1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/dax.h> 15 #include <linux/fs.h> 16 #include <linux/uaccess.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/hugetlb.h> 35 #include <linux/memcontrol.h> 36 #include <linux/cleancache.h> 37 #include <linux/rmap.h> 38 #include "internal.h" 39 40 #define CREATE_TRACE_POINTS 41 #include <trace/events/filemap.h> 42 43 /* 44 * FIXME: remove all knowledge of the buffer layer from the core VM 45 */ 46 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 47 48 #include <asm/mman.h> 49 50 /* 51 * Shared mappings implemented 30.11.1994. It's not fully working yet, 52 * though. 53 * 54 * Shared mappings now work. 15.8.1995 Bruno. 55 * 56 * finished 'unifying' the page and buffer cache and SMP-threaded the 57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 58 * 59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 60 */ 61 62 /* 63 * Lock ordering: 64 * 65 * ->i_mmap_rwsem (truncate_pagecache) 66 * ->private_lock (__free_pte->__set_page_dirty_buffers) 67 * ->swap_lock (exclusive_swap_page, others) 68 * ->mapping->tree_lock 69 * 70 * ->i_mutex 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 72 * 73 * ->mmap_sem 74 * ->i_mmap_rwsem 75 * ->page_table_lock or pte_lock (various, mainly in memory.c) 76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 77 * 78 * ->mmap_sem 79 * ->lock_page (access_process_vm) 80 * 81 * ->i_mutex (generic_perform_write) 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 83 * 84 * bdi->wb.list_lock 85 * sb_lock (fs/fs-writeback.c) 86 * ->mapping->tree_lock (__sync_single_inode) 87 * 88 * ->i_mmap_rwsem 89 * ->anon_vma.lock (vma_adjust) 90 * 91 * ->anon_vma.lock 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 93 * 94 * ->page_table_lock or pte_lock 95 * ->swap_lock (try_to_unmap_one) 96 * ->private_lock (try_to_unmap_one) 97 * ->tree_lock (try_to_unmap_one) 98 * ->zone.lru_lock (follow_page->mark_page_accessed) 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 100 * ->private_lock (page_remove_rmap->set_page_dirty) 101 * ->tree_lock (page_remove_rmap->set_page_dirty) 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg) 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 106 * ->inode->i_lock (zap_pte_range->set_page_dirty) 107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 108 * 109 * ->i_mmap_rwsem 110 * ->tasklist_lock (memory_failure, collect_procs_ao) 111 */ 112 113 static void page_cache_tree_delete(struct address_space *mapping, 114 struct page *page, void *shadow) 115 { 116 struct radix_tree_node *node; 117 unsigned long index; 118 unsigned int offset; 119 unsigned int tag; 120 void **slot; 121 122 VM_BUG_ON(!PageLocked(page)); 123 124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 125 126 if (shadow) { 127 mapping->nrexceptional++; 128 /* 129 * Make sure the nrexceptional update is committed before 130 * the nrpages update so that final truncate racing 131 * with reclaim does not see both counters 0 at the 132 * same time and miss a shadow entry. 133 */ 134 smp_wmb(); 135 } 136 mapping->nrpages--; 137 138 if (!node) { 139 /* Clear direct pointer tags in root node */ 140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 141 radix_tree_replace_slot(slot, shadow); 142 return; 143 } 144 145 /* Clear tree tags for the removed page */ 146 index = page->index; 147 offset = index & RADIX_TREE_MAP_MASK; 148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 149 if (test_bit(offset, node->tags[tag])) 150 radix_tree_tag_clear(&mapping->page_tree, index, tag); 151 } 152 153 /* Delete page, swap shadow entry */ 154 radix_tree_replace_slot(slot, shadow); 155 workingset_node_pages_dec(node); 156 if (shadow) 157 workingset_node_shadows_inc(node); 158 else 159 if (__radix_tree_delete_node(&mapping->page_tree, node)) 160 return; 161 162 /* 163 * Track node that only contains shadow entries. 164 * 165 * Avoid acquiring the list_lru lock if already tracked. The 166 * list_empty() test is safe as node->private_list is 167 * protected by mapping->tree_lock. 168 */ 169 if (!workingset_node_pages(node) && 170 list_empty(&node->private_list)) { 171 node->private_data = mapping; 172 list_lru_add(&workingset_shadow_nodes, &node->private_list); 173 } 174 } 175 176 /* 177 * Delete a page from the page cache and free it. Caller has to make 178 * sure the page is locked and that nobody else uses it - or that usage 179 * is safe. The caller must hold the mapping's tree_lock. 180 */ 181 void __delete_from_page_cache(struct page *page, void *shadow) 182 { 183 struct address_space *mapping = page->mapping; 184 185 trace_mm_filemap_delete_from_page_cache(page); 186 /* 187 * if we're uptodate, flush out into the cleancache, otherwise 188 * invalidate any existing cleancache entries. We can't leave 189 * stale data around in the cleancache once our page is gone 190 */ 191 if (PageUptodate(page) && PageMappedToDisk(page)) 192 cleancache_put_page(page); 193 else 194 cleancache_invalidate_page(mapping, page); 195 196 VM_BUG_ON_PAGE(page_mapped(page), page); 197 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) { 198 int mapcount; 199 200 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 201 current->comm, page_to_pfn(page)); 202 dump_page(page, "still mapped when deleted"); 203 dump_stack(); 204 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 205 206 mapcount = page_mapcount(page); 207 if (mapping_exiting(mapping) && 208 page_count(page) >= mapcount + 2) { 209 /* 210 * All vmas have already been torn down, so it's 211 * a good bet that actually the page is unmapped, 212 * and we'd prefer not to leak it: if we're wrong, 213 * some other bad page check should catch it later. 214 */ 215 page_mapcount_reset(page); 216 atomic_sub(mapcount, &page->_count); 217 } 218 } 219 220 page_cache_tree_delete(mapping, page, shadow); 221 222 page->mapping = NULL; 223 /* Leave page->index set: truncation lookup relies upon it */ 224 225 /* hugetlb pages do not participate in page cache accounting. */ 226 if (!PageHuge(page)) 227 __dec_zone_page_state(page, NR_FILE_PAGES); 228 if (PageSwapBacked(page)) 229 __dec_zone_page_state(page, NR_SHMEM); 230 231 /* 232 * At this point page must be either written or cleaned by truncate. 233 * Dirty page here signals a bug and loss of unwritten data. 234 * 235 * This fixes dirty accounting after removing the page entirely but 236 * leaves PageDirty set: it has no effect for truncated page and 237 * anyway will be cleared before returning page into buddy allocator. 238 */ 239 if (WARN_ON_ONCE(PageDirty(page))) 240 account_page_cleaned(page, mapping, inode_to_wb(mapping->host)); 241 } 242 243 /** 244 * delete_from_page_cache - delete page from page cache 245 * @page: the page which the kernel is trying to remove from page cache 246 * 247 * This must be called only on pages that have been verified to be in the page 248 * cache and locked. It will never put the page into the free list, the caller 249 * has a reference on the page. 250 */ 251 void delete_from_page_cache(struct page *page) 252 { 253 struct address_space *mapping = page->mapping; 254 unsigned long flags; 255 256 void (*freepage)(struct page *); 257 258 BUG_ON(!PageLocked(page)); 259 260 freepage = mapping->a_ops->freepage; 261 262 spin_lock_irqsave(&mapping->tree_lock, flags); 263 __delete_from_page_cache(page, NULL); 264 spin_unlock_irqrestore(&mapping->tree_lock, flags); 265 266 if (freepage) 267 freepage(page); 268 put_page(page); 269 } 270 EXPORT_SYMBOL(delete_from_page_cache); 271 272 static int filemap_check_errors(struct address_space *mapping) 273 { 274 int ret = 0; 275 /* Check for outstanding write errors */ 276 if (test_bit(AS_ENOSPC, &mapping->flags) && 277 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 278 ret = -ENOSPC; 279 if (test_bit(AS_EIO, &mapping->flags) && 280 test_and_clear_bit(AS_EIO, &mapping->flags)) 281 ret = -EIO; 282 return ret; 283 } 284 285 /** 286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 287 * @mapping: address space structure to write 288 * @start: offset in bytes where the range starts 289 * @end: offset in bytes where the range ends (inclusive) 290 * @sync_mode: enable synchronous operation 291 * 292 * Start writeback against all of a mapping's dirty pages that lie 293 * within the byte offsets <start, end> inclusive. 294 * 295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 296 * opposed to a regular memory cleansing writeback. The difference between 297 * these two operations is that if a dirty page/buffer is encountered, it must 298 * be waited upon, and not just skipped over. 299 */ 300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 301 loff_t end, int sync_mode) 302 { 303 int ret; 304 struct writeback_control wbc = { 305 .sync_mode = sync_mode, 306 .nr_to_write = LONG_MAX, 307 .range_start = start, 308 .range_end = end, 309 }; 310 311 if (!mapping_cap_writeback_dirty(mapping)) 312 return 0; 313 314 wbc_attach_fdatawrite_inode(&wbc, mapping->host); 315 ret = do_writepages(mapping, &wbc); 316 wbc_detach_inode(&wbc); 317 return ret; 318 } 319 320 static inline int __filemap_fdatawrite(struct address_space *mapping, 321 int sync_mode) 322 { 323 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 324 } 325 326 int filemap_fdatawrite(struct address_space *mapping) 327 { 328 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 329 } 330 EXPORT_SYMBOL(filemap_fdatawrite); 331 332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 333 loff_t end) 334 { 335 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 336 } 337 EXPORT_SYMBOL(filemap_fdatawrite_range); 338 339 /** 340 * filemap_flush - mostly a non-blocking flush 341 * @mapping: target address_space 342 * 343 * This is a mostly non-blocking flush. Not suitable for data-integrity 344 * purposes - I/O may not be started against all dirty pages. 345 */ 346 int filemap_flush(struct address_space *mapping) 347 { 348 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 349 } 350 EXPORT_SYMBOL(filemap_flush); 351 352 static int __filemap_fdatawait_range(struct address_space *mapping, 353 loff_t start_byte, loff_t end_byte) 354 { 355 pgoff_t index = start_byte >> PAGE_SHIFT; 356 pgoff_t end = end_byte >> PAGE_SHIFT; 357 struct pagevec pvec; 358 int nr_pages; 359 int ret = 0; 360 361 if (end_byte < start_byte) 362 goto out; 363 364 pagevec_init(&pvec, 0); 365 while ((index <= end) && 366 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 367 PAGECACHE_TAG_WRITEBACK, 368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 369 unsigned i; 370 371 for (i = 0; i < nr_pages; i++) { 372 struct page *page = pvec.pages[i]; 373 374 /* until radix tree lookup accepts end_index */ 375 if (page->index > end) 376 continue; 377 378 wait_on_page_writeback(page); 379 if (TestClearPageError(page)) 380 ret = -EIO; 381 } 382 pagevec_release(&pvec); 383 cond_resched(); 384 } 385 out: 386 return ret; 387 } 388 389 /** 390 * filemap_fdatawait_range - wait for writeback to complete 391 * @mapping: address space structure to wait for 392 * @start_byte: offset in bytes where the range starts 393 * @end_byte: offset in bytes where the range ends (inclusive) 394 * 395 * Walk the list of under-writeback pages of the given address space 396 * in the given range and wait for all of them. Check error status of 397 * the address space and return it. 398 * 399 * Since the error status of the address space is cleared by this function, 400 * callers are responsible for checking the return value and handling and/or 401 * reporting the error. 402 */ 403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 404 loff_t end_byte) 405 { 406 int ret, ret2; 407 408 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte); 409 ret2 = filemap_check_errors(mapping); 410 if (!ret) 411 ret = ret2; 412 413 return ret; 414 } 415 EXPORT_SYMBOL(filemap_fdatawait_range); 416 417 /** 418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 419 * @mapping: address space structure to wait for 420 * 421 * Walk the list of under-writeback pages of the given address space 422 * and wait for all of them. Unlike filemap_fdatawait(), this function 423 * does not clear error status of the address space. 424 * 425 * Use this function if callers don't handle errors themselves. Expected 426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 427 * fsfreeze(8) 428 */ 429 void filemap_fdatawait_keep_errors(struct address_space *mapping) 430 { 431 loff_t i_size = i_size_read(mapping->host); 432 433 if (i_size == 0) 434 return; 435 436 __filemap_fdatawait_range(mapping, 0, i_size - 1); 437 } 438 439 /** 440 * filemap_fdatawait - wait for all under-writeback pages to complete 441 * @mapping: address space structure to wait for 442 * 443 * Walk the list of under-writeback pages of the given address space 444 * and wait for all of them. Check error status of the address space 445 * and return it. 446 * 447 * Since the error status of the address space is cleared by this function, 448 * callers are responsible for checking the return value and handling and/or 449 * reporting the error. 450 */ 451 int filemap_fdatawait(struct address_space *mapping) 452 { 453 loff_t i_size = i_size_read(mapping->host); 454 455 if (i_size == 0) 456 return 0; 457 458 return filemap_fdatawait_range(mapping, 0, i_size - 1); 459 } 460 EXPORT_SYMBOL(filemap_fdatawait); 461 462 int filemap_write_and_wait(struct address_space *mapping) 463 { 464 int err = 0; 465 466 if ((!dax_mapping(mapping) && mapping->nrpages) || 467 (dax_mapping(mapping) && mapping->nrexceptional)) { 468 err = filemap_fdatawrite(mapping); 469 /* 470 * Even if the above returned error, the pages may be 471 * written partially (e.g. -ENOSPC), so we wait for it. 472 * But the -EIO is special case, it may indicate the worst 473 * thing (e.g. bug) happened, so we avoid waiting for it. 474 */ 475 if (err != -EIO) { 476 int err2 = filemap_fdatawait(mapping); 477 if (!err) 478 err = err2; 479 } 480 } else { 481 err = filemap_check_errors(mapping); 482 } 483 return err; 484 } 485 EXPORT_SYMBOL(filemap_write_and_wait); 486 487 /** 488 * filemap_write_and_wait_range - write out & wait on a file range 489 * @mapping: the address_space for the pages 490 * @lstart: offset in bytes where the range starts 491 * @lend: offset in bytes where the range ends (inclusive) 492 * 493 * Write out and wait upon file offsets lstart->lend, inclusive. 494 * 495 * Note that `lend' is inclusive (describes the last byte to be written) so 496 * that this function can be used to write to the very end-of-file (end = -1). 497 */ 498 int filemap_write_and_wait_range(struct address_space *mapping, 499 loff_t lstart, loff_t lend) 500 { 501 int err = 0; 502 503 if ((!dax_mapping(mapping) && mapping->nrpages) || 504 (dax_mapping(mapping) && mapping->nrexceptional)) { 505 err = __filemap_fdatawrite_range(mapping, lstart, lend, 506 WB_SYNC_ALL); 507 /* See comment of filemap_write_and_wait() */ 508 if (err != -EIO) { 509 int err2 = filemap_fdatawait_range(mapping, 510 lstart, lend); 511 if (!err) 512 err = err2; 513 } 514 } else { 515 err = filemap_check_errors(mapping); 516 } 517 return err; 518 } 519 EXPORT_SYMBOL(filemap_write_and_wait_range); 520 521 /** 522 * replace_page_cache_page - replace a pagecache page with a new one 523 * @old: page to be replaced 524 * @new: page to replace with 525 * @gfp_mask: allocation mode 526 * 527 * This function replaces a page in the pagecache with a new one. On 528 * success it acquires the pagecache reference for the new page and 529 * drops it for the old page. Both the old and new pages must be 530 * locked. This function does not add the new page to the LRU, the 531 * caller must do that. 532 * 533 * The remove + add is atomic. The only way this function can fail is 534 * memory allocation failure. 535 */ 536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 537 { 538 int error; 539 540 VM_BUG_ON_PAGE(!PageLocked(old), old); 541 VM_BUG_ON_PAGE(!PageLocked(new), new); 542 VM_BUG_ON_PAGE(new->mapping, new); 543 544 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 545 if (!error) { 546 struct address_space *mapping = old->mapping; 547 void (*freepage)(struct page *); 548 unsigned long flags; 549 550 pgoff_t offset = old->index; 551 freepage = mapping->a_ops->freepage; 552 553 get_page(new); 554 new->mapping = mapping; 555 new->index = offset; 556 557 spin_lock_irqsave(&mapping->tree_lock, flags); 558 __delete_from_page_cache(old, NULL); 559 error = radix_tree_insert(&mapping->page_tree, offset, new); 560 BUG_ON(error); 561 mapping->nrpages++; 562 563 /* 564 * hugetlb pages do not participate in page cache accounting. 565 */ 566 if (!PageHuge(new)) 567 __inc_zone_page_state(new, NR_FILE_PAGES); 568 if (PageSwapBacked(new)) 569 __inc_zone_page_state(new, NR_SHMEM); 570 spin_unlock_irqrestore(&mapping->tree_lock, flags); 571 mem_cgroup_migrate(old, new); 572 radix_tree_preload_end(); 573 if (freepage) 574 freepage(old); 575 put_page(old); 576 } 577 578 return error; 579 } 580 EXPORT_SYMBOL_GPL(replace_page_cache_page); 581 582 static int page_cache_tree_insert(struct address_space *mapping, 583 struct page *page, void **shadowp) 584 { 585 struct radix_tree_node *node; 586 void **slot; 587 int error; 588 589 error = __radix_tree_create(&mapping->page_tree, page->index, 0, 590 &node, &slot); 591 if (error) 592 return error; 593 if (*slot) { 594 void *p; 595 596 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 597 if (!radix_tree_exceptional_entry(p)) 598 return -EEXIST; 599 600 if (WARN_ON(dax_mapping(mapping))) 601 return -EINVAL; 602 603 if (shadowp) 604 *shadowp = p; 605 mapping->nrexceptional--; 606 if (node) 607 workingset_node_shadows_dec(node); 608 } 609 radix_tree_replace_slot(slot, page); 610 mapping->nrpages++; 611 if (node) { 612 workingset_node_pages_inc(node); 613 /* 614 * Don't track node that contains actual pages. 615 * 616 * Avoid acquiring the list_lru lock if already 617 * untracked. The list_empty() test is safe as 618 * node->private_list is protected by 619 * mapping->tree_lock. 620 */ 621 if (!list_empty(&node->private_list)) 622 list_lru_del(&workingset_shadow_nodes, 623 &node->private_list); 624 } 625 return 0; 626 } 627 628 static int __add_to_page_cache_locked(struct page *page, 629 struct address_space *mapping, 630 pgoff_t offset, gfp_t gfp_mask, 631 void **shadowp) 632 { 633 int huge = PageHuge(page); 634 struct mem_cgroup *memcg; 635 int error; 636 637 VM_BUG_ON_PAGE(!PageLocked(page), page); 638 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 639 640 if (!huge) { 641 error = mem_cgroup_try_charge(page, current->mm, 642 gfp_mask, &memcg, false); 643 if (error) 644 return error; 645 } 646 647 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 648 if (error) { 649 if (!huge) 650 mem_cgroup_cancel_charge(page, memcg, false); 651 return error; 652 } 653 654 get_page(page); 655 page->mapping = mapping; 656 page->index = offset; 657 658 spin_lock_irq(&mapping->tree_lock); 659 error = page_cache_tree_insert(mapping, page, shadowp); 660 radix_tree_preload_end(); 661 if (unlikely(error)) 662 goto err_insert; 663 664 /* hugetlb pages do not participate in page cache accounting. */ 665 if (!huge) 666 __inc_zone_page_state(page, NR_FILE_PAGES); 667 spin_unlock_irq(&mapping->tree_lock); 668 if (!huge) 669 mem_cgroup_commit_charge(page, memcg, false, false); 670 trace_mm_filemap_add_to_page_cache(page); 671 return 0; 672 err_insert: 673 page->mapping = NULL; 674 /* Leave page->index set: truncation relies upon it */ 675 spin_unlock_irq(&mapping->tree_lock); 676 if (!huge) 677 mem_cgroup_cancel_charge(page, memcg, false); 678 put_page(page); 679 return error; 680 } 681 682 /** 683 * add_to_page_cache_locked - add a locked page to the pagecache 684 * @page: page to add 685 * @mapping: the page's address_space 686 * @offset: page index 687 * @gfp_mask: page allocation mode 688 * 689 * This function is used to add a page to the pagecache. It must be locked. 690 * This function does not add the page to the LRU. The caller must do that. 691 */ 692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 693 pgoff_t offset, gfp_t gfp_mask) 694 { 695 return __add_to_page_cache_locked(page, mapping, offset, 696 gfp_mask, NULL); 697 } 698 EXPORT_SYMBOL(add_to_page_cache_locked); 699 700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 701 pgoff_t offset, gfp_t gfp_mask) 702 { 703 void *shadow = NULL; 704 int ret; 705 706 __SetPageLocked(page); 707 ret = __add_to_page_cache_locked(page, mapping, offset, 708 gfp_mask, &shadow); 709 if (unlikely(ret)) 710 __ClearPageLocked(page); 711 else { 712 /* 713 * The page might have been evicted from cache only 714 * recently, in which case it should be activated like 715 * any other repeatedly accessed page. 716 */ 717 if (shadow && workingset_refault(shadow)) { 718 SetPageActive(page); 719 workingset_activation(page); 720 } else 721 ClearPageActive(page); 722 lru_cache_add(page); 723 } 724 return ret; 725 } 726 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 727 728 #ifdef CONFIG_NUMA 729 struct page *__page_cache_alloc(gfp_t gfp) 730 { 731 int n; 732 struct page *page; 733 734 if (cpuset_do_page_mem_spread()) { 735 unsigned int cpuset_mems_cookie; 736 do { 737 cpuset_mems_cookie = read_mems_allowed_begin(); 738 n = cpuset_mem_spread_node(); 739 page = __alloc_pages_node(n, gfp, 0); 740 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 741 742 return page; 743 } 744 return alloc_pages(gfp, 0); 745 } 746 EXPORT_SYMBOL(__page_cache_alloc); 747 #endif 748 749 /* 750 * In order to wait for pages to become available there must be 751 * waitqueues associated with pages. By using a hash table of 752 * waitqueues where the bucket discipline is to maintain all 753 * waiters on the same queue and wake all when any of the pages 754 * become available, and for the woken contexts to check to be 755 * sure the appropriate page became available, this saves space 756 * at a cost of "thundering herd" phenomena during rare hash 757 * collisions. 758 */ 759 wait_queue_head_t *page_waitqueue(struct page *page) 760 { 761 const struct zone *zone = page_zone(page); 762 763 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 764 } 765 EXPORT_SYMBOL(page_waitqueue); 766 767 void wait_on_page_bit(struct page *page, int bit_nr) 768 { 769 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 770 771 if (test_bit(bit_nr, &page->flags)) 772 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io, 773 TASK_UNINTERRUPTIBLE); 774 } 775 EXPORT_SYMBOL(wait_on_page_bit); 776 777 int wait_on_page_bit_killable(struct page *page, int bit_nr) 778 { 779 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 780 781 if (!test_bit(bit_nr, &page->flags)) 782 return 0; 783 784 return __wait_on_bit(page_waitqueue(page), &wait, 785 bit_wait_io, TASK_KILLABLE); 786 } 787 788 int wait_on_page_bit_killable_timeout(struct page *page, 789 int bit_nr, unsigned long timeout) 790 { 791 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 792 793 wait.key.timeout = jiffies + timeout; 794 if (!test_bit(bit_nr, &page->flags)) 795 return 0; 796 return __wait_on_bit(page_waitqueue(page), &wait, 797 bit_wait_io_timeout, TASK_KILLABLE); 798 } 799 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout); 800 801 /** 802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 803 * @page: Page defining the wait queue of interest 804 * @waiter: Waiter to add to the queue 805 * 806 * Add an arbitrary @waiter to the wait queue for the nominated @page. 807 */ 808 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 809 { 810 wait_queue_head_t *q = page_waitqueue(page); 811 unsigned long flags; 812 813 spin_lock_irqsave(&q->lock, flags); 814 __add_wait_queue(q, waiter); 815 spin_unlock_irqrestore(&q->lock, flags); 816 } 817 EXPORT_SYMBOL_GPL(add_page_wait_queue); 818 819 /** 820 * unlock_page - unlock a locked page 821 * @page: the page 822 * 823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 825 * mechanism between PageLocked pages and PageWriteback pages is shared. 826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 827 * 828 * The mb is necessary to enforce ordering between the clear_bit and the read 829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 830 */ 831 void unlock_page(struct page *page) 832 { 833 page = compound_head(page); 834 VM_BUG_ON_PAGE(!PageLocked(page), page); 835 clear_bit_unlock(PG_locked, &page->flags); 836 smp_mb__after_atomic(); 837 wake_up_page(page, PG_locked); 838 } 839 EXPORT_SYMBOL(unlock_page); 840 841 /** 842 * end_page_writeback - end writeback against a page 843 * @page: the page 844 */ 845 void end_page_writeback(struct page *page) 846 { 847 /* 848 * TestClearPageReclaim could be used here but it is an atomic 849 * operation and overkill in this particular case. Failing to 850 * shuffle a page marked for immediate reclaim is too mild to 851 * justify taking an atomic operation penalty at the end of 852 * ever page writeback. 853 */ 854 if (PageReclaim(page)) { 855 ClearPageReclaim(page); 856 rotate_reclaimable_page(page); 857 } 858 859 if (!test_clear_page_writeback(page)) 860 BUG(); 861 862 smp_mb__after_atomic(); 863 wake_up_page(page, PG_writeback); 864 } 865 EXPORT_SYMBOL(end_page_writeback); 866 867 /* 868 * After completing I/O on a page, call this routine to update the page 869 * flags appropriately 870 */ 871 void page_endio(struct page *page, int rw, int err) 872 { 873 if (rw == READ) { 874 if (!err) { 875 SetPageUptodate(page); 876 } else { 877 ClearPageUptodate(page); 878 SetPageError(page); 879 } 880 unlock_page(page); 881 } else { /* rw == WRITE */ 882 if (err) { 883 SetPageError(page); 884 if (page->mapping) 885 mapping_set_error(page->mapping, err); 886 } 887 end_page_writeback(page); 888 } 889 } 890 EXPORT_SYMBOL_GPL(page_endio); 891 892 /** 893 * __lock_page - get a lock on the page, assuming we need to sleep to get it 894 * @page: the page to lock 895 */ 896 void __lock_page(struct page *page) 897 { 898 struct page *page_head = compound_head(page); 899 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 900 901 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io, 902 TASK_UNINTERRUPTIBLE); 903 } 904 EXPORT_SYMBOL(__lock_page); 905 906 int __lock_page_killable(struct page *page) 907 { 908 struct page *page_head = compound_head(page); 909 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked); 910 911 return __wait_on_bit_lock(page_waitqueue(page_head), &wait, 912 bit_wait_io, TASK_KILLABLE); 913 } 914 EXPORT_SYMBOL_GPL(__lock_page_killable); 915 916 /* 917 * Return values: 918 * 1 - page is locked; mmap_sem is still held. 919 * 0 - page is not locked. 920 * mmap_sem has been released (up_read()), unless flags had both 921 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in 922 * which case mmap_sem is still held. 923 * 924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1 925 * with the page locked and the mmap_sem unperturbed. 926 */ 927 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 928 unsigned int flags) 929 { 930 if (flags & FAULT_FLAG_ALLOW_RETRY) { 931 /* 932 * CAUTION! In this case, mmap_sem is not released 933 * even though return 0. 934 */ 935 if (flags & FAULT_FLAG_RETRY_NOWAIT) 936 return 0; 937 938 up_read(&mm->mmap_sem); 939 if (flags & FAULT_FLAG_KILLABLE) 940 wait_on_page_locked_killable(page); 941 else 942 wait_on_page_locked(page); 943 return 0; 944 } else { 945 if (flags & FAULT_FLAG_KILLABLE) { 946 int ret; 947 948 ret = __lock_page_killable(page); 949 if (ret) { 950 up_read(&mm->mmap_sem); 951 return 0; 952 } 953 } else 954 __lock_page(page); 955 return 1; 956 } 957 } 958 959 /** 960 * page_cache_next_hole - find the next hole (not-present entry) 961 * @mapping: mapping 962 * @index: index 963 * @max_scan: maximum range to search 964 * 965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 966 * lowest indexed hole. 967 * 968 * Returns: the index of the hole if found, otherwise returns an index 969 * outside of the set specified (in which case 'return - index >= 970 * max_scan' will be true). In rare cases of index wrap-around, 0 will 971 * be returned. 972 * 973 * page_cache_next_hole may be called under rcu_read_lock. However, 974 * like radix_tree_gang_lookup, this will not atomically search a 975 * snapshot of the tree at a single point in time. For example, if a 976 * hole is created at index 5, then subsequently a hole is created at 977 * index 10, page_cache_next_hole covering both indexes may return 10 978 * if called under rcu_read_lock. 979 */ 980 pgoff_t page_cache_next_hole(struct address_space *mapping, 981 pgoff_t index, unsigned long max_scan) 982 { 983 unsigned long i; 984 985 for (i = 0; i < max_scan; i++) { 986 struct page *page; 987 988 page = radix_tree_lookup(&mapping->page_tree, index); 989 if (!page || radix_tree_exceptional_entry(page)) 990 break; 991 index++; 992 if (index == 0) 993 break; 994 } 995 996 return index; 997 } 998 EXPORT_SYMBOL(page_cache_next_hole); 999 1000 /** 1001 * page_cache_prev_hole - find the prev hole (not-present entry) 1002 * @mapping: mapping 1003 * @index: index 1004 * @max_scan: maximum range to search 1005 * 1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for 1007 * the first hole. 1008 * 1009 * Returns: the index of the hole if found, otherwise returns an index 1010 * outside of the set specified (in which case 'index - return >= 1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 1012 * will be returned. 1013 * 1014 * page_cache_prev_hole may be called under rcu_read_lock. However, 1015 * like radix_tree_gang_lookup, this will not atomically search a 1016 * snapshot of the tree at a single point in time. For example, if a 1017 * hole is created at index 10, then subsequently a hole is created at 1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if 1019 * called under rcu_read_lock. 1020 */ 1021 pgoff_t page_cache_prev_hole(struct address_space *mapping, 1022 pgoff_t index, unsigned long max_scan) 1023 { 1024 unsigned long i; 1025 1026 for (i = 0; i < max_scan; i++) { 1027 struct page *page; 1028 1029 page = radix_tree_lookup(&mapping->page_tree, index); 1030 if (!page || radix_tree_exceptional_entry(page)) 1031 break; 1032 index--; 1033 if (index == ULONG_MAX) 1034 break; 1035 } 1036 1037 return index; 1038 } 1039 EXPORT_SYMBOL(page_cache_prev_hole); 1040 1041 /** 1042 * find_get_entry - find and get a page cache entry 1043 * @mapping: the address_space to search 1044 * @offset: the page cache index 1045 * 1046 * Looks up the page cache slot at @mapping & @offset. If there is a 1047 * page cache page, it is returned with an increased refcount. 1048 * 1049 * If the slot holds a shadow entry of a previously evicted page, or a 1050 * swap entry from shmem/tmpfs, it is returned. 1051 * 1052 * Otherwise, %NULL is returned. 1053 */ 1054 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 1055 { 1056 void **pagep; 1057 struct page *page; 1058 1059 rcu_read_lock(); 1060 repeat: 1061 page = NULL; 1062 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 1063 if (pagep) { 1064 page = radix_tree_deref_slot(pagep); 1065 if (unlikely(!page)) 1066 goto out; 1067 if (radix_tree_exception(page)) { 1068 if (radix_tree_deref_retry(page)) 1069 goto repeat; 1070 /* 1071 * A shadow entry of a recently evicted page, 1072 * or a swap entry from shmem/tmpfs. Return 1073 * it without attempting to raise page count. 1074 */ 1075 goto out; 1076 } 1077 if (!page_cache_get_speculative(page)) 1078 goto repeat; 1079 1080 /* 1081 * Has the page moved? 1082 * This is part of the lockless pagecache protocol. See 1083 * include/linux/pagemap.h for details. 1084 */ 1085 if (unlikely(page != *pagep)) { 1086 put_page(page); 1087 goto repeat; 1088 } 1089 } 1090 out: 1091 rcu_read_unlock(); 1092 1093 return page; 1094 } 1095 EXPORT_SYMBOL(find_get_entry); 1096 1097 /** 1098 * find_lock_entry - locate, pin and lock a page cache entry 1099 * @mapping: the address_space to search 1100 * @offset: the page cache index 1101 * 1102 * Looks up the page cache slot at @mapping & @offset. If there is a 1103 * page cache page, it is returned locked and with an increased 1104 * refcount. 1105 * 1106 * If the slot holds a shadow entry of a previously evicted page, or a 1107 * swap entry from shmem/tmpfs, it is returned. 1108 * 1109 * Otherwise, %NULL is returned. 1110 * 1111 * find_lock_entry() may sleep. 1112 */ 1113 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 1114 { 1115 struct page *page; 1116 1117 repeat: 1118 page = find_get_entry(mapping, offset); 1119 if (page && !radix_tree_exception(page)) { 1120 lock_page(page); 1121 /* Has the page been truncated? */ 1122 if (unlikely(page->mapping != mapping)) { 1123 unlock_page(page); 1124 put_page(page); 1125 goto repeat; 1126 } 1127 VM_BUG_ON_PAGE(page->index != offset, page); 1128 } 1129 return page; 1130 } 1131 EXPORT_SYMBOL(find_lock_entry); 1132 1133 /** 1134 * pagecache_get_page - find and get a page reference 1135 * @mapping: the address_space to search 1136 * @offset: the page index 1137 * @fgp_flags: PCG flags 1138 * @gfp_mask: gfp mask to use for the page cache data page allocation 1139 * 1140 * Looks up the page cache slot at @mapping & @offset. 1141 * 1142 * PCG flags modify how the page is returned. 1143 * 1144 * FGP_ACCESSED: the page will be marked accessed 1145 * FGP_LOCK: Page is return locked 1146 * FGP_CREAT: If page is not present then a new page is allocated using 1147 * @gfp_mask and added to the page cache and the VM's LRU 1148 * list. The page is returned locked and with an increased 1149 * refcount. Otherwise, %NULL is returned. 1150 * 1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even 1152 * if the GFP flags specified for FGP_CREAT are atomic. 1153 * 1154 * If there is a page cache page, it is returned with an increased refcount. 1155 */ 1156 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset, 1157 int fgp_flags, gfp_t gfp_mask) 1158 { 1159 struct page *page; 1160 1161 repeat: 1162 page = find_get_entry(mapping, offset); 1163 if (radix_tree_exceptional_entry(page)) 1164 page = NULL; 1165 if (!page) 1166 goto no_page; 1167 1168 if (fgp_flags & FGP_LOCK) { 1169 if (fgp_flags & FGP_NOWAIT) { 1170 if (!trylock_page(page)) { 1171 put_page(page); 1172 return NULL; 1173 } 1174 } else { 1175 lock_page(page); 1176 } 1177 1178 /* Has the page been truncated? */ 1179 if (unlikely(page->mapping != mapping)) { 1180 unlock_page(page); 1181 put_page(page); 1182 goto repeat; 1183 } 1184 VM_BUG_ON_PAGE(page->index != offset, page); 1185 } 1186 1187 if (page && (fgp_flags & FGP_ACCESSED)) 1188 mark_page_accessed(page); 1189 1190 no_page: 1191 if (!page && (fgp_flags & FGP_CREAT)) { 1192 int err; 1193 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping)) 1194 gfp_mask |= __GFP_WRITE; 1195 if (fgp_flags & FGP_NOFS) 1196 gfp_mask &= ~__GFP_FS; 1197 1198 page = __page_cache_alloc(gfp_mask); 1199 if (!page) 1200 return NULL; 1201 1202 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK))) 1203 fgp_flags |= FGP_LOCK; 1204 1205 /* Init accessed so avoid atomic mark_page_accessed later */ 1206 if (fgp_flags & FGP_ACCESSED) 1207 __SetPageReferenced(page); 1208 1209 err = add_to_page_cache_lru(page, mapping, offset, 1210 gfp_mask & GFP_RECLAIM_MASK); 1211 if (unlikely(err)) { 1212 put_page(page); 1213 page = NULL; 1214 if (err == -EEXIST) 1215 goto repeat; 1216 } 1217 } 1218 1219 return page; 1220 } 1221 EXPORT_SYMBOL(pagecache_get_page); 1222 1223 /** 1224 * find_get_entries - gang pagecache lookup 1225 * @mapping: The address_space to search 1226 * @start: The starting page cache index 1227 * @nr_entries: The maximum number of entries 1228 * @entries: Where the resulting entries are placed 1229 * @indices: The cache indices corresponding to the entries in @entries 1230 * 1231 * find_get_entries() will search for and return a group of up to 1232 * @nr_entries entries in the mapping. The entries are placed at 1233 * @entries. find_get_entries() takes a reference against any actual 1234 * pages it returns. 1235 * 1236 * The search returns a group of mapping-contiguous page cache entries 1237 * with ascending indexes. There may be holes in the indices due to 1238 * not-present pages. 1239 * 1240 * Any shadow entries of evicted pages, or swap entries from 1241 * shmem/tmpfs, are included in the returned array. 1242 * 1243 * find_get_entries() returns the number of pages and shadow entries 1244 * which were found. 1245 */ 1246 unsigned find_get_entries(struct address_space *mapping, 1247 pgoff_t start, unsigned int nr_entries, 1248 struct page **entries, pgoff_t *indices) 1249 { 1250 void **slot; 1251 unsigned int ret = 0; 1252 struct radix_tree_iter iter; 1253 1254 if (!nr_entries) 1255 return 0; 1256 1257 rcu_read_lock(); 1258 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1259 struct page *page; 1260 repeat: 1261 page = radix_tree_deref_slot(slot); 1262 if (unlikely(!page)) 1263 continue; 1264 if (radix_tree_exception(page)) { 1265 if (radix_tree_deref_retry(page)) { 1266 slot = radix_tree_iter_retry(&iter); 1267 continue; 1268 } 1269 /* 1270 * A shadow entry of a recently evicted page, a swap 1271 * entry from shmem/tmpfs or a DAX entry. Return it 1272 * without attempting to raise page count. 1273 */ 1274 goto export; 1275 } 1276 if (!page_cache_get_speculative(page)) 1277 goto repeat; 1278 1279 /* Has the page moved? */ 1280 if (unlikely(page != *slot)) { 1281 put_page(page); 1282 goto repeat; 1283 } 1284 export: 1285 indices[ret] = iter.index; 1286 entries[ret] = page; 1287 if (++ret == nr_entries) 1288 break; 1289 } 1290 rcu_read_unlock(); 1291 return ret; 1292 } 1293 1294 /** 1295 * find_get_pages - gang pagecache lookup 1296 * @mapping: The address_space to search 1297 * @start: The starting page index 1298 * @nr_pages: The maximum number of pages 1299 * @pages: Where the resulting pages are placed 1300 * 1301 * find_get_pages() will search for and return a group of up to 1302 * @nr_pages pages in the mapping. The pages are placed at @pages. 1303 * find_get_pages() takes a reference against the returned pages. 1304 * 1305 * The search returns a group of mapping-contiguous pages with ascending 1306 * indexes. There may be holes in the indices due to not-present pages. 1307 * 1308 * find_get_pages() returns the number of pages which were found. 1309 */ 1310 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1311 unsigned int nr_pages, struct page **pages) 1312 { 1313 struct radix_tree_iter iter; 1314 void **slot; 1315 unsigned ret = 0; 1316 1317 if (unlikely(!nr_pages)) 1318 return 0; 1319 1320 rcu_read_lock(); 1321 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1322 struct page *page; 1323 repeat: 1324 page = radix_tree_deref_slot(slot); 1325 if (unlikely(!page)) 1326 continue; 1327 1328 if (radix_tree_exception(page)) { 1329 if (radix_tree_deref_retry(page)) { 1330 slot = radix_tree_iter_retry(&iter); 1331 continue; 1332 } 1333 /* 1334 * A shadow entry of a recently evicted page, 1335 * or a swap entry from shmem/tmpfs. Skip 1336 * over it. 1337 */ 1338 continue; 1339 } 1340 1341 if (!page_cache_get_speculative(page)) 1342 goto repeat; 1343 1344 /* Has the page moved? */ 1345 if (unlikely(page != *slot)) { 1346 put_page(page); 1347 goto repeat; 1348 } 1349 1350 pages[ret] = page; 1351 if (++ret == nr_pages) 1352 break; 1353 } 1354 1355 rcu_read_unlock(); 1356 return ret; 1357 } 1358 1359 /** 1360 * find_get_pages_contig - gang contiguous pagecache lookup 1361 * @mapping: The address_space to search 1362 * @index: The starting page index 1363 * @nr_pages: The maximum number of pages 1364 * @pages: Where the resulting pages are placed 1365 * 1366 * find_get_pages_contig() works exactly like find_get_pages(), except 1367 * that the returned number of pages are guaranteed to be contiguous. 1368 * 1369 * find_get_pages_contig() returns the number of pages which were found. 1370 */ 1371 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1372 unsigned int nr_pages, struct page **pages) 1373 { 1374 struct radix_tree_iter iter; 1375 void **slot; 1376 unsigned int ret = 0; 1377 1378 if (unlikely(!nr_pages)) 1379 return 0; 1380 1381 rcu_read_lock(); 1382 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1383 struct page *page; 1384 repeat: 1385 page = radix_tree_deref_slot(slot); 1386 /* The hole, there no reason to continue */ 1387 if (unlikely(!page)) 1388 break; 1389 1390 if (radix_tree_exception(page)) { 1391 if (radix_tree_deref_retry(page)) { 1392 slot = radix_tree_iter_retry(&iter); 1393 continue; 1394 } 1395 /* 1396 * A shadow entry of a recently evicted page, 1397 * or a swap entry from shmem/tmpfs. Stop 1398 * looking for contiguous pages. 1399 */ 1400 break; 1401 } 1402 1403 if (!page_cache_get_speculative(page)) 1404 goto repeat; 1405 1406 /* Has the page moved? */ 1407 if (unlikely(page != *slot)) { 1408 put_page(page); 1409 goto repeat; 1410 } 1411 1412 /* 1413 * must check mapping and index after taking the ref. 1414 * otherwise we can get both false positives and false 1415 * negatives, which is just confusing to the caller. 1416 */ 1417 if (page->mapping == NULL || page->index != iter.index) { 1418 put_page(page); 1419 break; 1420 } 1421 1422 pages[ret] = page; 1423 if (++ret == nr_pages) 1424 break; 1425 } 1426 rcu_read_unlock(); 1427 return ret; 1428 } 1429 EXPORT_SYMBOL(find_get_pages_contig); 1430 1431 /** 1432 * find_get_pages_tag - find and return pages that match @tag 1433 * @mapping: the address_space to search 1434 * @index: the starting page index 1435 * @tag: the tag index 1436 * @nr_pages: the maximum number of pages 1437 * @pages: where the resulting pages are placed 1438 * 1439 * Like find_get_pages, except we only return pages which are tagged with 1440 * @tag. We update @index to index the next page for the traversal. 1441 */ 1442 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1443 int tag, unsigned int nr_pages, struct page **pages) 1444 { 1445 struct radix_tree_iter iter; 1446 void **slot; 1447 unsigned ret = 0; 1448 1449 if (unlikely(!nr_pages)) 1450 return 0; 1451 1452 rcu_read_lock(); 1453 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1454 &iter, *index, tag) { 1455 struct page *page; 1456 repeat: 1457 page = radix_tree_deref_slot(slot); 1458 if (unlikely(!page)) 1459 continue; 1460 1461 if (radix_tree_exception(page)) { 1462 if (radix_tree_deref_retry(page)) { 1463 slot = radix_tree_iter_retry(&iter); 1464 continue; 1465 } 1466 /* 1467 * A shadow entry of a recently evicted page. 1468 * 1469 * Those entries should never be tagged, but 1470 * this tree walk is lockless and the tags are 1471 * looked up in bulk, one radix tree node at a 1472 * time, so there is a sizable window for page 1473 * reclaim to evict a page we saw tagged. 1474 * 1475 * Skip over it. 1476 */ 1477 continue; 1478 } 1479 1480 if (!page_cache_get_speculative(page)) 1481 goto repeat; 1482 1483 /* Has the page moved? */ 1484 if (unlikely(page != *slot)) { 1485 put_page(page); 1486 goto repeat; 1487 } 1488 1489 pages[ret] = page; 1490 if (++ret == nr_pages) 1491 break; 1492 } 1493 1494 rcu_read_unlock(); 1495 1496 if (ret) 1497 *index = pages[ret - 1]->index + 1; 1498 1499 return ret; 1500 } 1501 EXPORT_SYMBOL(find_get_pages_tag); 1502 1503 /** 1504 * find_get_entries_tag - find and return entries that match @tag 1505 * @mapping: the address_space to search 1506 * @start: the starting page cache index 1507 * @tag: the tag index 1508 * @nr_entries: the maximum number of entries 1509 * @entries: where the resulting entries are placed 1510 * @indices: the cache indices corresponding to the entries in @entries 1511 * 1512 * Like find_get_entries, except we only return entries which are tagged with 1513 * @tag. 1514 */ 1515 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start, 1516 int tag, unsigned int nr_entries, 1517 struct page **entries, pgoff_t *indices) 1518 { 1519 void **slot; 1520 unsigned int ret = 0; 1521 struct radix_tree_iter iter; 1522 1523 if (!nr_entries) 1524 return 0; 1525 1526 rcu_read_lock(); 1527 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1528 &iter, start, tag) { 1529 struct page *page; 1530 repeat: 1531 page = radix_tree_deref_slot(slot); 1532 if (unlikely(!page)) 1533 continue; 1534 if (radix_tree_exception(page)) { 1535 if (radix_tree_deref_retry(page)) { 1536 slot = radix_tree_iter_retry(&iter); 1537 continue; 1538 } 1539 1540 /* 1541 * A shadow entry of a recently evicted page, a swap 1542 * entry from shmem/tmpfs or a DAX entry. Return it 1543 * without attempting to raise page count. 1544 */ 1545 goto export; 1546 } 1547 if (!page_cache_get_speculative(page)) 1548 goto repeat; 1549 1550 /* Has the page moved? */ 1551 if (unlikely(page != *slot)) { 1552 put_page(page); 1553 goto repeat; 1554 } 1555 export: 1556 indices[ret] = iter.index; 1557 entries[ret] = page; 1558 if (++ret == nr_entries) 1559 break; 1560 } 1561 rcu_read_unlock(); 1562 return ret; 1563 } 1564 EXPORT_SYMBOL(find_get_entries_tag); 1565 1566 /* 1567 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1568 * a _large_ part of the i/o request. Imagine the worst scenario: 1569 * 1570 * ---R__________________________________________B__________ 1571 * ^ reading here ^ bad block(assume 4k) 1572 * 1573 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1574 * => failing the whole request => read(R) => read(R+1) => 1575 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1576 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1577 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1578 * 1579 * It is going insane. Fix it by quickly scaling down the readahead size. 1580 */ 1581 static void shrink_readahead_size_eio(struct file *filp, 1582 struct file_ra_state *ra) 1583 { 1584 ra->ra_pages /= 4; 1585 } 1586 1587 /** 1588 * do_generic_file_read - generic file read routine 1589 * @filp: the file to read 1590 * @ppos: current file position 1591 * @iter: data destination 1592 * @written: already copied 1593 * 1594 * This is a generic file read routine, and uses the 1595 * mapping->a_ops->readpage() function for the actual low-level stuff. 1596 * 1597 * This is really ugly. But the goto's actually try to clarify some 1598 * of the logic when it comes to error handling etc. 1599 */ 1600 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1601 struct iov_iter *iter, ssize_t written) 1602 { 1603 struct address_space *mapping = filp->f_mapping; 1604 struct inode *inode = mapping->host; 1605 struct file_ra_state *ra = &filp->f_ra; 1606 pgoff_t index; 1607 pgoff_t last_index; 1608 pgoff_t prev_index; 1609 unsigned long offset; /* offset into pagecache page */ 1610 unsigned int prev_offset; 1611 int error = 0; 1612 1613 index = *ppos >> PAGE_SHIFT; 1614 prev_index = ra->prev_pos >> PAGE_SHIFT; 1615 prev_offset = ra->prev_pos & (PAGE_SIZE-1); 1616 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT; 1617 offset = *ppos & ~PAGE_MASK; 1618 1619 for (;;) { 1620 struct page *page; 1621 pgoff_t end_index; 1622 loff_t isize; 1623 unsigned long nr, ret; 1624 1625 cond_resched(); 1626 find_page: 1627 page = find_get_page(mapping, index); 1628 if (!page) { 1629 page_cache_sync_readahead(mapping, 1630 ra, filp, 1631 index, last_index - index); 1632 page = find_get_page(mapping, index); 1633 if (unlikely(page == NULL)) 1634 goto no_cached_page; 1635 } 1636 if (PageReadahead(page)) { 1637 page_cache_async_readahead(mapping, 1638 ra, filp, page, 1639 index, last_index - index); 1640 } 1641 if (!PageUptodate(page)) { 1642 /* 1643 * See comment in do_read_cache_page on why 1644 * wait_on_page_locked is used to avoid unnecessarily 1645 * serialisations and why it's safe. 1646 */ 1647 wait_on_page_locked_killable(page); 1648 if (PageUptodate(page)) 1649 goto page_ok; 1650 1651 if (inode->i_blkbits == PAGE_SHIFT || 1652 !mapping->a_ops->is_partially_uptodate) 1653 goto page_not_up_to_date; 1654 if (!trylock_page(page)) 1655 goto page_not_up_to_date; 1656 /* Did it get truncated before we got the lock? */ 1657 if (!page->mapping) 1658 goto page_not_up_to_date_locked; 1659 if (!mapping->a_ops->is_partially_uptodate(page, 1660 offset, iter->count)) 1661 goto page_not_up_to_date_locked; 1662 unlock_page(page); 1663 } 1664 page_ok: 1665 /* 1666 * i_size must be checked after we know the page is Uptodate. 1667 * 1668 * Checking i_size after the check allows us to calculate 1669 * the correct value for "nr", which means the zero-filled 1670 * part of the page is not copied back to userspace (unless 1671 * another truncate extends the file - this is desired though). 1672 */ 1673 1674 isize = i_size_read(inode); 1675 end_index = (isize - 1) >> PAGE_SHIFT; 1676 if (unlikely(!isize || index > end_index)) { 1677 put_page(page); 1678 goto out; 1679 } 1680 1681 /* nr is the maximum number of bytes to copy from this page */ 1682 nr = PAGE_SIZE; 1683 if (index == end_index) { 1684 nr = ((isize - 1) & ~PAGE_MASK) + 1; 1685 if (nr <= offset) { 1686 put_page(page); 1687 goto out; 1688 } 1689 } 1690 nr = nr - offset; 1691 1692 /* If users can be writing to this page using arbitrary 1693 * virtual addresses, take care about potential aliasing 1694 * before reading the page on the kernel side. 1695 */ 1696 if (mapping_writably_mapped(mapping)) 1697 flush_dcache_page(page); 1698 1699 /* 1700 * When a sequential read accesses a page several times, 1701 * only mark it as accessed the first time. 1702 */ 1703 if (prev_index != index || offset != prev_offset) 1704 mark_page_accessed(page); 1705 prev_index = index; 1706 1707 /* 1708 * Ok, we have the page, and it's up-to-date, so 1709 * now we can copy it to user space... 1710 */ 1711 1712 ret = copy_page_to_iter(page, offset, nr, iter); 1713 offset += ret; 1714 index += offset >> PAGE_SHIFT; 1715 offset &= ~PAGE_MASK; 1716 prev_offset = offset; 1717 1718 put_page(page); 1719 written += ret; 1720 if (!iov_iter_count(iter)) 1721 goto out; 1722 if (ret < nr) { 1723 error = -EFAULT; 1724 goto out; 1725 } 1726 continue; 1727 1728 page_not_up_to_date: 1729 /* Get exclusive access to the page ... */ 1730 error = lock_page_killable(page); 1731 if (unlikely(error)) 1732 goto readpage_error; 1733 1734 page_not_up_to_date_locked: 1735 /* Did it get truncated before we got the lock? */ 1736 if (!page->mapping) { 1737 unlock_page(page); 1738 put_page(page); 1739 continue; 1740 } 1741 1742 /* Did somebody else fill it already? */ 1743 if (PageUptodate(page)) { 1744 unlock_page(page); 1745 goto page_ok; 1746 } 1747 1748 readpage: 1749 /* 1750 * A previous I/O error may have been due to temporary 1751 * failures, eg. multipath errors. 1752 * PG_error will be set again if readpage fails. 1753 */ 1754 ClearPageError(page); 1755 /* Start the actual read. The read will unlock the page. */ 1756 error = mapping->a_ops->readpage(filp, page); 1757 1758 if (unlikely(error)) { 1759 if (error == AOP_TRUNCATED_PAGE) { 1760 put_page(page); 1761 error = 0; 1762 goto find_page; 1763 } 1764 goto readpage_error; 1765 } 1766 1767 if (!PageUptodate(page)) { 1768 error = lock_page_killable(page); 1769 if (unlikely(error)) 1770 goto readpage_error; 1771 if (!PageUptodate(page)) { 1772 if (page->mapping == NULL) { 1773 /* 1774 * invalidate_mapping_pages got it 1775 */ 1776 unlock_page(page); 1777 put_page(page); 1778 goto find_page; 1779 } 1780 unlock_page(page); 1781 shrink_readahead_size_eio(filp, ra); 1782 error = -EIO; 1783 goto readpage_error; 1784 } 1785 unlock_page(page); 1786 } 1787 1788 goto page_ok; 1789 1790 readpage_error: 1791 /* UHHUH! A synchronous read error occurred. Report it */ 1792 put_page(page); 1793 goto out; 1794 1795 no_cached_page: 1796 /* 1797 * Ok, it wasn't cached, so we need to create a new 1798 * page.. 1799 */ 1800 page = page_cache_alloc_cold(mapping); 1801 if (!page) { 1802 error = -ENOMEM; 1803 goto out; 1804 } 1805 error = add_to_page_cache_lru(page, mapping, index, 1806 mapping_gfp_constraint(mapping, GFP_KERNEL)); 1807 if (error) { 1808 put_page(page); 1809 if (error == -EEXIST) { 1810 error = 0; 1811 goto find_page; 1812 } 1813 goto out; 1814 } 1815 goto readpage; 1816 } 1817 1818 out: 1819 ra->prev_pos = prev_index; 1820 ra->prev_pos <<= PAGE_SHIFT; 1821 ra->prev_pos |= prev_offset; 1822 1823 *ppos = ((loff_t)index << PAGE_SHIFT) + offset; 1824 file_accessed(filp); 1825 return written ? written : error; 1826 } 1827 1828 /** 1829 * generic_file_read_iter - generic filesystem read routine 1830 * @iocb: kernel I/O control block 1831 * @iter: destination for the data read 1832 * 1833 * This is the "read_iter()" routine for all filesystems 1834 * that can use the page cache directly. 1835 */ 1836 ssize_t 1837 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 1838 { 1839 struct file *file = iocb->ki_filp; 1840 ssize_t retval = 0; 1841 loff_t *ppos = &iocb->ki_pos; 1842 loff_t pos = *ppos; 1843 size_t count = iov_iter_count(iter); 1844 1845 if (!count) 1846 goto out; /* skip atime */ 1847 1848 if (iocb->ki_flags & IOCB_DIRECT) { 1849 struct address_space *mapping = file->f_mapping; 1850 struct inode *inode = mapping->host; 1851 loff_t size; 1852 1853 size = i_size_read(inode); 1854 retval = filemap_write_and_wait_range(mapping, pos, 1855 pos + count - 1); 1856 if (!retval) { 1857 struct iov_iter data = *iter; 1858 retval = mapping->a_ops->direct_IO(iocb, &data, pos); 1859 } 1860 1861 if (retval > 0) { 1862 *ppos = pos + retval; 1863 iov_iter_advance(iter, retval); 1864 } 1865 1866 /* 1867 * Btrfs can have a short DIO read if we encounter 1868 * compressed extents, so if there was an error, or if 1869 * we've already read everything we wanted to, or if 1870 * there was a short read because we hit EOF, go ahead 1871 * and return. Otherwise fallthrough to buffered io for 1872 * the rest of the read. Buffered reads will not work for 1873 * DAX files, so don't bother trying. 1874 */ 1875 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size || 1876 IS_DAX(inode)) { 1877 file_accessed(file); 1878 goto out; 1879 } 1880 } 1881 1882 retval = do_generic_file_read(file, ppos, iter, retval); 1883 out: 1884 return retval; 1885 } 1886 EXPORT_SYMBOL(generic_file_read_iter); 1887 1888 #ifdef CONFIG_MMU 1889 /** 1890 * page_cache_read - adds requested page to the page cache if not already there 1891 * @file: file to read 1892 * @offset: page index 1893 * @gfp_mask: memory allocation flags 1894 * 1895 * This adds the requested page to the page cache if it isn't already there, 1896 * and schedules an I/O to read in its contents from disk. 1897 */ 1898 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask) 1899 { 1900 struct address_space *mapping = file->f_mapping; 1901 struct page *page; 1902 int ret; 1903 1904 do { 1905 page = __page_cache_alloc(gfp_mask|__GFP_COLD); 1906 if (!page) 1907 return -ENOMEM; 1908 1909 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL); 1910 if (ret == 0) 1911 ret = mapping->a_ops->readpage(file, page); 1912 else if (ret == -EEXIST) 1913 ret = 0; /* losing race to add is OK */ 1914 1915 put_page(page); 1916 1917 } while (ret == AOP_TRUNCATED_PAGE); 1918 1919 return ret; 1920 } 1921 1922 #define MMAP_LOTSAMISS (100) 1923 1924 /* 1925 * Synchronous readahead happens when we don't even find 1926 * a page in the page cache at all. 1927 */ 1928 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1929 struct file_ra_state *ra, 1930 struct file *file, 1931 pgoff_t offset) 1932 { 1933 struct address_space *mapping = file->f_mapping; 1934 1935 /* If we don't want any read-ahead, don't bother */ 1936 if (vma->vm_flags & VM_RAND_READ) 1937 return; 1938 if (!ra->ra_pages) 1939 return; 1940 1941 if (vma->vm_flags & VM_SEQ_READ) { 1942 page_cache_sync_readahead(mapping, ra, file, offset, 1943 ra->ra_pages); 1944 return; 1945 } 1946 1947 /* Avoid banging the cache line if not needed */ 1948 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1949 ra->mmap_miss++; 1950 1951 /* 1952 * Do we miss much more than hit in this file? If so, 1953 * stop bothering with read-ahead. It will only hurt. 1954 */ 1955 if (ra->mmap_miss > MMAP_LOTSAMISS) 1956 return; 1957 1958 /* 1959 * mmap read-around 1960 */ 1961 ra->start = max_t(long, 0, offset - ra->ra_pages / 2); 1962 ra->size = ra->ra_pages; 1963 ra->async_size = ra->ra_pages / 4; 1964 ra_submit(ra, mapping, file); 1965 } 1966 1967 /* 1968 * Asynchronous readahead happens when we find the page and PG_readahead, 1969 * so we want to possibly extend the readahead further.. 1970 */ 1971 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1972 struct file_ra_state *ra, 1973 struct file *file, 1974 struct page *page, 1975 pgoff_t offset) 1976 { 1977 struct address_space *mapping = file->f_mapping; 1978 1979 /* If we don't want any read-ahead, don't bother */ 1980 if (vma->vm_flags & VM_RAND_READ) 1981 return; 1982 if (ra->mmap_miss > 0) 1983 ra->mmap_miss--; 1984 if (PageReadahead(page)) 1985 page_cache_async_readahead(mapping, ra, file, 1986 page, offset, ra->ra_pages); 1987 } 1988 1989 /** 1990 * filemap_fault - read in file data for page fault handling 1991 * @vma: vma in which the fault was taken 1992 * @vmf: struct vm_fault containing details of the fault 1993 * 1994 * filemap_fault() is invoked via the vma operations vector for a 1995 * mapped memory region to read in file data during a page fault. 1996 * 1997 * The goto's are kind of ugly, but this streamlines the normal case of having 1998 * it in the page cache, and handles the special cases reasonably without 1999 * having a lot of duplicated code. 2000 * 2001 * vma->vm_mm->mmap_sem must be held on entry. 2002 * 2003 * If our return value has VM_FAULT_RETRY set, it's because 2004 * lock_page_or_retry() returned 0. 2005 * The mmap_sem has usually been released in this case. 2006 * See __lock_page_or_retry() for the exception. 2007 * 2008 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem 2009 * has not been released. 2010 * 2011 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 2012 */ 2013 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 2014 { 2015 int error; 2016 struct file *file = vma->vm_file; 2017 struct address_space *mapping = file->f_mapping; 2018 struct file_ra_state *ra = &file->f_ra; 2019 struct inode *inode = mapping->host; 2020 pgoff_t offset = vmf->pgoff; 2021 struct page *page; 2022 loff_t size; 2023 int ret = 0; 2024 2025 size = round_up(i_size_read(inode), PAGE_SIZE); 2026 if (offset >= size >> PAGE_SHIFT) 2027 return VM_FAULT_SIGBUS; 2028 2029 /* 2030 * Do we have something in the page cache already? 2031 */ 2032 page = find_get_page(mapping, offset); 2033 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 2034 /* 2035 * We found the page, so try async readahead before 2036 * waiting for the lock. 2037 */ 2038 do_async_mmap_readahead(vma, ra, file, page, offset); 2039 } else if (!page) { 2040 /* No page in the page cache at all */ 2041 do_sync_mmap_readahead(vma, ra, file, offset); 2042 count_vm_event(PGMAJFAULT); 2043 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 2044 ret = VM_FAULT_MAJOR; 2045 retry_find: 2046 page = find_get_page(mapping, offset); 2047 if (!page) 2048 goto no_cached_page; 2049 } 2050 2051 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 2052 put_page(page); 2053 return ret | VM_FAULT_RETRY; 2054 } 2055 2056 /* Did it get truncated? */ 2057 if (unlikely(page->mapping != mapping)) { 2058 unlock_page(page); 2059 put_page(page); 2060 goto retry_find; 2061 } 2062 VM_BUG_ON_PAGE(page->index != offset, page); 2063 2064 /* 2065 * We have a locked page in the page cache, now we need to check 2066 * that it's up-to-date. If not, it is going to be due to an error. 2067 */ 2068 if (unlikely(!PageUptodate(page))) 2069 goto page_not_uptodate; 2070 2071 /* 2072 * Found the page and have a reference on it. 2073 * We must recheck i_size under page lock. 2074 */ 2075 size = round_up(i_size_read(inode), PAGE_SIZE); 2076 if (unlikely(offset >= size >> PAGE_SHIFT)) { 2077 unlock_page(page); 2078 put_page(page); 2079 return VM_FAULT_SIGBUS; 2080 } 2081 2082 vmf->page = page; 2083 return ret | VM_FAULT_LOCKED; 2084 2085 no_cached_page: 2086 /* 2087 * We're only likely to ever get here if MADV_RANDOM is in 2088 * effect. 2089 */ 2090 error = page_cache_read(file, offset, vmf->gfp_mask); 2091 2092 /* 2093 * The page we want has now been added to the page cache. 2094 * In the unlikely event that someone removed it in the 2095 * meantime, we'll just come back here and read it again. 2096 */ 2097 if (error >= 0) 2098 goto retry_find; 2099 2100 /* 2101 * An error return from page_cache_read can result if the 2102 * system is low on memory, or a problem occurs while trying 2103 * to schedule I/O. 2104 */ 2105 if (error == -ENOMEM) 2106 return VM_FAULT_OOM; 2107 return VM_FAULT_SIGBUS; 2108 2109 page_not_uptodate: 2110 /* 2111 * Umm, take care of errors if the page isn't up-to-date. 2112 * Try to re-read it _once_. We do this synchronously, 2113 * because there really aren't any performance issues here 2114 * and we need to check for errors. 2115 */ 2116 ClearPageError(page); 2117 error = mapping->a_ops->readpage(file, page); 2118 if (!error) { 2119 wait_on_page_locked(page); 2120 if (!PageUptodate(page)) 2121 error = -EIO; 2122 } 2123 put_page(page); 2124 2125 if (!error || error == AOP_TRUNCATED_PAGE) 2126 goto retry_find; 2127 2128 /* Things didn't work out. Return zero to tell the mm layer so. */ 2129 shrink_readahead_size_eio(file, ra); 2130 return VM_FAULT_SIGBUS; 2131 } 2132 EXPORT_SYMBOL(filemap_fault); 2133 2134 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 2135 { 2136 struct radix_tree_iter iter; 2137 void **slot; 2138 struct file *file = vma->vm_file; 2139 struct address_space *mapping = file->f_mapping; 2140 loff_t size; 2141 struct page *page; 2142 unsigned long address = (unsigned long) vmf->virtual_address; 2143 unsigned long addr; 2144 pte_t *pte; 2145 2146 rcu_read_lock(); 2147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2148 if (iter.index > vmf->max_pgoff) 2149 break; 2150 repeat: 2151 page = radix_tree_deref_slot(slot); 2152 if (unlikely(!page)) 2153 goto next; 2154 if (radix_tree_exception(page)) { 2155 if (radix_tree_deref_retry(page)) { 2156 slot = radix_tree_iter_retry(&iter); 2157 continue; 2158 } 2159 goto next; 2160 } 2161 2162 if (!page_cache_get_speculative(page)) 2163 goto repeat; 2164 2165 /* Has the page moved? */ 2166 if (unlikely(page != *slot)) { 2167 put_page(page); 2168 goto repeat; 2169 } 2170 2171 if (!PageUptodate(page) || 2172 PageReadahead(page) || 2173 PageHWPoison(page)) 2174 goto skip; 2175 if (!trylock_page(page)) 2176 goto skip; 2177 2178 if (page->mapping != mapping || !PageUptodate(page)) 2179 goto unlock; 2180 2181 size = round_up(i_size_read(mapping->host), PAGE_SIZE); 2182 if (page->index >= size >> PAGE_SHIFT) 2183 goto unlock; 2184 2185 pte = vmf->pte + page->index - vmf->pgoff; 2186 if (!pte_none(*pte)) 2187 goto unlock; 2188 2189 if (file->f_ra.mmap_miss > 0) 2190 file->f_ra.mmap_miss--; 2191 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2192 do_set_pte(vma, addr, page, pte, false, false); 2193 unlock_page(page); 2194 goto next; 2195 unlock: 2196 unlock_page(page); 2197 skip: 2198 put_page(page); 2199 next: 2200 if (iter.index == vmf->max_pgoff) 2201 break; 2202 } 2203 rcu_read_unlock(); 2204 } 2205 EXPORT_SYMBOL(filemap_map_pages); 2206 2207 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2208 { 2209 struct page *page = vmf->page; 2210 struct inode *inode = file_inode(vma->vm_file); 2211 int ret = VM_FAULT_LOCKED; 2212 2213 sb_start_pagefault(inode->i_sb); 2214 file_update_time(vma->vm_file); 2215 lock_page(page); 2216 if (page->mapping != inode->i_mapping) { 2217 unlock_page(page); 2218 ret = VM_FAULT_NOPAGE; 2219 goto out; 2220 } 2221 /* 2222 * We mark the page dirty already here so that when freeze is in 2223 * progress, we are guaranteed that writeback during freezing will 2224 * see the dirty page and writeprotect it again. 2225 */ 2226 set_page_dirty(page); 2227 wait_for_stable_page(page); 2228 out: 2229 sb_end_pagefault(inode->i_sb); 2230 return ret; 2231 } 2232 EXPORT_SYMBOL(filemap_page_mkwrite); 2233 2234 const struct vm_operations_struct generic_file_vm_ops = { 2235 .fault = filemap_fault, 2236 .map_pages = filemap_map_pages, 2237 .page_mkwrite = filemap_page_mkwrite, 2238 }; 2239 2240 /* This is used for a general mmap of a disk file */ 2241 2242 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2243 { 2244 struct address_space *mapping = file->f_mapping; 2245 2246 if (!mapping->a_ops->readpage) 2247 return -ENOEXEC; 2248 file_accessed(file); 2249 vma->vm_ops = &generic_file_vm_ops; 2250 return 0; 2251 } 2252 2253 /* 2254 * This is for filesystems which do not implement ->writepage. 2255 */ 2256 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2257 { 2258 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2259 return -EINVAL; 2260 return generic_file_mmap(file, vma); 2261 } 2262 #else 2263 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2264 { 2265 return -ENOSYS; 2266 } 2267 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2268 { 2269 return -ENOSYS; 2270 } 2271 #endif /* CONFIG_MMU */ 2272 2273 EXPORT_SYMBOL(generic_file_mmap); 2274 EXPORT_SYMBOL(generic_file_readonly_mmap); 2275 2276 static struct page *wait_on_page_read(struct page *page) 2277 { 2278 if (!IS_ERR(page)) { 2279 wait_on_page_locked(page); 2280 if (!PageUptodate(page)) { 2281 put_page(page); 2282 page = ERR_PTR(-EIO); 2283 } 2284 } 2285 return page; 2286 } 2287 2288 static struct page *do_read_cache_page(struct address_space *mapping, 2289 pgoff_t index, 2290 int (*filler)(void *, struct page *), 2291 void *data, 2292 gfp_t gfp) 2293 { 2294 struct page *page; 2295 int err; 2296 repeat: 2297 page = find_get_page(mapping, index); 2298 if (!page) { 2299 page = __page_cache_alloc(gfp | __GFP_COLD); 2300 if (!page) 2301 return ERR_PTR(-ENOMEM); 2302 err = add_to_page_cache_lru(page, mapping, index, gfp); 2303 if (unlikely(err)) { 2304 put_page(page); 2305 if (err == -EEXIST) 2306 goto repeat; 2307 /* Presumably ENOMEM for radix tree node */ 2308 return ERR_PTR(err); 2309 } 2310 2311 filler: 2312 err = filler(data, page); 2313 if (err < 0) { 2314 put_page(page); 2315 return ERR_PTR(err); 2316 } 2317 2318 page = wait_on_page_read(page); 2319 if (IS_ERR(page)) 2320 return page; 2321 goto out; 2322 } 2323 if (PageUptodate(page)) 2324 goto out; 2325 2326 /* 2327 * Page is not up to date and may be locked due one of the following 2328 * case a: Page is being filled and the page lock is held 2329 * case b: Read/write error clearing the page uptodate status 2330 * case c: Truncation in progress (page locked) 2331 * case d: Reclaim in progress 2332 * 2333 * Case a, the page will be up to date when the page is unlocked. 2334 * There is no need to serialise on the page lock here as the page 2335 * is pinned so the lock gives no additional protection. Even if the 2336 * the page is truncated, the data is still valid if PageUptodate as 2337 * it's a race vs truncate race. 2338 * Case b, the page will not be up to date 2339 * Case c, the page may be truncated but in itself, the data may still 2340 * be valid after IO completes as it's a read vs truncate race. The 2341 * operation must restart if the page is not uptodate on unlock but 2342 * otherwise serialising on page lock to stabilise the mapping gives 2343 * no additional guarantees to the caller as the page lock is 2344 * released before return. 2345 * Case d, similar to truncation. If reclaim holds the page lock, it 2346 * will be a race with remove_mapping that determines if the mapping 2347 * is valid on unlock but otherwise the data is valid and there is 2348 * no need to serialise with page lock. 2349 * 2350 * As the page lock gives no additional guarantee, we optimistically 2351 * wait on the page to be unlocked and check if it's up to date and 2352 * use the page if it is. Otherwise, the page lock is required to 2353 * distinguish between the different cases. The motivation is that we 2354 * avoid spurious serialisations and wakeups when multiple processes 2355 * wait on the same page for IO to complete. 2356 */ 2357 wait_on_page_locked(page); 2358 if (PageUptodate(page)) 2359 goto out; 2360 2361 /* Distinguish between all the cases under the safety of the lock */ 2362 lock_page(page); 2363 2364 /* Case c or d, restart the operation */ 2365 if (!page->mapping) { 2366 unlock_page(page); 2367 put_page(page); 2368 goto repeat; 2369 } 2370 2371 /* Someone else locked and filled the page in a very small window */ 2372 if (PageUptodate(page)) { 2373 unlock_page(page); 2374 goto out; 2375 } 2376 goto filler; 2377 2378 out: 2379 mark_page_accessed(page); 2380 return page; 2381 } 2382 2383 /** 2384 * read_cache_page - read into page cache, fill it if needed 2385 * @mapping: the page's address_space 2386 * @index: the page index 2387 * @filler: function to perform the read 2388 * @data: first arg to filler(data, page) function, often left as NULL 2389 * 2390 * Read into the page cache. If a page already exists, and PageUptodate() is 2391 * not set, try to fill the page and wait for it to become unlocked. 2392 * 2393 * If the page does not get brought uptodate, return -EIO. 2394 */ 2395 struct page *read_cache_page(struct address_space *mapping, 2396 pgoff_t index, 2397 int (*filler)(void *, struct page *), 2398 void *data) 2399 { 2400 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2401 } 2402 EXPORT_SYMBOL(read_cache_page); 2403 2404 /** 2405 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2406 * @mapping: the page's address_space 2407 * @index: the page index 2408 * @gfp: the page allocator flags to use if allocating 2409 * 2410 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2411 * any new page allocations done using the specified allocation flags. 2412 * 2413 * If the page does not get brought uptodate, return -EIO. 2414 */ 2415 struct page *read_cache_page_gfp(struct address_space *mapping, 2416 pgoff_t index, 2417 gfp_t gfp) 2418 { 2419 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2420 2421 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2422 } 2423 EXPORT_SYMBOL(read_cache_page_gfp); 2424 2425 /* 2426 * Performs necessary checks before doing a write 2427 * 2428 * Can adjust writing position or amount of bytes to write. 2429 * Returns appropriate error code that caller should return or 2430 * zero in case that write should be allowed. 2431 */ 2432 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from) 2433 { 2434 struct file *file = iocb->ki_filp; 2435 struct inode *inode = file->f_mapping->host; 2436 unsigned long limit = rlimit(RLIMIT_FSIZE); 2437 loff_t pos; 2438 2439 if (!iov_iter_count(from)) 2440 return 0; 2441 2442 /* FIXME: this is for backwards compatibility with 2.4 */ 2443 if (iocb->ki_flags & IOCB_APPEND) 2444 iocb->ki_pos = i_size_read(inode); 2445 2446 pos = iocb->ki_pos; 2447 2448 if (limit != RLIM_INFINITY) { 2449 if (iocb->ki_pos >= limit) { 2450 send_sig(SIGXFSZ, current, 0); 2451 return -EFBIG; 2452 } 2453 iov_iter_truncate(from, limit - (unsigned long)pos); 2454 } 2455 2456 /* 2457 * LFS rule 2458 */ 2459 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS && 2460 !(file->f_flags & O_LARGEFILE))) { 2461 if (pos >= MAX_NON_LFS) 2462 return -EFBIG; 2463 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos); 2464 } 2465 2466 /* 2467 * Are we about to exceed the fs block limit ? 2468 * 2469 * If we have written data it becomes a short write. If we have 2470 * exceeded without writing data we send a signal and return EFBIG. 2471 * Linus frestrict idea will clean these up nicely.. 2472 */ 2473 if (unlikely(pos >= inode->i_sb->s_maxbytes)) 2474 return -EFBIG; 2475 2476 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos); 2477 return iov_iter_count(from); 2478 } 2479 EXPORT_SYMBOL(generic_write_checks); 2480 2481 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2482 loff_t pos, unsigned len, unsigned flags, 2483 struct page **pagep, void **fsdata) 2484 { 2485 const struct address_space_operations *aops = mapping->a_ops; 2486 2487 return aops->write_begin(file, mapping, pos, len, flags, 2488 pagep, fsdata); 2489 } 2490 EXPORT_SYMBOL(pagecache_write_begin); 2491 2492 int pagecache_write_end(struct file *file, struct address_space *mapping, 2493 loff_t pos, unsigned len, unsigned copied, 2494 struct page *page, void *fsdata) 2495 { 2496 const struct address_space_operations *aops = mapping->a_ops; 2497 2498 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2499 } 2500 EXPORT_SYMBOL(pagecache_write_end); 2501 2502 ssize_t 2503 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos) 2504 { 2505 struct file *file = iocb->ki_filp; 2506 struct address_space *mapping = file->f_mapping; 2507 struct inode *inode = mapping->host; 2508 ssize_t written; 2509 size_t write_len; 2510 pgoff_t end; 2511 struct iov_iter data; 2512 2513 write_len = iov_iter_count(from); 2514 end = (pos + write_len - 1) >> PAGE_SHIFT; 2515 2516 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2517 if (written) 2518 goto out; 2519 2520 /* 2521 * After a write we want buffered reads to be sure to go to disk to get 2522 * the new data. We invalidate clean cached page from the region we're 2523 * about to write. We do this *before* the write so that we can return 2524 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2525 */ 2526 if (mapping->nrpages) { 2527 written = invalidate_inode_pages2_range(mapping, 2528 pos >> PAGE_SHIFT, end); 2529 /* 2530 * If a page can not be invalidated, return 0 to fall back 2531 * to buffered write. 2532 */ 2533 if (written) { 2534 if (written == -EBUSY) 2535 return 0; 2536 goto out; 2537 } 2538 } 2539 2540 data = *from; 2541 written = mapping->a_ops->direct_IO(iocb, &data, pos); 2542 2543 /* 2544 * Finally, try again to invalidate clean pages which might have been 2545 * cached by non-direct readahead, or faulted in by get_user_pages() 2546 * if the source of the write was an mmap'ed region of the file 2547 * we're writing. Either one is a pretty crazy thing to do, 2548 * so we don't support it 100%. If this invalidation 2549 * fails, tough, the write still worked... 2550 */ 2551 if (mapping->nrpages) { 2552 invalidate_inode_pages2_range(mapping, 2553 pos >> PAGE_SHIFT, end); 2554 } 2555 2556 if (written > 0) { 2557 pos += written; 2558 iov_iter_advance(from, written); 2559 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2560 i_size_write(inode, pos); 2561 mark_inode_dirty(inode); 2562 } 2563 iocb->ki_pos = pos; 2564 } 2565 out: 2566 return written; 2567 } 2568 EXPORT_SYMBOL(generic_file_direct_write); 2569 2570 /* 2571 * Find or create a page at the given pagecache position. Return the locked 2572 * page. This function is specifically for buffered writes. 2573 */ 2574 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2575 pgoff_t index, unsigned flags) 2576 { 2577 struct page *page; 2578 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT; 2579 2580 if (flags & AOP_FLAG_NOFS) 2581 fgp_flags |= FGP_NOFS; 2582 2583 page = pagecache_get_page(mapping, index, fgp_flags, 2584 mapping_gfp_mask(mapping)); 2585 if (page) 2586 wait_for_stable_page(page); 2587 2588 return page; 2589 } 2590 EXPORT_SYMBOL(grab_cache_page_write_begin); 2591 2592 ssize_t generic_perform_write(struct file *file, 2593 struct iov_iter *i, loff_t pos) 2594 { 2595 struct address_space *mapping = file->f_mapping; 2596 const struct address_space_operations *a_ops = mapping->a_ops; 2597 long status = 0; 2598 ssize_t written = 0; 2599 unsigned int flags = 0; 2600 2601 /* 2602 * Copies from kernel address space cannot fail (NFSD is a big user). 2603 */ 2604 if (!iter_is_iovec(i)) 2605 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2606 2607 do { 2608 struct page *page; 2609 unsigned long offset; /* Offset into pagecache page */ 2610 unsigned long bytes; /* Bytes to write to page */ 2611 size_t copied; /* Bytes copied from user */ 2612 void *fsdata; 2613 2614 offset = (pos & (PAGE_SIZE - 1)); 2615 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2616 iov_iter_count(i)); 2617 2618 again: 2619 /* 2620 * Bring in the user page that we will copy from _first_. 2621 * Otherwise there's a nasty deadlock on copying from the 2622 * same page as we're writing to, without it being marked 2623 * up-to-date. 2624 * 2625 * Not only is this an optimisation, but it is also required 2626 * to check that the address is actually valid, when atomic 2627 * usercopies are used, below. 2628 */ 2629 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2630 status = -EFAULT; 2631 break; 2632 } 2633 2634 if (fatal_signal_pending(current)) { 2635 status = -EINTR; 2636 break; 2637 } 2638 2639 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2640 &page, &fsdata); 2641 if (unlikely(status < 0)) 2642 break; 2643 2644 if (mapping_writably_mapped(mapping)) 2645 flush_dcache_page(page); 2646 2647 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2648 flush_dcache_page(page); 2649 2650 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2651 page, fsdata); 2652 if (unlikely(status < 0)) 2653 break; 2654 copied = status; 2655 2656 cond_resched(); 2657 2658 iov_iter_advance(i, copied); 2659 if (unlikely(copied == 0)) { 2660 /* 2661 * If we were unable to copy any data at all, we must 2662 * fall back to a single segment length write. 2663 * 2664 * If we didn't fallback here, we could livelock 2665 * because not all segments in the iov can be copied at 2666 * once without a pagefault. 2667 */ 2668 bytes = min_t(unsigned long, PAGE_SIZE - offset, 2669 iov_iter_single_seg_count(i)); 2670 goto again; 2671 } 2672 pos += copied; 2673 written += copied; 2674 2675 balance_dirty_pages_ratelimited(mapping); 2676 } while (iov_iter_count(i)); 2677 2678 return written ? written : status; 2679 } 2680 EXPORT_SYMBOL(generic_perform_write); 2681 2682 /** 2683 * __generic_file_write_iter - write data to a file 2684 * @iocb: IO state structure (file, offset, etc.) 2685 * @from: iov_iter with data to write 2686 * 2687 * This function does all the work needed for actually writing data to a 2688 * file. It does all basic checks, removes SUID from the file, updates 2689 * modification times and calls proper subroutines depending on whether we 2690 * do direct IO or a standard buffered write. 2691 * 2692 * It expects i_mutex to be grabbed unless we work on a block device or similar 2693 * object which does not need locking at all. 2694 * 2695 * This function does *not* take care of syncing data in case of O_SYNC write. 2696 * A caller has to handle it. This is mainly due to the fact that we want to 2697 * avoid syncing under i_mutex. 2698 */ 2699 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2700 { 2701 struct file *file = iocb->ki_filp; 2702 struct address_space * mapping = file->f_mapping; 2703 struct inode *inode = mapping->host; 2704 ssize_t written = 0; 2705 ssize_t err; 2706 ssize_t status; 2707 2708 /* We can write back this queue in page reclaim */ 2709 current->backing_dev_info = inode_to_bdi(inode); 2710 err = file_remove_privs(file); 2711 if (err) 2712 goto out; 2713 2714 err = file_update_time(file); 2715 if (err) 2716 goto out; 2717 2718 if (iocb->ki_flags & IOCB_DIRECT) { 2719 loff_t pos, endbyte; 2720 2721 written = generic_file_direct_write(iocb, from, iocb->ki_pos); 2722 /* 2723 * If the write stopped short of completing, fall back to 2724 * buffered writes. Some filesystems do this for writes to 2725 * holes, for example. For DAX files, a buffered write will 2726 * not succeed (even if it did, DAX does not handle dirty 2727 * page-cache pages correctly). 2728 */ 2729 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode)) 2730 goto out; 2731 2732 status = generic_perform_write(file, from, pos = iocb->ki_pos); 2733 /* 2734 * If generic_perform_write() returned a synchronous error 2735 * then we want to return the number of bytes which were 2736 * direct-written, or the error code if that was zero. Note 2737 * that this differs from normal direct-io semantics, which 2738 * will return -EFOO even if some bytes were written. 2739 */ 2740 if (unlikely(status < 0)) { 2741 err = status; 2742 goto out; 2743 } 2744 /* 2745 * We need to ensure that the page cache pages are written to 2746 * disk and invalidated to preserve the expected O_DIRECT 2747 * semantics. 2748 */ 2749 endbyte = pos + status - 1; 2750 err = filemap_write_and_wait_range(mapping, pos, endbyte); 2751 if (err == 0) { 2752 iocb->ki_pos = endbyte + 1; 2753 written += status; 2754 invalidate_mapping_pages(mapping, 2755 pos >> PAGE_SHIFT, 2756 endbyte >> PAGE_SHIFT); 2757 } else { 2758 /* 2759 * We don't know how much we wrote, so just return 2760 * the number of bytes which were direct-written 2761 */ 2762 } 2763 } else { 2764 written = generic_perform_write(file, from, iocb->ki_pos); 2765 if (likely(written > 0)) 2766 iocb->ki_pos += written; 2767 } 2768 out: 2769 current->backing_dev_info = NULL; 2770 return written ? written : err; 2771 } 2772 EXPORT_SYMBOL(__generic_file_write_iter); 2773 2774 /** 2775 * generic_file_write_iter - write data to a file 2776 * @iocb: IO state structure 2777 * @from: iov_iter with data to write 2778 * 2779 * This is a wrapper around __generic_file_write_iter() to be used by most 2780 * filesystems. It takes care of syncing the file in case of O_SYNC file 2781 * and acquires i_mutex as needed. 2782 */ 2783 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 2784 { 2785 struct file *file = iocb->ki_filp; 2786 struct inode *inode = file->f_mapping->host; 2787 ssize_t ret; 2788 2789 inode_lock(inode); 2790 ret = generic_write_checks(iocb, from); 2791 if (ret > 0) 2792 ret = __generic_file_write_iter(iocb, from); 2793 inode_unlock(inode); 2794 2795 if (ret > 0) { 2796 ssize_t err; 2797 2798 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2799 if (err < 0) 2800 ret = err; 2801 } 2802 return ret; 2803 } 2804 EXPORT_SYMBOL(generic_file_write_iter); 2805 2806 /** 2807 * try_to_release_page() - release old fs-specific metadata on a page 2808 * 2809 * @page: the page which the kernel is trying to free 2810 * @gfp_mask: memory allocation flags (and I/O mode) 2811 * 2812 * The address_space is to try to release any data against the page 2813 * (presumably at page->private). If the release was successful, return `1'. 2814 * Otherwise return zero. 2815 * 2816 * This may also be called if PG_fscache is set on a page, indicating that the 2817 * page is known to the local caching routines. 2818 * 2819 * The @gfp_mask argument specifies whether I/O may be performed to release 2820 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS). 2821 * 2822 */ 2823 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2824 { 2825 struct address_space * const mapping = page->mapping; 2826 2827 BUG_ON(!PageLocked(page)); 2828 if (PageWriteback(page)) 2829 return 0; 2830 2831 if (mapping && mapping->a_ops->releasepage) 2832 return mapping->a_ops->releasepage(page, gfp_mask); 2833 return try_to_free_buffers(page); 2834 } 2835 2836 EXPORT_SYMBOL(try_to_release_page); 2837