1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/module.h> 13 #include <linux/slab.h> 14 #include <linux/compiler.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/aio.h> 18 #include <linux/capability.h> 19 #include <linux/kernel_stat.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/pagevec.h> 29 #include <linux/blkdev.h> 30 #include <linux/security.h> 31 #include <linux/syscalls.h> 32 #include <linux/cpuset.h> 33 #include "filemap.h" 34 #include "internal.h" 35 36 /* 37 * FIXME: remove all knowledge of the buffer layer from the core VM 38 */ 39 #include <linux/buffer_head.h> /* for generic_osync_inode */ 40 41 #include <asm/mman.h> 42 43 static ssize_t 44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 45 loff_t offset, unsigned long nr_segs); 46 47 /* 48 * Shared mappings implemented 30.11.1994. It's not fully working yet, 49 * though. 50 * 51 * Shared mappings now work. 15.8.1995 Bruno. 52 * 53 * finished 'unifying' the page and buffer cache and SMP-threaded the 54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 55 * 56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 57 */ 58 59 /* 60 * Lock ordering: 61 * 62 * ->i_mmap_lock (vmtruncate) 63 * ->private_lock (__free_pte->__set_page_dirty_buffers) 64 * ->swap_lock (exclusive_swap_page, others) 65 * ->mapping->tree_lock 66 * 67 * ->i_mutex 68 * ->i_mmap_lock (truncate->unmap_mapping_range) 69 * 70 * ->mmap_sem 71 * ->i_mmap_lock 72 * ->page_table_lock or pte_lock (various, mainly in memory.c) 73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 74 * 75 * ->mmap_sem 76 * ->lock_page (access_process_vm) 77 * 78 * ->mmap_sem 79 * ->i_mutex (msync) 80 * 81 * ->i_mutex 82 * ->i_alloc_sem (various) 83 * 84 * ->inode_lock 85 * ->sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_lock 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * ->inode_lock (page_remove_rmap->set_page_dirty) 103 * ->inode_lock (zap_pte_range->set_page_dirty) 104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 105 * 106 * ->task->proc_lock 107 * ->dcache_lock (proc_pid_lookup) 108 */ 109 110 /* 111 * Remove a page from the page cache and free it. Caller has to make 112 * sure the page is locked and that nobody else uses it - or that usage 113 * is safe. The caller must hold a write_lock on the mapping's tree_lock. 114 */ 115 void __remove_from_page_cache(struct page *page) 116 { 117 struct address_space *mapping = page->mapping; 118 119 radix_tree_delete(&mapping->page_tree, page->index); 120 page->mapping = NULL; 121 mapping->nrpages--; 122 __dec_zone_page_state(page, NR_FILE_PAGES); 123 } 124 125 void remove_from_page_cache(struct page *page) 126 { 127 struct address_space *mapping = page->mapping; 128 129 BUG_ON(!PageLocked(page)); 130 131 write_lock_irq(&mapping->tree_lock); 132 __remove_from_page_cache(page); 133 write_unlock_irq(&mapping->tree_lock); 134 } 135 136 static int sync_page(void *word) 137 { 138 struct address_space *mapping; 139 struct page *page; 140 141 page = container_of((unsigned long *)word, struct page, flags); 142 143 /* 144 * page_mapping() is being called without PG_locked held. 145 * Some knowledge of the state and use of the page is used to 146 * reduce the requirements down to a memory barrier. 147 * The danger here is of a stale page_mapping() return value 148 * indicating a struct address_space different from the one it's 149 * associated with when it is associated with one. 150 * After smp_mb(), it's either the correct page_mapping() for 151 * the page, or an old page_mapping() and the page's own 152 * page_mapping() has gone NULL. 153 * The ->sync_page() address_space operation must tolerate 154 * page_mapping() going NULL. By an amazing coincidence, 155 * this comes about because none of the users of the page 156 * in the ->sync_page() methods make essential use of the 157 * page_mapping(), merely passing the page down to the backing 158 * device's unplug functions when it's non-NULL, which in turn 159 * ignore it for all cases but swap, where only page_private(page) is 160 * of interest. When page_mapping() does go NULL, the entire 161 * call stack gracefully ignores the page and returns. 162 * -- wli 163 */ 164 smp_mb(); 165 mapping = page_mapping(page); 166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page) 167 mapping->a_ops->sync_page(page); 168 io_schedule(); 169 return 0; 170 } 171 172 /** 173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 174 * @mapping: address space structure to write 175 * @start: offset in bytes where the range starts 176 * @end: offset in bytes where the range ends (inclusive) 177 * @sync_mode: enable synchronous operation 178 * 179 * Start writeback against all of a mapping's dirty pages that lie 180 * within the byte offsets <start, end> inclusive. 181 * 182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 183 * opposed to a regular memory cleansing writeback. The difference between 184 * these two operations is that if a dirty page/buffer is encountered, it must 185 * be waited upon, and not just skipped over. 186 */ 187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 188 loff_t end, int sync_mode) 189 { 190 int ret; 191 struct writeback_control wbc = { 192 .sync_mode = sync_mode, 193 .nr_to_write = mapping->nrpages * 2, 194 .range_start = start, 195 .range_end = end, 196 }; 197 198 if (!mapping_cap_writeback_dirty(mapping)) 199 return 0; 200 201 ret = do_writepages(mapping, &wbc); 202 return ret; 203 } 204 205 static inline int __filemap_fdatawrite(struct address_space *mapping, 206 int sync_mode) 207 { 208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 209 } 210 211 int filemap_fdatawrite(struct address_space *mapping) 212 { 213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 214 } 215 EXPORT_SYMBOL(filemap_fdatawrite); 216 217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 218 loff_t end) 219 { 220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 221 } 222 223 /** 224 * filemap_flush - mostly a non-blocking flush 225 * @mapping: target address_space 226 * 227 * This is a mostly non-blocking flush. Not suitable for data-integrity 228 * purposes - I/O may not be started against all dirty pages. 229 */ 230 int filemap_flush(struct address_space *mapping) 231 { 232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 233 } 234 EXPORT_SYMBOL(filemap_flush); 235 236 /** 237 * wait_on_page_writeback_range - wait for writeback to complete 238 * @mapping: target address_space 239 * @start: beginning page index 240 * @end: ending page index 241 * 242 * Wait for writeback to complete against pages indexed by start->end 243 * inclusive 244 */ 245 int wait_on_page_writeback_range(struct address_space *mapping, 246 pgoff_t start, pgoff_t end) 247 { 248 struct pagevec pvec; 249 int nr_pages; 250 int ret = 0; 251 pgoff_t index; 252 253 if (end < start) 254 return 0; 255 256 pagevec_init(&pvec, 0); 257 index = start; 258 while ((index <= end) && 259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 260 PAGECACHE_TAG_WRITEBACK, 261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 262 unsigned i; 263 264 for (i = 0; i < nr_pages; i++) { 265 struct page *page = pvec.pages[i]; 266 267 /* until radix tree lookup accepts end_index */ 268 if (page->index > end) 269 continue; 270 271 wait_on_page_writeback(page); 272 if (PageError(page)) 273 ret = -EIO; 274 } 275 pagevec_release(&pvec); 276 cond_resched(); 277 } 278 279 /* Check for outstanding write errors */ 280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 281 ret = -ENOSPC; 282 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 283 ret = -EIO; 284 285 return ret; 286 } 287 288 /** 289 * sync_page_range - write and wait on all pages in the passed range 290 * @inode: target inode 291 * @mapping: target address_space 292 * @pos: beginning offset in pages to write 293 * @count: number of bytes to write 294 * 295 * Write and wait upon all the pages in the passed range. This is a "data 296 * integrity" operation. It waits upon in-flight writeout before starting and 297 * waiting upon new writeout. If there was an IO error, return it. 298 * 299 * We need to re-take i_mutex during the generic_osync_inode list walk because 300 * it is otherwise livelockable. 301 */ 302 int sync_page_range(struct inode *inode, struct address_space *mapping, 303 loff_t pos, loff_t count) 304 { 305 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 307 int ret; 308 309 if (!mapping_cap_writeback_dirty(mapping) || !count) 310 return 0; 311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 312 if (ret == 0) { 313 mutex_lock(&inode->i_mutex); 314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 315 mutex_unlock(&inode->i_mutex); 316 } 317 if (ret == 0) 318 ret = wait_on_page_writeback_range(mapping, start, end); 319 return ret; 320 } 321 EXPORT_SYMBOL(sync_page_range); 322 323 /** 324 * sync_page_range_nolock 325 * @inode: target inode 326 * @mapping: target address_space 327 * @pos: beginning offset in pages to write 328 * @count: number of bytes to write 329 * 330 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea 331 * as it forces O_SYNC writers to different parts of the same file 332 * to be serialised right until io completion. 333 */ 334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping, 335 loff_t pos, loff_t count) 336 { 337 pgoff_t start = pos >> PAGE_CACHE_SHIFT; 338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT; 339 int ret; 340 341 if (!mapping_cap_writeback_dirty(mapping) || !count) 342 return 0; 343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1); 344 if (ret == 0) 345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA); 346 if (ret == 0) 347 ret = wait_on_page_writeback_range(mapping, start, end); 348 return ret; 349 } 350 EXPORT_SYMBOL(sync_page_range_nolock); 351 352 /** 353 * filemap_fdatawait - wait for all under-writeback pages to complete 354 * @mapping: address space structure to wait for 355 * 356 * Walk the list of under-writeback pages of the given address space 357 * and wait for all of them. 358 */ 359 int filemap_fdatawait(struct address_space *mapping) 360 { 361 loff_t i_size = i_size_read(mapping->host); 362 363 if (i_size == 0) 364 return 0; 365 366 return wait_on_page_writeback_range(mapping, 0, 367 (i_size - 1) >> PAGE_CACHE_SHIFT); 368 } 369 EXPORT_SYMBOL(filemap_fdatawait); 370 371 int filemap_write_and_wait(struct address_space *mapping) 372 { 373 int err = 0; 374 375 if (mapping->nrpages) { 376 err = filemap_fdatawrite(mapping); 377 /* 378 * Even if the above returned error, the pages may be 379 * written partially (e.g. -ENOSPC), so we wait for it. 380 * But the -EIO is special case, it may indicate the worst 381 * thing (e.g. bug) happened, so we avoid waiting for it. 382 */ 383 if (err != -EIO) { 384 int err2 = filemap_fdatawait(mapping); 385 if (!err) 386 err = err2; 387 } 388 } 389 return err; 390 } 391 EXPORT_SYMBOL(filemap_write_and_wait); 392 393 /** 394 * filemap_write_and_wait_range - write out & wait on a file range 395 * @mapping: the address_space for the pages 396 * @lstart: offset in bytes where the range starts 397 * @lend: offset in bytes where the range ends (inclusive) 398 * 399 * Write out and wait upon file offsets lstart->lend, inclusive. 400 * 401 * Note that `lend' is inclusive (describes the last byte to be written) so 402 * that this function can be used to write to the very end-of-file (end = -1). 403 */ 404 int filemap_write_and_wait_range(struct address_space *mapping, 405 loff_t lstart, loff_t lend) 406 { 407 int err = 0; 408 409 if (mapping->nrpages) { 410 err = __filemap_fdatawrite_range(mapping, lstart, lend, 411 WB_SYNC_ALL); 412 /* See comment of filemap_write_and_wait() */ 413 if (err != -EIO) { 414 int err2 = wait_on_page_writeback_range(mapping, 415 lstart >> PAGE_CACHE_SHIFT, 416 lend >> PAGE_CACHE_SHIFT); 417 if (!err) 418 err = err2; 419 } 420 } 421 return err; 422 } 423 424 /** 425 * add_to_page_cache - add newly allocated pagecache pages 426 * @page: page to add 427 * @mapping: the page's address_space 428 * @offset: page index 429 * @gfp_mask: page allocation mode 430 * 431 * This function is used to add newly allocated pagecache pages; 432 * the page is new, so we can just run SetPageLocked() against it. 433 * The other page state flags were set by rmqueue(). 434 * 435 * This function does not add the page to the LRU. The caller must do that. 436 */ 437 int add_to_page_cache(struct page *page, struct address_space *mapping, 438 pgoff_t offset, gfp_t gfp_mask) 439 { 440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 441 442 if (error == 0) { 443 write_lock_irq(&mapping->tree_lock); 444 error = radix_tree_insert(&mapping->page_tree, offset, page); 445 if (!error) { 446 page_cache_get(page); 447 SetPageLocked(page); 448 page->mapping = mapping; 449 page->index = offset; 450 mapping->nrpages++; 451 __inc_zone_page_state(page, NR_FILE_PAGES); 452 } 453 write_unlock_irq(&mapping->tree_lock); 454 radix_tree_preload_end(); 455 } 456 return error; 457 } 458 EXPORT_SYMBOL(add_to_page_cache); 459 460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 461 pgoff_t offset, gfp_t gfp_mask) 462 { 463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask); 464 if (ret == 0) 465 lru_cache_add(page); 466 return ret; 467 } 468 469 #ifdef CONFIG_NUMA 470 struct page *page_cache_alloc(struct address_space *x) 471 { 472 if (cpuset_do_page_mem_spread()) { 473 int n = cpuset_mem_spread_node(); 474 return alloc_pages_node(n, mapping_gfp_mask(x), 0); 475 } 476 return alloc_pages(mapping_gfp_mask(x), 0); 477 } 478 EXPORT_SYMBOL(page_cache_alloc); 479 480 struct page *page_cache_alloc_cold(struct address_space *x) 481 { 482 if (cpuset_do_page_mem_spread()) { 483 int n = cpuset_mem_spread_node(); 484 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0); 485 } 486 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0); 487 } 488 EXPORT_SYMBOL(page_cache_alloc_cold); 489 #endif 490 491 /* 492 * In order to wait for pages to become available there must be 493 * waitqueues associated with pages. By using a hash table of 494 * waitqueues where the bucket discipline is to maintain all 495 * waiters on the same queue and wake all when any of the pages 496 * become available, and for the woken contexts to check to be 497 * sure the appropriate page became available, this saves space 498 * at a cost of "thundering herd" phenomena during rare hash 499 * collisions. 500 */ 501 static wait_queue_head_t *page_waitqueue(struct page *page) 502 { 503 const struct zone *zone = page_zone(page); 504 505 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 506 } 507 508 static inline void wake_up_page(struct page *page, int bit) 509 { 510 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 511 } 512 513 void fastcall wait_on_page_bit(struct page *page, int bit_nr) 514 { 515 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 516 517 if (test_bit(bit_nr, &page->flags)) 518 __wait_on_bit(page_waitqueue(page), &wait, sync_page, 519 TASK_UNINTERRUPTIBLE); 520 } 521 EXPORT_SYMBOL(wait_on_page_bit); 522 523 /** 524 * unlock_page - unlock a locked page 525 * @page: the page 526 * 527 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 528 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 529 * mechananism between PageLocked pages and PageWriteback pages is shared. 530 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 531 * 532 * The first mb is necessary to safely close the critical section opened by the 533 * TestSetPageLocked(), the second mb is necessary to enforce ordering between 534 * the clear_bit and the read of the waitqueue (to avoid SMP races with a 535 * parallel wait_on_page_locked()). 536 */ 537 void fastcall unlock_page(struct page *page) 538 { 539 smp_mb__before_clear_bit(); 540 if (!TestClearPageLocked(page)) 541 BUG(); 542 smp_mb__after_clear_bit(); 543 wake_up_page(page, PG_locked); 544 } 545 EXPORT_SYMBOL(unlock_page); 546 547 /** 548 * end_page_writeback - end writeback against a page 549 * @page: the page 550 */ 551 void end_page_writeback(struct page *page) 552 { 553 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) { 554 if (!test_clear_page_writeback(page)) 555 BUG(); 556 } 557 smp_mb__after_clear_bit(); 558 wake_up_page(page, PG_writeback); 559 } 560 EXPORT_SYMBOL(end_page_writeback); 561 562 /** 563 * __lock_page - get a lock on the page, assuming we need to sleep to get it 564 * @page: the page to lock 565 * 566 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some 567 * random driver's requestfn sets TASK_RUNNING, we could busywait. However 568 * chances are that on the second loop, the block layer's plug list is empty, 569 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE. 570 */ 571 void fastcall __lock_page(struct page *page) 572 { 573 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 574 575 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page, 576 TASK_UNINTERRUPTIBLE); 577 } 578 EXPORT_SYMBOL(__lock_page); 579 580 /** 581 * find_get_page - find and get a page reference 582 * @mapping: the address_space to search 583 * @offset: the page index 584 * 585 * A rather lightweight function, finding and getting a reference to a 586 * hashed page atomically. 587 */ 588 struct page * find_get_page(struct address_space *mapping, unsigned long offset) 589 { 590 struct page *page; 591 592 read_lock_irq(&mapping->tree_lock); 593 page = radix_tree_lookup(&mapping->page_tree, offset); 594 if (page) 595 page_cache_get(page); 596 read_unlock_irq(&mapping->tree_lock); 597 return page; 598 } 599 EXPORT_SYMBOL(find_get_page); 600 601 /** 602 * find_trylock_page - find and lock a page 603 * @mapping: the address_space to search 604 * @offset: the page index 605 * 606 * Same as find_get_page(), but trylock it instead of incrementing the count. 607 */ 608 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset) 609 { 610 struct page *page; 611 612 read_lock_irq(&mapping->tree_lock); 613 page = radix_tree_lookup(&mapping->page_tree, offset); 614 if (page && TestSetPageLocked(page)) 615 page = NULL; 616 read_unlock_irq(&mapping->tree_lock); 617 return page; 618 } 619 EXPORT_SYMBOL(find_trylock_page); 620 621 /** 622 * find_lock_page - locate, pin and lock a pagecache page 623 * @mapping: the address_space to search 624 * @offset: the page index 625 * 626 * Locates the desired pagecache page, locks it, increments its reference 627 * count and returns its address. 628 * 629 * Returns zero if the page was not present. find_lock_page() may sleep. 630 */ 631 struct page *find_lock_page(struct address_space *mapping, 632 unsigned long offset) 633 { 634 struct page *page; 635 636 read_lock_irq(&mapping->tree_lock); 637 repeat: 638 page = radix_tree_lookup(&mapping->page_tree, offset); 639 if (page) { 640 page_cache_get(page); 641 if (TestSetPageLocked(page)) { 642 read_unlock_irq(&mapping->tree_lock); 643 __lock_page(page); 644 read_lock_irq(&mapping->tree_lock); 645 646 /* Has the page been truncated while we slept? */ 647 if (unlikely(page->mapping != mapping || 648 page->index != offset)) { 649 unlock_page(page); 650 page_cache_release(page); 651 goto repeat; 652 } 653 } 654 } 655 read_unlock_irq(&mapping->tree_lock); 656 return page; 657 } 658 EXPORT_SYMBOL(find_lock_page); 659 660 /** 661 * find_or_create_page - locate or add a pagecache page 662 * @mapping: the page's address_space 663 * @index: the page's index into the mapping 664 * @gfp_mask: page allocation mode 665 * 666 * Locates a page in the pagecache. If the page is not present, a new page 667 * is allocated using @gfp_mask and is added to the pagecache and to the VM's 668 * LRU list. The returned page is locked and has its reference count 669 * incremented. 670 * 671 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic 672 * allocation! 673 * 674 * find_or_create_page() returns the desired page's address, or zero on 675 * memory exhaustion. 676 */ 677 struct page *find_or_create_page(struct address_space *mapping, 678 unsigned long index, gfp_t gfp_mask) 679 { 680 struct page *page, *cached_page = NULL; 681 int err; 682 repeat: 683 page = find_lock_page(mapping, index); 684 if (!page) { 685 if (!cached_page) { 686 cached_page = alloc_page(gfp_mask); 687 if (!cached_page) 688 return NULL; 689 } 690 err = add_to_page_cache_lru(cached_page, mapping, 691 index, gfp_mask); 692 if (!err) { 693 page = cached_page; 694 cached_page = NULL; 695 } else if (err == -EEXIST) 696 goto repeat; 697 } 698 if (cached_page) 699 page_cache_release(cached_page); 700 return page; 701 } 702 EXPORT_SYMBOL(find_or_create_page); 703 704 /** 705 * find_get_pages - gang pagecache lookup 706 * @mapping: The address_space to search 707 * @start: The starting page index 708 * @nr_pages: The maximum number of pages 709 * @pages: Where the resulting pages are placed 710 * 711 * find_get_pages() will search for and return a group of up to 712 * @nr_pages pages in the mapping. The pages are placed at @pages. 713 * find_get_pages() takes a reference against the returned pages. 714 * 715 * The search returns a group of mapping-contiguous pages with ascending 716 * indexes. There may be holes in the indices due to not-present pages. 717 * 718 * find_get_pages() returns the number of pages which were found. 719 */ 720 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 721 unsigned int nr_pages, struct page **pages) 722 { 723 unsigned int i; 724 unsigned int ret; 725 726 read_lock_irq(&mapping->tree_lock); 727 ret = radix_tree_gang_lookup(&mapping->page_tree, 728 (void **)pages, start, nr_pages); 729 for (i = 0; i < ret; i++) 730 page_cache_get(pages[i]); 731 read_unlock_irq(&mapping->tree_lock); 732 return ret; 733 } 734 735 /** 736 * find_get_pages_contig - gang contiguous pagecache lookup 737 * @mapping: The address_space to search 738 * @index: The starting page index 739 * @nr_pages: The maximum number of pages 740 * @pages: Where the resulting pages are placed 741 * 742 * find_get_pages_contig() works exactly like find_get_pages(), except 743 * that the returned number of pages are guaranteed to be contiguous. 744 * 745 * find_get_pages_contig() returns the number of pages which were found. 746 */ 747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 748 unsigned int nr_pages, struct page **pages) 749 { 750 unsigned int i; 751 unsigned int ret; 752 753 read_lock_irq(&mapping->tree_lock); 754 ret = radix_tree_gang_lookup(&mapping->page_tree, 755 (void **)pages, index, nr_pages); 756 for (i = 0; i < ret; i++) { 757 if (pages[i]->mapping == NULL || pages[i]->index != index) 758 break; 759 760 page_cache_get(pages[i]); 761 index++; 762 } 763 read_unlock_irq(&mapping->tree_lock); 764 return i; 765 } 766 767 /** 768 * find_get_pages_tag - find and return pages that match @tag 769 * @mapping: the address_space to search 770 * @index: the starting page index 771 * @tag: the tag index 772 * @nr_pages: the maximum number of pages 773 * @pages: where the resulting pages are placed 774 * 775 * Like find_get_pages, except we only return pages which are tagged with 776 * @tag. We update @index to index the next page for the traversal. 777 */ 778 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 779 int tag, unsigned int nr_pages, struct page **pages) 780 { 781 unsigned int i; 782 unsigned int ret; 783 784 read_lock_irq(&mapping->tree_lock); 785 ret = radix_tree_gang_lookup_tag(&mapping->page_tree, 786 (void **)pages, *index, nr_pages, tag); 787 for (i = 0; i < ret; i++) 788 page_cache_get(pages[i]); 789 if (ret) 790 *index = pages[ret - 1]->index + 1; 791 read_unlock_irq(&mapping->tree_lock); 792 return ret; 793 } 794 795 /** 796 * grab_cache_page_nowait - returns locked page at given index in given cache 797 * @mapping: target address_space 798 * @index: the page index 799 * 800 * Same as grab_cache_page, but do not wait if the page is unavailable. 801 * This is intended for speculative data generators, where the data can 802 * be regenerated if the page couldn't be grabbed. This routine should 803 * be safe to call while holding the lock for another page. 804 * 805 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 806 * and deadlock against the caller's locked page. 807 */ 808 struct page * 809 grab_cache_page_nowait(struct address_space *mapping, unsigned long index) 810 { 811 struct page *page = find_get_page(mapping, index); 812 gfp_t gfp_mask; 813 814 if (page) { 815 if (!TestSetPageLocked(page)) 816 return page; 817 page_cache_release(page); 818 return NULL; 819 } 820 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS; 821 page = alloc_pages(gfp_mask, 0); 822 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) { 823 page_cache_release(page); 824 page = NULL; 825 } 826 return page; 827 } 828 EXPORT_SYMBOL(grab_cache_page_nowait); 829 830 /* 831 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 832 * a _large_ part of the i/o request. Imagine the worst scenario: 833 * 834 * ---R__________________________________________B__________ 835 * ^ reading here ^ bad block(assume 4k) 836 * 837 * read(R) => miss => readahead(R...B) => media error => frustrating retries 838 * => failing the whole request => read(R) => read(R+1) => 839 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 840 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 841 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 842 * 843 * It is going insane. Fix it by quickly scaling down the readahead size. 844 */ 845 static void shrink_readahead_size_eio(struct file *filp, 846 struct file_ra_state *ra) 847 { 848 if (!ra->ra_pages) 849 return; 850 851 ra->ra_pages /= 4; 852 printk(KERN_WARNING "Reducing readahead size to %luK\n", 853 ra->ra_pages << (PAGE_CACHE_SHIFT - 10)); 854 } 855 856 /** 857 * do_generic_mapping_read - generic file read routine 858 * @mapping: address_space to be read 859 * @_ra: file's readahead state 860 * @filp: the file to read 861 * @ppos: current file position 862 * @desc: read_descriptor 863 * @actor: read method 864 * 865 * This is a generic file read routine, and uses the 866 * mapping->a_ops->readpage() function for the actual low-level stuff. 867 * 868 * This is really ugly. But the goto's actually try to clarify some 869 * of the logic when it comes to error handling etc. 870 * 871 * Note the struct file* is only passed for the use of readpage. 872 * It may be NULL. 873 */ 874 void do_generic_mapping_read(struct address_space *mapping, 875 struct file_ra_state *_ra, 876 struct file *filp, 877 loff_t *ppos, 878 read_descriptor_t *desc, 879 read_actor_t actor) 880 { 881 struct inode *inode = mapping->host; 882 unsigned long index; 883 unsigned long end_index; 884 unsigned long offset; 885 unsigned long last_index; 886 unsigned long next_index; 887 unsigned long prev_index; 888 loff_t isize; 889 struct page *cached_page; 890 int error; 891 struct file_ra_state ra = *_ra; 892 893 cached_page = NULL; 894 index = *ppos >> PAGE_CACHE_SHIFT; 895 next_index = index; 896 prev_index = ra.prev_page; 897 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 898 offset = *ppos & ~PAGE_CACHE_MASK; 899 900 isize = i_size_read(inode); 901 if (!isize) 902 goto out; 903 904 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 905 for (;;) { 906 struct page *page; 907 unsigned long nr, ret; 908 909 /* nr is the maximum number of bytes to copy from this page */ 910 nr = PAGE_CACHE_SIZE; 911 if (index >= end_index) { 912 if (index > end_index) 913 goto out; 914 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 915 if (nr <= offset) { 916 goto out; 917 } 918 } 919 nr = nr - offset; 920 921 cond_resched(); 922 if (index == next_index) 923 next_index = page_cache_readahead(mapping, &ra, filp, 924 index, last_index - index); 925 926 find_page: 927 page = find_get_page(mapping, index); 928 if (unlikely(page == NULL)) { 929 handle_ra_miss(mapping, &ra, index); 930 goto no_cached_page; 931 } 932 if (!PageUptodate(page)) 933 goto page_not_up_to_date; 934 page_ok: 935 936 /* If users can be writing to this page using arbitrary 937 * virtual addresses, take care about potential aliasing 938 * before reading the page on the kernel side. 939 */ 940 if (mapping_writably_mapped(mapping)) 941 flush_dcache_page(page); 942 943 /* 944 * When (part of) the same page is read multiple times 945 * in succession, only mark it as accessed the first time. 946 */ 947 if (prev_index != index) 948 mark_page_accessed(page); 949 prev_index = index; 950 951 /* 952 * Ok, we have the page, and it's up-to-date, so 953 * now we can copy it to user space... 954 * 955 * The actor routine returns how many bytes were actually used.. 956 * NOTE! This may not be the same as how much of a user buffer 957 * we filled up (we may be padding etc), so we can only update 958 * "pos" here (the actor routine has to update the user buffer 959 * pointers and the remaining count). 960 */ 961 ret = actor(desc, page, offset, nr); 962 offset += ret; 963 index += offset >> PAGE_CACHE_SHIFT; 964 offset &= ~PAGE_CACHE_MASK; 965 966 page_cache_release(page); 967 if (ret == nr && desc->count) 968 continue; 969 goto out; 970 971 page_not_up_to_date: 972 /* Get exclusive access to the page ... */ 973 lock_page(page); 974 975 /* Did it get unhashed before we got the lock? */ 976 if (!page->mapping) { 977 unlock_page(page); 978 page_cache_release(page); 979 continue; 980 } 981 982 /* Did somebody else fill it already? */ 983 if (PageUptodate(page)) { 984 unlock_page(page); 985 goto page_ok; 986 } 987 988 readpage: 989 /* Start the actual read. The read will unlock the page. */ 990 error = mapping->a_ops->readpage(filp, page); 991 992 if (unlikely(error)) { 993 if (error == AOP_TRUNCATED_PAGE) { 994 page_cache_release(page); 995 goto find_page; 996 } 997 goto readpage_error; 998 } 999 1000 if (!PageUptodate(page)) { 1001 lock_page(page); 1002 if (!PageUptodate(page)) { 1003 if (page->mapping == NULL) { 1004 /* 1005 * invalidate_inode_pages got it 1006 */ 1007 unlock_page(page); 1008 page_cache_release(page); 1009 goto find_page; 1010 } 1011 unlock_page(page); 1012 error = -EIO; 1013 shrink_readahead_size_eio(filp, &ra); 1014 goto readpage_error; 1015 } 1016 unlock_page(page); 1017 } 1018 1019 /* 1020 * i_size must be checked after we have done ->readpage. 1021 * 1022 * Checking i_size after the readpage allows us to calculate 1023 * the correct value for "nr", which means the zero-filled 1024 * part of the page is not copied back to userspace (unless 1025 * another truncate extends the file - this is desired though). 1026 */ 1027 isize = i_size_read(inode); 1028 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1029 if (unlikely(!isize || index > end_index)) { 1030 page_cache_release(page); 1031 goto out; 1032 } 1033 1034 /* nr is the maximum number of bytes to copy from this page */ 1035 nr = PAGE_CACHE_SIZE; 1036 if (index == end_index) { 1037 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1038 if (nr <= offset) { 1039 page_cache_release(page); 1040 goto out; 1041 } 1042 } 1043 nr = nr - offset; 1044 goto page_ok; 1045 1046 readpage_error: 1047 /* UHHUH! A synchronous read error occurred. Report it */ 1048 desc->error = error; 1049 page_cache_release(page); 1050 goto out; 1051 1052 no_cached_page: 1053 /* 1054 * Ok, it wasn't cached, so we need to create a new 1055 * page.. 1056 */ 1057 if (!cached_page) { 1058 cached_page = page_cache_alloc_cold(mapping); 1059 if (!cached_page) { 1060 desc->error = -ENOMEM; 1061 goto out; 1062 } 1063 } 1064 error = add_to_page_cache_lru(cached_page, mapping, 1065 index, GFP_KERNEL); 1066 if (error) { 1067 if (error == -EEXIST) 1068 goto find_page; 1069 desc->error = error; 1070 goto out; 1071 } 1072 page = cached_page; 1073 cached_page = NULL; 1074 goto readpage; 1075 } 1076 1077 out: 1078 *_ra = ra; 1079 1080 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset; 1081 if (cached_page) 1082 page_cache_release(cached_page); 1083 if (filp) 1084 file_accessed(filp); 1085 } 1086 EXPORT_SYMBOL(do_generic_mapping_read); 1087 1088 int file_read_actor(read_descriptor_t *desc, struct page *page, 1089 unsigned long offset, unsigned long size) 1090 { 1091 char *kaddr; 1092 unsigned long left, count = desc->count; 1093 1094 if (size > count) 1095 size = count; 1096 1097 /* 1098 * Faults on the destination of a read are common, so do it before 1099 * taking the kmap. 1100 */ 1101 if (!fault_in_pages_writeable(desc->arg.buf, size)) { 1102 kaddr = kmap_atomic(page, KM_USER0); 1103 left = __copy_to_user_inatomic(desc->arg.buf, 1104 kaddr + offset, size); 1105 kunmap_atomic(kaddr, KM_USER0); 1106 if (left == 0) 1107 goto success; 1108 } 1109 1110 /* Do it the slow way */ 1111 kaddr = kmap(page); 1112 left = __copy_to_user(desc->arg.buf, kaddr + offset, size); 1113 kunmap(page); 1114 1115 if (left) { 1116 size -= left; 1117 desc->error = -EFAULT; 1118 } 1119 success: 1120 desc->count = count - size; 1121 desc->written += size; 1122 desc->arg.buf += size; 1123 return size; 1124 } 1125 1126 /** 1127 * __generic_file_aio_read - generic filesystem read routine 1128 * @iocb: kernel I/O control block 1129 * @iov: io vector request 1130 * @nr_segs: number of segments in the iovec 1131 * @ppos: current file position 1132 * 1133 * This is the "read()" routine for all filesystems 1134 * that can use the page cache directly. 1135 */ 1136 ssize_t 1137 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1138 unsigned long nr_segs, loff_t *ppos) 1139 { 1140 struct file *filp = iocb->ki_filp; 1141 ssize_t retval; 1142 unsigned long seg; 1143 size_t count; 1144 1145 count = 0; 1146 for (seg = 0; seg < nr_segs; seg++) { 1147 const struct iovec *iv = &iov[seg]; 1148 1149 /* 1150 * If any segment has a negative length, or the cumulative 1151 * length ever wraps negative then return -EINVAL. 1152 */ 1153 count += iv->iov_len; 1154 if (unlikely((ssize_t)(count|iv->iov_len) < 0)) 1155 return -EINVAL; 1156 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len)) 1157 continue; 1158 if (seg == 0) 1159 return -EFAULT; 1160 nr_segs = seg; 1161 count -= iv->iov_len; /* This segment is no good */ 1162 break; 1163 } 1164 1165 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1166 if (filp->f_flags & O_DIRECT) { 1167 loff_t pos = *ppos, size; 1168 struct address_space *mapping; 1169 struct inode *inode; 1170 1171 mapping = filp->f_mapping; 1172 inode = mapping->host; 1173 retval = 0; 1174 if (!count) 1175 goto out; /* skip atime */ 1176 size = i_size_read(inode); 1177 if (pos < size) { 1178 retval = generic_file_direct_IO(READ, iocb, 1179 iov, pos, nr_segs); 1180 if (retval > 0 && !is_sync_kiocb(iocb)) 1181 retval = -EIOCBQUEUED; 1182 if (retval > 0) 1183 *ppos = pos + retval; 1184 } 1185 file_accessed(filp); 1186 goto out; 1187 } 1188 1189 retval = 0; 1190 if (count) { 1191 for (seg = 0; seg < nr_segs; seg++) { 1192 read_descriptor_t desc; 1193 1194 desc.written = 0; 1195 desc.arg.buf = iov[seg].iov_base; 1196 desc.count = iov[seg].iov_len; 1197 if (desc.count == 0) 1198 continue; 1199 desc.error = 0; 1200 do_generic_file_read(filp,ppos,&desc,file_read_actor); 1201 retval += desc.written; 1202 if (desc.error) { 1203 retval = retval ?: desc.error; 1204 break; 1205 } 1206 } 1207 } 1208 out: 1209 return retval; 1210 } 1211 EXPORT_SYMBOL(__generic_file_aio_read); 1212 1213 ssize_t 1214 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos) 1215 { 1216 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1217 1218 BUG_ON(iocb->ki_pos != pos); 1219 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos); 1220 } 1221 EXPORT_SYMBOL(generic_file_aio_read); 1222 1223 ssize_t 1224 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos) 1225 { 1226 struct iovec local_iov = { .iov_base = buf, .iov_len = count }; 1227 struct kiocb kiocb; 1228 ssize_t ret; 1229 1230 init_sync_kiocb(&kiocb, filp); 1231 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos); 1232 if (-EIOCBQUEUED == ret) 1233 ret = wait_on_sync_kiocb(&kiocb); 1234 return ret; 1235 } 1236 EXPORT_SYMBOL(generic_file_read); 1237 1238 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size) 1239 { 1240 ssize_t written; 1241 unsigned long count = desc->count; 1242 struct file *file = desc->arg.data; 1243 1244 if (size > count) 1245 size = count; 1246 1247 written = file->f_op->sendpage(file, page, offset, 1248 size, &file->f_pos, size<count); 1249 if (written < 0) { 1250 desc->error = written; 1251 written = 0; 1252 } 1253 desc->count = count - written; 1254 desc->written += written; 1255 return written; 1256 } 1257 1258 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos, 1259 size_t count, read_actor_t actor, void *target) 1260 { 1261 read_descriptor_t desc; 1262 1263 if (!count) 1264 return 0; 1265 1266 desc.written = 0; 1267 desc.count = count; 1268 desc.arg.data = target; 1269 desc.error = 0; 1270 1271 do_generic_file_read(in_file, ppos, &desc, actor); 1272 if (desc.written) 1273 return desc.written; 1274 return desc.error; 1275 } 1276 EXPORT_SYMBOL(generic_file_sendfile); 1277 1278 static ssize_t 1279 do_readahead(struct address_space *mapping, struct file *filp, 1280 unsigned long index, unsigned long nr) 1281 { 1282 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage) 1283 return -EINVAL; 1284 1285 force_page_cache_readahead(mapping, filp, index, 1286 max_sane_readahead(nr)); 1287 return 0; 1288 } 1289 1290 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count) 1291 { 1292 ssize_t ret; 1293 struct file *file; 1294 1295 ret = -EBADF; 1296 file = fget(fd); 1297 if (file) { 1298 if (file->f_mode & FMODE_READ) { 1299 struct address_space *mapping = file->f_mapping; 1300 unsigned long start = offset >> PAGE_CACHE_SHIFT; 1301 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT; 1302 unsigned long len = end - start + 1; 1303 ret = do_readahead(mapping, file, start, len); 1304 } 1305 fput(file); 1306 } 1307 return ret; 1308 } 1309 1310 #ifdef CONFIG_MMU 1311 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset)); 1312 /** 1313 * page_cache_read - adds requested page to the page cache if not already there 1314 * @file: file to read 1315 * @offset: page index 1316 * 1317 * This adds the requested page to the page cache if it isn't already there, 1318 * and schedules an I/O to read in its contents from disk. 1319 */ 1320 static int fastcall page_cache_read(struct file * file, unsigned long offset) 1321 { 1322 struct address_space *mapping = file->f_mapping; 1323 struct page *page; 1324 int ret; 1325 1326 do { 1327 page = page_cache_alloc_cold(mapping); 1328 if (!page) 1329 return -ENOMEM; 1330 1331 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1332 if (ret == 0) 1333 ret = mapping->a_ops->readpage(file, page); 1334 else if (ret == -EEXIST) 1335 ret = 0; /* losing race to add is OK */ 1336 1337 page_cache_release(page); 1338 1339 } while (ret == AOP_TRUNCATED_PAGE); 1340 1341 return ret; 1342 } 1343 1344 #define MMAP_LOTSAMISS (100) 1345 1346 /** 1347 * filemap_nopage - read in file data for page fault handling 1348 * @area: the applicable vm_area 1349 * @address: target address to read in 1350 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL 1351 * 1352 * filemap_nopage() is invoked via the vma operations vector for a 1353 * mapped memory region to read in file data during a page fault. 1354 * 1355 * The goto's are kind of ugly, but this streamlines the normal case of having 1356 * it in the page cache, and handles the special cases reasonably without 1357 * having a lot of duplicated code. 1358 */ 1359 struct page *filemap_nopage(struct vm_area_struct *area, 1360 unsigned long address, int *type) 1361 { 1362 int error; 1363 struct file *file = area->vm_file; 1364 struct address_space *mapping = file->f_mapping; 1365 struct file_ra_state *ra = &file->f_ra; 1366 struct inode *inode = mapping->host; 1367 struct page *page; 1368 unsigned long size, pgoff; 1369 int did_readaround = 0, majmin = VM_FAULT_MINOR; 1370 1371 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff; 1372 1373 retry_all: 1374 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1375 if (pgoff >= size) 1376 goto outside_data_content; 1377 1378 /* If we don't want any read-ahead, don't bother */ 1379 if (VM_RandomReadHint(area)) 1380 goto no_cached_page; 1381 1382 /* 1383 * The readahead code wants to be told about each and every page 1384 * so it can build and shrink its windows appropriately 1385 * 1386 * For sequential accesses, we use the generic readahead logic. 1387 */ 1388 if (VM_SequentialReadHint(area)) 1389 page_cache_readahead(mapping, ra, file, pgoff, 1); 1390 1391 /* 1392 * Do we have something in the page cache already? 1393 */ 1394 retry_find: 1395 page = find_get_page(mapping, pgoff); 1396 if (!page) { 1397 unsigned long ra_pages; 1398 1399 if (VM_SequentialReadHint(area)) { 1400 handle_ra_miss(mapping, ra, pgoff); 1401 goto no_cached_page; 1402 } 1403 ra->mmap_miss++; 1404 1405 /* 1406 * Do we miss much more than hit in this file? If so, 1407 * stop bothering with read-ahead. It will only hurt. 1408 */ 1409 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS) 1410 goto no_cached_page; 1411 1412 /* 1413 * To keep the pgmajfault counter straight, we need to 1414 * check did_readaround, as this is an inner loop. 1415 */ 1416 if (!did_readaround) { 1417 majmin = VM_FAULT_MAJOR; 1418 count_vm_event(PGMAJFAULT); 1419 } 1420 did_readaround = 1; 1421 ra_pages = max_sane_readahead(file->f_ra.ra_pages); 1422 if (ra_pages) { 1423 pgoff_t start = 0; 1424 1425 if (pgoff > ra_pages / 2) 1426 start = pgoff - ra_pages / 2; 1427 do_page_cache_readahead(mapping, file, start, ra_pages); 1428 } 1429 page = find_get_page(mapping, pgoff); 1430 if (!page) 1431 goto no_cached_page; 1432 } 1433 1434 if (!did_readaround) 1435 ra->mmap_hit++; 1436 1437 /* 1438 * Ok, found a page in the page cache, now we need to check 1439 * that it's up-to-date. 1440 */ 1441 if (!PageUptodate(page)) 1442 goto page_not_uptodate; 1443 1444 success: 1445 /* 1446 * Found the page and have a reference on it. 1447 */ 1448 mark_page_accessed(page); 1449 if (type) 1450 *type = majmin; 1451 return page; 1452 1453 outside_data_content: 1454 /* 1455 * An external ptracer can access pages that normally aren't 1456 * accessible.. 1457 */ 1458 if (area->vm_mm == current->mm) 1459 return NULL; 1460 /* Fall through to the non-read-ahead case */ 1461 no_cached_page: 1462 /* 1463 * We're only likely to ever get here if MADV_RANDOM is in 1464 * effect. 1465 */ 1466 error = page_cache_read(file, pgoff); 1467 grab_swap_token(); 1468 1469 /* 1470 * The page we want has now been added to the page cache. 1471 * In the unlikely event that someone removed it in the 1472 * meantime, we'll just come back here and read it again. 1473 */ 1474 if (error >= 0) 1475 goto retry_find; 1476 1477 /* 1478 * An error return from page_cache_read can result if the 1479 * system is low on memory, or a problem occurs while trying 1480 * to schedule I/O. 1481 */ 1482 if (error == -ENOMEM) 1483 return NOPAGE_OOM; 1484 return NULL; 1485 1486 page_not_uptodate: 1487 if (!did_readaround) { 1488 majmin = VM_FAULT_MAJOR; 1489 count_vm_event(PGMAJFAULT); 1490 } 1491 lock_page(page); 1492 1493 /* Did it get unhashed while we waited for it? */ 1494 if (!page->mapping) { 1495 unlock_page(page); 1496 page_cache_release(page); 1497 goto retry_all; 1498 } 1499 1500 /* Did somebody else get it up-to-date? */ 1501 if (PageUptodate(page)) { 1502 unlock_page(page); 1503 goto success; 1504 } 1505 1506 error = mapping->a_ops->readpage(file, page); 1507 if (!error) { 1508 wait_on_page_locked(page); 1509 if (PageUptodate(page)) 1510 goto success; 1511 } else if (error == AOP_TRUNCATED_PAGE) { 1512 page_cache_release(page); 1513 goto retry_find; 1514 } 1515 1516 /* 1517 * Umm, take care of errors if the page isn't up-to-date. 1518 * Try to re-read it _once_. We do this synchronously, 1519 * because there really aren't any performance issues here 1520 * and we need to check for errors. 1521 */ 1522 lock_page(page); 1523 1524 /* Somebody truncated the page on us? */ 1525 if (!page->mapping) { 1526 unlock_page(page); 1527 page_cache_release(page); 1528 goto retry_all; 1529 } 1530 1531 /* Somebody else successfully read it in? */ 1532 if (PageUptodate(page)) { 1533 unlock_page(page); 1534 goto success; 1535 } 1536 ClearPageError(page); 1537 error = mapping->a_ops->readpage(file, page); 1538 if (!error) { 1539 wait_on_page_locked(page); 1540 if (PageUptodate(page)) 1541 goto success; 1542 } else if (error == AOP_TRUNCATED_PAGE) { 1543 page_cache_release(page); 1544 goto retry_find; 1545 } 1546 1547 /* 1548 * Things didn't work out. Return zero to tell the 1549 * mm layer so, possibly freeing the page cache page first. 1550 */ 1551 shrink_readahead_size_eio(file, ra); 1552 page_cache_release(page); 1553 return NULL; 1554 } 1555 EXPORT_SYMBOL(filemap_nopage); 1556 1557 static struct page * filemap_getpage(struct file *file, unsigned long pgoff, 1558 int nonblock) 1559 { 1560 struct address_space *mapping = file->f_mapping; 1561 struct page *page; 1562 int error; 1563 1564 /* 1565 * Do we have something in the page cache already? 1566 */ 1567 retry_find: 1568 page = find_get_page(mapping, pgoff); 1569 if (!page) { 1570 if (nonblock) 1571 return NULL; 1572 goto no_cached_page; 1573 } 1574 1575 /* 1576 * Ok, found a page in the page cache, now we need to check 1577 * that it's up-to-date. 1578 */ 1579 if (!PageUptodate(page)) { 1580 if (nonblock) { 1581 page_cache_release(page); 1582 return NULL; 1583 } 1584 goto page_not_uptodate; 1585 } 1586 1587 success: 1588 /* 1589 * Found the page and have a reference on it. 1590 */ 1591 mark_page_accessed(page); 1592 return page; 1593 1594 no_cached_page: 1595 error = page_cache_read(file, pgoff); 1596 1597 /* 1598 * The page we want has now been added to the page cache. 1599 * In the unlikely event that someone removed it in the 1600 * meantime, we'll just come back here and read it again. 1601 */ 1602 if (error >= 0) 1603 goto retry_find; 1604 1605 /* 1606 * An error return from page_cache_read can result if the 1607 * system is low on memory, or a problem occurs while trying 1608 * to schedule I/O. 1609 */ 1610 return NULL; 1611 1612 page_not_uptodate: 1613 lock_page(page); 1614 1615 /* Did it get unhashed while we waited for it? */ 1616 if (!page->mapping) { 1617 unlock_page(page); 1618 goto err; 1619 } 1620 1621 /* Did somebody else get it up-to-date? */ 1622 if (PageUptodate(page)) { 1623 unlock_page(page); 1624 goto success; 1625 } 1626 1627 error = mapping->a_ops->readpage(file, page); 1628 if (!error) { 1629 wait_on_page_locked(page); 1630 if (PageUptodate(page)) 1631 goto success; 1632 } else if (error == AOP_TRUNCATED_PAGE) { 1633 page_cache_release(page); 1634 goto retry_find; 1635 } 1636 1637 /* 1638 * Umm, take care of errors if the page isn't up-to-date. 1639 * Try to re-read it _once_. We do this synchronously, 1640 * because there really aren't any performance issues here 1641 * and we need to check for errors. 1642 */ 1643 lock_page(page); 1644 1645 /* Somebody truncated the page on us? */ 1646 if (!page->mapping) { 1647 unlock_page(page); 1648 goto err; 1649 } 1650 /* Somebody else successfully read it in? */ 1651 if (PageUptodate(page)) { 1652 unlock_page(page); 1653 goto success; 1654 } 1655 1656 ClearPageError(page); 1657 error = mapping->a_ops->readpage(file, page); 1658 if (!error) { 1659 wait_on_page_locked(page); 1660 if (PageUptodate(page)) 1661 goto success; 1662 } else if (error == AOP_TRUNCATED_PAGE) { 1663 page_cache_release(page); 1664 goto retry_find; 1665 } 1666 1667 /* 1668 * Things didn't work out. Return zero to tell the 1669 * mm layer so, possibly freeing the page cache page first. 1670 */ 1671 err: 1672 page_cache_release(page); 1673 1674 return NULL; 1675 } 1676 1677 int filemap_populate(struct vm_area_struct *vma, unsigned long addr, 1678 unsigned long len, pgprot_t prot, unsigned long pgoff, 1679 int nonblock) 1680 { 1681 struct file *file = vma->vm_file; 1682 struct address_space *mapping = file->f_mapping; 1683 struct inode *inode = mapping->host; 1684 unsigned long size; 1685 struct mm_struct *mm = vma->vm_mm; 1686 struct page *page; 1687 int err; 1688 1689 if (!nonblock) 1690 force_page_cache_readahead(mapping, vma->vm_file, 1691 pgoff, len >> PAGE_CACHE_SHIFT); 1692 1693 repeat: 1694 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1695 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size) 1696 return -EINVAL; 1697 1698 page = filemap_getpage(file, pgoff, nonblock); 1699 1700 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as 1701 * done in shmem_populate calling shmem_getpage */ 1702 if (!page && !nonblock) 1703 return -ENOMEM; 1704 1705 if (page) { 1706 err = install_page(mm, vma, addr, page, prot); 1707 if (err) { 1708 page_cache_release(page); 1709 return err; 1710 } 1711 } else if (vma->vm_flags & VM_NONLINEAR) { 1712 /* No page was found just because we can't read it in now (being 1713 * here implies nonblock != 0), but the page may exist, so set 1714 * the PTE to fault it in later. */ 1715 err = install_file_pte(mm, vma, addr, pgoff, prot); 1716 if (err) 1717 return err; 1718 } 1719 1720 len -= PAGE_SIZE; 1721 addr += PAGE_SIZE; 1722 pgoff++; 1723 if (len) 1724 goto repeat; 1725 1726 return 0; 1727 } 1728 EXPORT_SYMBOL(filemap_populate); 1729 1730 struct vm_operations_struct generic_file_vm_ops = { 1731 .nopage = filemap_nopage, 1732 .populate = filemap_populate, 1733 }; 1734 1735 /* This is used for a general mmap of a disk file */ 1736 1737 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1738 { 1739 struct address_space *mapping = file->f_mapping; 1740 1741 if (!mapping->a_ops->readpage) 1742 return -ENOEXEC; 1743 file_accessed(file); 1744 vma->vm_ops = &generic_file_vm_ops; 1745 return 0; 1746 } 1747 1748 /* 1749 * This is for filesystems which do not implement ->writepage. 1750 */ 1751 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 1752 { 1753 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 1754 return -EINVAL; 1755 return generic_file_mmap(file, vma); 1756 } 1757 #else 1758 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 1759 { 1760 return -ENOSYS; 1761 } 1762 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 1763 { 1764 return -ENOSYS; 1765 } 1766 #endif /* CONFIG_MMU */ 1767 1768 EXPORT_SYMBOL(generic_file_mmap); 1769 EXPORT_SYMBOL(generic_file_readonly_mmap); 1770 1771 static inline struct page *__read_cache_page(struct address_space *mapping, 1772 unsigned long index, 1773 int (*filler)(void *,struct page*), 1774 void *data) 1775 { 1776 struct page *page, *cached_page = NULL; 1777 int err; 1778 repeat: 1779 page = find_get_page(mapping, index); 1780 if (!page) { 1781 if (!cached_page) { 1782 cached_page = page_cache_alloc_cold(mapping); 1783 if (!cached_page) 1784 return ERR_PTR(-ENOMEM); 1785 } 1786 err = add_to_page_cache_lru(cached_page, mapping, 1787 index, GFP_KERNEL); 1788 if (err == -EEXIST) 1789 goto repeat; 1790 if (err < 0) { 1791 /* Presumably ENOMEM for radix tree node */ 1792 page_cache_release(cached_page); 1793 return ERR_PTR(err); 1794 } 1795 page = cached_page; 1796 cached_page = NULL; 1797 err = filler(data, page); 1798 if (err < 0) { 1799 page_cache_release(page); 1800 page = ERR_PTR(err); 1801 } 1802 } 1803 if (cached_page) 1804 page_cache_release(cached_page); 1805 return page; 1806 } 1807 1808 /** 1809 * read_cache_page - read into page cache, fill it if needed 1810 * @mapping: the page's address_space 1811 * @index: the page index 1812 * @filler: function to perform the read 1813 * @data: destination for read data 1814 * 1815 * Read into the page cache. If a page already exists, 1816 * and PageUptodate() is not set, try to fill the page. 1817 */ 1818 struct page *read_cache_page(struct address_space *mapping, 1819 unsigned long index, 1820 int (*filler)(void *,struct page*), 1821 void *data) 1822 { 1823 struct page *page; 1824 int err; 1825 1826 retry: 1827 page = __read_cache_page(mapping, index, filler, data); 1828 if (IS_ERR(page)) 1829 goto out; 1830 mark_page_accessed(page); 1831 if (PageUptodate(page)) 1832 goto out; 1833 1834 lock_page(page); 1835 if (!page->mapping) { 1836 unlock_page(page); 1837 page_cache_release(page); 1838 goto retry; 1839 } 1840 if (PageUptodate(page)) { 1841 unlock_page(page); 1842 goto out; 1843 } 1844 err = filler(data, page); 1845 if (err < 0) { 1846 page_cache_release(page); 1847 page = ERR_PTR(err); 1848 } 1849 out: 1850 return page; 1851 } 1852 EXPORT_SYMBOL(read_cache_page); 1853 1854 /* 1855 * If the page was newly created, increment its refcount and add it to the 1856 * caller's lru-buffering pagevec. This function is specifically for 1857 * generic_file_write(). 1858 */ 1859 static inline struct page * 1860 __grab_cache_page(struct address_space *mapping, unsigned long index, 1861 struct page **cached_page, struct pagevec *lru_pvec) 1862 { 1863 int err; 1864 struct page *page; 1865 repeat: 1866 page = find_lock_page(mapping, index); 1867 if (!page) { 1868 if (!*cached_page) { 1869 *cached_page = page_cache_alloc(mapping); 1870 if (!*cached_page) 1871 return NULL; 1872 } 1873 err = add_to_page_cache(*cached_page, mapping, 1874 index, GFP_KERNEL); 1875 if (err == -EEXIST) 1876 goto repeat; 1877 if (err == 0) { 1878 page = *cached_page; 1879 page_cache_get(page); 1880 if (!pagevec_add(lru_pvec, page)) 1881 __pagevec_lru_add(lru_pvec); 1882 *cached_page = NULL; 1883 } 1884 } 1885 return page; 1886 } 1887 1888 /* 1889 * The logic we want is 1890 * 1891 * if suid or (sgid and xgrp) 1892 * remove privs 1893 */ 1894 int remove_suid(struct dentry *dentry) 1895 { 1896 mode_t mode = dentry->d_inode->i_mode; 1897 int kill = 0; 1898 int result = 0; 1899 1900 /* suid always must be killed */ 1901 if (unlikely(mode & S_ISUID)) 1902 kill = ATTR_KILL_SUID; 1903 1904 /* 1905 * sgid without any exec bits is just a mandatory locking mark; leave 1906 * it alone. If some exec bits are set, it's a real sgid; kill it. 1907 */ 1908 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP))) 1909 kill |= ATTR_KILL_SGID; 1910 1911 if (unlikely(kill && !capable(CAP_FSETID))) { 1912 struct iattr newattrs; 1913 1914 newattrs.ia_valid = ATTR_FORCE | kill; 1915 result = notify_change(dentry, &newattrs); 1916 } 1917 return result; 1918 } 1919 EXPORT_SYMBOL(remove_suid); 1920 1921 size_t 1922 __filemap_copy_from_user_iovec_inatomic(char *vaddr, 1923 const struct iovec *iov, size_t base, size_t bytes) 1924 { 1925 size_t copied = 0, left = 0; 1926 1927 while (bytes) { 1928 char __user *buf = iov->iov_base + base; 1929 int copy = min(bytes, iov->iov_len - base); 1930 1931 base = 0; 1932 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy); 1933 copied += copy; 1934 bytes -= copy; 1935 vaddr += copy; 1936 iov++; 1937 1938 if (unlikely(left)) 1939 break; 1940 } 1941 return copied - left; 1942 } 1943 1944 /* 1945 * Performs necessary checks before doing a write 1946 * 1947 * Can adjust writing position or amount of bytes to write. 1948 * Returns appropriate error code that caller should return or 1949 * zero in case that write should be allowed. 1950 */ 1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 1952 { 1953 struct inode *inode = file->f_mapping->host; 1954 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; 1955 1956 if (unlikely(*pos < 0)) 1957 return -EINVAL; 1958 1959 if (!isblk) { 1960 /* FIXME: this is for backwards compatibility with 2.4 */ 1961 if (file->f_flags & O_APPEND) 1962 *pos = i_size_read(inode); 1963 1964 if (limit != RLIM_INFINITY) { 1965 if (*pos >= limit) { 1966 send_sig(SIGXFSZ, current, 0); 1967 return -EFBIG; 1968 } 1969 if (*count > limit - (typeof(limit))*pos) { 1970 *count = limit - (typeof(limit))*pos; 1971 } 1972 } 1973 } 1974 1975 /* 1976 * LFS rule 1977 */ 1978 if (unlikely(*pos + *count > MAX_NON_LFS && 1979 !(file->f_flags & O_LARGEFILE))) { 1980 if (*pos >= MAX_NON_LFS) { 1981 send_sig(SIGXFSZ, current, 0); 1982 return -EFBIG; 1983 } 1984 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 1985 *count = MAX_NON_LFS - (unsigned long)*pos; 1986 } 1987 } 1988 1989 /* 1990 * Are we about to exceed the fs block limit ? 1991 * 1992 * If we have written data it becomes a short write. If we have 1993 * exceeded without writing data we send a signal and return EFBIG. 1994 * Linus frestrict idea will clean these up nicely.. 1995 */ 1996 if (likely(!isblk)) { 1997 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 1998 if (*count || *pos > inode->i_sb->s_maxbytes) { 1999 send_sig(SIGXFSZ, current, 0); 2000 return -EFBIG; 2001 } 2002 /* zero-length writes at ->s_maxbytes are OK */ 2003 } 2004 2005 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2006 *count = inode->i_sb->s_maxbytes - *pos; 2007 } else { 2008 loff_t isize; 2009 if (bdev_read_only(I_BDEV(inode))) 2010 return -EPERM; 2011 isize = i_size_read(inode); 2012 if (*pos >= isize) { 2013 if (*count || *pos > isize) 2014 return -ENOSPC; 2015 } 2016 2017 if (*pos + *count > isize) 2018 *count = isize - *pos; 2019 } 2020 return 0; 2021 } 2022 EXPORT_SYMBOL(generic_write_checks); 2023 2024 ssize_t 2025 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2026 unsigned long *nr_segs, loff_t pos, loff_t *ppos, 2027 size_t count, size_t ocount) 2028 { 2029 struct file *file = iocb->ki_filp; 2030 struct address_space *mapping = file->f_mapping; 2031 struct inode *inode = mapping->host; 2032 ssize_t written; 2033 2034 if (count != ocount) 2035 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2036 2037 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2038 if (written > 0) { 2039 loff_t end = pos + written; 2040 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2041 i_size_write(inode, end); 2042 mark_inode_dirty(inode); 2043 } 2044 *ppos = end; 2045 } 2046 2047 /* 2048 * Sync the fs metadata but not the minor inode changes and 2049 * of course not the data as we did direct DMA for the IO. 2050 * i_mutex is held, which protects generic_osync_inode() from 2051 * livelocking. 2052 */ 2053 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2054 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA); 2055 if (err < 0) 2056 written = err; 2057 } 2058 if (written == count && !is_sync_kiocb(iocb)) 2059 written = -EIOCBQUEUED; 2060 return written; 2061 } 2062 EXPORT_SYMBOL(generic_file_direct_write); 2063 2064 ssize_t 2065 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov, 2066 unsigned long nr_segs, loff_t pos, loff_t *ppos, 2067 size_t count, ssize_t written) 2068 { 2069 struct file *file = iocb->ki_filp; 2070 struct address_space * mapping = file->f_mapping; 2071 const struct address_space_operations *a_ops = mapping->a_ops; 2072 struct inode *inode = mapping->host; 2073 long status = 0; 2074 struct page *page; 2075 struct page *cached_page = NULL; 2076 size_t bytes; 2077 struct pagevec lru_pvec; 2078 const struct iovec *cur_iov = iov; /* current iovec */ 2079 size_t iov_base = 0; /* offset in the current iovec */ 2080 char __user *buf; 2081 2082 pagevec_init(&lru_pvec, 0); 2083 2084 /* 2085 * handle partial DIO write. Adjust cur_iov if needed. 2086 */ 2087 if (likely(nr_segs == 1)) 2088 buf = iov->iov_base + written; 2089 else { 2090 filemap_set_next_iovec(&cur_iov, &iov_base, written); 2091 buf = cur_iov->iov_base + iov_base; 2092 } 2093 2094 do { 2095 unsigned long index; 2096 unsigned long offset; 2097 size_t copied; 2098 2099 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */ 2100 index = pos >> PAGE_CACHE_SHIFT; 2101 bytes = PAGE_CACHE_SIZE - offset; 2102 2103 /* Limit the size of the copy to the caller's write size */ 2104 bytes = min(bytes, count); 2105 2106 /* 2107 * Limit the size of the copy to that of the current segment, 2108 * because fault_in_pages_readable() doesn't know how to walk 2109 * segments. 2110 */ 2111 bytes = min(bytes, cur_iov->iov_len - iov_base); 2112 2113 /* 2114 * Bring in the user page that we will copy from _first_. 2115 * Otherwise there's a nasty deadlock on copying from the 2116 * same page as we're writing to, without it being marked 2117 * up-to-date. 2118 */ 2119 fault_in_pages_readable(buf, bytes); 2120 2121 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec); 2122 if (!page) { 2123 status = -ENOMEM; 2124 break; 2125 } 2126 2127 if (unlikely(bytes == 0)) { 2128 status = 0; 2129 copied = 0; 2130 goto zero_length_segment; 2131 } 2132 2133 status = a_ops->prepare_write(file, page, offset, offset+bytes); 2134 if (unlikely(status)) { 2135 loff_t isize = i_size_read(inode); 2136 2137 if (status != AOP_TRUNCATED_PAGE) 2138 unlock_page(page); 2139 page_cache_release(page); 2140 if (status == AOP_TRUNCATED_PAGE) 2141 continue; 2142 /* 2143 * prepare_write() may have instantiated a few blocks 2144 * outside i_size. Trim these off again. 2145 */ 2146 if (pos + bytes > isize) 2147 vmtruncate(inode, isize); 2148 break; 2149 } 2150 if (likely(nr_segs == 1)) 2151 copied = filemap_copy_from_user(page, offset, 2152 buf, bytes); 2153 else 2154 copied = filemap_copy_from_user_iovec(page, offset, 2155 cur_iov, iov_base, bytes); 2156 flush_dcache_page(page); 2157 status = a_ops->commit_write(file, page, offset, offset+bytes); 2158 if (status == AOP_TRUNCATED_PAGE) { 2159 page_cache_release(page); 2160 continue; 2161 } 2162 zero_length_segment: 2163 if (likely(copied >= 0)) { 2164 if (!status) 2165 status = copied; 2166 2167 if (status >= 0) { 2168 written += status; 2169 count -= status; 2170 pos += status; 2171 buf += status; 2172 if (unlikely(nr_segs > 1)) { 2173 filemap_set_next_iovec(&cur_iov, 2174 &iov_base, status); 2175 if (count) 2176 buf = cur_iov->iov_base + 2177 iov_base; 2178 } else { 2179 iov_base += status; 2180 } 2181 } 2182 } 2183 if (unlikely(copied != bytes)) 2184 if (status >= 0) 2185 status = -EFAULT; 2186 unlock_page(page); 2187 mark_page_accessed(page); 2188 page_cache_release(page); 2189 if (status < 0) 2190 break; 2191 balance_dirty_pages_ratelimited(mapping); 2192 cond_resched(); 2193 } while (count); 2194 *ppos = pos; 2195 2196 if (cached_page) 2197 page_cache_release(cached_page); 2198 2199 /* 2200 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC 2201 */ 2202 if (likely(status >= 0)) { 2203 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2204 if (!a_ops->writepage || !is_sync_kiocb(iocb)) 2205 status = generic_osync_inode(inode, mapping, 2206 OSYNC_METADATA|OSYNC_DATA); 2207 } 2208 } 2209 2210 /* 2211 * If we get here for O_DIRECT writes then we must have fallen through 2212 * to buffered writes (block instantiation inside i_size). So we sync 2213 * the file data here, to try to honour O_DIRECT expectations. 2214 */ 2215 if (unlikely(file->f_flags & O_DIRECT) && written) 2216 status = filemap_write_and_wait(mapping); 2217 2218 pagevec_lru_add(&lru_pvec); 2219 return written ? written : status; 2220 } 2221 EXPORT_SYMBOL(generic_file_buffered_write); 2222 2223 static ssize_t 2224 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2225 unsigned long nr_segs, loff_t *ppos) 2226 { 2227 struct file *file = iocb->ki_filp; 2228 const struct address_space * mapping = file->f_mapping; 2229 size_t ocount; /* original count */ 2230 size_t count; /* after file limit checks */ 2231 struct inode *inode = mapping->host; 2232 unsigned long seg; 2233 loff_t pos; 2234 ssize_t written; 2235 ssize_t err; 2236 2237 ocount = 0; 2238 for (seg = 0; seg < nr_segs; seg++) { 2239 const struct iovec *iv = &iov[seg]; 2240 2241 /* 2242 * If any segment has a negative length, or the cumulative 2243 * length ever wraps negative then return -EINVAL. 2244 */ 2245 ocount += iv->iov_len; 2246 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0)) 2247 return -EINVAL; 2248 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len)) 2249 continue; 2250 if (seg == 0) 2251 return -EFAULT; 2252 nr_segs = seg; 2253 ocount -= iv->iov_len; /* This segment is no good */ 2254 break; 2255 } 2256 2257 count = ocount; 2258 pos = *ppos; 2259 2260 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE); 2261 2262 /* We can write back this queue in page reclaim */ 2263 current->backing_dev_info = mapping->backing_dev_info; 2264 written = 0; 2265 2266 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2267 if (err) 2268 goto out; 2269 2270 if (count == 0) 2271 goto out; 2272 2273 err = remove_suid(file->f_dentry); 2274 if (err) 2275 goto out; 2276 2277 file_update_time(file); 2278 2279 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2280 if (unlikely(file->f_flags & O_DIRECT)) { 2281 written = generic_file_direct_write(iocb, iov, 2282 &nr_segs, pos, ppos, count, ocount); 2283 if (written < 0 || written == count) 2284 goto out; 2285 /* 2286 * direct-io write to a hole: fall through to buffered I/O 2287 * for completing the rest of the request. 2288 */ 2289 pos += written; 2290 count -= written; 2291 } 2292 2293 written = generic_file_buffered_write(iocb, iov, nr_segs, 2294 pos, ppos, count, written); 2295 out: 2296 current->backing_dev_info = NULL; 2297 return written ? written : err; 2298 } 2299 EXPORT_SYMBOL(generic_file_aio_write_nolock); 2300 2301 ssize_t 2302 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov, 2303 unsigned long nr_segs, loff_t *ppos) 2304 { 2305 struct file *file = iocb->ki_filp; 2306 struct address_space *mapping = file->f_mapping; 2307 struct inode *inode = mapping->host; 2308 ssize_t ret; 2309 loff_t pos = *ppos; 2310 2311 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos); 2312 2313 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2314 int err; 2315 2316 err = sync_page_range_nolock(inode, mapping, pos, ret); 2317 if (err < 0) 2318 ret = err; 2319 } 2320 return ret; 2321 } 2322 2323 static ssize_t 2324 __generic_file_write_nolock(struct file *file, const struct iovec *iov, 2325 unsigned long nr_segs, loff_t *ppos) 2326 { 2327 struct kiocb kiocb; 2328 ssize_t ret; 2329 2330 init_sync_kiocb(&kiocb, file); 2331 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2332 if (ret == -EIOCBQUEUED) 2333 ret = wait_on_sync_kiocb(&kiocb); 2334 return ret; 2335 } 2336 2337 ssize_t 2338 generic_file_write_nolock(struct file *file, const struct iovec *iov, 2339 unsigned long nr_segs, loff_t *ppos) 2340 { 2341 struct kiocb kiocb; 2342 ssize_t ret; 2343 2344 init_sync_kiocb(&kiocb, file); 2345 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos); 2346 if (-EIOCBQUEUED == ret) 2347 ret = wait_on_sync_kiocb(&kiocb); 2348 return ret; 2349 } 2350 EXPORT_SYMBOL(generic_file_write_nolock); 2351 2352 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf, 2353 size_t count, loff_t pos) 2354 { 2355 struct file *file = iocb->ki_filp; 2356 struct address_space *mapping = file->f_mapping; 2357 struct inode *inode = mapping->host; 2358 ssize_t ret; 2359 struct iovec local_iov = { .iov_base = (void __user *)buf, 2360 .iov_len = count }; 2361 2362 BUG_ON(iocb->ki_pos != pos); 2363 2364 mutex_lock(&inode->i_mutex); 2365 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1, 2366 &iocb->ki_pos); 2367 mutex_unlock(&inode->i_mutex); 2368 2369 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2370 ssize_t err; 2371 2372 err = sync_page_range(inode, mapping, pos, ret); 2373 if (err < 0) 2374 ret = err; 2375 } 2376 return ret; 2377 } 2378 EXPORT_SYMBOL(generic_file_aio_write); 2379 2380 ssize_t generic_file_write(struct file *file, const char __user *buf, 2381 size_t count, loff_t *ppos) 2382 { 2383 struct address_space *mapping = file->f_mapping; 2384 struct inode *inode = mapping->host; 2385 ssize_t ret; 2386 struct iovec local_iov = { .iov_base = (void __user *)buf, 2387 .iov_len = count }; 2388 2389 mutex_lock(&inode->i_mutex); 2390 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos); 2391 mutex_unlock(&inode->i_mutex); 2392 2393 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2394 ssize_t err; 2395 2396 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2397 if (err < 0) 2398 ret = err; 2399 } 2400 return ret; 2401 } 2402 EXPORT_SYMBOL(generic_file_write); 2403 2404 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov, 2405 unsigned long nr_segs, loff_t *ppos) 2406 { 2407 struct kiocb kiocb; 2408 ssize_t ret; 2409 2410 init_sync_kiocb(&kiocb, filp); 2411 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos); 2412 if (-EIOCBQUEUED == ret) 2413 ret = wait_on_sync_kiocb(&kiocb); 2414 return ret; 2415 } 2416 EXPORT_SYMBOL(generic_file_readv); 2417 2418 ssize_t generic_file_writev(struct file *file, const struct iovec *iov, 2419 unsigned long nr_segs, loff_t *ppos) 2420 { 2421 struct address_space *mapping = file->f_mapping; 2422 struct inode *inode = mapping->host; 2423 ssize_t ret; 2424 2425 mutex_lock(&inode->i_mutex); 2426 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos); 2427 mutex_unlock(&inode->i_mutex); 2428 2429 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) { 2430 int err; 2431 2432 err = sync_page_range(inode, mapping, *ppos - ret, ret); 2433 if (err < 0) 2434 ret = err; 2435 } 2436 return ret; 2437 } 2438 EXPORT_SYMBOL(generic_file_writev); 2439 2440 /* 2441 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something 2442 * went wrong during pagecache shootdown. 2443 */ 2444 static ssize_t 2445 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov, 2446 loff_t offset, unsigned long nr_segs) 2447 { 2448 struct file *file = iocb->ki_filp; 2449 struct address_space *mapping = file->f_mapping; 2450 ssize_t retval; 2451 size_t write_len = 0; 2452 2453 /* 2454 * If it's a write, unmap all mmappings of the file up-front. This 2455 * will cause any pte dirty bits to be propagated into the pageframes 2456 * for the subsequent filemap_write_and_wait(). 2457 */ 2458 if (rw == WRITE) { 2459 write_len = iov_length(iov, nr_segs); 2460 if (mapping_mapped(mapping)) 2461 unmap_mapping_range(mapping, offset, write_len, 0); 2462 } 2463 2464 retval = filemap_write_and_wait(mapping); 2465 if (retval == 0) { 2466 retval = mapping->a_ops->direct_IO(rw, iocb, iov, 2467 offset, nr_segs); 2468 if (rw == WRITE && mapping->nrpages) { 2469 pgoff_t end = (offset + write_len - 1) 2470 >> PAGE_CACHE_SHIFT; 2471 int err = invalidate_inode_pages2_range(mapping, 2472 offset >> PAGE_CACHE_SHIFT, end); 2473 if (err) 2474 retval = err; 2475 } 2476 } 2477 return retval; 2478 } 2479