xref: /linux/mm/filemap.c (revision 0ee931c4e31a5efb134c76440405e9219f896e33)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/sched/signal.h>
17 #include <linux/uaccess.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/gfp.h>
21 #include <linux/mm.h>
22 #include <linux/swap.h>
23 #include <linux/mman.h>
24 #include <linux/pagemap.h>
25 #include <linux/file.h>
26 #include <linux/uio.h>
27 #include <linux/hash.h>
28 #include <linux/writeback.h>
29 #include <linux/backing-dev.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/security.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/hugetlb.h>
36 #include <linux/memcontrol.h>
37 #include <linux/cleancache.h>
38 #include <linux/rmap.h>
39 #include "internal.h"
40 
41 #define CREATE_TRACE_POINTS
42 #include <trace/events/filemap.h>
43 
44 /*
45  * FIXME: remove all knowledge of the buffer layer from the core VM
46  */
47 #include <linux/buffer_head.h> /* for try_to_free_buffers */
48 
49 #include <asm/mman.h>
50 
51 /*
52  * Shared mappings implemented 30.11.1994. It's not fully working yet,
53  * though.
54  *
55  * Shared mappings now work. 15.8.1995  Bruno.
56  *
57  * finished 'unifying' the page and buffer cache and SMP-threaded the
58  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59  *
60  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61  */
62 
63 /*
64  * Lock ordering:
65  *
66  *  ->i_mmap_rwsem		(truncate_pagecache)
67  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
68  *      ->swap_lock		(exclusive_swap_page, others)
69  *        ->mapping->tree_lock
70  *
71  *  ->i_mutex
72  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
73  *
74  *  ->mmap_sem
75  *    ->i_mmap_rwsem
76  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
77  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
78  *
79  *  ->mmap_sem
80  *    ->lock_page		(access_process_vm)
81  *
82  *  ->i_mutex			(generic_perform_write)
83  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
84  *
85  *  bdi->wb.list_lock
86  *    sb_lock			(fs/fs-writeback.c)
87  *    ->mapping->tree_lock	(__sync_single_inode)
88  *
89  *  ->i_mmap_rwsem
90  *    ->anon_vma.lock		(vma_adjust)
91  *
92  *  ->anon_vma.lock
93  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
94  *
95  *  ->page_table_lock or pte_lock
96  *    ->swap_lock		(try_to_unmap_one)
97  *    ->private_lock		(try_to_unmap_one)
98  *    ->tree_lock		(try_to_unmap_one)
99  *    ->zone_lru_lock(zone)	(follow_page->mark_page_accessed)
100  *    ->zone_lru_lock(zone)	(check_pte_range->isolate_lru_page)
101  *    ->private_lock		(page_remove_rmap->set_page_dirty)
102  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
103  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
104  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
105  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
106  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
107  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
108  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
109  *
110  * ->i_mmap_rwsem
111  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
112  */
113 
114 static int page_cache_tree_insert(struct address_space *mapping,
115 				  struct page *page, void **shadowp)
116 {
117 	struct radix_tree_node *node;
118 	void **slot;
119 	int error;
120 
121 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 				    &node, &slot);
123 	if (error)
124 		return error;
125 	if (*slot) {
126 		void *p;
127 
128 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 		if (!radix_tree_exceptional_entry(p))
130 			return -EEXIST;
131 
132 		mapping->nrexceptional--;
133 		if (shadowp)
134 			*shadowp = p;
135 	}
136 	__radix_tree_replace(&mapping->page_tree, node, slot, page,
137 			     workingset_update_node, mapping);
138 	mapping->nrpages++;
139 	return 0;
140 }
141 
142 static void page_cache_tree_delete(struct address_space *mapping,
143 				   struct page *page, void *shadow)
144 {
145 	int i, nr;
146 
147 	/* hugetlb pages are represented by one entry in the radix tree */
148 	nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
149 
150 	VM_BUG_ON_PAGE(!PageLocked(page), page);
151 	VM_BUG_ON_PAGE(PageTail(page), page);
152 	VM_BUG_ON_PAGE(nr != 1 && shadow, page);
153 
154 	for (i = 0; i < nr; i++) {
155 		struct radix_tree_node *node;
156 		void **slot;
157 
158 		__radix_tree_lookup(&mapping->page_tree, page->index + i,
159 				    &node, &slot);
160 
161 		VM_BUG_ON_PAGE(!node && nr != 1, page);
162 
163 		radix_tree_clear_tags(&mapping->page_tree, node, slot);
164 		__radix_tree_replace(&mapping->page_tree, node, slot, shadow,
165 				     workingset_update_node, mapping);
166 	}
167 
168 	if (shadow) {
169 		mapping->nrexceptional += nr;
170 		/*
171 		 * Make sure the nrexceptional update is committed before
172 		 * the nrpages update so that final truncate racing
173 		 * with reclaim does not see both counters 0 at the
174 		 * same time and miss a shadow entry.
175 		 */
176 		smp_wmb();
177 	}
178 	mapping->nrpages -= nr;
179 }
180 
181 /*
182  * Delete a page from the page cache and free it. Caller has to make
183  * sure the page is locked and that nobody else uses it - or that usage
184  * is safe.  The caller must hold the mapping's tree_lock.
185  */
186 void __delete_from_page_cache(struct page *page, void *shadow)
187 {
188 	struct address_space *mapping = page->mapping;
189 	int nr = hpage_nr_pages(page);
190 
191 	trace_mm_filemap_delete_from_page_cache(page);
192 	/*
193 	 * if we're uptodate, flush out into the cleancache, otherwise
194 	 * invalidate any existing cleancache entries.  We can't leave
195 	 * stale data around in the cleancache once our page is gone
196 	 */
197 	if (PageUptodate(page) && PageMappedToDisk(page))
198 		cleancache_put_page(page);
199 	else
200 		cleancache_invalidate_page(mapping, page);
201 
202 	VM_BUG_ON_PAGE(PageTail(page), page);
203 	VM_BUG_ON_PAGE(page_mapped(page), page);
204 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
205 		int mapcount;
206 
207 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
208 			 current->comm, page_to_pfn(page));
209 		dump_page(page, "still mapped when deleted");
210 		dump_stack();
211 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
212 
213 		mapcount = page_mapcount(page);
214 		if (mapping_exiting(mapping) &&
215 		    page_count(page) >= mapcount + 2) {
216 			/*
217 			 * All vmas have already been torn down, so it's
218 			 * a good bet that actually the page is unmapped,
219 			 * and we'd prefer not to leak it: if we're wrong,
220 			 * some other bad page check should catch it later.
221 			 */
222 			page_mapcount_reset(page);
223 			page_ref_sub(page, mapcount);
224 		}
225 	}
226 
227 	page_cache_tree_delete(mapping, page, shadow);
228 
229 	page->mapping = NULL;
230 	/* Leave page->index set: truncation lookup relies upon it */
231 
232 	/* hugetlb pages do not participate in page cache accounting. */
233 	if (PageHuge(page))
234 		return;
235 
236 	__mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
237 	if (PageSwapBacked(page)) {
238 		__mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
239 		if (PageTransHuge(page))
240 			__dec_node_page_state(page, NR_SHMEM_THPS);
241 	} else {
242 		VM_BUG_ON_PAGE(PageTransHuge(page), page);
243 	}
244 
245 	/*
246 	 * At this point page must be either written or cleaned by truncate.
247 	 * Dirty page here signals a bug and loss of unwritten data.
248 	 *
249 	 * This fixes dirty accounting after removing the page entirely but
250 	 * leaves PageDirty set: it has no effect for truncated page and
251 	 * anyway will be cleared before returning page into buddy allocator.
252 	 */
253 	if (WARN_ON_ONCE(PageDirty(page)))
254 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
255 }
256 
257 /**
258  * delete_from_page_cache - delete page from page cache
259  * @page: the page which the kernel is trying to remove from page cache
260  *
261  * This must be called only on pages that have been verified to be in the page
262  * cache and locked.  It will never put the page into the free list, the caller
263  * has a reference on the page.
264  */
265 void delete_from_page_cache(struct page *page)
266 {
267 	struct address_space *mapping = page_mapping(page);
268 	unsigned long flags;
269 	void (*freepage)(struct page *);
270 
271 	BUG_ON(!PageLocked(page));
272 
273 	freepage = mapping->a_ops->freepage;
274 
275 	spin_lock_irqsave(&mapping->tree_lock, flags);
276 	__delete_from_page_cache(page, NULL);
277 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
278 
279 	if (freepage)
280 		freepage(page);
281 
282 	if (PageTransHuge(page) && !PageHuge(page)) {
283 		page_ref_sub(page, HPAGE_PMD_NR);
284 		VM_BUG_ON_PAGE(page_count(page) <= 0, page);
285 	} else {
286 		put_page(page);
287 	}
288 }
289 EXPORT_SYMBOL(delete_from_page_cache);
290 
291 int filemap_check_errors(struct address_space *mapping)
292 {
293 	int ret = 0;
294 	/* Check for outstanding write errors */
295 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
296 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
297 		ret = -ENOSPC;
298 	if (test_bit(AS_EIO, &mapping->flags) &&
299 	    test_and_clear_bit(AS_EIO, &mapping->flags))
300 		ret = -EIO;
301 	return ret;
302 }
303 EXPORT_SYMBOL(filemap_check_errors);
304 
305 static int filemap_check_and_keep_errors(struct address_space *mapping)
306 {
307 	/* Check for outstanding write errors */
308 	if (test_bit(AS_EIO, &mapping->flags))
309 		return -EIO;
310 	if (test_bit(AS_ENOSPC, &mapping->flags))
311 		return -ENOSPC;
312 	return 0;
313 }
314 
315 /**
316  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
317  * @mapping:	address space structure to write
318  * @start:	offset in bytes where the range starts
319  * @end:	offset in bytes where the range ends (inclusive)
320  * @sync_mode:	enable synchronous operation
321  *
322  * Start writeback against all of a mapping's dirty pages that lie
323  * within the byte offsets <start, end> inclusive.
324  *
325  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
326  * opposed to a regular memory cleansing writeback.  The difference between
327  * these two operations is that if a dirty page/buffer is encountered, it must
328  * be waited upon, and not just skipped over.
329  */
330 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
331 				loff_t end, int sync_mode)
332 {
333 	int ret;
334 	struct writeback_control wbc = {
335 		.sync_mode = sync_mode,
336 		.nr_to_write = LONG_MAX,
337 		.range_start = start,
338 		.range_end = end,
339 	};
340 
341 	if (!mapping_cap_writeback_dirty(mapping))
342 		return 0;
343 
344 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
345 	ret = do_writepages(mapping, &wbc);
346 	wbc_detach_inode(&wbc);
347 	return ret;
348 }
349 
350 static inline int __filemap_fdatawrite(struct address_space *mapping,
351 	int sync_mode)
352 {
353 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
354 }
355 
356 int filemap_fdatawrite(struct address_space *mapping)
357 {
358 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
359 }
360 EXPORT_SYMBOL(filemap_fdatawrite);
361 
362 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
363 				loff_t end)
364 {
365 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
366 }
367 EXPORT_SYMBOL(filemap_fdatawrite_range);
368 
369 /**
370  * filemap_flush - mostly a non-blocking flush
371  * @mapping:	target address_space
372  *
373  * This is a mostly non-blocking flush.  Not suitable for data-integrity
374  * purposes - I/O may not be started against all dirty pages.
375  */
376 int filemap_flush(struct address_space *mapping)
377 {
378 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
379 }
380 EXPORT_SYMBOL(filemap_flush);
381 
382 /**
383  * filemap_range_has_page - check if a page exists in range.
384  * @mapping:           address space within which to check
385  * @start_byte:        offset in bytes where the range starts
386  * @end_byte:          offset in bytes where the range ends (inclusive)
387  *
388  * Find at least one page in the range supplied, usually used to check if
389  * direct writing in this range will trigger a writeback.
390  */
391 bool filemap_range_has_page(struct address_space *mapping,
392 			   loff_t start_byte, loff_t end_byte)
393 {
394 	pgoff_t index = start_byte >> PAGE_SHIFT;
395 	pgoff_t end = end_byte >> PAGE_SHIFT;
396 	struct page *page;
397 
398 	if (end_byte < start_byte)
399 		return false;
400 
401 	if (mapping->nrpages == 0)
402 		return false;
403 
404 	if (!find_get_pages_range(mapping, &index, end, 1, &page))
405 		return false;
406 	put_page(page);
407 	return true;
408 }
409 EXPORT_SYMBOL(filemap_range_has_page);
410 
411 static void __filemap_fdatawait_range(struct address_space *mapping,
412 				     loff_t start_byte, loff_t end_byte)
413 {
414 	pgoff_t index = start_byte >> PAGE_SHIFT;
415 	pgoff_t end = end_byte >> PAGE_SHIFT;
416 	struct pagevec pvec;
417 	int nr_pages;
418 
419 	if (end_byte < start_byte)
420 		return;
421 
422 	pagevec_init(&pvec, 0);
423 	while ((index <= end) &&
424 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
425 			PAGECACHE_TAG_WRITEBACK,
426 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
427 		unsigned i;
428 
429 		for (i = 0; i < nr_pages; i++) {
430 			struct page *page = pvec.pages[i];
431 
432 			/* until radix tree lookup accepts end_index */
433 			if (page->index > end)
434 				continue;
435 
436 			wait_on_page_writeback(page);
437 			ClearPageError(page);
438 		}
439 		pagevec_release(&pvec);
440 		cond_resched();
441 	}
442 }
443 
444 /**
445  * filemap_fdatawait_range - wait for writeback to complete
446  * @mapping:		address space structure to wait for
447  * @start_byte:		offset in bytes where the range starts
448  * @end_byte:		offset in bytes where the range ends (inclusive)
449  *
450  * Walk the list of under-writeback pages of the given address space
451  * in the given range and wait for all of them.  Check error status of
452  * the address space and return it.
453  *
454  * Since the error status of the address space is cleared by this function,
455  * callers are responsible for checking the return value and handling and/or
456  * reporting the error.
457  */
458 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
459 			    loff_t end_byte)
460 {
461 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
462 	return filemap_check_errors(mapping);
463 }
464 EXPORT_SYMBOL(filemap_fdatawait_range);
465 
466 /**
467  * file_fdatawait_range - wait for writeback to complete
468  * @file:		file pointing to address space structure to wait for
469  * @start_byte:		offset in bytes where the range starts
470  * @end_byte:		offset in bytes where the range ends (inclusive)
471  *
472  * Walk the list of under-writeback pages of the address space that file
473  * refers to, in the given range and wait for all of them.  Check error
474  * status of the address space vs. the file->f_wb_err cursor and return it.
475  *
476  * Since the error status of the file is advanced by this function,
477  * callers are responsible for checking the return value and handling and/or
478  * reporting the error.
479  */
480 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
481 {
482 	struct address_space *mapping = file->f_mapping;
483 
484 	__filemap_fdatawait_range(mapping, start_byte, end_byte);
485 	return file_check_and_advance_wb_err(file);
486 }
487 EXPORT_SYMBOL(file_fdatawait_range);
488 
489 /**
490  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
491  * @mapping: address space structure to wait for
492  *
493  * Walk the list of under-writeback pages of the given address space
494  * and wait for all of them.  Unlike filemap_fdatawait(), this function
495  * does not clear error status of the address space.
496  *
497  * Use this function if callers don't handle errors themselves.  Expected
498  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
499  * fsfreeze(8)
500  */
501 int filemap_fdatawait_keep_errors(struct address_space *mapping)
502 {
503 	__filemap_fdatawait_range(mapping, 0, LLONG_MAX);
504 	return filemap_check_and_keep_errors(mapping);
505 }
506 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
507 
508 static bool mapping_needs_writeback(struct address_space *mapping)
509 {
510 	return (!dax_mapping(mapping) && mapping->nrpages) ||
511 	    (dax_mapping(mapping) && mapping->nrexceptional);
512 }
513 
514 int filemap_write_and_wait(struct address_space *mapping)
515 {
516 	int err = 0;
517 
518 	if (mapping_needs_writeback(mapping)) {
519 		err = filemap_fdatawrite(mapping);
520 		/*
521 		 * Even if the above returned error, the pages may be
522 		 * written partially (e.g. -ENOSPC), so we wait for it.
523 		 * But the -EIO is special case, it may indicate the worst
524 		 * thing (e.g. bug) happened, so we avoid waiting for it.
525 		 */
526 		if (err != -EIO) {
527 			int err2 = filemap_fdatawait(mapping);
528 			if (!err)
529 				err = err2;
530 		} else {
531 			/* Clear any previously stored errors */
532 			filemap_check_errors(mapping);
533 		}
534 	} else {
535 		err = filemap_check_errors(mapping);
536 	}
537 	return err;
538 }
539 EXPORT_SYMBOL(filemap_write_and_wait);
540 
541 /**
542  * filemap_write_and_wait_range - write out & wait on a file range
543  * @mapping:	the address_space for the pages
544  * @lstart:	offset in bytes where the range starts
545  * @lend:	offset in bytes where the range ends (inclusive)
546  *
547  * Write out and wait upon file offsets lstart->lend, inclusive.
548  *
549  * Note that @lend is inclusive (describes the last byte to be written) so
550  * that this function can be used to write to the very end-of-file (end = -1).
551  */
552 int filemap_write_and_wait_range(struct address_space *mapping,
553 				 loff_t lstart, loff_t lend)
554 {
555 	int err = 0;
556 
557 	if (mapping_needs_writeback(mapping)) {
558 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
559 						 WB_SYNC_ALL);
560 		/* See comment of filemap_write_and_wait() */
561 		if (err != -EIO) {
562 			int err2 = filemap_fdatawait_range(mapping,
563 						lstart, lend);
564 			if (!err)
565 				err = err2;
566 		} else {
567 			/* Clear any previously stored errors */
568 			filemap_check_errors(mapping);
569 		}
570 	} else {
571 		err = filemap_check_errors(mapping);
572 	}
573 	return err;
574 }
575 EXPORT_SYMBOL(filemap_write_and_wait_range);
576 
577 void __filemap_set_wb_err(struct address_space *mapping, int err)
578 {
579 	errseq_t eseq = errseq_set(&mapping->wb_err, err);
580 
581 	trace_filemap_set_wb_err(mapping, eseq);
582 }
583 EXPORT_SYMBOL(__filemap_set_wb_err);
584 
585 /**
586  * file_check_and_advance_wb_err - report wb error (if any) that was previously
587  * 				   and advance wb_err to current one
588  * @file: struct file on which the error is being reported
589  *
590  * When userland calls fsync (or something like nfsd does the equivalent), we
591  * want to report any writeback errors that occurred since the last fsync (or
592  * since the file was opened if there haven't been any).
593  *
594  * Grab the wb_err from the mapping. If it matches what we have in the file,
595  * then just quickly return 0. The file is all caught up.
596  *
597  * If it doesn't match, then take the mapping value, set the "seen" flag in
598  * it and try to swap it into place. If it works, or another task beat us
599  * to it with the new value, then update the f_wb_err and return the error
600  * portion. The error at this point must be reported via proper channels
601  * (a'la fsync, or NFS COMMIT operation, etc.).
602  *
603  * While we handle mapping->wb_err with atomic operations, the f_wb_err
604  * value is protected by the f_lock since we must ensure that it reflects
605  * the latest value swapped in for this file descriptor.
606  */
607 int file_check_and_advance_wb_err(struct file *file)
608 {
609 	int err = 0;
610 	errseq_t old = READ_ONCE(file->f_wb_err);
611 	struct address_space *mapping = file->f_mapping;
612 
613 	/* Locklessly handle the common case where nothing has changed */
614 	if (errseq_check(&mapping->wb_err, old)) {
615 		/* Something changed, must use slow path */
616 		spin_lock(&file->f_lock);
617 		old = file->f_wb_err;
618 		err = errseq_check_and_advance(&mapping->wb_err,
619 						&file->f_wb_err);
620 		trace_file_check_and_advance_wb_err(file, old);
621 		spin_unlock(&file->f_lock);
622 	}
623 	return err;
624 }
625 EXPORT_SYMBOL(file_check_and_advance_wb_err);
626 
627 /**
628  * file_write_and_wait_range - write out & wait on a file range
629  * @file:	file pointing to address_space with pages
630  * @lstart:	offset in bytes where the range starts
631  * @lend:	offset in bytes where the range ends (inclusive)
632  *
633  * Write out and wait upon file offsets lstart->lend, inclusive.
634  *
635  * Note that @lend is inclusive (describes the last byte to be written) so
636  * that this function can be used to write to the very end-of-file (end = -1).
637  *
638  * After writing out and waiting on the data, we check and advance the
639  * f_wb_err cursor to the latest value, and return any errors detected there.
640  */
641 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
642 {
643 	int err = 0, err2;
644 	struct address_space *mapping = file->f_mapping;
645 
646 	if (mapping_needs_writeback(mapping)) {
647 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
648 						 WB_SYNC_ALL);
649 		/* See comment of filemap_write_and_wait() */
650 		if (err != -EIO)
651 			__filemap_fdatawait_range(mapping, lstart, lend);
652 	}
653 	err2 = file_check_and_advance_wb_err(file);
654 	if (!err)
655 		err = err2;
656 	return err;
657 }
658 EXPORT_SYMBOL(file_write_and_wait_range);
659 
660 /**
661  * replace_page_cache_page - replace a pagecache page with a new one
662  * @old:	page to be replaced
663  * @new:	page to replace with
664  * @gfp_mask:	allocation mode
665  *
666  * This function replaces a page in the pagecache with a new one.  On
667  * success it acquires the pagecache reference for the new page and
668  * drops it for the old page.  Both the old and new pages must be
669  * locked.  This function does not add the new page to the LRU, the
670  * caller must do that.
671  *
672  * The remove + add is atomic.  The only way this function can fail is
673  * memory allocation failure.
674  */
675 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
676 {
677 	int error;
678 
679 	VM_BUG_ON_PAGE(!PageLocked(old), old);
680 	VM_BUG_ON_PAGE(!PageLocked(new), new);
681 	VM_BUG_ON_PAGE(new->mapping, new);
682 
683 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
684 	if (!error) {
685 		struct address_space *mapping = old->mapping;
686 		void (*freepage)(struct page *);
687 		unsigned long flags;
688 
689 		pgoff_t offset = old->index;
690 		freepage = mapping->a_ops->freepage;
691 
692 		get_page(new);
693 		new->mapping = mapping;
694 		new->index = offset;
695 
696 		spin_lock_irqsave(&mapping->tree_lock, flags);
697 		__delete_from_page_cache(old, NULL);
698 		error = page_cache_tree_insert(mapping, new, NULL);
699 		BUG_ON(error);
700 
701 		/*
702 		 * hugetlb pages do not participate in page cache accounting.
703 		 */
704 		if (!PageHuge(new))
705 			__inc_node_page_state(new, NR_FILE_PAGES);
706 		if (PageSwapBacked(new))
707 			__inc_node_page_state(new, NR_SHMEM);
708 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
709 		mem_cgroup_migrate(old, new);
710 		radix_tree_preload_end();
711 		if (freepage)
712 			freepage(old);
713 		put_page(old);
714 	}
715 
716 	return error;
717 }
718 EXPORT_SYMBOL_GPL(replace_page_cache_page);
719 
720 static int __add_to_page_cache_locked(struct page *page,
721 				      struct address_space *mapping,
722 				      pgoff_t offset, gfp_t gfp_mask,
723 				      void **shadowp)
724 {
725 	int huge = PageHuge(page);
726 	struct mem_cgroup *memcg;
727 	int error;
728 
729 	VM_BUG_ON_PAGE(!PageLocked(page), page);
730 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
731 
732 	if (!huge) {
733 		error = mem_cgroup_try_charge(page, current->mm,
734 					      gfp_mask, &memcg, false);
735 		if (error)
736 			return error;
737 	}
738 
739 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
740 	if (error) {
741 		if (!huge)
742 			mem_cgroup_cancel_charge(page, memcg, false);
743 		return error;
744 	}
745 
746 	get_page(page);
747 	page->mapping = mapping;
748 	page->index = offset;
749 
750 	spin_lock_irq(&mapping->tree_lock);
751 	error = page_cache_tree_insert(mapping, page, shadowp);
752 	radix_tree_preload_end();
753 	if (unlikely(error))
754 		goto err_insert;
755 
756 	/* hugetlb pages do not participate in page cache accounting. */
757 	if (!huge)
758 		__inc_node_page_state(page, NR_FILE_PAGES);
759 	spin_unlock_irq(&mapping->tree_lock);
760 	if (!huge)
761 		mem_cgroup_commit_charge(page, memcg, false, false);
762 	trace_mm_filemap_add_to_page_cache(page);
763 	return 0;
764 err_insert:
765 	page->mapping = NULL;
766 	/* Leave page->index set: truncation relies upon it */
767 	spin_unlock_irq(&mapping->tree_lock);
768 	if (!huge)
769 		mem_cgroup_cancel_charge(page, memcg, false);
770 	put_page(page);
771 	return error;
772 }
773 
774 /**
775  * add_to_page_cache_locked - add a locked page to the pagecache
776  * @page:	page to add
777  * @mapping:	the page's address_space
778  * @offset:	page index
779  * @gfp_mask:	page allocation mode
780  *
781  * This function is used to add a page to the pagecache. It must be locked.
782  * This function does not add the page to the LRU.  The caller must do that.
783  */
784 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
785 		pgoff_t offset, gfp_t gfp_mask)
786 {
787 	return __add_to_page_cache_locked(page, mapping, offset,
788 					  gfp_mask, NULL);
789 }
790 EXPORT_SYMBOL(add_to_page_cache_locked);
791 
792 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
793 				pgoff_t offset, gfp_t gfp_mask)
794 {
795 	void *shadow = NULL;
796 	int ret;
797 
798 	__SetPageLocked(page);
799 	ret = __add_to_page_cache_locked(page, mapping, offset,
800 					 gfp_mask, &shadow);
801 	if (unlikely(ret))
802 		__ClearPageLocked(page);
803 	else {
804 		/*
805 		 * The page might have been evicted from cache only
806 		 * recently, in which case it should be activated like
807 		 * any other repeatedly accessed page.
808 		 * The exception is pages getting rewritten; evicting other
809 		 * data from the working set, only to cache data that will
810 		 * get overwritten with something else, is a waste of memory.
811 		 */
812 		if (!(gfp_mask & __GFP_WRITE) &&
813 		    shadow && workingset_refault(shadow)) {
814 			SetPageActive(page);
815 			workingset_activation(page);
816 		} else
817 			ClearPageActive(page);
818 		lru_cache_add(page);
819 	}
820 	return ret;
821 }
822 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
823 
824 #ifdef CONFIG_NUMA
825 struct page *__page_cache_alloc(gfp_t gfp)
826 {
827 	int n;
828 	struct page *page;
829 
830 	if (cpuset_do_page_mem_spread()) {
831 		unsigned int cpuset_mems_cookie;
832 		do {
833 			cpuset_mems_cookie = read_mems_allowed_begin();
834 			n = cpuset_mem_spread_node();
835 			page = __alloc_pages_node(n, gfp, 0);
836 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
837 
838 		return page;
839 	}
840 	return alloc_pages(gfp, 0);
841 }
842 EXPORT_SYMBOL(__page_cache_alloc);
843 #endif
844 
845 /*
846  * In order to wait for pages to become available there must be
847  * waitqueues associated with pages. By using a hash table of
848  * waitqueues where the bucket discipline is to maintain all
849  * waiters on the same queue and wake all when any of the pages
850  * become available, and for the woken contexts to check to be
851  * sure the appropriate page became available, this saves space
852  * at a cost of "thundering herd" phenomena during rare hash
853  * collisions.
854  */
855 #define PAGE_WAIT_TABLE_BITS 8
856 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
857 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
858 
859 static wait_queue_head_t *page_waitqueue(struct page *page)
860 {
861 	return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
862 }
863 
864 void __init pagecache_init(void)
865 {
866 	int i;
867 
868 	for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
869 		init_waitqueue_head(&page_wait_table[i]);
870 
871 	page_writeback_init();
872 }
873 
874 /* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
875 struct wait_page_key {
876 	struct page *page;
877 	int bit_nr;
878 	int page_match;
879 };
880 
881 struct wait_page_queue {
882 	struct page *page;
883 	int bit_nr;
884 	wait_queue_entry_t wait;
885 };
886 
887 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
888 {
889 	struct wait_page_key *key = arg;
890 	struct wait_page_queue *wait_page
891 		= container_of(wait, struct wait_page_queue, wait);
892 
893 	if (wait_page->page != key->page)
894 	       return 0;
895 	key->page_match = 1;
896 
897 	if (wait_page->bit_nr != key->bit_nr)
898 		return 0;
899 
900 	/* Stop walking if it's locked */
901 	if (test_bit(key->bit_nr, &key->page->flags))
902 		return -1;
903 
904 	return autoremove_wake_function(wait, mode, sync, key);
905 }
906 
907 static void wake_up_page_bit(struct page *page, int bit_nr)
908 {
909 	wait_queue_head_t *q = page_waitqueue(page);
910 	struct wait_page_key key;
911 	unsigned long flags;
912 
913 	key.page = page;
914 	key.bit_nr = bit_nr;
915 	key.page_match = 0;
916 
917 	spin_lock_irqsave(&q->lock, flags);
918 	__wake_up_locked_key(q, TASK_NORMAL, &key);
919 	/*
920 	 * It is possible for other pages to have collided on the waitqueue
921 	 * hash, so in that case check for a page match. That prevents a long-
922 	 * term waiter
923 	 *
924 	 * It is still possible to miss a case here, when we woke page waiters
925 	 * and removed them from the waitqueue, but there are still other
926 	 * page waiters.
927 	 */
928 	if (!waitqueue_active(q) || !key.page_match) {
929 		ClearPageWaiters(page);
930 		/*
931 		 * It's possible to miss clearing Waiters here, when we woke
932 		 * our page waiters, but the hashed waitqueue has waiters for
933 		 * other pages on it.
934 		 *
935 		 * That's okay, it's a rare case. The next waker will clear it.
936 		 */
937 	}
938 	spin_unlock_irqrestore(&q->lock, flags);
939 }
940 
941 static void wake_up_page(struct page *page, int bit)
942 {
943 	if (!PageWaiters(page))
944 		return;
945 	wake_up_page_bit(page, bit);
946 }
947 
948 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
949 		struct page *page, int bit_nr, int state, bool lock)
950 {
951 	struct wait_page_queue wait_page;
952 	wait_queue_entry_t *wait = &wait_page.wait;
953 	int ret = 0;
954 
955 	init_wait(wait);
956 	wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
957 	wait->func = wake_page_function;
958 	wait_page.page = page;
959 	wait_page.bit_nr = bit_nr;
960 
961 	for (;;) {
962 		spin_lock_irq(&q->lock);
963 
964 		if (likely(list_empty(&wait->entry))) {
965 			__add_wait_queue_entry_tail(q, wait);
966 			SetPageWaiters(page);
967 		}
968 
969 		set_current_state(state);
970 
971 		spin_unlock_irq(&q->lock);
972 
973 		if (likely(test_bit(bit_nr, &page->flags))) {
974 			io_schedule();
975 		}
976 
977 		if (lock) {
978 			if (!test_and_set_bit_lock(bit_nr, &page->flags))
979 				break;
980 		} else {
981 			if (!test_bit(bit_nr, &page->flags))
982 				break;
983 		}
984 
985 		if (unlikely(signal_pending_state(state, current))) {
986 			ret = -EINTR;
987 			break;
988 		}
989 	}
990 
991 	finish_wait(q, wait);
992 
993 	/*
994 	 * A signal could leave PageWaiters set. Clearing it here if
995 	 * !waitqueue_active would be possible (by open-coding finish_wait),
996 	 * but still fail to catch it in the case of wait hash collision. We
997 	 * already can fail to clear wait hash collision cases, so don't
998 	 * bother with signals either.
999 	 */
1000 
1001 	return ret;
1002 }
1003 
1004 void wait_on_page_bit(struct page *page, int bit_nr)
1005 {
1006 	wait_queue_head_t *q = page_waitqueue(page);
1007 	wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1008 }
1009 EXPORT_SYMBOL(wait_on_page_bit);
1010 
1011 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1012 {
1013 	wait_queue_head_t *q = page_waitqueue(page);
1014 	return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1015 }
1016 
1017 /**
1018  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1019  * @page: Page defining the wait queue of interest
1020  * @waiter: Waiter to add to the queue
1021  *
1022  * Add an arbitrary @waiter to the wait queue for the nominated @page.
1023  */
1024 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1025 {
1026 	wait_queue_head_t *q = page_waitqueue(page);
1027 	unsigned long flags;
1028 
1029 	spin_lock_irqsave(&q->lock, flags);
1030 	__add_wait_queue_entry_tail(q, waiter);
1031 	SetPageWaiters(page);
1032 	spin_unlock_irqrestore(&q->lock, flags);
1033 }
1034 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1035 
1036 #ifndef clear_bit_unlock_is_negative_byte
1037 
1038 /*
1039  * PG_waiters is the high bit in the same byte as PG_lock.
1040  *
1041  * On x86 (and on many other architectures), we can clear PG_lock and
1042  * test the sign bit at the same time. But if the architecture does
1043  * not support that special operation, we just do this all by hand
1044  * instead.
1045  *
1046  * The read of PG_waiters has to be after (or concurrently with) PG_locked
1047  * being cleared, but a memory barrier should be unneccssary since it is
1048  * in the same byte as PG_locked.
1049  */
1050 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1051 {
1052 	clear_bit_unlock(nr, mem);
1053 	/* smp_mb__after_atomic(); */
1054 	return test_bit(PG_waiters, mem);
1055 }
1056 
1057 #endif
1058 
1059 /**
1060  * unlock_page - unlock a locked page
1061  * @page: the page
1062  *
1063  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1064  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1065  * mechanism between PageLocked pages and PageWriteback pages is shared.
1066  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1067  *
1068  * Note that this depends on PG_waiters being the sign bit in the byte
1069  * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1070  * clear the PG_locked bit and test PG_waiters at the same time fairly
1071  * portably (architectures that do LL/SC can test any bit, while x86 can
1072  * test the sign bit).
1073  */
1074 void unlock_page(struct page *page)
1075 {
1076 	BUILD_BUG_ON(PG_waiters != 7);
1077 	page = compound_head(page);
1078 	VM_BUG_ON_PAGE(!PageLocked(page), page);
1079 	if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1080 		wake_up_page_bit(page, PG_locked);
1081 }
1082 EXPORT_SYMBOL(unlock_page);
1083 
1084 /**
1085  * end_page_writeback - end writeback against a page
1086  * @page: the page
1087  */
1088 void end_page_writeback(struct page *page)
1089 {
1090 	/*
1091 	 * TestClearPageReclaim could be used here but it is an atomic
1092 	 * operation and overkill in this particular case. Failing to
1093 	 * shuffle a page marked for immediate reclaim is too mild to
1094 	 * justify taking an atomic operation penalty at the end of
1095 	 * ever page writeback.
1096 	 */
1097 	if (PageReclaim(page)) {
1098 		ClearPageReclaim(page);
1099 		rotate_reclaimable_page(page);
1100 	}
1101 
1102 	if (!test_clear_page_writeback(page))
1103 		BUG();
1104 
1105 	smp_mb__after_atomic();
1106 	wake_up_page(page, PG_writeback);
1107 }
1108 EXPORT_SYMBOL(end_page_writeback);
1109 
1110 /*
1111  * After completing I/O on a page, call this routine to update the page
1112  * flags appropriately
1113  */
1114 void page_endio(struct page *page, bool is_write, int err)
1115 {
1116 	if (!is_write) {
1117 		if (!err) {
1118 			SetPageUptodate(page);
1119 		} else {
1120 			ClearPageUptodate(page);
1121 			SetPageError(page);
1122 		}
1123 		unlock_page(page);
1124 	} else {
1125 		if (err) {
1126 			struct address_space *mapping;
1127 
1128 			SetPageError(page);
1129 			mapping = page_mapping(page);
1130 			if (mapping)
1131 				mapping_set_error(mapping, err);
1132 		}
1133 		end_page_writeback(page);
1134 	}
1135 }
1136 EXPORT_SYMBOL_GPL(page_endio);
1137 
1138 /**
1139  * __lock_page - get a lock on the page, assuming we need to sleep to get it
1140  * @__page: the page to lock
1141  */
1142 void __lock_page(struct page *__page)
1143 {
1144 	struct page *page = compound_head(__page);
1145 	wait_queue_head_t *q = page_waitqueue(page);
1146 	wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1147 }
1148 EXPORT_SYMBOL(__lock_page);
1149 
1150 int __lock_page_killable(struct page *__page)
1151 {
1152 	struct page *page = compound_head(__page);
1153 	wait_queue_head_t *q = page_waitqueue(page);
1154 	return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1155 }
1156 EXPORT_SYMBOL_GPL(__lock_page_killable);
1157 
1158 /*
1159  * Return values:
1160  * 1 - page is locked; mmap_sem is still held.
1161  * 0 - page is not locked.
1162  *     mmap_sem has been released (up_read()), unless flags had both
1163  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1164  *     which case mmap_sem is still held.
1165  *
1166  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1167  * with the page locked and the mmap_sem unperturbed.
1168  */
1169 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1170 			 unsigned int flags)
1171 {
1172 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
1173 		/*
1174 		 * CAUTION! In this case, mmap_sem is not released
1175 		 * even though return 0.
1176 		 */
1177 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
1178 			return 0;
1179 
1180 		up_read(&mm->mmap_sem);
1181 		if (flags & FAULT_FLAG_KILLABLE)
1182 			wait_on_page_locked_killable(page);
1183 		else
1184 			wait_on_page_locked(page);
1185 		return 0;
1186 	} else {
1187 		if (flags & FAULT_FLAG_KILLABLE) {
1188 			int ret;
1189 
1190 			ret = __lock_page_killable(page);
1191 			if (ret) {
1192 				up_read(&mm->mmap_sem);
1193 				return 0;
1194 			}
1195 		} else
1196 			__lock_page(page);
1197 		return 1;
1198 	}
1199 }
1200 
1201 /**
1202  * page_cache_next_hole - find the next hole (not-present entry)
1203  * @mapping: mapping
1204  * @index: index
1205  * @max_scan: maximum range to search
1206  *
1207  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1208  * lowest indexed hole.
1209  *
1210  * Returns: the index of the hole if found, otherwise returns an index
1211  * outside of the set specified (in which case 'return - index >=
1212  * max_scan' will be true). In rare cases of index wrap-around, 0 will
1213  * be returned.
1214  *
1215  * page_cache_next_hole may be called under rcu_read_lock. However,
1216  * like radix_tree_gang_lookup, this will not atomically search a
1217  * snapshot of the tree at a single point in time. For example, if a
1218  * hole is created at index 5, then subsequently a hole is created at
1219  * index 10, page_cache_next_hole covering both indexes may return 10
1220  * if called under rcu_read_lock.
1221  */
1222 pgoff_t page_cache_next_hole(struct address_space *mapping,
1223 			     pgoff_t index, unsigned long max_scan)
1224 {
1225 	unsigned long i;
1226 
1227 	for (i = 0; i < max_scan; i++) {
1228 		struct page *page;
1229 
1230 		page = radix_tree_lookup(&mapping->page_tree, index);
1231 		if (!page || radix_tree_exceptional_entry(page))
1232 			break;
1233 		index++;
1234 		if (index == 0)
1235 			break;
1236 	}
1237 
1238 	return index;
1239 }
1240 EXPORT_SYMBOL(page_cache_next_hole);
1241 
1242 /**
1243  * page_cache_prev_hole - find the prev hole (not-present entry)
1244  * @mapping: mapping
1245  * @index: index
1246  * @max_scan: maximum range to search
1247  *
1248  * Search backwards in the range [max(index-max_scan+1, 0), index] for
1249  * the first hole.
1250  *
1251  * Returns: the index of the hole if found, otherwise returns an index
1252  * outside of the set specified (in which case 'index - return >=
1253  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1254  * will be returned.
1255  *
1256  * page_cache_prev_hole may be called under rcu_read_lock. However,
1257  * like radix_tree_gang_lookup, this will not atomically search a
1258  * snapshot of the tree at a single point in time. For example, if a
1259  * hole is created at index 10, then subsequently a hole is created at
1260  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1261  * called under rcu_read_lock.
1262  */
1263 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1264 			     pgoff_t index, unsigned long max_scan)
1265 {
1266 	unsigned long i;
1267 
1268 	for (i = 0; i < max_scan; i++) {
1269 		struct page *page;
1270 
1271 		page = radix_tree_lookup(&mapping->page_tree, index);
1272 		if (!page || radix_tree_exceptional_entry(page))
1273 			break;
1274 		index--;
1275 		if (index == ULONG_MAX)
1276 			break;
1277 	}
1278 
1279 	return index;
1280 }
1281 EXPORT_SYMBOL(page_cache_prev_hole);
1282 
1283 /**
1284  * find_get_entry - find and get a page cache entry
1285  * @mapping: the address_space to search
1286  * @offset: the page cache index
1287  *
1288  * Looks up the page cache slot at @mapping & @offset.  If there is a
1289  * page cache page, it is returned with an increased refcount.
1290  *
1291  * If the slot holds a shadow entry of a previously evicted page, or a
1292  * swap entry from shmem/tmpfs, it is returned.
1293  *
1294  * Otherwise, %NULL is returned.
1295  */
1296 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1297 {
1298 	void **pagep;
1299 	struct page *head, *page;
1300 
1301 	rcu_read_lock();
1302 repeat:
1303 	page = NULL;
1304 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1305 	if (pagep) {
1306 		page = radix_tree_deref_slot(pagep);
1307 		if (unlikely(!page))
1308 			goto out;
1309 		if (radix_tree_exception(page)) {
1310 			if (radix_tree_deref_retry(page))
1311 				goto repeat;
1312 			/*
1313 			 * A shadow entry of a recently evicted page,
1314 			 * or a swap entry from shmem/tmpfs.  Return
1315 			 * it without attempting to raise page count.
1316 			 */
1317 			goto out;
1318 		}
1319 
1320 		head = compound_head(page);
1321 		if (!page_cache_get_speculative(head))
1322 			goto repeat;
1323 
1324 		/* The page was split under us? */
1325 		if (compound_head(page) != head) {
1326 			put_page(head);
1327 			goto repeat;
1328 		}
1329 
1330 		/*
1331 		 * Has the page moved?
1332 		 * This is part of the lockless pagecache protocol. See
1333 		 * include/linux/pagemap.h for details.
1334 		 */
1335 		if (unlikely(page != *pagep)) {
1336 			put_page(head);
1337 			goto repeat;
1338 		}
1339 	}
1340 out:
1341 	rcu_read_unlock();
1342 
1343 	return page;
1344 }
1345 EXPORT_SYMBOL(find_get_entry);
1346 
1347 /**
1348  * find_lock_entry - locate, pin and lock a page cache entry
1349  * @mapping: the address_space to search
1350  * @offset: the page cache index
1351  *
1352  * Looks up the page cache slot at @mapping & @offset.  If there is a
1353  * page cache page, it is returned locked and with an increased
1354  * refcount.
1355  *
1356  * If the slot holds a shadow entry of a previously evicted page, or a
1357  * swap entry from shmem/tmpfs, it is returned.
1358  *
1359  * Otherwise, %NULL is returned.
1360  *
1361  * find_lock_entry() may sleep.
1362  */
1363 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1364 {
1365 	struct page *page;
1366 
1367 repeat:
1368 	page = find_get_entry(mapping, offset);
1369 	if (page && !radix_tree_exception(page)) {
1370 		lock_page(page);
1371 		/* Has the page been truncated? */
1372 		if (unlikely(page_mapping(page) != mapping)) {
1373 			unlock_page(page);
1374 			put_page(page);
1375 			goto repeat;
1376 		}
1377 		VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1378 	}
1379 	return page;
1380 }
1381 EXPORT_SYMBOL(find_lock_entry);
1382 
1383 /**
1384  * pagecache_get_page - find and get a page reference
1385  * @mapping: the address_space to search
1386  * @offset: the page index
1387  * @fgp_flags: PCG flags
1388  * @gfp_mask: gfp mask to use for the page cache data page allocation
1389  *
1390  * Looks up the page cache slot at @mapping & @offset.
1391  *
1392  * PCG flags modify how the page is returned.
1393  *
1394  * @fgp_flags can be:
1395  *
1396  * - FGP_ACCESSED: the page will be marked accessed
1397  * - FGP_LOCK: Page is return locked
1398  * - FGP_CREAT: If page is not present then a new page is allocated using
1399  *   @gfp_mask and added to the page cache and the VM's LRU
1400  *   list. The page is returned locked and with an increased
1401  *   refcount. Otherwise, NULL is returned.
1402  *
1403  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1404  * if the GFP flags specified for FGP_CREAT are atomic.
1405  *
1406  * If there is a page cache page, it is returned with an increased refcount.
1407  */
1408 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1409 	int fgp_flags, gfp_t gfp_mask)
1410 {
1411 	struct page *page;
1412 
1413 repeat:
1414 	page = find_get_entry(mapping, offset);
1415 	if (radix_tree_exceptional_entry(page))
1416 		page = NULL;
1417 	if (!page)
1418 		goto no_page;
1419 
1420 	if (fgp_flags & FGP_LOCK) {
1421 		if (fgp_flags & FGP_NOWAIT) {
1422 			if (!trylock_page(page)) {
1423 				put_page(page);
1424 				return NULL;
1425 			}
1426 		} else {
1427 			lock_page(page);
1428 		}
1429 
1430 		/* Has the page been truncated? */
1431 		if (unlikely(page->mapping != mapping)) {
1432 			unlock_page(page);
1433 			put_page(page);
1434 			goto repeat;
1435 		}
1436 		VM_BUG_ON_PAGE(page->index != offset, page);
1437 	}
1438 
1439 	if (page && (fgp_flags & FGP_ACCESSED))
1440 		mark_page_accessed(page);
1441 
1442 no_page:
1443 	if (!page && (fgp_flags & FGP_CREAT)) {
1444 		int err;
1445 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1446 			gfp_mask |= __GFP_WRITE;
1447 		if (fgp_flags & FGP_NOFS)
1448 			gfp_mask &= ~__GFP_FS;
1449 
1450 		page = __page_cache_alloc(gfp_mask);
1451 		if (!page)
1452 			return NULL;
1453 
1454 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1455 			fgp_flags |= FGP_LOCK;
1456 
1457 		/* Init accessed so avoid atomic mark_page_accessed later */
1458 		if (fgp_flags & FGP_ACCESSED)
1459 			__SetPageReferenced(page);
1460 
1461 		err = add_to_page_cache_lru(page, mapping, offset,
1462 				gfp_mask & GFP_RECLAIM_MASK);
1463 		if (unlikely(err)) {
1464 			put_page(page);
1465 			page = NULL;
1466 			if (err == -EEXIST)
1467 				goto repeat;
1468 		}
1469 	}
1470 
1471 	return page;
1472 }
1473 EXPORT_SYMBOL(pagecache_get_page);
1474 
1475 /**
1476  * find_get_entries - gang pagecache lookup
1477  * @mapping:	The address_space to search
1478  * @start:	The starting page cache index
1479  * @nr_entries:	The maximum number of entries
1480  * @entries:	Where the resulting entries are placed
1481  * @indices:	The cache indices corresponding to the entries in @entries
1482  *
1483  * find_get_entries() will search for and return a group of up to
1484  * @nr_entries entries in the mapping.  The entries are placed at
1485  * @entries.  find_get_entries() takes a reference against any actual
1486  * pages it returns.
1487  *
1488  * The search returns a group of mapping-contiguous page cache entries
1489  * with ascending indexes.  There may be holes in the indices due to
1490  * not-present pages.
1491  *
1492  * Any shadow entries of evicted pages, or swap entries from
1493  * shmem/tmpfs, are included in the returned array.
1494  *
1495  * find_get_entries() returns the number of pages and shadow entries
1496  * which were found.
1497  */
1498 unsigned find_get_entries(struct address_space *mapping,
1499 			  pgoff_t start, unsigned int nr_entries,
1500 			  struct page **entries, pgoff_t *indices)
1501 {
1502 	void **slot;
1503 	unsigned int ret = 0;
1504 	struct radix_tree_iter iter;
1505 
1506 	if (!nr_entries)
1507 		return 0;
1508 
1509 	rcu_read_lock();
1510 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1511 		struct page *head, *page;
1512 repeat:
1513 		page = radix_tree_deref_slot(slot);
1514 		if (unlikely(!page))
1515 			continue;
1516 		if (radix_tree_exception(page)) {
1517 			if (radix_tree_deref_retry(page)) {
1518 				slot = radix_tree_iter_retry(&iter);
1519 				continue;
1520 			}
1521 			/*
1522 			 * A shadow entry of a recently evicted page, a swap
1523 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1524 			 * without attempting to raise page count.
1525 			 */
1526 			goto export;
1527 		}
1528 
1529 		head = compound_head(page);
1530 		if (!page_cache_get_speculative(head))
1531 			goto repeat;
1532 
1533 		/* The page was split under us? */
1534 		if (compound_head(page) != head) {
1535 			put_page(head);
1536 			goto repeat;
1537 		}
1538 
1539 		/* Has the page moved? */
1540 		if (unlikely(page != *slot)) {
1541 			put_page(head);
1542 			goto repeat;
1543 		}
1544 export:
1545 		indices[ret] = iter.index;
1546 		entries[ret] = page;
1547 		if (++ret == nr_entries)
1548 			break;
1549 	}
1550 	rcu_read_unlock();
1551 	return ret;
1552 }
1553 
1554 /**
1555  * find_get_pages_range - gang pagecache lookup
1556  * @mapping:	The address_space to search
1557  * @start:	The starting page index
1558  * @end:	The final page index (inclusive)
1559  * @nr_pages:	The maximum number of pages
1560  * @pages:	Where the resulting pages are placed
1561  *
1562  * find_get_pages_range() will search for and return a group of up to @nr_pages
1563  * pages in the mapping starting at index @start and up to index @end
1564  * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1565  * a reference against the returned pages.
1566  *
1567  * The search returns a group of mapping-contiguous pages with ascending
1568  * indexes.  There may be holes in the indices due to not-present pages.
1569  * We also update @start to index the next page for the traversal.
1570  *
1571  * find_get_pages_range() returns the number of pages which were found. If this
1572  * number is smaller than @nr_pages, the end of specified range has been
1573  * reached.
1574  */
1575 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1576 			      pgoff_t end, unsigned int nr_pages,
1577 			      struct page **pages)
1578 {
1579 	struct radix_tree_iter iter;
1580 	void **slot;
1581 	unsigned ret = 0;
1582 
1583 	if (unlikely(!nr_pages))
1584 		return 0;
1585 
1586 	rcu_read_lock();
1587 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, *start) {
1588 		struct page *head, *page;
1589 
1590 		if (iter.index > end)
1591 			break;
1592 repeat:
1593 		page = radix_tree_deref_slot(slot);
1594 		if (unlikely(!page))
1595 			continue;
1596 
1597 		if (radix_tree_exception(page)) {
1598 			if (radix_tree_deref_retry(page)) {
1599 				slot = radix_tree_iter_retry(&iter);
1600 				continue;
1601 			}
1602 			/*
1603 			 * A shadow entry of a recently evicted page,
1604 			 * or a swap entry from shmem/tmpfs.  Skip
1605 			 * over it.
1606 			 */
1607 			continue;
1608 		}
1609 
1610 		head = compound_head(page);
1611 		if (!page_cache_get_speculative(head))
1612 			goto repeat;
1613 
1614 		/* The page was split under us? */
1615 		if (compound_head(page) != head) {
1616 			put_page(head);
1617 			goto repeat;
1618 		}
1619 
1620 		/* Has the page moved? */
1621 		if (unlikely(page != *slot)) {
1622 			put_page(head);
1623 			goto repeat;
1624 		}
1625 
1626 		pages[ret] = page;
1627 		if (++ret == nr_pages) {
1628 			*start = pages[ret - 1]->index + 1;
1629 			goto out;
1630 		}
1631 	}
1632 
1633 	/*
1634 	 * We come here when there is no page beyond @end. We take care to not
1635 	 * overflow the index @start as it confuses some of the callers. This
1636 	 * breaks the iteration when there is page at index -1 but that is
1637 	 * already broken anyway.
1638 	 */
1639 	if (end == (pgoff_t)-1)
1640 		*start = (pgoff_t)-1;
1641 	else
1642 		*start = end + 1;
1643 out:
1644 	rcu_read_unlock();
1645 
1646 	return ret;
1647 }
1648 
1649 /**
1650  * find_get_pages_contig - gang contiguous pagecache lookup
1651  * @mapping:	The address_space to search
1652  * @index:	The starting page index
1653  * @nr_pages:	The maximum number of pages
1654  * @pages:	Where the resulting pages are placed
1655  *
1656  * find_get_pages_contig() works exactly like find_get_pages(), except
1657  * that the returned number of pages are guaranteed to be contiguous.
1658  *
1659  * find_get_pages_contig() returns the number of pages which were found.
1660  */
1661 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1662 			       unsigned int nr_pages, struct page **pages)
1663 {
1664 	struct radix_tree_iter iter;
1665 	void **slot;
1666 	unsigned int ret = 0;
1667 
1668 	if (unlikely(!nr_pages))
1669 		return 0;
1670 
1671 	rcu_read_lock();
1672 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1673 		struct page *head, *page;
1674 repeat:
1675 		page = radix_tree_deref_slot(slot);
1676 		/* The hole, there no reason to continue */
1677 		if (unlikely(!page))
1678 			break;
1679 
1680 		if (radix_tree_exception(page)) {
1681 			if (radix_tree_deref_retry(page)) {
1682 				slot = radix_tree_iter_retry(&iter);
1683 				continue;
1684 			}
1685 			/*
1686 			 * A shadow entry of a recently evicted page,
1687 			 * or a swap entry from shmem/tmpfs.  Stop
1688 			 * looking for contiguous pages.
1689 			 */
1690 			break;
1691 		}
1692 
1693 		head = compound_head(page);
1694 		if (!page_cache_get_speculative(head))
1695 			goto repeat;
1696 
1697 		/* The page was split under us? */
1698 		if (compound_head(page) != head) {
1699 			put_page(head);
1700 			goto repeat;
1701 		}
1702 
1703 		/* Has the page moved? */
1704 		if (unlikely(page != *slot)) {
1705 			put_page(head);
1706 			goto repeat;
1707 		}
1708 
1709 		/*
1710 		 * must check mapping and index after taking the ref.
1711 		 * otherwise we can get both false positives and false
1712 		 * negatives, which is just confusing to the caller.
1713 		 */
1714 		if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1715 			put_page(page);
1716 			break;
1717 		}
1718 
1719 		pages[ret] = page;
1720 		if (++ret == nr_pages)
1721 			break;
1722 	}
1723 	rcu_read_unlock();
1724 	return ret;
1725 }
1726 EXPORT_SYMBOL(find_get_pages_contig);
1727 
1728 /**
1729  * find_get_pages_tag - find and return pages that match @tag
1730  * @mapping:	the address_space to search
1731  * @index:	the starting page index
1732  * @tag:	the tag index
1733  * @nr_pages:	the maximum number of pages
1734  * @pages:	where the resulting pages are placed
1735  *
1736  * Like find_get_pages, except we only return pages which are tagged with
1737  * @tag.   We update @index to index the next page for the traversal.
1738  */
1739 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1740 			int tag, unsigned int nr_pages, struct page **pages)
1741 {
1742 	struct radix_tree_iter iter;
1743 	void **slot;
1744 	unsigned ret = 0;
1745 
1746 	if (unlikely(!nr_pages))
1747 		return 0;
1748 
1749 	rcu_read_lock();
1750 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1751 				   &iter, *index, tag) {
1752 		struct page *head, *page;
1753 repeat:
1754 		page = radix_tree_deref_slot(slot);
1755 		if (unlikely(!page))
1756 			continue;
1757 
1758 		if (radix_tree_exception(page)) {
1759 			if (radix_tree_deref_retry(page)) {
1760 				slot = radix_tree_iter_retry(&iter);
1761 				continue;
1762 			}
1763 			/*
1764 			 * A shadow entry of a recently evicted page.
1765 			 *
1766 			 * Those entries should never be tagged, but
1767 			 * this tree walk is lockless and the tags are
1768 			 * looked up in bulk, one radix tree node at a
1769 			 * time, so there is a sizable window for page
1770 			 * reclaim to evict a page we saw tagged.
1771 			 *
1772 			 * Skip over it.
1773 			 */
1774 			continue;
1775 		}
1776 
1777 		head = compound_head(page);
1778 		if (!page_cache_get_speculative(head))
1779 			goto repeat;
1780 
1781 		/* The page was split under us? */
1782 		if (compound_head(page) != head) {
1783 			put_page(head);
1784 			goto repeat;
1785 		}
1786 
1787 		/* Has the page moved? */
1788 		if (unlikely(page != *slot)) {
1789 			put_page(head);
1790 			goto repeat;
1791 		}
1792 
1793 		pages[ret] = page;
1794 		if (++ret == nr_pages)
1795 			break;
1796 	}
1797 
1798 	rcu_read_unlock();
1799 
1800 	if (ret)
1801 		*index = pages[ret - 1]->index + 1;
1802 
1803 	return ret;
1804 }
1805 EXPORT_SYMBOL(find_get_pages_tag);
1806 
1807 /**
1808  * find_get_entries_tag - find and return entries that match @tag
1809  * @mapping:	the address_space to search
1810  * @start:	the starting page cache index
1811  * @tag:	the tag index
1812  * @nr_entries:	the maximum number of entries
1813  * @entries:	where the resulting entries are placed
1814  * @indices:	the cache indices corresponding to the entries in @entries
1815  *
1816  * Like find_get_entries, except we only return entries which are tagged with
1817  * @tag.
1818  */
1819 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1820 			int tag, unsigned int nr_entries,
1821 			struct page **entries, pgoff_t *indices)
1822 {
1823 	void **slot;
1824 	unsigned int ret = 0;
1825 	struct radix_tree_iter iter;
1826 
1827 	if (!nr_entries)
1828 		return 0;
1829 
1830 	rcu_read_lock();
1831 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1832 				   &iter, start, tag) {
1833 		struct page *head, *page;
1834 repeat:
1835 		page = radix_tree_deref_slot(slot);
1836 		if (unlikely(!page))
1837 			continue;
1838 		if (radix_tree_exception(page)) {
1839 			if (radix_tree_deref_retry(page)) {
1840 				slot = radix_tree_iter_retry(&iter);
1841 				continue;
1842 			}
1843 
1844 			/*
1845 			 * A shadow entry of a recently evicted page, a swap
1846 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1847 			 * without attempting to raise page count.
1848 			 */
1849 			goto export;
1850 		}
1851 
1852 		head = compound_head(page);
1853 		if (!page_cache_get_speculative(head))
1854 			goto repeat;
1855 
1856 		/* The page was split under us? */
1857 		if (compound_head(page) != head) {
1858 			put_page(head);
1859 			goto repeat;
1860 		}
1861 
1862 		/* Has the page moved? */
1863 		if (unlikely(page != *slot)) {
1864 			put_page(head);
1865 			goto repeat;
1866 		}
1867 export:
1868 		indices[ret] = iter.index;
1869 		entries[ret] = page;
1870 		if (++ret == nr_entries)
1871 			break;
1872 	}
1873 	rcu_read_unlock();
1874 	return ret;
1875 }
1876 EXPORT_SYMBOL(find_get_entries_tag);
1877 
1878 /*
1879  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1880  * a _large_ part of the i/o request. Imagine the worst scenario:
1881  *
1882  *      ---R__________________________________________B__________
1883  *         ^ reading here                             ^ bad block(assume 4k)
1884  *
1885  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1886  * => failing the whole request => read(R) => read(R+1) =>
1887  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1888  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1889  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1890  *
1891  * It is going insane. Fix it by quickly scaling down the readahead size.
1892  */
1893 static void shrink_readahead_size_eio(struct file *filp,
1894 					struct file_ra_state *ra)
1895 {
1896 	ra->ra_pages /= 4;
1897 }
1898 
1899 /**
1900  * do_generic_file_read - generic file read routine
1901  * @filp:	the file to read
1902  * @ppos:	current file position
1903  * @iter:	data destination
1904  * @written:	already copied
1905  *
1906  * This is a generic file read routine, and uses the
1907  * mapping->a_ops->readpage() function for the actual low-level stuff.
1908  *
1909  * This is really ugly. But the goto's actually try to clarify some
1910  * of the logic when it comes to error handling etc.
1911  */
1912 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1913 		struct iov_iter *iter, ssize_t written)
1914 {
1915 	struct address_space *mapping = filp->f_mapping;
1916 	struct inode *inode = mapping->host;
1917 	struct file_ra_state *ra = &filp->f_ra;
1918 	pgoff_t index;
1919 	pgoff_t last_index;
1920 	pgoff_t prev_index;
1921 	unsigned long offset;      /* offset into pagecache page */
1922 	unsigned int prev_offset;
1923 	int error = 0;
1924 
1925 	if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
1926 		return 0;
1927 	iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1928 
1929 	index = *ppos >> PAGE_SHIFT;
1930 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1931 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1932 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1933 	offset = *ppos & ~PAGE_MASK;
1934 
1935 	for (;;) {
1936 		struct page *page;
1937 		pgoff_t end_index;
1938 		loff_t isize;
1939 		unsigned long nr, ret;
1940 
1941 		cond_resched();
1942 find_page:
1943 		if (fatal_signal_pending(current)) {
1944 			error = -EINTR;
1945 			goto out;
1946 		}
1947 
1948 		page = find_get_page(mapping, index);
1949 		if (!page) {
1950 			page_cache_sync_readahead(mapping,
1951 					ra, filp,
1952 					index, last_index - index);
1953 			page = find_get_page(mapping, index);
1954 			if (unlikely(page == NULL))
1955 				goto no_cached_page;
1956 		}
1957 		if (PageReadahead(page)) {
1958 			page_cache_async_readahead(mapping,
1959 					ra, filp, page,
1960 					index, last_index - index);
1961 		}
1962 		if (!PageUptodate(page)) {
1963 			/*
1964 			 * See comment in do_read_cache_page on why
1965 			 * wait_on_page_locked is used to avoid unnecessarily
1966 			 * serialisations and why it's safe.
1967 			 */
1968 			error = wait_on_page_locked_killable(page);
1969 			if (unlikely(error))
1970 				goto readpage_error;
1971 			if (PageUptodate(page))
1972 				goto page_ok;
1973 
1974 			if (inode->i_blkbits == PAGE_SHIFT ||
1975 					!mapping->a_ops->is_partially_uptodate)
1976 				goto page_not_up_to_date;
1977 			/* pipes can't handle partially uptodate pages */
1978 			if (unlikely(iter->type & ITER_PIPE))
1979 				goto page_not_up_to_date;
1980 			if (!trylock_page(page))
1981 				goto page_not_up_to_date;
1982 			/* Did it get truncated before we got the lock? */
1983 			if (!page->mapping)
1984 				goto page_not_up_to_date_locked;
1985 			if (!mapping->a_ops->is_partially_uptodate(page,
1986 							offset, iter->count))
1987 				goto page_not_up_to_date_locked;
1988 			unlock_page(page);
1989 		}
1990 page_ok:
1991 		/*
1992 		 * i_size must be checked after we know the page is Uptodate.
1993 		 *
1994 		 * Checking i_size after the check allows us to calculate
1995 		 * the correct value for "nr", which means the zero-filled
1996 		 * part of the page is not copied back to userspace (unless
1997 		 * another truncate extends the file - this is desired though).
1998 		 */
1999 
2000 		isize = i_size_read(inode);
2001 		end_index = (isize - 1) >> PAGE_SHIFT;
2002 		if (unlikely(!isize || index > end_index)) {
2003 			put_page(page);
2004 			goto out;
2005 		}
2006 
2007 		/* nr is the maximum number of bytes to copy from this page */
2008 		nr = PAGE_SIZE;
2009 		if (index == end_index) {
2010 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
2011 			if (nr <= offset) {
2012 				put_page(page);
2013 				goto out;
2014 			}
2015 		}
2016 		nr = nr - offset;
2017 
2018 		/* If users can be writing to this page using arbitrary
2019 		 * virtual addresses, take care about potential aliasing
2020 		 * before reading the page on the kernel side.
2021 		 */
2022 		if (mapping_writably_mapped(mapping))
2023 			flush_dcache_page(page);
2024 
2025 		/*
2026 		 * When a sequential read accesses a page several times,
2027 		 * only mark it as accessed the first time.
2028 		 */
2029 		if (prev_index != index || offset != prev_offset)
2030 			mark_page_accessed(page);
2031 		prev_index = index;
2032 
2033 		/*
2034 		 * Ok, we have the page, and it's up-to-date, so
2035 		 * now we can copy it to user space...
2036 		 */
2037 
2038 		ret = copy_page_to_iter(page, offset, nr, iter);
2039 		offset += ret;
2040 		index += offset >> PAGE_SHIFT;
2041 		offset &= ~PAGE_MASK;
2042 		prev_offset = offset;
2043 
2044 		put_page(page);
2045 		written += ret;
2046 		if (!iov_iter_count(iter))
2047 			goto out;
2048 		if (ret < nr) {
2049 			error = -EFAULT;
2050 			goto out;
2051 		}
2052 		continue;
2053 
2054 page_not_up_to_date:
2055 		/* Get exclusive access to the page ... */
2056 		error = lock_page_killable(page);
2057 		if (unlikely(error))
2058 			goto readpage_error;
2059 
2060 page_not_up_to_date_locked:
2061 		/* Did it get truncated before we got the lock? */
2062 		if (!page->mapping) {
2063 			unlock_page(page);
2064 			put_page(page);
2065 			continue;
2066 		}
2067 
2068 		/* Did somebody else fill it already? */
2069 		if (PageUptodate(page)) {
2070 			unlock_page(page);
2071 			goto page_ok;
2072 		}
2073 
2074 readpage:
2075 		/*
2076 		 * A previous I/O error may have been due to temporary
2077 		 * failures, eg. multipath errors.
2078 		 * PG_error will be set again if readpage fails.
2079 		 */
2080 		ClearPageError(page);
2081 		/* Start the actual read. The read will unlock the page. */
2082 		error = mapping->a_ops->readpage(filp, page);
2083 
2084 		if (unlikely(error)) {
2085 			if (error == AOP_TRUNCATED_PAGE) {
2086 				put_page(page);
2087 				error = 0;
2088 				goto find_page;
2089 			}
2090 			goto readpage_error;
2091 		}
2092 
2093 		if (!PageUptodate(page)) {
2094 			error = lock_page_killable(page);
2095 			if (unlikely(error))
2096 				goto readpage_error;
2097 			if (!PageUptodate(page)) {
2098 				if (page->mapping == NULL) {
2099 					/*
2100 					 * invalidate_mapping_pages got it
2101 					 */
2102 					unlock_page(page);
2103 					put_page(page);
2104 					goto find_page;
2105 				}
2106 				unlock_page(page);
2107 				shrink_readahead_size_eio(filp, ra);
2108 				error = -EIO;
2109 				goto readpage_error;
2110 			}
2111 			unlock_page(page);
2112 		}
2113 
2114 		goto page_ok;
2115 
2116 readpage_error:
2117 		/* UHHUH! A synchronous read error occurred. Report it */
2118 		put_page(page);
2119 		goto out;
2120 
2121 no_cached_page:
2122 		/*
2123 		 * Ok, it wasn't cached, so we need to create a new
2124 		 * page..
2125 		 */
2126 		page = page_cache_alloc_cold(mapping);
2127 		if (!page) {
2128 			error = -ENOMEM;
2129 			goto out;
2130 		}
2131 		error = add_to_page_cache_lru(page, mapping, index,
2132 				mapping_gfp_constraint(mapping, GFP_KERNEL));
2133 		if (error) {
2134 			put_page(page);
2135 			if (error == -EEXIST) {
2136 				error = 0;
2137 				goto find_page;
2138 			}
2139 			goto out;
2140 		}
2141 		goto readpage;
2142 	}
2143 
2144 out:
2145 	ra->prev_pos = prev_index;
2146 	ra->prev_pos <<= PAGE_SHIFT;
2147 	ra->prev_pos |= prev_offset;
2148 
2149 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2150 	file_accessed(filp);
2151 	return written ? written : error;
2152 }
2153 
2154 /**
2155  * generic_file_read_iter - generic filesystem read routine
2156  * @iocb:	kernel I/O control block
2157  * @iter:	destination for the data read
2158  *
2159  * This is the "read_iter()" routine for all filesystems
2160  * that can use the page cache directly.
2161  */
2162 ssize_t
2163 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2164 {
2165 	struct file *file = iocb->ki_filp;
2166 	ssize_t retval = 0;
2167 	size_t count = iov_iter_count(iter);
2168 
2169 	if (!count)
2170 		goto out; /* skip atime */
2171 
2172 	if (iocb->ki_flags & IOCB_DIRECT) {
2173 		struct address_space *mapping = file->f_mapping;
2174 		struct inode *inode = mapping->host;
2175 		loff_t size;
2176 
2177 		size = i_size_read(inode);
2178 		if (iocb->ki_flags & IOCB_NOWAIT) {
2179 			if (filemap_range_has_page(mapping, iocb->ki_pos,
2180 						   iocb->ki_pos + count - 1))
2181 				return -EAGAIN;
2182 		} else {
2183 			retval = filemap_write_and_wait_range(mapping,
2184 						iocb->ki_pos,
2185 					        iocb->ki_pos + count - 1);
2186 			if (retval < 0)
2187 				goto out;
2188 		}
2189 
2190 		file_accessed(file);
2191 
2192 		retval = mapping->a_ops->direct_IO(iocb, iter);
2193 		if (retval >= 0) {
2194 			iocb->ki_pos += retval;
2195 			count -= retval;
2196 		}
2197 		iov_iter_revert(iter, count - iov_iter_count(iter));
2198 
2199 		/*
2200 		 * Btrfs can have a short DIO read if we encounter
2201 		 * compressed extents, so if there was an error, or if
2202 		 * we've already read everything we wanted to, or if
2203 		 * there was a short read because we hit EOF, go ahead
2204 		 * and return.  Otherwise fallthrough to buffered io for
2205 		 * the rest of the read.  Buffered reads will not work for
2206 		 * DAX files, so don't bother trying.
2207 		 */
2208 		if (retval < 0 || !count || iocb->ki_pos >= size ||
2209 		    IS_DAX(inode))
2210 			goto out;
2211 	}
2212 
2213 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
2214 out:
2215 	return retval;
2216 }
2217 EXPORT_SYMBOL(generic_file_read_iter);
2218 
2219 #ifdef CONFIG_MMU
2220 /**
2221  * page_cache_read - adds requested page to the page cache if not already there
2222  * @file:	file to read
2223  * @offset:	page index
2224  * @gfp_mask:	memory allocation flags
2225  *
2226  * This adds the requested page to the page cache if it isn't already there,
2227  * and schedules an I/O to read in its contents from disk.
2228  */
2229 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2230 {
2231 	struct address_space *mapping = file->f_mapping;
2232 	struct page *page;
2233 	int ret;
2234 
2235 	do {
2236 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
2237 		if (!page)
2238 			return -ENOMEM;
2239 
2240 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
2241 		if (ret == 0)
2242 			ret = mapping->a_ops->readpage(file, page);
2243 		else if (ret == -EEXIST)
2244 			ret = 0; /* losing race to add is OK */
2245 
2246 		put_page(page);
2247 
2248 	} while (ret == AOP_TRUNCATED_PAGE);
2249 
2250 	return ret;
2251 }
2252 
2253 #define MMAP_LOTSAMISS  (100)
2254 
2255 /*
2256  * Synchronous readahead happens when we don't even find
2257  * a page in the page cache at all.
2258  */
2259 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2260 				   struct file_ra_state *ra,
2261 				   struct file *file,
2262 				   pgoff_t offset)
2263 {
2264 	struct address_space *mapping = file->f_mapping;
2265 
2266 	/* If we don't want any read-ahead, don't bother */
2267 	if (vma->vm_flags & VM_RAND_READ)
2268 		return;
2269 	if (!ra->ra_pages)
2270 		return;
2271 
2272 	if (vma->vm_flags & VM_SEQ_READ) {
2273 		page_cache_sync_readahead(mapping, ra, file, offset,
2274 					  ra->ra_pages);
2275 		return;
2276 	}
2277 
2278 	/* Avoid banging the cache line if not needed */
2279 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2280 		ra->mmap_miss++;
2281 
2282 	/*
2283 	 * Do we miss much more than hit in this file? If so,
2284 	 * stop bothering with read-ahead. It will only hurt.
2285 	 */
2286 	if (ra->mmap_miss > MMAP_LOTSAMISS)
2287 		return;
2288 
2289 	/*
2290 	 * mmap read-around
2291 	 */
2292 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2293 	ra->size = ra->ra_pages;
2294 	ra->async_size = ra->ra_pages / 4;
2295 	ra_submit(ra, mapping, file);
2296 }
2297 
2298 /*
2299  * Asynchronous readahead happens when we find the page and PG_readahead,
2300  * so we want to possibly extend the readahead further..
2301  */
2302 static void do_async_mmap_readahead(struct vm_area_struct *vma,
2303 				    struct file_ra_state *ra,
2304 				    struct file *file,
2305 				    struct page *page,
2306 				    pgoff_t offset)
2307 {
2308 	struct address_space *mapping = file->f_mapping;
2309 
2310 	/* If we don't want any read-ahead, don't bother */
2311 	if (vma->vm_flags & VM_RAND_READ)
2312 		return;
2313 	if (ra->mmap_miss > 0)
2314 		ra->mmap_miss--;
2315 	if (PageReadahead(page))
2316 		page_cache_async_readahead(mapping, ra, file,
2317 					   page, offset, ra->ra_pages);
2318 }
2319 
2320 /**
2321  * filemap_fault - read in file data for page fault handling
2322  * @vmf:	struct vm_fault containing details of the fault
2323  *
2324  * filemap_fault() is invoked via the vma operations vector for a
2325  * mapped memory region to read in file data during a page fault.
2326  *
2327  * The goto's are kind of ugly, but this streamlines the normal case of having
2328  * it in the page cache, and handles the special cases reasonably without
2329  * having a lot of duplicated code.
2330  *
2331  * vma->vm_mm->mmap_sem must be held on entry.
2332  *
2333  * If our return value has VM_FAULT_RETRY set, it's because
2334  * lock_page_or_retry() returned 0.
2335  * The mmap_sem has usually been released in this case.
2336  * See __lock_page_or_retry() for the exception.
2337  *
2338  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2339  * has not been released.
2340  *
2341  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2342  */
2343 int filemap_fault(struct vm_fault *vmf)
2344 {
2345 	int error;
2346 	struct file *file = vmf->vma->vm_file;
2347 	struct address_space *mapping = file->f_mapping;
2348 	struct file_ra_state *ra = &file->f_ra;
2349 	struct inode *inode = mapping->host;
2350 	pgoff_t offset = vmf->pgoff;
2351 	pgoff_t max_off;
2352 	struct page *page;
2353 	int ret = 0;
2354 
2355 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2356 	if (unlikely(offset >= max_off))
2357 		return VM_FAULT_SIGBUS;
2358 
2359 	/*
2360 	 * Do we have something in the page cache already?
2361 	 */
2362 	page = find_get_page(mapping, offset);
2363 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2364 		/*
2365 		 * We found the page, so try async readahead before
2366 		 * waiting for the lock.
2367 		 */
2368 		do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2369 	} else if (!page) {
2370 		/* No page in the page cache at all */
2371 		do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2372 		count_vm_event(PGMAJFAULT);
2373 		count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2374 		ret = VM_FAULT_MAJOR;
2375 retry_find:
2376 		page = find_get_page(mapping, offset);
2377 		if (!page)
2378 			goto no_cached_page;
2379 	}
2380 
2381 	if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2382 		put_page(page);
2383 		return ret | VM_FAULT_RETRY;
2384 	}
2385 
2386 	/* Did it get truncated? */
2387 	if (unlikely(page->mapping != mapping)) {
2388 		unlock_page(page);
2389 		put_page(page);
2390 		goto retry_find;
2391 	}
2392 	VM_BUG_ON_PAGE(page->index != offset, page);
2393 
2394 	/*
2395 	 * We have a locked page in the page cache, now we need to check
2396 	 * that it's up-to-date. If not, it is going to be due to an error.
2397 	 */
2398 	if (unlikely(!PageUptodate(page)))
2399 		goto page_not_uptodate;
2400 
2401 	/*
2402 	 * Found the page and have a reference on it.
2403 	 * We must recheck i_size under page lock.
2404 	 */
2405 	max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2406 	if (unlikely(offset >= max_off)) {
2407 		unlock_page(page);
2408 		put_page(page);
2409 		return VM_FAULT_SIGBUS;
2410 	}
2411 
2412 	vmf->page = page;
2413 	return ret | VM_FAULT_LOCKED;
2414 
2415 no_cached_page:
2416 	/*
2417 	 * We're only likely to ever get here if MADV_RANDOM is in
2418 	 * effect.
2419 	 */
2420 	error = page_cache_read(file, offset, vmf->gfp_mask);
2421 
2422 	/*
2423 	 * The page we want has now been added to the page cache.
2424 	 * In the unlikely event that someone removed it in the
2425 	 * meantime, we'll just come back here and read it again.
2426 	 */
2427 	if (error >= 0)
2428 		goto retry_find;
2429 
2430 	/*
2431 	 * An error return from page_cache_read can result if the
2432 	 * system is low on memory, or a problem occurs while trying
2433 	 * to schedule I/O.
2434 	 */
2435 	if (error == -ENOMEM)
2436 		return VM_FAULT_OOM;
2437 	return VM_FAULT_SIGBUS;
2438 
2439 page_not_uptodate:
2440 	/*
2441 	 * Umm, take care of errors if the page isn't up-to-date.
2442 	 * Try to re-read it _once_. We do this synchronously,
2443 	 * because there really aren't any performance issues here
2444 	 * and we need to check for errors.
2445 	 */
2446 	ClearPageError(page);
2447 	error = mapping->a_ops->readpage(file, page);
2448 	if (!error) {
2449 		wait_on_page_locked(page);
2450 		if (!PageUptodate(page))
2451 			error = -EIO;
2452 	}
2453 	put_page(page);
2454 
2455 	if (!error || error == AOP_TRUNCATED_PAGE)
2456 		goto retry_find;
2457 
2458 	/* Things didn't work out. Return zero to tell the mm layer so. */
2459 	shrink_readahead_size_eio(file, ra);
2460 	return VM_FAULT_SIGBUS;
2461 }
2462 EXPORT_SYMBOL(filemap_fault);
2463 
2464 void filemap_map_pages(struct vm_fault *vmf,
2465 		pgoff_t start_pgoff, pgoff_t end_pgoff)
2466 {
2467 	struct radix_tree_iter iter;
2468 	void **slot;
2469 	struct file *file = vmf->vma->vm_file;
2470 	struct address_space *mapping = file->f_mapping;
2471 	pgoff_t last_pgoff = start_pgoff;
2472 	unsigned long max_idx;
2473 	struct page *head, *page;
2474 
2475 	rcu_read_lock();
2476 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2477 			start_pgoff) {
2478 		if (iter.index > end_pgoff)
2479 			break;
2480 repeat:
2481 		page = radix_tree_deref_slot(slot);
2482 		if (unlikely(!page))
2483 			goto next;
2484 		if (radix_tree_exception(page)) {
2485 			if (radix_tree_deref_retry(page)) {
2486 				slot = radix_tree_iter_retry(&iter);
2487 				continue;
2488 			}
2489 			goto next;
2490 		}
2491 
2492 		head = compound_head(page);
2493 		if (!page_cache_get_speculative(head))
2494 			goto repeat;
2495 
2496 		/* The page was split under us? */
2497 		if (compound_head(page) != head) {
2498 			put_page(head);
2499 			goto repeat;
2500 		}
2501 
2502 		/* Has the page moved? */
2503 		if (unlikely(page != *slot)) {
2504 			put_page(head);
2505 			goto repeat;
2506 		}
2507 
2508 		if (!PageUptodate(page) ||
2509 				PageReadahead(page) ||
2510 				PageHWPoison(page))
2511 			goto skip;
2512 		if (!trylock_page(page))
2513 			goto skip;
2514 
2515 		if (page->mapping != mapping || !PageUptodate(page))
2516 			goto unlock;
2517 
2518 		max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2519 		if (page->index >= max_idx)
2520 			goto unlock;
2521 
2522 		if (file->f_ra.mmap_miss > 0)
2523 			file->f_ra.mmap_miss--;
2524 
2525 		vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2526 		if (vmf->pte)
2527 			vmf->pte += iter.index - last_pgoff;
2528 		last_pgoff = iter.index;
2529 		if (alloc_set_pte(vmf, NULL, page))
2530 			goto unlock;
2531 		unlock_page(page);
2532 		goto next;
2533 unlock:
2534 		unlock_page(page);
2535 skip:
2536 		put_page(page);
2537 next:
2538 		/* Huge page is mapped? No need to proceed. */
2539 		if (pmd_trans_huge(*vmf->pmd))
2540 			break;
2541 		if (iter.index == end_pgoff)
2542 			break;
2543 	}
2544 	rcu_read_unlock();
2545 }
2546 EXPORT_SYMBOL(filemap_map_pages);
2547 
2548 int filemap_page_mkwrite(struct vm_fault *vmf)
2549 {
2550 	struct page *page = vmf->page;
2551 	struct inode *inode = file_inode(vmf->vma->vm_file);
2552 	int ret = VM_FAULT_LOCKED;
2553 
2554 	sb_start_pagefault(inode->i_sb);
2555 	file_update_time(vmf->vma->vm_file);
2556 	lock_page(page);
2557 	if (page->mapping != inode->i_mapping) {
2558 		unlock_page(page);
2559 		ret = VM_FAULT_NOPAGE;
2560 		goto out;
2561 	}
2562 	/*
2563 	 * We mark the page dirty already here so that when freeze is in
2564 	 * progress, we are guaranteed that writeback during freezing will
2565 	 * see the dirty page and writeprotect it again.
2566 	 */
2567 	set_page_dirty(page);
2568 	wait_for_stable_page(page);
2569 out:
2570 	sb_end_pagefault(inode->i_sb);
2571 	return ret;
2572 }
2573 EXPORT_SYMBOL(filemap_page_mkwrite);
2574 
2575 const struct vm_operations_struct generic_file_vm_ops = {
2576 	.fault		= filemap_fault,
2577 	.map_pages	= filemap_map_pages,
2578 	.page_mkwrite	= filemap_page_mkwrite,
2579 };
2580 
2581 /* This is used for a general mmap of a disk file */
2582 
2583 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2584 {
2585 	struct address_space *mapping = file->f_mapping;
2586 
2587 	if (!mapping->a_ops->readpage)
2588 		return -ENOEXEC;
2589 	file_accessed(file);
2590 	vma->vm_ops = &generic_file_vm_ops;
2591 	return 0;
2592 }
2593 
2594 /*
2595  * This is for filesystems which do not implement ->writepage.
2596  */
2597 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2598 {
2599 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2600 		return -EINVAL;
2601 	return generic_file_mmap(file, vma);
2602 }
2603 #else
2604 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2605 {
2606 	return -ENOSYS;
2607 }
2608 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2609 {
2610 	return -ENOSYS;
2611 }
2612 #endif /* CONFIG_MMU */
2613 
2614 EXPORT_SYMBOL(generic_file_mmap);
2615 EXPORT_SYMBOL(generic_file_readonly_mmap);
2616 
2617 static struct page *wait_on_page_read(struct page *page)
2618 {
2619 	if (!IS_ERR(page)) {
2620 		wait_on_page_locked(page);
2621 		if (!PageUptodate(page)) {
2622 			put_page(page);
2623 			page = ERR_PTR(-EIO);
2624 		}
2625 	}
2626 	return page;
2627 }
2628 
2629 static struct page *do_read_cache_page(struct address_space *mapping,
2630 				pgoff_t index,
2631 				int (*filler)(void *, struct page *),
2632 				void *data,
2633 				gfp_t gfp)
2634 {
2635 	struct page *page;
2636 	int err;
2637 repeat:
2638 	page = find_get_page(mapping, index);
2639 	if (!page) {
2640 		page = __page_cache_alloc(gfp | __GFP_COLD);
2641 		if (!page)
2642 			return ERR_PTR(-ENOMEM);
2643 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2644 		if (unlikely(err)) {
2645 			put_page(page);
2646 			if (err == -EEXIST)
2647 				goto repeat;
2648 			/* Presumably ENOMEM for radix tree node */
2649 			return ERR_PTR(err);
2650 		}
2651 
2652 filler:
2653 		err = filler(data, page);
2654 		if (err < 0) {
2655 			put_page(page);
2656 			return ERR_PTR(err);
2657 		}
2658 
2659 		page = wait_on_page_read(page);
2660 		if (IS_ERR(page))
2661 			return page;
2662 		goto out;
2663 	}
2664 	if (PageUptodate(page))
2665 		goto out;
2666 
2667 	/*
2668 	 * Page is not up to date and may be locked due one of the following
2669 	 * case a: Page is being filled and the page lock is held
2670 	 * case b: Read/write error clearing the page uptodate status
2671 	 * case c: Truncation in progress (page locked)
2672 	 * case d: Reclaim in progress
2673 	 *
2674 	 * Case a, the page will be up to date when the page is unlocked.
2675 	 *    There is no need to serialise on the page lock here as the page
2676 	 *    is pinned so the lock gives no additional protection. Even if the
2677 	 *    the page is truncated, the data is still valid if PageUptodate as
2678 	 *    it's a race vs truncate race.
2679 	 * Case b, the page will not be up to date
2680 	 * Case c, the page may be truncated but in itself, the data may still
2681 	 *    be valid after IO completes as it's a read vs truncate race. The
2682 	 *    operation must restart if the page is not uptodate on unlock but
2683 	 *    otherwise serialising on page lock to stabilise the mapping gives
2684 	 *    no additional guarantees to the caller as the page lock is
2685 	 *    released before return.
2686 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2687 	 *    will be a race with remove_mapping that determines if the mapping
2688 	 *    is valid on unlock but otherwise the data is valid and there is
2689 	 *    no need to serialise with page lock.
2690 	 *
2691 	 * As the page lock gives no additional guarantee, we optimistically
2692 	 * wait on the page to be unlocked and check if it's up to date and
2693 	 * use the page if it is. Otherwise, the page lock is required to
2694 	 * distinguish between the different cases. The motivation is that we
2695 	 * avoid spurious serialisations and wakeups when multiple processes
2696 	 * wait on the same page for IO to complete.
2697 	 */
2698 	wait_on_page_locked(page);
2699 	if (PageUptodate(page))
2700 		goto out;
2701 
2702 	/* Distinguish between all the cases under the safety of the lock */
2703 	lock_page(page);
2704 
2705 	/* Case c or d, restart the operation */
2706 	if (!page->mapping) {
2707 		unlock_page(page);
2708 		put_page(page);
2709 		goto repeat;
2710 	}
2711 
2712 	/* Someone else locked and filled the page in a very small window */
2713 	if (PageUptodate(page)) {
2714 		unlock_page(page);
2715 		goto out;
2716 	}
2717 	goto filler;
2718 
2719 out:
2720 	mark_page_accessed(page);
2721 	return page;
2722 }
2723 
2724 /**
2725  * read_cache_page - read into page cache, fill it if needed
2726  * @mapping:	the page's address_space
2727  * @index:	the page index
2728  * @filler:	function to perform the read
2729  * @data:	first arg to filler(data, page) function, often left as NULL
2730  *
2731  * Read into the page cache. If a page already exists, and PageUptodate() is
2732  * not set, try to fill the page and wait for it to become unlocked.
2733  *
2734  * If the page does not get brought uptodate, return -EIO.
2735  */
2736 struct page *read_cache_page(struct address_space *mapping,
2737 				pgoff_t index,
2738 				int (*filler)(void *, struct page *),
2739 				void *data)
2740 {
2741 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2742 }
2743 EXPORT_SYMBOL(read_cache_page);
2744 
2745 /**
2746  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2747  * @mapping:	the page's address_space
2748  * @index:	the page index
2749  * @gfp:	the page allocator flags to use if allocating
2750  *
2751  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2752  * any new page allocations done using the specified allocation flags.
2753  *
2754  * If the page does not get brought uptodate, return -EIO.
2755  */
2756 struct page *read_cache_page_gfp(struct address_space *mapping,
2757 				pgoff_t index,
2758 				gfp_t gfp)
2759 {
2760 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2761 
2762 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2763 }
2764 EXPORT_SYMBOL(read_cache_page_gfp);
2765 
2766 /*
2767  * Performs necessary checks before doing a write
2768  *
2769  * Can adjust writing position or amount of bytes to write.
2770  * Returns appropriate error code that caller should return or
2771  * zero in case that write should be allowed.
2772  */
2773 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2774 {
2775 	struct file *file = iocb->ki_filp;
2776 	struct inode *inode = file->f_mapping->host;
2777 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2778 	loff_t pos;
2779 
2780 	if (!iov_iter_count(from))
2781 		return 0;
2782 
2783 	/* FIXME: this is for backwards compatibility with 2.4 */
2784 	if (iocb->ki_flags & IOCB_APPEND)
2785 		iocb->ki_pos = i_size_read(inode);
2786 
2787 	pos = iocb->ki_pos;
2788 
2789 	if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2790 		return -EINVAL;
2791 
2792 	if (limit != RLIM_INFINITY) {
2793 		if (iocb->ki_pos >= limit) {
2794 			send_sig(SIGXFSZ, current, 0);
2795 			return -EFBIG;
2796 		}
2797 		iov_iter_truncate(from, limit - (unsigned long)pos);
2798 	}
2799 
2800 	/*
2801 	 * LFS rule
2802 	 */
2803 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2804 				!(file->f_flags & O_LARGEFILE))) {
2805 		if (pos >= MAX_NON_LFS)
2806 			return -EFBIG;
2807 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2808 	}
2809 
2810 	/*
2811 	 * Are we about to exceed the fs block limit ?
2812 	 *
2813 	 * If we have written data it becomes a short write.  If we have
2814 	 * exceeded without writing data we send a signal and return EFBIG.
2815 	 * Linus frestrict idea will clean these up nicely..
2816 	 */
2817 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2818 		return -EFBIG;
2819 
2820 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2821 	return iov_iter_count(from);
2822 }
2823 EXPORT_SYMBOL(generic_write_checks);
2824 
2825 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2826 				loff_t pos, unsigned len, unsigned flags,
2827 				struct page **pagep, void **fsdata)
2828 {
2829 	const struct address_space_operations *aops = mapping->a_ops;
2830 
2831 	return aops->write_begin(file, mapping, pos, len, flags,
2832 							pagep, fsdata);
2833 }
2834 EXPORT_SYMBOL(pagecache_write_begin);
2835 
2836 int pagecache_write_end(struct file *file, struct address_space *mapping,
2837 				loff_t pos, unsigned len, unsigned copied,
2838 				struct page *page, void *fsdata)
2839 {
2840 	const struct address_space_operations *aops = mapping->a_ops;
2841 
2842 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2843 }
2844 EXPORT_SYMBOL(pagecache_write_end);
2845 
2846 ssize_t
2847 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2848 {
2849 	struct file	*file = iocb->ki_filp;
2850 	struct address_space *mapping = file->f_mapping;
2851 	struct inode	*inode = mapping->host;
2852 	loff_t		pos = iocb->ki_pos;
2853 	ssize_t		written;
2854 	size_t		write_len;
2855 	pgoff_t		end;
2856 
2857 	write_len = iov_iter_count(from);
2858 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2859 
2860 	if (iocb->ki_flags & IOCB_NOWAIT) {
2861 		/* If there are pages to writeback, return */
2862 		if (filemap_range_has_page(inode->i_mapping, pos,
2863 					   pos + iov_iter_count(from)))
2864 			return -EAGAIN;
2865 	} else {
2866 		written = filemap_write_and_wait_range(mapping, pos,
2867 							pos + write_len - 1);
2868 		if (written)
2869 			goto out;
2870 	}
2871 
2872 	/*
2873 	 * After a write we want buffered reads to be sure to go to disk to get
2874 	 * the new data.  We invalidate clean cached page from the region we're
2875 	 * about to write.  We do this *before* the write so that we can return
2876 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2877 	 */
2878 	written = invalidate_inode_pages2_range(mapping,
2879 					pos >> PAGE_SHIFT, end);
2880 	/*
2881 	 * If a page can not be invalidated, return 0 to fall back
2882 	 * to buffered write.
2883 	 */
2884 	if (written) {
2885 		if (written == -EBUSY)
2886 			return 0;
2887 		goto out;
2888 	}
2889 
2890 	written = mapping->a_ops->direct_IO(iocb, from);
2891 
2892 	/*
2893 	 * Finally, try again to invalidate clean pages which might have been
2894 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2895 	 * if the source of the write was an mmap'ed region of the file
2896 	 * we're writing.  Either one is a pretty crazy thing to do,
2897 	 * so we don't support it 100%.  If this invalidation
2898 	 * fails, tough, the write still worked...
2899 	 */
2900 	invalidate_inode_pages2_range(mapping,
2901 				pos >> PAGE_SHIFT, end);
2902 
2903 	if (written > 0) {
2904 		pos += written;
2905 		write_len -= written;
2906 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2907 			i_size_write(inode, pos);
2908 			mark_inode_dirty(inode);
2909 		}
2910 		iocb->ki_pos = pos;
2911 	}
2912 	iov_iter_revert(from, write_len - iov_iter_count(from));
2913 out:
2914 	return written;
2915 }
2916 EXPORT_SYMBOL(generic_file_direct_write);
2917 
2918 /*
2919  * Find or create a page at the given pagecache position. Return the locked
2920  * page. This function is specifically for buffered writes.
2921  */
2922 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2923 					pgoff_t index, unsigned flags)
2924 {
2925 	struct page *page;
2926 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2927 
2928 	if (flags & AOP_FLAG_NOFS)
2929 		fgp_flags |= FGP_NOFS;
2930 
2931 	page = pagecache_get_page(mapping, index, fgp_flags,
2932 			mapping_gfp_mask(mapping));
2933 	if (page)
2934 		wait_for_stable_page(page);
2935 
2936 	return page;
2937 }
2938 EXPORT_SYMBOL(grab_cache_page_write_begin);
2939 
2940 ssize_t generic_perform_write(struct file *file,
2941 				struct iov_iter *i, loff_t pos)
2942 {
2943 	struct address_space *mapping = file->f_mapping;
2944 	const struct address_space_operations *a_ops = mapping->a_ops;
2945 	long status = 0;
2946 	ssize_t written = 0;
2947 	unsigned int flags = 0;
2948 
2949 	do {
2950 		struct page *page;
2951 		unsigned long offset;	/* Offset into pagecache page */
2952 		unsigned long bytes;	/* Bytes to write to page */
2953 		size_t copied;		/* Bytes copied from user */
2954 		void *fsdata;
2955 
2956 		offset = (pos & (PAGE_SIZE - 1));
2957 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2958 						iov_iter_count(i));
2959 
2960 again:
2961 		/*
2962 		 * Bring in the user page that we will copy from _first_.
2963 		 * Otherwise there's a nasty deadlock on copying from the
2964 		 * same page as we're writing to, without it being marked
2965 		 * up-to-date.
2966 		 *
2967 		 * Not only is this an optimisation, but it is also required
2968 		 * to check that the address is actually valid, when atomic
2969 		 * usercopies are used, below.
2970 		 */
2971 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2972 			status = -EFAULT;
2973 			break;
2974 		}
2975 
2976 		if (fatal_signal_pending(current)) {
2977 			status = -EINTR;
2978 			break;
2979 		}
2980 
2981 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2982 						&page, &fsdata);
2983 		if (unlikely(status < 0))
2984 			break;
2985 
2986 		if (mapping_writably_mapped(mapping))
2987 			flush_dcache_page(page);
2988 
2989 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2990 		flush_dcache_page(page);
2991 
2992 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2993 						page, fsdata);
2994 		if (unlikely(status < 0))
2995 			break;
2996 		copied = status;
2997 
2998 		cond_resched();
2999 
3000 		iov_iter_advance(i, copied);
3001 		if (unlikely(copied == 0)) {
3002 			/*
3003 			 * If we were unable to copy any data at all, we must
3004 			 * fall back to a single segment length write.
3005 			 *
3006 			 * If we didn't fallback here, we could livelock
3007 			 * because not all segments in the iov can be copied at
3008 			 * once without a pagefault.
3009 			 */
3010 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
3011 						iov_iter_single_seg_count(i));
3012 			goto again;
3013 		}
3014 		pos += copied;
3015 		written += copied;
3016 
3017 		balance_dirty_pages_ratelimited(mapping);
3018 	} while (iov_iter_count(i));
3019 
3020 	return written ? written : status;
3021 }
3022 EXPORT_SYMBOL(generic_perform_write);
3023 
3024 /**
3025  * __generic_file_write_iter - write data to a file
3026  * @iocb:	IO state structure (file, offset, etc.)
3027  * @from:	iov_iter with data to write
3028  *
3029  * This function does all the work needed for actually writing data to a
3030  * file. It does all basic checks, removes SUID from the file, updates
3031  * modification times and calls proper subroutines depending on whether we
3032  * do direct IO or a standard buffered write.
3033  *
3034  * It expects i_mutex to be grabbed unless we work on a block device or similar
3035  * object which does not need locking at all.
3036  *
3037  * This function does *not* take care of syncing data in case of O_SYNC write.
3038  * A caller has to handle it. This is mainly due to the fact that we want to
3039  * avoid syncing under i_mutex.
3040  */
3041 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3042 {
3043 	struct file *file = iocb->ki_filp;
3044 	struct address_space * mapping = file->f_mapping;
3045 	struct inode 	*inode = mapping->host;
3046 	ssize_t		written = 0;
3047 	ssize_t		err;
3048 	ssize_t		status;
3049 
3050 	/* We can write back this queue in page reclaim */
3051 	current->backing_dev_info = inode_to_bdi(inode);
3052 	err = file_remove_privs(file);
3053 	if (err)
3054 		goto out;
3055 
3056 	err = file_update_time(file);
3057 	if (err)
3058 		goto out;
3059 
3060 	if (iocb->ki_flags & IOCB_DIRECT) {
3061 		loff_t pos, endbyte;
3062 
3063 		written = generic_file_direct_write(iocb, from);
3064 		/*
3065 		 * If the write stopped short of completing, fall back to
3066 		 * buffered writes.  Some filesystems do this for writes to
3067 		 * holes, for example.  For DAX files, a buffered write will
3068 		 * not succeed (even if it did, DAX does not handle dirty
3069 		 * page-cache pages correctly).
3070 		 */
3071 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3072 			goto out;
3073 
3074 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
3075 		/*
3076 		 * If generic_perform_write() returned a synchronous error
3077 		 * then we want to return the number of bytes which were
3078 		 * direct-written, or the error code if that was zero.  Note
3079 		 * that this differs from normal direct-io semantics, which
3080 		 * will return -EFOO even if some bytes were written.
3081 		 */
3082 		if (unlikely(status < 0)) {
3083 			err = status;
3084 			goto out;
3085 		}
3086 		/*
3087 		 * We need to ensure that the page cache pages are written to
3088 		 * disk and invalidated to preserve the expected O_DIRECT
3089 		 * semantics.
3090 		 */
3091 		endbyte = pos + status - 1;
3092 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
3093 		if (err == 0) {
3094 			iocb->ki_pos = endbyte + 1;
3095 			written += status;
3096 			invalidate_mapping_pages(mapping,
3097 						 pos >> PAGE_SHIFT,
3098 						 endbyte >> PAGE_SHIFT);
3099 		} else {
3100 			/*
3101 			 * We don't know how much we wrote, so just return
3102 			 * the number of bytes which were direct-written
3103 			 */
3104 		}
3105 	} else {
3106 		written = generic_perform_write(file, from, iocb->ki_pos);
3107 		if (likely(written > 0))
3108 			iocb->ki_pos += written;
3109 	}
3110 out:
3111 	current->backing_dev_info = NULL;
3112 	return written ? written : err;
3113 }
3114 EXPORT_SYMBOL(__generic_file_write_iter);
3115 
3116 /**
3117  * generic_file_write_iter - write data to a file
3118  * @iocb:	IO state structure
3119  * @from:	iov_iter with data to write
3120  *
3121  * This is a wrapper around __generic_file_write_iter() to be used by most
3122  * filesystems. It takes care of syncing the file in case of O_SYNC file
3123  * and acquires i_mutex as needed.
3124  */
3125 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3126 {
3127 	struct file *file = iocb->ki_filp;
3128 	struct inode *inode = file->f_mapping->host;
3129 	ssize_t ret;
3130 
3131 	inode_lock(inode);
3132 	ret = generic_write_checks(iocb, from);
3133 	if (ret > 0)
3134 		ret = __generic_file_write_iter(iocb, from);
3135 	inode_unlock(inode);
3136 
3137 	if (ret > 0)
3138 		ret = generic_write_sync(iocb, ret);
3139 	return ret;
3140 }
3141 EXPORT_SYMBOL(generic_file_write_iter);
3142 
3143 /**
3144  * try_to_release_page() - release old fs-specific metadata on a page
3145  *
3146  * @page: the page which the kernel is trying to free
3147  * @gfp_mask: memory allocation flags (and I/O mode)
3148  *
3149  * The address_space is to try to release any data against the page
3150  * (presumably at page->private).  If the release was successful, return '1'.
3151  * Otherwise return zero.
3152  *
3153  * This may also be called if PG_fscache is set on a page, indicating that the
3154  * page is known to the local caching routines.
3155  *
3156  * The @gfp_mask argument specifies whether I/O may be performed to release
3157  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3158  *
3159  */
3160 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3161 {
3162 	struct address_space * const mapping = page->mapping;
3163 
3164 	BUG_ON(!PageLocked(page));
3165 	if (PageWriteback(page))
3166 		return 0;
3167 
3168 	if (mapping && mapping->a_ops->releasepage)
3169 		return mapping->a_ops->releasepage(page, gfp_mask);
3170 	return try_to_free_buffers(page);
3171 }
3172 
3173 EXPORT_SYMBOL(try_to_release_page);
3174