xref: /linux/mm/filemap.c (revision 14b42963f64b98ab61fa9723c03d71aa5ef4f862)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35 
36 /*
37  * FIXME: remove all knowledge of the buffer layer from the core VM
38  */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40 
41 #include <asm/mman.h>
42 
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 	loff_t offset, unsigned long nr_segs);
46 
47 /*
48  * Shared mappings implemented 30.11.1994. It's not fully working yet,
49  * though.
50  *
51  * Shared mappings now work. 15.8.1995  Bruno.
52  *
53  * finished 'unifying' the page and buffer cache and SMP-threaded the
54  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55  *
56  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57  */
58 
59 /*
60  * Lock ordering:
61  *
62  *  ->i_mmap_lock		(vmtruncate)
63  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
64  *      ->swap_lock		(exclusive_swap_page, others)
65  *        ->mapping->tree_lock
66  *
67  *  ->i_mutex
68  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
69  *
70  *  ->mmap_sem
71  *    ->i_mmap_lock
72  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
73  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
74  *
75  *  ->mmap_sem
76  *    ->lock_page		(access_process_vm)
77  *
78  *  ->mmap_sem
79  *    ->i_mutex			(msync)
80  *
81  *  ->i_mutex
82  *    ->i_alloc_sem             (various)
83  *
84  *  ->inode_lock
85  *    ->sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_lock
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode_lock		(zap_pte_range->set_page_dirty)
104  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
105  *
106  *  ->task->proc_lock
107  *    ->dcache_lock		(proc_pid_lookup)
108  */
109 
110 /*
111  * Remove a page from the page cache and free it. Caller has to make
112  * sure the page is locked and that nobody else uses it - or that usage
113  * is safe.  The caller must hold a write_lock on the mapping's tree_lock.
114  */
115 void __remove_from_page_cache(struct page *page)
116 {
117 	struct address_space *mapping = page->mapping;
118 
119 	radix_tree_delete(&mapping->page_tree, page->index);
120 	page->mapping = NULL;
121 	mapping->nrpages--;
122 	__dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124 
125 void remove_from_page_cache(struct page *page)
126 {
127 	struct address_space *mapping = page->mapping;
128 
129 	BUG_ON(!PageLocked(page));
130 
131 	write_lock_irq(&mapping->tree_lock);
132 	__remove_from_page_cache(page);
133 	write_unlock_irq(&mapping->tree_lock);
134 }
135 
136 static int sync_page(void *word)
137 {
138 	struct address_space *mapping;
139 	struct page *page;
140 
141 	page = container_of((unsigned long *)word, struct page, flags);
142 
143 	/*
144 	 * page_mapping() is being called without PG_locked held.
145 	 * Some knowledge of the state and use of the page is used to
146 	 * reduce the requirements down to a memory barrier.
147 	 * The danger here is of a stale page_mapping() return value
148 	 * indicating a struct address_space different from the one it's
149 	 * associated with when it is associated with one.
150 	 * After smp_mb(), it's either the correct page_mapping() for
151 	 * the page, or an old page_mapping() and the page's own
152 	 * page_mapping() has gone NULL.
153 	 * The ->sync_page() address_space operation must tolerate
154 	 * page_mapping() going NULL. By an amazing coincidence,
155 	 * this comes about because none of the users of the page
156 	 * in the ->sync_page() methods make essential use of the
157 	 * page_mapping(), merely passing the page down to the backing
158 	 * device's unplug functions when it's non-NULL, which in turn
159 	 * ignore it for all cases but swap, where only page_private(page) is
160 	 * of interest. When page_mapping() does go NULL, the entire
161 	 * call stack gracefully ignores the page and returns.
162 	 * -- wli
163 	 */
164 	smp_mb();
165 	mapping = page_mapping(page);
166 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 		mapping->a_ops->sync_page(page);
168 	io_schedule();
169 	return 0;
170 }
171 
172 /**
173  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174  * @mapping:	address space structure to write
175  * @start:	offset in bytes where the range starts
176  * @end:	offset in bytes where the range ends (inclusive)
177  * @sync_mode:	enable synchronous operation
178  *
179  * Start writeback against all of a mapping's dirty pages that lie
180  * within the byte offsets <start, end> inclusive.
181  *
182  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183  * opposed to a regular memory cleansing writeback.  The difference between
184  * these two operations is that if a dirty page/buffer is encountered, it must
185  * be waited upon, and not just skipped over.
186  */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 				loff_t end, int sync_mode)
189 {
190 	int ret;
191 	struct writeback_control wbc = {
192 		.sync_mode = sync_mode,
193 		.nr_to_write = mapping->nrpages * 2,
194 		.range_start = start,
195 		.range_end = end,
196 	};
197 
198 	if (!mapping_cap_writeback_dirty(mapping))
199 		return 0;
200 
201 	ret = do_writepages(mapping, &wbc);
202 	return ret;
203 }
204 
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 	int sync_mode)
207 {
208 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210 
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216 
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 				loff_t end)
219 {
220 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222 
223 /**
224  * filemap_flush - mostly a non-blocking flush
225  * @mapping:	target address_space
226  *
227  * This is a mostly non-blocking flush.  Not suitable for data-integrity
228  * purposes - I/O may not be started against all dirty pages.
229  */
230 int filemap_flush(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235 
236 /**
237  * wait_on_page_writeback_range - wait for writeback to complete
238  * @mapping:	target address_space
239  * @start:	beginning page index
240  * @end:	ending page index
241  *
242  * Wait for writeback to complete against pages indexed by start->end
243  * inclusive
244  */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 				pgoff_t start, pgoff_t end)
247 {
248 	struct pagevec pvec;
249 	int nr_pages;
250 	int ret = 0;
251 	pgoff_t index;
252 
253 	if (end < start)
254 		return 0;
255 
256 	pagevec_init(&pvec, 0);
257 	index = start;
258 	while ((index <= end) &&
259 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 			PAGECACHE_TAG_WRITEBACK,
261 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 		unsigned i;
263 
264 		for (i = 0; i < nr_pages; i++) {
265 			struct page *page = pvec.pages[i];
266 
267 			/* until radix tree lookup accepts end_index */
268 			if (page->index > end)
269 				continue;
270 
271 			wait_on_page_writeback(page);
272 			if (PageError(page))
273 				ret = -EIO;
274 		}
275 		pagevec_release(&pvec);
276 		cond_resched();
277 	}
278 
279 	/* Check for outstanding write errors */
280 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 		ret = -ENOSPC;
282 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 		ret = -EIO;
284 
285 	return ret;
286 }
287 
288 /**
289  * sync_page_range - write and wait on all pages in the passed range
290  * @inode:	target inode
291  * @mapping:	target address_space
292  * @pos:	beginning offset in pages to write
293  * @count:	number of bytes to write
294  *
295  * Write and wait upon all the pages in the passed range.  This is a "data
296  * integrity" operation.  It waits upon in-flight writeout before starting and
297  * waiting upon new writeout.  If there was an IO error, return it.
298  *
299  * We need to re-take i_mutex during the generic_osync_inode list walk because
300  * it is otherwise livelockable.
301  */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 			loff_t pos, loff_t count)
304 {
305 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 	int ret;
308 
309 	if (!mapping_cap_writeback_dirty(mapping) || !count)
310 		return 0;
311 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 	if (ret == 0) {
313 		mutex_lock(&inode->i_mutex);
314 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 		mutex_unlock(&inode->i_mutex);
316 	}
317 	if (ret == 0)
318 		ret = wait_on_page_writeback_range(mapping, start, end);
319 	return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322 
323 /**
324  * sync_page_range_nolock
325  * @inode:	target inode
326  * @mapping:	target address_space
327  * @pos:	beginning offset in pages to write
328  * @count:	number of bytes to write
329  *
330  * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
331  * as it forces O_SYNC writers to different parts of the same file
332  * to be serialised right until io completion.
333  */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 			   loff_t pos, loff_t count)
336 {
337 	pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 	pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 	int ret;
340 
341 	if (!mapping_cap_writeback_dirty(mapping) || !count)
342 		return 0;
343 	ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 	if (ret == 0)
345 		ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 	if (ret == 0)
347 		ret = wait_on_page_writeback_range(mapping, start, end);
348 	return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351 
352 /**
353  * filemap_fdatawait - wait for all under-writeback pages to complete
354  * @mapping: address space structure to wait for
355  *
356  * Walk the list of under-writeback pages of the given address space
357  * and wait for all of them.
358  */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 	loff_t i_size = i_size_read(mapping->host);
362 
363 	if (i_size == 0)
364 		return 0;
365 
366 	return wait_on_page_writeback_range(mapping, 0,
367 				(i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370 
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 	int err = 0;
374 
375 	if (mapping->nrpages) {
376 		err = filemap_fdatawrite(mapping);
377 		/*
378 		 * Even if the above returned error, the pages may be
379 		 * written partially (e.g. -ENOSPC), so we wait for it.
380 		 * But the -EIO is special case, it may indicate the worst
381 		 * thing (e.g. bug) happened, so we avoid waiting for it.
382 		 */
383 		if (err != -EIO) {
384 			int err2 = filemap_fdatawait(mapping);
385 			if (!err)
386 				err = err2;
387 		}
388 	}
389 	return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392 
393 /**
394  * filemap_write_and_wait_range - write out & wait on a file range
395  * @mapping:	the address_space for the pages
396  * @lstart:	offset in bytes where the range starts
397  * @lend:	offset in bytes where the range ends (inclusive)
398  *
399  * Write out and wait upon file offsets lstart->lend, inclusive.
400  *
401  * Note that `lend' is inclusive (describes the last byte to be written) so
402  * that this function can be used to write to the very end-of-file (end = -1).
403  */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 				 loff_t lstart, loff_t lend)
406 {
407 	int err = 0;
408 
409 	if (mapping->nrpages) {
410 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 						 WB_SYNC_ALL);
412 		/* See comment of filemap_write_and_wait() */
413 		if (err != -EIO) {
414 			int err2 = wait_on_page_writeback_range(mapping,
415 						lstart >> PAGE_CACHE_SHIFT,
416 						lend >> PAGE_CACHE_SHIFT);
417 			if (!err)
418 				err = err2;
419 		}
420 	}
421 	return err;
422 }
423 
424 /**
425  * add_to_page_cache - add newly allocated pagecache pages
426  * @page:	page to add
427  * @mapping:	the page's address_space
428  * @offset:	page index
429  * @gfp_mask:	page allocation mode
430  *
431  * This function is used to add newly allocated pagecache pages;
432  * the page is new, so we can just run SetPageLocked() against it.
433  * The other page state flags were set by rmqueue().
434  *
435  * This function does not add the page to the LRU.  The caller must do that.
436  */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 		pgoff_t offset, gfp_t gfp_mask)
439 {
440 	int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441 
442 	if (error == 0) {
443 		write_lock_irq(&mapping->tree_lock);
444 		error = radix_tree_insert(&mapping->page_tree, offset, page);
445 		if (!error) {
446 			page_cache_get(page);
447 			SetPageLocked(page);
448 			page->mapping = mapping;
449 			page->index = offset;
450 			mapping->nrpages++;
451 			__inc_zone_page_state(page, NR_FILE_PAGES);
452 		}
453 		write_unlock_irq(&mapping->tree_lock);
454 		radix_tree_preload_end();
455 	}
456 	return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459 
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 				pgoff_t offset, gfp_t gfp_mask)
462 {
463 	int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0)
465 		lru_cache_add(page);
466 	return ret;
467 }
468 
469 #ifdef CONFIG_NUMA
470 struct page *page_cache_alloc(struct address_space *x)
471 {
472 	if (cpuset_do_page_mem_spread()) {
473 		int n = cpuset_mem_spread_node();
474 		return alloc_pages_node(n, mapping_gfp_mask(x), 0);
475 	}
476 	return alloc_pages(mapping_gfp_mask(x), 0);
477 }
478 EXPORT_SYMBOL(page_cache_alloc);
479 
480 struct page *page_cache_alloc_cold(struct address_space *x)
481 {
482 	if (cpuset_do_page_mem_spread()) {
483 		int n = cpuset_mem_spread_node();
484 		return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
485 	}
486 	return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
487 }
488 EXPORT_SYMBOL(page_cache_alloc_cold);
489 #endif
490 
491 /*
492  * In order to wait for pages to become available there must be
493  * waitqueues associated with pages. By using a hash table of
494  * waitqueues where the bucket discipline is to maintain all
495  * waiters on the same queue and wake all when any of the pages
496  * become available, and for the woken contexts to check to be
497  * sure the appropriate page became available, this saves space
498  * at a cost of "thundering herd" phenomena during rare hash
499  * collisions.
500  */
501 static wait_queue_head_t *page_waitqueue(struct page *page)
502 {
503 	const struct zone *zone = page_zone(page);
504 
505 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
506 }
507 
508 static inline void wake_up_page(struct page *page, int bit)
509 {
510 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
511 }
512 
513 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
514 {
515 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
516 
517 	if (test_bit(bit_nr, &page->flags))
518 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
519 							TASK_UNINTERRUPTIBLE);
520 }
521 EXPORT_SYMBOL(wait_on_page_bit);
522 
523 /**
524  * unlock_page - unlock a locked page
525  * @page: the page
526  *
527  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
528  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
529  * mechananism between PageLocked pages and PageWriteback pages is shared.
530  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
531  *
532  * The first mb is necessary to safely close the critical section opened by the
533  * TestSetPageLocked(), the second mb is necessary to enforce ordering between
534  * the clear_bit and the read of the waitqueue (to avoid SMP races with a
535  * parallel wait_on_page_locked()).
536  */
537 void fastcall unlock_page(struct page *page)
538 {
539 	smp_mb__before_clear_bit();
540 	if (!TestClearPageLocked(page))
541 		BUG();
542 	smp_mb__after_clear_bit();
543 	wake_up_page(page, PG_locked);
544 }
545 EXPORT_SYMBOL(unlock_page);
546 
547 /**
548  * end_page_writeback - end writeback against a page
549  * @page: the page
550  */
551 void end_page_writeback(struct page *page)
552 {
553 	if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
554 		if (!test_clear_page_writeback(page))
555 			BUG();
556 	}
557 	smp_mb__after_clear_bit();
558 	wake_up_page(page, PG_writeback);
559 }
560 EXPORT_SYMBOL(end_page_writeback);
561 
562 /**
563  * __lock_page - get a lock on the page, assuming we need to sleep to get it
564  * @page: the page to lock
565  *
566  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
567  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
568  * chances are that on the second loop, the block layer's plug list is empty,
569  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
570  */
571 void fastcall __lock_page(struct page *page)
572 {
573 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
574 
575 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
576 							TASK_UNINTERRUPTIBLE);
577 }
578 EXPORT_SYMBOL(__lock_page);
579 
580 /**
581  * find_get_page - find and get a page reference
582  * @mapping: the address_space to search
583  * @offset: the page index
584  *
585  * A rather lightweight function, finding and getting a reference to a
586  * hashed page atomically.
587  */
588 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
589 {
590 	struct page *page;
591 
592 	read_lock_irq(&mapping->tree_lock);
593 	page = radix_tree_lookup(&mapping->page_tree, offset);
594 	if (page)
595 		page_cache_get(page);
596 	read_unlock_irq(&mapping->tree_lock);
597 	return page;
598 }
599 EXPORT_SYMBOL(find_get_page);
600 
601 /**
602  * find_trylock_page - find and lock a page
603  * @mapping: the address_space to search
604  * @offset: the page index
605  *
606  * Same as find_get_page(), but trylock it instead of incrementing the count.
607  */
608 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
609 {
610 	struct page *page;
611 
612 	read_lock_irq(&mapping->tree_lock);
613 	page = radix_tree_lookup(&mapping->page_tree, offset);
614 	if (page && TestSetPageLocked(page))
615 		page = NULL;
616 	read_unlock_irq(&mapping->tree_lock);
617 	return page;
618 }
619 EXPORT_SYMBOL(find_trylock_page);
620 
621 /**
622  * find_lock_page - locate, pin and lock a pagecache page
623  * @mapping: the address_space to search
624  * @offset: the page index
625  *
626  * Locates the desired pagecache page, locks it, increments its reference
627  * count and returns its address.
628  *
629  * Returns zero if the page was not present. find_lock_page() may sleep.
630  */
631 struct page *find_lock_page(struct address_space *mapping,
632 				unsigned long offset)
633 {
634 	struct page *page;
635 
636 	read_lock_irq(&mapping->tree_lock);
637 repeat:
638 	page = radix_tree_lookup(&mapping->page_tree, offset);
639 	if (page) {
640 		page_cache_get(page);
641 		if (TestSetPageLocked(page)) {
642 			read_unlock_irq(&mapping->tree_lock);
643 			__lock_page(page);
644 			read_lock_irq(&mapping->tree_lock);
645 
646 			/* Has the page been truncated while we slept? */
647 			if (unlikely(page->mapping != mapping ||
648 				     page->index != offset)) {
649 				unlock_page(page);
650 				page_cache_release(page);
651 				goto repeat;
652 			}
653 		}
654 	}
655 	read_unlock_irq(&mapping->tree_lock);
656 	return page;
657 }
658 EXPORT_SYMBOL(find_lock_page);
659 
660 /**
661  * find_or_create_page - locate or add a pagecache page
662  * @mapping: the page's address_space
663  * @index: the page's index into the mapping
664  * @gfp_mask: page allocation mode
665  *
666  * Locates a page in the pagecache.  If the page is not present, a new page
667  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
668  * LRU list.  The returned page is locked and has its reference count
669  * incremented.
670  *
671  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
672  * allocation!
673  *
674  * find_or_create_page() returns the desired page's address, or zero on
675  * memory exhaustion.
676  */
677 struct page *find_or_create_page(struct address_space *mapping,
678 		unsigned long index, gfp_t gfp_mask)
679 {
680 	struct page *page, *cached_page = NULL;
681 	int err;
682 repeat:
683 	page = find_lock_page(mapping, index);
684 	if (!page) {
685 		if (!cached_page) {
686 			cached_page = alloc_page(gfp_mask);
687 			if (!cached_page)
688 				return NULL;
689 		}
690 		err = add_to_page_cache_lru(cached_page, mapping,
691 					index, gfp_mask);
692 		if (!err) {
693 			page = cached_page;
694 			cached_page = NULL;
695 		} else if (err == -EEXIST)
696 			goto repeat;
697 	}
698 	if (cached_page)
699 		page_cache_release(cached_page);
700 	return page;
701 }
702 EXPORT_SYMBOL(find_or_create_page);
703 
704 /**
705  * find_get_pages - gang pagecache lookup
706  * @mapping:	The address_space to search
707  * @start:	The starting page index
708  * @nr_pages:	The maximum number of pages
709  * @pages:	Where the resulting pages are placed
710  *
711  * find_get_pages() will search for and return a group of up to
712  * @nr_pages pages in the mapping.  The pages are placed at @pages.
713  * find_get_pages() takes a reference against the returned pages.
714  *
715  * The search returns a group of mapping-contiguous pages with ascending
716  * indexes.  There may be holes in the indices due to not-present pages.
717  *
718  * find_get_pages() returns the number of pages which were found.
719  */
720 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
721 			    unsigned int nr_pages, struct page **pages)
722 {
723 	unsigned int i;
724 	unsigned int ret;
725 
726 	read_lock_irq(&mapping->tree_lock);
727 	ret = radix_tree_gang_lookup(&mapping->page_tree,
728 				(void **)pages, start, nr_pages);
729 	for (i = 0; i < ret; i++)
730 		page_cache_get(pages[i]);
731 	read_unlock_irq(&mapping->tree_lock);
732 	return ret;
733 }
734 
735 /**
736  * find_get_pages_contig - gang contiguous pagecache lookup
737  * @mapping:	The address_space to search
738  * @index:	The starting page index
739  * @nr_pages:	The maximum number of pages
740  * @pages:	Where the resulting pages are placed
741  *
742  * find_get_pages_contig() works exactly like find_get_pages(), except
743  * that the returned number of pages are guaranteed to be contiguous.
744  *
745  * find_get_pages_contig() returns the number of pages which were found.
746  */
747 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
748 			       unsigned int nr_pages, struct page **pages)
749 {
750 	unsigned int i;
751 	unsigned int ret;
752 
753 	read_lock_irq(&mapping->tree_lock);
754 	ret = radix_tree_gang_lookup(&mapping->page_tree,
755 				(void **)pages, index, nr_pages);
756 	for (i = 0; i < ret; i++) {
757 		if (pages[i]->mapping == NULL || pages[i]->index != index)
758 			break;
759 
760 		page_cache_get(pages[i]);
761 		index++;
762 	}
763 	read_unlock_irq(&mapping->tree_lock);
764 	return i;
765 }
766 
767 /**
768  * find_get_pages_tag - find and return pages that match @tag
769  * @mapping:	the address_space to search
770  * @index:	the starting page index
771  * @tag:	the tag index
772  * @nr_pages:	the maximum number of pages
773  * @pages:	where the resulting pages are placed
774  *
775  * Like find_get_pages, except we only return pages which are tagged with
776  * @tag.   We update @index to index the next page for the traversal.
777  */
778 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
779 			int tag, unsigned int nr_pages, struct page **pages)
780 {
781 	unsigned int i;
782 	unsigned int ret;
783 
784 	read_lock_irq(&mapping->tree_lock);
785 	ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
786 				(void **)pages, *index, nr_pages, tag);
787 	for (i = 0; i < ret; i++)
788 		page_cache_get(pages[i]);
789 	if (ret)
790 		*index = pages[ret - 1]->index + 1;
791 	read_unlock_irq(&mapping->tree_lock);
792 	return ret;
793 }
794 
795 /**
796  * grab_cache_page_nowait - returns locked page at given index in given cache
797  * @mapping: target address_space
798  * @index: the page index
799  *
800  * Same as grab_cache_page, but do not wait if the page is unavailable.
801  * This is intended for speculative data generators, where the data can
802  * be regenerated if the page couldn't be grabbed.  This routine should
803  * be safe to call while holding the lock for another page.
804  *
805  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
806  * and deadlock against the caller's locked page.
807  */
808 struct page *
809 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
810 {
811 	struct page *page = find_get_page(mapping, index);
812 	gfp_t gfp_mask;
813 
814 	if (page) {
815 		if (!TestSetPageLocked(page))
816 			return page;
817 		page_cache_release(page);
818 		return NULL;
819 	}
820 	gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
821 	page = alloc_pages(gfp_mask, 0);
822 	if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
823 		page_cache_release(page);
824 		page = NULL;
825 	}
826 	return page;
827 }
828 EXPORT_SYMBOL(grab_cache_page_nowait);
829 
830 /*
831  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
832  * a _large_ part of the i/o request. Imagine the worst scenario:
833  *
834  *      ---R__________________________________________B__________
835  *         ^ reading here                             ^ bad block(assume 4k)
836  *
837  * read(R) => miss => readahead(R...B) => media error => frustrating retries
838  * => failing the whole request => read(R) => read(R+1) =>
839  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
840  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
841  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
842  *
843  * It is going insane. Fix it by quickly scaling down the readahead size.
844  */
845 static void shrink_readahead_size_eio(struct file *filp,
846 					struct file_ra_state *ra)
847 {
848 	if (!ra->ra_pages)
849 		return;
850 
851 	ra->ra_pages /= 4;
852 	printk(KERN_WARNING "Reducing readahead size to %luK\n",
853 			ra->ra_pages << (PAGE_CACHE_SHIFT - 10));
854 }
855 
856 /**
857  * do_generic_mapping_read - generic file read routine
858  * @mapping:	address_space to be read
859  * @_ra:	file's readahead state
860  * @filp:	the file to read
861  * @ppos:	current file position
862  * @desc:	read_descriptor
863  * @actor:	read method
864  *
865  * This is a generic file read routine, and uses the
866  * mapping->a_ops->readpage() function for the actual low-level stuff.
867  *
868  * This is really ugly. But the goto's actually try to clarify some
869  * of the logic when it comes to error handling etc.
870  *
871  * Note the struct file* is only passed for the use of readpage.
872  * It may be NULL.
873  */
874 void do_generic_mapping_read(struct address_space *mapping,
875 			     struct file_ra_state *_ra,
876 			     struct file *filp,
877 			     loff_t *ppos,
878 			     read_descriptor_t *desc,
879 			     read_actor_t actor)
880 {
881 	struct inode *inode = mapping->host;
882 	unsigned long index;
883 	unsigned long end_index;
884 	unsigned long offset;
885 	unsigned long last_index;
886 	unsigned long next_index;
887 	unsigned long prev_index;
888 	loff_t isize;
889 	struct page *cached_page;
890 	int error;
891 	struct file_ra_state ra = *_ra;
892 
893 	cached_page = NULL;
894 	index = *ppos >> PAGE_CACHE_SHIFT;
895 	next_index = index;
896 	prev_index = ra.prev_page;
897 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
898 	offset = *ppos & ~PAGE_CACHE_MASK;
899 
900 	isize = i_size_read(inode);
901 	if (!isize)
902 		goto out;
903 
904 	end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
905 	for (;;) {
906 		struct page *page;
907 		unsigned long nr, ret;
908 
909 		/* nr is the maximum number of bytes to copy from this page */
910 		nr = PAGE_CACHE_SIZE;
911 		if (index >= end_index) {
912 			if (index > end_index)
913 				goto out;
914 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
915 			if (nr <= offset) {
916 				goto out;
917 			}
918 		}
919 		nr = nr - offset;
920 
921 		cond_resched();
922 		if (index == next_index)
923 			next_index = page_cache_readahead(mapping, &ra, filp,
924 					index, last_index - index);
925 
926 find_page:
927 		page = find_get_page(mapping, index);
928 		if (unlikely(page == NULL)) {
929 			handle_ra_miss(mapping, &ra, index);
930 			goto no_cached_page;
931 		}
932 		if (!PageUptodate(page))
933 			goto page_not_up_to_date;
934 page_ok:
935 
936 		/* If users can be writing to this page using arbitrary
937 		 * virtual addresses, take care about potential aliasing
938 		 * before reading the page on the kernel side.
939 		 */
940 		if (mapping_writably_mapped(mapping))
941 			flush_dcache_page(page);
942 
943 		/*
944 		 * When (part of) the same page is read multiple times
945 		 * in succession, only mark it as accessed the first time.
946 		 */
947 		if (prev_index != index)
948 			mark_page_accessed(page);
949 		prev_index = index;
950 
951 		/*
952 		 * Ok, we have the page, and it's up-to-date, so
953 		 * now we can copy it to user space...
954 		 *
955 		 * The actor routine returns how many bytes were actually used..
956 		 * NOTE! This may not be the same as how much of a user buffer
957 		 * we filled up (we may be padding etc), so we can only update
958 		 * "pos" here (the actor routine has to update the user buffer
959 		 * pointers and the remaining count).
960 		 */
961 		ret = actor(desc, page, offset, nr);
962 		offset += ret;
963 		index += offset >> PAGE_CACHE_SHIFT;
964 		offset &= ~PAGE_CACHE_MASK;
965 
966 		page_cache_release(page);
967 		if (ret == nr && desc->count)
968 			continue;
969 		goto out;
970 
971 page_not_up_to_date:
972 		/* Get exclusive access to the page ... */
973 		lock_page(page);
974 
975 		/* Did it get unhashed before we got the lock? */
976 		if (!page->mapping) {
977 			unlock_page(page);
978 			page_cache_release(page);
979 			continue;
980 		}
981 
982 		/* Did somebody else fill it already? */
983 		if (PageUptodate(page)) {
984 			unlock_page(page);
985 			goto page_ok;
986 		}
987 
988 readpage:
989 		/* Start the actual read. The read will unlock the page. */
990 		error = mapping->a_ops->readpage(filp, page);
991 
992 		if (unlikely(error)) {
993 			if (error == AOP_TRUNCATED_PAGE) {
994 				page_cache_release(page);
995 				goto find_page;
996 			}
997 			goto readpage_error;
998 		}
999 
1000 		if (!PageUptodate(page)) {
1001 			lock_page(page);
1002 			if (!PageUptodate(page)) {
1003 				if (page->mapping == NULL) {
1004 					/*
1005 					 * invalidate_inode_pages got it
1006 					 */
1007 					unlock_page(page);
1008 					page_cache_release(page);
1009 					goto find_page;
1010 				}
1011 				unlock_page(page);
1012 				error = -EIO;
1013 				shrink_readahead_size_eio(filp, &ra);
1014 				goto readpage_error;
1015 			}
1016 			unlock_page(page);
1017 		}
1018 
1019 		/*
1020 		 * i_size must be checked after we have done ->readpage.
1021 		 *
1022 		 * Checking i_size after the readpage allows us to calculate
1023 		 * the correct value for "nr", which means the zero-filled
1024 		 * part of the page is not copied back to userspace (unless
1025 		 * another truncate extends the file - this is desired though).
1026 		 */
1027 		isize = i_size_read(inode);
1028 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1029 		if (unlikely(!isize || index > end_index)) {
1030 			page_cache_release(page);
1031 			goto out;
1032 		}
1033 
1034 		/* nr is the maximum number of bytes to copy from this page */
1035 		nr = PAGE_CACHE_SIZE;
1036 		if (index == end_index) {
1037 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1038 			if (nr <= offset) {
1039 				page_cache_release(page);
1040 				goto out;
1041 			}
1042 		}
1043 		nr = nr - offset;
1044 		goto page_ok;
1045 
1046 readpage_error:
1047 		/* UHHUH! A synchronous read error occurred. Report it */
1048 		desc->error = error;
1049 		page_cache_release(page);
1050 		goto out;
1051 
1052 no_cached_page:
1053 		/*
1054 		 * Ok, it wasn't cached, so we need to create a new
1055 		 * page..
1056 		 */
1057 		if (!cached_page) {
1058 			cached_page = page_cache_alloc_cold(mapping);
1059 			if (!cached_page) {
1060 				desc->error = -ENOMEM;
1061 				goto out;
1062 			}
1063 		}
1064 		error = add_to_page_cache_lru(cached_page, mapping,
1065 						index, GFP_KERNEL);
1066 		if (error) {
1067 			if (error == -EEXIST)
1068 				goto find_page;
1069 			desc->error = error;
1070 			goto out;
1071 		}
1072 		page = cached_page;
1073 		cached_page = NULL;
1074 		goto readpage;
1075 	}
1076 
1077 out:
1078 	*_ra = ra;
1079 
1080 	*ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1081 	if (cached_page)
1082 		page_cache_release(cached_page);
1083 	if (filp)
1084 		file_accessed(filp);
1085 }
1086 EXPORT_SYMBOL(do_generic_mapping_read);
1087 
1088 int file_read_actor(read_descriptor_t *desc, struct page *page,
1089 			unsigned long offset, unsigned long size)
1090 {
1091 	char *kaddr;
1092 	unsigned long left, count = desc->count;
1093 
1094 	if (size > count)
1095 		size = count;
1096 
1097 	/*
1098 	 * Faults on the destination of a read are common, so do it before
1099 	 * taking the kmap.
1100 	 */
1101 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1102 		kaddr = kmap_atomic(page, KM_USER0);
1103 		left = __copy_to_user_inatomic(desc->arg.buf,
1104 						kaddr + offset, size);
1105 		kunmap_atomic(kaddr, KM_USER0);
1106 		if (left == 0)
1107 			goto success;
1108 	}
1109 
1110 	/* Do it the slow way */
1111 	kaddr = kmap(page);
1112 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1113 	kunmap(page);
1114 
1115 	if (left) {
1116 		size -= left;
1117 		desc->error = -EFAULT;
1118 	}
1119 success:
1120 	desc->count = count - size;
1121 	desc->written += size;
1122 	desc->arg.buf += size;
1123 	return size;
1124 }
1125 
1126 /**
1127  * __generic_file_aio_read - generic filesystem read routine
1128  * @iocb:	kernel I/O control block
1129  * @iov:	io vector request
1130  * @nr_segs:	number of segments in the iovec
1131  * @ppos:	current file position
1132  *
1133  * This is the "read()" routine for all filesystems
1134  * that can use the page cache directly.
1135  */
1136 ssize_t
1137 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1138 		unsigned long nr_segs, loff_t *ppos)
1139 {
1140 	struct file *filp = iocb->ki_filp;
1141 	ssize_t retval;
1142 	unsigned long seg;
1143 	size_t count;
1144 
1145 	count = 0;
1146 	for (seg = 0; seg < nr_segs; seg++) {
1147 		const struct iovec *iv = &iov[seg];
1148 
1149 		/*
1150 		 * If any segment has a negative length, or the cumulative
1151 		 * length ever wraps negative then return -EINVAL.
1152 		 */
1153 		count += iv->iov_len;
1154 		if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1155 			return -EINVAL;
1156 		if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1157 			continue;
1158 		if (seg == 0)
1159 			return -EFAULT;
1160 		nr_segs = seg;
1161 		count -= iv->iov_len;	/* This segment is no good */
1162 		break;
1163 	}
1164 
1165 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1166 	if (filp->f_flags & O_DIRECT) {
1167 		loff_t pos = *ppos, size;
1168 		struct address_space *mapping;
1169 		struct inode *inode;
1170 
1171 		mapping = filp->f_mapping;
1172 		inode = mapping->host;
1173 		retval = 0;
1174 		if (!count)
1175 			goto out; /* skip atime */
1176 		size = i_size_read(inode);
1177 		if (pos < size) {
1178 			retval = generic_file_direct_IO(READ, iocb,
1179 						iov, pos, nr_segs);
1180 			if (retval > 0 && !is_sync_kiocb(iocb))
1181 				retval = -EIOCBQUEUED;
1182 			if (retval > 0)
1183 				*ppos = pos + retval;
1184 		}
1185 		file_accessed(filp);
1186 		goto out;
1187 	}
1188 
1189 	retval = 0;
1190 	if (count) {
1191 		for (seg = 0; seg < nr_segs; seg++) {
1192 			read_descriptor_t desc;
1193 
1194 			desc.written = 0;
1195 			desc.arg.buf = iov[seg].iov_base;
1196 			desc.count = iov[seg].iov_len;
1197 			if (desc.count == 0)
1198 				continue;
1199 			desc.error = 0;
1200 			do_generic_file_read(filp,ppos,&desc,file_read_actor);
1201 			retval += desc.written;
1202 			if (desc.error) {
1203 				retval = retval ?: desc.error;
1204 				break;
1205 			}
1206 		}
1207 	}
1208 out:
1209 	return retval;
1210 }
1211 EXPORT_SYMBOL(__generic_file_aio_read);
1212 
1213 ssize_t
1214 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1215 {
1216 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1217 
1218 	BUG_ON(iocb->ki_pos != pos);
1219 	return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1220 }
1221 EXPORT_SYMBOL(generic_file_aio_read);
1222 
1223 ssize_t
1224 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1225 {
1226 	struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1227 	struct kiocb kiocb;
1228 	ssize_t ret;
1229 
1230 	init_sync_kiocb(&kiocb, filp);
1231 	ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1232 	if (-EIOCBQUEUED == ret)
1233 		ret = wait_on_sync_kiocb(&kiocb);
1234 	return ret;
1235 }
1236 EXPORT_SYMBOL(generic_file_read);
1237 
1238 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1239 {
1240 	ssize_t written;
1241 	unsigned long count = desc->count;
1242 	struct file *file = desc->arg.data;
1243 
1244 	if (size > count)
1245 		size = count;
1246 
1247 	written = file->f_op->sendpage(file, page, offset,
1248 				       size, &file->f_pos, size<count);
1249 	if (written < 0) {
1250 		desc->error = written;
1251 		written = 0;
1252 	}
1253 	desc->count = count - written;
1254 	desc->written += written;
1255 	return written;
1256 }
1257 
1258 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1259 			 size_t count, read_actor_t actor, void *target)
1260 {
1261 	read_descriptor_t desc;
1262 
1263 	if (!count)
1264 		return 0;
1265 
1266 	desc.written = 0;
1267 	desc.count = count;
1268 	desc.arg.data = target;
1269 	desc.error = 0;
1270 
1271 	do_generic_file_read(in_file, ppos, &desc, actor);
1272 	if (desc.written)
1273 		return desc.written;
1274 	return desc.error;
1275 }
1276 EXPORT_SYMBOL(generic_file_sendfile);
1277 
1278 static ssize_t
1279 do_readahead(struct address_space *mapping, struct file *filp,
1280 	     unsigned long index, unsigned long nr)
1281 {
1282 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1283 		return -EINVAL;
1284 
1285 	force_page_cache_readahead(mapping, filp, index,
1286 					max_sane_readahead(nr));
1287 	return 0;
1288 }
1289 
1290 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1291 {
1292 	ssize_t ret;
1293 	struct file *file;
1294 
1295 	ret = -EBADF;
1296 	file = fget(fd);
1297 	if (file) {
1298 		if (file->f_mode & FMODE_READ) {
1299 			struct address_space *mapping = file->f_mapping;
1300 			unsigned long start = offset >> PAGE_CACHE_SHIFT;
1301 			unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1302 			unsigned long len = end - start + 1;
1303 			ret = do_readahead(mapping, file, start, len);
1304 		}
1305 		fput(file);
1306 	}
1307 	return ret;
1308 }
1309 
1310 #ifdef CONFIG_MMU
1311 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1312 /**
1313  * page_cache_read - adds requested page to the page cache if not already there
1314  * @file:	file to read
1315  * @offset:	page index
1316  *
1317  * This adds the requested page to the page cache if it isn't already there,
1318  * and schedules an I/O to read in its contents from disk.
1319  */
1320 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1321 {
1322 	struct address_space *mapping = file->f_mapping;
1323 	struct page *page;
1324 	int ret;
1325 
1326 	do {
1327 		page = page_cache_alloc_cold(mapping);
1328 		if (!page)
1329 			return -ENOMEM;
1330 
1331 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1332 		if (ret == 0)
1333 			ret = mapping->a_ops->readpage(file, page);
1334 		else if (ret == -EEXIST)
1335 			ret = 0; /* losing race to add is OK */
1336 
1337 		page_cache_release(page);
1338 
1339 	} while (ret == AOP_TRUNCATED_PAGE);
1340 
1341 	return ret;
1342 }
1343 
1344 #define MMAP_LOTSAMISS  (100)
1345 
1346 /**
1347  * filemap_nopage - read in file data for page fault handling
1348  * @area:	the applicable vm_area
1349  * @address:	target address to read in
1350  * @type:	returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1351  *
1352  * filemap_nopage() is invoked via the vma operations vector for a
1353  * mapped memory region to read in file data during a page fault.
1354  *
1355  * The goto's are kind of ugly, but this streamlines the normal case of having
1356  * it in the page cache, and handles the special cases reasonably without
1357  * having a lot of duplicated code.
1358  */
1359 struct page *filemap_nopage(struct vm_area_struct *area,
1360 				unsigned long address, int *type)
1361 {
1362 	int error;
1363 	struct file *file = area->vm_file;
1364 	struct address_space *mapping = file->f_mapping;
1365 	struct file_ra_state *ra = &file->f_ra;
1366 	struct inode *inode = mapping->host;
1367 	struct page *page;
1368 	unsigned long size, pgoff;
1369 	int did_readaround = 0, majmin = VM_FAULT_MINOR;
1370 
1371 	pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1372 
1373 retry_all:
1374 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1375 	if (pgoff >= size)
1376 		goto outside_data_content;
1377 
1378 	/* If we don't want any read-ahead, don't bother */
1379 	if (VM_RandomReadHint(area))
1380 		goto no_cached_page;
1381 
1382 	/*
1383 	 * The readahead code wants to be told about each and every page
1384 	 * so it can build and shrink its windows appropriately
1385 	 *
1386 	 * For sequential accesses, we use the generic readahead logic.
1387 	 */
1388 	if (VM_SequentialReadHint(area))
1389 		page_cache_readahead(mapping, ra, file, pgoff, 1);
1390 
1391 	/*
1392 	 * Do we have something in the page cache already?
1393 	 */
1394 retry_find:
1395 	page = find_get_page(mapping, pgoff);
1396 	if (!page) {
1397 		unsigned long ra_pages;
1398 
1399 		if (VM_SequentialReadHint(area)) {
1400 			handle_ra_miss(mapping, ra, pgoff);
1401 			goto no_cached_page;
1402 		}
1403 		ra->mmap_miss++;
1404 
1405 		/*
1406 		 * Do we miss much more than hit in this file? If so,
1407 		 * stop bothering with read-ahead. It will only hurt.
1408 		 */
1409 		if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1410 			goto no_cached_page;
1411 
1412 		/*
1413 		 * To keep the pgmajfault counter straight, we need to
1414 		 * check did_readaround, as this is an inner loop.
1415 		 */
1416 		if (!did_readaround) {
1417 			majmin = VM_FAULT_MAJOR;
1418 			count_vm_event(PGMAJFAULT);
1419 		}
1420 		did_readaround = 1;
1421 		ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1422 		if (ra_pages) {
1423 			pgoff_t start = 0;
1424 
1425 			if (pgoff > ra_pages / 2)
1426 				start = pgoff - ra_pages / 2;
1427 			do_page_cache_readahead(mapping, file, start, ra_pages);
1428 		}
1429 		page = find_get_page(mapping, pgoff);
1430 		if (!page)
1431 			goto no_cached_page;
1432 	}
1433 
1434 	if (!did_readaround)
1435 		ra->mmap_hit++;
1436 
1437 	/*
1438 	 * Ok, found a page in the page cache, now we need to check
1439 	 * that it's up-to-date.
1440 	 */
1441 	if (!PageUptodate(page))
1442 		goto page_not_uptodate;
1443 
1444 success:
1445 	/*
1446 	 * Found the page and have a reference on it.
1447 	 */
1448 	mark_page_accessed(page);
1449 	if (type)
1450 		*type = majmin;
1451 	return page;
1452 
1453 outside_data_content:
1454 	/*
1455 	 * An external ptracer can access pages that normally aren't
1456 	 * accessible..
1457 	 */
1458 	if (area->vm_mm == current->mm)
1459 		return NULL;
1460 	/* Fall through to the non-read-ahead case */
1461 no_cached_page:
1462 	/*
1463 	 * We're only likely to ever get here if MADV_RANDOM is in
1464 	 * effect.
1465 	 */
1466 	error = page_cache_read(file, pgoff);
1467 	grab_swap_token();
1468 
1469 	/*
1470 	 * The page we want has now been added to the page cache.
1471 	 * In the unlikely event that someone removed it in the
1472 	 * meantime, we'll just come back here and read it again.
1473 	 */
1474 	if (error >= 0)
1475 		goto retry_find;
1476 
1477 	/*
1478 	 * An error return from page_cache_read can result if the
1479 	 * system is low on memory, or a problem occurs while trying
1480 	 * to schedule I/O.
1481 	 */
1482 	if (error == -ENOMEM)
1483 		return NOPAGE_OOM;
1484 	return NULL;
1485 
1486 page_not_uptodate:
1487 	if (!did_readaround) {
1488 		majmin = VM_FAULT_MAJOR;
1489 		count_vm_event(PGMAJFAULT);
1490 	}
1491 	lock_page(page);
1492 
1493 	/* Did it get unhashed while we waited for it? */
1494 	if (!page->mapping) {
1495 		unlock_page(page);
1496 		page_cache_release(page);
1497 		goto retry_all;
1498 	}
1499 
1500 	/* Did somebody else get it up-to-date? */
1501 	if (PageUptodate(page)) {
1502 		unlock_page(page);
1503 		goto success;
1504 	}
1505 
1506 	error = mapping->a_ops->readpage(file, page);
1507 	if (!error) {
1508 		wait_on_page_locked(page);
1509 		if (PageUptodate(page))
1510 			goto success;
1511 	} else if (error == AOP_TRUNCATED_PAGE) {
1512 		page_cache_release(page);
1513 		goto retry_find;
1514 	}
1515 
1516 	/*
1517 	 * Umm, take care of errors if the page isn't up-to-date.
1518 	 * Try to re-read it _once_. We do this synchronously,
1519 	 * because there really aren't any performance issues here
1520 	 * and we need to check for errors.
1521 	 */
1522 	lock_page(page);
1523 
1524 	/* Somebody truncated the page on us? */
1525 	if (!page->mapping) {
1526 		unlock_page(page);
1527 		page_cache_release(page);
1528 		goto retry_all;
1529 	}
1530 
1531 	/* Somebody else successfully read it in? */
1532 	if (PageUptodate(page)) {
1533 		unlock_page(page);
1534 		goto success;
1535 	}
1536 	ClearPageError(page);
1537 	error = mapping->a_ops->readpage(file, page);
1538 	if (!error) {
1539 		wait_on_page_locked(page);
1540 		if (PageUptodate(page))
1541 			goto success;
1542 	} else if (error == AOP_TRUNCATED_PAGE) {
1543 		page_cache_release(page);
1544 		goto retry_find;
1545 	}
1546 
1547 	/*
1548 	 * Things didn't work out. Return zero to tell the
1549 	 * mm layer so, possibly freeing the page cache page first.
1550 	 */
1551 	shrink_readahead_size_eio(file, ra);
1552 	page_cache_release(page);
1553 	return NULL;
1554 }
1555 EXPORT_SYMBOL(filemap_nopage);
1556 
1557 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1558 					int nonblock)
1559 {
1560 	struct address_space *mapping = file->f_mapping;
1561 	struct page *page;
1562 	int error;
1563 
1564 	/*
1565 	 * Do we have something in the page cache already?
1566 	 */
1567 retry_find:
1568 	page = find_get_page(mapping, pgoff);
1569 	if (!page) {
1570 		if (nonblock)
1571 			return NULL;
1572 		goto no_cached_page;
1573 	}
1574 
1575 	/*
1576 	 * Ok, found a page in the page cache, now we need to check
1577 	 * that it's up-to-date.
1578 	 */
1579 	if (!PageUptodate(page)) {
1580 		if (nonblock) {
1581 			page_cache_release(page);
1582 			return NULL;
1583 		}
1584 		goto page_not_uptodate;
1585 	}
1586 
1587 success:
1588 	/*
1589 	 * Found the page and have a reference on it.
1590 	 */
1591 	mark_page_accessed(page);
1592 	return page;
1593 
1594 no_cached_page:
1595 	error = page_cache_read(file, pgoff);
1596 
1597 	/*
1598 	 * The page we want has now been added to the page cache.
1599 	 * In the unlikely event that someone removed it in the
1600 	 * meantime, we'll just come back here and read it again.
1601 	 */
1602 	if (error >= 0)
1603 		goto retry_find;
1604 
1605 	/*
1606 	 * An error return from page_cache_read can result if the
1607 	 * system is low on memory, or a problem occurs while trying
1608 	 * to schedule I/O.
1609 	 */
1610 	return NULL;
1611 
1612 page_not_uptodate:
1613 	lock_page(page);
1614 
1615 	/* Did it get unhashed while we waited for it? */
1616 	if (!page->mapping) {
1617 		unlock_page(page);
1618 		goto err;
1619 	}
1620 
1621 	/* Did somebody else get it up-to-date? */
1622 	if (PageUptodate(page)) {
1623 		unlock_page(page);
1624 		goto success;
1625 	}
1626 
1627 	error = mapping->a_ops->readpage(file, page);
1628 	if (!error) {
1629 		wait_on_page_locked(page);
1630 		if (PageUptodate(page))
1631 			goto success;
1632 	} else if (error == AOP_TRUNCATED_PAGE) {
1633 		page_cache_release(page);
1634 		goto retry_find;
1635 	}
1636 
1637 	/*
1638 	 * Umm, take care of errors if the page isn't up-to-date.
1639 	 * Try to re-read it _once_. We do this synchronously,
1640 	 * because there really aren't any performance issues here
1641 	 * and we need to check for errors.
1642 	 */
1643 	lock_page(page);
1644 
1645 	/* Somebody truncated the page on us? */
1646 	if (!page->mapping) {
1647 		unlock_page(page);
1648 		goto err;
1649 	}
1650 	/* Somebody else successfully read it in? */
1651 	if (PageUptodate(page)) {
1652 		unlock_page(page);
1653 		goto success;
1654 	}
1655 
1656 	ClearPageError(page);
1657 	error = mapping->a_ops->readpage(file, page);
1658 	if (!error) {
1659 		wait_on_page_locked(page);
1660 		if (PageUptodate(page))
1661 			goto success;
1662 	} else if (error == AOP_TRUNCATED_PAGE) {
1663 		page_cache_release(page);
1664 		goto retry_find;
1665 	}
1666 
1667 	/*
1668 	 * Things didn't work out. Return zero to tell the
1669 	 * mm layer so, possibly freeing the page cache page first.
1670 	 */
1671 err:
1672 	page_cache_release(page);
1673 
1674 	return NULL;
1675 }
1676 
1677 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1678 		unsigned long len, pgprot_t prot, unsigned long pgoff,
1679 		int nonblock)
1680 {
1681 	struct file *file = vma->vm_file;
1682 	struct address_space *mapping = file->f_mapping;
1683 	struct inode *inode = mapping->host;
1684 	unsigned long size;
1685 	struct mm_struct *mm = vma->vm_mm;
1686 	struct page *page;
1687 	int err;
1688 
1689 	if (!nonblock)
1690 		force_page_cache_readahead(mapping, vma->vm_file,
1691 					pgoff, len >> PAGE_CACHE_SHIFT);
1692 
1693 repeat:
1694 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1695 	if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1696 		return -EINVAL;
1697 
1698 	page = filemap_getpage(file, pgoff, nonblock);
1699 
1700 	/* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1701 	 * done in shmem_populate calling shmem_getpage */
1702 	if (!page && !nonblock)
1703 		return -ENOMEM;
1704 
1705 	if (page) {
1706 		err = install_page(mm, vma, addr, page, prot);
1707 		if (err) {
1708 			page_cache_release(page);
1709 			return err;
1710 		}
1711 	} else if (vma->vm_flags & VM_NONLINEAR) {
1712 		/* No page was found just because we can't read it in now (being
1713 		 * here implies nonblock != 0), but the page may exist, so set
1714 		 * the PTE to fault it in later. */
1715 		err = install_file_pte(mm, vma, addr, pgoff, prot);
1716 		if (err)
1717 			return err;
1718 	}
1719 
1720 	len -= PAGE_SIZE;
1721 	addr += PAGE_SIZE;
1722 	pgoff++;
1723 	if (len)
1724 		goto repeat;
1725 
1726 	return 0;
1727 }
1728 EXPORT_SYMBOL(filemap_populate);
1729 
1730 struct vm_operations_struct generic_file_vm_ops = {
1731 	.nopage		= filemap_nopage,
1732 	.populate	= filemap_populate,
1733 };
1734 
1735 /* This is used for a general mmap of a disk file */
1736 
1737 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1738 {
1739 	struct address_space *mapping = file->f_mapping;
1740 
1741 	if (!mapping->a_ops->readpage)
1742 		return -ENOEXEC;
1743 	file_accessed(file);
1744 	vma->vm_ops = &generic_file_vm_ops;
1745 	return 0;
1746 }
1747 
1748 /*
1749  * This is for filesystems which do not implement ->writepage.
1750  */
1751 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1752 {
1753 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1754 		return -EINVAL;
1755 	return generic_file_mmap(file, vma);
1756 }
1757 #else
1758 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1759 {
1760 	return -ENOSYS;
1761 }
1762 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1763 {
1764 	return -ENOSYS;
1765 }
1766 #endif /* CONFIG_MMU */
1767 
1768 EXPORT_SYMBOL(generic_file_mmap);
1769 EXPORT_SYMBOL(generic_file_readonly_mmap);
1770 
1771 static inline struct page *__read_cache_page(struct address_space *mapping,
1772 				unsigned long index,
1773 				int (*filler)(void *,struct page*),
1774 				void *data)
1775 {
1776 	struct page *page, *cached_page = NULL;
1777 	int err;
1778 repeat:
1779 	page = find_get_page(mapping, index);
1780 	if (!page) {
1781 		if (!cached_page) {
1782 			cached_page = page_cache_alloc_cold(mapping);
1783 			if (!cached_page)
1784 				return ERR_PTR(-ENOMEM);
1785 		}
1786 		err = add_to_page_cache_lru(cached_page, mapping,
1787 					index, GFP_KERNEL);
1788 		if (err == -EEXIST)
1789 			goto repeat;
1790 		if (err < 0) {
1791 			/* Presumably ENOMEM for radix tree node */
1792 			page_cache_release(cached_page);
1793 			return ERR_PTR(err);
1794 		}
1795 		page = cached_page;
1796 		cached_page = NULL;
1797 		err = filler(data, page);
1798 		if (err < 0) {
1799 			page_cache_release(page);
1800 			page = ERR_PTR(err);
1801 		}
1802 	}
1803 	if (cached_page)
1804 		page_cache_release(cached_page);
1805 	return page;
1806 }
1807 
1808 /**
1809  * read_cache_page - read into page cache, fill it if needed
1810  * @mapping:	the page's address_space
1811  * @index:	the page index
1812  * @filler:	function to perform the read
1813  * @data:	destination for read data
1814  *
1815  * Read into the page cache. If a page already exists,
1816  * and PageUptodate() is not set, try to fill the page.
1817  */
1818 struct page *read_cache_page(struct address_space *mapping,
1819 				unsigned long index,
1820 				int (*filler)(void *,struct page*),
1821 				void *data)
1822 {
1823 	struct page *page;
1824 	int err;
1825 
1826 retry:
1827 	page = __read_cache_page(mapping, index, filler, data);
1828 	if (IS_ERR(page))
1829 		goto out;
1830 	mark_page_accessed(page);
1831 	if (PageUptodate(page))
1832 		goto out;
1833 
1834 	lock_page(page);
1835 	if (!page->mapping) {
1836 		unlock_page(page);
1837 		page_cache_release(page);
1838 		goto retry;
1839 	}
1840 	if (PageUptodate(page)) {
1841 		unlock_page(page);
1842 		goto out;
1843 	}
1844 	err = filler(data, page);
1845 	if (err < 0) {
1846 		page_cache_release(page);
1847 		page = ERR_PTR(err);
1848 	}
1849  out:
1850 	return page;
1851 }
1852 EXPORT_SYMBOL(read_cache_page);
1853 
1854 /*
1855  * If the page was newly created, increment its refcount and add it to the
1856  * caller's lru-buffering pagevec.  This function is specifically for
1857  * generic_file_write().
1858  */
1859 static inline struct page *
1860 __grab_cache_page(struct address_space *mapping, unsigned long index,
1861 			struct page **cached_page, struct pagevec *lru_pvec)
1862 {
1863 	int err;
1864 	struct page *page;
1865 repeat:
1866 	page = find_lock_page(mapping, index);
1867 	if (!page) {
1868 		if (!*cached_page) {
1869 			*cached_page = page_cache_alloc(mapping);
1870 			if (!*cached_page)
1871 				return NULL;
1872 		}
1873 		err = add_to_page_cache(*cached_page, mapping,
1874 					index, GFP_KERNEL);
1875 		if (err == -EEXIST)
1876 			goto repeat;
1877 		if (err == 0) {
1878 			page = *cached_page;
1879 			page_cache_get(page);
1880 			if (!pagevec_add(lru_pvec, page))
1881 				__pagevec_lru_add(lru_pvec);
1882 			*cached_page = NULL;
1883 		}
1884 	}
1885 	return page;
1886 }
1887 
1888 /*
1889  * The logic we want is
1890  *
1891  *	if suid or (sgid and xgrp)
1892  *		remove privs
1893  */
1894 int remove_suid(struct dentry *dentry)
1895 {
1896 	mode_t mode = dentry->d_inode->i_mode;
1897 	int kill = 0;
1898 	int result = 0;
1899 
1900 	/* suid always must be killed */
1901 	if (unlikely(mode & S_ISUID))
1902 		kill = ATTR_KILL_SUID;
1903 
1904 	/*
1905 	 * sgid without any exec bits is just a mandatory locking mark; leave
1906 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1907 	 */
1908 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1909 		kill |= ATTR_KILL_SGID;
1910 
1911 	if (unlikely(kill && !capable(CAP_FSETID))) {
1912 		struct iattr newattrs;
1913 
1914 		newattrs.ia_valid = ATTR_FORCE | kill;
1915 		result = notify_change(dentry, &newattrs);
1916 	}
1917 	return result;
1918 }
1919 EXPORT_SYMBOL(remove_suid);
1920 
1921 size_t
1922 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1923 			const struct iovec *iov, size_t base, size_t bytes)
1924 {
1925 	size_t copied = 0, left = 0;
1926 
1927 	while (bytes) {
1928 		char __user *buf = iov->iov_base + base;
1929 		int copy = min(bytes, iov->iov_len - base);
1930 
1931 		base = 0;
1932 		left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1933 		copied += copy;
1934 		bytes -= copy;
1935 		vaddr += copy;
1936 		iov++;
1937 
1938 		if (unlikely(left))
1939 			break;
1940 	}
1941 	return copied - left;
1942 }
1943 
1944 /*
1945  * Performs necessary checks before doing a write
1946  *
1947  * Can adjust writing position or amount of bytes to write.
1948  * Returns appropriate error code that caller should return or
1949  * zero in case that write should be allowed.
1950  */
1951 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1952 {
1953 	struct inode *inode = file->f_mapping->host;
1954 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1955 
1956         if (unlikely(*pos < 0))
1957                 return -EINVAL;
1958 
1959 	if (!isblk) {
1960 		/* FIXME: this is for backwards compatibility with 2.4 */
1961 		if (file->f_flags & O_APPEND)
1962                         *pos = i_size_read(inode);
1963 
1964 		if (limit != RLIM_INFINITY) {
1965 			if (*pos >= limit) {
1966 				send_sig(SIGXFSZ, current, 0);
1967 				return -EFBIG;
1968 			}
1969 			if (*count > limit - (typeof(limit))*pos) {
1970 				*count = limit - (typeof(limit))*pos;
1971 			}
1972 		}
1973 	}
1974 
1975 	/*
1976 	 * LFS rule
1977 	 */
1978 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1979 				!(file->f_flags & O_LARGEFILE))) {
1980 		if (*pos >= MAX_NON_LFS) {
1981 			send_sig(SIGXFSZ, current, 0);
1982 			return -EFBIG;
1983 		}
1984 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1985 			*count = MAX_NON_LFS - (unsigned long)*pos;
1986 		}
1987 	}
1988 
1989 	/*
1990 	 * Are we about to exceed the fs block limit ?
1991 	 *
1992 	 * If we have written data it becomes a short write.  If we have
1993 	 * exceeded without writing data we send a signal and return EFBIG.
1994 	 * Linus frestrict idea will clean these up nicely..
1995 	 */
1996 	if (likely(!isblk)) {
1997 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1998 			if (*count || *pos > inode->i_sb->s_maxbytes) {
1999 				send_sig(SIGXFSZ, current, 0);
2000 				return -EFBIG;
2001 			}
2002 			/* zero-length writes at ->s_maxbytes are OK */
2003 		}
2004 
2005 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2006 			*count = inode->i_sb->s_maxbytes - *pos;
2007 	} else {
2008 		loff_t isize;
2009 		if (bdev_read_only(I_BDEV(inode)))
2010 			return -EPERM;
2011 		isize = i_size_read(inode);
2012 		if (*pos >= isize) {
2013 			if (*count || *pos > isize)
2014 				return -ENOSPC;
2015 		}
2016 
2017 		if (*pos + *count > isize)
2018 			*count = isize - *pos;
2019 	}
2020 	return 0;
2021 }
2022 EXPORT_SYMBOL(generic_write_checks);
2023 
2024 ssize_t
2025 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2026 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2027 		size_t count, size_t ocount)
2028 {
2029 	struct file	*file = iocb->ki_filp;
2030 	struct address_space *mapping = file->f_mapping;
2031 	struct inode	*inode = mapping->host;
2032 	ssize_t		written;
2033 
2034 	if (count != ocount)
2035 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2036 
2037 	written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2038 	if (written > 0) {
2039 		loff_t end = pos + written;
2040 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2041 			i_size_write(inode,  end);
2042 			mark_inode_dirty(inode);
2043 		}
2044 		*ppos = end;
2045 	}
2046 
2047 	/*
2048 	 * Sync the fs metadata but not the minor inode changes and
2049 	 * of course not the data as we did direct DMA for the IO.
2050 	 * i_mutex is held, which protects generic_osync_inode() from
2051 	 * livelocking.
2052 	 */
2053 	if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2054 		int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2055 		if (err < 0)
2056 			written = err;
2057 	}
2058 	if (written == count && !is_sync_kiocb(iocb))
2059 		written = -EIOCBQUEUED;
2060 	return written;
2061 }
2062 EXPORT_SYMBOL(generic_file_direct_write);
2063 
2064 ssize_t
2065 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2066 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2067 		size_t count, ssize_t written)
2068 {
2069 	struct file *file = iocb->ki_filp;
2070 	struct address_space * mapping = file->f_mapping;
2071 	const struct address_space_operations *a_ops = mapping->a_ops;
2072 	struct inode 	*inode = mapping->host;
2073 	long		status = 0;
2074 	struct page	*page;
2075 	struct page	*cached_page = NULL;
2076 	size_t		bytes;
2077 	struct pagevec	lru_pvec;
2078 	const struct iovec *cur_iov = iov; /* current iovec */
2079 	size_t		iov_base = 0;	   /* offset in the current iovec */
2080 	char __user	*buf;
2081 
2082 	pagevec_init(&lru_pvec, 0);
2083 
2084 	/*
2085 	 * handle partial DIO write.  Adjust cur_iov if needed.
2086 	 */
2087 	if (likely(nr_segs == 1))
2088 		buf = iov->iov_base + written;
2089 	else {
2090 		filemap_set_next_iovec(&cur_iov, &iov_base, written);
2091 		buf = cur_iov->iov_base + iov_base;
2092 	}
2093 
2094 	do {
2095 		unsigned long index;
2096 		unsigned long offset;
2097 		size_t copied;
2098 
2099 		offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2100 		index = pos >> PAGE_CACHE_SHIFT;
2101 		bytes = PAGE_CACHE_SIZE - offset;
2102 
2103 		/* Limit the size of the copy to the caller's write size */
2104 		bytes = min(bytes, count);
2105 
2106 		/*
2107 		 * Limit the size of the copy to that of the current segment,
2108 		 * because fault_in_pages_readable() doesn't know how to walk
2109 		 * segments.
2110 		 */
2111 		bytes = min(bytes, cur_iov->iov_len - iov_base);
2112 
2113 		/*
2114 		 * Bring in the user page that we will copy from _first_.
2115 		 * Otherwise there's a nasty deadlock on copying from the
2116 		 * same page as we're writing to, without it being marked
2117 		 * up-to-date.
2118 		 */
2119 		fault_in_pages_readable(buf, bytes);
2120 
2121 		page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2122 		if (!page) {
2123 			status = -ENOMEM;
2124 			break;
2125 		}
2126 
2127 		if (unlikely(bytes == 0)) {
2128 			status = 0;
2129 			copied = 0;
2130 			goto zero_length_segment;
2131 		}
2132 
2133 		status = a_ops->prepare_write(file, page, offset, offset+bytes);
2134 		if (unlikely(status)) {
2135 			loff_t isize = i_size_read(inode);
2136 
2137 			if (status != AOP_TRUNCATED_PAGE)
2138 				unlock_page(page);
2139 			page_cache_release(page);
2140 			if (status == AOP_TRUNCATED_PAGE)
2141 				continue;
2142 			/*
2143 			 * prepare_write() may have instantiated a few blocks
2144 			 * outside i_size.  Trim these off again.
2145 			 */
2146 			if (pos + bytes > isize)
2147 				vmtruncate(inode, isize);
2148 			break;
2149 		}
2150 		if (likely(nr_segs == 1))
2151 			copied = filemap_copy_from_user(page, offset,
2152 							buf, bytes);
2153 		else
2154 			copied = filemap_copy_from_user_iovec(page, offset,
2155 						cur_iov, iov_base, bytes);
2156 		flush_dcache_page(page);
2157 		status = a_ops->commit_write(file, page, offset, offset+bytes);
2158 		if (status == AOP_TRUNCATED_PAGE) {
2159 			page_cache_release(page);
2160 			continue;
2161 		}
2162 zero_length_segment:
2163 		if (likely(copied >= 0)) {
2164 			if (!status)
2165 				status = copied;
2166 
2167 			if (status >= 0) {
2168 				written += status;
2169 				count -= status;
2170 				pos += status;
2171 				buf += status;
2172 				if (unlikely(nr_segs > 1)) {
2173 					filemap_set_next_iovec(&cur_iov,
2174 							&iov_base, status);
2175 					if (count)
2176 						buf = cur_iov->iov_base +
2177 							iov_base;
2178 				} else {
2179 					iov_base += status;
2180 				}
2181 			}
2182 		}
2183 		if (unlikely(copied != bytes))
2184 			if (status >= 0)
2185 				status = -EFAULT;
2186 		unlock_page(page);
2187 		mark_page_accessed(page);
2188 		page_cache_release(page);
2189 		if (status < 0)
2190 			break;
2191 		balance_dirty_pages_ratelimited(mapping);
2192 		cond_resched();
2193 	} while (count);
2194 	*ppos = pos;
2195 
2196 	if (cached_page)
2197 		page_cache_release(cached_page);
2198 
2199 	/*
2200 	 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2201 	 */
2202 	if (likely(status >= 0)) {
2203 		if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2204 			if (!a_ops->writepage || !is_sync_kiocb(iocb))
2205 				status = generic_osync_inode(inode, mapping,
2206 						OSYNC_METADATA|OSYNC_DATA);
2207 		}
2208   	}
2209 
2210 	/*
2211 	 * If we get here for O_DIRECT writes then we must have fallen through
2212 	 * to buffered writes (block instantiation inside i_size).  So we sync
2213 	 * the file data here, to try to honour O_DIRECT expectations.
2214 	 */
2215 	if (unlikely(file->f_flags & O_DIRECT) && written)
2216 		status = filemap_write_and_wait(mapping);
2217 
2218 	pagevec_lru_add(&lru_pvec);
2219 	return written ? written : status;
2220 }
2221 EXPORT_SYMBOL(generic_file_buffered_write);
2222 
2223 static ssize_t
2224 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2225 				unsigned long nr_segs, loff_t *ppos)
2226 {
2227 	struct file *file = iocb->ki_filp;
2228 	const struct address_space * mapping = file->f_mapping;
2229 	size_t ocount;		/* original count */
2230 	size_t count;		/* after file limit checks */
2231 	struct inode 	*inode = mapping->host;
2232 	unsigned long	seg;
2233 	loff_t		pos;
2234 	ssize_t		written;
2235 	ssize_t		err;
2236 
2237 	ocount = 0;
2238 	for (seg = 0; seg < nr_segs; seg++) {
2239 		const struct iovec *iv = &iov[seg];
2240 
2241 		/*
2242 		 * If any segment has a negative length, or the cumulative
2243 		 * length ever wraps negative then return -EINVAL.
2244 		 */
2245 		ocount += iv->iov_len;
2246 		if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2247 			return -EINVAL;
2248 		if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2249 			continue;
2250 		if (seg == 0)
2251 			return -EFAULT;
2252 		nr_segs = seg;
2253 		ocount -= iv->iov_len;	/* This segment is no good */
2254 		break;
2255 	}
2256 
2257 	count = ocount;
2258 	pos = *ppos;
2259 
2260 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2261 
2262 	/* We can write back this queue in page reclaim */
2263 	current->backing_dev_info = mapping->backing_dev_info;
2264 	written = 0;
2265 
2266 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2267 	if (err)
2268 		goto out;
2269 
2270 	if (count == 0)
2271 		goto out;
2272 
2273 	err = remove_suid(file->f_dentry);
2274 	if (err)
2275 		goto out;
2276 
2277 	file_update_time(file);
2278 
2279 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2280 	if (unlikely(file->f_flags & O_DIRECT)) {
2281 		written = generic_file_direct_write(iocb, iov,
2282 				&nr_segs, pos, ppos, count, ocount);
2283 		if (written < 0 || written == count)
2284 			goto out;
2285 		/*
2286 		 * direct-io write to a hole: fall through to buffered I/O
2287 		 * for completing the rest of the request.
2288 		 */
2289 		pos += written;
2290 		count -= written;
2291 	}
2292 
2293 	written = generic_file_buffered_write(iocb, iov, nr_segs,
2294 			pos, ppos, count, written);
2295 out:
2296 	current->backing_dev_info = NULL;
2297 	return written ? written : err;
2298 }
2299 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2300 
2301 ssize_t
2302 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2303 				unsigned long nr_segs, loff_t *ppos)
2304 {
2305 	struct file *file = iocb->ki_filp;
2306 	struct address_space *mapping = file->f_mapping;
2307 	struct inode *inode = mapping->host;
2308 	ssize_t ret;
2309 	loff_t pos = *ppos;
2310 
2311 	ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2312 
2313 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2314 		int err;
2315 
2316 		err = sync_page_range_nolock(inode, mapping, pos, ret);
2317 		if (err < 0)
2318 			ret = err;
2319 	}
2320 	return ret;
2321 }
2322 
2323 static ssize_t
2324 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2325 				unsigned long nr_segs, loff_t *ppos)
2326 {
2327 	struct kiocb kiocb;
2328 	ssize_t ret;
2329 
2330 	init_sync_kiocb(&kiocb, file);
2331 	ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2332 	if (ret == -EIOCBQUEUED)
2333 		ret = wait_on_sync_kiocb(&kiocb);
2334 	return ret;
2335 }
2336 
2337 ssize_t
2338 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2339 				unsigned long nr_segs, loff_t *ppos)
2340 {
2341 	struct kiocb kiocb;
2342 	ssize_t ret;
2343 
2344 	init_sync_kiocb(&kiocb, file);
2345 	ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2346 	if (-EIOCBQUEUED == ret)
2347 		ret = wait_on_sync_kiocb(&kiocb);
2348 	return ret;
2349 }
2350 EXPORT_SYMBOL(generic_file_write_nolock);
2351 
2352 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2353 			       size_t count, loff_t pos)
2354 {
2355 	struct file *file = iocb->ki_filp;
2356 	struct address_space *mapping = file->f_mapping;
2357 	struct inode *inode = mapping->host;
2358 	ssize_t ret;
2359 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2360 					.iov_len = count };
2361 
2362 	BUG_ON(iocb->ki_pos != pos);
2363 
2364 	mutex_lock(&inode->i_mutex);
2365 	ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2366 						&iocb->ki_pos);
2367 	mutex_unlock(&inode->i_mutex);
2368 
2369 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2370 		ssize_t err;
2371 
2372 		err = sync_page_range(inode, mapping, pos, ret);
2373 		if (err < 0)
2374 			ret = err;
2375 	}
2376 	return ret;
2377 }
2378 EXPORT_SYMBOL(generic_file_aio_write);
2379 
2380 ssize_t generic_file_write(struct file *file, const char __user *buf,
2381 			   size_t count, loff_t *ppos)
2382 {
2383 	struct address_space *mapping = file->f_mapping;
2384 	struct inode *inode = mapping->host;
2385 	ssize_t	ret;
2386 	struct iovec local_iov = { .iov_base = (void __user *)buf,
2387 					.iov_len = count };
2388 
2389 	mutex_lock(&inode->i_mutex);
2390 	ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2391 	mutex_unlock(&inode->i_mutex);
2392 
2393 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2394 		ssize_t err;
2395 
2396 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2397 		if (err < 0)
2398 			ret = err;
2399 	}
2400 	return ret;
2401 }
2402 EXPORT_SYMBOL(generic_file_write);
2403 
2404 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2405 			unsigned long nr_segs, loff_t *ppos)
2406 {
2407 	struct kiocb kiocb;
2408 	ssize_t ret;
2409 
2410 	init_sync_kiocb(&kiocb, filp);
2411 	ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2412 	if (-EIOCBQUEUED == ret)
2413 		ret = wait_on_sync_kiocb(&kiocb);
2414 	return ret;
2415 }
2416 EXPORT_SYMBOL(generic_file_readv);
2417 
2418 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2419 			unsigned long nr_segs, loff_t *ppos)
2420 {
2421 	struct address_space *mapping = file->f_mapping;
2422 	struct inode *inode = mapping->host;
2423 	ssize_t ret;
2424 
2425 	mutex_lock(&inode->i_mutex);
2426 	ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2427 	mutex_unlock(&inode->i_mutex);
2428 
2429 	if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2430 		int err;
2431 
2432 		err = sync_page_range(inode, mapping, *ppos - ret, ret);
2433 		if (err < 0)
2434 			ret = err;
2435 	}
2436 	return ret;
2437 }
2438 EXPORT_SYMBOL(generic_file_writev);
2439 
2440 /*
2441  * Called under i_mutex for writes to S_ISREG files.   Returns -EIO if something
2442  * went wrong during pagecache shootdown.
2443  */
2444 static ssize_t
2445 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2446 	loff_t offset, unsigned long nr_segs)
2447 {
2448 	struct file *file = iocb->ki_filp;
2449 	struct address_space *mapping = file->f_mapping;
2450 	ssize_t retval;
2451 	size_t write_len = 0;
2452 
2453 	/*
2454 	 * If it's a write, unmap all mmappings of the file up-front.  This
2455 	 * will cause any pte dirty bits to be propagated into the pageframes
2456 	 * for the subsequent filemap_write_and_wait().
2457 	 */
2458 	if (rw == WRITE) {
2459 		write_len = iov_length(iov, nr_segs);
2460 	       	if (mapping_mapped(mapping))
2461 			unmap_mapping_range(mapping, offset, write_len, 0);
2462 	}
2463 
2464 	retval = filemap_write_and_wait(mapping);
2465 	if (retval == 0) {
2466 		retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2467 						offset, nr_segs);
2468 		if (rw == WRITE && mapping->nrpages) {
2469 			pgoff_t end = (offset + write_len - 1)
2470 						>> PAGE_CACHE_SHIFT;
2471 			int err = invalidate_inode_pages2_range(mapping,
2472 					offset >> PAGE_CACHE_SHIFT, end);
2473 			if (err)
2474 				retval = err;
2475 		}
2476 	}
2477 	return retval;
2478 }
2479