1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <asm/pgalloc.h> 49 #include <asm/tlbflush.h> 50 #include "internal.h" 51 52 #define CREATE_TRACE_POINTS 53 #include <trace/events/filemap.h> 54 55 /* 56 * FIXME: remove all knowledge of the buffer layer from the core VM 57 */ 58 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 59 60 #include <asm/mman.h> 61 62 #include "swap.h" 63 64 /* 65 * Shared mappings implemented 30.11.1994. It's not fully working yet, 66 * though. 67 * 68 * Shared mappings now work. 15.8.1995 Bruno. 69 * 70 * finished 'unifying' the page and buffer cache and SMP-threaded the 71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 72 * 73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 74 */ 75 76 /* 77 * Lock ordering: 78 * 79 * ->i_mmap_rwsem (truncate_pagecache) 80 * ->private_lock (__free_pte->block_dirty_folio) 81 * ->swap_lock (exclusive_swap_page, others) 82 * ->i_pages lock 83 * 84 * ->i_rwsem 85 * ->invalidate_lock (acquired by fs in truncate path) 86 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 87 * 88 * ->mmap_lock 89 * ->i_mmap_rwsem 90 * ->page_table_lock or pte_lock (various, mainly in memory.c) 91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 92 * 93 * ->mmap_lock 94 * ->invalidate_lock (filemap_fault) 95 * ->lock_page (filemap_fault, access_process_vm) 96 * 97 * ->i_rwsem (generic_perform_write) 98 * ->mmap_lock (fault_in_readable->do_page_fault) 99 * 100 * bdi->wb.list_lock 101 * sb_lock (fs/fs-writeback.c) 102 * ->i_pages lock (__sync_single_inode) 103 * 104 * ->i_mmap_rwsem 105 * ->anon_vma.lock (vma_merge) 106 * 107 * ->anon_vma.lock 108 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 109 * 110 * ->page_table_lock or pte_lock 111 * ->swap_lock (try_to_unmap_one) 112 * ->private_lock (try_to_unmap_one) 113 * ->i_pages lock (try_to_unmap_one) 114 * ->lruvec->lru_lock (follow_page->mark_page_accessed) 115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page) 116 * ->private_lock (page_remove_rmap->set_page_dirty) 117 * ->i_pages lock (page_remove_rmap->set_page_dirty) 118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 119 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock) 121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 122 * ->inode->i_lock (zap_pte_range->set_page_dirty) 123 * ->private_lock (zap_pte_range->block_dirty_folio) 124 */ 125 126 static void page_cache_delete(struct address_space *mapping, 127 struct folio *folio, void *shadow) 128 { 129 XA_STATE(xas, &mapping->i_pages, folio->index); 130 long nr = 1; 131 132 mapping_set_update(&xas, mapping); 133 134 xas_set_order(&xas, folio->index, folio_order(folio)); 135 nr = folio_nr_pages(folio); 136 137 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 138 139 xas_store(&xas, shadow); 140 xas_init_marks(&xas); 141 142 folio->mapping = NULL; 143 /* Leave page->index set: truncation lookup relies upon it */ 144 mapping->nrpages -= nr; 145 } 146 147 static void filemap_unaccount_folio(struct address_space *mapping, 148 struct folio *folio) 149 { 150 long nr; 151 152 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 153 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 154 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 155 current->comm, folio_pfn(folio)); 156 dump_page(&folio->page, "still mapped when deleted"); 157 dump_stack(); 158 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 159 160 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 161 int mapcount = page_mapcount(&folio->page); 162 163 if (folio_ref_count(folio) >= mapcount + 2) { 164 /* 165 * All vmas have already been torn down, so it's 166 * a good bet that actually the page is unmapped 167 * and we'd rather not leak it: if we're wrong, 168 * another bad page check should catch it later. 169 */ 170 page_mapcount_reset(&folio->page); 171 folio_ref_sub(folio, mapcount); 172 } 173 } 174 } 175 176 /* hugetlb folios do not participate in page cache accounting. */ 177 if (folio_test_hugetlb(folio)) 178 return; 179 180 nr = folio_nr_pages(folio); 181 182 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 183 if (folio_test_swapbacked(folio)) { 184 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 185 if (folio_test_pmd_mappable(folio)) 186 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 187 } else if (folio_test_pmd_mappable(folio)) { 188 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 189 filemap_nr_thps_dec(mapping); 190 } 191 192 /* 193 * At this point folio must be either written or cleaned by 194 * truncate. Dirty folio here signals a bug and loss of 195 * unwritten data - on ordinary filesystems. 196 * 197 * But it's harmless on in-memory filesystems like tmpfs; and can 198 * occur when a driver which did get_user_pages() sets page dirty 199 * before putting it, while the inode is being finally evicted. 200 * 201 * Below fixes dirty accounting after removing the folio entirely 202 * but leaves the dirty flag set: it has no effect for truncated 203 * folio and anyway will be cleared before returning folio to 204 * buddy allocator. 205 */ 206 if (WARN_ON_ONCE(folio_test_dirty(folio) && 207 mapping_can_writeback(mapping))) 208 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 209 } 210 211 /* 212 * Delete a page from the page cache and free it. Caller has to make 213 * sure the page is locked and that nobody else uses it - or that usage 214 * is safe. The caller must hold the i_pages lock. 215 */ 216 void __filemap_remove_folio(struct folio *folio, void *shadow) 217 { 218 struct address_space *mapping = folio->mapping; 219 220 trace_mm_filemap_delete_from_page_cache(folio); 221 filemap_unaccount_folio(mapping, folio); 222 page_cache_delete(mapping, folio, shadow); 223 } 224 225 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 226 { 227 void (*free_folio)(struct folio *); 228 int refs = 1; 229 230 free_folio = mapping->a_ops->free_folio; 231 if (free_folio) 232 free_folio(folio); 233 234 if (folio_test_large(folio)) 235 refs = folio_nr_pages(folio); 236 folio_put_refs(folio, refs); 237 } 238 239 /** 240 * filemap_remove_folio - Remove folio from page cache. 241 * @folio: The folio. 242 * 243 * This must be called only on folios that are locked and have been 244 * verified to be in the page cache. It will never put the folio into 245 * the free list because the caller has a reference on the page. 246 */ 247 void filemap_remove_folio(struct folio *folio) 248 { 249 struct address_space *mapping = folio->mapping; 250 251 BUG_ON(!folio_test_locked(folio)); 252 spin_lock(&mapping->host->i_lock); 253 xa_lock_irq(&mapping->i_pages); 254 __filemap_remove_folio(folio, NULL); 255 xa_unlock_irq(&mapping->i_pages); 256 if (mapping_shrinkable(mapping)) 257 inode_add_lru(mapping->host); 258 spin_unlock(&mapping->host->i_lock); 259 260 filemap_free_folio(mapping, folio); 261 } 262 263 /* 264 * page_cache_delete_batch - delete several folios from page cache 265 * @mapping: the mapping to which folios belong 266 * @fbatch: batch of folios to delete 267 * 268 * The function walks over mapping->i_pages and removes folios passed in 269 * @fbatch from the mapping. The function expects @fbatch to be sorted 270 * by page index and is optimised for it to be dense. 271 * It tolerates holes in @fbatch (mapping entries at those indices are not 272 * modified). 273 * 274 * The function expects the i_pages lock to be held. 275 */ 276 static void page_cache_delete_batch(struct address_space *mapping, 277 struct folio_batch *fbatch) 278 { 279 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 280 long total_pages = 0; 281 int i = 0; 282 struct folio *folio; 283 284 mapping_set_update(&xas, mapping); 285 xas_for_each(&xas, folio, ULONG_MAX) { 286 if (i >= folio_batch_count(fbatch)) 287 break; 288 289 /* A swap/dax/shadow entry got inserted? Skip it. */ 290 if (xa_is_value(folio)) 291 continue; 292 /* 293 * A page got inserted in our range? Skip it. We have our 294 * pages locked so they are protected from being removed. 295 * If we see a page whose index is higher than ours, it 296 * means our page has been removed, which shouldn't be 297 * possible because we're holding the PageLock. 298 */ 299 if (folio != fbatch->folios[i]) { 300 VM_BUG_ON_FOLIO(folio->index > 301 fbatch->folios[i]->index, folio); 302 continue; 303 } 304 305 WARN_ON_ONCE(!folio_test_locked(folio)); 306 307 folio->mapping = NULL; 308 /* Leave folio->index set: truncation lookup relies on it */ 309 310 i++; 311 xas_store(&xas, NULL); 312 total_pages += folio_nr_pages(folio); 313 } 314 mapping->nrpages -= total_pages; 315 } 316 317 void delete_from_page_cache_batch(struct address_space *mapping, 318 struct folio_batch *fbatch) 319 { 320 int i; 321 322 if (!folio_batch_count(fbatch)) 323 return; 324 325 spin_lock(&mapping->host->i_lock); 326 xa_lock_irq(&mapping->i_pages); 327 for (i = 0; i < folio_batch_count(fbatch); i++) { 328 struct folio *folio = fbatch->folios[i]; 329 330 trace_mm_filemap_delete_from_page_cache(folio); 331 filemap_unaccount_folio(mapping, folio); 332 } 333 page_cache_delete_batch(mapping, fbatch); 334 xa_unlock_irq(&mapping->i_pages); 335 if (mapping_shrinkable(mapping)) 336 inode_add_lru(mapping->host); 337 spin_unlock(&mapping->host->i_lock); 338 339 for (i = 0; i < folio_batch_count(fbatch); i++) 340 filemap_free_folio(mapping, fbatch->folios[i]); 341 } 342 343 int filemap_check_errors(struct address_space *mapping) 344 { 345 int ret = 0; 346 /* Check for outstanding write errors */ 347 if (test_bit(AS_ENOSPC, &mapping->flags) && 348 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 349 ret = -ENOSPC; 350 if (test_bit(AS_EIO, &mapping->flags) && 351 test_and_clear_bit(AS_EIO, &mapping->flags)) 352 ret = -EIO; 353 return ret; 354 } 355 EXPORT_SYMBOL(filemap_check_errors); 356 357 static int filemap_check_and_keep_errors(struct address_space *mapping) 358 { 359 /* Check for outstanding write errors */ 360 if (test_bit(AS_EIO, &mapping->flags)) 361 return -EIO; 362 if (test_bit(AS_ENOSPC, &mapping->flags)) 363 return -ENOSPC; 364 return 0; 365 } 366 367 /** 368 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 369 * @mapping: address space structure to write 370 * @wbc: the writeback_control controlling the writeout 371 * 372 * Call writepages on the mapping using the provided wbc to control the 373 * writeout. 374 * 375 * Return: %0 on success, negative error code otherwise. 376 */ 377 int filemap_fdatawrite_wbc(struct address_space *mapping, 378 struct writeback_control *wbc) 379 { 380 int ret; 381 382 if (!mapping_can_writeback(mapping) || 383 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 384 return 0; 385 386 wbc_attach_fdatawrite_inode(wbc, mapping->host); 387 ret = do_writepages(mapping, wbc); 388 wbc_detach_inode(wbc); 389 return ret; 390 } 391 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 392 393 /** 394 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 395 * @mapping: address space structure to write 396 * @start: offset in bytes where the range starts 397 * @end: offset in bytes where the range ends (inclusive) 398 * @sync_mode: enable synchronous operation 399 * 400 * Start writeback against all of a mapping's dirty pages that lie 401 * within the byte offsets <start, end> inclusive. 402 * 403 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 404 * opposed to a regular memory cleansing writeback. The difference between 405 * these two operations is that if a dirty page/buffer is encountered, it must 406 * be waited upon, and not just skipped over. 407 * 408 * Return: %0 on success, negative error code otherwise. 409 */ 410 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 411 loff_t end, int sync_mode) 412 { 413 struct writeback_control wbc = { 414 .sync_mode = sync_mode, 415 .nr_to_write = LONG_MAX, 416 .range_start = start, 417 .range_end = end, 418 }; 419 420 return filemap_fdatawrite_wbc(mapping, &wbc); 421 } 422 423 static inline int __filemap_fdatawrite(struct address_space *mapping, 424 int sync_mode) 425 { 426 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 427 } 428 429 int filemap_fdatawrite(struct address_space *mapping) 430 { 431 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 432 } 433 EXPORT_SYMBOL(filemap_fdatawrite); 434 435 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 436 loff_t end) 437 { 438 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 439 } 440 EXPORT_SYMBOL(filemap_fdatawrite_range); 441 442 /** 443 * filemap_flush - mostly a non-blocking flush 444 * @mapping: target address_space 445 * 446 * This is a mostly non-blocking flush. Not suitable for data-integrity 447 * purposes - I/O may not be started against all dirty pages. 448 * 449 * Return: %0 on success, negative error code otherwise. 450 */ 451 int filemap_flush(struct address_space *mapping) 452 { 453 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 454 } 455 EXPORT_SYMBOL(filemap_flush); 456 457 /** 458 * filemap_range_has_page - check if a page exists in range. 459 * @mapping: address space within which to check 460 * @start_byte: offset in bytes where the range starts 461 * @end_byte: offset in bytes where the range ends (inclusive) 462 * 463 * Find at least one page in the range supplied, usually used to check if 464 * direct writing in this range will trigger a writeback. 465 * 466 * Return: %true if at least one page exists in the specified range, 467 * %false otherwise. 468 */ 469 bool filemap_range_has_page(struct address_space *mapping, 470 loff_t start_byte, loff_t end_byte) 471 { 472 struct folio *folio; 473 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 474 pgoff_t max = end_byte >> PAGE_SHIFT; 475 476 if (end_byte < start_byte) 477 return false; 478 479 rcu_read_lock(); 480 for (;;) { 481 folio = xas_find(&xas, max); 482 if (xas_retry(&xas, folio)) 483 continue; 484 /* Shadow entries don't count */ 485 if (xa_is_value(folio)) 486 continue; 487 /* 488 * We don't need to try to pin this page; we're about to 489 * release the RCU lock anyway. It is enough to know that 490 * there was a page here recently. 491 */ 492 break; 493 } 494 rcu_read_unlock(); 495 496 return folio != NULL; 497 } 498 EXPORT_SYMBOL(filemap_range_has_page); 499 500 static void __filemap_fdatawait_range(struct address_space *mapping, 501 loff_t start_byte, loff_t end_byte) 502 { 503 pgoff_t index = start_byte >> PAGE_SHIFT; 504 pgoff_t end = end_byte >> PAGE_SHIFT; 505 struct folio_batch fbatch; 506 unsigned nr_folios; 507 508 folio_batch_init(&fbatch); 509 510 while (index <= end) { 511 unsigned i; 512 513 nr_folios = filemap_get_folios_tag(mapping, &index, end, 514 PAGECACHE_TAG_WRITEBACK, &fbatch); 515 516 if (!nr_folios) 517 break; 518 519 for (i = 0; i < nr_folios; i++) { 520 struct folio *folio = fbatch.folios[i]; 521 522 folio_wait_writeback(folio); 523 folio_clear_error(folio); 524 } 525 folio_batch_release(&fbatch); 526 cond_resched(); 527 } 528 } 529 530 /** 531 * filemap_fdatawait_range - wait for writeback to complete 532 * @mapping: address space structure to wait for 533 * @start_byte: offset in bytes where the range starts 534 * @end_byte: offset in bytes where the range ends (inclusive) 535 * 536 * Walk the list of under-writeback pages of the given address space 537 * in the given range and wait for all of them. Check error status of 538 * the address space and return it. 539 * 540 * Since the error status of the address space is cleared by this function, 541 * callers are responsible for checking the return value and handling and/or 542 * reporting the error. 543 * 544 * Return: error status of the address space. 545 */ 546 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 547 loff_t end_byte) 548 { 549 __filemap_fdatawait_range(mapping, start_byte, end_byte); 550 return filemap_check_errors(mapping); 551 } 552 EXPORT_SYMBOL(filemap_fdatawait_range); 553 554 /** 555 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 556 * @mapping: address space structure to wait for 557 * @start_byte: offset in bytes where the range starts 558 * @end_byte: offset in bytes where the range ends (inclusive) 559 * 560 * Walk the list of under-writeback pages of the given address space in the 561 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 562 * this function does not clear error status of the address space. 563 * 564 * Use this function if callers don't handle errors themselves. Expected 565 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 566 * fsfreeze(8) 567 */ 568 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 569 loff_t start_byte, loff_t end_byte) 570 { 571 __filemap_fdatawait_range(mapping, start_byte, end_byte); 572 return filemap_check_and_keep_errors(mapping); 573 } 574 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 575 576 /** 577 * file_fdatawait_range - wait for writeback to complete 578 * @file: file pointing to address space structure to wait for 579 * @start_byte: offset in bytes where the range starts 580 * @end_byte: offset in bytes where the range ends (inclusive) 581 * 582 * Walk the list of under-writeback pages of the address space that file 583 * refers to, in the given range and wait for all of them. Check error 584 * status of the address space vs. the file->f_wb_err cursor and return it. 585 * 586 * Since the error status of the file is advanced by this function, 587 * callers are responsible for checking the return value and handling and/or 588 * reporting the error. 589 * 590 * Return: error status of the address space vs. the file->f_wb_err cursor. 591 */ 592 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 593 { 594 struct address_space *mapping = file->f_mapping; 595 596 __filemap_fdatawait_range(mapping, start_byte, end_byte); 597 return file_check_and_advance_wb_err(file); 598 } 599 EXPORT_SYMBOL(file_fdatawait_range); 600 601 /** 602 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 603 * @mapping: address space structure to wait for 604 * 605 * Walk the list of under-writeback pages of the given address space 606 * and wait for all of them. Unlike filemap_fdatawait(), this function 607 * does not clear error status of the address space. 608 * 609 * Use this function if callers don't handle errors themselves. Expected 610 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 611 * fsfreeze(8) 612 * 613 * Return: error status of the address space. 614 */ 615 int filemap_fdatawait_keep_errors(struct address_space *mapping) 616 { 617 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 618 return filemap_check_and_keep_errors(mapping); 619 } 620 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 621 622 /* Returns true if writeback might be needed or already in progress. */ 623 static bool mapping_needs_writeback(struct address_space *mapping) 624 { 625 return mapping->nrpages; 626 } 627 628 bool filemap_range_has_writeback(struct address_space *mapping, 629 loff_t start_byte, loff_t end_byte) 630 { 631 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 632 pgoff_t max = end_byte >> PAGE_SHIFT; 633 struct folio *folio; 634 635 if (end_byte < start_byte) 636 return false; 637 638 rcu_read_lock(); 639 xas_for_each(&xas, folio, max) { 640 if (xas_retry(&xas, folio)) 641 continue; 642 if (xa_is_value(folio)) 643 continue; 644 if (folio_test_dirty(folio) || folio_test_locked(folio) || 645 folio_test_writeback(folio)) 646 break; 647 } 648 rcu_read_unlock(); 649 return folio != NULL; 650 } 651 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 652 653 /** 654 * filemap_write_and_wait_range - write out & wait on a file range 655 * @mapping: the address_space for the pages 656 * @lstart: offset in bytes where the range starts 657 * @lend: offset in bytes where the range ends (inclusive) 658 * 659 * Write out and wait upon file offsets lstart->lend, inclusive. 660 * 661 * Note that @lend is inclusive (describes the last byte to be written) so 662 * that this function can be used to write to the very end-of-file (end = -1). 663 * 664 * Return: error status of the address space. 665 */ 666 int filemap_write_and_wait_range(struct address_space *mapping, 667 loff_t lstart, loff_t lend) 668 { 669 int err = 0, err2; 670 671 if (lend < lstart) 672 return 0; 673 674 if (mapping_needs_writeback(mapping)) { 675 err = __filemap_fdatawrite_range(mapping, lstart, lend, 676 WB_SYNC_ALL); 677 /* 678 * Even if the above returned error, the pages may be 679 * written partially (e.g. -ENOSPC), so we wait for it. 680 * But the -EIO is special case, it may indicate the worst 681 * thing (e.g. bug) happened, so we avoid waiting for it. 682 */ 683 if (err != -EIO) 684 __filemap_fdatawait_range(mapping, lstart, lend); 685 } 686 err2 = filemap_check_errors(mapping); 687 if (!err) 688 err = err2; 689 return err; 690 } 691 EXPORT_SYMBOL(filemap_write_and_wait_range); 692 693 void __filemap_set_wb_err(struct address_space *mapping, int err) 694 { 695 errseq_t eseq = errseq_set(&mapping->wb_err, err); 696 697 trace_filemap_set_wb_err(mapping, eseq); 698 } 699 EXPORT_SYMBOL(__filemap_set_wb_err); 700 701 /** 702 * file_check_and_advance_wb_err - report wb error (if any) that was previously 703 * and advance wb_err to current one 704 * @file: struct file on which the error is being reported 705 * 706 * When userland calls fsync (or something like nfsd does the equivalent), we 707 * want to report any writeback errors that occurred since the last fsync (or 708 * since the file was opened if there haven't been any). 709 * 710 * Grab the wb_err from the mapping. If it matches what we have in the file, 711 * then just quickly return 0. The file is all caught up. 712 * 713 * If it doesn't match, then take the mapping value, set the "seen" flag in 714 * it and try to swap it into place. If it works, or another task beat us 715 * to it with the new value, then update the f_wb_err and return the error 716 * portion. The error at this point must be reported via proper channels 717 * (a'la fsync, or NFS COMMIT operation, etc.). 718 * 719 * While we handle mapping->wb_err with atomic operations, the f_wb_err 720 * value is protected by the f_lock since we must ensure that it reflects 721 * the latest value swapped in for this file descriptor. 722 * 723 * Return: %0 on success, negative error code otherwise. 724 */ 725 int file_check_and_advance_wb_err(struct file *file) 726 { 727 int err = 0; 728 errseq_t old = READ_ONCE(file->f_wb_err); 729 struct address_space *mapping = file->f_mapping; 730 731 /* Locklessly handle the common case where nothing has changed */ 732 if (errseq_check(&mapping->wb_err, old)) { 733 /* Something changed, must use slow path */ 734 spin_lock(&file->f_lock); 735 old = file->f_wb_err; 736 err = errseq_check_and_advance(&mapping->wb_err, 737 &file->f_wb_err); 738 trace_file_check_and_advance_wb_err(file, old); 739 spin_unlock(&file->f_lock); 740 } 741 742 /* 743 * We're mostly using this function as a drop in replacement for 744 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 745 * that the legacy code would have had on these flags. 746 */ 747 clear_bit(AS_EIO, &mapping->flags); 748 clear_bit(AS_ENOSPC, &mapping->flags); 749 return err; 750 } 751 EXPORT_SYMBOL(file_check_and_advance_wb_err); 752 753 /** 754 * file_write_and_wait_range - write out & wait on a file range 755 * @file: file pointing to address_space with pages 756 * @lstart: offset in bytes where the range starts 757 * @lend: offset in bytes where the range ends (inclusive) 758 * 759 * Write out and wait upon file offsets lstart->lend, inclusive. 760 * 761 * Note that @lend is inclusive (describes the last byte to be written) so 762 * that this function can be used to write to the very end-of-file (end = -1). 763 * 764 * After writing out and waiting on the data, we check and advance the 765 * f_wb_err cursor to the latest value, and return any errors detected there. 766 * 767 * Return: %0 on success, negative error code otherwise. 768 */ 769 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 770 { 771 int err = 0, err2; 772 struct address_space *mapping = file->f_mapping; 773 774 if (lend < lstart) 775 return 0; 776 777 if (mapping_needs_writeback(mapping)) { 778 err = __filemap_fdatawrite_range(mapping, lstart, lend, 779 WB_SYNC_ALL); 780 /* See comment of filemap_write_and_wait() */ 781 if (err != -EIO) 782 __filemap_fdatawait_range(mapping, lstart, lend); 783 } 784 err2 = file_check_and_advance_wb_err(file); 785 if (!err) 786 err = err2; 787 return err; 788 } 789 EXPORT_SYMBOL(file_write_and_wait_range); 790 791 /** 792 * replace_page_cache_folio - replace a pagecache folio with a new one 793 * @old: folio to be replaced 794 * @new: folio to replace with 795 * 796 * This function replaces a folio in the pagecache with a new one. On 797 * success it acquires the pagecache reference for the new folio and 798 * drops it for the old folio. Both the old and new folios must be 799 * locked. This function does not add the new folio to the LRU, the 800 * caller must do that. 801 * 802 * The remove + add is atomic. This function cannot fail. 803 */ 804 void replace_page_cache_folio(struct folio *old, struct folio *new) 805 { 806 struct address_space *mapping = old->mapping; 807 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 808 pgoff_t offset = old->index; 809 XA_STATE(xas, &mapping->i_pages, offset); 810 811 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 812 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 813 VM_BUG_ON_FOLIO(new->mapping, new); 814 815 folio_get(new); 816 new->mapping = mapping; 817 new->index = offset; 818 819 mem_cgroup_replace_folio(old, new); 820 821 xas_lock_irq(&xas); 822 xas_store(&xas, new); 823 824 old->mapping = NULL; 825 /* hugetlb pages do not participate in page cache accounting. */ 826 if (!folio_test_hugetlb(old)) 827 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 828 if (!folio_test_hugetlb(new)) 829 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 830 if (folio_test_swapbacked(old)) 831 __lruvec_stat_sub_folio(old, NR_SHMEM); 832 if (folio_test_swapbacked(new)) 833 __lruvec_stat_add_folio(new, NR_SHMEM); 834 xas_unlock_irq(&xas); 835 if (free_folio) 836 free_folio(old); 837 folio_put(old); 838 } 839 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 840 841 noinline int __filemap_add_folio(struct address_space *mapping, 842 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 843 { 844 XA_STATE(xas, &mapping->i_pages, index); 845 int huge = folio_test_hugetlb(folio); 846 bool charged = false; 847 long nr = 1; 848 849 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 850 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 851 mapping_set_update(&xas, mapping); 852 853 if (!huge) { 854 int error = mem_cgroup_charge(folio, NULL, gfp); 855 if (error) 856 return error; 857 charged = true; 858 } 859 860 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 861 xas_set_order(&xas, index, folio_order(folio)); 862 nr = folio_nr_pages(folio); 863 864 gfp &= GFP_RECLAIM_MASK; 865 folio_ref_add(folio, nr); 866 folio->mapping = mapping; 867 folio->index = xas.xa_index; 868 869 do { 870 unsigned int order = xa_get_order(xas.xa, xas.xa_index); 871 void *entry, *old = NULL; 872 873 if (order > folio_order(folio)) 874 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index), 875 order, gfp); 876 xas_lock_irq(&xas); 877 xas_for_each_conflict(&xas, entry) { 878 old = entry; 879 if (!xa_is_value(entry)) { 880 xas_set_err(&xas, -EEXIST); 881 goto unlock; 882 } 883 } 884 885 if (old) { 886 if (shadowp) 887 *shadowp = old; 888 /* entry may have been split before we acquired lock */ 889 order = xa_get_order(xas.xa, xas.xa_index); 890 if (order > folio_order(folio)) { 891 /* How to handle large swap entries? */ 892 BUG_ON(shmem_mapping(mapping)); 893 xas_split(&xas, old, order); 894 xas_reset(&xas); 895 } 896 } 897 898 xas_store(&xas, folio); 899 if (xas_error(&xas)) 900 goto unlock; 901 902 mapping->nrpages += nr; 903 904 /* hugetlb pages do not participate in page cache accounting */ 905 if (!huge) { 906 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 907 if (folio_test_pmd_mappable(folio)) 908 __lruvec_stat_mod_folio(folio, 909 NR_FILE_THPS, nr); 910 } 911 unlock: 912 xas_unlock_irq(&xas); 913 } while (xas_nomem(&xas, gfp)); 914 915 if (xas_error(&xas)) 916 goto error; 917 918 trace_mm_filemap_add_to_page_cache(folio); 919 return 0; 920 error: 921 if (charged) 922 mem_cgroup_uncharge(folio); 923 folio->mapping = NULL; 924 /* Leave page->index set: truncation relies upon it */ 925 folio_put_refs(folio, nr); 926 return xas_error(&xas); 927 } 928 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 929 930 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 931 pgoff_t index, gfp_t gfp) 932 { 933 void *shadow = NULL; 934 int ret; 935 936 __folio_set_locked(folio); 937 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 938 if (unlikely(ret)) 939 __folio_clear_locked(folio); 940 else { 941 /* 942 * The folio might have been evicted from cache only 943 * recently, in which case it should be activated like 944 * any other repeatedly accessed folio. 945 * The exception is folios getting rewritten; evicting other 946 * data from the working set, only to cache data that will 947 * get overwritten with something else, is a waste of memory. 948 */ 949 WARN_ON_ONCE(folio_test_active(folio)); 950 if (!(gfp & __GFP_WRITE) && shadow) 951 workingset_refault(folio, shadow); 952 folio_add_lru(folio); 953 } 954 return ret; 955 } 956 EXPORT_SYMBOL_GPL(filemap_add_folio); 957 958 #ifdef CONFIG_NUMA 959 struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order) 960 { 961 int n; 962 struct folio *folio; 963 964 if (cpuset_do_page_mem_spread()) { 965 unsigned int cpuset_mems_cookie; 966 do { 967 cpuset_mems_cookie = read_mems_allowed_begin(); 968 n = cpuset_mem_spread_node(); 969 folio = __folio_alloc_node(gfp, order, n); 970 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 971 972 return folio; 973 } 974 return folio_alloc(gfp, order); 975 } 976 EXPORT_SYMBOL(filemap_alloc_folio); 977 #endif 978 979 /* 980 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 981 * 982 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 983 * 984 * @mapping1: the first mapping to lock 985 * @mapping2: the second mapping to lock 986 */ 987 void filemap_invalidate_lock_two(struct address_space *mapping1, 988 struct address_space *mapping2) 989 { 990 if (mapping1 > mapping2) 991 swap(mapping1, mapping2); 992 if (mapping1) 993 down_write(&mapping1->invalidate_lock); 994 if (mapping2 && mapping1 != mapping2) 995 down_write_nested(&mapping2->invalidate_lock, 1); 996 } 997 EXPORT_SYMBOL(filemap_invalidate_lock_two); 998 999 /* 1000 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1001 * 1002 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1003 * 1004 * @mapping1: the first mapping to unlock 1005 * @mapping2: the second mapping to unlock 1006 */ 1007 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1008 struct address_space *mapping2) 1009 { 1010 if (mapping1) 1011 up_write(&mapping1->invalidate_lock); 1012 if (mapping2 && mapping1 != mapping2) 1013 up_write(&mapping2->invalidate_lock); 1014 } 1015 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1016 1017 /* 1018 * In order to wait for pages to become available there must be 1019 * waitqueues associated with pages. By using a hash table of 1020 * waitqueues where the bucket discipline is to maintain all 1021 * waiters on the same queue and wake all when any of the pages 1022 * become available, and for the woken contexts to check to be 1023 * sure the appropriate page became available, this saves space 1024 * at a cost of "thundering herd" phenomena during rare hash 1025 * collisions. 1026 */ 1027 #define PAGE_WAIT_TABLE_BITS 8 1028 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1029 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1030 1031 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1032 { 1033 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1034 } 1035 1036 void __init pagecache_init(void) 1037 { 1038 int i; 1039 1040 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1041 init_waitqueue_head(&folio_wait_table[i]); 1042 1043 page_writeback_init(); 1044 } 1045 1046 /* 1047 * The page wait code treats the "wait->flags" somewhat unusually, because 1048 * we have multiple different kinds of waits, not just the usual "exclusive" 1049 * one. 1050 * 1051 * We have: 1052 * 1053 * (a) no special bits set: 1054 * 1055 * We're just waiting for the bit to be released, and when a waker 1056 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1057 * and remove it from the wait queue. 1058 * 1059 * Simple and straightforward. 1060 * 1061 * (b) WQ_FLAG_EXCLUSIVE: 1062 * 1063 * The waiter is waiting to get the lock, and only one waiter should 1064 * be woken up to avoid any thundering herd behavior. We'll set the 1065 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1066 * 1067 * This is the traditional exclusive wait. 1068 * 1069 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1070 * 1071 * The waiter is waiting to get the bit, and additionally wants the 1072 * lock to be transferred to it for fair lock behavior. If the lock 1073 * cannot be taken, we stop walking the wait queue without waking 1074 * the waiter. 1075 * 1076 * This is the "fair lock handoff" case, and in addition to setting 1077 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1078 * that it now has the lock. 1079 */ 1080 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1081 { 1082 unsigned int flags; 1083 struct wait_page_key *key = arg; 1084 struct wait_page_queue *wait_page 1085 = container_of(wait, struct wait_page_queue, wait); 1086 1087 if (!wake_page_match(wait_page, key)) 1088 return 0; 1089 1090 /* 1091 * If it's a lock handoff wait, we get the bit for it, and 1092 * stop walking (and do not wake it up) if we can't. 1093 */ 1094 flags = wait->flags; 1095 if (flags & WQ_FLAG_EXCLUSIVE) { 1096 if (test_bit(key->bit_nr, &key->folio->flags)) 1097 return -1; 1098 if (flags & WQ_FLAG_CUSTOM) { 1099 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1100 return -1; 1101 flags |= WQ_FLAG_DONE; 1102 } 1103 } 1104 1105 /* 1106 * We are holding the wait-queue lock, but the waiter that 1107 * is waiting for this will be checking the flags without 1108 * any locking. 1109 * 1110 * So update the flags atomically, and wake up the waiter 1111 * afterwards to avoid any races. This store-release pairs 1112 * with the load-acquire in folio_wait_bit_common(). 1113 */ 1114 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1115 wake_up_state(wait->private, mode); 1116 1117 /* 1118 * Ok, we have successfully done what we're waiting for, 1119 * and we can unconditionally remove the wait entry. 1120 * 1121 * Note that this pairs with the "finish_wait()" in the 1122 * waiter, and has to be the absolute last thing we do. 1123 * After this list_del_init(&wait->entry) the wait entry 1124 * might be de-allocated and the process might even have 1125 * exited. 1126 */ 1127 list_del_init_careful(&wait->entry); 1128 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1129 } 1130 1131 static void folio_wake_bit(struct folio *folio, int bit_nr) 1132 { 1133 wait_queue_head_t *q = folio_waitqueue(folio); 1134 struct wait_page_key key; 1135 unsigned long flags; 1136 1137 key.folio = folio; 1138 key.bit_nr = bit_nr; 1139 key.page_match = 0; 1140 1141 spin_lock_irqsave(&q->lock, flags); 1142 __wake_up_locked_key(q, TASK_NORMAL, &key); 1143 1144 /* 1145 * It's possible to miss clearing waiters here, when we woke our page 1146 * waiters, but the hashed waitqueue has waiters for other pages on it. 1147 * That's okay, it's a rare case. The next waker will clear it. 1148 * 1149 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1150 * other), the flag may be cleared in the course of freeing the page; 1151 * but that is not required for correctness. 1152 */ 1153 if (!waitqueue_active(q) || !key.page_match) 1154 folio_clear_waiters(folio); 1155 1156 spin_unlock_irqrestore(&q->lock, flags); 1157 } 1158 1159 /* 1160 * A choice of three behaviors for folio_wait_bit_common(): 1161 */ 1162 enum behavior { 1163 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1164 * __folio_lock() waiting on then setting PG_locked. 1165 */ 1166 SHARED, /* Hold ref to page and check the bit when woken, like 1167 * folio_wait_writeback() waiting on PG_writeback. 1168 */ 1169 DROP, /* Drop ref to page before wait, no check when woken, 1170 * like folio_put_wait_locked() on PG_locked. 1171 */ 1172 }; 1173 1174 /* 1175 * Attempt to check (or get) the folio flag, and mark us done 1176 * if successful. 1177 */ 1178 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1179 struct wait_queue_entry *wait) 1180 { 1181 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1182 if (test_and_set_bit(bit_nr, &folio->flags)) 1183 return false; 1184 } else if (test_bit(bit_nr, &folio->flags)) 1185 return false; 1186 1187 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1188 return true; 1189 } 1190 1191 /* How many times do we accept lock stealing from under a waiter? */ 1192 int sysctl_page_lock_unfairness = 5; 1193 1194 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1195 int state, enum behavior behavior) 1196 { 1197 wait_queue_head_t *q = folio_waitqueue(folio); 1198 int unfairness = sysctl_page_lock_unfairness; 1199 struct wait_page_queue wait_page; 1200 wait_queue_entry_t *wait = &wait_page.wait; 1201 bool thrashing = false; 1202 unsigned long pflags; 1203 bool in_thrashing; 1204 1205 if (bit_nr == PG_locked && 1206 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1207 delayacct_thrashing_start(&in_thrashing); 1208 psi_memstall_enter(&pflags); 1209 thrashing = true; 1210 } 1211 1212 init_wait(wait); 1213 wait->func = wake_page_function; 1214 wait_page.folio = folio; 1215 wait_page.bit_nr = bit_nr; 1216 1217 repeat: 1218 wait->flags = 0; 1219 if (behavior == EXCLUSIVE) { 1220 wait->flags = WQ_FLAG_EXCLUSIVE; 1221 if (--unfairness < 0) 1222 wait->flags |= WQ_FLAG_CUSTOM; 1223 } 1224 1225 /* 1226 * Do one last check whether we can get the 1227 * page bit synchronously. 1228 * 1229 * Do the folio_set_waiters() marking before that 1230 * to let any waker we _just_ missed know they 1231 * need to wake us up (otherwise they'll never 1232 * even go to the slow case that looks at the 1233 * page queue), and add ourselves to the wait 1234 * queue if we need to sleep. 1235 * 1236 * This part needs to be done under the queue 1237 * lock to avoid races. 1238 */ 1239 spin_lock_irq(&q->lock); 1240 folio_set_waiters(folio); 1241 if (!folio_trylock_flag(folio, bit_nr, wait)) 1242 __add_wait_queue_entry_tail(q, wait); 1243 spin_unlock_irq(&q->lock); 1244 1245 /* 1246 * From now on, all the logic will be based on 1247 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1248 * see whether the page bit testing has already 1249 * been done by the wake function. 1250 * 1251 * We can drop our reference to the folio. 1252 */ 1253 if (behavior == DROP) 1254 folio_put(folio); 1255 1256 /* 1257 * Note that until the "finish_wait()", or until 1258 * we see the WQ_FLAG_WOKEN flag, we need to 1259 * be very careful with the 'wait->flags', because 1260 * we may race with a waker that sets them. 1261 */ 1262 for (;;) { 1263 unsigned int flags; 1264 1265 set_current_state(state); 1266 1267 /* Loop until we've been woken or interrupted */ 1268 flags = smp_load_acquire(&wait->flags); 1269 if (!(flags & WQ_FLAG_WOKEN)) { 1270 if (signal_pending_state(state, current)) 1271 break; 1272 1273 io_schedule(); 1274 continue; 1275 } 1276 1277 /* If we were non-exclusive, we're done */ 1278 if (behavior != EXCLUSIVE) 1279 break; 1280 1281 /* If the waker got the lock for us, we're done */ 1282 if (flags & WQ_FLAG_DONE) 1283 break; 1284 1285 /* 1286 * Otherwise, if we're getting the lock, we need to 1287 * try to get it ourselves. 1288 * 1289 * And if that fails, we'll have to retry this all. 1290 */ 1291 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1292 goto repeat; 1293 1294 wait->flags |= WQ_FLAG_DONE; 1295 break; 1296 } 1297 1298 /* 1299 * If a signal happened, this 'finish_wait()' may remove the last 1300 * waiter from the wait-queues, but the folio waiters bit will remain 1301 * set. That's ok. The next wakeup will take care of it, and trying 1302 * to do it here would be difficult and prone to races. 1303 */ 1304 finish_wait(q, wait); 1305 1306 if (thrashing) { 1307 delayacct_thrashing_end(&in_thrashing); 1308 psi_memstall_leave(&pflags); 1309 } 1310 1311 /* 1312 * NOTE! The wait->flags weren't stable until we've done the 1313 * 'finish_wait()', and we could have exited the loop above due 1314 * to a signal, and had a wakeup event happen after the signal 1315 * test but before the 'finish_wait()'. 1316 * 1317 * So only after the finish_wait() can we reliably determine 1318 * if we got woken up or not, so we can now figure out the final 1319 * return value based on that state without races. 1320 * 1321 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1322 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1323 */ 1324 if (behavior == EXCLUSIVE) 1325 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1326 1327 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1328 } 1329 1330 #ifdef CONFIG_MIGRATION 1331 /** 1332 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1333 * @entry: migration swap entry. 1334 * @ptl: already locked ptl. This function will drop the lock. 1335 * 1336 * Wait for a migration entry referencing the given page to be removed. This is 1337 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1338 * this can be called without taking a reference on the page. Instead this 1339 * should be called while holding the ptl for the migration entry referencing 1340 * the page. 1341 * 1342 * Returns after unlocking the ptl. 1343 * 1344 * This follows the same logic as folio_wait_bit_common() so see the comments 1345 * there. 1346 */ 1347 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1348 __releases(ptl) 1349 { 1350 struct wait_page_queue wait_page; 1351 wait_queue_entry_t *wait = &wait_page.wait; 1352 bool thrashing = false; 1353 unsigned long pflags; 1354 bool in_thrashing; 1355 wait_queue_head_t *q; 1356 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry)); 1357 1358 q = folio_waitqueue(folio); 1359 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1360 delayacct_thrashing_start(&in_thrashing); 1361 psi_memstall_enter(&pflags); 1362 thrashing = true; 1363 } 1364 1365 init_wait(wait); 1366 wait->func = wake_page_function; 1367 wait_page.folio = folio; 1368 wait_page.bit_nr = PG_locked; 1369 wait->flags = 0; 1370 1371 spin_lock_irq(&q->lock); 1372 folio_set_waiters(folio); 1373 if (!folio_trylock_flag(folio, PG_locked, wait)) 1374 __add_wait_queue_entry_tail(q, wait); 1375 spin_unlock_irq(&q->lock); 1376 1377 /* 1378 * If a migration entry exists for the page the migration path must hold 1379 * a valid reference to the page, and it must take the ptl to remove the 1380 * migration entry. So the page is valid until the ptl is dropped. 1381 */ 1382 spin_unlock(ptl); 1383 1384 for (;;) { 1385 unsigned int flags; 1386 1387 set_current_state(TASK_UNINTERRUPTIBLE); 1388 1389 /* Loop until we've been woken or interrupted */ 1390 flags = smp_load_acquire(&wait->flags); 1391 if (!(flags & WQ_FLAG_WOKEN)) { 1392 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1393 break; 1394 1395 io_schedule(); 1396 continue; 1397 } 1398 break; 1399 } 1400 1401 finish_wait(q, wait); 1402 1403 if (thrashing) { 1404 delayacct_thrashing_end(&in_thrashing); 1405 psi_memstall_leave(&pflags); 1406 } 1407 } 1408 #endif 1409 1410 void folio_wait_bit(struct folio *folio, int bit_nr) 1411 { 1412 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1413 } 1414 EXPORT_SYMBOL(folio_wait_bit); 1415 1416 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1417 { 1418 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1419 } 1420 EXPORT_SYMBOL(folio_wait_bit_killable); 1421 1422 /** 1423 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1424 * @folio: The folio to wait for. 1425 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1426 * 1427 * The caller should hold a reference on @folio. They expect the page to 1428 * become unlocked relatively soon, but do not wish to hold up migration 1429 * (for example) by holding the reference while waiting for the folio to 1430 * come unlocked. After this function returns, the caller should not 1431 * dereference @folio. 1432 * 1433 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1434 */ 1435 static int folio_put_wait_locked(struct folio *folio, int state) 1436 { 1437 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1438 } 1439 1440 /** 1441 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1442 * @folio: Folio defining the wait queue of interest 1443 * @waiter: Waiter to add to the queue 1444 * 1445 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1446 */ 1447 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1448 { 1449 wait_queue_head_t *q = folio_waitqueue(folio); 1450 unsigned long flags; 1451 1452 spin_lock_irqsave(&q->lock, flags); 1453 __add_wait_queue_entry_tail(q, waiter); 1454 folio_set_waiters(folio); 1455 spin_unlock_irqrestore(&q->lock, flags); 1456 } 1457 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1458 1459 /** 1460 * folio_unlock - Unlock a locked folio. 1461 * @folio: The folio. 1462 * 1463 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1464 * 1465 * Context: May be called from interrupt or process context. May not be 1466 * called from NMI context. 1467 */ 1468 void folio_unlock(struct folio *folio) 1469 { 1470 /* Bit 7 allows x86 to check the byte's sign bit */ 1471 BUILD_BUG_ON(PG_waiters != 7); 1472 BUILD_BUG_ON(PG_locked > 7); 1473 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1474 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1475 folio_wake_bit(folio, PG_locked); 1476 } 1477 EXPORT_SYMBOL(folio_unlock); 1478 1479 /** 1480 * folio_end_read - End read on a folio. 1481 * @folio: The folio. 1482 * @success: True if all reads completed successfully. 1483 * 1484 * When all reads against a folio have completed, filesystems should 1485 * call this function to let the pagecache know that no more reads 1486 * are outstanding. This will unlock the folio and wake up any thread 1487 * sleeping on the lock. The folio will also be marked uptodate if all 1488 * reads succeeded. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_end_read(struct folio *folio, bool success) 1494 { 1495 unsigned long mask = 1 << PG_locked; 1496 1497 /* Must be in bottom byte for x86 to work */ 1498 BUILD_BUG_ON(PG_uptodate > 7); 1499 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1500 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1501 1502 if (likely(success)) 1503 mask |= 1 << PG_uptodate; 1504 if (folio_xor_flags_has_waiters(folio, mask)) 1505 folio_wake_bit(folio, PG_locked); 1506 } 1507 EXPORT_SYMBOL(folio_end_read); 1508 1509 /** 1510 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1511 * @folio: The folio. 1512 * 1513 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1514 * it. The folio reference held for PG_private_2 being set is released. 1515 * 1516 * This is, for example, used when a netfs folio is being written to a local 1517 * disk cache, thereby allowing writes to the cache for the same folio to be 1518 * serialised. 1519 */ 1520 void folio_end_private_2(struct folio *folio) 1521 { 1522 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1523 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1524 folio_wake_bit(folio, PG_private_2); 1525 folio_put(folio); 1526 } 1527 EXPORT_SYMBOL(folio_end_private_2); 1528 1529 /** 1530 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1531 * @folio: The folio to wait on. 1532 * 1533 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio. 1534 */ 1535 void folio_wait_private_2(struct folio *folio) 1536 { 1537 while (folio_test_private_2(folio)) 1538 folio_wait_bit(folio, PG_private_2); 1539 } 1540 EXPORT_SYMBOL(folio_wait_private_2); 1541 1542 /** 1543 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1544 * @folio: The folio to wait on. 1545 * 1546 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a 1547 * fatal signal is received by the calling task. 1548 * 1549 * Return: 1550 * - 0 if successful. 1551 * - -EINTR if a fatal signal was encountered. 1552 */ 1553 int folio_wait_private_2_killable(struct folio *folio) 1554 { 1555 int ret = 0; 1556 1557 while (folio_test_private_2(folio)) { 1558 ret = folio_wait_bit_killable(folio, PG_private_2); 1559 if (ret < 0) 1560 break; 1561 } 1562 1563 return ret; 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2_killable); 1566 1567 /** 1568 * folio_end_writeback - End writeback against a folio. 1569 * @folio: The folio. 1570 * 1571 * The folio must actually be under writeback. 1572 * 1573 * Context: May be called from process or interrupt context. 1574 */ 1575 void folio_end_writeback(struct folio *folio) 1576 { 1577 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1578 1579 /* 1580 * folio_test_clear_reclaim() could be used here but it is an 1581 * atomic operation and overkill in this particular case. Failing 1582 * to shuffle a folio marked for immediate reclaim is too mild 1583 * a gain to justify taking an atomic operation penalty at the 1584 * end of every folio writeback. 1585 */ 1586 if (folio_test_reclaim(folio)) { 1587 folio_clear_reclaim(folio); 1588 folio_rotate_reclaimable(folio); 1589 } 1590 1591 /* 1592 * Writeback does not hold a folio reference of its own, relying 1593 * on truncation to wait for the clearing of PG_writeback. 1594 * But here we must make sure that the folio is not freed and 1595 * reused before the folio_wake_bit(). 1596 */ 1597 folio_get(folio); 1598 if (__folio_end_writeback(folio)) 1599 folio_wake_bit(folio, PG_writeback); 1600 acct_reclaim_writeback(folio); 1601 folio_put(folio); 1602 } 1603 EXPORT_SYMBOL(folio_end_writeback); 1604 1605 /** 1606 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1607 * @folio: The folio to lock 1608 */ 1609 void __folio_lock(struct folio *folio) 1610 { 1611 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1612 EXCLUSIVE); 1613 } 1614 EXPORT_SYMBOL(__folio_lock); 1615 1616 int __folio_lock_killable(struct folio *folio) 1617 { 1618 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1619 EXCLUSIVE); 1620 } 1621 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1622 1623 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1624 { 1625 struct wait_queue_head *q = folio_waitqueue(folio); 1626 int ret = 0; 1627 1628 wait->folio = folio; 1629 wait->bit_nr = PG_locked; 1630 1631 spin_lock_irq(&q->lock); 1632 __add_wait_queue_entry_tail(q, &wait->wait); 1633 folio_set_waiters(folio); 1634 ret = !folio_trylock(folio); 1635 /* 1636 * If we were successful now, we know we're still on the 1637 * waitqueue as we're still under the lock. This means it's 1638 * safe to remove and return success, we know the callback 1639 * isn't going to trigger. 1640 */ 1641 if (!ret) 1642 __remove_wait_queue(q, &wait->wait); 1643 else 1644 ret = -EIOCBQUEUED; 1645 spin_unlock_irq(&q->lock); 1646 return ret; 1647 } 1648 1649 /* 1650 * Return values: 1651 * 0 - folio is locked. 1652 * non-zero - folio is not locked. 1653 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1654 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1655 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1656 * 1657 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1658 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1659 */ 1660 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1661 { 1662 unsigned int flags = vmf->flags; 1663 1664 if (fault_flag_allow_retry_first(flags)) { 1665 /* 1666 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1667 * released even though returning VM_FAULT_RETRY. 1668 */ 1669 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1670 return VM_FAULT_RETRY; 1671 1672 release_fault_lock(vmf); 1673 if (flags & FAULT_FLAG_KILLABLE) 1674 folio_wait_locked_killable(folio); 1675 else 1676 folio_wait_locked(folio); 1677 return VM_FAULT_RETRY; 1678 } 1679 if (flags & FAULT_FLAG_KILLABLE) { 1680 bool ret; 1681 1682 ret = __folio_lock_killable(folio); 1683 if (ret) { 1684 release_fault_lock(vmf); 1685 return VM_FAULT_RETRY; 1686 } 1687 } else { 1688 __folio_lock(folio); 1689 } 1690 1691 return 0; 1692 } 1693 1694 /** 1695 * page_cache_next_miss() - Find the next gap in the page cache. 1696 * @mapping: Mapping. 1697 * @index: Index. 1698 * @max_scan: Maximum range to search. 1699 * 1700 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1701 * gap with the lowest index. 1702 * 1703 * This function may be called under the rcu_read_lock. However, this will 1704 * not atomically search a snapshot of the cache at a single point in time. 1705 * For example, if a gap is created at index 5, then subsequently a gap is 1706 * created at index 10, page_cache_next_miss covering both indices may 1707 * return 10 if called under the rcu_read_lock. 1708 * 1709 * Return: The index of the gap if found, otherwise an index outside the 1710 * range specified (in which case 'return - index >= max_scan' will be true). 1711 * In the rare case of index wrap-around, 0 will be returned. 1712 */ 1713 pgoff_t page_cache_next_miss(struct address_space *mapping, 1714 pgoff_t index, unsigned long max_scan) 1715 { 1716 XA_STATE(xas, &mapping->i_pages, index); 1717 1718 while (max_scan--) { 1719 void *entry = xas_next(&xas); 1720 if (!entry || xa_is_value(entry)) 1721 break; 1722 if (xas.xa_index == 0) 1723 break; 1724 } 1725 1726 return xas.xa_index; 1727 } 1728 EXPORT_SYMBOL(page_cache_next_miss); 1729 1730 /** 1731 * page_cache_prev_miss() - Find the previous gap in the page cache. 1732 * @mapping: Mapping. 1733 * @index: Index. 1734 * @max_scan: Maximum range to search. 1735 * 1736 * Search the range [max(index - max_scan + 1, 0), index] for the 1737 * gap with the highest index. 1738 * 1739 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 10, then subsequently a gap is 1742 * created at index 5, page_cache_prev_miss() covering both indices may 1743 * return 5 if called under the rcu_read_lock. 1744 * 1745 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'index - return >= max_scan' will be true). 1747 * In the rare case of wrap-around, ULONG_MAX will be returned. 1748 */ 1749 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1750 pgoff_t index, unsigned long max_scan) 1751 { 1752 XA_STATE(xas, &mapping->i_pages, index); 1753 1754 while (max_scan--) { 1755 void *entry = xas_prev(&xas); 1756 if (!entry || xa_is_value(entry)) 1757 break; 1758 if (xas.xa_index == ULONG_MAX) 1759 break; 1760 } 1761 1762 return xas.xa_index; 1763 } 1764 EXPORT_SYMBOL(page_cache_prev_miss); 1765 1766 /* 1767 * Lockless page cache protocol: 1768 * On the lookup side: 1769 * 1. Load the folio from i_pages 1770 * 2. Increment the refcount if it's not zero 1771 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1772 * 1773 * On the removal side: 1774 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1775 * B. Remove the page from i_pages 1776 * C. Return the page to the page allocator 1777 * 1778 * This means that any page may have its reference count temporarily 1779 * increased by a speculative page cache (or fast GUP) lookup as it can 1780 * be allocated by another user before the RCU grace period expires. 1781 * Because the refcount temporarily acquired here may end up being the 1782 * last refcount on the page, any page allocation must be freeable by 1783 * folio_put(). 1784 */ 1785 1786 /* 1787 * filemap_get_entry - Get a page cache entry. 1788 * @mapping: the address_space to search 1789 * @index: The page cache index. 1790 * 1791 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1792 * it is returned with an increased refcount. If it is a shadow entry 1793 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1794 * it is returned without further action. 1795 * 1796 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1797 */ 1798 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1799 { 1800 XA_STATE(xas, &mapping->i_pages, index); 1801 struct folio *folio; 1802 1803 rcu_read_lock(); 1804 repeat: 1805 xas_reset(&xas); 1806 folio = xas_load(&xas); 1807 if (xas_retry(&xas, folio)) 1808 goto repeat; 1809 /* 1810 * A shadow entry of a recently evicted page, or a swap entry from 1811 * shmem/tmpfs. Return it without attempting to raise page count. 1812 */ 1813 if (!folio || xa_is_value(folio)) 1814 goto out; 1815 1816 if (!folio_try_get_rcu(folio)) 1817 goto repeat; 1818 1819 if (unlikely(folio != xas_reload(&xas))) { 1820 folio_put(folio); 1821 goto repeat; 1822 } 1823 out: 1824 rcu_read_unlock(); 1825 1826 return folio; 1827 } 1828 1829 /** 1830 * __filemap_get_folio - Find and get a reference to a folio. 1831 * @mapping: The address_space to search. 1832 * @index: The page index. 1833 * @fgp_flags: %FGP flags modify how the folio is returned. 1834 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1835 * 1836 * Looks up the page cache entry at @mapping & @index. 1837 * 1838 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1839 * if the %GFP flags specified for %FGP_CREAT are atomic. 1840 * 1841 * If this function returns a folio, it is returned with an increased refcount. 1842 * 1843 * Return: The found folio or an ERR_PTR() otherwise. 1844 */ 1845 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1846 fgf_t fgp_flags, gfp_t gfp) 1847 { 1848 struct folio *folio; 1849 1850 repeat: 1851 folio = filemap_get_entry(mapping, index); 1852 if (xa_is_value(folio)) 1853 folio = NULL; 1854 if (!folio) 1855 goto no_page; 1856 1857 if (fgp_flags & FGP_LOCK) { 1858 if (fgp_flags & FGP_NOWAIT) { 1859 if (!folio_trylock(folio)) { 1860 folio_put(folio); 1861 return ERR_PTR(-EAGAIN); 1862 } 1863 } else { 1864 folio_lock(folio); 1865 } 1866 1867 /* Has the page been truncated? */ 1868 if (unlikely(folio->mapping != mapping)) { 1869 folio_unlock(folio); 1870 folio_put(folio); 1871 goto repeat; 1872 } 1873 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1874 } 1875 1876 if (fgp_flags & FGP_ACCESSED) 1877 folio_mark_accessed(folio); 1878 else if (fgp_flags & FGP_WRITE) { 1879 /* Clear idle flag for buffer write */ 1880 if (folio_test_idle(folio)) 1881 folio_clear_idle(folio); 1882 } 1883 1884 if (fgp_flags & FGP_STABLE) 1885 folio_wait_stable(folio); 1886 no_page: 1887 if (!folio && (fgp_flags & FGP_CREAT)) { 1888 unsigned order = FGF_GET_ORDER(fgp_flags); 1889 int err; 1890 1891 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1892 gfp |= __GFP_WRITE; 1893 if (fgp_flags & FGP_NOFS) 1894 gfp &= ~__GFP_FS; 1895 if (fgp_flags & FGP_NOWAIT) { 1896 gfp &= ~GFP_KERNEL; 1897 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1898 } 1899 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1900 fgp_flags |= FGP_LOCK; 1901 1902 if (!mapping_large_folio_support(mapping)) 1903 order = 0; 1904 if (order > MAX_PAGECACHE_ORDER) 1905 order = MAX_PAGECACHE_ORDER; 1906 /* If we're not aligned, allocate a smaller folio */ 1907 if (index & ((1UL << order) - 1)) 1908 order = __ffs(index); 1909 1910 do { 1911 gfp_t alloc_gfp = gfp; 1912 1913 err = -ENOMEM; 1914 if (order == 1) 1915 order = 0; 1916 if (order > 0) 1917 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1918 folio = filemap_alloc_folio(alloc_gfp, order); 1919 if (!folio) 1920 continue; 1921 1922 /* Init accessed so avoid atomic mark_page_accessed later */ 1923 if (fgp_flags & FGP_ACCESSED) 1924 __folio_set_referenced(folio); 1925 1926 err = filemap_add_folio(mapping, folio, index, gfp); 1927 if (!err) 1928 break; 1929 folio_put(folio); 1930 folio = NULL; 1931 } while (order-- > 0); 1932 1933 if (err == -EEXIST) 1934 goto repeat; 1935 if (err) 1936 return ERR_PTR(err); 1937 /* 1938 * filemap_add_folio locks the page, and for mmap 1939 * we expect an unlocked page. 1940 */ 1941 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1942 folio_unlock(folio); 1943 } 1944 1945 if (!folio) 1946 return ERR_PTR(-ENOENT); 1947 return folio; 1948 } 1949 EXPORT_SYMBOL(__filemap_get_folio); 1950 1951 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1952 xa_mark_t mark) 1953 { 1954 struct folio *folio; 1955 1956 retry: 1957 if (mark == XA_PRESENT) 1958 folio = xas_find(xas, max); 1959 else 1960 folio = xas_find_marked(xas, max, mark); 1961 1962 if (xas_retry(xas, folio)) 1963 goto retry; 1964 /* 1965 * A shadow entry of a recently evicted page, a swap 1966 * entry from shmem/tmpfs or a DAX entry. Return it 1967 * without attempting to raise page count. 1968 */ 1969 if (!folio || xa_is_value(folio)) 1970 return folio; 1971 1972 if (!folio_try_get_rcu(folio)) 1973 goto reset; 1974 1975 if (unlikely(folio != xas_reload(xas))) { 1976 folio_put(folio); 1977 goto reset; 1978 } 1979 1980 return folio; 1981 reset: 1982 xas_reset(xas); 1983 goto retry; 1984 } 1985 1986 /** 1987 * find_get_entries - gang pagecache lookup 1988 * @mapping: The address_space to search 1989 * @start: The starting page cache index 1990 * @end: The final page index (inclusive). 1991 * @fbatch: Where the resulting entries are placed. 1992 * @indices: The cache indices corresponding to the entries in @entries 1993 * 1994 * find_get_entries() will search for and return a batch of entries in 1995 * the mapping. The entries are placed in @fbatch. find_get_entries() 1996 * takes a reference on any actual folios it returns. 1997 * 1998 * The entries have ascending indexes. The indices may not be consecutive 1999 * due to not-present entries or large folios. 2000 * 2001 * Any shadow entries of evicted folios, or swap entries from 2002 * shmem/tmpfs, are included in the returned array. 2003 * 2004 * Return: The number of entries which were found. 2005 */ 2006 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2007 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2008 { 2009 XA_STATE(xas, &mapping->i_pages, *start); 2010 struct folio *folio; 2011 2012 rcu_read_lock(); 2013 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2014 indices[fbatch->nr] = xas.xa_index; 2015 if (!folio_batch_add(fbatch, folio)) 2016 break; 2017 } 2018 rcu_read_unlock(); 2019 2020 if (folio_batch_count(fbatch)) { 2021 unsigned long nr = 1; 2022 int idx = folio_batch_count(fbatch) - 1; 2023 2024 folio = fbatch->folios[idx]; 2025 if (!xa_is_value(folio)) 2026 nr = folio_nr_pages(folio); 2027 *start = indices[idx] + nr; 2028 } 2029 return folio_batch_count(fbatch); 2030 } 2031 2032 /** 2033 * find_lock_entries - Find a batch of pagecache entries. 2034 * @mapping: The address_space to search. 2035 * @start: The starting page cache index. 2036 * @end: The final page index (inclusive). 2037 * @fbatch: Where the resulting entries are placed. 2038 * @indices: The cache indices of the entries in @fbatch. 2039 * 2040 * find_lock_entries() will return a batch of entries from @mapping. 2041 * Swap, shadow and DAX entries are included. Folios are returned 2042 * locked and with an incremented refcount. Folios which are locked 2043 * by somebody else or under writeback are skipped. Folios which are 2044 * partially outside the range are not returned. 2045 * 2046 * The entries have ascending indexes. The indices may not be consecutive 2047 * due to not-present entries, large folios, folios which could not be 2048 * locked or folios under writeback. 2049 * 2050 * Return: The number of entries which were found. 2051 */ 2052 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2053 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2054 { 2055 XA_STATE(xas, &mapping->i_pages, *start); 2056 struct folio *folio; 2057 2058 rcu_read_lock(); 2059 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2060 if (!xa_is_value(folio)) { 2061 if (folio->index < *start) 2062 goto put; 2063 if (folio_next_index(folio) - 1 > end) 2064 goto put; 2065 if (!folio_trylock(folio)) 2066 goto put; 2067 if (folio->mapping != mapping || 2068 folio_test_writeback(folio)) 2069 goto unlock; 2070 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2071 folio); 2072 } 2073 indices[fbatch->nr] = xas.xa_index; 2074 if (!folio_batch_add(fbatch, folio)) 2075 break; 2076 continue; 2077 unlock: 2078 folio_unlock(folio); 2079 put: 2080 folio_put(folio); 2081 } 2082 rcu_read_unlock(); 2083 2084 if (folio_batch_count(fbatch)) { 2085 unsigned long nr = 1; 2086 int idx = folio_batch_count(fbatch) - 1; 2087 2088 folio = fbatch->folios[idx]; 2089 if (!xa_is_value(folio)) 2090 nr = folio_nr_pages(folio); 2091 *start = indices[idx] + nr; 2092 } 2093 return folio_batch_count(fbatch); 2094 } 2095 2096 /** 2097 * filemap_get_folios - Get a batch of folios 2098 * @mapping: The address_space to search 2099 * @start: The starting page index 2100 * @end: The final page index (inclusive) 2101 * @fbatch: The batch to fill. 2102 * 2103 * Search for and return a batch of folios in the mapping starting at 2104 * index @start and up to index @end (inclusive). The folios are returned 2105 * in @fbatch with an elevated reference count. 2106 * 2107 * Return: The number of folios which were found. 2108 * We also update @start to index the next folio for the traversal. 2109 */ 2110 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2111 pgoff_t end, struct folio_batch *fbatch) 2112 { 2113 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2114 } 2115 EXPORT_SYMBOL(filemap_get_folios); 2116 2117 /** 2118 * filemap_get_folios_contig - Get a batch of contiguous folios 2119 * @mapping: The address_space to search 2120 * @start: The starting page index 2121 * @end: The final page index (inclusive) 2122 * @fbatch: The batch to fill 2123 * 2124 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2125 * except the returned folios are guaranteed to be contiguous. This may 2126 * not return all contiguous folios if the batch gets filled up. 2127 * 2128 * Return: The number of folios found. 2129 * Also update @start to be positioned for traversal of the next folio. 2130 */ 2131 2132 unsigned filemap_get_folios_contig(struct address_space *mapping, 2133 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2134 { 2135 XA_STATE(xas, &mapping->i_pages, *start); 2136 unsigned long nr; 2137 struct folio *folio; 2138 2139 rcu_read_lock(); 2140 2141 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2142 folio = xas_next(&xas)) { 2143 if (xas_retry(&xas, folio)) 2144 continue; 2145 /* 2146 * If the entry has been swapped out, we can stop looking. 2147 * No current caller is looking for DAX entries. 2148 */ 2149 if (xa_is_value(folio)) 2150 goto update_start; 2151 2152 if (!folio_try_get_rcu(folio)) 2153 goto retry; 2154 2155 if (unlikely(folio != xas_reload(&xas))) 2156 goto put_folio; 2157 2158 if (!folio_batch_add(fbatch, folio)) { 2159 nr = folio_nr_pages(folio); 2160 *start = folio->index + nr; 2161 goto out; 2162 } 2163 continue; 2164 put_folio: 2165 folio_put(folio); 2166 2167 retry: 2168 xas_reset(&xas); 2169 } 2170 2171 update_start: 2172 nr = folio_batch_count(fbatch); 2173 2174 if (nr) { 2175 folio = fbatch->folios[nr - 1]; 2176 *start = folio->index + folio_nr_pages(folio); 2177 } 2178 out: 2179 rcu_read_unlock(); 2180 return folio_batch_count(fbatch); 2181 } 2182 EXPORT_SYMBOL(filemap_get_folios_contig); 2183 2184 /** 2185 * filemap_get_folios_tag - Get a batch of folios matching @tag 2186 * @mapping: The address_space to search 2187 * @start: The starting page index 2188 * @end: The final page index (inclusive) 2189 * @tag: The tag index 2190 * @fbatch: The batch to fill 2191 * 2192 * The first folio may start before @start; if it does, it will contain 2193 * @start. The final folio may extend beyond @end; if it does, it will 2194 * contain @end. The folios have ascending indices. There may be gaps 2195 * between the folios if there are indices which have no folio in the 2196 * page cache. If folios are added to or removed from the page cache 2197 * while this is running, they may or may not be found by this call. 2198 * Only returns folios that are tagged with @tag. 2199 * 2200 * Return: The number of folios found. 2201 * Also update @start to index the next folio for traversal. 2202 */ 2203 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2204 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2205 { 2206 XA_STATE(xas, &mapping->i_pages, *start); 2207 struct folio *folio; 2208 2209 rcu_read_lock(); 2210 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2211 /* 2212 * Shadow entries should never be tagged, but this iteration 2213 * is lockless so there is a window for page reclaim to evict 2214 * a page we saw tagged. Skip over it. 2215 */ 2216 if (xa_is_value(folio)) 2217 continue; 2218 if (!folio_batch_add(fbatch, folio)) { 2219 unsigned long nr = folio_nr_pages(folio); 2220 *start = folio->index + nr; 2221 goto out; 2222 } 2223 } 2224 /* 2225 * We come here when there is no page beyond @end. We take care to not 2226 * overflow the index @start as it confuses some of the callers. This 2227 * breaks the iteration when there is a page at index -1 but that is 2228 * already broke anyway. 2229 */ 2230 if (end == (pgoff_t)-1) 2231 *start = (pgoff_t)-1; 2232 else 2233 *start = end + 1; 2234 out: 2235 rcu_read_unlock(); 2236 2237 return folio_batch_count(fbatch); 2238 } 2239 EXPORT_SYMBOL(filemap_get_folios_tag); 2240 2241 /* 2242 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2243 * a _large_ part of the i/o request. Imagine the worst scenario: 2244 * 2245 * ---R__________________________________________B__________ 2246 * ^ reading here ^ bad block(assume 4k) 2247 * 2248 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2249 * => failing the whole request => read(R) => read(R+1) => 2250 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2251 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2252 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2253 * 2254 * It is going insane. Fix it by quickly scaling down the readahead size. 2255 */ 2256 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2257 { 2258 ra->ra_pages /= 4; 2259 } 2260 2261 /* 2262 * filemap_get_read_batch - Get a batch of folios for read 2263 * 2264 * Get a batch of folios which represent a contiguous range of bytes in 2265 * the file. No exceptional entries will be returned. If @index is in 2266 * the middle of a folio, the entire folio will be returned. The last 2267 * folio in the batch may have the readahead flag set or the uptodate flag 2268 * clear so that the caller can take the appropriate action. 2269 */ 2270 static void filemap_get_read_batch(struct address_space *mapping, 2271 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2272 { 2273 XA_STATE(xas, &mapping->i_pages, index); 2274 struct folio *folio; 2275 2276 rcu_read_lock(); 2277 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2278 if (xas_retry(&xas, folio)) 2279 continue; 2280 if (xas.xa_index > max || xa_is_value(folio)) 2281 break; 2282 if (xa_is_sibling(folio)) 2283 break; 2284 if (!folio_try_get_rcu(folio)) 2285 goto retry; 2286 2287 if (unlikely(folio != xas_reload(&xas))) 2288 goto put_folio; 2289 2290 if (!folio_batch_add(fbatch, folio)) 2291 break; 2292 if (!folio_test_uptodate(folio)) 2293 break; 2294 if (folio_test_readahead(folio)) 2295 break; 2296 xas_advance(&xas, folio_next_index(folio) - 1); 2297 continue; 2298 put_folio: 2299 folio_put(folio); 2300 retry: 2301 xas_reset(&xas); 2302 } 2303 rcu_read_unlock(); 2304 } 2305 2306 static int filemap_read_folio(struct file *file, filler_t filler, 2307 struct folio *folio) 2308 { 2309 bool workingset = folio_test_workingset(folio); 2310 unsigned long pflags; 2311 int error; 2312 2313 /* 2314 * A previous I/O error may have been due to temporary failures, 2315 * eg. multipath errors. PG_error will be set again if read_folio 2316 * fails. 2317 */ 2318 folio_clear_error(folio); 2319 2320 /* Start the actual read. The read will unlock the page. */ 2321 if (unlikely(workingset)) 2322 psi_memstall_enter(&pflags); 2323 error = filler(file, folio); 2324 if (unlikely(workingset)) 2325 psi_memstall_leave(&pflags); 2326 if (error) 2327 return error; 2328 2329 error = folio_wait_locked_killable(folio); 2330 if (error) 2331 return error; 2332 if (folio_test_uptodate(folio)) 2333 return 0; 2334 if (file) 2335 shrink_readahead_size_eio(&file->f_ra); 2336 return -EIO; 2337 } 2338 2339 static bool filemap_range_uptodate(struct address_space *mapping, 2340 loff_t pos, size_t count, struct folio *folio, 2341 bool need_uptodate) 2342 { 2343 if (folio_test_uptodate(folio)) 2344 return true; 2345 /* pipes can't handle partially uptodate pages */ 2346 if (need_uptodate) 2347 return false; 2348 if (!mapping->a_ops->is_partially_uptodate) 2349 return false; 2350 if (mapping->host->i_blkbits >= folio_shift(folio)) 2351 return false; 2352 2353 if (folio_pos(folio) > pos) { 2354 count -= folio_pos(folio) - pos; 2355 pos = 0; 2356 } else { 2357 pos -= folio_pos(folio); 2358 } 2359 2360 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2361 } 2362 2363 static int filemap_update_page(struct kiocb *iocb, 2364 struct address_space *mapping, size_t count, 2365 struct folio *folio, bool need_uptodate) 2366 { 2367 int error; 2368 2369 if (iocb->ki_flags & IOCB_NOWAIT) { 2370 if (!filemap_invalidate_trylock_shared(mapping)) 2371 return -EAGAIN; 2372 } else { 2373 filemap_invalidate_lock_shared(mapping); 2374 } 2375 2376 if (!folio_trylock(folio)) { 2377 error = -EAGAIN; 2378 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2379 goto unlock_mapping; 2380 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2381 filemap_invalidate_unlock_shared(mapping); 2382 /* 2383 * This is where we usually end up waiting for a 2384 * previously submitted readahead to finish. 2385 */ 2386 folio_put_wait_locked(folio, TASK_KILLABLE); 2387 return AOP_TRUNCATED_PAGE; 2388 } 2389 error = __folio_lock_async(folio, iocb->ki_waitq); 2390 if (error) 2391 goto unlock_mapping; 2392 } 2393 2394 error = AOP_TRUNCATED_PAGE; 2395 if (!folio->mapping) 2396 goto unlock; 2397 2398 error = 0; 2399 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2400 need_uptodate)) 2401 goto unlock; 2402 2403 error = -EAGAIN; 2404 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2405 goto unlock; 2406 2407 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2408 folio); 2409 goto unlock_mapping; 2410 unlock: 2411 folio_unlock(folio); 2412 unlock_mapping: 2413 filemap_invalidate_unlock_shared(mapping); 2414 if (error == AOP_TRUNCATED_PAGE) 2415 folio_put(folio); 2416 return error; 2417 } 2418 2419 static int filemap_create_folio(struct file *file, 2420 struct address_space *mapping, pgoff_t index, 2421 struct folio_batch *fbatch) 2422 { 2423 struct folio *folio; 2424 int error; 2425 2426 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0); 2427 if (!folio) 2428 return -ENOMEM; 2429 2430 /* 2431 * Protect against truncate / hole punch. Grabbing invalidate_lock 2432 * here assures we cannot instantiate and bring uptodate new 2433 * pagecache folios after evicting page cache during truncate 2434 * and before actually freeing blocks. Note that we could 2435 * release invalidate_lock after inserting the folio into 2436 * the page cache as the locked folio would then be enough to 2437 * synchronize with hole punching. But there are code paths 2438 * such as filemap_update_page() filling in partially uptodate 2439 * pages or ->readahead() that need to hold invalidate_lock 2440 * while mapping blocks for IO so let's hold the lock here as 2441 * well to keep locking rules simple. 2442 */ 2443 filemap_invalidate_lock_shared(mapping); 2444 error = filemap_add_folio(mapping, folio, index, 2445 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2446 if (error == -EEXIST) 2447 error = AOP_TRUNCATED_PAGE; 2448 if (error) 2449 goto error; 2450 2451 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2452 if (error) 2453 goto error; 2454 2455 filemap_invalidate_unlock_shared(mapping); 2456 folio_batch_add(fbatch, folio); 2457 return 0; 2458 error: 2459 filemap_invalidate_unlock_shared(mapping); 2460 folio_put(folio); 2461 return error; 2462 } 2463 2464 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2465 struct address_space *mapping, struct folio *folio, 2466 pgoff_t last_index) 2467 { 2468 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2469 2470 if (iocb->ki_flags & IOCB_NOIO) 2471 return -EAGAIN; 2472 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2473 return 0; 2474 } 2475 2476 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2477 struct folio_batch *fbatch, bool need_uptodate) 2478 { 2479 struct file *filp = iocb->ki_filp; 2480 struct address_space *mapping = filp->f_mapping; 2481 struct file_ra_state *ra = &filp->f_ra; 2482 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2483 pgoff_t last_index; 2484 struct folio *folio; 2485 int err = 0; 2486 2487 /* "last_index" is the index of the page beyond the end of the read */ 2488 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2489 retry: 2490 if (fatal_signal_pending(current)) 2491 return -EINTR; 2492 2493 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2494 if (!folio_batch_count(fbatch)) { 2495 if (iocb->ki_flags & IOCB_NOIO) 2496 return -EAGAIN; 2497 page_cache_sync_readahead(mapping, ra, filp, index, 2498 last_index - index); 2499 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2500 } 2501 if (!folio_batch_count(fbatch)) { 2502 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2503 return -EAGAIN; 2504 err = filemap_create_folio(filp, mapping, 2505 iocb->ki_pos >> PAGE_SHIFT, fbatch); 2506 if (err == AOP_TRUNCATED_PAGE) 2507 goto retry; 2508 return err; 2509 } 2510 2511 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2512 if (folio_test_readahead(folio)) { 2513 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2514 if (err) 2515 goto err; 2516 } 2517 if (!folio_test_uptodate(folio)) { 2518 if ((iocb->ki_flags & IOCB_WAITQ) && 2519 folio_batch_count(fbatch) > 1) 2520 iocb->ki_flags |= IOCB_NOWAIT; 2521 err = filemap_update_page(iocb, mapping, count, folio, 2522 need_uptodate); 2523 if (err) 2524 goto err; 2525 } 2526 2527 return 0; 2528 err: 2529 if (err < 0) 2530 folio_put(folio); 2531 if (likely(--fbatch->nr)) 2532 return 0; 2533 if (err == AOP_TRUNCATED_PAGE) 2534 goto retry; 2535 return err; 2536 } 2537 2538 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2539 { 2540 unsigned int shift = folio_shift(folio); 2541 2542 return (pos1 >> shift == pos2 >> shift); 2543 } 2544 2545 /** 2546 * filemap_read - Read data from the page cache. 2547 * @iocb: The iocb to read. 2548 * @iter: Destination for the data. 2549 * @already_read: Number of bytes already read by the caller. 2550 * 2551 * Copies data from the page cache. If the data is not currently present, 2552 * uses the readahead and read_folio address_space operations to fetch it. 2553 * 2554 * Return: Total number of bytes copied, including those already read by 2555 * the caller. If an error happens before any bytes are copied, returns 2556 * a negative error number. 2557 */ 2558 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2559 ssize_t already_read) 2560 { 2561 struct file *filp = iocb->ki_filp; 2562 struct file_ra_state *ra = &filp->f_ra; 2563 struct address_space *mapping = filp->f_mapping; 2564 struct inode *inode = mapping->host; 2565 struct folio_batch fbatch; 2566 int i, error = 0; 2567 bool writably_mapped; 2568 loff_t isize, end_offset; 2569 loff_t last_pos = ra->prev_pos; 2570 2571 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2572 return 0; 2573 if (unlikely(!iov_iter_count(iter))) 2574 return 0; 2575 2576 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2577 folio_batch_init(&fbatch); 2578 2579 do { 2580 cond_resched(); 2581 2582 /* 2583 * If we've already successfully copied some data, then we 2584 * can no longer safely return -EIOCBQUEUED. Hence mark 2585 * an async read NOWAIT at that point. 2586 */ 2587 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2588 iocb->ki_flags |= IOCB_NOWAIT; 2589 2590 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2591 break; 2592 2593 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2594 if (error < 0) 2595 break; 2596 2597 /* 2598 * i_size must be checked after we know the pages are Uptodate. 2599 * 2600 * Checking i_size after the check allows us to calculate 2601 * the correct value for "nr", which means the zero-filled 2602 * part of the page is not copied back to userspace (unless 2603 * another truncate extends the file - this is desired though). 2604 */ 2605 isize = i_size_read(inode); 2606 if (unlikely(iocb->ki_pos >= isize)) 2607 goto put_folios; 2608 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2609 2610 /* 2611 * Pairs with a barrier in 2612 * block_write_end()->mark_buffer_dirty() or other page 2613 * dirtying routines like iomap_write_end() to ensure 2614 * changes to page contents are visible before we see 2615 * increased inode size. 2616 */ 2617 smp_rmb(); 2618 2619 /* 2620 * Once we start copying data, we don't want to be touching any 2621 * cachelines that might be contended: 2622 */ 2623 writably_mapped = mapping_writably_mapped(mapping); 2624 2625 /* 2626 * When a read accesses the same folio several times, only 2627 * mark it as accessed the first time. 2628 */ 2629 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2630 fbatch.folios[0])) 2631 folio_mark_accessed(fbatch.folios[0]); 2632 2633 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2634 struct folio *folio = fbatch.folios[i]; 2635 size_t fsize = folio_size(folio); 2636 size_t offset = iocb->ki_pos & (fsize - 1); 2637 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2638 fsize - offset); 2639 size_t copied; 2640 2641 if (end_offset < folio_pos(folio)) 2642 break; 2643 if (i > 0) 2644 folio_mark_accessed(folio); 2645 /* 2646 * If users can be writing to this folio using arbitrary 2647 * virtual addresses, take care of potential aliasing 2648 * before reading the folio on the kernel side. 2649 */ 2650 if (writably_mapped) 2651 flush_dcache_folio(folio); 2652 2653 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2654 2655 already_read += copied; 2656 iocb->ki_pos += copied; 2657 last_pos = iocb->ki_pos; 2658 2659 if (copied < bytes) { 2660 error = -EFAULT; 2661 break; 2662 } 2663 } 2664 put_folios: 2665 for (i = 0; i < folio_batch_count(&fbatch); i++) 2666 folio_put(fbatch.folios[i]); 2667 folio_batch_init(&fbatch); 2668 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2669 2670 file_accessed(filp); 2671 ra->prev_pos = last_pos; 2672 return already_read ? already_read : error; 2673 } 2674 EXPORT_SYMBOL_GPL(filemap_read); 2675 2676 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2677 { 2678 struct address_space *mapping = iocb->ki_filp->f_mapping; 2679 loff_t pos = iocb->ki_pos; 2680 loff_t end = pos + count - 1; 2681 2682 if (iocb->ki_flags & IOCB_NOWAIT) { 2683 if (filemap_range_needs_writeback(mapping, pos, end)) 2684 return -EAGAIN; 2685 return 0; 2686 } 2687 2688 return filemap_write_and_wait_range(mapping, pos, end); 2689 } 2690 2691 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2692 { 2693 struct address_space *mapping = iocb->ki_filp->f_mapping; 2694 loff_t pos = iocb->ki_pos; 2695 loff_t end = pos + count - 1; 2696 int ret; 2697 2698 if (iocb->ki_flags & IOCB_NOWAIT) { 2699 /* we could block if there are any pages in the range */ 2700 if (filemap_range_has_page(mapping, pos, end)) 2701 return -EAGAIN; 2702 } else { 2703 ret = filemap_write_and_wait_range(mapping, pos, end); 2704 if (ret) 2705 return ret; 2706 } 2707 2708 /* 2709 * After a write we want buffered reads to be sure to go to disk to get 2710 * the new data. We invalidate clean cached page from the region we're 2711 * about to write. We do this *before* the write so that we can return 2712 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2713 */ 2714 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2715 end >> PAGE_SHIFT); 2716 } 2717 2718 /** 2719 * generic_file_read_iter - generic filesystem read routine 2720 * @iocb: kernel I/O control block 2721 * @iter: destination for the data read 2722 * 2723 * This is the "read_iter()" routine for all filesystems 2724 * that can use the page cache directly. 2725 * 2726 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2727 * be returned when no data can be read without waiting for I/O requests 2728 * to complete; it doesn't prevent readahead. 2729 * 2730 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2731 * requests shall be made for the read or for readahead. When no data 2732 * can be read, -EAGAIN shall be returned. When readahead would be 2733 * triggered, a partial, possibly empty read shall be returned. 2734 * 2735 * Return: 2736 * * number of bytes copied, even for partial reads 2737 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2738 */ 2739 ssize_t 2740 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2741 { 2742 size_t count = iov_iter_count(iter); 2743 ssize_t retval = 0; 2744 2745 if (!count) 2746 return 0; /* skip atime */ 2747 2748 if (iocb->ki_flags & IOCB_DIRECT) { 2749 struct file *file = iocb->ki_filp; 2750 struct address_space *mapping = file->f_mapping; 2751 struct inode *inode = mapping->host; 2752 2753 retval = kiocb_write_and_wait(iocb, count); 2754 if (retval < 0) 2755 return retval; 2756 file_accessed(file); 2757 2758 retval = mapping->a_ops->direct_IO(iocb, iter); 2759 if (retval >= 0) { 2760 iocb->ki_pos += retval; 2761 count -= retval; 2762 } 2763 if (retval != -EIOCBQUEUED) 2764 iov_iter_revert(iter, count - iov_iter_count(iter)); 2765 2766 /* 2767 * Btrfs can have a short DIO read if we encounter 2768 * compressed extents, so if there was an error, or if 2769 * we've already read everything we wanted to, or if 2770 * there was a short read because we hit EOF, go ahead 2771 * and return. Otherwise fallthrough to buffered io for 2772 * the rest of the read. Buffered reads will not work for 2773 * DAX files, so don't bother trying. 2774 */ 2775 if (retval < 0 || !count || IS_DAX(inode)) 2776 return retval; 2777 if (iocb->ki_pos >= i_size_read(inode)) 2778 return retval; 2779 } 2780 2781 return filemap_read(iocb, iter, retval); 2782 } 2783 EXPORT_SYMBOL(generic_file_read_iter); 2784 2785 /* 2786 * Splice subpages from a folio into a pipe. 2787 */ 2788 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2789 struct folio *folio, loff_t fpos, size_t size) 2790 { 2791 struct page *page; 2792 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2793 2794 page = folio_page(folio, offset / PAGE_SIZE); 2795 size = min(size, folio_size(folio) - offset); 2796 offset %= PAGE_SIZE; 2797 2798 while (spliced < size && 2799 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2800 struct pipe_buffer *buf = pipe_head_buf(pipe); 2801 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2802 2803 *buf = (struct pipe_buffer) { 2804 .ops = &page_cache_pipe_buf_ops, 2805 .page = page, 2806 .offset = offset, 2807 .len = part, 2808 }; 2809 folio_get(folio); 2810 pipe->head++; 2811 page++; 2812 spliced += part; 2813 offset = 0; 2814 } 2815 2816 return spliced; 2817 } 2818 2819 /** 2820 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2821 * @in: The file to read from 2822 * @ppos: Pointer to the file position to read from 2823 * @pipe: The pipe to splice into 2824 * @len: The amount to splice 2825 * @flags: The SPLICE_F_* flags 2826 * 2827 * This function gets folios from a file's pagecache and splices them into the 2828 * pipe. Readahead will be called as necessary to fill more folios. This may 2829 * be used for blockdevs also. 2830 * 2831 * Return: On success, the number of bytes read will be returned and *@ppos 2832 * will be updated if appropriate; 0 will be returned if there is no more data 2833 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2834 * other negative error code will be returned on error. A short read may occur 2835 * if the pipe has insufficient space, we reach the end of the data or we hit a 2836 * hole. 2837 */ 2838 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2839 struct pipe_inode_info *pipe, 2840 size_t len, unsigned int flags) 2841 { 2842 struct folio_batch fbatch; 2843 struct kiocb iocb; 2844 size_t total_spliced = 0, used, npages; 2845 loff_t isize, end_offset; 2846 bool writably_mapped; 2847 int i, error = 0; 2848 2849 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2850 return 0; 2851 2852 init_sync_kiocb(&iocb, in); 2853 iocb.ki_pos = *ppos; 2854 2855 /* Work out how much data we can actually add into the pipe */ 2856 used = pipe_occupancy(pipe->head, pipe->tail); 2857 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2858 len = min_t(size_t, len, npages * PAGE_SIZE); 2859 2860 folio_batch_init(&fbatch); 2861 2862 do { 2863 cond_resched(); 2864 2865 if (*ppos >= i_size_read(in->f_mapping->host)) 2866 break; 2867 2868 iocb.ki_pos = *ppos; 2869 error = filemap_get_pages(&iocb, len, &fbatch, true); 2870 if (error < 0) 2871 break; 2872 2873 /* 2874 * i_size must be checked after we know the pages are Uptodate. 2875 * 2876 * Checking i_size after the check allows us to calculate 2877 * the correct value for "nr", which means the zero-filled 2878 * part of the page is not copied back to userspace (unless 2879 * another truncate extends the file - this is desired though). 2880 */ 2881 isize = i_size_read(in->f_mapping->host); 2882 if (unlikely(*ppos >= isize)) 2883 break; 2884 end_offset = min_t(loff_t, isize, *ppos + len); 2885 2886 /* 2887 * Once we start copying data, we don't want to be touching any 2888 * cachelines that might be contended: 2889 */ 2890 writably_mapped = mapping_writably_mapped(in->f_mapping); 2891 2892 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2893 struct folio *folio = fbatch.folios[i]; 2894 size_t n; 2895 2896 if (folio_pos(folio) >= end_offset) 2897 goto out; 2898 folio_mark_accessed(folio); 2899 2900 /* 2901 * If users can be writing to this folio using arbitrary 2902 * virtual addresses, take care of potential aliasing 2903 * before reading the folio on the kernel side. 2904 */ 2905 if (writably_mapped) 2906 flush_dcache_folio(folio); 2907 2908 n = min_t(loff_t, len, isize - *ppos); 2909 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2910 if (!n) 2911 goto out; 2912 len -= n; 2913 total_spliced += n; 2914 *ppos += n; 2915 in->f_ra.prev_pos = *ppos; 2916 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2917 goto out; 2918 } 2919 2920 folio_batch_release(&fbatch); 2921 } while (len); 2922 2923 out: 2924 folio_batch_release(&fbatch); 2925 file_accessed(in); 2926 2927 return total_spliced ? total_spliced : error; 2928 } 2929 EXPORT_SYMBOL(filemap_splice_read); 2930 2931 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2932 struct address_space *mapping, struct folio *folio, 2933 loff_t start, loff_t end, bool seek_data) 2934 { 2935 const struct address_space_operations *ops = mapping->a_ops; 2936 size_t offset, bsz = i_blocksize(mapping->host); 2937 2938 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2939 return seek_data ? start : end; 2940 if (!ops->is_partially_uptodate) 2941 return seek_data ? end : start; 2942 2943 xas_pause(xas); 2944 rcu_read_unlock(); 2945 folio_lock(folio); 2946 if (unlikely(folio->mapping != mapping)) 2947 goto unlock; 2948 2949 offset = offset_in_folio(folio, start) & ~(bsz - 1); 2950 2951 do { 2952 if (ops->is_partially_uptodate(folio, offset, bsz) == 2953 seek_data) 2954 break; 2955 start = (start + bsz) & ~(bsz - 1); 2956 offset += bsz; 2957 } while (offset < folio_size(folio)); 2958 unlock: 2959 folio_unlock(folio); 2960 rcu_read_lock(); 2961 return start; 2962 } 2963 2964 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 2965 { 2966 if (xa_is_value(folio)) 2967 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index); 2968 return folio_size(folio); 2969 } 2970 2971 /** 2972 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 2973 * @mapping: Address space to search. 2974 * @start: First byte to consider. 2975 * @end: Limit of search (exclusive). 2976 * @whence: Either SEEK_HOLE or SEEK_DATA. 2977 * 2978 * If the page cache knows which blocks contain holes and which blocks 2979 * contain data, your filesystem can use this function to implement 2980 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 2981 * entirely memory-based such as tmpfs, and filesystems which support 2982 * unwritten extents. 2983 * 2984 * Return: The requested offset on success, or -ENXIO if @whence specifies 2985 * SEEK_DATA and there is no data after @start. There is an implicit hole 2986 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 2987 * and @end contain data. 2988 */ 2989 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 2990 loff_t end, int whence) 2991 { 2992 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 2993 pgoff_t max = (end - 1) >> PAGE_SHIFT; 2994 bool seek_data = (whence == SEEK_DATA); 2995 struct folio *folio; 2996 2997 if (end <= start) 2998 return -ENXIO; 2999 3000 rcu_read_lock(); 3001 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3002 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3003 size_t seek_size; 3004 3005 if (start < pos) { 3006 if (!seek_data) 3007 goto unlock; 3008 start = pos; 3009 } 3010 3011 seek_size = seek_folio_size(&xas, folio); 3012 pos = round_up((u64)pos + 1, seek_size); 3013 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3014 seek_data); 3015 if (start < pos) 3016 goto unlock; 3017 if (start >= end) 3018 break; 3019 if (seek_size > PAGE_SIZE) 3020 xas_set(&xas, pos >> PAGE_SHIFT); 3021 if (!xa_is_value(folio)) 3022 folio_put(folio); 3023 } 3024 if (seek_data) 3025 start = -ENXIO; 3026 unlock: 3027 rcu_read_unlock(); 3028 if (folio && !xa_is_value(folio)) 3029 folio_put(folio); 3030 if (start > end) 3031 return end; 3032 return start; 3033 } 3034 3035 #ifdef CONFIG_MMU 3036 #define MMAP_LOTSAMISS (100) 3037 /* 3038 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3039 * @vmf - the vm_fault for this fault. 3040 * @folio - the folio to lock. 3041 * @fpin - the pointer to the file we may pin (or is already pinned). 3042 * 3043 * This works similar to lock_folio_or_retry in that it can drop the 3044 * mmap_lock. It differs in that it actually returns the folio locked 3045 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3046 * to drop the mmap_lock then fpin will point to the pinned file and 3047 * needs to be fput()'ed at a later point. 3048 */ 3049 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3050 struct file **fpin) 3051 { 3052 if (folio_trylock(folio)) 3053 return 1; 3054 3055 /* 3056 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3057 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3058 * is supposed to work. We have way too many special cases.. 3059 */ 3060 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3061 return 0; 3062 3063 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3064 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3065 if (__folio_lock_killable(folio)) { 3066 /* 3067 * We didn't have the right flags to drop the 3068 * fault lock, but all fault_handlers only check 3069 * for fatal signals if we return VM_FAULT_RETRY, 3070 * so we need to drop the fault lock here and 3071 * return 0 if we don't have a fpin. 3072 */ 3073 if (*fpin == NULL) 3074 release_fault_lock(vmf); 3075 return 0; 3076 } 3077 } else 3078 __folio_lock(folio); 3079 3080 return 1; 3081 } 3082 3083 /* 3084 * Synchronous readahead happens when we don't even find a page in the page 3085 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3086 * to drop the mmap sem we return the file that was pinned in order for us to do 3087 * that. If we didn't pin a file then we return NULL. The file that is 3088 * returned needs to be fput()'ed when we're done with it. 3089 */ 3090 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3091 { 3092 struct file *file = vmf->vma->vm_file; 3093 struct file_ra_state *ra = &file->f_ra; 3094 struct address_space *mapping = file->f_mapping; 3095 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3096 struct file *fpin = NULL; 3097 unsigned long vm_flags = vmf->vma->vm_flags; 3098 unsigned int mmap_miss; 3099 3100 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3101 /* Use the readahead code, even if readahead is disabled */ 3102 if (vm_flags & VM_HUGEPAGE) { 3103 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3104 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3105 ra->size = HPAGE_PMD_NR; 3106 /* 3107 * Fetch two PMD folios, so we get the chance to actually 3108 * readahead, unless we've been told not to. 3109 */ 3110 if (!(vm_flags & VM_RAND_READ)) 3111 ra->size *= 2; 3112 ra->async_size = HPAGE_PMD_NR; 3113 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3114 return fpin; 3115 } 3116 #endif 3117 3118 /* If we don't want any read-ahead, don't bother */ 3119 if (vm_flags & VM_RAND_READ) 3120 return fpin; 3121 if (!ra->ra_pages) 3122 return fpin; 3123 3124 if (vm_flags & VM_SEQ_READ) { 3125 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3126 page_cache_sync_ra(&ractl, ra->ra_pages); 3127 return fpin; 3128 } 3129 3130 /* Avoid banging the cache line if not needed */ 3131 mmap_miss = READ_ONCE(ra->mmap_miss); 3132 if (mmap_miss < MMAP_LOTSAMISS * 10) 3133 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3134 3135 /* 3136 * Do we miss much more than hit in this file? If so, 3137 * stop bothering with read-ahead. It will only hurt. 3138 */ 3139 if (mmap_miss > MMAP_LOTSAMISS) 3140 return fpin; 3141 3142 /* 3143 * mmap read-around 3144 */ 3145 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3146 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3147 ra->size = ra->ra_pages; 3148 ra->async_size = ra->ra_pages / 4; 3149 ractl._index = ra->start; 3150 page_cache_ra_order(&ractl, ra, 0); 3151 return fpin; 3152 } 3153 3154 /* 3155 * Asynchronous readahead happens when we find the page and PG_readahead, 3156 * so we want to possibly extend the readahead further. We return the file that 3157 * was pinned if we have to drop the mmap_lock in order to do IO. 3158 */ 3159 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3160 struct folio *folio) 3161 { 3162 struct file *file = vmf->vma->vm_file; 3163 struct file_ra_state *ra = &file->f_ra; 3164 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3165 struct file *fpin = NULL; 3166 unsigned int mmap_miss; 3167 3168 /* If we don't want any read-ahead, don't bother */ 3169 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3170 return fpin; 3171 3172 mmap_miss = READ_ONCE(ra->mmap_miss); 3173 if (mmap_miss) 3174 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3175 3176 if (folio_test_readahead(folio)) { 3177 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3178 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3179 } 3180 return fpin; 3181 } 3182 3183 /** 3184 * filemap_fault - read in file data for page fault handling 3185 * @vmf: struct vm_fault containing details of the fault 3186 * 3187 * filemap_fault() is invoked via the vma operations vector for a 3188 * mapped memory region to read in file data during a page fault. 3189 * 3190 * The goto's are kind of ugly, but this streamlines the normal case of having 3191 * it in the page cache, and handles the special cases reasonably without 3192 * having a lot of duplicated code. 3193 * 3194 * vma->vm_mm->mmap_lock must be held on entry. 3195 * 3196 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3197 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3198 * 3199 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3200 * has not been released. 3201 * 3202 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3203 * 3204 * Return: bitwise-OR of %VM_FAULT_ codes. 3205 */ 3206 vm_fault_t filemap_fault(struct vm_fault *vmf) 3207 { 3208 int error; 3209 struct file *file = vmf->vma->vm_file; 3210 struct file *fpin = NULL; 3211 struct address_space *mapping = file->f_mapping; 3212 struct inode *inode = mapping->host; 3213 pgoff_t max_idx, index = vmf->pgoff; 3214 struct folio *folio; 3215 vm_fault_t ret = 0; 3216 bool mapping_locked = false; 3217 3218 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3219 if (unlikely(index >= max_idx)) 3220 return VM_FAULT_SIGBUS; 3221 3222 /* 3223 * Do we have something in the page cache already? 3224 */ 3225 folio = filemap_get_folio(mapping, index); 3226 if (likely(!IS_ERR(folio))) { 3227 /* 3228 * We found the page, so try async readahead before waiting for 3229 * the lock. 3230 */ 3231 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3232 fpin = do_async_mmap_readahead(vmf, folio); 3233 if (unlikely(!folio_test_uptodate(folio))) { 3234 filemap_invalidate_lock_shared(mapping); 3235 mapping_locked = true; 3236 } 3237 } else { 3238 /* No page in the page cache at all */ 3239 count_vm_event(PGMAJFAULT); 3240 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3241 ret = VM_FAULT_MAJOR; 3242 fpin = do_sync_mmap_readahead(vmf); 3243 retry_find: 3244 /* 3245 * See comment in filemap_create_folio() why we need 3246 * invalidate_lock 3247 */ 3248 if (!mapping_locked) { 3249 filemap_invalidate_lock_shared(mapping); 3250 mapping_locked = true; 3251 } 3252 folio = __filemap_get_folio(mapping, index, 3253 FGP_CREAT|FGP_FOR_MMAP, 3254 vmf->gfp_mask); 3255 if (IS_ERR(folio)) { 3256 if (fpin) 3257 goto out_retry; 3258 filemap_invalidate_unlock_shared(mapping); 3259 return VM_FAULT_OOM; 3260 } 3261 } 3262 3263 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3264 goto out_retry; 3265 3266 /* Did it get truncated? */ 3267 if (unlikely(folio->mapping != mapping)) { 3268 folio_unlock(folio); 3269 folio_put(folio); 3270 goto retry_find; 3271 } 3272 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3273 3274 /* 3275 * We have a locked folio in the page cache, now we need to check 3276 * that it's up-to-date. If not, it is going to be due to an error, 3277 * or because readahead was otherwise unable to retrieve it. 3278 */ 3279 if (unlikely(!folio_test_uptodate(folio))) { 3280 /* 3281 * If the invalidate lock is not held, the folio was in cache 3282 * and uptodate and now it is not. Strange but possible since we 3283 * didn't hold the page lock all the time. Let's drop 3284 * everything, get the invalidate lock and try again. 3285 */ 3286 if (!mapping_locked) { 3287 folio_unlock(folio); 3288 folio_put(folio); 3289 goto retry_find; 3290 } 3291 3292 /* 3293 * OK, the folio is really not uptodate. This can be because the 3294 * VMA has the VM_RAND_READ flag set, or because an error 3295 * arose. Let's read it in directly. 3296 */ 3297 goto page_not_uptodate; 3298 } 3299 3300 /* 3301 * We've made it this far and we had to drop our mmap_lock, now is the 3302 * time to return to the upper layer and have it re-find the vma and 3303 * redo the fault. 3304 */ 3305 if (fpin) { 3306 folio_unlock(folio); 3307 goto out_retry; 3308 } 3309 if (mapping_locked) 3310 filemap_invalidate_unlock_shared(mapping); 3311 3312 /* 3313 * Found the page and have a reference on it. 3314 * We must recheck i_size under page lock. 3315 */ 3316 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3317 if (unlikely(index >= max_idx)) { 3318 folio_unlock(folio); 3319 folio_put(folio); 3320 return VM_FAULT_SIGBUS; 3321 } 3322 3323 vmf->page = folio_file_page(folio, index); 3324 return ret | VM_FAULT_LOCKED; 3325 3326 page_not_uptodate: 3327 /* 3328 * Umm, take care of errors if the page isn't up-to-date. 3329 * Try to re-read it _once_. We do this synchronously, 3330 * because there really aren't any performance issues here 3331 * and we need to check for errors. 3332 */ 3333 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3334 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3335 if (fpin) 3336 goto out_retry; 3337 folio_put(folio); 3338 3339 if (!error || error == AOP_TRUNCATED_PAGE) 3340 goto retry_find; 3341 filemap_invalidate_unlock_shared(mapping); 3342 3343 return VM_FAULT_SIGBUS; 3344 3345 out_retry: 3346 /* 3347 * We dropped the mmap_lock, we need to return to the fault handler to 3348 * re-find the vma and come back and find our hopefully still populated 3349 * page. 3350 */ 3351 if (!IS_ERR(folio)) 3352 folio_put(folio); 3353 if (mapping_locked) 3354 filemap_invalidate_unlock_shared(mapping); 3355 if (fpin) 3356 fput(fpin); 3357 return ret | VM_FAULT_RETRY; 3358 } 3359 EXPORT_SYMBOL(filemap_fault); 3360 3361 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3362 pgoff_t start) 3363 { 3364 struct mm_struct *mm = vmf->vma->vm_mm; 3365 3366 /* Huge page is mapped? No need to proceed. */ 3367 if (pmd_trans_huge(*vmf->pmd)) { 3368 folio_unlock(folio); 3369 folio_put(folio); 3370 return true; 3371 } 3372 3373 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3374 struct page *page = folio_file_page(folio, start); 3375 vm_fault_t ret = do_set_pmd(vmf, page); 3376 if (!ret) { 3377 /* The page is mapped successfully, reference consumed. */ 3378 folio_unlock(folio); 3379 return true; 3380 } 3381 } 3382 3383 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3384 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3385 3386 return false; 3387 } 3388 3389 static struct folio *next_uptodate_folio(struct xa_state *xas, 3390 struct address_space *mapping, pgoff_t end_pgoff) 3391 { 3392 struct folio *folio = xas_next_entry(xas, end_pgoff); 3393 unsigned long max_idx; 3394 3395 do { 3396 if (!folio) 3397 return NULL; 3398 if (xas_retry(xas, folio)) 3399 continue; 3400 if (xa_is_value(folio)) 3401 continue; 3402 if (folio_test_locked(folio)) 3403 continue; 3404 if (!folio_try_get_rcu(folio)) 3405 continue; 3406 /* Has the page moved or been split? */ 3407 if (unlikely(folio != xas_reload(xas))) 3408 goto skip; 3409 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3410 goto skip; 3411 if (!folio_trylock(folio)) 3412 goto skip; 3413 if (folio->mapping != mapping) 3414 goto unlock; 3415 if (!folio_test_uptodate(folio)) 3416 goto unlock; 3417 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3418 if (xas->xa_index >= max_idx) 3419 goto unlock; 3420 return folio; 3421 unlock: 3422 folio_unlock(folio); 3423 skip: 3424 folio_put(folio); 3425 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3426 3427 return NULL; 3428 } 3429 3430 /* 3431 * Map page range [start_page, start_page + nr_pages) of folio. 3432 * start_page is gotten from start by folio_page(folio, start) 3433 */ 3434 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3435 struct folio *folio, unsigned long start, 3436 unsigned long addr, unsigned int nr_pages, 3437 unsigned int *mmap_miss) 3438 { 3439 vm_fault_t ret = 0; 3440 struct page *page = folio_page(folio, start); 3441 unsigned int count = 0; 3442 pte_t *old_ptep = vmf->pte; 3443 3444 do { 3445 if (PageHWPoison(page + count)) 3446 goto skip; 3447 3448 (*mmap_miss)++; 3449 3450 /* 3451 * NOTE: If there're PTE markers, we'll leave them to be 3452 * handled in the specific fault path, and it'll prohibit the 3453 * fault-around logic. 3454 */ 3455 if (!pte_none(ptep_get(&vmf->pte[count]))) 3456 goto skip; 3457 3458 count++; 3459 continue; 3460 skip: 3461 if (count) { 3462 set_pte_range(vmf, folio, page, count, addr); 3463 folio_ref_add(folio, count); 3464 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3465 ret = VM_FAULT_NOPAGE; 3466 } 3467 3468 count++; 3469 page += count; 3470 vmf->pte += count; 3471 addr += count * PAGE_SIZE; 3472 count = 0; 3473 } while (--nr_pages > 0); 3474 3475 if (count) { 3476 set_pte_range(vmf, folio, page, count, addr); 3477 folio_ref_add(folio, count); 3478 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3479 ret = VM_FAULT_NOPAGE; 3480 } 3481 3482 vmf->pte = old_ptep; 3483 3484 return ret; 3485 } 3486 3487 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3488 struct folio *folio, unsigned long addr, 3489 unsigned int *mmap_miss) 3490 { 3491 vm_fault_t ret = 0; 3492 struct page *page = &folio->page; 3493 3494 if (PageHWPoison(page)) 3495 return ret; 3496 3497 (*mmap_miss)++; 3498 3499 /* 3500 * NOTE: If there're PTE markers, we'll leave them to be 3501 * handled in the specific fault path, and it'll prohibit 3502 * the fault-around logic. 3503 */ 3504 if (!pte_none(ptep_get(vmf->pte))) 3505 return ret; 3506 3507 if (vmf->address == addr) 3508 ret = VM_FAULT_NOPAGE; 3509 3510 set_pte_range(vmf, folio, page, 1, addr); 3511 folio_ref_inc(folio); 3512 3513 return ret; 3514 } 3515 3516 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3517 pgoff_t start_pgoff, pgoff_t end_pgoff) 3518 { 3519 struct vm_area_struct *vma = vmf->vma; 3520 struct file *file = vma->vm_file; 3521 struct address_space *mapping = file->f_mapping; 3522 pgoff_t last_pgoff = start_pgoff; 3523 unsigned long addr; 3524 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3525 struct folio *folio; 3526 vm_fault_t ret = 0; 3527 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved; 3528 3529 rcu_read_lock(); 3530 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3531 if (!folio) 3532 goto out; 3533 3534 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3535 ret = VM_FAULT_NOPAGE; 3536 goto out; 3537 } 3538 3539 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3540 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3541 if (!vmf->pte) { 3542 folio_unlock(folio); 3543 folio_put(folio); 3544 goto out; 3545 } 3546 do { 3547 unsigned long end; 3548 3549 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3550 vmf->pte += xas.xa_index - last_pgoff; 3551 last_pgoff = xas.xa_index; 3552 end = folio_next_index(folio) - 1; 3553 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3554 3555 if (!folio_test_large(folio)) 3556 ret |= filemap_map_order0_folio(vmf, 3557 folio, addr, &mmap_miss); 3558 else 3559 ret |= filemap_map_folio_range(vmf, folio, 3560 xas.xa_index - folio->index, addr, 3561 nr_pages, &mmap_miss); 3562 3563 folio_unlock(folio); 3564 folio_put(folio); 3565 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3566 pte_unmap_unlock(vmf->pte, vmf->ptl); 3567 out: 3568 rcu_read_unlock(); 3569 3570 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3571 if (mmap_miss >= mmap_miss_saved) 3572 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3573 else 3574 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3575 3576 return ret; 3577 } 3578 EXPORT_SYMBOL(filemap_map_pages); 3579 3580 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3581 { 3582 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3583 struct folio *folio = page_folio(vmf->page); 3584 vm_fault_t ret = VM_FAULT_LOCKED; 3585 3586 sb_start_pagefault(mapping->host->i_sb); 3587 file_update_time(vmf->vma->vm_file); 3588 folio_lock(folio); 3589 if (folio->mapping != mapping) { 3590 folio_unlock(folio); 3591 ret = VM_FAULT_NOPAGE; 3592 goto out; 3593 } 3594 /* 3595 * We mark the folio dirty already here so that when freeze is in 3596 * progress, we are guaranteed that writeback during freezing will 3597 * see the dirty folio and writeprotect it again. 3598 */ 3599 folio_mark_dirty(folio); 3600 folio_wait_stable(folio); 3601 out: 3602 sb_end_pagefault(mapping->host->i_sb); 3603 return ret; 3604 } 3605 3606 const struct vm_operations_struct generic_file_vm_ops = { 3607 .fault = filemap_fault, 3608 .map_pages = filemap_map_pages, 3609 .page_mkwrite = filemap_page_mkwrite, 3610 }; 3611 3612 /* This is used for a general mmap of a disk file */ 3613 3614 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3615 { 3616 struct address_space *mapping = file->f_mapping; 3617 3618 if (!mapping->a_ops->read_folio) 3619 return -ENOEXEC; 3620 file_accessed(file); 3621 vma->vm_ops = &generic_file_vm_ops; 3622 return 0; 3623 } 3624 3625 /* 3626 * This is for filesystems which do not implement ->writepage. 3627 */ 3628 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3629 { 3630 if (vma_is_shared_maywrite(vma)) 3631 return -EINVAL; 3632 return generic_file_mmap(file, vma); 3633 } 3634 #else 3635 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3636 { 3637 return VM_FAULT_SIGBUS; 3638 } 3639 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3640 { 3641 return -ENOSYS; 3642 } 3643 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3644 { 3645 return -ENOSYS; 3646 } 3647 #endif /* CONFIG_MMU */ 3648 3649 EXPORT_SYMBOL(filemap_page_mkwrite); 3650 EXPORT_SYMBOL(generic_file_mmap); 3651 EXPORT_SYMBOL(generic_file_readonly_mmap); 3652 3653 static struct folio *do_read_cache_folio(struct address_space *mapping, 3654 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3655 { 3656 struct folio *folio; 3657 int err; 3658 3659 if (!filler) 3660 filler = mapping->a_ops->read_folio; 3661 repeat: 3662 folio = filemap_get_folio(mapping, index); 3663 if (IS_ERR(folio)) { 3664 folio = filemap_alloc_folio(gfp, 0); 3665 if (!folio) 3666 return ERR_PTR(-ENOMEM); 3667 err = filemap_add_folio(mapping, folio, index, gfp); 3668 if (unlikely(err)) { 3669 folio_put(folio); 3670 if (err == -EEXIST) 3671 goto repeat; 3672 /* Presumably ENOMEM for xarray node */ 3673 return ERR_PTR(err); 3674 } 3675 3676 goto filler; 3677 } 3678 if (folio_test_uptodate(folio)) 3679 goto out; 3680 3681 if (!folio_trylock(folio)) { 3682 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3683 goto repeat; 3684 } 3685 3686 /* Folio was truncated from mapping */ 3687 if (!folio->mapping) { 3688 folio_unlock(folio); 3689 folio_put(folio); 3690 goto repeat; 3691 } 3692 3693 /* Someone else locked and filled the page in a very small window */ 3694 if (folio_test_uptodate(folio)) { 3695 folio_unlock(folio); 3696 goto out; 3697 } 3698 3699 filler: 3700 err = filemap_read_folio(file, filler, folio); 3701 if (err) { 3702 folio_put(folio); 3703 if (err == AOP_TRUNCATED_PAGE) 3704 goto repeat; 3705 return ERR_PTR(err); 3706 } 3707 3708 out: 3709 folio_mark_accessed(folio); 3710 return folio; 3711 } 3712 3713 /** 3714 * read_cache_folio - Read into page cache, fill it if needed. 3715 * @mapping: The address_space to read from. 3716 * @index: The index to read. 3717 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3718 * @file: Passed to filler function, may be NULL if not required. 3719 * 3720 * Read one page into the page cache. If it succeeds, the folio returned 3721 * will contain @index, but it may not be the first page of the folio. 3722 * 3723 * If the filler function returns an error, it will be returned to the 3724 * caller. 3725 * 3726 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3727 * Return: An uptodate folio on success, ERR_PTR() on failure. 3728 */ 3729 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3730 filler_t filler, struct file *file) 3731 { 3732 return do_read_cache_folio(mapping, index, filler, file, 3733 mapping_gfp_mask(mapping)); 3734 } 3735 EXPORT_SYMBOL(read_cache_folio); 3736 3737 /** 3738 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3739 * @mapping: The address_space for the folio. 3740 * @index: The index that the allocated folio will contain. 3741 * @gfp: The page allocator flags to use if allocating. 3742 * 3743 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3744 * any new memory allocations done using the specified allocation flags. 3745 * 3746 * The most likely error from this function is EIO, but ENOMEM is 3747 * possible and so is EINTR. If ->read_folio returns another error, 3748 * that will be returned to the caller. 3749 * 3750 * The function expects mapping->invalidate_lock to be already held. 3751 * 3752 * Return: Uptodate folio on success, ERR_PTR() on failure. 3753 */ 3754 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3755 pgoff_t index, gfp_t gfp) 3756 { 3757 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3758 } 3759 EXPORT_SYMBOL(mapping_read_folio_gfp); 3760 3761 static struct page *do_read_cache_page(struct address_space *mapping, 3762 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3763 { 3764 struct folio *folio; 3765 3766 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3767 if (IS_ERR(folio)) 3768 return &folio->page; 3769 return folio_file_page(folio, index); 3770 } 3771 3772 struct page *read_cache_page(struct address_space *mapping, 3773 pgoff_t index, filler_t *filler, struct file *file) 3774 { 3775 return do_read_cache_page(mapping, index, filler, file, 3776 mapping_gfp_mask(mapping)); 3777 } 3778 EXPORT_SYMBOL(read_cache_page); 3779 3780 /** 3781 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3782 * @mapping: the page's address_space 3783 * @index: the page index 3784 * @gfp: the page allocator flags to use if allocating 3785 * 3786 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3787 * any new page allocations done using the specified allocation flags. 3788 * 3789 * If the page does not get brought uptodate, return -EIO. 3790 * 3791 * The function expects mapping->invalidate_lock to be already held. 3792 * 3793 * Return: up to date page on success, ERR_PTR() on failure. 3794 */ 3795 struct page *read_cache_page_gfp(struct address_space *mapping, 3796 pgoff_t index, 3797 gfp_t gfp) 3798 { 3799 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3800 } 3801 EXPORT_SYMBOL(read_cache_page_gfp); 3802 3803 /* 3804 * Warn about a page cache invalidation failure during a direct I/O write. 3805 */ 3806 static void dio_warn_stale_pagecache(struct file *filp) 3807 { 3808 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3809 char pathname[128]; 3810 char *path; 3811 3812 errseq_set(&filp->f_mapping->wb_err, -EIO); 3813 if (__ratelimit(&_rs)) { 3814 path = file_path(filp, pathname, sizeof(pathname)); 3815 if (IS_ERR(path)) 3816 path = "(unknown)"; 3817 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3818 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3819 current->comm); 3820 } 3821 } 3822 3823 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3824 { 3825 struct address_space *mapping = iocb->ki_filp->f_mapping; 3826 3827 if (mapping->nrpages && 3828 invalidate_inode_pages2_range(mapping, 3829 iocb->ki_pos >> PAGE_SHIFT, 3830 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3831 dio_warn_stale_pagecache(iocb->ki_filp); 3832 } 3833 3834 ssize_t 3835 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3836 { 3837 struct address_space *mapping = iocb->ki_filp->f_mapping; 3838 size_t write_len = iov_iter_count(from); 3839 ssize_t written; 3840 3841 /* 3842 * If a page can not be invalidated, return 0 to fall back 3843 * to buffered write. 3844 */ 3845 written = kiocb_invalidate_pages(iocb, write_len); 3846 if (written) { 3847 if (written == -EBUSY) 3848 return 0; 3849 return written; 3850 } 3851 3852 written = mapping->a_ops->direct_IO(iocb, from); 3853 3854 /* 3855 * Finally, try again to invalidate clean pages which might have been 3856 * cached by non-direct readahead, or faulted in by get_user_pages() 3857 * if the source of the write was an mmap'ed region of the file 3858 * we're writing. Either one is a pretty crazy thing to do, 3859 * so we don't support it 100%. If this invalidation 3860 * fails, tough, the write still worked... 3861 * 3862 * Most of the time we do not need this since dio_complete() will do 3863 * the invalidation for us. However there are some file systems that 3864 * do not end up with dio_complete() being called, so let's not break 3865 * them by removing it completely. 3866 * 3867 * Noticeable example is a blkdev_direct_IO(). 3868 * 3869 * Skip invalidation for async writes or if mapping has no pages. 3870 */ 3871 if (written > 0) { 3872 struct inode *inode = mapping->host; 3873 loff_t pos = iocb->ki_pos; 3874 3875 kiocb_invalidate_post_direct_write(iocb, written); 3876 pos += written; 3877 write_len -= written; 3878 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 3879 i_size_write(inode, pos); 3880 mark_inode_dirty(inode); 3881 } 3882 iocb->ki_pos = pos; 3883 } 3884 if (written != -EIOCBQUEUED) 3885 iov_iter_revert(from, write_len - iov_iter_count(from)); 3886 return written; 3887 } 3888 EXPORT_SYMBOL(generic_file_direct_write); 3889 3890 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 3891 { 3892 struct file *file = iocb->ki_filp; 3893 loff_t pos = iocb->ki_pos; 3894 struct address_space *mapping = file->f_mapping; 3895 const struct address_space_operations *a_ops = mapping->a_ops; 3896 long status = 0; 3897 ssize_t written = 0; 3898 3899 do { 3900 struct page *page; 3901 unsigned long offset; /* Offset into pagecache page */ 3902 unsigned long bytes; /* Bytes to write to page */ 3903 size_t copied; /* Bytes copied from user */ 3904 void *fsdata = NULL; 3905 3906 offset = (pos & (PAGE_SIZE - 1)); 3907 bytes = min_t(unsigned long, PAGE_SIZE - offset, 3908 iov_iter_count(i)); 3909 3910 again: 3911 /* 3912 * Bring in the user page that we will copy from _first_. 3913 * Otherwise there's a nasty deadlock on copying from the 3914 * same page as we're writing to, without it being marked 3915 * up-to-date. 3916 */ 3917 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 3918 status = -EFAULT; 3919 break; 3920 } 3921 3922 if (fatal_signal_pending(current)) { 3923 status = -EINTR; 3924 break; 3925 } 3926 3927 status = a_ops->write_begin(file, mapping, pos, bytes, 3928 &page, &fsdata); 3929 if (unlikely(status < 0)) 3930 break; 3931 3932 if (mapping_writably_mapped(mapping)) 3933 flush_dcache_page(page); 3934 3935 copied = copy_page_from_iter_atomic(page, offset, bytes, i); 3936 flush_dcache_page(page); 3937 3938 status = a_ops->write_end(file, mapping, pos, bytes, copied, 3939 page, fsdata); 3940 if (unlikely(status != copied)) { 3941 iov_iter_revert(i, copied - max(status, 0L)); 3942 if (unlikely(status < 0)) 3943 break; 3944 } 3945 cond_resched(); 3946 3947 if (unlikely(status == 0)) { 3948 /* 3949 * A short copy made ->write_end() reject the 3950 * thing entirely. Might be memory poisoning 3951 * halfway through, might be a race with munmap, 3952 * might be severe memory pressure. 3953 */ 3954 if (copied) 3955 bytes = copied; 3956 goto again; 3957 } 3958 pos += status; 3959 written += status; 3960 3961 balance_dirty_pages_ratelimited(mapping); 3962 } while (iov_iter_count(i)); 3963 3964 if (!written) 3965 return status; 3966 iocb->ki_pos += written; 3967 return written; 3968 } 3969 EXPORT_SYMBOL(generic_perform_write); 3970 3971 /** 3972 * __generic_file_write_iter - write data to a file 3973 * @iocb: IO state structure (file, offset, etc.) 3974 * @from: iov_iter with data to write 3975 * 3976 * This function does all the work needed for actually writing data to a 3977 * file. It does all basic checks, removes SUID from the file, updates 3978 * modification times and calls proper subroutines depending on whether we 3979 * do direct IO or a standard buffered write. 3980 * 3981 * It expects i_rwsem to be grabbed unless we work on a block device or similar 3982 * object which does not need locking at all. 3983 * 3984 * This function does *not* take care of syncing data in case of O_SYNC write. 3985 * A caller has to handle it. This is mainly due to the fact that we want to 3986 * avoid syncing under i_rwsem. 3987 * 3988 * Return: 3989 * * number of bytes written, even for truncated writes 3990 * * negative error code if no data has been written at all 3991 */ 3992 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 3993 { 3994 struct file *file = iocb->ki_filp; 3995 struct address_space *mapping = file->f_mapping; 3996 struct inode *inode = mapping->host; 3997 ssize_t ret; 3998 3999 ret = file_remove_privs(file); 4000 if (ret) 4001 return ret; 4002 4003 ret = file_update_time(file); 4004 if (ret) 4005 return ret; 4006 4007 if (iocb->ki_flags & IOCB_DIRECT) { 4008 ret = generic_file_direct_write(iocb, from); 4009 /* 4010 * If the write stopped short of completing, fall back to 4011 * buffered writes. Some filesystems do this for writes to 4012 * holes, for example. For DAX files, a buffered write will 4013 * not succeed (even if it did, DAX does not handle dirty 4014 * page-cache pages correctly). 4015 */ 4016 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4017 return ret; 4018 return direct_write_fallback(iocb, from, ret, 4019 generic_perform_write(iocb, from)); 4020 } 4021 4022 return generic_perform_write(iocb, from); 4023 } 4024 EXPORT_SYMBOL(__generic_file_write_iter); 4025 4026 /** 4027 * generic_file_write_iter - write data to a file 4028 * @iocb: IO state structure 4029 * @from: iov_iter with data to write 4030 * 4031 * This is a wrapper around __generic_file_write_iter() to be used by most 4032 * filesystems. It takes care of syncing the file in case of O_SYNC file 4033 * and acquires i_rwsem as needed. 4034 * Return: 4035 * * negative error code if no data has been written at all of 4036 * vfs_fsync_range() failed for a synchronous write 4037 * * number of bytes written, even for truncated writes 4038 */ 4039 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4040 { 4041 struct file *file = iocb->ki_filp; 4042 struct inode *inode = file->f_mapping->host; 4043 ssize_t ret; 4044 4045 inode_lock(inode); 4046 ret = generic_write_checks(iocb, from); 4047 if (ret > 0) 4048 ret = __generic_file_write_iter(iocb, from); 4049 inode_unlock(inode); 4050 4051 if (ret > 0) 4052 ret = generic_write_sync(iocb, ret); 4053 return ret; 4054 } 4055 EXPORT_SYMBOL(generic_file_write_iter); 4056 4057 /** 4058 * filemap_release_folio() - Release fs-specific metadata on a folio. 4059 * @folio: The folio which the kernel is trying to free. 4060 * @gfp: Memory allocation flags (and I/O mode). 4061 * 4062 * The address_space is trying to release any data attached to a folio 4063 * (presumably at folio->private). 4064 * 4065 * This will also be called if the private_2 flag is set on a page, 4066 * indicating that the folio has other metadata associated with it. 4067 * 4068 * The @gfp argument specifies whether I/O may be performed to release 4069 * this page (__GFP_IO), and whether the call may block 4070 * (__GFP_RECLAIM & __GFP_FS). 4071 * 4072 * Return: %true if the release was successful, otherwise %false. 4073 */ 4074 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4075 { 4076 struct address_space * const mapping = folio->mapping; 4077 4078 BUG_ON(!folio_test_locked(folio)); 4079 if (!folio_needs_release(folio)) 4080 return true; 4081 if (folio_test_writeback(folio)) 4082 return false; 4083 4084 if (mapping && mapping->a_ops->release_folio) 4085 return mapping->a_ops->release_folio(folio, gfp); 4086 return try_to_free_buffers(folio); 4087 } 4088 EXPORT_SYMBOL(filemap_release_folio); 4089 4090 #ifdef CONFIG_CACHESTAT_SYSCALL 4091 /** 4092 * filemap_cachestat() - compute the page cache statistics of a mapping 4093 * @mapping: The mapping to compute the statistics for. 4094 * @first_index: The starting page cache index. 4095 * @last_index: The final page index (inclusive). 4096 * @cs: the cachestat struct to write the result to. 4097 * 4098 * This will query the page cache statistics of a mapping in the 4099 * page range of [first_index, last_index] (inclusive). The statistics 4100 * queried include: number of dirty pages, number of pages marked for 4101 * writeback, and the number of (recently) evicted pages. 4102 */ 4103 static void filemap_cachestat(struct address_space *mapping, 4104 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4105 { 4106 XA_STATE(xas, &mapping->i_pages, first_index); 4107 struct folio *folio; 4108 4109 rcu_read_lock(); 4110 xas_for_each(&xas, folio, last_index) { 4111 unsigned long nr_pages; 4112 pgoff_t folio_first_index, folio_last_index; 4113 4114 if (xas_retry(&xas, folio)) 4115 continue; 4116 4117 if (xa_is_value(folio)) { 4118 /* page is evicted */ 4119 void *shadow = (void *)folio; 4120 bool workingset; /* not used */ 4121 int order = xa_get_order(xas.xa, xas.xa_index); 4122 4123 nr_pages = 1 << order; 4124 folio_first_index = round_down(xas.xa_index, 1 << order); 4125 folio_last_index = folio_first_index + nr_pages - 1; 4126 4127 /* Folios might straddle the range boundaries, only count covered pages */ 4128 if (folio_first_index < first_index) 4129 nr_pages -= first_index - folio_first_index; 4130 4131 if (folio_last_index > last_index) 4132 nr_pages -= folio_last_index - last_index; 4133 4134 cs->nr_evicted += nr_pages; 4135 4136 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4137 if (shmem_mapping(mapping)) { 4138 /* shmem file - in swap cache */ 4139 swp_entry_t swp = radix_to_swp_entry(folio); 4140 4141 shadow = get_shadow_from_swap_cache(swp); 4142 } 4143 #endif 4144 if (workingset_test_recent(shadow, true, &workingset)) 4145 cs->nr_recently_evicted += nr_pages; 4146 4147 goto resched; 4148 } 4149 4150 nr_pages = folio_nr_pages(folio); 4151 folio_first_index = folio_pgoff(folio); 4152 folio_last_index = folio_first_index + nr_pages - 1; 4153 4154 /* Folios might straddle the range boundaries, only count covered pages */ 4155 if (folio_first_index < first_index) 4156 nr_pages -= first_index - folio_first_index; 4157 4158 if (folio_last_index > last_index) 4159 nr_pages -= folio_last_index - last_index; 4160 4161 /* page is in cache */ 4162 cs->nr_cache += nr_pages; 4163 4164 if (folio_test_dirty(folio)) 4165 cs->nr_dirty += nr_pages; 4166 4167 if (folio_test_writeback(folio)) 4168 cs->nr_writeback += nr_pages; 4169 4170 resched: 4171 if (need_resched()) { 4172 xas_pause(&xas); 4173 cond_resched_rcu(); 4174 } 4175 } 4176 rcu_read_unlock(); 4177 } 4178 4179 /* 4180 * The cachestat(2) system call. 4181 * 4182 * cachestat() returns the page cache statistics of a file in the 4183 * bytes range specified by `off` and `len`: number of cached pages, 4184 * number of dirty pages, number of pages marked for writeback, 4185 * number of evicted pages, and number of recently evicted pages. 4186 * 4187 * An evicted page is a page that is previously in the page cache 4188 * but has been evicted since. A page is recently evicted if its last 4189 * eviction was recent enough that its reentry to the cache would 4190 * indicate that it is actively being used by the system, and that 4191 * there is memory pressure on the system. 4192 * 4193 * `off` and `len` must be non-negative integers. If `len` > 0, 4194 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4195 * we will query in the range from `off` to the end of the file. 4196 * 4197 * The `flags` argument is unused for now, but is included for future 4198 * extensibility. User should pass 0 (i.e no flag specified). 4199 * 4200 * Currently, hugetlbfs is not supported. 4201 * 4202 * Because the status of a page can change after cachestat() checks it 4203 * but before it returns to the application, the returned values may 4204 * contain stale information. 4205 * 4206 * return values: 4207 * zero - success 4208 * -EFAULT - cstat or cstat_range points to an illegal address 4209 * -EINVAL - invalid flags 4210 * -EBADF - invalid file descriptor 4211 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4212 */ 4213 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4214 struct cachestat_range __user *, cstat_range, 4215 struct cachestat __user *, cstat, unsigned int, flags) 4216 { 4217 struct fd f = fdget(fd); 4218 struct address_space *mapping; 4219 struct cachestat_range csr; 4220 struct cachestat cs; 4221 pgoff_t first_index, last_index; 4222 4223 if (!f.file) 4224 return -EBADF; 4225 4226 if (copy_from_user(&csr, cstat_range, 4227 sizeof(struct cachestat_range))) { 4228 fdput(f); 4229 return -EFAULT; 4230 } 4231 4232 /* hugetlbfs is not supported */ 4233 if (is_file_hugepages(f.file)) { 4234 fdput(f); 4235 return -EOPNOTSUPP; 4236 } 4237 4238 if (flags != 0) { 4239 fdput(f); 4240 return -EINVAL; 4241 } 4242 4243 first_index = csr.off >> PAGE_SHIFT; 4244 last_index = 4245 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4246 memset(&cs, 0, sizeof(struct cachestat)); 4247 mapping = f.file->f_mapping; 4248 filemap_cachestat(mapping, first_index, last_index, &cs); 4249 fdput(f); 4250 4251 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4252 return -EFAULT; 4253 4254 return 0; 4255 } 4256 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4257