock_page_killable(page);
1317 			if (ret) {
1318 				up_read(&mm->mmap_sem);
1319 				return 0;
1320 			}
1321 		} else
1322 			__lock_page(page);
1323 		return 1;
1324 	}
1325 }
1326 
1327 /**
1328  * page_cache_next_hole - find the next hole (not-present entry)
1329  * @mapping: mapping
1330  * @index: index
1331  * @max_scan: maximum range to search
1332  *
1333  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1334  * lowest indexed hole.
1335  *
1336  * Returns: the index of the hole if found, otherwise returns an index
1337  * outside of the set specified (in which case 'return - index >=
1338  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1339  * be returned.
1340  *
1341  * page_cache_next_hole may be called under rcu_read_lock. However,
1342  * like radix_tree_gang_lookup, this will not atomically search a
1343  * snapshot of the tree at a single point in time. For example, if a
1344  * hole is created at index 5, then subsequently a hole is created at
1345  * index 10, page_cache_next_hole covering both indexes may return 10
1346  * if called under rcu_read_lock.
1347  */
1348 pgoff_t page_cache_next_hole(struct address_space *mapping,
1349 			     pgoff_t index, unsigned long max_scan)
1350 {
1351 	unsigned long i;
1352 
1353 	for (i = 0; i < max_scan; i++) {
1354 		struct page *page;
1355 
1356 		page = radix_tree_lookup(&mapping->page_tree, index);
1357 		if (!page || radix_tree_exceptional_entry(page))
1358 			break;
1359 		index++;
1360 		if (index == 0)
1361 			break;
1362 	}
1363 
1364 	return index;
1365 }
1366 EXPORT_SYMBOL(page_cache_next_hole);
1367 
1368 /**
1369  * page_cache_prev_hole - find the prev hole (not-present entry)
1370  * @mapping: mapping
1371  * @index: index
1372  * @max_scan: maximum range to search
1373  *
1374  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1375  * the first hole.
1376  *
1377  * Returns: the index of the hole if found, otherwise returns an index
1378  * outside of the set specified (in which case 'index - return >=
1379  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1380  * will be returned.
1381  *
1382  * page_cache_prev_hole may be called under rcu_read_lock. However,
1383  * like radix_tree_gang_lookup, this will not atomically search a
1384  * snapshot of the tree at a single point in time. For example, if a
1385  * hole is created at index 10, then subsequently a hole is created at
1386  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1387  * called under rcu_read_lock.
1388  */
1389 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1390 			     pgoff_t index, unsigned long max_scan)
1391 {
1392 	unsigned long i;
1393 
1394 	for (i = 0; i < max_scan; i++) {
1395 		struct page *page;
1396 
1397 		page = radix_tree_lookup(&mapping->page_tree, index);
1398 		if (!page || radix_tree_exceptional_entry(page))
1399 			break;
1400 		index--;
1401 		if (index == ULONG_MAX)
1402 			break;
1403 	}
1404 
1405 	return index;
1406 }
1407 EXPORT_SYMBOL(page_cache_prev_hole);
1408 
1409 /**
1410  * find_get_entry - find and get a page cache entry
1411  * @mapping: the address_space to search
1412  * @offset: the page cache index
1413  *
1414  * Looks up the page cache slot at @mapping & @offset.  If there is a
1415  * page cache page, it is returned with an increased refcount.
1416  *
1417  * If the slot holds a shadow entry of a previously evicted page, or a
1418  * swap entry from shmem/tmpfs, it is returned.
1419  *
1420  * Otherwise, %NULL is returned.
1421  */
1422 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1423 {
1424 	void **pagep;
1425 	struct page *head, *page;
1426 
1427 	rcu_read_lock();
1428 repeat:
1429 	page = NULL;
1430 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1431 	if (pagep) {
1432 		page = radix_tree_deref_slot(pagep);
1433 		if (unlikely(!page))
1434 			goto out;
1435 		if (radix_tree_exception(page)) {
1436 			if (radix_tree_deref_retry(page))
1437 				goto repeat;
1438 			/*
1439 			 * A shadow entry of a recently evicted page,
1440 			 * or a swap entry from shmem/tmpfs.  Return
1441 			 * it without attempting to raise page count.
1442 			 */
1443 			goto out;
1444 		}
1445 
1446 		head = compound_head(page);
1447 		if (!page_cache_get_speculative(head))
1448 			goto repeat;
1449 
1450 		/* The page was split under us? */
1451 		if (compound_head(page) != head) {
1452 			put_page(head);
1453 			goto repeat;
1454 		}
1455 
1456 		/*
1457 		 * Has the page moved?
1458 		 * This is part of the lockless pagecache protocol. See
1459 		 * include/linux/pagemap.h for details.
1460 		 */
1461 		if (unlikely(page != *pagep)) {
1462 			put_page(head);
1463 			goto repeat;
1464 		}
1465 	}
1466 out:
1467 	rcu_read_unlock();
1468 
1469 	return page;
1470 }
1471 EXPORT_SYMBOL(find_get_entry);
1472 
1473 /**
1474  * find_lock_entry - locate, pin and lock a page cache entry
1475  * @mapping: the address_space to search
1476  * @offset: the page cache index
1477  *
1478  * Looks up the page cache slot at @mapping & @offset.  If there is a
1479  * page cache page, it is returned locked and with an increased
1480  * refcount.
1481  *
1482  * If the slot holds a shadow entry of a previously evicted page, or a
1483  * swap entry from shmem/tmpfs, it is returned.
1484  *
1485  * Otherwise, %NULL is returned.
1486  *
1487  * find_lock_entry() may sleep.
1488  */
1489 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1490 {
1491 	struct page *page;
1492 
1493 repeat:
1494 	page = find_get_entry(mapping, offset);
1495 	if (page && !radix_tree_exception(page)) {
1496 		lock_page(page);
1497 		/* Has the page been truncated? */
1498 		if (unlikely(page_mapping(page) != mapping)) {
1499 			unlock_page(page);
1500 			put_page(page);
1501 			goto repeat;
1502 		}
1503 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1504 	}
1505 	return page;
1506 }
1507 EXPORT_SYMBOL(find_lock_entry);
1508 
1509 /**
1510  * pagecache_get_page - find and get a page reference
1511  * @mapping: the address_space to search
1512  * @offset: the page index
1513  * @fgp_flags: PCG flags
1514  * @gfp_mask: gfp mask to use for the page cache data page allocation
1515  *
1516  * Looks up the page cache slot at @mapping & @offset.
1517  *
1518  * PCG flags modify how the page is returned.
1519  *
1520  * @fgp_flags can be:
1521  *
1522  * - FGP_ACCESSED: the page will be marked accessed
1523  * - FGP_LOCK: Page is return locked
1524  * - FGP_CREAT: If page is not present then a new page is allocated using
1525  *   @gfp_mask and added to the page cache and the VM's LRU
1526  *   list. The page is returned locked and with an increased
1527  *   refcount. Otherwise, NULL is returned.
1528  *
1529  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1530  * if the GFP flags specified for FGP_CREAT are atomic.
1531  *
1532  * If there is a page cache page, it is returned with an increased refcount.
1533  */
1534 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1535 	int fgp_flags, gfp_t gfp_mask)
1536 {
1537 	struct page *page;
1538 
1539 repeat:
1540 	page = find_get_entry(mapping, offset);
1541 	if (radix_tree_exceptional_entry(page))
1542 		page = NULL;
1543 	if (!page)
1544 		goto no_page;
1545 
1546 	if (fgp_flags & FGP_LOCK) {
1547 		if (fgp_flags & FGP_NOWAIT) {
1548 			if (!trylock_page(page)) {
1549 				put_page(page);
1550 				return NULL;
1551 			}
1552 		} else {
1553 			lock_page(page);
1554 		}
1555 
1556 		/* Has the page been truncated? */
1557 		if (unlikely(page->mapping != mapping)) {
1558 			unlock_page(page);
1559 			put_page(page);
1560 			goto repeat;
1561 		}
1562 		VM_BUG_ON_PAGE(page->index != offset, page);
1563 	}
1564 
1565 	if (page && (fgp_flags & FGP_ACCESSED))
1566 		mark_page_accessed(page);
1567 
1568 no_page:
1569 	if (!page && (fgp_flags & FGP_CREAT)) {
1570 		int err;
1571 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1572 			gfp_mask |= __GFP_WRITE;
1573 		if (fgp_flags & FGP_NOFS)
1574 			gfp_mask &= ~__GFP_FS;
1575 
1576 		page = __page_cache_alloc(gfp_mask);
1577 		if (!page)
1578 			return NULL;
1579 
1580 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1581 			fgp_flags |= FGP_LOCK;
1582 
1583 		/* Init accessed so avoid atomic mark_page_accessed later */
1584 		if (fgp_flags & FGP_ACCESSED)
1585 			__SetPageReferenced(page);
1586 
1587 		err = add_to_page_cache_lru(page, mapping, offset,
1588 				gfp_mask & GFP_RECLAIM_MASK);
1589 		if (unlikely(err)) {
1590 			put_page(page);
1591 			page = NULL;
1592 			if (err == -EEXIST)
1593 				goto repeat;
1594 		}
1595 	}
1596 
1597 	return page;
1598 }
1599 EXPORT_SYMBOL(pagecache_get_page);
1600 
1601 /**
1602  * find_get_entries - gang pagecache lookup
1603  * @mapping:	The address_space to search
1604  * @start:	The starting page cache index
1605  * @nr_entries:	The maximum number of entries
1606  * @entries:	Where the resulting entries are placed
1607  * @indices:	The cache indices corresponding to the entries in @entries
1608  *
1609  * find_get_entries() will search for and return a group of up to
1610  * @nr_entries entries in the mapping.  The entries are placed at
1611  * @entries.  find_get_entries() takes a reference against any actual
1612  * pages it returns.
1613  *
1614  * The search returns a group of mapping-contiguous page cache entries
1615  * with ascending indexes.  There may be holes in the indices due to
1616  * not-present pages.
1617  *
1618  * Any shadow entries of evicted pages, or swap entries from
1619  * shmem/tmpfs, are included in the returned array.
1620  *
1621  * find_get_entries() returns the number of pages and shadow entries
1622  * which were found.
1623  */
1624 unsigned find_get_entries(struct address_space *mapping,
1625 			  pgoff_t start, unsigned int nr_entries,
1626 			  struct page **entries, pgoff_t *indices)
1627 {
1628 	void **slot;
1629 	unsigned int ret = 0;
1630 	struct radix_tree_iter iter;
1631 
1632 	if (!nr_entries)
1633 		return 0;
1634 
1635 	rcu_read_lock();
1636 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1637 		struct page *head, *page;
1638 repeat:
1639 		page = radix_tree_deref_slot(slot);
1640 		if (unlikely(!page))
1641 			continue;
1642 		if (radix_tree_exception(page)) {
1643 			if (radix_tree_deref_retry(page)) {
1644 				slot = radix_tree_iter_retry(&iter);
1645 				continue;
1646 			}
1647 			/*
1648 			 * A shadow entry of a recently evicted page, a swap
1649 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1650 			 * without attempting to raise page count.
1651 			 */
1652 			goto export;
1653 		}
1654 
1655 		head = compound_head(page);
1656 		if (!page_cache_get_speculative(head))
1657 			goto repeat;
1658 
1659 		/* The page was split under us? */
1660 		if (compound_head(page) != head) {
1661 			put_page(head);
1662 			goto repeat;
1663 		}
1664 
1665 		/* Has the page moved? */
1666 		if (unlikely(page != *slot)) {
1667 			put_page(head);
1668 			goto repeat;
1669 		}
1670 export:
1671 		indices[ret] = iter.index;
1672 		entries[ret] = page;
1673 		if (++ret == nr_entries)
1674 			break;
1675 	}
1676 	rcu_read_unlock();
1677 	return ret;
1678 }
1679 
1680 /**
1681  * find_get_pages_range - gang pagecache lookup
1682  * @mapping:	The address_space to search
1683  * @start:	The starting page index
1684  * @end:	The final page index (inclusive)
1685  * @nr_pages:	The maximum number of pages
1686  * @pages:	Where the resulting pages are placed
1687  *
1688  * find_get_pages_range() will search for and return a group of up to @nr_pages
1689  * pages in the mapping starting at index @start and up to index @end
1690  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691  * a reference against the returned pages.
1692  *
1693  * The search returns a group of mapping-contiguous pages with ascending
1694  * indexes.  There may be holes in the indices due to not-present pages.
1695  * We also update @start to index the next page for the traversal.
1696  *
1697  * find_get_pages_range() returns the number of pages which were found. If this
1698  * number is smaller than @nr_pages, the end of specified range has been
1699  * reached.
1700  */
1701 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702 			      pgoff_t end, unsigned int nr_pages,
1703 			      struct page **pages)
1704 {
1705 	struct radix_tree_iter iter;
1706 	void **slot;
1707 	unsigned ret = 0;
1708 
1709 	if (unlikely(!nr_pages))
1710 		return 0;
1711 
1712 	rcu_read_lock();
1713 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1714 		struct page *head, *page;
1715 
1716 		if (iter.index > end)
1717 			break;
1718 repeat:
1719 		page = radix_tree_deref_slot(slot);
1720 		if (unlikely(!page))
1721 			continue;
1722 
1723 		if (radix_tree_exception(page)) {
1724 			if (radix_tree_deref_retry(page)) {
1725 				slot = radix_tree_iter_retry(&iter);
1726 				continue;
1727 			}
1728 			/*
1729 			 * A shadow entry of a recently evicted page,
1730 			 * or a swap entry from shmem/tmpfs.  Skip
1731 			 * over it.
1732 			 */
1733 			continue;
1734 		}
1735 
1736 		head = compound_head(page);
1737 		if (!page_cache_get_speculative(head))
1738 			goto repeat;
1739 
1740 		/* The page was split under us? */
1741 		if (compound_head(page) != head) {
1742 			put_page(head);
1743 			goto repeat;
1744 		}
1745 
1746 		/* Has the page moved? */
1747 		if (unlikely(page != *slot)) {
1748 			put_page(head);
1749 			goto repeat;
1750 		}
1751 
1752 		pages[ret] = page;
1753 		if (++ret == nr_pages) {
1754 			*start = pages[ret - 1]->index + 1;
1755 			goto out;
1756 		}
1757 	}
1758 
1759 	/*
1760 	 * We come here when there is no page beyond @end. We take care to not
1761 	 * overflow the index @start as it confuses some of the callers. This
1762 	 * breaks the iteration when there is page at index -1 but that is
1763 	 * already broken anyway.
1764 	 */
1765 	if (end == (pgoff_t)-1)
1766 		*start = (pgoff_t)-1;
1767 	else
1768 		*start = end + 1;
1769 out:
1770 	rcu_read_unlock();
1771 
1772 	return ret;
1773 }
1774 
1775 /**
1776  * find_get_pages_contig - gang contiguous pagecache lookup
1777  * @mapping:	The address_space to search
1778  * @index:	The starting page index
1779  * @nr_pages:	The maximum number of pages
1780  * @pages:	Where the resulting pages are placed
1781  *
1782  * find_get_pages_contig() works exactly like find_get_pages(), except
1783  * that the returned number of pages are guaranteed to be contiguous.
1784  *
1785  * find_get_pages_contig() returns the number of pages which were found.
1786  */
1787 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788 			       unsigned int nr_pages, struct page **pages)
1789 {
1790 	struct radix_tree_iter iter;
1791 	void **slot;
1792 	unsigned int ret = 0;
1793 
1794 	if (unlikely(!nr_pages))
1795 		return 0;
1796 
1797 	rcu_read_lock();
1798 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1799 		struct page *head, *page;
1800 repeat:
1801 		page = radix_tree_deref_slot(slot);
1802 		/* The hole, there no reason to continue */
1803 		if (unlikely(!page))
1804 			break;
1805 
1806 		if (radix_tree_exception(page)) {
1807 			if (radix_tree_deref_retry(page)) {
1808 				slot = radix_tree_iter_retry(&iter);
1809 				continue;
1810 			}
1811 			/*
1812 			 * A shadow entry of a recently evicted page,
1813 			 * or a swap entry from shmem/tmpfs.  Stop
1814 			 * looking for contiguous pages.
1815 			 */
1816 			break;
1817 		}
1818 
1819 		head = compound_head(page);
1820 		if (!page_cache_get_speculative(head))
1821 			goto repeat;
1822 
1823 		/* The page was split under us? */
1824 		if (compound_head(page) != head) {
1825 			put_page(head);
1826 			goto repeat;
1827 		}
1828 
1829 		/* Has the page moved? */
1830 		if (unlikely(page != *slot)) {
1831 			put_page(head);
1832 			goto repeat;
1833 		}
1834 
1835 		/*
1836 		 * must check mapping and index after taking the ref.
1837 		 * otherwise we can get both false positives and false
1838 		 * negatives, which is just confusing to the caller.
1839 		 */
1840 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841 			put_page(page);
1842 			break;
1843 		}
1844 
1845 		pages[ret] = page;
1846 		if (++ret == nr_pages)
1847 			break;
1848 	}
1849 	rcu_read_unlock();
1850 	return ret;
1851 }
1852 EXPORT_SYMBOL(find_get_pages_contig);
1853 
1854 /**
1855  * find_get_pages_range_tag - find and return pages in given range matching @tag
1856  * @mapping:	the address_space to search
1857  * @index:	the starting page index
1858  * @end:	The final page index (inclusive)
1859  * @tag:	the tag index
1860  * @nr_pages:	the maximum number of pages
1861  * @pages:	where the resulting pages are placed
1862  *
1863  * Like find_get_pages, except we only return pages which are tagged with
1864  * @tag.   We update @index to index the next page for the traversal.
1865  */
1866 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867 			pgoff_t end, int tag, unsigned int nr_pages,
1868 			struct page **pages)
1869 {
1870 	struct radix_tree_iter iter;
1871 	void **slot;
1872 	unsigned ret = 0;
1873 
1874 	if (unlikely(!nr_pages))
1875 		return 0;
1876 
1877 	rcu_read_lock();
1878 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1879 				   &iter, *index, tag) {
1880 		struct page *head, *page;
1881 
1882 		if (iter.index > end)
1883 			break;
1884 repeat:
1885 		page = radix_tree_deref_slot(slot);
1886 		if (unlikely(!page))
1887 			continue;
1888 
1889 		if (radix_tree_exception(page)) {
1890 			if (radix_tree_deref_retry(page)) {
1891 				slot = radix_tree_iter_retry(&iter);
1892 				continue;
1893 			}
1894 			/*
1895 			 * A shadow entry of a recently evicted page.
1896 			 *
1897 			 * Those entries should never be tagged, but
1898 			 * this tree walk is lockless and the tags are
1899 			 * looked up in bulk, one radix tree node at a
1900 			 * time, so there is a sizable window for page
1901 			 * reclaim to evict a page we saw tagged.
1902 			 *
1903 			 * Skip over it.
1904 			 */
1905 			continue;
1906 		}
1907 
1908 		head = compound_head(page);
1909 		if (!page_cache_get_speculative(head))
1910 			goto repeat;
1911 
1912 		/* The page was split under us? */
1913 		if (compound_head(page) != head) {
1914 			put_page(head);
1915 			goto repeat;
1916 		}
1917 
1918 		/* Has the page moved? */
1919 		if (unlikely(page != *slot)) {
1920 			put_page(head);
1921 			goto repeat;
1922 		}
1923 
1924 		pages[ret] = page;
1925 		if (++ret == nr_pages) {
1926 			*index = pages[ret - 1]->index + 1;
1927 			goto out;
1928 		}
1929 	}
1930 
1931 	/*
1932 	 * We come here when we got at @end. We take care to not overflow the
1933 	 * index @index as it confuses some of the callers. This breaks the
1934 	 * iteration when there is page at index -1 but that is already broken
1935 	 * anyway.
1936 	 */
1937 	if (end == (pgoff_t)-1)
1938 		*index = (pgoff_t)-1;
1939 	else
1940 		*index = end + 1;
1941 out:
1942 	rcu_read_unlock();
1943 
1944 	return ret;
1945 }
1946 EXPORT_SYMBOL(find_get_pages_range_tag);
1947 
1948 /**
1949  * find_get_entries_tag - find and return entries that match @tag
1950  * @mapping:	the address_space to search
1951  * @start:	the starting page cache index
1952  * @tag:	the tag index
1953  * @nr_entries:	the maximum number of entries
1954  * @entries:	where the resulting entries are placed
1955  * @indices:	the cache indices corresponding to the entries in @entries
1956  *
1957  * Like find_get_entries, except we only return entries which are tagged with
1958  * @tag.
1959  */
1960 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1961 			int tag, unsigned int nr_entries,
1962 			struct page **entries, pgoff_t *indices)
1963 {
1964 	void **slot;
1965 	unsigned int ret = 0;
1966 	struct radix_tree_iter iter;
1967 
1968 	if (!nr_entries)
1969 		return 0;
1970 
1971 	rcu_read_lock();
1972 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1973 				   &iter, start, tag) {
1974 		struct page *head, *page;
1975 repeat:
1976 		page = radix_tree_deref_slot(slot);
1977 		if (unlikely(!page))
1978 			continue;
1979 		if (radix_tree_exception(page)) {
1980 			if (radix_tree_deref_retry(page)) {
1981 				slot = radix_tree_iter_retry(&iter);
1982 				continue;
1983 			}
1984 
1985 			/*
1986 			 * A shadow entry of a recently evicted page, a swap
1987 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1988 			 * without attempting to raise page count.
1989 			 */
1990 			goto export;
1991 		}
1992 
1993 		head = compound_head(page);
1994 		if (!page_cache_get_speculative(head))
1995 			goto repeat;
1996 
1997 		/* The page was split under us? */
1998 		if (compound_head(page) != head) {
1999 			put_page(head);
2000 			goto repeat;
2001 		}
2002 
2003 		/* Has the page moved? */
2004 		if (unlikely(page != *slot)) {
2005 			put_page(head);
2006 			goto repeat;
2007 		}
2008 export:
2009 		indices[ret] = iter.index;
2010 		entries[ret] = page;
2011 		if (++ret == nr_entries)
2012 			break;
2013 	}
2014 	rcu_read_unlock();
2015 	return ret;
2016 }
2017 EXPORT_SYMBOL(find_get_entries_tag);
2018 
2019 /*
2020  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2021  * a _large_ part of the i/o request. Imagine the worst scenario:
2022  *
2023  *      ---R__________________________________________B__________
2024  *         ^ reading here                             ^ bad block(assume 4k)
2025  *
2026  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2027  * => failing the whole request => read(R) => read(R+1) =>
2028  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2029  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2030  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2031  *
2032  * It is going insane. Fix it by quickly scaling down the readahead size.
2033  */
2034 static void shrink_readahead_size_eio(struct file *filp,
2035 					struct file_ra_state *ra)
2036 {
2037 	ra->ra_pages /= 4;
2038 }
2039 
2040 /**
2041  * generic_file_buffered_read - generic file read routine
2042  * @iocb:	the iocb to read
2043  * @iter:	data destination
2044  * @written:	already copied
2045  *
2046  * This is a generic file read routine, and uses the
2047  * mapping->a_ops->readpage() function for the actual low-level stuff.
2048  *
2049  * This is really ugly. But the goto's actually try to clarify some
2050  * of the logic when it comes to error handling etc.
2051  */
2052 static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2053 		struct iov_iter *iter, ssize_t written)
2054 {
2055 	struct file *filp = iocb->ki_filp;
2056 	struct address_space *mapping = filp->f_mapping;
2057 	struct inode *inode = mapping->host;
2058 	struct file_ra_state *ra = &filp->f_ra;
2059 	loff_t *ppos = &iocb->ki_pos;
2060 	pgoff_t index;
2061 	pgoff_t last_index;
2062 	pgoff_t prev_index;
2063 	unsigned long offset;      /* offset into pagecache page */
2064 	unsigned int prev_offset;
2065 	int error = 0;
2066 
2067 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2068 		return 0;
2069 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2070 
2071 	index = *ppos >> PAGE_SHIFT;
2072 	prev_index = ra->prev_pos >> PAGE_SHIFT;
2073 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2074 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2075 	offset = *ppos & ~PAGE_MASK;
2076 
2077 	for (;;) {
2078 		struct page *page;
2079 		pgoff_t end_index;
2080 		loff_t isize;
2081 		unsigned long nr, ret;
2082 
2083 		cond_resched();
2084 find_page:
2085 		if (fatal_signal_pending(current)) {
2086 			error = -EINTR;
2087 			goto out;
2088 		}
2089 
2090 		page = find_get_page(mapping, index);
2091 		if (!page) {
2092 			if (iocb->ki_flags & IOCB_NOWAIT)
2093 				goto would_block;
2094 			page_cache_sync_readahead(mapping,
2095 					ra, filp,
2096 					index, last_index - index);
2097 			page = find_get_page(mapping, index);
2098 			if (unlikely(page == NULL))
2099 				goto no_cached_page;
2100 		}
2101 		if (PageReadahead(page)) {
2102 			page_cache_async_readahead(mapping,
2103 					ra, filp, page,
2104 					index, last_index - index);
2105 		}
2106 		if (!PageUptodate(page)) {
2107 			if (iocb->ki_flags & IOCB_NOWAIT) {
2108 				put_page(page);
2109 				goto would_block;
2110 			}
2111 
2112 			/*
2113 			 * See comment in do_read_cache_page on why
2114 			 * wait_on_page_locked is used to avoid unnecessarily
2115 			 * serialisations and why it's safe.
2116 			 */
2117 			error = wait_on_page_locked_killable(page);
2118 			if (unlikely(error))
2119 				goto readpage_error;
2120 			if (PageUptodate(page))
2121 				goto page_ok;
2122 
2123 			if (inode->i_blkbits == PAGE_SHIFT ||
2124 					!mapping->a_ops->is_partially_uptodate)
2125 				goto page_not_up_to_date;
2126 			/* pipes can't handle partially uptodate pages */
2127 			if (unlikely(iter->type & ITER_PIPE))
2128 				goto page_not_up_to_date;
2129 			if (!trylock_page(page))
2130 				goto page_not_up_to_date;
2131 			/* Did it get truncated before we got the lock? */
2132 			if (!page->mapping)
2133 				goto page_not_up_to_date_locked;
2134 			if (!mapping->a_ops->is_partially_uptodate(page,
2135 							offset, iter->count))
2136 				goto page_not_up_to_date_locked;
2137 			unlock_page(page);
2138 		}
2139 page_ok:
2140 		/*
2141 		 * i_size must be checked after we know the page is Uptodate.
2142 		 *
2143 		 * Checking i_size after the check allows us to calculate
2144 		 * the correct value for "nr", which means the zero-filled
2145 		 * part of the page is not copied back to userspace (unless
2146 		 * another truncate extends the file - this is desired though).
2147 		 */
2148 
2149 		isize = i_size_read(inode);
2150 		end_index = (isize - 1) >> PAGE_SHIFT;
2151 		if (unlikely(!isize || index > end_index)) {
2152 			put_page(page);
2153 			goto out;
2154 		}
2155 
2156 		/* nr is the maximum number of bytes to copy from this page */
2157 		nr = PAGE_SIZE;
2158 		if (index == end_index) {
2159 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2160 			if (nr <= offset) {
2161 				put_page(page);
2162 				goto out;
2163 			}
2164 		}
2165 		nr = nr - offset;
2166 
2167 		/* If users can be writing to this page using arbitrary
2168 		 * virtual addresses, take care about potential aliasing
2169 		 * before reading the page on the kernel side.
2170 		 */
2171 		if (mapping_writably_mapped(mapping))
2172 			flush_dcache_page(page);
2173 
2174 		/*
2175 		 * When a sequential read accesses a page several times,
2176 		 * only mark it as accessed the first time.
2177 		 */
2178 		if (prev_index != index || offset != prev_offset)
2179 			mark_page_accessed(page);
2180 		prev_index = index;
2181 
2182 		/*
2183 		 * Ok, we have the page, and it's up-to-date, so
2184 		 * now we can copy it to user space...
2185 		 */
2186 
2187 		ret = copy_page_to_iter(page, offset, nr, iter);
2188 		offset += ret;
2189 		index += offset >> PAGE_SHIFT;
2190 		offset &= ~PAGE_MASK;
2191 		prev_offset = offset;
2192 
2193 		put_page(page);
2194 		written += ret;
2195 		if (!iov_iter_count(iter))
2196 			goto out;
2197 		if (ret < nr) {
2198 			error = -EFAULT;
2199 			goto out;
2200 		}
2201 		continue;
2202 
2203 page_not_up_to_date:
2204 		/* Get exclusive access to the page ... */
2205 		error = lock_page_killable(page);
2206 		if (unlikely(error))
2207 			goto readpage_error;
2208 
2209 page_not_up_to_date_locked:
2210 		/* Did it get truncated before we got the lock? */
2211 		if (!page->mapping) {
2212 			unlock_page(page);
2213 			put_page(page);
2214 			continue;
2215 		}
2216 
2217 		/* Did somebody else fill it already? */
2218 		if (PageUptodate(page)) {
2219 			unlock_page(page);
2220 			goto page_ok;
2221 		}
2222 
2223 readpage:
2224 		/*
2225 		 * A previous I/O error may have been due to temporary
2226 		 * failures, eg. multipath errors.
2227 		 * PG_error will be set again if readpage fails.
2228 		 */
2229 		ClearPageError(page);
2230 		/* Start the actual read. The read will unlock the page. */
2231 		error = mapping->a_ops->readpage(filp, page);
2232 
2233 		if (unlikely(error)) {
2234 			if (error == AOP_TRUNCATED_PAGE) {
2235 				put_page(page);
2236 				error = 0;
2237 				goto find_page;
2238 			}
2239 			goto readpage_error;
2240 		}
2241 
2242 		if (!PageUptodate(page)) {
2243 			error = lock_page_killable(page);
2244 			if (unlikely(error))
2245 				goto readpage_error;
2246 			if (!PageUptodate(page)) {
2247 				if (page->mapping == NULL) {
2248 					/*
2249 					 * invalidate_mapping_pages got it
2250 					 */
2251 					unlock_page(page);
2252 					put_page(page);
2253 					goto find_page;
2254 				}
2255 				unlock_page(page);
2256 				shrink_readahead_size_eio(filp, ra);
2257 				error = -EIO;
2258 				goto readpage_error;
2259 			}
2260 			unlock_page(page);
2261 		}
2262 
2263 		goto page_ok;
2264 
2265 readpage_error:
2266 		/* UHHUH! A synchronous read error occurred. Report it */
2267 		put_page(page);
2268 		goto out;
2269 
2270 no_cached_page:
2271 		/*
2272 		 * Ok, it wasn't cached, so we need to create a new
2273 		 * page..
2274 		 */
2275 		page = page_cache_alloc(mapping);
2276 		if (!page) {
2277 			error = -ENOMEM;
2278 			goto out;
2279 		}
2280 		error = add_to_page_cache_lru(page, mapping, index,
2281 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2282 		if (error) {
2283 			put_page(page);
2284 			if (error == -EEXIST) {
2285 				error = 0;
2286 				goto find_page;
2287 			}
2288 			goto out;
2289 		}
2290 		goto readpage;
2291 	}
2292 
2293 would_block:
2294 	error = -EAGAIN;
2295 out:
2296 	ra->prev_pos = prev_index;
2297 	ra->prev_pos <<= PAGE_SHIFT;
2298 	ra->prev_pos |= prev_offset;
2299 
2300 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2301 	file_accessed(filp);
2302 	return written ? written : error;
2303 }
2304 
2305 /**
2306  * generic_file_read_iter - generic filesystem read routine
2307  * @iocb:	kernel I/O control block
2308  * @iter:	destination for the data read
2309  *
2310  * This is the "read_iter()" routine for all filesystems
2311  * that can use the page cache directly.
2312  */
2313 ssize_t
2314 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2315 {
2316 	size_t count = iov_iter_count(iter);
2317 	ssize_t retval = 0;
2318 
2319 	if (!count)
2320 		goto out; /* skip atime */
2321 
2322 	if (iocb->ki_flags & IOCB_DIRECT) {
2323 		struct file *file = iocb->ki_filp;
2324 		struct address_space *mapping = file->f_mapping;
2325 		struct inode *inode = mapping->host;
2326 		loff_t size;
2327 
2328 		size = i_size_read(inode);
2329 		if (iocb->ki_flags & IOCB_NOWAIT) {
2330 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2331 						   iocb->ki_pos + count - 1))
2332 				return -EAGAIN;
2333 		} else {
2334 			retval = filemap_write_and_wait_range(mapping,
2335 						iocb->ki_pos,
2336 					        iocb->ki_pos + count - 1);
2337 			if (retval < 0)
2338 				goto out;
2339 		}
2340 
2341 		file_accessed(file);
2342 
2343 		retval = mapping->a_ops->direct_IO(iocb, iter);
2344 		if (retval >= 0) {
2345 			iocb->ki_pos += retval;
2346 			count -= retval;
2347 		}
2348 		iov_iter_revert(iter, count - iov_iter_count(iter));
2349 
2350 		/*
2351 		 * Btrfs can have a short DIO read if we encounter
2352 		 * compressed extents, so if there was an error, or if
2353 		 * we've already read everything we wanted to, or if
2354 		 * there was a short read because we hit EOF, go ahead
2355 		 * and return.  Otherwise fallthrough to buffered io for
2356 		 * the rest of the read.  Buffered reads will not work for
2357 		 * DAX files, so don't bother trying.
2358 		 */
2359 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2360 		    IS_DAX(inode))
2361 			goto out;
2362 	}
2363 
2364 	retval = generic_file_buffered_read(iocb, iter, retval);
2365 out:
2366 	return retval;
2367 }
2368 EXPORT_SYMBOL(generic_file_read_iter);
2369 
2370 #ifdef CONFIG_MMU
2371 /**
2372  * page_cache_read - adds requested page to the page cache if not already there
2373  * @file:	file to read
2374  * @offset:	page index
2375  * @gfp_mask:	memory allocation flags
2376  *
2377  * This adds the requested page to the page cache if it isn't already there,
2378  * and schedules an I/O to read in its contents from disk.
2379  */
2380 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2381 {
2382 	struct address_space *mapping = file->f_mapping;
2383 	struct page *page;
2384 	int ret;
2385 
2386 	do {
2387 		page = __page_cache_alloc(gfp_mask);
2388 		if (!page)
2389 			return -ENOMEM;
2390 
2391 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2392 		if (ret == 0)
2393 			ret = mapping->a_ops->readpage(file, page);
2394 		else if (ret == -EEXIST)
2395 			ret = 0; /* losing race to add is OK */
2396 
2397 		put_page(page);
2398 
2399 	} while (ret == AOP_TRUNCATED_PAGE);
2400 
2401 	return ret;
2402 }
2403 
2404 #define MMAP_LOTSAMISS  (100)
2405 
2406 /*
2407  * Synchronous readahead happens when we don't even find
2408  * a page in the page cache at all.
2409  */
2410 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2411 				   struct file_ra_state *ra,
2412 				   struct file *file,
2413 				   pgoff_t offset)
2414 {
2415 	struct address_space *mapping = file->f_mapping;
2416 
2417 	/* If we don't want any read-ahead, don't bother */
2418 	if (vma->vm_flags & VM_RAND_READ)
2419 		return;
2420 	if (!ra->ra_pages)
2421 		return;
2422 
2423 	if (vma->vm_flags & VM_SEQ_READ) {
2424 		page_cache_sync_readahead(mapping, ra, file, offset,
2425 					  ra->ra_pages);
2426 		return;
2427 	}
2428 
2429 	/* Avoid banging the cache line if not needed */
2430 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2431 		ra->mmap_miss++;
2432 
2433 	/*
2434 	 * Do we miss much more than hit in this file? If so,
2435 	 * stop bothering with read-ahead. It will only hurt.
2436 	 */
2437 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2438 		return;
2439 
2440 	/*
2441 	 * mmap read-around
2442 	 */
2443 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2444 	ra->size = ra->ra_pages;
2445 	ra->async_size = ra->ra_pages / 4;
2446 	ra_submit(ra, mapping, file);
2447 }
2448 
2449 /*
2450  * Asynchronous readahead happens when we find the page and PG_readahead,
2451  * so we want to possibly extend the readahead further..
2452  */
2453 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2454 				    struct file_ra_state *ra,
2455 				    struct file *file,
2456 				    struct page *page,
2457 				    pgoff_t offset)
2458 {
2459 	struct address_space *mapping = file->f_mapping;
2460 
2461 	/* If we don't want any read-ahead, don't bother */
2462 	if (vma->vm_flags & VM_RAND_READ)
2463 		return;
2464 	if (ra->mmap_miss > 0)
2465 		ra->mmap_miss--;
2466 	if (PageReadahead(page))
2467 		page_cache_async_readahead(mapping, ra, file,
2468 					   page, offset, ra->ra_pages);
2469 }
2470 
2471 /**
2472  * filemap_fault - read in file data for page fault handling
2473  * @vmf:	struct vm_fault containing details of the fault
2474  *
2475  * filemap_fault() is invoked via the vma operations vector for a
2476  * mapped memory region to read in file data during a page fault.
2477  *
2478  * The goto's are kind of ugly, but this streamlines the normal case of having
2479  * it in the page cache, and handles the special cases reasonably without
2480  * having a lot of duplicated code.
2481  *
2482  * vma->vm_mm->mmap_sem must be held on entry.
2483  *
2484  * If our return value has VM_FAULT_RETRY set, it's because
2485  * lock_page_or_retry() returned 0.
2486  * The mmap_sem has usually been released in this case.
2487  * See __lock_page_or_retry() for the exception.
2488  *
2489  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2490  * has not been released.
2491  *
2492  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2493  */
2494 int filemap_fault(struct vm_fault *vmf)
2495 {
2496 	int error;
2497 	struct file *file = vmf->vma->vm_file;
2498 	struct address_space *mapping = file->f_mapping;
2499 	struct file_ra_state *ra = &file->f_ra;
2500 	struct inode *inode = mapping->host;
2501 	pgoff_t offset = vmf->pgoff;
2502 	pgoff_t max_off;
2503 	struct page *page;
2504 	int ret = 0;
2505 
2506 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2507 	if (unlikely(offset >= max_off))
2508 		return VM_FAULT_SIGBUS;
2509 
2510 	/*
2511 	 * Do we have something in the page cache already?
2512 	 */
2513 	page = find_get_page(mapping, offset);
2514 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2515 		/*
2516 		 * We found the page, so try async readahead before
2517 		 * waiting for the lock.
2518 		 */
2519 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2520 	} else if (!page) {
2521 		/* No page in the page cache at all */
2522 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2523 		count_vm_event(PGMAJFAULT);
2524 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2525 		ret = VM_FAULT_MAJOR;
2526 retry_find:
2527 		page = find_get_page(mapping, offset);
2528 		if (!page)
2529 			goto no_cached_page;
2530 	}
2531 
2532 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2533 		put_page(page);
2534 		return ret | VM_FAULT_RETRY;
2535 	}
2536 
2537 	/* Did it get truncated? */
2538 	if (unlikely(page->mapping != mapping)) {
2539 		unlock_page(page);
2540 		put_page(page);
2541 		goto retry_find;
2542 	}
2543 	VM_BUG_ON_PAGE(page->index != offset, page);
2544 
2545 	/*
2546 	 * We have a locked page in the page cache, now we need to check
2547 	 * that it's up-to-date. If not, it is going to be due to an error.
2548 	 */
2549 	if (unlikely(!PageUptodate(page)))
2550 		goto page_not_uptodate;
2551 
2552 	/*
2553 	 * Found the page and have a reference on it.
2554 	 * We must recheck i_size under page lock.
2555 	 */
2556 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2557 	if (unlikely(offset >= max_off)) {
2558 		unlock_page(page);
2559 		put_page(page);
2560 		return VM_FAULT_SIGBUS;
2561 	}
2562 
2563 	vmf->page = page;
2564 	return ret | VM_FAULT_LOCKED;
2565 
2566 no_cached_page:
2567 	/*
2568 	 * We're only likely to ever get here if MADV_RANDOM is in
2569 	 * effect.
2570 	 */
2571 	error = page_cache_read(file, offset, vmf->gfp_mask);
2572 
2573 	/*
2574 	 * The page we want has now been added to the page cache.
2575 	 * In the unlikely event that someone removed it in the
2576 	 * meantime, we'll just come back here and read it again.
2577 	 */
2578 	if (error >= 0)
2579 		goto retry_find;
2580 
2581 	/*
2582 	 * An error return from page_cache_read can result if the
2583 	 * system is low on memory, or a problem occurs while trying
2584 	 * to schedule I/O.
2585 	 */
2586 	if (error == -ENOMEM)
2587 		return VM_FAULT_OOM;
2588 	return VM_FAULT_SIGBUS;
2589 
2590 page_not_uptodate:
2591 	/*
2592 	 * Umm, take care of errors if the page isn't up-to-date.
2593 	 * Try to re-read it _once_. We do this synchronously,
2594 	 * because there really aren't any performance issues here
2595 	 * and we need to check for errors.
2596 	 */
2597 	ClearPageError(page);
2598 	error = mapping->a_ops->readpage(file, page);
2599 	if (!error) {
2600 		wait_on_page_locked(page);
2601 		if (!PageUptodate(page))
2602 			error = -EIO;
2603 	}
2604 	put_page(page);
2605 
2606 	if (!error || error == AOP_TRUNCATED_PAGE)
2607 		goto retry_find;
2608 
2609 	/* Things didn't work out. Return zero to tell the mm layer so. */
2610 	shrink_readahead_size_eio(file, ra);
2611 	return VM_FAULT_SIGBUS;
2612 }
2613 EXPORT_SYMBOL(filemap_fault);
2614 
2615 void filemap_map_pages(struct vm_fault *vmf,
2616 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2617 {
2618 	struct radix_tree_iter iter;
2619 	void **slot;
2620 	struct file *file = vmf->vma->vm_file;
2621 	struct address_space *mapping = file->f_mapping;
2622 	pgoff_t last_pgoff = start_pgoff;
2623 	unsigned long max_idx;
2624 	struct page *head, *page;
2625 
2626 	rcu_read_lock();
2627 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2628 			start_pgoff) {
2629 		if (iter.index > end_pgoff)
2630 			break;
2631 repeat:
2632 		page = radix_tree_deref_slot(slot);
2633 		if (unlikely(!page))
2634 			goto next;
2635 		if (radix_tree_exception(page)) {
2636 			if (radix_tree_deref_retry(page)) {
2637 				slot = radix_tree_iter_retry(&iter);
2638 				continue;
2639 			}
2640 			goto next;
2641 		}
2642 
2643 		head = compound_head(page);
2644 		if (!page_cache_get_speculative(head))
2645 			goto repeat;
2646 
2647 		/* The page was split under us? */
2648 		if (compound_head(page) != head) {
2649 			put_page(head);
2650 			goto repeat;
2651 		}
2652 
2653 		/* Has the page moved? */
2654 		if (unlikely(page != *slot)) {
2655 			put_page(head);
2656 			goto repeat;
2657 		}
2658 
2659 		if (!PageUptodate(page) ||
2660 				PageReadahead(page) ||
2661 				PageHWPoison(page))
2662 			goto skip;
2663 		if (!trylock_page(page))
2664 			goto skip;
2665 
2666 		if (page->mapping != mapping || !PageUptodate(page))
2667 			goto unlock;
2668 
2669 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2670 		if (page->index >= max_idx)
2671 			goto unlock;
2672 
2673 		if (file->f_ra.mmap_miss > 0)
2674 			file->f_ra.mmap_miss--;
2675 
2676 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2677 		if (vmf->pte)
2678 			vmf->pte += iter.index - last_pgoff;
2679 		last_pgoff = iter.index;
2680 		if (alloc_set_pte(vmf, NULL, page))
2681 			goto unlock;
2682 		unlock_page(page);
2683 		goto next;
2684 unlock:
2685 		unlock_page(page);
2686 skip:
2687 		put_page(page);
2688 next:
2689 		/* Huge page is mapped? No need to proceed. */
2690 		if (pmd_trans_huge(*vmf->pmd))
2691 			break;
2692 		if (iter.index == end_pgoff)
2693 			break;
2694 	}
2695 	rcu_read_unlock();
2696 }
2697 EXPORT_SYMBOL(filemap_map_pages);
2698 
2699 int filemap_page_mkwrite(struct vm_fault *vmf)
2700 {
2701 	struct page *page = vmf->page;
2702 	struct inode *inode = file_inode(vmf->vma->vm_file);
2703 	int ret = VM_FAULT_LOCKED;
2704 
2705 	sb_start_pagefault(inode->i_sb);
2706 	file_update_time(vmf->vma->vm_file);
2707 	lock_page(page);
2708 	if (page->mapping != inode->i_mapping) {
2709 		unlock_page(page);
2710 		ret = VM_FAULT_NOPAGE;
2711 		goto out;
2712 	}
2713 	/*
2714 	 * We mark the page dirty already here so that when freeze is in
2715 	 * progress, we are guaranteed that writeback during freezing will
2716 	 * see the dirty page and writeprotect it again.
2717 	 */
2718 	set_page_dirty(page);
2719 	wait_for_stable_page(page);
2720 out:
2721 	sb_end_pagefault(inode->i_sb);
2722 	return ret;
2723 }
2724 EXPORT_SYMBOL(filemap_page_mkwrite);
2725 
2726 const struct vm_operations_struct generic_file_vm_ops = {
2727 	.fault		= filemap_fault,
2728 	.map_pages	= filemap_map_pages,
2729 	.page_mkwrite	= filemap_page_mkwrite,
2730 };
2731 
2732 /* This is used for a general mmap of a disk file */
2733 
2734 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2735 {
2736 	struct address_space *mapping = file->f_mapping;
2737 
2738 	if (!mapping->a_ops->readpage)
2739 		return -ENOEXEC;
2740 	file_accessed(file);
2741 	vma->vm_ops = &generic_file_vm_ops;
2742 	return 0;
2743 }
2744 
2745 /*
2746  * This is for filesystems which do not implement ->writepage.
2747  */
2748 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2749 {
2750 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2751 		return -EINVAL;
2752 	return generic_file_mmap(file, vma);
2753 }
2754 #else
2755 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756 {
2757 	return -ENOSYS;
2758 }
2759 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760 {
2761 	return -ENOSYS;
2762 }
2763 #endif /* CONFIG_MMU */
2764 
2765 EXPORT_SYMBOL(generic_file_mmap);
2766 EXPORT_SYMBOL(generic_file_readonly_mmap);
2767 
2768 static struct page *wait_on_page_read(struct page *page)
2769 {
2770 	if (!IS_ERR(page)) {
2771 		wait_on_page_locked(page);
2772 		if (!PageUptodate(page)) {
2773 			put_page(page);
2774 			page = ERR_PTR(-EIO);
2775 		}
2776 	}
2777 	return page;
2778 }
2779 
2780 static struct page *do_read_cache_page(struct address_space *mapping,
2781 				pgoff_t index,
2782 				int (*filler)(void *, struct page *),
2783 				void *data,
2784 				gfp_t gfp)
2785 {
2786 	struct page *page;
2787 	int err;
2788 repeat:
2789 	page = find_get_page(mapping, index);
2790 	if (!page) {
2791 		page = __page_cache_alloc(gfp);
2792 		if (!page)
2793 			return ERR_PTR(-ENOMEM);
2794 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2795 		if (unlikely(err)) {
2796 			put_page(page);
2797 			if (err == -EEXIST)
2798 				goto repeat;
2799 			/* Presumably ENOMEM for radix tree node */
2800 			return ERR_PTR(err);
2801 		}
2802 
2803 filler:
2804 		err = filler(data, page);
2805 		if (err < 0) {
2806 			put_page(page);
2807 			return ERR_PTR(err);
2808 		}
2809 
2810 		page = wait_on_page_read(page);
2811 		if (IS_ERR(page))
2812 			return page;
2813 		goto out;
2814 	}
2815 	if (PageUptodate(page))
2816 		goto out;
2817 
2818 	/*
2819 	 * Page is not up to date and may be locked due one of the following
2820 	 * case a: Page is being filled and the page lock is held
2821 	 * case b: Read/write error clearing the page uptodate status
2822 	 * case c: Truncation in progress (page locked)
2823 	 * case d: Reclaim in progress
2824 	 *
2825 	 * Case a, the page will be up to date when the page is unlocked.
2826 	 *    There is no need to serialise on the page lock here as the page
2827 	 *    is pinned so the lock gives no additional protection. Even if the
2828 	 *    the page is truncated, the data is still valid if PageUptodate as
2829 	 *    it's a race vs truncate race.
2830 	 * Case b, the page will not be up to date
2831 	 * Case c, the page may be truncated but in itself, the data may still
2832 	 *    be valid after IO completes as it's a read vs truncate race. The
2833 	 *    operation must restart if the page is not uptodate on unlock but
2834 	 *    otherwise serialising on page lock to stabilise the mapping gives
2835 	 *    no additional guarantees to the caller as the page lock is
2836 	 *    released before return.
2837 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2838 	 *    will be a race with remove_mapping that determines if the mapping
2839 	 *    is valid on unlock but otherwise the data is valid and there is
2840 	 *    no need to serialise with page lock.
2841 	 *
2842 	 * As the page lock gives no additional guarantee, we optimistically
2843 	 * wait on the page to be unlocked and check if it's up to date and
2844 	 * use the page if it is. Otherwise, the page lock is required to
2845 	 * distinguish between the different cases. The motivation is that we
2846 	 * avoid spurious serialisations and wakeups when multiple processes
2847 	 * wait on the same page for IO to complete.
2848 	 */
2849 	wait_on_page_locked(page);
2850 	if (PageUptodate(page))
2851 		goto out;
2852 
2853 	/* Distinguish between all the cases under the safety of the lock */
2854 	lock_page(page);
2855 
2856 	/* Case c or d, restart the operation */
2857 	if (!page->mapping) {
2858 		unlock_page(page);
2859 		put_page(page);
2860 		goto repeat;
2861 	}
2862 
2863 	/* Someone else locked and filled the page in a very small window */
2864 	if (PageUptodate(page)) {
2865 		unlock_page(page);
2866 		goto out;
2867 	}
2868 	goto filler;
2869 
2870 out:
2871 	mark_page_accessed(page);
2872 	return page;
2873 }
2874 
2875 /**
2876  * read_cache_page - read into page cache, fill it if needed
2877  * @mapping:	the page's address_space
2878  * @index:	the page index
2879  * @filler:	function to perform the read
2880  * @data:	first arg to filler(data, page) function, often left as NULL
2881  *
2882  * Read into the page cache. If a page already exists, and PageUptodate() is
2883  * not set, try to fill the page and wait for it to become unlocked.
2884  *
2885  * If the page does not get brought uptodate, return -EIO.
2886  */
2887 struct page *read_cache_page(struct address_space *mapping,
2888 				pgoff_t index,
2889 				int (*filler)(void *, struct page *),
2890 				void *data)
2891 {
2892 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2893 }
2894 EXPORT_SYMBOL(read_cache_page);
2895 
2896 /**
2897  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2898  * @mapping:	the page's address_space
2899  * @index:	the page index
2900  * @gfp:	the page allocator flags to use if allocating
2901  *
2902  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2903  * any new page allocations done using the specified allocation flags.
2904  *
2905  * If the page does not get brought uptodate, return -EIO.
2906  */
2907 struct page *read_cache_page_gfp(struct address_space *mapping,
2908 				pgoff_t index,
2909 				gfp_t gfp)
2910 {
2911 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2912 
2913 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2914 }
2915 EXPORT_SYMBOL(read_cache_page_gfp);
2916 
2917 /*
2918  * Performs necessary checks before doing a write
2919  *
2920  * Can adjust writing position or amount of bytes to write.
2921  * Returns appropriate error code that caller should return or
2922  * zero in case that write should be allowed.
2923  */
2924 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2925 {
2926 	struct file *file = iocb->ki_filp;
2927 	struct inode *inode = file->f_mapping->host;
2928 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2929 	loff_t pos;
2930 
2931 	if (!iov_iter_count(from))
2932 		return 0;
2933 
2934 	/* FIXME: this is for backwards compatibility with 2.4 */
2935 	if (iocb->ki_flags & IOCB_APPEND)
2936 		iocb->ki_pos = i_size_read(inode);
2937 
2938 	pos = iocb->ki_pos;
2939 
2940 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2941 		return -EINVAL;
2942 
2943 	if (limit != RLIM_INFINITY) {
2944 		if (iocb->ki_pos >= limit) {
2945 			send_sig(SIGXFSZ, current, 0);
2946 			return -EFBIG;
2947 		}
2948 		iov_iter_truncate(from, limit - (unsigned long)pos);
2949 	}
2950 
2951 	/*
2952 	 * LFS rule
2953 	 */
2954 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2955 				!(file->f_flags & O_LARGEFILE))) {
2956 		if (pos >= MAX_NON_LFS)
2957 			return -EFBIG;
2958 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2959 	}
2960 
2961 	/*
2962 	 * Are we about to exceed the fs block limit ?
2963 	 *
2964 	 * If we have written data it becomes a short write.  If we have
2965 	 * exceeded without writing data we send a signal and return EFBIG.
2966 	 * Linus frestrict idea will clean these up nicely..
2967 	 */
2968 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2969 		return -EFBIG;
2970 
2971 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2972 	return iov_iter_count(from);
2973 }
2974 EXPORT_SYMBOL(generic_write_checks);
2975 
2976 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2977 				loff_t pos, unsigned len, unsigned flags,
2978 				struct page **pagep, void **fsdata)
2979 {
2980 	const struct address_space_operations *aops = mapping->a_ops;
2981 
2982 	return aops->write_begin(file, mapping, pos, len, flags,
2983 							pagep, fsdata);
2984 }
2985 EXPORT_SYMBOL(pagecache_write_begin);
2986 
2987 int pagecache_write_end(struct file *file, struct address_space *mapping,
2988 				loff_t pos, unsigned len, unsigned copied,
2989 				struct page *page, void *fsdata)
2990 {
2991 	const struct address_space_operations *aops = mapping->a_ops;
2992 
2993 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2994 }
2995 EXPORT_SYMBOL(pagecache_write_end);
2996 
2997 ssize_t
2998 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2999 {
3000 	struct file	*file = iocb->ki_filp;
3001 	struct address_space *mapping = file->f_mapping;
3002 	struct inode	*inode = mapping->host;
3003 	loff_t		pos = iocb->ki_pos;
3004 	ssize_t		written;
3005 	size_t		write_len;
3006 	pgoff_t		end;
3007 
3008 	write_len = iov_iter_count(from);
3009 	end = (pos + write_len - 1) >> PAGE_SHIFT;
3010 
3011 	if (iocb->ki_flags & IOCB_NOWAIT) {
3012 		/* If there are pages to writeback, return */
3013 		if (filemap_range_has_page(inode->i_mapping, pos,
3014 					   pos + iov_iter_count(from)))
3015 			return -EAGAIN;
3016 	} else {
3017 		written = filemap_write_and_wait_range(mapping, pos,
3018 							pos + write_len - 1);
3019 		if (written)
3020 			goto out;
3021 	}
3022 
3023 	/*
3024 	 * After a write we want buffered reads to be sure to go to disk to get
3025 	 * the new data.  We invalidate clean cached page from the region we're
3026 	 * about to write.  We do this *before* the write so that we can return
3027 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
3028 	 */
3029 	written = invalidate_inode_pages2_range(mapping,
3030 					pos >> PAGE_SHIFT, end);
3031 	/*
3032 	 * If a page can not be invalidated, return 0 to fall back
3033 	 * to buffered write.
3034 	 */
3035 	if (written) {
3036 		if (written == -EBUSY)
3037 			return 0;
3038 		goto out;
3039 	}
3040 
3041 	written = mapping->a_ops->direct_IO(iocb, from);
3042 
3043 	/*
3044 	 * Finally, try again to invalidate clean pages which might have been
3045 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3046 	 * if the source of the write was an mmap'ed region of the file
3047 	 * we're writing.  Either one is a pretty crazy thing to do,
3048 	 * so we don't support it 100%.  If this invalidation
3049 	 * fails, tough, the write still worked...
3050 	 *
3051 	 * Most of the time we do not need this since dio_complete() will do
3052 	 * the invalidation for us. However there are some file systems that
3053 	 * do not end up with dio_complete() being called, so let's not break
3054 	 * them by removing it completely
3055 	 */
3056 	if (mapping->nrpages)
3057 		invalidate_inode_pages2_range(mapping,
3058 					pos >> PAGE_SHIFT, end);
3059 
3060 	if (written > 0) {
3061 		pos += written;
3062 		write_len -= written;
3063 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3064 			i_size_write(inode, pos);
3065 			mark_inode_dirty(inode);
3066 		}
3067 		iocb->ki_pos = pos;
3068 	}
3069 	iov_iter_revert(from, write_len - iov_iter_count(from));
3070 out:
3071 	return written;
3072 }
3073 EXPORT_SYMBOL(generic_file_direct_write);
3074 
3075 /*
3076  * Find or create a page at the given pagecache position. Return the locked
3077  * page. This function is specifically for buffered writes.
3078  */
3079 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3080 					pgoff_t index, unsigned flags)
3081 {
3082 	struct page *page;
3083 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3084 
3085 	if (flags & AOP_FLAG_NOFS)
3086 		fgp_flags |= FGP_NOFS;
3087 
3088 	page = pagecache_get_page(mapping, index, fgp_flags,
3089 			mapping_gfp_mask(mapping));
3090 	if (page)
3091 		wait_for_stable_page(page);
3092 
3093 	return page;
3094 }
3095 EXPORT_SYMBOL(grab_cache_page_write_begin);
3096 
3097 ssize_t generic_perform_write(struct file *file,
3098 				struct iov_iter *i, loff_t pos)
3099 {
3100 	struct address_space *mapping = file->f_mapping;
3101 	const struct address_space_operations *a_ops = mapping->a_ops;
3102 	long status = 0;
3103 	ssize_t written = 0;
3104 	unsigned int flags = 0;
3105 
3106 	do {
3107 		struct page *page;
3108 		unsigned long offset;	/* Offset into pagecache page */
3109 		unsigned long bytes;	/* Bytes to write to page */
3110 		size_t copied;		/* Bytes copied from user */
3111 		void *fsdata;
3112 
3113 		offset = (pos & (PAGE_SIZE - 1));
3114 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3115 						iov_iter_count(i));
3116 
3117 again:
3118 		/*
3119 		 * Bring in the user page that we will copy from _first_.
3120 		 * Otherwise there's a nasty deadlock on copying from the
3121 		 * same page as we're writing to, without it being marked
3122 		 * up-to-date.
3123 		 *
3124 		 * Not only is this an optimisation, but it is also required
3125 		 * to check that the address is actually valid, when atomic
3126 		 * usercopies are used, below.
3127 		 */
3128 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3129 			status = -EFAULT;
3130 			break;
3131 		}
3132 
3133 		if (fatal_signal_pending(current)) {
3134 			status = -EINTR;
3135 			break;
3136 		}
3137 
3138 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3139 						&page, &fsdata);
3140 		if (unlikely(status < 0))
3141 			break;
3142 
3143 		if (mapping_writably_mapped(mapping))
3144 			flush_dcache_page(page);
3145 
3146 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3147 		flush_dcache_page(page);
3148 
3149 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3150 						page, fsdata);
3151 		if (unlikely(status < 0))
3152 			break;
3153 		copied = status;
3154 
3155 		cond_resched();
3156 
3157 		iov_iter_advance(i, copied);
3158 		if (unlikely(copied == 0)) {
3159 			/*
3160 			 * If we were unable to copy any data at all, we must
3161 			 * fall back to a single segment length write.
3162 			 *
3163 			 * If we didn't fallback here, we could livelock
3164 			 * because not all segments in the iov can be copied at
3165 			 * once without a pagefault.
3166 			 */
3167 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3168 						iov_iter_single_seg_count(i));
3169 			goto again;
3170 		}
3171 		pos += copied;
3172 		written += copied;
3173 
3174 		balance_dirty_pages_ratelimited(mapping);
3175 	} while (iov_iter_count(i));
3176 
3177 	return written ? written : status;
3178 }
3179 EXPORT_SYMBOL(generic_perform_write);
3180 
3181 /**
3182  * __generic_file_write_iter - write data to a file
3183  * @iocb:	IO state structure (file, offset, etc.)
3184  * @from:	iov_iter with data to write
3185  *
3186  * This function does all the work needed for actually writing data to a
3187  * file. It does all basic checks, removes SUID from the file, updates
3188  * modification times and calls proper subroutines depending on whether we
3189  * do direct IO or a standard buffered write.
3190  *
3191  * It expects i_mutex to be grabbed unless we work on a block device or similar
3192  * object which does not need locking at all.
3193  *
3194  * This function does *not* take care of syncing data in case of O_SYNC write.
3195  * A caller has to handle it. This is mainly due to the fact that we want to
3196  * avoid syncing under i_mutex.
3197  */
3198 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3199 {
3200 	struct file *file = iocb->ki_filp;
3201 	struct address_space * mapping = file->f_mapping;
3202 	struct inode 	*inode = mapping->host;
3203 	ssize_t		written = 0;
3204 	ssize_t		err;
3205 	ssize_t		status;
3206 
3207 	/* We can write back this queue in page reclaim */
3208 	current->backing_dev_info = inode_to_bdi(inode);
3209 	err = file_remove_privs(file);
3210 	if (err)
3211 		goto out;
3212 
3213 	err = file_update_time(file);
3214 	if (err)
3215 		goto out;
3216 
3217 	if (iocb->ki_flags & IOCB_DIRECT) {
3218 		loff_t pos, endbyte;
3219 
3220 		written = generic_file_direct_write(iocb, from);
3221 		/*
3222 		 * If the write stopped short of completing, fall back to
3223 		 * buffered writes.  Some filesystems do this for writes to
3224 		 * holes, for example.  For DAX files, a buffered write will
3225 		 * not succeed (even if it did, DAX does not handle dirty
3226 		 * page-cache pages correctly).
3227 		 */
3228 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3229 			goto out;
3230 
3231 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3232 		/*
3233 		 * If generic_perform_write() returned a synchronous error
3234 		 * then we want to return the number of bytes which were
3235 		 * direct-written, or the error code if that was zero.  Note
3236 		 * that this differs from normal direct-io semantics, which
3237 		 * will return -EFOO even if some bytes were written.
3238 		 */
3239 		if (unlikely(status < 0)) {
3240 			err = status;
3241 			goto out;
3242 		}
3243 		/*
3244 		 * We need to ensure that the page cache pages are written to
3245 		 * disk and invalidated to preserve the expected O_DIRECT
3246 		 * semantics.
3247 		 */
3248 		endbyte = pos + status - 1;
3249 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3250 		if (err == 0) {
3251 			iocb->ki_pos = endbyte + 1;
3252 			written += status;
3253 			invalidate_mapping_pages(mapping,
3254 						 pos >> PAGE_SHIFT,
3255 						 endbyte >> PAGE_SHIFT);
3256 		} else {
3257 			/*
3258 			 * We don't know how much we wrote, so just return
3259 			 * the number of bytes which were direct-written
3260 			 */
3261 		}
3262 	} else {
3263 		written = generic_perform_write(file, from, iocb->ki_pos);
3264 		if (likely(written > 0))
3265 			iocb->ki_pos += written;
3266 	}
3267 out:
3268 	current->backing_dev_info = NULL;
3269 	return written ? written : err;
3270 }
3271 EXPORT_SYMBOL(__generic_file_write_iter);
3272 
3273 /**
3274  * generic_file_write_iter - write data to a file
3275  * @iocb:	IO state structure
3276  * @from:	iov_iter with data to write
3277  *
3278  * This is a wrapper around __generic_file_write_iter() to be used by most
3279  * filesystems. It takes care of syncing the file in case of O_SYNC file
3280  * and acquires i_mutex as needed.
3281  */
3282 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3283 {
3284 	struct file *file = iocb->ki_filp;
3285 	struct inode *inode = file->f_mapping->host;
3286 	ssize_t ret;
3287 
3288 	inode_lock(inode);
3289 	ret = generic_write_checks(iocb, from);
3290 	if (ret > 0)
3291 		ret = __generic_file_write_iter(iocb, from);
3292 	inode_unlock(inode);
3293 
3294 	if (ret > 0)
3295 		ret = generic_write_sync(iocb, ret);
3296 	return ret;
3297 }
3298 EXPORT_SYMBOL(generic_file_write_iter);
3299 
3300 /**
3301  * try_to_release_page() - release old fs-specific metadata on a page
3302  *
3303  * @page: the page which the kernel is trying to free
3304  * @gfp_mask: memory allocation flags (and I/O mode)
3305  *
3306  * The address_space is to try to release any data against the page
3307  * (presumably at page->private).  If the release was successful, return '1'.
3308  * Otherwise return zero.
3309  *
3310  * This may also be called if PG_fscache is set on a page, indicating that the
3311  * page is known to the local caching routines.
3312  *
3313  * The @gfp_mask argument specifies whether I/O may be performed to release
3314  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3315  *
3316  */
3317 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3318 {
3319 	struct address_space * const mapping = page->mapping;
3320 
3321 	BUG_ON(!PageLocked(page));
3322 	if (PageWriteback(page))
3323 		return 0;
3324 
3325 	if (mapping && mapping->a_ops->releasepage)
3326 		return mapping->a_ops->releasepage(page, gfp_mask);
3327 	return try_to_free_buffers(page);
3328 }
3329 
3330 EXPORT_SYMBOL(try_to_release_page);
3331