xref: /linux/mm/filemap.c (revision 125c0a646a257fd58de223f2c3e1fe8a99085644)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/mm/filemap.c
4  *
5  * Copyright (C) 1994-1999  Linus Torvalds
6  */
7 
8 /*
9  * This file handles the generic file mmap semantics used by
10  * most "normal" filesystems (but you don't /have/ to use this:
11  * the NFS filesystem used to do this differently, for example)
12  */
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/syscalls.h>
26 #include <linux/mman.h>
27 #include <linux/pagemap.h>
28 #include <linux/file.h>
29 #include <linux/uio.h>
30 #include <linux/error-injection.h>
31 #include <linux/hash.h>
32 #include <linux/writeback.h>
33 #include <linux/backing-dev.h>
34 #include <linux/pagevec.h>
35 #include <linux/security.h>
36 #include <linux/cpuset.h>
37 #include <linux/hugetlb.h>
38 #include <linux/memcontrol.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include <linux/migrate.h>
46 #include <linux/pipe_fs_i.h>
47 #include <linux/splice.h>
48 #include <asm/pgalloc.h>
49 #include <asm/tlbflush.h>
50 #include "internal.h"
51 
52 #define CREATE_TRACE_POINTS
53 #include <trace/events/filemap.h>
54 
55 /*
56  * FIXME: remove all knowledge of the buffer layer from the core VM
57  */
58 #include <linux/buffer_head.h> /* for try_to_free_buffers */
59 
60 #include <asm/mman.h>
61 
62 #include "swap.h"
63 
64 /*
65  * Shared mappings implemented 30.11.1994. It's not fully working yet,
66  * though.
67  *
68  * Shared mappings now work. 15.8.1995  Bruno.
69  *
70  * finished 'unifying' the page and buffer cache and SMP-threaded the
71  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72  *
73  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74  */
75 
76 /*
77  * Lock ordering:
78  *
79  *  ->i_mmap_rwsem		(truncate_pagecache)
80  *    ->private_lock		(__free_pte->block_dirty_folio)
81  *      ->swap_lock		(exclusive_swap_page, others)
82  *        ->i_pages lock
83  *
84  *  ->i_rwsem
85  *    ->invalidate_lock		(acquired by fs in truncate path)
86  *      ->i_mmap_rwsem		(truncate->unmap_mapping_range)
87  *
88  *  ->mmap_lock
89  *    ->i_mmap_rwsem
90  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
91  *        ->i_pages lock	(arch-dependent flush_dcache_mmap_lock)
92  *
93  *  ->mmap_lock
94  *    ->invalidate_lock		(filemap_fault)
95  *      ->lock_page		(filemap_fault, access_process_vm)
96  *
97  *  ->i_rwsem			(generic_perform_write)
98  *    ->mmap_lock		(fault_in_readable->do_page_fault)
99  *
100  *  bdi->wb.list_lock
101  *    sb_lock			(fs/fs-writeback.c)
102  *    ->i_pages lock		(__sync_single_inode)
103  *
104  *  ->i_mmap_rwsem
105  *    ->anon_vma.lock		(vma_merge)
106  *
107  *  ->anon_vma.lock
108  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
109  *
110  *  ->page_table_lock or pte_lock
111  *    ->swap_lock		(try_to_unmap_one)
112  *    ->private_lock		(try_to_unmap_one)
113  *    ->i_pages lock		(try_to_unmap_one)
114  *    ->lruvec->lru_lock	(follow_page->mark_page_accessed)
115  *    ->lruvec->lru_lock	(check_pte_range->isolate_lru_page)
116  *    ->private_lock		(page_remove_rmap->set_page_dirty)
117  *    ->i_pages lock		(page_remove_rmap->set_page_dirty)
118  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
119  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
120  *    ->memcg->move_lock	(page_remove_rmap->folio_memcg_lock)
121  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
122  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
123  *    ->private_lock		(zap_pte_range->block_dirty_folio)
124  */
125 
126 static void page_cache_delete(struct address_space *mapping,
127 				   struct folio *folio, void *shadow)
128 {
129 	XA_STATE(xas, &mapping->i_pages, folio->index);
130 	long nr = 1;
131 
132 	mapping_set_update(&xas, mapping);
133 
134 	xas_set_order(&xas, folio->index, folio_order(folio));
135 	nr = folio_nr_pages(folio);
136 
137 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
138 
139 	xas_store(&xas, shadow);
140 	xas_init_marks(&xas);
141 
142 	folio->mapping = NULL;
143 	/* Leave page->index set: truncation lookup relies upon it */
144 	mapping->nrpages -= nr;
145 }
146 
147 static void filemap_unaccount_folio(struct address_space *mapping,
148 		struct folio *folio)
149 {
150 	long nr;
151 
152 	VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
153 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
154 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
155 			 current->comm, folio_pfn(folio));
156 		dump_page(&folio->page, "still mapped when deleted");
157 		dump_stack();
158 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
159 
160 		if (mapping_exiting(mapping) && !folio_test_large(folio)) {
161 			int mapcount = page_mapcount(&folio->page);
162 
163 			if (folio_ref_count(folio) >= mapcount + 2) {
164 				/*
165 				 * All vmas have already been torn down, so it's
166 				 * a good bet that actually the page is unmapped
167 				 * and we'd rather not leak it: if we're wrong,
168 				 * another bad page check should catch it later.
169 				 */
170 				page_mapcount_reset(&folio->page);
171 				folio_ref_sub(folio, mapcount);
172 			}
173 		}
174 	}
175 
176 	/* hugetlb folios do not participate in page cache accounting. */
177 	if (folio_test_hugetlb(folio))
178 		return;
179 
180 	nr = folio_nr_pages(folio);
181 
182 	__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
183 	if (folio_test_swapbacked(folio)) {
184 		__lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
185 		if (folio_test_pmd_mappable(folio))
186 			__lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
187 	} else if (folio_test_pmd_mappable(folio)) {
188 		__lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
189 		filemap_nr_thps_dec(mapping);
190 	}
191 
192 	/*
193 	 * At this point folio must be either written or cleaned by
194 	 * truncate.  Dirty folio here signals a bug and loss of
195 	 * unwritten data - on ordinary filesystems.
196 	 *
197 	 * But it's harmless on in-memory filesystems like tmpfs; and can
198 	 * occur when a driver which did get_user_pages() sets page dirty
199 	 * before putting it, while the inode is being finally evicted.
200 	 *
201 	 * Below fixes dirty accounting after removing the folio entirely
202 	 * but leaves the dirty flag set: it has no effect for truncated
203 	 * folio and anyway will be cleared before returning folio to
204 	 * buddy allocator.
205 	 */
206 	if (WARN_ON_ONCE(folio_test_dirty(folio) &&
207 			 mapping_can_writeback(mapping)))
208 		folio_account_cleaned(folio, inode_to_wb(mapping->host));
209 }
210 
211 /*
212  * Delete a page from the page cache and free it. Caller has to make
213  * sure the page is locked and that nobody else uses it - or that usage
214  * is safe.  The caller must hold the i_pages lock.
215  */
216 void __filemap_remove_folio(struct folio *folio, void *shadow)
217 {
218 	struct address_space *mapping = folio->mapping;
219 
220 	trace_mm_filemap_delete_from_page_cache(folio);
221 	filemap_unaccount_folio(mapping, folio);
222 	page_cache_delete(mapping, folio, shadow);
223 }
224 
225 void filemap_free_folio(struct address_space *mapping, struct folio *folio)
226 {
227 	void (*free_folio)(struct folio *);
228 	int refs = 1;
229 
230 	free_folio = mapping->a_ops->free_folio;
231 	if (free_folio)
232 		free_folio(folio);
233 
234 	if (folio_test_large(folio))
235 		refs = folio_nr_pages(folio);
236 	folio_put_refs(folio, refs);
237 }
238 
239 /**
240  * filemap_remove_folio - Remove folio from page cache.
241  * @folio: The folio.
242  *
243  * This must be called only on folios that are locked and have been
244  * verified to be in the page cache.  It will never put the folio into
245  * the free list because the caller has a reference on the page.
246  */
247 void filemap_remove_folio(struct folio *folio)
248 {
249 	struct address_space *mapping = folio->mapping;
250 
251 	BUG_ON(!folio_test_locked(folio));
252 	spin_lock(&mapping->host->i_lock);
253 	xa_lock_irq(&mapping->i_pages);
254 	__filemap_remove_folio(folio, NULL);
255 	xa_unlock_irq(&mapping->i_pages);
256 	if (mapping_shrinkable(mapping))
257 		inode_add_lru(mapping->host);
258 	spin_unlock(&mapping->host->i_lock);
259 
260 	filemap_free_folio(mapping, folio);
261 }
262 
263 /*
264  * page_cache_delete_batch - delete several folios from page cache
265  * @mapping: the mapping to which folios belong
266  * @fbatch: batch of folios to delete
267  *
268  * The function walks over mapping->i_pages and removes folios passed in
269  * @fbatch from the mapping. The function expects @fbatch to be sorted
270  * by page index and is optimised for it to be dense.
271  * It tolerates holes in @fbatch (mapping entries at those indices are not
272  * modified).
273  *
274  * The function expects the i_pages lock to be held.
275  */
276 static void page_cache_delete_batch(struct address_space *mapping,
277 			     struct folio_batch *fbatch)
278 {
279 	XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
280 	long total_pages = 0;
281 	int i = 0;
282 	struct folio *folio;
283 
284 	mapping_set_update(&xas, mapping);
285 	xas_for_each(&xas, folio, ULONG_MAX) {
286 		if (i >= folio_batch_count(fbatch))
287 			break;
288 
289 		/* A swap/dax/shadow entry got inserted? Skip it. */
290 		if (xa_is_value(folio))
291 			continue;
292 		/*
293 		 * A page got inserted in our range? Skip it. We have our
294 		 * pages locked so they are protected from being removed.
295 		 * If we see a page whose index is higher than ours, it
296 		 * means our page has been removed, which shouldn't be
297 		 * possible because we're holding the PageLock.
298 		 */
299 		if (folio != fbatch->folios[i]) {
300 			VM_BUG_ON_FOLIO(folio->index >
301 					fbatch->folios[i]->index, folio);
302 			continue;
303 		}
304 
305 		WARN_ON_ONCE(!folio_test_locked(folio));
306 
307 		folio->mapping = NULL;
308 		/* Leave folio->index set: truncation lookup relies on it */
309 
310 		i++;
311 		xas_store(&xas, NULL);
312 		total_pages += folio_nr_pages(folio);
313 	}
314 	mapping->nrpages -= total_pages;
315 }
316 
317 void delete_from_page_cache_batch(struct address_space *mapping,
318 				  struct folio_batch *fbatch)
319 {
320 	int i;
321 
322 	if (!folio_batch_count(fbatch))
323 		return;
324 
325 	spin_lock(&mapping->host->i_lock);
326 	xa_lock_irq(&mapping->i_pages);
327 	for (i = 0; i < folio_batch_count(fbatch); i++) {
328 		struct folio *folio = fbatch->folios[i];
329 
330 		trace_mm_filemap_delete_from_page_cache(folio);
331 		filemap_unaccount_folio(mapping, folio);
332 	}
333 	page_cache_delete_batch(mapping, fbatch);
334 	xa_unlock_irq(&mapping->i_pages);
335 	if (mapping_shrinkable(mapping))
336 		inode_add_lru(mapping->host);
337 	spin_unlock(&mapping->host->i_lock);
338 
339 	for (i = 0; i < folio_batch_count(fbatch); i++)
340 		filemap_free_folio(mapping, fbatch->folios[i]);
341 }
342 
343 int filemap_check_errors(struct address_space *mapping)
344 {
345 	int ret = 0;
346 	/* Check for outstanding write errors */
347 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
348 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
349 		ret = -ENOSPC;
350 	if (test_bit(AS_EIO, &mapping->flags) &&
351 	    test_and_clear_bit(AS_EIO, &mapping->flags))
352 		ret = -EIO;
353 	return ret;
354 }
355 EXPORT_SYMBOL(filemap_check_errors);
356 
357 static int filemap_check_and_keep_errors(struct address_space *mapping)
358 {
359 	/* Check for outstanding write errors */
360 	if (test_bit(AS_EIO, &mapping->flags))
361 		return -EIO;
362 	if (test_bit(AS_ENOSPC, &mapping->flags))
363 		return -ENOSPC;
364 	return 0;
365 }
366 
367 /**
368  * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
369  * @mapping:	address space structure to write
370  * @wbc:	the writeback_control controlling the writeout
371  *
372  * Call writepages on the mapping using the provided wbc to control the
373  * writeout.
374  *
375  * Return: %0 on success, negative error code otherwise.
376  */
377 int filemap_fdatawrite_wbc(struct address_space *mapping,
378 			   struct writeback_control *wbc)
379 {
380 	int ret;
381 
382 	if (!mapping_can_writeback(mapping) ||
383 	    !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
384 		return 0;
385 
386 	wbc_attach_fdatawrite_inode(wbc, mapping->host);
387 	ret = do_writepages(mapping, wbc);
388 	wbc_detach_inode(wbc);
389 	return ret;
390 }
391 EXPORT_SYMBOL(filemap_fdatawrite_wbc);
392 
393 /**
394  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
395  * @mapping:	address space structure to write
396  * @start:	offset in bytes where the range starts
397  * @end:	offset in bytes where the range ends (inclusive)
398  * @sync_mode:	enable synchronous operation
399  *
400  * Start writeback against all of a mapping's dirty pages that lie
401  * within the byte offsets <start, end> inclusive.
402  *
403  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
404  * opposed to a regular memory cleansing writeback.  The difference between
405  * these two operations is that if a dirty page/buffer is encountered, it must
406  * be waited upon, and not just skipped over.
407  *
408  * Return: %0 on success, negative error code otherwise.
409  */
410 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
411 				loff_t end, int sync_mode)
412 {
413 	struct writeback_control wbc = {
414 		.sync_mode = sync_mode,
415 		.nr_to_write = LONG_MAX,
416 		.range_start = start,
417 		.range_end = end,
418 	};
419 
420 	return filemap_fdatawrite_wbc(mapping, &wbc);
421 }
422 
423 static inline int __filemap_fdatawrite(struct address_space *mapping,
424 	int sync_mode)
425 {
426 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
427 }
428 
429 int filemap_fdatawrite(struct address_space *mapping)
430 {
431 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
432 }
433 EXPORT_SYMBOL(filemap_fdatawrite);
434 
435 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
436 				loff_t end)
437 {
438 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
439 }
440 EXPORT_SYMBOL(filemap_fdatawrite_range);
441 
442 /**
443  * filemap_flush - mostly a non-blocking flush
444  * @mapping:	target address_space
445  *
446  * This is a mostly non-blocking flush.  Not suitable for data-integrity
447  * purposes - I/O may not be started against all dirty pages.
448  *
449  * Return: %0 on success, negative error code otherwise.
450  */
451 int filemap_flush(struct address_space *mapping)
452 {
453 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
454 }
455 EXPORT_SYMBOL(filemap_flush);
456 
457 /**
458  * filemap_range_has_page - check if a page exists in range.
459  * @mapping:           address space within which to check
460  * @start_byte:        offset in bytes where the range starts
461  * @end_byte:          offset in bytes where the range ends (inclusive)
462  *
463  * Find at least one page in the range supplied, usually used to check if
464  * direct writing in this range will trigger a writeback.
465  *
466  * Return: %true if at least one page exists in the specified range,
467  * %false otherwise.
468  */
469 bool filemap_range_has_page(struct address_space *mapping,
470 			   loff_t start_byte, loff_t end_byte)
471 {
472 	struct folio *folio;
473 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
474 	pgoff_t max = end_byte >> PAGE_SHIFT;
475 
476 	if (end_byte < start_byte)
477 		return false;
478 
479 	rcu_read_lock();
480 	for (;;) {
481 		folio = xas_find(&xas, max);
482 		if (xas_retry(&xas, folio))
483 			continue;
484 		/* Shadow entries don't count */
485 		if (xa_is_value(folio))
486 			continue;
487 		/*
488 		 * We don't need to try to pin this page; we're about to
489 		 * release the RCU lock anyway.  It is enough to know that
490 		 * there was a page here recently.
491 		 */
492 		break;
493 	}
494 	rcu_read_unlock();
495 
496 	return folio != NULL;
497 }
498 EXPORT_SYMBOL(filemap_range_has_page);
499 
500 static void __filemap_fdatawait_range(struct address_space *mapping,
501 				     loff_t start_byte, loff_t end_byte)
502 {
503 	pgoff_t index = start_byte >> PAGE_SHIFT;
504 	pgoff_t end = end_byte >> PAGE_SHIFT;
505 	struct folio_batch fbatch;
506 	unsigned nr_folios;
507 
508 	folio_batch_init(&fbatch);
509 
510 	while (index <= end) {
511 		unsigned i;
512 
513 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
514 				PAGECACHE_TAG_WRITEBACK, &fbatch);
515 
516 		if (!nr_folios)
517 			break;
518 
519 		for (i = 0; i < nr_folios; i++) {
520 			struct folio *folio = fbatch.folios[i];
521 
522 			folio_wait_writeback(folio);
523 			folio_clear_error(folio);
524 		}
525 		folio_batch_release(&fbatch);
526 		cond_resched();
527 	}
528 }
529 
530 /**
531  * filemap_fdatawait_range - wait for writeback to complete
532  * @mapping:		address space structure to wait for
533  * @start_byte:		offset in bytes where the range starts
534  * @end_byte:		offset in bytes where the range ends (inclusive)
535  *
536  * Walk the list of under-writeback pages of the given address space
537  * in the given range and wait for all of them.  Check error status of
538  * the address space and return it.
539  *
540  * Since the error status of the address space is cleared by this function,
541  * callers are responsible for checking the return value and handling and/or
542  * reporting the error.
543  *
544  * Return: error status of the address space.
545  */
546 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
547 			    loff_t end_byte)
548 {
549 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
550 	return filemap_check_errors(mapping);
551 }
552 EXPORT_SYMBOL(filemap_fdatawait_range);
553 
554 /**
555  * filemap_fdatawait_range_keep_errors - wait for writeback to complete
556  * @mapping:		address space structure to wait for
557  * @start_byte:		offset in bytes where the range starts
558  * @end_byte:		offset in bytes where the range ends (inclusive)
559  *
560  * Walk the list of under-writeback pages of the given address space in the
561  * given range and wait for all of them.  Unlike filemap_fdatawait_range(),
562  * this function does not clear error status of the address space.
563  *
564  * Use this function if callers don't handle errors themselves.  Expected
565  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
566  * fsfreeze(8)
567  */
568 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
569 		loff_t start_byte, loff_t end_byte)
570 {
571 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
572 	return filemap_check_and_keep_errors(mapping);
573 }
574 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
575 
576 /**
577  * file_fdatawait_range - wait for writeback to complete
578  * @file:		file pointing to address space structure to wait for
579  * @start_byte:		offset in bytes where the range starts
580  * @end_byte:		offset in bytes where the range ends (inclusive)
581  *
582  * Walk the list of under-writeback pages of the address space that file
583  * refers to, in the given range and wait for all of them.  Check error
584  * status of the address space vs. the file->f_wb_err cursor and return it.
585  *
586  * Since the error status of the file is advanced by this function,
587  * callers are responsible for checking the return value and handling and/or
588  * reporting the error.
589  *
590  * Return: error status of the address space vs. the file->f_wb_err cursor.
591  */
592 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
593 {
594 	struct address_space *mapping = file->f_mapping;
595 
596 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
597 	return file_check_and_advance_wb_err(file);
598 }
599 EXPORT_SYMBOL(file_fdatawait_range);
600 
601 /**
602  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
603  * @mapping: address space structure to wait for
604  *
605  * Walk the list of under-writeback pages of the given address space
606  * and wait for all of them.  Unlike filemap_fdatawait(), this function
607  * does not clear error status of the address space.
608  *
609  * Use this function if callers don't handle errors themselves.  Expected
610  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
611  * fsfreeze(8)
612  *
613  * Return: error status of the address space.
614  */
615 int filemap_fdatawait_keep_errors(struct address_space *mapping)
616 {
617 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
618 	return filemap_check_and_keep_errors(mapping);
619 }
620 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
621 
622 /* Returns true if writeback might be needed or already in progress. */
623 static bool mapping_needs_writeback(struct address_space *mapping)
624 {
625 	return mapping->nrpages;
626 }
627 
628 bool filemap_range_has_writeback(struct address_space *mapping,
629 				 loff_t start_byte, loff_t end_byte)
630 {
631 	XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
632 	pgoff_t max = end_byte >> PAGE_SHIFT;
633 	struct folio *folio;
634 
635 	if (end_byte < start_byte)
636 		return false;
637 
638 	rcu_read_lock();
639 	xas_for_each(&xas, folio, max) {
640 		if (xas_retry(&xas, folio))
641 			continue;
642 		if (xa_is_value(folio))
643 			continue;
644 		if (folio_test_dirty(folio) || folio_test_locked(folio) ||
645 				folio_test_writeback(folio))
646 			break;
647 	}
648 	rcu_read_unlock();
649 	return folio != NULL;
650 }
651 EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
652 
653 /**
654  * filemap_write_and_wait_range - write out & wait on a file range
655  * @mapping:	the address_space for the pages
656  * @lstart:	offset in bytes where the range starts
657  * @lend:	offset in bytes where the range ends (inclusive)
658  *
659  * Write out and wait upon file offsets lstart->lend, inclusive.
660  *
661  * Note that @lend is inclusive (describes the last byte to be written) so
662  * that this function can be used to write to the very end-of-file (end = -1).
663  *
664  * Return: error status of the address space.
665  */
666 int filemap_write_and_wait_range(struct address_space *mapping,
667 				 loff_t lstart, loff_t lend)
668 {
669 	int err = 0, err2;
670 
671 	if (lend < lstart)
672 		return 0;
673 
674 	if (mapping_needs_writeback(mapping)) {
675 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
676 						 WB_SYNC_ALL);
677 		/*
678 		 * Even if the above returned error, the pages may be
679 		 * written partially (e.g. -ENOSPC), so we wait for it.
680 		 * But the -EIO is special case, it may indicate the worst
681 		 * thing (e.g. bug) happened, so we avoid waiting for it.
682 		 */
683 		if (err != -EIO)
684 			__filemap_fdatawait_range(mapping, lstart, lend);
685 	}
686 	err2 = filemap_check_errors(mapping);
687 	if (!err)
688 		err = err2;
689 	return err;
690 }
691 EXPORT_SYMBOL(filemap_write_and_wait_range);
692 
693 void __filemap_set_wb_err(struct address_space *mapping, int err)
694 {
695 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
696 
697 	trace_filemap_set_wb_err(mapping, eseq);
698 }
699 EXPORT_SYMBOL(__filemap_set_wb_err);
700 
701 /**
702  * file_check_and_advance_wb_err - report wb error (if any) that was previously
703  * 				   and advance wb_err to current one
704  * @file: struct file on which the error is being reported
705  *
706  * When userland calls fsync (or something like nfsd does the equivalent), we
707  * want to report any writeback errors that occurred since the last fsync (or
708  * since the file was opened if there haven't been any).
709  *
710  * Grab the wb_err from the mapping. If it matches what we have in the file,
711  * then just quickly return 0. The file is all caught up.
712  *
713  * If it doesn't match, then take the mapping value, set the "seen" flag in
714  * it and try to swap it into place. If it works, or another task beat us
715  * to it with the new value, then update the f_wb_err and return the error
716  * portion. The error at this point must be reported via proper channels
717  * (a'la fsync, or NFS COMMIT operation, etc.).
718  *
719  * While we handle mapping->wb_err with atomic operations, the f_wb_err
720  * value is protected by the f_lock since we must ensure that it reflects
721  * the latest value swapped in for this file descriptor.
722  *
723  * Return: %0 on success, negative error code otherwise.
724  */
725 int file_check_and_advance_wb_err(struct file *file)
726 {
727 	int err = 0;
728 	errseq_t old = READ_ONCE(file->f_wb_err);
729 	struct address_space *mapping = file->f_mapping;
730 
731 	/* Locklessly handle the common case where nothing has changed */
732 	if (errseq_check(&mapping->wb_err, old)) {
733 		/* Something changed, must use slow path */
734 		spin_lock(&file->f_lock);
735 		old = file->f_wb_err;
736 		err = errseq_check_and_advance(&mapping->wb_err,
737 						&file->f_wb_err);
738 		trace_file_check_and_advance_wb_err(file, old);
739 		spin_unlock(&file->f_lock);
740 	}
741 
742 	/*
743 	 * We're mostly using this function as a drop in replacement for
744 	 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
745 	 * that the legacy code would have had on these flags.
746 	 */
747 	clear_bit(AS_EIO, &mapping->flags);
748 	clear_bit(AS_ENOSPC, &mapping->flags);
749 	return err;
750 }
751 EXPORT_SYMBOL(file_check_and_advance_wb_err);
752 
753 /**
754  * file_write_and_wait_range - write out & wait on a file range
755  * @file:	file pointing to address_space with pages
756  * @lstart:	offset in bytes where the range starts
757  * @lend:	offset in bytes where the range ends (inclusive)
758  *
759  * Write out and wait upon file offsets lstart->lend, inclusive.
760  *
761  * Note that @lend is inclusive (describes the last byte to be written) so
762  * that this function can be used to write to the very end-of-file (end = -1).
763  *
764  * After writing out and waiting on the data, we check and advance the
765  * f_wb_err cursor to the latest value, and return any errors detected there.
766  *
767  * Return: %0 on success, negative error code otherwise.
768  */
769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
770 {
771 	int err = 0, err2;
772 	struct address_space *mapping = file->f_mapping;
773 
774 	if (lend < lstart)
775 		return 0;
776 
777 	if (mapping_needs_writeback(mapping)) {
778 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
779 						 WB_SYNC_ALL);
780 		/* See comment of filemap_write_and_wait() */
781 		if (err != -EIO)
782 			__filemap_fdatawait_range(mapping, lstart, lend);
783 	}
784 	err2 = file_check_and_advance_wb_err(file);
785 	if (!err)
786 		err = err2;
787 	return err;
788 }
789 EXPORT_SYMBOL(file_write_and_wait_range);
790 
791 /**
792  * replace_page_cache_folio - replace a pagecache folio with a new one
793  * @old:	folio to be replaced
794  * @new:	folio to replace with
795  *
796  * This function replaces a folio in the pagecache with a new one.  On
797  * success it acquires the pagecache reference for the new folio and
798  * drops it for the old folio.  Both the old and new folios must be
799  * locked.  This function does not add the new folio to the LRU, the
800  * caller must do that.
801  *
802  * The remove + add is atomic.  This function cannot fail.
803  */
804 void replace_page_cache_folio(struct folio *old, struct folio *new)
805 {
806 	struct address_space *mapping = old->mapping;
807 	void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
808 	pgoff_t offset = old->index;
809 	XA_STATE(xas, &mapping->i_pages, offset);
810 
811 	VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
812 	VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
813 	VM_BUG_ON_FOLIO(new->mapping, new);
814 
815 	folio_get(new);
816 	new->mapping = mapping;
817 	new->index = offset;
818 
819 	mem_cgroup_replace_folio(old, new);
820 
821 	xas_lock_irq(&xas);
822 	xas_store(&xas, new);
823 
824 	old->mapping = NULL;
825 	/* hugetlb pages do not participate in page cache accounting. */
826 	if (!folio_test_hugetlb(old))
827 		__lruvec_stat_sub_folio(old, NR_FILE_PAGES);
828 	if (!folio_test_hugetlb(new))
829 		__lruvec_stat_add_folio(new, NR_FILE_PAGES);
830 	if (folio_test_swapbacked(old))
831 		__lruvec_stat_sub_folio(old, NR_SHMEM);
832 	if (folio_test_swapbacked(new))
833 		__lruvec_stat_add_folio(new, NR_SHMEM);
834 	xas_unlock_irq(&xas);
835 	if (free_folio)
836 		free_folio(old);
837 	folio_put(old);
838 }
839 EXPORT_SYMBOL_GPL(replace_page_cache_folio);
840 
841 noinline int __filemap_add_folio(struct address_space *mapping,
842 		struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
843 {
844 	XA_STATE(xas, &mapping->i_pages, index);
845 	int huge = folio_test_hugetlb(folio);
846 	bool charged = false;
847 	long nr = 1;
848 
849 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
850 	VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
851 	mapping_set_update(&xas, mapping);
852 
853 	if (!huge) {
854 		int error = mem_cgroup_charge(folio, NULL, gfp);
855 		if (error)
856 			return error;
857 		charged = true;
858 	}
859 
860 	VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
861 	xas_set_order(&xas, index, folio_order(folio));
862 	nr = folio_nr_pages(folio);
863 
864 	gfp &= GFP_RECLAIM_MASK;
865 	folio_ref_add(folio, nr);
866 	folio->mapping = mapping;
867 	folio->index = xas.xa_index;
868 
869 	do {
870 		unsigned int order = xa_get_order(xas.xa, xas.xa_index);
871 		void *entry, *old = NULL;
872 
873 		if (order > folio_order(folio))
874 			xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
875 					order, gfp);
876 		xas_lock_irq(&xas);
877 		xas_for_each_conflict(&xas, entry) {
878 			old = entry;
879 			if (!xa_is_value(entry)) {
880 				xas_set_err(&xas, -EEXIST);
881 				goto unlock;
882 			}
883 		}
884 
885 		if (old) {
886 			if (shadowp)
887 				*shadowp = old;
888 			/* entry may have been split before we acquired lock */
889 			order = xa_get_order(xas.xa, xas.xa_index);
890 			if (order > folio_order(folio)) {
891 				/* How to handle large swap entries? */
892 				BUG_ON(shmem_mapping(mapping));
893 				xas_split(&xas, old, order);
894 				xas_reset(&xas);
895 			}
896 		}
897 
898 		xas_store(&xas, folio);
899 		if (xas_error(&xas))
900 			goto unlock;
901 
902 		mapping->nrpages += nr;
903 
904 		/* hugetlb pages do not participate in page cache accounting */
905 		if (!huge) {
906 			__lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
907 			if (folio_test_pmd_mappable(folio))
908 				__lruvec_stat_mod_folio(folio,
909 						NR_FILE_THPS, nr);
910 		}
911 unlock:
912 		xas_unlock_irq(&xas);
913 	} while (xas_nomem(&xas, gfp));
914 
915 	if (xas_error(&xas))
916 		goto error;
917 
918 	trace_mm_filemap_add_to_page_cache(folio);
919 	return 0;
920 error:
921 	if (charged)
922 		mem_cgroup_uncharge(folio);
923 	folio->mapping = NULL;
924 	/* Leave page->index set: truncation relies upon it */
925 	folio_put_refs(folio, nr);
926 	return xas_error(&xas);
927 }
928 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
929 
930 int filemap_add_folio(struct address_space *mapping, struct folio *folio,
931 				pgoff_t index, gfp_t gfp)
932 {
933 	void *shadow = NULL;
934 	int ret;
935 
936 	__folio_set_locked(folio);
937 	ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
938 	if (unlikely(ret))
939 		__folio_clear_locked(folio);
940 	else {
941 		/*
942 		 * The folio might have been evicted from cache only
943 		 * recently, in which case it should be activated like
944 		 * any other repeatedly accessed folio.
945 		 * The exception is folios getting rewritten; evicting other
946 		 * data from the working set, only to cache data that will
947 		 * get overwritten with something else, is a waste of memory.
948 		 */
949 		WARN_ON_ONCE(folio_test_active(folio));
950 		if (!(gfp & __GFP_WRITE) && shadow)
951 			workingset_refault(folio, shadow);
952 		folio_add_lru(folio);
953 	}
954 	return ret;
955 }
956 EXPORT_SYMBOL_GPL(filemap_add_folio);
957 
958 #ifdef CONFIG_NUMA
959 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
960 {
961 	int n;
962 	struct folio *folio;
963 
964 	if (cpuset_do_page_mem_spread()) {
965 		unsigned int cpuset_mems_cookie;
966 		do {
967 			cpuset_mems_cookie = read_mems_allowed_begin();
968 			n = cpuset_mem_spread_node();
969 			folio = __folio_alloc_node(gfp, order, n);
970 		} while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
971 
972 		return folio;
973 	}
974 	return folio_alloc(gfp, order);
975 }
976 EXPORT_SYMBOL(filemap_alloc_folio);
977 #endif
978 
979 /*
980  * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
981  *
982  * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
983  *
984  * @mapping1: the first mapping to lock
985  * @mapping2: the second mapping to lock
986  */
987 void filemap_invalidate_lock_two(struct address_space *mapping1,
988 				 struct address_space *mapping2)
989 {
990 	if (mapping1 > mapping2)
991 		swap(mapping1, mapping2);
992 	if (mapping1)
993 		down_write(&mapping1->invalidate_lock);
994 	if (mapping2 && mapping1 != mapping2)
995 		down_write_nested(&mapping2->invalidate_lock, 1);
996 }
997 EXPORT_SYMBOL(filemap_invalidate_lock_two);
998 
999 /*
1000  * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1001  *
1002  * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1003  *
1004  * @mapping1: the first mapping to unlock
1005  * @mapping2: the second mapping to unlock
1006  */
1007 void filemap_invalidate_unlock_two(struct address_space *mapping1,
1008 				   struct address_space *mapping2)
1009 {
1010 	if (mapping1)
1011 		up_write(&mapping1->invalidate_lock);
1012 	if (mapping2 && mapping1 != mapping2)
1013 		up_write(&mapping2->invalidate_lock);
1014 }
1015 EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1016 
1017 /*
1018  * In order to wait for pages to become available there must be
1019  * waitqueues associated with pages. By using a hash table of
1020  * waitqueues where the bucket discipline is to maintain all
1021  * waiters on the same queue and wake all when any of the pages
1022  * become available, and for the woken contexts to check to be
1023  * sure the appropriate page became available, this saves space
1024  * at a cost of "thundering herd" phenomena during rare hash
1025  * collisions.
1026  */
1027 #define PAGE_WAIT_TABLE_BITS 8
1028 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1029 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1030 
1031 static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1032 {
1033 	return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1034 }
1035 
1036 void __init pagecache_init(void)
1037 {
1038 	int i;
1039 
1040 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1041 		init_waitqueue_head(&folio_wait_table[i]);
1042 
1043 	page_writeback_init();
1044 }
1045 
1046 /*
1047  * The page wait code treats the "wait->flags" somewhat unusually, because
1048  * we have multiple different kinds of waits, not just the usual "exclusive"
1049  * one.
1050  *
1051  * We have:
1052  *
1053  *  (a) no special bits set:
1054  *
1055  *	We're just waiting for the bit to be released, and when a waker
1056  *	calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1057  *	and remove it from the wait queue.
1058  *
1059  *	Simple and straightforward.
1060  *
1061  *  (b) WQ_FLAG_EXCLUSIVE:
1062  *
1063  *	The waiter is waiting to get the lock, and only one waiter should
1064  *	be woken up to avoid any thundering herd behavior. We'll set the
1065  *	WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1066  *
1067  *	This is the traditional exclusive wait.
1068  *
1069  *  (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1070  *
1071  *	The waiter is waiting to get the bit, and additionally wants the
1072  *	lock to be transferred to it for fair lock behavior. If the lock
1073  *	cannot be taken, we stop walking the wait queue without waking
1074  *	the waiter.
1075  *
1076  *	This is the "fair lock handoff" case, and in addition to setting
1077  *	WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1078  *	that it now has the lock.
1079  */
1080 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1081 {
1082 	unsigned int flags;
1083 	struct wait_page_key *key = arg;
1084 	struct wait_page_queue *wait_page
1085 		= container_of(wait, struct wait_page_queue, wait);
1086 
1087 	if (!wake_page_match(wait_page, key))
1088 		return 0;
1089 
1090 	/*
1091 	 * If it's a lock handoff wait, we get the bit for it, and
1092 	 * stop walking (and do not wake it up) if we can't.
1093 	 */
1094 	flags = wait->flags;
1095 	if (flags & WQ_FLAG_EXCLUSIVE) {
1096 		if (test_bit(key->bit_nr, &key->folio->flags))
1097 			return -1;
1098 		if (flags & WQ_FLAG_CUSTOM) {
1099 			if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1100 				return -1;
1101 			flags |= WQ_FLAG_DONE;
1102 		}
1103 	}
1104 
1105 	/*
1106 	 * We are holding the wait-queue lock, but the waiter that
1107 	 * is waiting for this will be checking the flags without
1108 	 * any locking.
1109 	 *
1110 	 * So update the flags atomically, and wake up the waiter
1111 	 * afterwards to avoid any races. This store-release pairs
1112 	 * with the load-acquire in folio_wait_bit_common().
1113 	 */
1114 	smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1115 	wake_up_state(wait->private, mode);
1116 
1117 	/*
1118 	 * Ok, we have successfully done what we're waiting for,
1119 	 * and we can unconditionally remove the wait entry.
1120 	 *
1121 	 * Note that this pairs with the "finish_wait()" in the
1122 	 * waiter, and has to be the absolute last thing we do.
1123 	 * After this list_del_init(&wait->entry) the wait entry
1124 	 * might be de-allocated and the process might even have
1125 	 * exited.
1126 	 */
1127 	list_del_init_careful(&wait->entry);
1128 	return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1129 }
1130 
1131 static void folio_wake_bit(struct folio *folio, int bit_nr)
1132 {
1133 	wait_queue_head_t *q = folio_waitqueue(folio);
1134 	struct wait_page_key key;
1135 	unsigned long flags;
1136 
1137 	key.folio = folio;
1138 	key.bit_nr = bit_nr;
1139 	key.page_match = 0;
1140 
1141 	spin_lock_irqsave(&q->lock, flags);
1142 	__wake_up_locked_key(q, TASK_NORMAL, &key);
1143 
1144 	/*
1145 	 * It's possible to miss clearing waiters here, when we woke our page
1146 	 * waiters, but the hashed waitqueue has waiters for other pages on it.
1147 	 * That's okay, it's a rare case. The next waker will clear it.
1148 	 *
1149 	 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1150 	 * other), the flag may be cleared in the course of freeing the page;
1151 	 * but that is not required for correctness.
1152 	 */
1153 	if (!waitqueue_active(q) || !key.page_match)
1154 		folio_clear_waiters(folio);
1155 
1156 	spin_unlock_irqrestore(&q->lock, flags);
1157 }
1158 
1159 /*
1160  * A choice of three behaviors for folio_wait_bit_common():
1161  */
1162 enum behavior {
1163 	EXCLUSIVE,	/* Hold ref to page and take the bit when woken, like
1164 			 * __folio_lock() waiting on then setting PG_locked.
1165 			 */
1166 	SHARED,		/* Hold ref to page and check the bit when woken, like
1167 			 * folio_wait_writeback() waiting on PG_writeback.
1168 			 */
1169 	DROP,		/* Drop ref to page before wait, no check when woken,
1170 			 * like folio_put_wait_locked() on PG_locked.
1171 			 */
1172 };
1173 
1174 /*
1175  * Attempt to check (or get) the folio flag, and mark us done
1176  * if successful.
1177  */
1178 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1179 					struct wait_queue_entry *wait)
1180 {
1181 	if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1182 		if (test_and_set_bit(bit_nr, &folio->flags))
1183 			return false;
1184 	} else if (test_bit(bit_nr, &folio->flags))
1185 		return false;
1186 
1187 	wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1188 	return true;
1189 }
1190 
1191 /* How many times do we accept lock stealing from under a waiter? */
1192 int sysctl_page_lock_unfairness = 5;
1193 
1194 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1195 		int state, enum behavior behavior)
1196 {
1197 	wait_queue_head_t *q = folio_waitqueue(folio);
1198 	int unfairness = sysctl_page_lock_unfairness;
1199 	struct wait_page_queue wait_page;
1200 	wait_queue_entry_t *wait = &wait_page.wait;
1201 	bool thrashing = false;
1202 	unsigned long pflags;
1203 	bool in_thrashing;
1204 
1205 	if (bit_nr == PG_locked &&
1206 	    !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1207 		delayacct_thrashing_start(&in_thrashing);
1208 		psi_memstall_enter(&pflags);
1209 		thrashing = true;
1210 	}
1211 
1212 	init_wait(wait);
1213 	wait->func = wake_page_function;
1214 	wait_page.folio = folio;
1215 	wait_page.bit_nr = bit_nr;
1216 
1217 repeat:
1218 	wait->flags = 0;
1219 	if (behavior == EXCLUSIVE) {
1220 		wait->flags = WQ_FLAG_EXCLUSIVE;
1221 		if (--unfairness < 0)
1222 			wait->flags |= WQ_FLAG_CUSTOM;
1223 	}
1224 
1225 	/*
1226 	 * Do one last check whether we can get the
1227 	 * page bit synchronously.
1228 	 *
1229 	 * Do the folio_set_waiters() marking before that
1230 	 * to let any waker we _just_ missed know they
1231 	 * need to wake us up (otherwise they'll never
1232 	 * even go to the slow case that looks at the
1233 	 * page queue), and add ourselves to the wait
1234 	 * queue if we need to sleep.
1235 	 *
1236 	 * This part needs to be done under the queue
1237 	 * lock to avoid races.
1238 	 */
1239 	spin_lock_irq(&q->lock);
1240 	folio_set_waiters(folio);
1241 	if (!folio_trylock_flag(folio, bit_nr, wait))
1242 		__add_wait_queue_entry_tail(q, wait);
1243 	spin_unlock_irq(&q->lock);
1244 
1245 	/*
1246 	 * From now on, all the logic will be based on
1247 	 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1248 	 * see whether the page bit testing has already
1249 	 * been done by the wake function.
1250 	 *
1251 	 * We can drop our reference to the folio.
1252 	 */
1253 	if (behavior == DROP)
1254 		folio_put(folio);
1255 
1256 	/*
1257 	 * Note that until the "finish_wait()", or until
1258 	 * we see the WQ_FLAG_WOKEN flag, we need to
1259 	 * be very careful with the 'wait->flags', because
1260 	 * we may race with a waker that sets them.
1261 	 */
1262 	for (;;) {
1263 		unsigned int flags;
1264 
1265 		set_current_state(state);
1266 
1267 		/* Loop until we've been woken or interrupted */
1268 		flags = smp_load_acquire(&wait->flags);
1269 		if (!(flags & WQ_FLAG_WOKEN)) {
1270 			if (signal_pending_state(state, current))
1271 				break;
1272 
1273 			io_schedule();
1274 			continue;
1275 		}
1276 
1277 		/* If we were non-exclusive, we're done */
1278 		if (behavior != EXCLUSIVE)
1279 			break;
1280 
1281 		/* If the waker got the lock for us, we're done */
1282 		if (flags & WQ_FLAG_DONE)
1283 			break;
1284 
1285 		/*
1286 		 * Otherwise, if we're getting the lock, we need to
1287 		 * try to get it ourselves.
1288 		 *
1289 		 * And if that fails, we'll have to retry this all.
1290 		 */
1291 		if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1292 			goto repeat;
1293 
1294 		wait->flags |= WQ_FLAG_DONE;
1295 		break;
1296 	}
1297 
1298 	/*
1299 	 * If a signal happened, this 'finish_wait()' may remove the last
1300 	 * waiter from the wait-queues, but the folio waiters bit will remain
1301 	 * set. That's ok. The next wakeup will take care of it, and trying
1302 	 * to do it here would be difficult and prone to races.
1303 	 */
1304 	finish_wait(q, wait);
1305 
1306 	if (thrashing) {
1307 		delayacct_thrashing_end(&in_thrashing);
1308 		psi_memstall_leave(&pflags);
1309 	}
1310 
1311 	/*
1312 	 * NOTE! The wait->flags weren't stable until we've done the
1313 	 * 'finish_wait()', and we could have exited the loop above due
1314 	 * to a signal, and had a wakeup event happen after the signal
1315 	 * test but before the 'finish_wait()'.
1316 	 *
1317 	 * So only after the finish_wait() can we reliably determine
1318 	 * if we got woken up or not, so we can now figure out the final
1319 	 * return value based on that state without races.
1320 	 *
1321 	 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1322 	 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1323 	 */
1324 	if (behavior == EXCLUSIVE)
1325 		return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1326 
1327 	return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1328 }
1329 
1330 #ifdef CONFIG_MIGRATION
1331 /**
1332  * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1333  * @entry: migration swap entry.
1334  * @ptl: already locked ptl. This function will drop the lock.
1335  *
1336  * Wait for a migration entry referencing the given page to be removed. This is
1337  * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1338  * this can be called without taking a reference on the page. Instead this
1339  * should be called while holding the ptl for the migration entry referencing
1340  * the page.
1341  *
1342  * Returns after unlocking the ptl.
1343  *
1344  * This follows the same logic as folio_wait_bit_common() so see the comments
1345  * there.
1346  */
1347 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1348 	__releases(ptl)
1349 {
1350 	struct wait_page_queue wait_page;
1351 	wait_queue_entry_t *wait = &wait_page.wait;
1352 	bool thrashing = false;
1353 	unsigned long pflags;
1354 	bool in_thrashing;
1355 	wait_queue_head_t *q;
1356 	struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1357 
1358 	q = folio_waitqueue(folio);
1359 	if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1360 		delayacct_thrashing_start(&in_thrashing);
1361 		psi_memstall_enter(&pflags);
1362 		thrashing = true;
1363 	}
1364 
1365 	init_wait(wait);
1366 	wait->func = wake_page_function;
1367 	wait_page.folio = folio;
1368 	wait_page.bit_nr = PG_locked;
1369 	wait->flags = 0;
1370 
1371 	spin_lock_irq(&q->lock);
1372 	folio_set_waiters(folio);
1373 	if (!folio_trylock_flag(folio, PG_locked, wait))
1374 		__add_wait_queue_entry_tail(q, wait);
1375 	spin_unlock_irq(&q->lock);
1376 
1377 	/*
1378 	 * If a migration entry exists for the page the migration path must hold
1379 	 * a valid reference to the page, and it must take the ptl to remove the
1380 	 * migration entry. So the page is valid until the ptl is dropped.
1381 	 */
1382 	spin_unlock(ptl);
1383 
1384 	for (;;) {
1385 		unsigned int flags;
1386 
1387 		set_current_state(TASK_UNINTERRUPTIBLE);
1388 
1389 		/* Loop until we've been woken or interrupted */
1390 		flags = smp_load_acquire(&wait->flags);
1391 		if (!(flags & WQ_FLAG_WOKEN)) {
1392 			if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1393 				break;
1394 
1395 			io_schedule();
1396 			continue;
1397 		}
1398 		break;
1399 	}
1400 
1401 	finish_wait(q, wait);
1402 
1403 	if (thrashing) {
1404 		delayacct_thrashing_end(&in_thrashing);
1405 		psi_memstall_leave(&pflags);
1406 	}
1407 }
1408 #endif
1409 
1410 void folio_wait_bit(struct folio *folio, int bit_nr)
1411 {
1412 	folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1413 }
1414 EXPORT_SYMBOL(folio_wait_bit);
1415 
1416 int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1417 {
1418 	return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1419 }
1420 EXPORT_SYMBOL(folio_wait_bit_killable);
1421 
1422 /**
1423  * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1424  * @folio: The folio to wait for.
1425  * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1426  *
1427  * The caller should hold a reference on @folio.  They expect the page to
1428  * become unlocked relatively soon, but do not wish to hold up migration
1429  * (for example) by holding the reference while waiting for the folio to
1430  * come unlocked.  After this function returns, the caller should not
1431  * dereference @folio.
1432  *
1433  * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1434  */
1435 static int folio_put_wait_locked(struct folio *folio, int state)
1436 {
1437 	return folio_wait_bit_common(folio, PG_locked, state, DROP);
1438 }
1439 
1440 /**
1441  * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1442  * @folio: Folio defining the wait queue of interest
1443  * @waiter: Waiter to add to the queue
1444  *
1445  * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1446  */
1447 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1448 {
1449 	wait_queue_head_t *q = folio_waitqueue(folio);
1450 	unsigned long flags;
1451 
1452 	spin_lock_irqsave(&q->lock, flags);
1453 	__add_wait_queue_entry_tail(q, waiter);
1454 	folio_set_waiters(folio);
1455 	spin_unlock_irqrestore(&q->lock, flags);
1456 }
1457 EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1458 
1459 /**
1460  * folio_unlock - Unlock a locked folio.
1461  * @folio: The folio.
1462  *
1463  * Unlocks the folio and wakes up any thread sleeping on the page lock.
1464  *
1465  * Context: May be called from interrupt or process context.  May not be
1466  * called from NMI context.
1467  */
1468 void folio_unlock(struct folio *folio)
1469 {
1470 	/* Bit 7 allows x86 to check the byte's sign bit */
1471 	BUILD_BUG_ON(PG_waiters != 7);
1472 	BUILD_BUG_ON(PG_locked > 7);
1473 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1474 	if (folio_xor_flags_has_waiters(folio, 1 << PG_locked))
1475 		folio_wake_bit(folio, PG_locked);
1476 }
1477 EXPORT_SYMBOL(folio_unlock);
1478 
1479 /**
1480  * folio_end_read - End read on a folio.
1481  * @folio: The folio.
1482  * @success: True if all reads completed successfully.
1483  *
1484  * When all reads against a folio have completed, filesystems should
1485  * call this function to let the pagecache know that no more reads
1486  * are outstanding.  This will unlock the folio and wake up any thread
1487  * sleeping on the lock.  The folio will also be marked uptodate if all
1488  * reads succeeded.
1489  *
1490  * Context: May be called from interrupt or process context.  May not be
1491  * called from NMI context.
1492  */
1493 void folio_end_read(struct folio *folio, bool success)
1494 {
1495 	unsigned long mask = 1 << PG_locked;
1496 
1497 	/* Must be in bottom byte for x86 to work */
1498 	BUILD_BUG_ON(PG_uptodate > 7);
1499 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1500 	VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio);
1501 
1502 	if (likely(success))
1503 		mask |= 1 << PG_uptodate;
1504 	if (folio_xor_flags_has_waiters(folio, mask))
1505 		folio_wake_bit(folio, PG_locked);
1506 }
1507 EXPORT_SYMBOL(folio_end_read);
1508 
1509 /**
1510  * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1511  * @folio: The folio.
1512  *
1513  * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1514  * it.  The folio reference held for PG_private_2 being set is released.
1515  *
1516  * This is, for example, used when a netfs folio is being written to a local
1517  * disk cache, thereby allowing writes to the cache for the same folio to be
1518  * serialised.
1519  */
1520 void folio_end_private_2(struct folio *folio)
1521 {
1522 	VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1523 	clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1524 	folio_wake_bit(folio, PG_private_2);
1525 	folio_put(folio);
1526 }
1527 EXPORT_SYMBOL(folio_end_private_2);
1528 
1529 /**
1530  * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1531  * @folio: The folio to wait on.
1532  *
1533  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1534  */
1535 void folio_wait_private_2(struct folio *folio)
1536 {
1537 	while (folio_test_private_2(folio))
1538 		folio_wait_bit(folio, PG_private_2);
1539 }
1540 EXPORT_SYMBOL(folio_wait_private_2);
1541 
1542 /**
1543  * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1544  * @folio: The folio to wait on.
1545  *
1546  * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1547  * fatal signal is received by the calling task.
1548  *
1549  * Return:
1550  * - 0 if successful.
1551  * - -EINTR if a fatal signal was encountered.
1552  */
1553 int folio_wait_private_2_killable(struct folio *folio)
1554 {
1555 	int ret = 0;
1556 
1557 	while (folio_test_private_2(folio)) {
1558 		ret = folio_wait_bit_killable(folio, PG_private_2);
1559 		if (ret < 0)
1560 			break;
1561 	}
1562 
1563 	return ret;
1564 }
1565 EXPORT_SYMBOL(folio_wait_private_2_killable);
1566 
1567 /**
1568  * folio_end_writeback - End writeback against a folio.
1569  * @folio: The folio.
1570  *
1571  * The folio must actually be under writeback.
1572  *
1573  * Context: May be called from process or interrupt context.
1574  */
1575 void folio_end_writeback(struct folio *folio)
1576 {
1577 	VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio);
1578 
1579 	/*
1580 	 * folio_test_clear_reclaim() could be used here but it is an
1581 	 * atomic operation and overkill in this particular case. Failing
1582 	 * to shuffle a folio marked for immediate reclaim is too mild
1583 	 * a gain to justify taking an atomic operation penalty at the
1584 	 * end of every folio writeback.
1585 	 */
1586 	if (folio_test_reclaim(folio)) {
1587 		folio_clear_reclaim(folio);
1588 		folio_rotate_reclaimable(folio);
1589 	}
1590 
1591 	/*
1592 	 * Writeback does not hold a folio reference of its own, relying
1593 	 * on truncation to wait for the clearing of PG_writeback.
1594 	 * But here we must make sure that the folio is not freed and
1595 	 * reused before the folio_wake_bit().
1596 	 */
1597 	folio_get(folio);
1598 	if (__folio_end_writeback(folio))
1599 		folio_wake_bit(folio, PG_writeback);
1600 	acct_reclaim_writeback(folio);
1601 	folio_put(folio);
1602 }
1603 EXPORT_SYMBOL(folio_end_writeback);
1604 
1605 /**
1606  * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1607  * @folio: The folio to lock
1608  */
1609 void __folio_lock(struct folio *folio)
1610 {
1611 	folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1612 				EXCLUSIVE);
1613 }
1614 EXPORT_SYMBOL(__folio_lock);
1615 
1616 int __folio_lock_killable(struct folio *folio)
1617 {
1618 	return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1619 					EXCLUSIVE);
1620 }
1621 EXPORT_SYMBOL_GPL(__folio_lock_killable);
1622 
1623 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1624 {
1625 	struct wait_queue_head *q = folio_waitqueue(folio);
1626 	int ret = 0;
1627 
1628 	wait->folio = folio;
1629 	wait->bit_nr = PG_locked;
1630 
1631 	spin_lock_irq(&q->lock);
1632 	__add_wait_queue_entry_tail(q, &wait->wait);
1633 	folio_set_waiters(folio);
1634 	ret = !folio_trylock(folio);
1635 	/*
1636 	 * If we were successful now, we know we're still on the
1637 	 * waitqueue as we're still under the lock. This means it's
1638 	 * safe to remove and return success, we know the callback
1639 	 * isn't going to trigger.
1640 	 */
1641 	if (!ret)
1642 		__remove_wait_queue(q, &wait->wait);
1643 	else
1644 		ret = -EIOCBQUEUED;
1645 	spin_unlock_irq(&q->lock);
1646 	return ret;
1647 }
1648 
1649 /*
1650  * Return values:
1651  * 0 - folio is locked.
1652  * non-zero - folio is not locked.
1653  *     mmap_lock or per-VMA lock has been released (mmap_read_unlock() or
1654  *     vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and
1655  *     FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held.
1656  *
1657  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0
1658  * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed.
1659  */
1660 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf)
1661 {
1662 	unsigned int flags = vmf->flags;
1663 
1664 	if (fault_flag_allow_retry_first(flags)) {
1665 		/*
1666 		 * CAUTION! In this case, mmap_lock/per-VMA lock is not
1667 		 * released even though returning VM_FAULT_RETRY.
1668 		 */
1669 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1670 			return VM_FAULT_RETRY;
1671 
1672 		release_fault_lock(vmf);
1673 		if (flags & FAULT_FLAG_KILLABLE)
1674 			folio_wait_locked_killable(folio);
1675 		else
1676 			folio_wait_locked(folio);
1677 		return VM_FAULT_RETRY;
1678 	}
1679 	if (flags & FAULT_FLAG_KILLABLE) {
1680 		bool ret;
1681 
1682 		ret = __folio_lock_killable(folio);
1683 		if (ret) {
1684 			release_fault_lock(vmf);
1685 			return VM_FAULT_RETRY;
1686 		}
1687 	} else {
1688 		__folio_lock(folio);
1689 	}
1690 
1691 	return 0;
1692 }
1693 
1694 /**
1695  * page_cache_next_miss() - Find the next gap in the page cache.
1696  * @mapping: Mapping.
1697  * @index: Index.
1698  * @max_scan: Maximum range to search.
1699  *
1700  * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1701  * gap with the lowest index.
1702  *
1703  * This function may be called under the rcu_read_lock.  However, this will
1704  * not atomically search a snapshot of the cache at a single point in time.
1705  * For example, if a gap is created at index 5, then subsequently a gap is
1706  * created at index 10, page_cache_next_miss covering both indices may
1707  * return 10 if called under the rcu_read_lock.
1708  *
1709  * Return: The index of the gap if found, otherwise an index outside the
1710  * range specified (in which case 'return - index >= max_scan' will be true).
1711  * In the rare case of index wrap-around, 0 will be returned.
1712  */
1713 pgoff_t page_cache_next_miss(struct address_space *mapping,
1714 			     pgoff_t index, unsigned long max_scan)
1715 {
1716 	XA_STATE(xas, &mapping->i_pages, index);
1717 
1718 	while (max_scan--) {
1719 		void *entry = xas_next(&xas);
1720 		if (!entry || xa_is_value(entry))
1721 			break;
1722 		if (xas.xa_index == 0)
1723 			break;
1724 	}
1725 
1726 	return xas.xa_index;
1727 }
1728 EXPORT_SYMBOL(page_cache_next_miss);
1729 
1730 /**
1731  * page_cache_prev_miss() - Find the previous gap in the page cache.
1732  * @mapping: Mapping.
1733  * @index: Index.
1734  * @max_scan: Maximum range to search.
1735  *
1736  * Search the range [max(index - max_scan + 1, 0), index] for the
1737  * gap with the highest index.
1738  *
1739  * This function may be called under the rcu_read_lock.  However, this will
1740  * not atomically search a snapshot of the cache at a single point in time.
1741  * For example, if a gap is created at index 10, then subsequently a gap is
1742  * created at index 5, page_cache_prev_miss() covering both indices may
1743  * return 5 if called under the rcu_read_lock.
1744  *
1745  * Return: The index of the gap if found, otherwise an index outside the
1746  * range specified (in which case 'index - return >= max_scan' will be true).
1747  * In the rare case of wrap-around, ULONG_MAX will be returned.
1748  */
1749 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1750 			     pgoff_t index, unsigned long max_scan)
1751 {
1752 	XA_STATE(xas, &mapping->i_pages, index);
1753 
1754 	while (max_scan--) {
1755 		void *entry = xas_prev(&xas);
1756 		if (!entry || xa_is_value(entry))
1757 			break;
1758 		if (xas.xa_index == ULONG_MAX)
1759 			break;
1760 	}
1761 
1762 	return xas.xa_index;
1763 }
1764 EXPORT_SYMBOL(page_cache_prev_miss);
1765 
1766 /*
1767  * Lockless page cache protocol:
1768  * On the lookup side:
1769  * 1. Load the folio from i_pages
1770  * 2. Increment the refcount if it's not zero
1771  * 3. If the folio is not found by xas_reload(), put the refcount and retry
1772  *
1773  * On the removal side:
1774  * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1775  * B. Remove the page from i_pages
1776  * C. Return the page to the page allocator
1777  *
1778  * This means that any page may have its reference count temporarily
1779  * increased by a speculative page cache (or fast GUP) lookup as it can
1780  * be allocated by another user before the RCU grace period expires.
1781  * Because the refcount temporarily acquired here may end up being the
1782  * last refcount on the page, any page allocation must be freeable by
1783  * folio_put().
1784  */
1785 
1786 /*
1787  * filemap_get_entry - Get a page cache entry.
1788  * @mapping: the address_space to search
1789  * @index: The page cache index.
1790  *
1791  * Looks up the page cache entry at @mapping & @index.  If it is a folio,
1792  * it is returned with an increased refcount.  If it is a shadow entry
1793  * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1794  * it is returned without further action.
1795  *
1796  * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1797  */
1798 void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1799 {
1800 	XA_STATE(xas, &mapping->i_pages, index);
1801 	struct folio *folio;
1802 
1803 	rcu_read_lock();
1804 repeat:
1805 	xas_reset(&xas);
1806 	folio = xas_load(&xas);
1807 	if (xas_retry(&xas, folio))
1808 		goto repeat;
1809 	/*
1810 	 * A shadow entry of a recently evicted page, or a swap entry from
1811 	 * shmem/tmpfs.  Return it without attempting to raise page count.
1812 	 */
1813 	if (!folio || xa_is_value(folio))
1814 		goto out;
1815 
1816 	if (!folio_try_get_rcu(folio))
1817 		goto repeat;
1818 
1819 	if (unlikely(folio != xas_reload(&xas))) {
1820 		folio_put(folio);
1821 		goto repeat;
1822 	}
1823 out:
1824 	rcu_read_unlock();
1825 
1826 	return folio;
1827 }
1828 
1829 /**
1830  * __filemap_get_folio - Find and get a reference to a folio.
1831  * @mapping: The address_space to search.
1832  * @index: The page index.
1833  * @fgp_flags: %FGP flags modify how the folio is returned.
1834  * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1835  *
1836  * Looks up the page cache entry at @mapping & @index.
1837  *
1838  * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1839  * if the %GFP flags specified for %FGP_CREAT are atomic.
1840  *
1841  * If this function returns a folio, it is returned with an increased refcount.
1842  *
1843  * Return: The found folio or an ERR_PTR() otherwise.
1844  */
1845 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1846 		fgf_t fgp_flags, gfp_t gfp)
1847 {
1848 	struct folio *folio;
1849 
1850 repeat:
1851 	folio = filemap_get_entry(mapping, index);
1852 	if (xa_is_value(folio))
1853 		folio = NULL;
1854 	if (!folio)
1855 		goto no_page;
1856 
1857 	if (fgp_flags & FGP_LOCK) {
1858 		if (fgp_flags & FGP_NOWAIT) {
1859 			if (!folio_trylock(folio)) {
1860 				folio_put(folio);
1861 				return ERR_PTR(-EAGAIN);
1862 			}
1863 		} else {
1864 			folio_lock(folio);
1865 		}
1866 
1867 		/* Has the page been truncated? */
1868 		if (unlikely(folio->mapping != mapping)) {
1869 			folio_unlock(folio);
1870 			folio_put(folio);
1871 			goto repeat;
1872 		}
1873 		VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1874 	}
1875 
1876 	if (fgp_flags & FGP_ACCESSED)
1877 		folio_mark_accessed(folio);
1878 	else if (fgp_flags & FGP_WRITE) {
1879 		/* Clear idle flag for buffer write */
1880 		if (folio_test_idle(folio))
1881 			folio_clear_idle(folio);
1882 	}
1883 
1884 	if (fgp_flags & FGP_STABLE)
1885 		folio_wait_stable(folio);
1886 no_page:
1887 	if (!folio && (fgp_flags & FGP_CREAT)) {
1888 		unsigned order = FGF_GET_ORDER(fgp_flags);
1889 		int err;
1890 
1891 		if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1892 			gfp |= __GFP_WRITE;
1893 		if (fgp_flags & FGP_NOFS)
1894 			gfp &= ~__GFP_FS;
1895 		if (fgp_flags & FGP_NOWAIT) {
1896 			gfp &= ~GFP_KERNEL;
1897 			gfp |= GFP_NOWAIT | __GFP_NOWARN;
1898 		}
1899 		if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1900 			fgp_flags |= FGP_LOCK;
1901 
1902 		if (!mapping_large_folio_support(mapping))
1903 			order = 0;
1904 		if (order > MAX_PAGECACHE_ORDER)
1905 			order = MAX_PAGECACHE_ORDER;
1906 		/* If we're not aligned, allocate a smaller folio */
1907 		if (index & ((1UL << order) - 1))
1908 			order = __ffs(index);
1909 
1910 		do {
1911 			gfp_t alloc_gfp = gfp;
1912 
1913 			err = -ENOMEM;
1914 			if (order == 1)
1915 				order = 0;
1916 			if (order > 0)
1917 				alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN;
1918 			folio = filemap_alloc_folio(alloc_gfp, order);
1919 			if (!folio)
1920 				continue;
1921 
1922 			/* Init accessed so avoid atomic mark_page_accessed later */
1923 			if (fgp_flags & FGP_ACCESSED)
1924 				__folio_set_referenced(folio);
1925 
1926 			err = filemap_add_folio(mapping, folio, index, gfp);
1927 			if (!err)
1928 				break;
1929 			folio_put(folio);
1930 			folio = NULL;
1931 		} while (order-- > 0);
1932 
1933 		if (err == -EEXIST)
1934 			goto repeat;
1935 		if (err)
1936 			return ERR_PTR(err);
1937 		/*
1938 		 * filemap_add_folio locks the page, and for mmap
1939 		 * we expect an unlocked page.
1940 		 */
1941 		if (folio && (fgp_flags & FGP_FOR_MMAP))
1942 			folio_unlock(folio);
1943 	}
1944 
1945 	if (!folio)
1946 		return ERR_PTR(-ENOENT);
1947 	return folio;
1948 }
1949 EXPORT_SYMBOL(__filemap_get_folio);
1950 
1951 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1952 		xa_mark_t mark)
1953 {
1954 	struct folio *folio;
1955 
1956 retry:
1957 	if (mark == XA_PRESENT)
1958 		folio = xas_find(xas, max);
1959 	else
1960 		folio = xas_find_marked(xas, max, mark);
1961 
1962 	if (xas_retry(xas, folio))
1963 		goto retry;
1964 	/*
1965 	 * A shadow entry of a recently evicted page, a swap
1966 	 * entry from shmem/tmpfs or a DAX entry.  Return it
1967 	 * without attempting to raise page count.
1968 	 */
1969 	if (!folio || xa_is_value(folio))
1970 		return folio;
1971 
1972 	if (!folio_try_get_rcu(folio))
1973 		goto reset;
1974 
1975 	if (unlikely(folio != xas_reload(xas))) {
1976 		folio_put(folio);
1977 		goto reset;
1978 	}
1979 
1980 	return folio;
1981 reset:
1982 	xas_reset(xas);
1983 	goto retry;
1984 }
1985 
1986 /**
1987  * find_get_entries - gang pagecache lookup
1988  * @mapping:	The address_space to search
1989  * @start:	The starting page cache index
1990  * @end:	The final page index (inclusive).
1991  * @fbatch:	Where the resulting entries are placed.
1992  * @indices:	The cache indices corresponding to the entries in @entries
1993  *
1994  * find_get_entries() will search for and return a batch of entries in
1995  * the mapping.  The entries are placed in @fbatch.  find_get_entries()
1996  * takes a reference on any actual folios it returns.
1997  *
1998  * The entries have ascending indexes.  The indices may not be consecutive
1999  * due to not-present entries or large folios.
2000  *
2001  * Any shadow entries of evicted folios, or swap entries from
2002  * shmem/tmpfs, are included in the returned array.
2003  *
2004  * Return: The number of entries which were found.
2005  */
2006 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2007 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2008 {
2009 	XA_STATE(xas, &mapping->i_pages, *start);
2010 	struct folio *folio;
2011 
2012 	rcu_read_lock();
2013 	while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2014 		indices[fbatch->nr] = xas.xa_index;
2015 		if (!folio_batch_add(fbatch, folio))
2016 			break;
2017 	}
2018 	rcu_read_unlock();
2019 
2020 	if (folio_batch_count(fbatch)) {
2021 		unsigned long nr = 1;
2022 		int idx = folio_batch_count(fbatch) - 1;
2023 
2024 		folio = fbatch->folios[idx];
2025 		if (!xa_is_value(folio))
2026 			nr = folio_nr_pages(folio);
2027 		*start = indices[idx] + nr;
2028 	}
2029 	return folio_batch_count(fbatch);
2030 }
2031 
2032 /**
2033  * find_lock_entries - Find a batch of pagecache entries.
2034  * @mapping:	The address_space to search.
2035  * @start:	The starting page cache index.
2036  * @end:	The final page index (inclusive).
2037  * @fbatch:	Where the resulting entries are placed.
2038  * @indices:	The cache indices of the entries in @fbatch.
2039  *
2040  * find_lock_entries() will return a batch of entries from @mapping.
2041  * Swap, shadow and DAX entries are included.  Folios are returned
2042  * locked and with an incremented refcount.  Folios which are locked
2043  * by somebody else or under writeback are skipped.  Folios which are
2044  * partially outside the range are not returned.
2045  *
2046  * The entries have ascending indexes.  The indices may not be consecutive
2047  * due to not-present entries, large folios, folios which could not be
2048  * locked or folios under writeback.
2049  *
2050  * Return: The number of entries which were found.
2051  */
2052 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2053 		pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2054 {
2055 	XA_STATE(xas, &mapping->i_pages, *start);
2056 	struct folio *folio;
2057 
2058 	rcu_read_lock();
2059 	while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2060 		if (!xa_is_value(folio)) {
2061 			if (folio->index < *start)
2062 				goto put;
2063 			if (folio_next_index(folio) - 1 > end)
2064 				goto put;
2065 			if (!folio_trylock(folio))
2066 				goto put;
2067 			if (folio->mapping != mapping ||
2068 			    folio_test_writeback(folio))
2069 				goto unlock;
2070 			VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2071 					folio);
2072 		}
2073 		indices[fbatch->nr] = xas.xa_index;
2074 		if (!folio_batch_add(fbatch, folio))
2075 			break;
2076 		continue;
2077 unlock:
2078 		folio_unlock(folio);
2079 put:
2080 		folio_put(folio);
2081 	}
2082 	rcu_read_unlock();
2083 
2084 	if (folio_batch_count(fbatch)) {
2085 		unsigned long nr = 1;
2086 		int idx = folio_batch_count(fbatch) - 1;
2087 
2088 		folio = fbatch->folios[idx];
2089 		if (!xa_is_value(folio))
2090 			nr = folio_nr_pages(folio);
2091 		*start = indices[idx] + nr;
2092 	}
2093 	return folio_batch_count(fbatch);
2094 }
2095 
2096 /**
2097  * filemap_get_folios - Get a batch of folios
2098  * @mapping:	The address_space to search
2099  * @start:	The starting page index
2100  * @end:	The final page index (inclusive)
2101  * @fbatch:	The batch to fill.
2102  *
2103  * Search for and return a batch of folios in the mapping starting at
2104  * index @start and up to index @end (inclusive).  The folios are returned
2105  * in @fbatch with an elevated reference count.
2106  *
2107  * Return: The number of folios which were found.
2108  * We also update @start to index the next folio for the traversal.
2109  */
2110 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2111 		pgoff_t end, struct folio_batch *fbatch)
2112 {
2113 	return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch);
2114 }
2115 EXPORT_SYMBOL(filemap_get_folios);
2116 
2117 /**
2118  * filemap_get_folios_contig - Get a batch of contiguous folios
2119  * @mapping:	The address_space to search
2120  * @start:	The starting page index
2121  * @end:	The final page index (inclusive)
2122  * @fbatch:	The batch to fill
2123  *
2124  * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2125  * except the returned folios are guaranteed to be contiguous. This may
2126  * not return all contiguous folios if the batch gets filled up.
2127  *
2128  * Return: The number of folios found.
2129  * Also update @start to be positioned for traversal of the next folio.
2130  */
2131 
2132 unsigned filemap_get_folios_contig(struct address_space *mapping,
2133 		pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2134 {
2135 	XA_STATE(xas, &mapping->i_pages, *start);
2136 	unsigned long nr;
2137 	struct folio *folio;
2138 
2139 	rcu_read_lock();
2140 
2141 	for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2142 			folio = xas_next(&xas)) {
2143 		if (xas_retry(&xas, folio))
2144 			continue;
2145 		/*
2146 		 * If the entry has been swapped out, we can stop looking.
2147 		 * No current caller is looking for DAX entries.
2148 		 */
2149 		if (xa_is_value(folio))
2150 			goto update_start;
2151 
2152 		if (!folio_try_get_rcu(folio))
2153 			goto retry;
2154 
2155 		if (unlikely(folio != xas_reload(&xas)))
2156 			goto put_folio;
2157 
2158 		if (!folio_batch_add(fbatch, folio)) {
2159 			nr = folio_nr_pages(folio);
2160 			*start = folio->index + nr;
2161 			goto out;
2162 		}
2163 		continue;
2164 put_folio:
2165 		folio_put(folio);
2166 
2167 retry:
2168 		xas_reset(&xas);
2169 	}
2170 
2171 update_start:
2172 	nr = folio_batch_count(fbatch);
2173 
2174 	if (nr) {
2175 		folio = fbatch->folios[nr - 1];
2176 		*start = folio->index + folio_nr_pages(folio);
2177 	}
2178 out:
2179 	rcu_read_unlock();
2180 	return folio_batch_count(fbatch);
2181 }
2182 EXPORT_SYMBOL(filemap_get_folios_contig);
2183 
2184 /**
2185  * filemap_get_folios_tag - Get a batch of folios matching @tag
2186  * @mapping:    The address_space to search
2187  * @start:      The starting page index
2188  * @end:        The final page index (inclusive)
2189  * @tag:        The tag index
2190  * @fbatch:     The batch to fill
2191  *
2192  * The first folio may start before @start; if it does, it will contain
2193  * @start.  The final folio may extend beyond @end; if it does, it will
2194  * contain @end.  The folios have ascending indices.  There may be gaps
2195  * between the folios if there are indices which have no folio in the
2196  * page cache.  If folios are added to or removed from the page cache
2197  * while this is running, they may or may not be found by this call.
2198  * Only returns folios that are tagged with @tag.
2199  *
2200  * Return: The number of folios found.
2201  * Also update @start to index the next folio for traversal.
2202  */
2203 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2204 			pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2205 {
2206 	XA_STATE(xas, &mapping->i_pages, *start);
2207 	struct folio *folio;
2208 
2209 	rcu_read_lock();
2210 	while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2211 		/*
2212 		 * Shadow entries should never be tagged, but this iteration
2213 		 * is lockless so there is a window for page reclaim to evict
2214 		 * a page we saw tagged. Skip over it.
2215 		 */
2216 		if (xa_is_value(folio))
2217 			continue;
2218 		if (!folio_batch_add(fbatch, folio)) {
2219 			unsigned long nr = folio_nr_pages(folio);
2220 			*start = folio->index + nr;
2221 			goto out;
2222 		}
2223 	}
2224 	/*
2225 	 * We come here when there is no page beyond @end. We take care to not
2226 	 * overflow the index @start as it confuses some of the callers. This
2227 	 * breaks the iteration when there is a page at index -1 but that is
2228 	 * already broke anyway.
2229 	 */
2230 	if (end == (pgoff_t)-1)
2231 		*start = (pgoff_t)-1;
2232 	else
2233 		*start = end + 1;
2234 out:
2235 	rcu_read_unlock();
2236 
2237 	return folio_batch_count(fbatch);
2238 }
2239 EXPORT_SYMBOL(filemap_get_folios_tag);
2240 
2241 /*
2242  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2243  * a _large_ part of the i/o request. Imagine the worst scenario:
2244  *
2245  *      ---R__________________________________________B__________
2246  *         ^ reading here                             ^ bad block(assume 4k)
2247  *
2248  * read(R) => miss => readahead(R...B) => media error => frustrating retries
2249  * => failing the whole request => read(R) => read(R+1) =>
2250  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2251  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2252  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2253  *
2254  * It is going insane. Fix it by quickly scaling down the readahead size.
2255  */
2256 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2257 {
2258 	ra->ra_pages /= 4;
2259 }
2260 
2261 /*
2262  * filemap_get_read_batch - Get a batch of folios for read
2263  *
2264  * Get a batch of folios which represent a contiguous range of bytes in
2265  * the file.  No exceptional entries will be returned.  If @index is in
2266  * the middle of a folio, the entire folio will be returned.  The last
2267  * folio in the batch may have the readahead flag set or the uptodate flag
2268  * clear so that the caller can take the appropriate action.
2269  */
2270 static void filemap_get_read_batch(struct address_space *mapping,
2271 		pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2272 {
2273 	XA_STATE(xas, &mapping->i_pages, index);
2274 	struct folio *folio;
2275 
2276 	rcu_read_lock();
2277 	for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2278 		if (xas_retry(&xas, folio))
2279 			continue;
2280 		if (xas.xa_index > max || xa_is_value(folio))
2281 			break;
2282 		if (xa_is_sibling(folio))
2283 			break;
2284 		if (!folio_try_get_rcu(folio))
2285 			goto retry;
2286 
2287 		if (unlikely(folio != xas_reload(&xas)))
2288 			goto put_folio;
2289 
2290 		if (!folio_batch_add(fbatch, folio))
2291 			break;
2292 		if (!folio_test_uptodate(folio))
2293 			break;
2294 		if (folio_test_readahead(folio))
2295 			break;
2296 		xas_advance(&xas, folio_next_index(folio) - 1);
2297 		continue;
2298 put_folio:
2299 		folio_put(folio);
2300 retry:
2301 		xas_reset(&xas);
2302 	}
2303 	rcu_read_unlock();
2304 }
2305 
2306 static int filemap_read_folio(struct file *file, filler_t filler,
2307 		struct folio *folio)
2308 {
2309 	bool workingset = folio_test_workingset(folio);
2310 	unsigned long pflags;
2311 	int error;
2312 
2313 	/*
2314 	 * A previous I/O error may have been due to temporary failures,
2315 	 * eg. multipath errors.  PG_error will be set again if read_folio
2316 	 * fails.
2317 	 */
2318 	folio_clear_error(folio);
2319 
2320 	/* Start the actual read. The read will unlock the page. */
2321 	if (unlikely(workingset))
2322 		psi_memstall_enter(&pflags);
2323 	error = filler(file, folio);
2324 	if (unlikely(workingset))
2325 		psi_memstall_leave(&pflags);
2326 	if (error)
2327 		return error;
2328 
2329 	error = folio_wait_locked_killable(folio);
2330 	if (error)
2331 		return error;
2332 	if (folio_test_uptodate(folio))
2333 		return 0;
2334 	if (file)
2335 		shrink_readahead_size_eio(&file->f_ra);
2336 	return -EIO;
2337 }
2338 
2339 static bool filemap_range_uptodate(struct address_space *mapping,
2340 		loff_t pos, size_t count, struct folio *folio,
2341 		bool need_uptodate)
2342 {
2343 	if (folio_test_uptodate(folio))
2344 		return true;
2345 	/* pipes can't handle partially uptodate pages */
2346 	if (need_uptodate)
2347 		return false;
2348 	if (!mapping->a_ops->is_partially_uptodate)
2349 		return false;
2350 	if (mapping->host->i_blkbits >= folio_shift(folio))
2351 		return false;
2352 
2353 	if (folio_pos(folio) > pos) {
2354 		count -= folio_pos(folio) - pos;
2355 		pos = 0;
2356 	} else {
2357 		pos -= folio_pos(folio);
2358 	}
2359 
2360 	return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2361 }
2362 
2363 static int filemap_update_page(struct kiocb *iocb,
2364 		struct address_space *mapping, size_t count,
2365 		struct folio *folio, bool need_uptodate)
2366 {
2367 	int error;
2368 
2369 	if (iocb->ki_flags & IOCB_NOWAIT) {
2370 		if (!filemap_invalidate_trylock_shared(mapping))
2371 			return -EAGAIN;
2372 	} else {
2373 		filemap_invalidate_lock_shared(mapping);
2374 	}
2375 
2376 	if (!folio_trylock(folio)) {
2377 		error = -EAGAIN;
2378 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2379 			goto unlock_mapping;
2380 		if (!(iocb->ki_flags & IOCB_WAITQ)) {
2381 			filemap_invalidate_unlock_shared(mapping);
2382 			/*
2383 			 * This is where we usually end up waiting for a
2384 			 * previously submitted readahead to finish.
2385 			 */
2386 			folio_put_wait_locked(folio, TASK_KILLABLE);
2387 			return AOP_TRUNCATED_PAGE;
2388 		}
2389 		error = __folio_lock_async(folio, iocb->ki_waitq);
2390 		if (error)
2391 			goto unlock_mapping;
2392 	}
2393 
2394 	error = AOP_TRUNCATED_PAGE;
2395 	if (!folio->mapping)
2396 		goto unlock;
2397 
2398 	error = 0;
2399 	if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2400 				   need_uptodate))
2401 		goto unlock;
2402 
2403 	error = -EAGAIN;
2404 	if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2405 		goto unlock;
2406 
2407 	error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2408 			folio);
2409 	goto unlock_mapping;
2410 unlock:
2411 	folio_unlock(folio);
2412 unlock_mapping:
2413 	filemap_invalidate_unlock_shared(mapping);
2414 	if (error == AOP_TRUNCATED_PAGE)
2415 		folio_put(folio);
2416 	return error;
2417 }
2418 
2419 static int filemap_create_folio(struct file *file,
2420 		struct address_space *mapping, pgoff_t index,
2421 		struct folio_batch *fbatch)
2422 {
2423 	struct folio *folio;
2424 	int error;
2425 
2426 	folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2427 	if (!folio)
2428 		return -ENOMEM;
2429 
2430 	/*
2431 	 * Protect against truncate / hole punch. Grabbing invalidate_lock
2432 	 * here assures we cannot instantiate and bring uptodate new
2433 	 * pagecache folios after evicting page cache during truncate
2434 	 * and before actually freeing blocks.	Note that we could
2435 	 * release invalidate_lock after inserting the folio into
2436 	 * the page cache as the locked folio would then be enough to
2437 	 * synchronize with hole punching. But there are code paths
2438 	 * such as filemap_update_page() filling in partially uptodate
2439 	 * pages or ->readahead() that need to hold invalidate_lock
2440 	 * while mapping blocks for IO so let's hold the lock here as
2441 	 * well to keep locking rules simple.
2442 	 */
2443 	filemap_invalidate_lock_shared(mapping);
2444 	error = filemap_add_folio(mapping, folio, index,
2445 			mapping_gfp_constraint(mapping, GFP_KERNEL));
2446 	if (error == -EEXIST)
2447 		error = AOP_TRUNCATED_PAGE;
2448 	if (error)
2449 		goto error;
2450 
2451 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2452 	if (error)
2453 		goto error;
2454 
2455 	filemap_invalidate_unlock_shared(mapping);
2456 	folio_batch_add(fbatch, folio);
2457 	return 0;
2458 error:
2459 	filemap_invalidate_unlock_shared(mapping);
2460 	folio_put(folio);
2461 	return error;
2462 }
2463 
2464 static int filemap_readahead(struct kiocb *iocb, struct file *file,
2465 		struct address_space *mapping, struct folio *folio,
2466 		pgoff_t last_index)
2467 {
2468 	DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2469 
2470 	if (iocb->ki_flags & IOCB_NOIO)
2471 		return -EAGAIN;
2472 	page_cache_async_ra(&ractl, folio, last_index - folio->index);
2473 	return 0;
2474 }
2475 
2476 static int filemap_get_pages(struct kiocb *iocb, size_t count,
2477 		struct folio_batch *fbatch, bool need_uptodate)
2478 {
2479 	struct file *filp = iocb->ki_filp;
2480 	struct address_space *mapping = filp->f_mapping;
2481 	struct file_ra_state *ra = &filp->f_ra;
2482 	pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2483 	pgoff_t last_index;
2484 	struct folio *folio;
2485 	int err = 0;
2486 
2487 	/* "last_index" is the index of the page beyond the end of the read */
2488 	last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2489 retry:
2490 	if (fatal_signal_pending(current))
2491 		return -EINTR;
2492 
2493 	filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2494 	if (!folio_batch_count(fbatch)) {
2495 		if (iocb->ki_flags & IOCB_NOIO)
2496 			return -EAGAIN;
2497 		page_cache_sync_readahead(mapping, ra, filp, index,
2498 				last_index - index);
2499 		filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2500 	}
2501 	if (!folio_batch_count(fbatch)) {
2502 		if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2503 			return -EAGAIN;
2504 		err = filemap_create_folio(filp, mapping,
2505 				iocb->ki_pos >> PAGE_SHIFT, fbatch);
2506 		if (err == AOP_TRUNCATED_PAGE)
2507 			goto retry;
2508 		return err;
2509 	}
2510 
2511 	folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2512 	if (folio_test_readahead(folio)) {
2513 		err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2514 		if (err)
2515 			goto err;
2516 	}
2517 	if (!folio_test_uptodate(folio)) {
2518 		if ((iocb->ki_flags & IOCB_WAITQ) &&
2519 		    folio_batch_count(fbatch) > 1)
2520 			iocb->ki_flags |= IOCB_NOWAIT;
2521 		err = filemap_update_page(iocb, mapping, count, folio,
2522 					  need_uptodate);
2523 		if (err)
2524 			goto err;
2525 	}
2526 
2527 	return 0;
2528 err:
2529 	if (err < 0)
2530 		folio_put(folio);
2531 	if (likely(--fbatch->nr))
2532 		return 0;
2533 	if (err == AOP_TRUNCATED_PAGE)
2534 		goto retry;
2535 	return err;
2536 }
2537 
2538 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2539 {
2540 	unsigned int shift = folio_shift(folio);
2541 
2542 	return (pos1 >> shift == pos2 >> shift);
2543 }
2544 
2545 /**
2546  * filemap_read - Read data from the page cache.
2547  * @iocb: The iocb to read.
2548  * @iter: Destination for the data.
2549  * @already_read: Number of bytes already read by the caller.
2550  *
2551  * Copies data from the page cache.  If the data is not currently present,
2552  * uses the readahead and read_folio address_space operations to fetch it.
2553  *
2554  * Return: Total number of bytes copied, including those already read by
2555  * the caller.  If an error happens before any bytes are copied, returns
2556  * a negative error number.
2557  */
2558 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2559 		ssize_t already_read)
2560 {
2561 	struct file *filp = iocb->ki_filp;
2562 	struct file_ra_state *ra = &filp->f_ra;
2563 	struct address_space *mapping = filp->f_mapping;
2564 	struct inode *inode = mapping->host;
2565 	struct folio_batch fbatch;
2566 	int i, error = 0;
2567 	bool writably_mapped;
2568 	loff_t isize, end_offset;
2569 	loff_t last_pos = ra->prev_pos;
2570 
2571 	if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2572 		return 0;
2573 	if (unlikely(!iov_iter_count(iter)))
2574 		return 0;
2575 
2576 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2577 	folio_batch_init(&fbatch);
2578 
2579 	do {
2580 		cond_resched();
2581 
2582 		/*
2583 		 * If we've already successfully copied some data, then we
2584 		 * can no longer safely return -EIOCBQUEUED. Hence mark
2585 		 * an async read NOWAIT at that point.
2586 		 */
2587 		if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2588 			iocb->ki_flags |= IOCB_NOWAIT;
2589 
2590 		if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2591 			break;
2592 
2593 		error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2594 		if (error < 0)
2595 			break;
2596 
2597 		/*
2598 		 * i_size must be checked after we know the pages are Uptodate.
2599 		 *
2600 		 * Checking i_size after the check allows us to calculate
2601 		 * the correct value for "nr", which means the zero-filled
2602 		 * part of the page is not copied back to userspace (unless
2603 		 * another truncate extends the file - this is desired though).
2604 		 */
2605 		isize = i_size_read(inode);
2606 		if (unlikely(iocb->ki_pos >= isize))
2607 			goto put_folios;
2608 		end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2609 
2610 		/*
2611 		 * Pairs with a barrier in
2612 		 * block_write_end()->mark_buffer_dirty() or other page
2613 		 * dirtying routines like iomap_write_end() to ensure
2614 		 * changes to page contents are visible before we see
2615 		 * increased inode size.
2616 		 */
2617 		smp_rmb();
2618 
2619 		/*
2620 		 * Once we start copying data, we don't want to be touching any
2621 		 * cachelines that might be contended:
2622 		 */
2623 		writably_mapped = mapping_writably_mapped(mapping);
2624 
2625 		/*
2626 		 * When a read accesses the same folio several times, only
2627 		 * mark it as accessed the first time.
2628 		 */
2629 		if (!pos_same_folio(iocb->ki_pos, last_pos - 1,
2630 				    fbatch.folios[0]))
2631 			folio_mark_accessed(fbatch.folios[0]);
2632 
2633 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2634 			struct folio *folio = fbatch.folios[i];
2635 			size_t fsize = folio_size(folio);
2636 			size_t offset = iocb->ki_pos & (fsize - 1);
2637 			size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2638 					     fsize - offset);
2639 			size_t copied;
2640 
2641 			if (end_offset < folio_pos(folio))
2642 				break;
2643 			if (i > 0)
2644 				folio_mark_accessed(folio);
2645 			/*
2646 			 * If users can be writing to this folio using arbitrary
2647 			 * virtual addresses, take care of potential aliasing
2648 			 * before reading the folio on the kernel side.
2649 			 */
2650 			if (writably_mapped)
2651 				flush_dcache_folio(folio);
2652 
2653 			copied = copy_folio_to_iter(folio, offset, bytes, iter);
2654 
2655 			already_read += copied;
2656 			iocb->ki_pos += copied;
2657 			last_pos = iocb->ki_pos;
2658 
2659 			if (copied < bytes) {
2660 				error = -EFAULT;
2661 				break;
2662 			}
2663 		}
2664 put_folios:
2665 		for (i = 0; i < folio_batch_count(&fbatch); i++)
2666 			folio_put(fbatch.folios[i]);
2667 		folio_batch_init(&fbatch);
2668 	} while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2669 
2670 	file_accessed(filp);
2671 	ra->prev_pos = last_pos;
2672 	return already_read ? already_read : error;
2673 }
2674 EXPORT_SYMBOL_GPL(filemap_read);
2675 
2676 int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2677 {
2678 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2679 	loff_t pos = iocb->ki_pos;
2680 	loff_t end = pos + count - 1;
2681 
2682 	if (iocb->ki_flags & IOCB_NOWAIT) {
2683 		if (filemap_range_needs_writeback(mapping, pos, end))
2684 			return -EAGAIN;
2685 		return 0;
2686 	}
2687 
2688 	return filemap_write_and_wait_range(mapping, pos, end);
2689 }
2690 
2691 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2692 {
2693 	struct address_space *mapping = iocb->ki_filp->f_mapping;
2694 	loff_t pos = iocb->ki_pos;
2695 	loff_t end = pos + count - 1;
2696 	int ret;
2697 
2698 	if (iocb->ki_flags & IOCB_NOWAIT) {
2699 		/* we could block if there are any pages in the range */
2700 		if (filemap_range_has_page(mapping, pos, end))
2701 			return -EAGAIN;
2702 	} else {
2703 		ret = filemap_write_and_wait_range(mapping, pos, end);
2704 		if (ret)
2705 			return ret;
2706 	}
2707 
2708 	/*
2709 	 * After a write we want buffered reads to be sure to go to disk to get
2710 	 * the new data.  We invalidate clean cached page from the region we're
2711 	 * about to write.  We do this *before* the write so that we can return
2712 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2713 	 */
2714 	return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2715 					     end >> PAGE_SHIFT);
2716 }
2717 
2718 /**
2719  * generic_file_read_iter - generic filesystem read routine
2720  * @iocb:	kernel I/O control block
2721  * @iter:	destination for the data read
2722  *
2723  * This is the "read_iter()" routine for all filesystems
2724  * that can use the page cache directly.
2725  *
2726  * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2727  * be returned when no data can be read without waiting for I/O requests
2728  * to complete; it doesn't prevent readahead.
2729  *
2730  * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2731  * requests shall be made for the read or for readahead.  When no data
2732  * can be read, -EAGAIN shall be returned.  When readahead would be
2733  * triggered, a partial, possibly empty read shall be returned.
2734  *
2735  * Return:
2736  * * number of bytes copied, even for partial reads
2737  * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2738  */
2739 ssize_t
2740 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2741 {
2742 	size_t count = iov_iter_count(iter);
2743 	ssize_t retval = 0;
2744 
2745 	if (!count)
2746 		return 0; /* skip atime */
2747 
2748 	if (iocb->ki_flags & IOCB_DIRECT) {
2749 		struct file *file = iocb->ki_filp;
2750 		struct address_space *mapping = file->f_mapping;
2751 		struct inode *inode = mapping->host;
2752 
2753 		retval = kiocb_write_and_wait(iocb, count);
2754 		if (retval < 0)
2755 			return retval;
2756 		file_accessed(file);
2757 
2758 		retval = mapping->a_ops->direct_IO(iocb, iter);
2759 		if (retval >= 0) {
2760 			iocb->ki_pos += retval;
2761 			count -= retval;
2762 		}
2763 		if (retval != -EIOCBQUEUED)
2764 			iov_iter_revert(iter, count - iov_iter_count(iter));
2765 
2766 		/*
2767 		 * Btrfs can have a short DIO read if we encounter
2768 		 * compressed extents, so if there was an error, or if
2769 		 * we've already read everything we wanted to, or if
2770 		 * there was a short read because we hit EOF, go ahead
2771 		 * and return.  Otherwise fallthrough to buffered io for
2772 		 * the rest of the read.  Buffered reads will not work for
2773 		 * DAX files, so don't bother trying.
2774 		 */
2775 		if (retval < 0 || !count || IS_DAX(inode))
2776 			return retval;
2777 		if (iocb->ki_pos >= i_size_read(inode))
2778 			return retval;
2779 	}
2780 
2781 	return filemap_read(iocb, iter, retval);
2782 }
2783 EXPORT_SYMBOL(generic_file_read_iter);
2784 
2785 /*
2786  * Splice subpages from a folio into a pipe.
2787  */
2788 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2789 			      struct folio *folio, loff_t fpos, size_t size)
2790 {
2791 	struct page *page;
2792 	size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2793 
2794 	page = folio_page(folio, offset / PAGE_SIZE);
2795 	size = min(size, folio_size(folio) - offset);
2796 	offset %= PAGE_SIZE;
2797 
2798 	while (spliced < size &&
2799 	       !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2800 		struct pipe_buffer *buf = pipe_head_buf(pipe);
2801 		size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2802 
2803 		*buf = (struct pipe_buffer) {
2804 			.ops	= &page_cache_pipe_buf_ops,
2805 			.page	= page,
2806 			.offset	= offset,
2807 			.len	= part,
2808 		};
2809 		folio_get(folio);
2810 		pipe->head++;
2811 		page++;
2812 		spliced += part;
2813 		offset = 0;
2814 	}
2815 
2816 	return spliced;
2817 }
2818 
2819 /**
2820  * filemap_splice_read -  Splice data from a file's pagecache into a pipe
2821  * @in: The file to read from
2822  * @ppos: Pointer to the file position to read from
2823  * @pipe: The pipe to splice into
2824  * @len: The amount to splice
2825  * @flags: The SPLICE_F_* flags
2826  *
2827  * This function gets folios from a file's pagecache and splices them into the
2828  * pipe.  Readahead will be called as necessary to fill more folios.  This may
2829  * be used for blockdevs also.
2830  *
2831  * Return: On success, the number of bytes read will be returned and *@ppos
2832  * will be updated if appropriate; 0 will be returned if there is no more data
2833  * to be read; -EAGAIN will be returned if the pipe had no space, and some
2834  * other negative error code will be returned on error.  A short read may occur
2835  * if the pipe has insufficient space, we reach the end of the data or we hit a
2836  * hole.
2837  */
2838 ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2839 			    struct pipe_inode_info *pipe,
2840 			    size_t len, unsigned int flags)
2841 {
2842 	struct folio_batch fbatch;
2843 	struct kiocb iocb;
2844 	size_t total_spliced = 0, used, npages;
2845 	loff_t isize, end_offset;
2846 	bool writably_mapped;
2847 	int i, error = 0;
2848 
2849 	if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2850 		return 0;
2851 
2852 	init_sync_kiocb(&iocb, in);
2853 	iocb.ki_pos = *ppos;
2854 
2855 	/* Work out how much data we can actually add into the pipe */
2856 	used = pipe_occupancy(pipe->head, pipe->tail);
2857 	npages = max_t(ssize_t, pipe->max_usage - used, 0);
2858 	len = min_t(size_t, len, npages * PAGE_SIZE);
2859 
2860 	folio_batch_init(&fbatch);
2861 
2862 	do {
2863 		cond_resched();
2864 
2865 		if (*ppos >= i_size_read(in->f_mapping->host))
2866 			break;
2867 
2868 		iocb.ki_pos = *ppos;
2869 		error = filemap_get_pages(&iocb, len, &fbatch, true);
2870 		if (error < 0)
2871 			break;
2872 
2873 		/*
2874 		 * i_size must be checked after we know the pages are Uptodate.
2875 		 *
2876 		 * Checking i_size after the check allows us to calculate
2877 		 * the correct value for "nr", which means the zero-filled
2878 		 * part of the page is not copied back to userspace (unless
2879 		 * another truncate extends the file - this is desired though).
2880 		 */
2881 		isize = i_size_read(in->f_mapping->host);
2882 		if (unlikely(*ppos >= isize))
2883 			break;
2884 		end_offset = min_t(loff_t, isize, *ppos + len);
2885 
2886 		/*
2887 		 * Once we start copying data, we don't want to be touching any
2888 		 * cachelines that might be contended:
2889 		 */
2890 		writably_mapped = mapping_writably_mapped(in->f_mapping);
2891 
2892 		for (i = 0; i < folio_batch_count(&fbatch); i++) {
2893 			struct folio *folio = fbatch.folios[i];
2894 			size_t n;
2895 
2896 			if (folio_pos(folio) >= end_offset)
2897 				goto out;
2898 			folio_mark_accessed(folio);
2899 
2900 			/*
2901 			 * If users can be writing to this folio using arbitrary
2902 			 * virtual addresses, take care of potential aliasing
2903 			 * before reading the folio on the kernel side.
2904 			 */
2905 			if (writably_mapped)
2906 				flush_dcache_folio(folio);
2907 
2908 			n = min_t(loff_t, len, isize - *ppos);
2909 			n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2910 			if (!n)
2911 				goto out;
2912 			len -= n;
2913 			total_spliced += n;
2914 			*ppos += n;
2915 			in->f_ra.prev_pos = *ppos;
2916 			if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2917 				goto out;
2918 		}
2919 
2920 		folio_batch_release(&fbatch);
2921 	} while (len);
2922 
2923 out:
2924 	folio_batch_release(&fbatch);
2925 	file_accessed(in);
2926 
2927 	return total_spliced ? total_spliced : error;
2928 }
2929 EXPORT_SYMBOL(filemap_splice_read);
2930 
2931 static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2932 		struct address_space *mapping, struct folio *folio,
2933 		loff_t start, loff_t end, bool seek_data)
2934 {
2935 	const struct address_space_operations *ops = mapping->a_ops;
2936 	size_t offset, bsz = i_blocksize(mapping->host);
2937 
2938 	if (xa_is_value(folio) || folio_test_uptodate(folio))
2939 		return seek_data ? start : end;
2940 	if (!ops->is_partially_uptodate)
2941 		return seek_data ? end : start;
2942 
2943 	xas_pause(xas);
2944 	rcu_read_unlock();
2945 	folio_lock(folio);
2946 	if (unlikely(folio->mapping != mapping))
2947 		goto unlock;
2948 
2949 	offset = offset_in_folio(folio, start) & ~(bsz - 1);
2950 
2951 	do {
2952 		if (ops->is_partially_uptodate(folio, offset, bsz) ==
2953 							seek_data)
2954 			break;
2955 		start = (start + bsz) & ~(bsz - 1);
2956 		offset += bsz;
2957 	} while (offset < folio_size(folio));
2958 unlock:
2959 	folio_unlock(folio);
2960 	rcu_read_lock();
2961 	return start;
2962 }
2963 
2964 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
2965 {
2966 	if (xa_is_value(folio))
2967 		return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
2968 	return folio_size(folio);
2969 }
2970 
2971 /**
2972  * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
2973  * @mapping: Address space to search.
2974  * @start: First byte to consider.
2975  * @end: Limit of search (exclusive).
2976  * @whence: Either SEEK_HOLE or SEEK_DATA.
2977  *
2978  * If the page cache knows which blocks contain holes and which blocks
2979  * contain data, your filesystem can use this function to implement
2980  * SEEK_HOLE and SEEK_DATA.  This is useful for filesystems which are
2981  * entirely memory-based such as tmpfs, and filesystems which support
2982  * unwritten extents.
2983  *
2984  * Return: The requested offset on success, or -ENXIO if @whence specifies
2985  * SEEK_DATA and there is no data after @start.  There is an implicit hole
2986  * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
2987  * and @end contain data.
2988  */
2989 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
2990 		loff_t end, int whence)
2991 {
2992 	XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
2993 	pgoff_t max = (end - 1) >> PAGE_SHIFT;
2994 	bool seek_data = (whence == SEEK_DATA);
2995 	struct folio *folio;
2996 
2997 	if (end <= start)
2998 		return -ENXIO;
2999 
3000 	rcu_read_lock();
3001 	while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3002 		loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3003 		size_t seek_size;
3004 
3005 		if (start < pos) {
3006 			if (!seek_data)
3007 				goto unlock;
3008 			start = pos;
3009 		}
3010 
3011 		seek_size = seek_folio_size(&xas, folio);
3012 		pos = round_up((u64)pos + 1, seek_size);
3013 		start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3014 				seek_data);
3015 		if (start < pos)
3016 			goto unlock;
3017 		if (start >= end)
3018 			break;
3019 		if (seek_size > PAGE_SIZE)
3020 			xas_set(&xas, pos >> PAGE_SHIFT);
3021 		if (!xa_is_value(folio))
3022 			folio_put(folio);
3023 	}
3024 	if (seek_data)
3025 		start = -ENXIO;
3026 unlock:
3027 	rcu_read_unlock();
3028 	if (folio && !xa_is_value(folio))
3029 		folio_put(folio);
3030 	if (start > end)
3031 		return end;
3032 	return start;
3033 }
3034 
3035 #ifdef CONFIG_MMU
3036 #define MMAP_LOTSAMISS  (100)
3037 /*
3038  * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3039  * @vmf - the vm_fault for this fault.
3040  * @folio - the folio to lock.
3041  * @fpin - the pointer to the file we may pin (or is already pinned).
3042  *
3043  * This works similar to lock_folio_or_retry in that it can drop the
3044  * mmap_lock.  It differs in that it actually returns the folio locked
3045  * if it returns 1 and 0 if it couldn't lock the folio.  If we did have
3046  * to drop the mmap_lock then fpin will point to the pinned file and
3047  * needs to be fput()'ed at a later point.
3048  */
3049 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3050 				     struct file **fpin)
3051 {
3052 	if (folio_trylock(folio))
3053 		return 1;
3054 
3055 	/*
3056 	 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3057 	 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3058 	 * is supposed to work. We have way too many special cases..
3059 	 */
3060 	if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3061 		return 0;
3062 
3063 	*fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3064 	if (vmf->flags & FAULT_FLAG_KILLABLE) {
3065 		if (__folio_lock_killable(folio)) {
3066 			/*
3067 			 * We didn't have the right flags to drop the
3068 			 * fault lock, but all fault_handlers only check
3069 			 * for fatal signals if we return VM_FAULT_RETRY,
3070 			 * so we need to drop the fault lock here and
3071 			 * return 0 if we don't have a fpin.
3072 			 */
3073 			if (*fpin == NULL)
3074 				release_fault_lock(vmf);
3075 			return 0;
3076 		}
3077 	} else
3078 		__folio_lock(folio);
3079 
3080 	return 1;
3081 }
3082 
3083 /*
3084  * Synchronous readahead happens when we don't even find a page in the page
3085  * cache at all.  We don't want to perform IO under the mmap sem, so if we have
3086  * to drop the mmap sem we return the file that was pinned in order for us to do
3087  * that.  If we didn't pin a file then we return NULL.  The file that is
3088  * returned needs to be fput()'ed when we're done with it.
3089  */
3090 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3091 {
3092 	struct file *file = vmf->vma->vm_file;
3093 	struct file_ra_state *ra = &file->f_ra;
3094 	struct address_space *mapping = file->f_mapping;
3095 	DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3096 	struct file *fpin = NULL;
3097 	unsigned long vm_flags = vmf->vma->vm_flags;
3098 	unsigned int mmap_miss;
3099 
3100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
3101 	/* Use the readahead code, even if readahead is disabled */
3102 	if (vm_flags & VM_HUGEPAGE) {
3103 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3104 		ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3105 		ra->size = HPAGE_PMD_NR;
3106 		/*
3107 		 * Fetch two PMD folios, so we get the chance to actually
3108 		 * readahead, unless we've been told not to.
3109 		 */
3110 		if (!(vm_flags & VM_RAND_READ))
3111 			ra->size *= 2;
3112 		ra->async_size = HPAGE_PMD_NR;
3113 		page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3114 		return fpin;
3115 	}
3116 #endif
3117 
3118 	/* If we don't want any read-ahead, don't bother */
3119 	if (vm_flags & VM_RAND_READ)
3120 		return fpin;
3121 	if (!ra->ra_pages)
3122 		return fpin;
3123 
3124 	if (vm_flags & VM_SEQ_READ) {
3125 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3126 		page_cache_sync_ra(&ractl, ra->ra_pages);
3127 		return fpin;
3128 	}
3129 
3130 	/* Avoid banging the cache line if not needed */
3131 	mmap_miss = READ_ONCE(ra->mmap_miss);
3132 	if (mmap_miss < MMAP_LOTSAMISS * 10)
3133 		WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3134 
3135 	/*
3136 	 * Do we miss much more than hit in this file? If so,
3137 	 * stop bothering with read-ahead. It will only hurt.
3138 	 */
3139 	if (mmap_miss > MMAP_LOTSAMISS)
3140 		return fpin;
3141 
3142 	/*
3143 	 * mmap read-around
3144 	 */
3145 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3146 	ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3147 	ra->size = ra->ra_pages;
3148 	ra->async_size = ra->ra_pages / 4;
3149 	ractl._index = ra->start;
3150 	page_cache_ra_order(&ractl, ra, 0);
3151 	return fpin;
3152 }
3153 
3154 /*
3155  * Asynchronous readahead happens when we find the page and PG_readahead,
3156  * so we want to possibly extend the readahead further.  We return the file that
3157  * was pinned if we have to drop the mmap_lock in order to do IO.
3158  */
3159 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3160 					    struct folio *folio)
3161 {
3162 	struct file *file = vmf->vma->vm_file;
3163 	struct file_ra_state *ra = &file->f_ra;
3164 	DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3165 	struct file *fpin = NULL;
3166 	unsigned int mmap_miss;
3167 
3168 	/* If we don't want any read-ahead, don't bother */
3169 	if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3170 		return fpin;
3171 
3172 	mmap_miss = READ_ONCE(ra->mmap_miss);
3173 	if (mmap_miss)
3174 		WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3175 
3176 	if (folio_test_readahead(folio)) {
3177 		fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3178 		page_cache_async_ra(&ractl, folio, ra->ra_pages);
3179 	}
3180 	return fpin;
3181 }
3182 
3183 /**
3184  * filemap_fault - read in file data for page fault handling
3185  * @vmf:	struct vm_fault containing details of the fault
3186  *
3187  * filemap_fault() is invoked via the vma operations vector for a
3188  * mapped memory region to read in file data during a page fault.
3189  *
3190  * The goto's are kind of ugly, but this streamlines the normal case of having
3191  * it in the page cache, and handles the special cases reasonably without
3192  * having a lot of duplicated code.
3193  *
3194  * vma->vm_mm->mmap_lock must be held on entry.
3195  *
3196  * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3197  * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3198  *
3199  * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3200  * has not been released.
3201  *
3202  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3203  *
3204  * Return: bitwise-OR of %VM_FAULT_ codes.
3205  */
3206 vm_fault_t filemap_fault(struct vm_fault *vmf)
3207 {
3208 	int error;
3209 	struct file *file = vmf->vma->vm_file;
3210 	struct file *fpin = NULL;
3211 	struct address_space *mapping = file->f_mapping;
3212 	struct inode *inode = mapping->host;
3213 	pgoff_t max_idx, index = vmf->pgoff;
3214 	struct folio *folio;
3215 	vm_fault_t ret = 0;
3216 	bool mapping_locked = false;
3217 
3218 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3219 	if (unlikely(index >= max_idx))
3220 		return VM_FAULT_SIGBUS;
3221 
3222 	/*
3223 	 * Do we have something in the page cache already?
3224 	 */
3225 	folio = filemap_get_folio(mapping, index);
3226 	if (likely(!IS_ERR(folio))) {
3227 		/*
3228 		 * We found the page, so try async readahead before waiting for
3229 		 * the lock.
3230 		 */
3231 		if (!(vmf->flags & FAULT_FLAG_TRIED))
3232 			fpin = do_async_mmap_readahead(vmf, folio);
3233 		if (unlikely(!folio_test_uptodate(folio))) {
3234 			filemap_invalidate_lock_shared(mapping);
3235 			mapping_locked = true;
3236 		}
3237 	} else {
3238 		/* No page in the page cache at all */
3239 		count_vm_event(PGMAJFAULT);
3240 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3241 		ret = VM_FAULT_MAJOR;
3242 		fpin = do_sync_mmap_readahead(vmf);
3243 retry_find:
3244 		/*
3245 		 * See comment in filemap_create_folio() why we need
3246 		 * invalidate_lock
3247 		 */
3248 		if (!mapping_locked) {
3249 			filemap_invalidate_lock_shared(mapping);
3250 			mapping_locked = true;
3251 		}
3252 		folio = __filemap_get_folio(mapping, index,
3253 					  FGP_CREAT|FGP_FOR_MMAP,
3254 					  vmf->gfp_mask);
3255 		if (IS_ERR(folio)) {
3256 			if (fpin)
3257 				goto out_retry;
3258 			filemap_invalidate_unlock_shared(mapping);
3259 			return VM_FAULT_OOM;
3260 		}
3261 	}
3262 
3263 	if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3264 		goto out_retry;
3265 
3266 	/* Did it get truncated? */
3267 	if (unlikely(folio->mapping != mapping)) {
3268 		folio_unlock(folio);
3269 		folio_put(folio);
3270 		goto retry_find;
3271 	}
3272 	VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3273 
3274 	/*
3275 	 * We have a locked folio in the page cache, now we need to check
3276 	 * that it's up-to-date. If not, it is going to be due to an error,
3277 	 * or because readahead was otherwise unable to retrieve it.
3278 	 */
3279 	if (unlikely(!folio_test_uptodate(folio))) {
3280 		/*
3281 		 * If the invalidate lock is not held, the folio was in cache
3282 		 * and uptodate and now it is not. Strange but possible since we
3283 		 * didn't hold the page lock all the time. Let's drop
3284 		 * everything, get the invalidate lock and try again.
3285 		 */
3286 		if (!mapping_locked) {
3287 			folio_unlock(folio);
3288 			folio_put(folio);
3289 			goto retry_find;
3290 		}
3291 
3292 		/*
3293 		 * OK, the folio is really not uptodate. This can be because the
3294 		 * VMA has the VM_RAND_READ flag set, or because an error
3295 		 * arose. Let's read it in directly.
3296 		 */
3297 		goto page_not_uptodate;
3298 	}
3299 
3300 	/*
3301 	 * We've made it this far and we had to drop our mmap_lock, now is the
3302 	 * time to return to the upper layer and have it re-find the vma and
3303 	 * redo the fault.
3304 	 */
3305 	if (fpin) {
3306 		folio_unlock(folio);
3307 		goto out_retry;
3308 	}
3309 	if (mapping_locked)
3310 		filemap_invalidate_unlock_shared(mapping);
3311 
3312 	/*
3313 	 * Found the page and have a reference on it.
3314 	 * We must recheck i_size under page lock.
3315 	 */
3316 	max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3317 	if (unlikely(index >= max_idx)) {
3318 		folio_unlock(folio);
3319 		folio_put(folio);
3320 		return VM_FAULT_SIGBUS;
3321 	}
3322 
3323 	vmf->page = folio_file_page(folio, index);
3324 	return ret | VM_FAULT_LOCKED;
3325 
3326 page_not_uptodate:
3327 	/*
3328 	 * Umm, take care of errors if the page isn't up-to-date.
3329 	 * Try to re-read it _once_. We do this synchronously,
3330 	 * because there really aren't any performance issues here
3331 	 * and we need to check for errors.
3332 	 */
3333 	fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3334 	error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3335 	if (fpin)
3336 		goto out_retry;
3337 	folio_put(folio);
3338 
3339 	if (!error || error == AOP_TRUNCATED_PAGE)
3340 		goto retry_find;
3341 	filemap_invalidate_unlock_shared(mapping);
3342 
3343 	return VM_FAULT_SIGBUS;
3344 
3345 out_retry:
3346 	/*
3347 	 * We dropped the mmap_lock, we need to return to the fault handler to
3348 	 * re-find the vma and come back and find our hopefully still populated
3349 	 * page.
3350 	 */
3351 	if (!IS_ERR(folio))
3352 		folio_put(folio);
3353 	if (mapping_locked)
3354 		filemap_invalidate_unlock_shared(mapping);
3355 	if (fpin)
3356 		fput(fpin);
3357 	return ret | VM_FAULT_RETRY;
3358 }
3359 EXPORT_SYMBOL(filemap_fault);
3360 
3361 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3362 		pgoff_t start)
3363 {
3364 	struct mm_struct *mm = vmf->vma->vm_mm;
3365 
3366 	/* Huge page is mapped? No need to proceed. */
3367 	if (pmd_trans_huge(*vmf->pmd)) {
3368 		folio_unlock(folio);
3369 		folio_put(folio);
3370 		return true;
3371 	}
3372 
3373 	if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3374 		struct page *page = folio_file_page(folio, start);
3375 		vm_fault_t ret = do_set_pmd(vmf, page);
3376 		if (!ret) {
3377 			/* The page is mapped successfully, reference consumed. */
3378 			folio_unlock(folio);
3379 			return true;
3380 		}
3381 	}
3382 
3383 	if (pmd_none(*vmf->pmd) && vmf->prealloc_pte)
3384 		pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3385 
3386 	return false;
3387 }
3388 
3389 static struct folio *next_uptodate_folio(struct xa_state *xas,
3390 		struct address_space *mapping, pgoff_t end_pgoff)
3391 {
3392 	struct folio *folio = xas_next_entry(xas, end_pgoff);
3393 	unsigned long max_idx;
3394 
3395 	do {
3396 		if (!folio)
3397 			return NULL;
3398 		if (xas_retry(xas, folio))
3399 			continue;
3400 		if (xa_is_value(folio))
3401 			continue;
3402 		if (folio_test_locked(folio))
3403 			continue;
3404 		if (!folio_try_get_rcu(folio))
3405 			continue;
3406 		/* Has the page moved or been split? */
3407 		if (unlikely(folio != xas_reload(xas)))
3408 			goto skip;
3409 		if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3410 			goto skip;
3411 		if (!folio_trylock(folio))
3412 			goto skip;
3413 		if (folio->mapping != mapping)
3414 			goto unlock;
3415 		if (!folio_test_uptodate(folio))
3416 			goto unlock;
3417 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3418 		if (xas->xa_index >= max_idx)
3419 			goto unlock;
3420 		return folio;
3421 unlock:
3422 		folio_unlock(folio);
3423 skip:
3424 		folio_put(folio);
3425 	} while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3426 
3427 	return NULL;
3428 }
3429 
3430 /*
3431  * Map page range [start_page, start_page + nr_pages) of folio.
3432  * start_page is gotten from start by folio_page(folio, start)
3433  */
3434 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf,
3435 			struct folio *folio, unsigned long start,
3436 			unsigned long addr, unsigned int nr_pages,
3437 			unsigned int *mmap_miss)
3438 {
3439 	vm_fault_t ret = 0;
3440 	struct page *page = folio_page(folio, start);
3441 	unsigned int count = 0;
3442 	pte_t *old_ptep = vmf->pte;
3443 
3444 	do {
3445 		if (PageHWPoison(page + count))
3446 			goto skip;
3447 
3448 		(*mmap_miss)++;
3449 
3450 		/*
3451 		 * NOTE: If there're PTE markers, we'll leave them to be
3452 		 * handled in the specific fault path, and it'll prohibit the
3453 		 * fault-around logic.
3454 		 */
3455 		if (!pte_none(ptep_get(&vmf->pte[count])))
3456 			goto skip;
3457 
3458 		count++;
3459 		continue;
3460 skip:
3461 		if (count) {
3462 			set_pte_range(vmf, folio, page, count, addr);
3463 			folio_ref_add(folio, count);
3464 			if (in_range(vmf->address, addr, count * PAGE_SIZE))
3465 				ret = VM_FAULT_NOPAGE;
3466 		}
3467 
3468 		count++;
3469 		page += count;
3470 		vmf->pte += count;
3471 		addr += count * PAGE_SIZE;
3472 		count = 0;
3473 	} while (--nr_pages > 0);
3474 
3475 	if (count) {
3476 		set_pte_range(vmf, folio, page, count, addr);
3477 		folio_ref_add(folio, count);
3478 		if (in_range(vmf->address, addr, count * PAGE_SIZE))
3479 			ret = VM_FAULT_NOPAGE;
3480 	}
3481 
3482 	vmf->pte = old_ptep;
3483 
3484 	return ret;
3485 }
3486 
3487 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf,
3488 		struct folio *folio, unsigned long addr,
3489 		unsigned int *mmap_miss)
3490 {
3491 	vm_fault_t ret = 0;
3492 	struct page *page = &folio->page;
3493 
3494 	if (PageHWPoison(page))
3495 		return ret;
3496 
3497 	(*mmap_miss)++;
3498 
3499 	/*
3500 	 * NOTE: If there're PTE markers, we'll leave them to be
3501 	 * handled in the specific fault path, and it'll prohibit
3502 	 * the fault-around logic.
3503 	 */
3504 	if (!pte_none(ptep_get(vmf->pte)))
3505 		return ret;
3506 
3507 	if (vmf->address == addr)
3508 		ret = VM_FAULT_NOPAGE;
3509 
3510 	set_pte_range(vmf, folio, page, 1, addr);
3511 	folio_ref_inc(folio);
3512 
3513 	return ret;
3514 }
3515 
3516 vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3517 			     pgoff_t start_pgoff, pgoff_t end_pgoff)
3518 {
3519 	struct vm_area_struct *vma = vmf->vma;
3520 	struct file *file = vma->vm_file;
3521 	struct address_space *mapping = file->f_mapping;
3522 	pgoff_t last_pgoff = start_pgoff;
3523 	unsigned long addr;
3524 	XA_STATE(xas, &mapping->i_pages, start_pgoff);
3525 	struct folio *folio;
3526 	vm_fault_t ret = 0;
3527 	unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved;
3528 
3529 	rcu_read_lock();
3530 	folio = next_uptodate_folio(&xas, mapping, end_pgoff);
3531 	if (!folio)
3532 		goto out;
3533 
3534 	if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3535 		ret = VM_FAULT_NOPAGE;
3536 		goto out;
3537 	}
3538 
3539 	addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3540 	vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3541 	if (!vmf->pte) {
3542 		folio_unlock(folio);
3543 		folio_put(folio);
3544 		goto out;
3545 	}
3546 	do {
3547 		unsigned long end;
3548 
3549 		addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3550 		vmf->pte += xas.xa_index - last_pgoff;
3551 		last_pgoff = xas.xa_index;
3552 		end = folio_next_index(folio) - 1;
3553 		nr_pages = min(end, end_pgoff) - xas.xa_index + 1;
3554 
3555 		if (!folio_test_large(folio))
3556 			ret |= filemap_map_order0_folio(vmf,
3557 					folio, addr, &mmap_miss);
3558 		else
3559 			ret |= filemap_map_folio_range(vmf, folio,
3560 					xas.xa_index - folio->index, addr,
3561 					nr_pages, &mmap_miss);
3562 
3563 		folio_unlock(folio);
3564 		folio_put(folio);
3565 	} while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL);
3566 	pte_unmap_unlock(vmf->pte, vmf->ptl);
3567 out:
3568 	rcu_read_unlock();
3569 
3570 	mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss);
3571 	if (mmap_miss >= mmap_miss_saved)
3572 		WRITE_ONCE(file->f_ra.mmap_miss, 0);
3573 	else
3574 		WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss);
3575 
3576 	return ret;
3577 }
3578 EXPORT_SYMBOL(filemap_map_pages);
3579 
3580 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3581 {
3582 	struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3583 	struct folio *folio = page_folio(vmf->page);
3584 	vm_fault_t ret = VM_FAULT_LOCKED;
3585 
3586 	sb_start_pagefault(mapping->host->i_sb);
3587 	file_update_time(vmf->vma->vm_file);
3588 	folio_lock(folio);
3589 	if (folio->mapping != mapping) {
3590 		folio_unlock(folio);
3591 		ret = VM_FAULT_NOPAGE;
3592 		goto out;
3593 	}
3594 	/*
3595 	 * We mark the folio dirty already here so that when freeze is in
3596 	 * progress, we are guaranteed that writeback during freezing will
3597 	 * see the dirty folio and writeprotect it again.
3598 	 */
3599 	folio_mark_dirty(folio);
3600 	folio_wait_stable(folio);
3601 out:
3602 	sb_end_pagefault(mapping->host->i_sb);
3603 	return ret;
3604 }
3605 
3606 const struct vm_operations_struct generic_file_vm_ops = {
3607 	.fault		= filemap_fault,
3608 	.map_pages	= filemap_map_pages,
3609 	.page_mkwrite	= filemap_page_mkwrite,
3610 };
3611 
3612 /* This is used for a general mmap of a disk file */
3613 
3614 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3615 {
3616 	struct address_space *mapping = file->f_mapping;
3617 
3618 	if (!mapping->a_ops->read_folio)
3619 		return -ENOEXEC;
3620 	file_accessed(file);
3621 	vma->vm_ops = &generic_file_vm_ops;
3622 	return 0;
3623 }
3624 
3625 /*
3626  * This is for filesystems which do not implement ->writepage.
3627  */
3628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3629 {
3630 	if (vma_is_shared_maywrite(vma))
3631 		return -EINVAL;
3632 	return generic_file_mmap(file, vma);
3633 }
3634 #else
3635 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3636 {
3637 	return VM_FAULT_SIGBUS;
3638 }
3639 int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3640 {
3641 	return -ENOSYS;
3642 }
3643 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3644 {
3645 	return -ENOSYS;
3646 }
3647 #endif /* CONFIG_MMU */
3648 
3649 EXPORT_SYMBOL(filemap_page_mkwrite);
3650 EXPORT_SYMBOL(generic_file_mmap);
3651 EXPORT_SYMBOL(generic_file_readonly_mmap);
3652 
3653 static struct folio *do_read_cache_folio(struct address_space *mapping,
3654 		pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3655 {
3656 	struct folio *folio;
3657 	int err;
3658 
3659 	if (!filler)
3660 		filler = mapping->a_ops->read_folio;
3661 repeat:
3662 	folio = filemap_get_folio(mapping, index);
3663 	if (IS_ERR(folio)) {
3664 		folio = filemap_alloc_folio(gfp, 0);
3665 		if (!folio)
3666 			return ERR_PTR(-ENOMEM);
3667 		err = filemap_add_folio(mapping, folio, index, gfp);
3668 		if (unlikely(err)) {
3669 			folio_put(folio);
3670 			if (err == -EEXIST)
3671 				goto repeat;
3672 			/* Presumably ENOMEM for xarray node */
3673 			return ERR_PTR(err);
3674 		}
3675 
3676 		goto filler;
3677 	}
3678 	if (folio_test_uptodate(folio))
3679 		goto out;
3680 
3681 	if (!folio_trylock(folio)) {
3682 		folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3683 		goto repeat;
3684 	}
3685 
3686 	/* Folio was truncated from mapping */
3687 	if (!folio->mapping) {
3688 		folio_unlock(folio);
3689 		folio_put(folio);
3690 		goto repeat;
3691 	}
3692 
3693 	/* Someone else locked and filled the page in a very small window */
3694 	if (folio_test_uptodate(folio)) {
3695 		folio_unlock(folio);
3696 		goto out;
3697 	}
3698 
3699 filler:
3700 	err = filemap_read_folio(file, filler, folio);
3701 	if (err) {
3702 		folio_put(folio);
3703 		if (err == AOP_TRUNCATED_PAGE)
3704 			goto repeat;
3705 		return ERR_PTR(err);
3706 	}
3707 
3708 out:
3709 	folio_mark_accessed(folio);
3710 	return folio;
3711 }
3712 
3713 /**
3714  * read_cache_folio - Read into page cache, fill it if needed.
3715  * @mapping: The address_space to read from.
3716  * @index: The index to read.
3717  * @filler: Function to perform the read, or NULL to use aops->read_folio().
3718  * @file: Passed to filler function, may be NULL if not required.
3719  *
3720  * Read one page into the page cache.  If it succeeds, the folio returned
3721  * will contain @index, but it may not be the first page of the folio.
3722  *
3723  * If the filler function returns an error, it will be returned to the
3724  * caller.
3725  *
3726  * Context: May sleep.  Expects mapping->invalidate_lock to be held.
3727  * Return: An uptodate folio on success, ERR_PTR() on failure.
3728  */
3729 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3730 		filler_t filler, struct file *file)
3731 {
3732 	return do_read_cache_folio(mapping, index, filler, file,
3733 			mapping_gfp_mask(mapping));
3734 }
3735 EXPORT_SYMBOL(read_cache_folio);
3736 
3737 /**
3738  * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3739  * @mapping:	The address_space for the folio.
3740  * @index:	The index that the allocated folio will contain.
3741  * @gfp:	The page allocator flags to use if allocating.
3742  *
3743  * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3744  * any new memory allocations done using the specified allocation flags.
3745  *
3746  * The most likely error from this function is EIO, but ENOMEM is
3747  * possible and so is EINTR.  If ->read_folio returns another error,
3748  * that will be returned to the caller.
3749  *
3750  * The function expects mapping->invalidate_lock to be already held.
3751  *
3752  * Return: Uptodate folio on success, ERR_PTR() on failure.
3753  */
3754 struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3755 		pgoff_t index, gfp_t gfp)
3756 {
3757 	return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3758 }
3759 EXPORT_SYMBOL(mapping_read_folio_gfp);
3760 
3761 static struct page *do_read_cache_page(struct address_space *mapping,
3762 		pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3763 {
3764 	struct folio *folio;
3765 
3766 	folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3767 	if (IS_ERR(folio))
3768 		return &folio->page;
3769 	return folio_file_page(folio, index);
3770 }
3771 
3772 struct page *read_cache_page(struct address_space *mapping,
3773 			pgoff_t index, filler_t *filler, struct file *file)
3774 {
3775 	return do_read_cache_page(mapping, index, filler, file,
3776 			mapping_gfp_mask(mapping));
3777 }
3778 EXPORT_SYMBOL(read_cache_page);
3779 
3780 /**
3781  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3782  * @mapping:	the page's address_space
3783  * @index:	the page index
3784  * @gfp:	the page allocator flags to use if allocating
3785  *
3786  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3787  * any new page allocations done using the specified allocation flags.
3788  *
3789  * If the page does not get brought uptodate, return -EIO.
3790  *
3791  * The function expects mapping->invalidate_lock to be already held.
3792  *
3793  * Return: up to date page on success, ERR_PTR() on failure.
3794  */
3795 struct page *read_cache_page_gfp(struct address_space *mapping,
3796 				pgoff_t index,
3797 				gfp_t gfp)
3798 {
3799 	return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3800 }
3801 EXPORT_SYMBOL(read_cache_page_gfp);
3802 
3803 /*
3804  * Warn about a page cache invalidation failure during a direct I/O write.
3805  */
3806 static void dio_warn_stale_pagecache(struct file *filp)
3807 {
3808 	static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3809 	char pathname[128];
3810 	char *path;
3811 
3812 	errseq_set(&filp->f_mapping->wb_err, -EIO);
3813 	if (__ratelimit(&_rs)) {
3814 		path = file_path(filp, pathname, sizeof(pathname));
3815 		if (IS_ERR(path))
3816 			path = "(unknown)";
3817 		pr_crit("Page cache invalidation failure on direct I/O.  Possible data corruption due to collision with buffered I/O!\n");
3818 		pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3819 			current->comm);
3820 	}
3821 }
3822 
3823 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3824 {
3825 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3826 
3827 	if (mapping->nrpages &&
3828 	    invalidate_inode_pages2_range(mapping,
3829 			iocb->ki_pos >> PAGE_SHIFT,
3830 			(iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3831 		dio_warn_stale_pagecache(iocb->ki_filp);
3832 }
3833 
3834 ssize_t
3835 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3836 {
3837 	struct address_space *mapping = iocb->ki_filp->f_mapping;
3838 	size_t write_len = iov_iter_count(from);
3839 	ssize_t written;
3840 
3841 	/*
3842 	 * If a page can not be invalidated, return 0 to fall back
3843 	 * to buffered write.
3844 	 */
3845 	written = kiocb_invalidate_pages(iocb, write_len);
3846 	if (written) {
3847 		if (written == -EBUSY)
3848 			return 0;
3849 		return written;
3850 	}
3851 
3852 	written = mapping->a_ops->direct_IO(iocb, from);
3853 
3854 	/*
3855 	 * Finally, try again to invalidate clean pages which might have been
3856 	 * cached by non-direct readahead, or faulted in by get_user_pages()
3857 	 * if the source of the write was an mmap'ed region of the file
3858 	 * we're writing.  Either one is a pretty crazy thing to do,
3859 	 * so we don't support it 100%.  If this invalidation
3860 	 * fails, tough, the write still worked...
3861 	 *
3862 	 * Most of the time we do not need this since dio_complete() will do
3863 	 * the invalidation for us. However there are some file systems that
3864 	 * do not end up with dio_complete() being called, so let's not break
3865 	 * them by removing it completely.
3866 	 *
3867 	 * Noticeable example is a blkdev_direct_IO().
3868 	 *
3869 	 * Skip invalidation for async writes or if mapping has no pages.
3870 	 */
3871 	if (written > 0) {
3872 		struct inode *inode = mapping->host;
3873 		loff_t pos = iocb->ki_pos;
3874 
3875 		kiocb_invalidate_post_direct_write(iocb, written);
3876 		pos += written;
3877 		write_len -= written;
3878 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3879 			i_size_write(inode, pos);
3880 			mark_inode_dirty(inode);
3881 		}
3882 		iocb->ki_pos = pos;
3883 	}
3884 	if (written != -EIOCBQUEUED)
3885 		iov_iter_revert(from, write_len - iov_iter_count(from));
3886 	return written;
3887 }
3888 EXPORT_SYMBOL(generic_file_direct_write);
3889 
3890 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3891 {
3892 	struct file *file = iocb->ki_filp;
3893 	loff_t pos = iocb->ki_pos;
3894 	struct address_space *mapping = file->f_mapping;
3895 	const struct address_space_operations *a_ops = mapping->a_ops;
3896 	long status = 0;
3897 	ssize_t written = 0;
3898 
3899 	do {
3900 		struct page *page;
3901 		unsigned long offset;	/* Offset into pagecache page */
3902 		unsigned long bytes;	/* Bytes to write to page */
3903 		size_t copied;		/* Bytes copied from user */
3904 		void *fsdata = NULL;
3905 
3906 		offset = (pos & (PAGE_SIZE - 1));
3907 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
3908 						iov_iter_count(i));
3909 
3910 again:
3911 		/*
3912 		 * Bring in the user page that we will copy from _first_.
3913 		 * Otherwise there's a nasty deadlock on copying from the
3914 		 * same page as we're writing to, without it being marked
3915 		 * up-to-date.
3916 		 */
3917 		if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3918 			status = -EFAULT;
3919 			break;
3920 		}
3921 
3922 		if (fatal_signal_pending(current)) {
3923 			status = -EINTR;
3924 			break;
3925 		}
3926 
3927 		status = a_ops->write_begin(file, mapping, pos, bytes,
3928 						&page, &fsdata);
3929 		if (unlikely(status < 0))
3930 			break;
3931 
3932 		if (mapping_writably_mapped(mapping))
3933 			flush_dcache_page(page);
3934 
3935 		copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3936 		flush_dcache_page(page);
3937 
3938 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
3939 						page, fsdata);
3940 		if (unlikely(status != copied)) {
3941 			iov_iter_revert(i, copied - max(status, 0L));
3942 			if (unlikely(status < 0))
3943 				break;
3944 		}
3945 		cond_resched();
3946 
3947 		if (unlikely(status == 0)) {
3948 			/*
3949 			 * A short copy made ->write_end() reject the
3950 			 * thing entirely.  Might be memory poisoning
3951 			 * halfway through, might be a race with munmap,
3952 			 * might be severe memory pressure.
3953 			 */
3954 			if (copied)
3955 				bytes = copied;
3956 			goto again;
3957 		}
3958 		pos += status;
3959 		written += status;
3960 
3961 		balance_dirty_pages_ratelimited(mapping);
3962 	} while (iov_iter_count(i));
3963 
3964 	if (!written)
3965 		return status;
3966 	iocb->ki_pos += written;
3967 	return written;
3968 }
3969 EXPORT_SYMBOL(generic_perform_write);
3970 
3971 /**
3972  * __generic_file_write_iter - write data to a file
3973  * @iocb:	IO state structure (file, offset, etc.)
3974  * @from:	iov_iter with data to write
3975  *
3976  * This function does all the work needed for actually writing data to a
3977  * file. It does all basic checks, removes SUID from the file, updates
3978  * modification times and calls proper subroutines depending on whether we
3979  * do direct IO or a standard buffered write.
3980  *
3981  * It expects i_rwsem to be grabbed unless we work on a block device or similar
3982  * object which does not need locking at all.
3983  *
3984  * This function does *not* take care of syncing data in case of O_SYNC write.
3985  * A caller has to handle it. This is mainly due to the fact that we want to
3986  * avoid syncing under i_rwsem.
3987  *
3988  * Return:
3989  * * number of bytes written, even for truncated writes
3990  * * negative error code if no data has been written at all
3991  */
3992 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3993 {
3994 	struct file *file = iocb->ki_filp;
3995 	struct address_space *mapping = file->f_mapping;
3996 	struct inode *inode = mapping->host;
3997 	ssize_t ret;
3998 
3999 	ret = file_remove_privs(file);
4000 	if (ret)
4001 		return ret;
4002 
4003 	ret = file_update_time(file);
4004 	if (ret)
4005 		return ret;
4006 
4007 	if (iocb->ki_flags & IOCB_DIRECT) {
4008 		ret = generic_file_direct_write(iocb, from);
4009 		/*
4010 		 * If the write stopped short of completing, fall back to
4011 		 * buffered writes.  Some filesystems do this for writes to
4012 		 * holes, for example.  For DAX files, a buffered write will
4013 		 * not succeed (even if it did, DAX does not handle dirty
4014 		 * page-cache pages correctly).
4015 		 */
4016 		if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4017 			return ret;
4018 		return direct_write_fallback(iocb, from, ret,
4019 				generic_perform_write(iocb, from));
4020 	}
4021 
4022 	return generic_perform_write(iocb, from);
4023 }
4024 EXPORT_SYMBOL(__generic_file_write_iter);
4025 
4026 /**
4027  * generic_file_write_iter - write data to a file
4028  * @iocb:	IO state structure
4029  * @from:	iov_iter with data to write
4030  *
4031  * This is a wrapper around __generic_file_write_iter() to be used by most
4032  * filesystems. It takes care of syncing the file in case of O_SYNC file
4033  * and acquires i_rwsem as needed.
4034  * Return:
4035  * * negative error code if no data has been written at all of
4036  *   vfs_fsync_range() failed for a synchronous write
4037  * * number of bytes written, even for truncated writes
4038  */
4039 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4040 {
4041 	struct file *file = iocb->ki_filp;
4042 	struct inode *inode = file->f_mapping->host;
4043 	ssize_t ret;
4044 
4045 	inode_lock(inode);
4046 	ret = generic_write_checks(iocb, from);
4047 	if (ret > 0)
4048 		ret = __generic_file_write_iter(iocb, from);
4049 	inode_unlock(inode);
4050 
4051 	if (ret > 0)
4052 		ret = generic_write_sync(iocb, ret);
4053 	return ret;
4054 }
4055 EXPORT_SYMBOL(generic_file_write_iter);
4056 
4057 /**
4058  * filemap_release_folio() - Release fs-specific metadata on a folio.
4059  * @folio: The folio which the kernel is trying to free.
4060  * @gfp: Memory allocation flags (and I/O mode).
4061  *
4062  * The address_space is trying to release any data attached to a folio
4063  * (presumably at folio->private).
4064  *
4065  * This will also be called if the private_2 flag is set on a page,
4066  * indicating that the folio has other metadata associated with it.
4067  *
4068  * The @gfp argument specifies whether I/O may be performed to release
4069  * this page (__GFP_IO), and whether the call may block
4070  * (__GFP_RECLAIM & __GFP_FS).
4071  *
4072  * Return: %true if the release was successful, otherwise %false.
4073  */
4074 bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4075 {
4076 	struct address_space * const mapping = folio->mapping;
4077 
4078 	BUG_ON(!folio_test_locked(folio));
4079 	if (!folio_needs_release(folio))
4080 		return true;
4081 	if (folio_test_writeback(folio))
4082 		return false;
4083 
4084 	if (mapping && mapping->a_ops->release_folio)
4085 		return mapping->a_ops->release_folio(folio, gfp);
4086 	return try_to_free_buffers(folio);
4087 }
4088 EXPORT_SYMBOL(filemap_release_folio);
4089 
4090 #ifdef CONFIG_CACHESTAT_SYSCALL
4091 /**
4092  * filemap_cachestat() - compute the page cache statistics of a mapping
4093  * @mapping:	The mapping to compute the statistics for.
4094  * @first_index:	The starting page cache index.
4095  * @last_index:	The final page index (inclusive).
4096  * @cs:	the cachestat struct to write the result to.
4097  *
4098  * This will query the page cache statistics of a mapping in the
4099  * page range of [first_index, last_index] (inclusive). The statistics
4100  * queried include: number of dirty pages, number of pages marked for
4101  * writeback, and the number of (recently) evicted pages.
4102  */
4103 static void filemap_cachestat(struct address_space *mapping,
4104 		pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4105 {
4106 	XA_STATE(xas, &mapping->i_pages, first_index);
4107 	struct folio *folio;
4108 
4109 	rcu_read_lock();
4110 	xas_for_each(&xas, folio, last_index) {
4111 		unsigned long nr_pages;
4112 		pgoff_t folio_first_index, folio_last_index;
4113 
4114 		if (xas_retry(&xas, folio))
4115 			continue;
4116 
4117 		if (xa_is_value(folio)) {
4118 			/* page is evicted */
4119 			void *shadow = (void *)folio;
4120 			bool workingset; /* not used */
4121 			int order = xa_get_order(xas.xa, xas.xa_index);
4122 
4123 			nr_pages = 1 << order;
4124 			folio_first_index = round_down(xas.xa_index, 1 << order);
4125 			folio_last_index = folio_first_index + nr_pages - 1;
4126 
4127 			/* Folios might straddle the range boundaries, only count covered pages */
4128 			if (folio_first_index < first_index)
4129 				nr_pages -= first_index - folio_first_index;
4130 
4131 			if (folio_last_index > last_index)
4132 				nr_pages -= folio_last_index - last_index;
4133 
4134 			cs->nr_evicted += nr_pages;
4135 
4136 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4137 			if (shmem_mapping(mapping)) {
4138 				/* shmem file - in swap cache */
4139 				swp_entry_t swp = radix_to_swp_entry(folio);
4140 
4141 				shadow = get_shadow_from_swap_cache(swp);
4142 			}
4143 #endif
4144 			if (workingset_test_recent(shadow, true, &workingset))
4145 				cs->nr_recently_evicted += nr_pages;
4146 
4147 			goto resched;
4148 		}
4149 
4150 		nr_pages = folio_nr_pages(folio);
4151 		folio_first_index = folio_pgoff(folio);
4152 		folio_last_index = folio_first_index + nr_pages - 1;
4153 
4154 		/* Folios might straddle the range boundaries, only count covered pages */
4155 		if (folio_first_index < first_index)
4156 			nr_pages -= first_index - folio_first_index;
4157 
4158 		if (folio_last_index > last_index)
4159 			nr_pages -= folio_last_index - last_index;
4160 
4161 		/* page is in cache */
4162 		cs->nr_cache += nr_pages;
4163 
4164 		if (folio_test_dirty(folio))
4165 			cs->nr_dirty += nr_pages;
4166 
4167 		if (folio_test_writeback(folio))
4168 			cs->nr_writeback += nr_pages;
4169 
4170 resched:
4171 		if (need_resched()) {
4172 			xas_pause(&xas);
4173 			cond_resched_rcu();
4174 		}
4175 	}
4176 	rcu_read_unlock();
4177 }
4178 
4179 /*
4180  * The cachestat(2) system call.
4181  *
4182  * cachestat() returns the page cache statistics of a file in the
4183  * bytes range specified by `off` and `len`: number of cached pages,
4184  * number of dirty pages, number of pages marked for writeback,
4185  * number of evicted pages, and number of recently evicted pages.
4186  *
4187  * An evicted page is a page that is previously in the page cache
4188  * but has been evicted since. A page is recently evicted if its last
4189  * eviction was recent enough that its reentry to the cache would
4190  * indicate that it is actively being used by the system, and that
4191  * there is memory pressure on the system.
4192  *
4193  * `off` and `len` must be non-negative integers. If `len` > 0,
4194  * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4195  * we will query in the range from `off` to the end of the file.
4196  *
4197  * The `flags` argument is unused for now, but is included for future
4198  * extensibility. User should pass 0 (i.e no flag specified).
4199  *
4200  * Currently, hugetlbfs is not supported.
4201  *
4202  * Because the status of a page can change after cachestat() checks it
4203  * but before it returns to the application, the returned values may
4204  * contain stale information.
4205  *
4206  * return values:
4207  *  zero        - success
4208  *  -EFAULT     - cstat or cstat_range points to an illegal address
4209  *  -EINVAL     - invalid flags
4210  *  -EBADF      - invalid file descriptor
4211  *  -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4212  */
4213 SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4214 		struct cachestat_range __user *, cstat_range,
4215 		struct cachestat __user *, cstat, unsigned int, flags)
4216 {
4217 	struct fd f = fdget(fd);
4218 	struct address_space *mapping;
4219 	struct cachestat_range csr;
4220 	struct cachestat cs;
4221 	pgoff_t first_index, last_index;
4222 
4223 	if (!f.file)
4224 		return -EBADF;
4225 
4226 	if (copy_from_user(&csr, cstat_range,
4227 			sizeof(struct cachestat_range))) {
4228 		fdput(f);
4229 		return -EFAULT;
4230 	}
4231 
4232 	/* hugetlbfs is not supported */
4233 	if (is_file_hugepages(f.file)) {
4234 		fdput(f);
4235 		return -EOPNOTSUPP;
4236 	}
4237 
4238 	if (flags != 0) {
4239 		fdput(f);
4240 		return -EINVAL;
4241 	}
4242 
4243 	first_index = csr.off >> PAGE_SHIFT;
4244 	last_index =
4245 		csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4246 	memset(&cs, 0, sizeof(struct cachestat));
4247 	mapping = f.file->f_mapping;
4248 	filemap_cachestat(mapping, first_index, last_index, &cs);
4249 	fdput(f);
4250 
4251 	if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4252 		return -EFAULT;
4253 
4254 	return 0;
4255 }
4256 #endif /* CONFIG_CACHESTAT_SYSCALL */
4257