xref: /linux/mm/filemap.c (revision 0d08df6c493898e679d9c517e77ea95c063d40ec)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39 
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42 
43 /*
44  * FIXME: remove all knowledge of the buffer layer from the core VM
45  */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47 
48 #include <asm/mman.h>
49 
50 /*
51  * Shared mappings implemented 30.11.1994. It's not fully working yet,
52  * though.
53  *
54  * Shared mappings now work. 15.8.1995  Bruno.
55  *
56  * finished 'unifying' the page and buffer cache and SMP-threaded the
57  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58  *
59  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60  */
61 
62 /*
63  * Lock ordering:
64  *
65  *  ->i_mmap_rwsem		(truncate_pagecache)
66  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
67  *      ->swap_lock		(exclusive_swap_page, others)
68  *        ->mapping->tree_lock
69  *
70  *  ->i_mutex
71  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
72  *
73  *  ->mmap_sem
74  *    ->i_mmap_rwsem
75  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
76  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
77  *
78  *  ->mmap_sem
79  *    ->lock_page		(access_process_vm)
80  *
81  *  ->i_mutex			(generic_perform_write)
82  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
83  *
84  *  bdi->wb.list_lock
85  *    sb_lock			(fs/fs-writeback.c)
86  *    ->mapping->tree_lock	(__sync_single_inode)
87  *
88  *  ->i_mmap_rwsem
89  *    ->anon_vma.lock		(vma_adjust)
90  *
91  *  ->anon_vma.lock
92  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
93  *
94  *  ->page_table_lock or pte_lock
95  *    ->swap_lock		(try_to_unmap_one)
96  *    ->private_lock		(try_to_unmap_one)
97  *    ->tree_lock		(try_to_unmap_one)
98  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
99  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
100  *    ->private_lock		(page_remove_rmap->set_page_dirty)
101  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
102  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
103  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
104  *    ->memcg->move_lock	(page_remove_rmap->lock_page_memcg)
105  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
106  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
107  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
108  *
109  * ->i_mmap_rwsem
110  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
111  */
112 
113 static void page_cache_tree_delete(struct address_space *mapping,
114 				   struct page *page, void *shadow)
115 {
116 	struct radix_tree_node *node;
117 
118 	VM_BUG_ON(!PageLocked(page));
119 
120 	node = radix_tree_replace_clear_tags(&mapping->page_tree, page->index,
121 								shadow);
122 
123 	if (shadow) {
124 		mapping->nrexceptional++;
125 		/*
126 		 * Make sure the nrexceptional update is committed before
127 		 * the nrpages update so that final truncate racing
128 		 * with reclaim does not see both counters 0 at the
129 		 * same time and miss a shadow entry.
130 		 */
131 		smp_wmb();
132 	}
133 	mapping->nrpages--;
134 
135 	if (!node)
136 		return;
137 
138 	workingset_node_pages_dec(node);
139 	if (shadow)
140 		workingset_node_shadows_inc(node);
141 	else
142 		if (__radix_tree_delete_node(&mapping->page_tree, node))
143 			return;
144 
145 	/*
146 	 * Track node that only contains shadow entries.
147 	 *
148 	 * Avoid acquiring the list_lru lock if already tracked.  The
149 	 * list_empty() test is safe as node->private_list is
150 	 * protected by mapping->tree_lock.
151 	 */
152 	if (!workingset_node_pages(node) &&
153 	    list_empty(&node->private_list)) {
154 		node->private_data = mapping;
155 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
156 	}
157 }
158 
159 /*
160  * Delete a page from the page cache and free it. Caller has to make
161  * sure the page is locked and that nobody else uses it - or that usage
162  * is safe.  The caller must hold the mapping's tree_lock.
163  */
164 void __delete_from_page_cache(struct page *page, void *shadow)
165 {
166 	struct address_space *mapping = page->mapping;
167 
168 	trace_mm_filemap_delete_from_page_cache(page);
169 	/*
170 	 * if we're uptodate, flush out into the cleancache, otherwise
171 	 * invalidate any existing cleancache entries.  We can't leave
172 	 * stale data around in the cleancache once our page is gone
173 	 */
174 	if (PageUptodate(page) && PageMappedToDisk(page))
175 		cleancache_put_page(page);
176 	else
177 		cleancache_invalidate_page(mapping, page);
178 
179 	VM_BUG_ON_PAGE(page_mapped(page), page);
180 	if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
181 		int mapcount;
182 
183 		pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
184 			 current->comm, page_to_pfn(page));
185 		dump_page(page, "still mapped when deleted");
186 		dump_stack();
187 		add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
188 
189 		mapcount = page_mapcount(page);
190 		if (mapping_exiting(mapping) &&
191 		    page_count(page) >= mapcount + 2) {
192 			/*
193 			 * All vmas have already been torn down, so it's
194 			 * a good bet that actually the page is unmapped,
195 			 * and we'd prefer not to leak it: if we're wrong,
196 			 * some other bad page check should catch it later.
197 			 */
198 			page_mapcount_reset(page);
199 			page_ref_sub(page, mapcount);
200 		}
201 	}
202 
203 	page_cache_tree_delete(mapping, page, shadow);
204 
205 	page->mapping = NULL;
206 	/* Leave page->index set: truncation lookup relies upon it */
207 
208 	/* hugetlb pages do not participate in page cache accounting. */
209 	if (!PageHuge(page))
210 		__dec_zone_page_state(page, NR_FILE_PAGES);
211 	if (PageSwapBacked(page))
212 		__dec_zone_page_state(page, NR_SHMEM);
213 
214 	/*
215 	 * At this point page must be either written or cleaned by truncate.
216 	 * Dirty page here signals a bug and loss of unwritten data.
217 	 *
218 	 * This fixes dirty accounting after removing the page entirely but
219 	 * leaves PageDirty set: it has no effect for truncated page and
220 	 * anyway will be cleared before returning page into buddy allocator.
221 	 */
222 	if (WARN_ON_ONCE(PageDirty(page)))
223 		account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
224 }
225 
226 /**
227  * delete_from_page_cache - delete page from page cache
228  * @page: the page which the kernel is trying to remove from page cache
229  *
230  * This must be called only on pages that have been verified to be in the page
231  * cache and locked.  It will never put the page into the free list, the caller
232  * has a reference on the page.
233  */
234 void delete_from_page_cache(struct page *page)
235 {
236 	struct address_space *mapping = page->mapping;
237 	unsigned long flags;
238 
239 	void (*freepage)(struct page *);
240 
241 	BUG_ON(!PageLocked(page));
242 
243 	freepage = mapping->a_ops->freepage;
244 
245 	spin_lock_irqsave(&mapping->tree_lock, flags);
246 	__delete_from_page_cache(page, NULL);
247 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
248 
249 	if (freepage)
250 		freepage(page);
251 	put_page(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254 
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257 	int ret = 0;
258 	/* Check for outstanding write errors */
259 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 		ret = -ENOSPC;
262 	if (test_bit(AS_EIO, &mapping->flags) &&
263 	    test_and_clear_bit(AS_EIO, &mapping->flags))
264 		ret = -EIO;
265 	return ret;
266 }
267 
268 /**
269  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270  * @mapping:	address space structure to write
271  * @start:	offset in bytes where the range starts
272  * @end:	offset in bytes where the range ends (inclusive)
273  * @sync_mode:	enable synchronous operation
274  *
275  * Start writeback against all of a mapping's dirty pages that lie
276  * within the byte offsets <start, end> inclusive.
277  *
278  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279  * opposed to a regular memory cleansing writeback.  The difference between
280  * these two operations is that if a dirty page/buffer is encountered, it must
281  * be waited upon, and not just skipped over.
282  */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 				loff_t end, int sync_mode)
285 {
286 	int ret;
287 	struct writeback_control wbc = {
288 		.sync_mode = sync_mode,
289 		.nr_to_write = LONG_MAX,
290 		.range_start = start,
291 		.range_end = end,
292 	};
293 
294 	if (!mapping_cap_writeback_dirty(mapping))
295 		return 0;
296 
297 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298 	ret = do_writepages(mapping, &wbc);
299 	wbc_detach_inode(&wbc);
300 	return ret;
301 }
302 
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304 	int sync_mode)
305 {
306 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308 
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314 
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316 				loff_t end)
317 {
318 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321 
322 /**
323  * filemap_flush - mostly a non-blocking flush
324  * @mapping:	target address_space
325  *
326  * This is a mostly non-blocking flush.  Not suitable for data-integrity
327  * purposes - I/O may not be started against all dirty pages.
328  */
329 int filemap_flush(struct address_space *mapping)
330 {
331 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334 
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336 				     loff_t start_byte, loff_t end_byte)
337 {
338 	pgoff_t index = start_byte >> PAGE_SHIFT;
339 	pgoff_t end = end_byte >> PAGE_SHIFT;
340 	struct pagevec pvec;
341 	int nr_pages;
342 	int ret = 0;
343 
344 	if (end_byte < start_byte)
345 		goto out;
346 
347 	pagevec_init(&pvec, 0);
348 	while ((index <= end) &&
349 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 			PAGECACHE_TAG_WRITEBACK,
351 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 		unsigned i;
353 
354 		for (i = 0; i < nr_pages; i++) {
355 			struct page *page = pvec.pages[i];
356 
357 			/* until radix tree lookup accepts end_index */
358 			if (page->index > end)
359 				continue;
360 
361 			wait_on_page_writeback(page);
362 			if (TestClearPageError(page))
363 				ret = -EIO;
364 		}
365 		pagevec_release(&pvec);
366 		cond_resched();
367 	}
368 out:
369 	return ret;
370 }
371 
372 /**
373  * filemap_fdatawait_range - wait for writeback to complete
374  * @mapping:		address space structure to wait for
375  * @start_byte:		offset in bytes where the range starts
376  * @end_byte:		offset in bytes where the range ends (inclusive)
377  *
378  * Walk the list of under-writeback pages of the given address space
379  * in the given range and wait for all of them.  Check error status of
380  * the address space and return it.
381  *
382  * Since the error status of the address space is cleared by this function,
383  * callers are responsible for checking the return value and handling and/or
384  * reporting the error.
385  */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 			    loff_t end_byte)
388 {
389 	int ret, ret2;
390 
391 	ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392 	ret2 = filemap_check_errors(mapping);
393 	if (!ret)
394 		ret = ret2;
395 
396 	return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399 
400 /**
401  * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402  * @mapping: address space structure to wait for
403  *
404  * Walk the list of under-writeback pages of the given address space
405  * and wait for all of them.  Unlike filemap_fdatawait(), this function
406  * does not clear error status of the address space.
407  *
408  * Use this function if callers don't handle errors themselves.  Expected
409  * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410  * fsfreeze(8)
411  */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414 	loff_t i_size = i_size_read(mapping->host);
415 
416 	if (i_size == 0)
417 		return;
418 
419 	__filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421 
422 /**
423  * filemap_fdatawait - wait for all under-writeback pages to complete
424  * @mapping: address space structure to wait for
425  *
426  * Walk the list of under-writeback pages of the given address space
427  * and wait for all of them.  Check error status of the address space
428  * and return it.
429  *
430  * Since the error status of the address space is cleared by this function,
431  * callers are responsible for checking the return value and handling and/or
432  * reporting the error.
433  */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436 	loff_t i_size = i_size_read(mapping->host);
437 
438 	if (i_size == 0)
439 		return 0;
440 
441 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444 
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447 	int err = 0;
448 
449 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
450 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
451 		err = filemap_fdatawrite(mapping);
452 		/*
453 		 * Even if the above returned error, the pages may be
454 		 * written partially (e.g. -ENOSPC), so we wait for it.
455 		 * But the -EIO is special case, it may indicate the worst
456 		 * thing (e.g. bug) happened, so we avoid waiting for it.
457 		 */
458 		if (err != -EIO) {
459 			int err2 = filemap_fdatawait(mapping);
460 			if (!err)
461 				err = err2;
462 		}
463 	} else {
464 		err = filemap_check_errors(mapping);
465 	}
466 	return err;
467 }
468 EXPORT_SYMBOL(filemap_write_and_wait);
469 
470 /**
471  * filemap_write_and_wait_range - write out & wait on a file range
472  * @mapping:	the address_space for the pages
473  * @lstart:	offset in bytes where the range starts
474  * @lend:	offset in bytes where the range ends (inclusive)
475  *
476  * Write out and wait upon file offsets lstart->lend, inclusive.
477  *
478  * Note that `lend' is inclusive (describes the last byte to be written) so
479  * that this function can be used to write to the very end-of-file (end = -1).
480  */
481 int filemap_write_and_wait_range(struct address_space *mapping,
482 				 loff_t lstart, loff_t lend)
483 {
484 	int err = 0;
485 
486 	if ((!dax_mapping(mapping) && mapping->nrpages) ||
487 	    (dax_mapping(mapping) && mapping->nrexceptional)) {
488 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
489 						 WB_SYNC_ALL);
490 		/* See comment of filemap_write_and_wait() */
491 		if (err != -EIO) {
492 			int err2 = filemap_fdatawait_range(mapping,
493 						lstart, lend);
494 			if (!err)
495 				err = err2;
496 		}
497 	} else {
498 		err = filemap_check_errors(mapping);
499 	}
500 	return err;
501 }
502 EXPORT_SYMBOL(filemap_write_and_wait_range);
503 
504 /**
505  * replace_page_cache_page - replace a pagecache page with a new one
506  * @old:	page to be replaced
507  * @new:	page to replace with
508  * @gfp_mask:	allocation mode
509  *
510  * This function replaces a page in the pagecache with a new one.  On
511  * success it acquires the pagecache reference for the new page and
512  * drops it for the old page.  Both the old and new pages must be
513  * locked.  This function does not add the new page to the LRU, the
514  * caller must do that.
515  *
516  * The remove + add is atomic.  The only way this function can fail is
517  * memory allocation failure.
518  */
519 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
520 {
521 	int error;
522 
523 	VM_BUG_ON_PAGE(!PageLocked(old), old);
524 	VM_BUG_ON_PAGE(!PageLocked(new), new);
525 	VM_BUG_ON_PAGE(new->mapping, new);
526 
527 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
528 	if (!error) {
529 		struct address_space *mapping = old->mapping;
530 		void (*freepage)(struct page *);
531 		unsigned long flags;
532 
533 		pgoff_t offset = old->index;
534 		freepage = mapping->a_ops->freepage;
535 
536 		get_page(new);
537 		new->mapping = mapping;
538 		new->index = offset;
539 
540 		spin_lock_irqsave(&mapping->tree_lock, flags);
541 		__delete_from_page_cache(old, NULL);
542 		error = radix_tree_insert(&mapping->page_tree, offset, new);
543 		BUG_ON(error);
544 		mapping->nrpages++;
545 
546 		/*
547 		 * hugetlb pages do not participate in page cache accounting.
548 		 */
549 		if (!PageHuge(new))
550 			__inc_zone_page_state(new, NR_FILE_PAGES);
551 		if (PageSwapBacked(new))
552 			__inc_zone_page_state(new, NR_SHMEM);
553 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
554 		mem_cgroup_migrate(old, new);
555 		radix_tree_preload_end();
556 		if (freepage)
557 			freepage(old);
558 		put_page(old);
559 	}
560 
561 	return error;
562 }
563 EXPORT_SYMBOL_GPL(replace_page_cache_page);
564 
565 static int page_cache_tree_insert(struct address_space *mapping,
566 				  struct page *page, void **shadowp)
567 {
568 	struct radix_tree_node *node;
569 	void **slot;
570 	int error;
571 
572 	error = __radix_tree_create(&mapping->page_tree, page->index, 0,
573 				    &node, &slot);
574 	if (error)
575 		return error;
576 	if (*slot) {
577 		void *p;
578 
579 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
580 		if (!radix_tree_exceptional_entry(p))
581 			return -EEXIST;
582 
583 		if (WARN_ON(dax_mapping(mapping)))
584 			return -EINVAL;
585 
586 		if (shadowp)
587 			*shadowp = p;
588 		mapping->nrexceptional--;
589 		if (node)
590 			workingset_node_shadows_dec(node);
591 	}
592 	radix_tree_replace_slot(slot, page);
593 	mapping->nrpages++;
594 	if (node) {
595 		workingset_node_pages_inc(node);
596 		/*
597 		 * Don't track node that contains actual pages.
598 		 *
599 		 * Avoid acquiring the list_lru lock if already
600 		 * untracked.  The list_empty() test is safe as
601 		 * node->private_list is protected by
602 		 * mapping->tree_lock.
603 		 */
604 		if (!list_empty(&node->private_list))
605 			list_lru_del(&workingset_shadow_nodes,
606 				     &node->private_list);
607 	}
608 	return 0;
609 }
610 
611 static int __add_to_page_cache_locked(struct page *page,
612 				      struct address_space *mapping,
613 				      pgoff_t offset, gfp_t gfp_mask,
614 				      void **shadowp)
615 {
616 	int huge = PageHuge(page);
617 	struct mem_cgroup *memcg;
618 	int error;
619 
620 	VM_BUG_ON_PAGE(!PageLocked(page), page);
621 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
622 
623 	if (!huge) {
624 		error = mem_cgroup_try_charge(page, current->mm,
625 					      gfp_mask, &memcg, false);
626 		if (error)
627 			return error;
628 	}
629 
630 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
631 	if (error) {
632 		if (!huge)
633 			mem_cgroup_cancel_charge(page, memcg, false);
634 		return error;
635 	}
636 
637 	get_page(page);
638 	page->mapping = mapping;
639 	page->index = offset;
640 
641 	spin_lock_irq(&mapping->tree_lock);
642 	error = page_cache_tree_insert(mapping, page, shadowp);
643 	radix_tree_preload_end();
644 	if (unlikely(error))
645 		goto err_insert;
646 
647 	/* hugetlb pages do not participate in page cache accounting. */
648 	if (!huge)
649 		__inc_zone_page_state(page, NR_FILE_PAGES);
650 	spin_unlock_irq(&mapping->tree_lock);
651 	if (!huge)
652 		mem_cgroup_commit_charge(page, memcg, false, false);
653 	trace_mm_filemap_add_to_page_cache(page);
654 	return 0;
655 err_insert:
656 	page->mapping = NULL;
657 	/* Leave page->index set: truncation relies upon it */
658 	spin_unlock_irq(&mapping->tree_lock);
659 	if (!huge)
660 		mem_cgroup_cancel_charge(page, memcg, false);
661 	put_page(page);
662 	return error;
663 }
664 
665 /**
666  * add_to_page_cache_locked - add a locked page to the pagecache
667  * @page:	page to add
668  * @mapping:	the page's address_space
669  * @offset:	page index
670  * @gfp_mask:	page allocation mode
671  *
672  * This function is used to add a page to the pagecache. It must be locked.
673  * This function does not add the page to the LRU.  The caller must do that.
674  */
675 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
676 		pgoff_t offset, gfp_t gfp_mask)
677 {
678 	return __add_to_page_cache_locked(page, mapping, offset,
679 					  gfp_mask, NULL);
680 }
681 EXPORT_SYMBOL(add_to_page_cache_locked);
682 
683 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
684 				pgoff_t offset, gfp_t gfp_mask)
685 {
686 	void *shadow = NULL;
687 	int ret;
688 
689 	__SetPageLocked(page);
690 	ret = __add_to_page_cache_locked(page, mapping, offset,
691 					 gfp_mask, &shadow);
692 	if (unlikely(ret))
693 		__ClearPageLocked(page);
694 	else {
695 		/*
696 		 * The page might have been evicted from cache only
697 		 * recently, in which case it should be activated like
698 		 * any other repeatedly accessed page.
699 		 * The exception is pages getting rewritten; evicting other
700 		 * data from the working set, only to cache data that will
701 		 * get overwritten with something else, is a waste of memory.
702 		 */
703 		if (!(gfp_mask & __GFP_WRITE) &&
704 		    shadow && workingset_refault(shadow)) {
705 			SetPageActive(page);
706 			workingset_activation(page);
707 		} else
708 			ClearPageActive(page);
709 		lru_cache_add(page);
710 	}
711 	return ret;
712 }
713 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
714 
715 #ifdef CONFIG_NUMA
716 struct page *__page_cache_alloc(gfp_t gfp)
717 {
718 	int n;
719 	struct page *page;
720 
721 	if (cpuset_do_page_mem_spread()) {
722 		unsigned int cpuset_mems_cookie;
723 		do {
724 			cpuset_mems_cookie = read_mems_allowed_begin();
725 			n = cpuset_mem_spread_node();
726 			page = __alloc_pages_node(n, gfp, 0);
727 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
728 
729 		return page;
730 	}
731 	return alloc_pages(gfp, 0);
732 }
733 EXPORT_SYMBOL(__page_cache_alloc);
734 #endif
735 
736 /*
737  * In order to wait for pages to become available there must be
738  * waitqueues associated with pages. By using a hash table of
739  * waitqueues where the bucket discipline is to maintain all
740  * waiters on the same queue and wake all when any of the pages
741  * become available, and for the woken contexts to check to be
742  * sure the appropriate page became available, this saves space
743  * at a cost of "thundering herd" phenomena during rare hash
744  * collisions.
745  */
746 wait_queue_head_t *page_waitqueue(struct page *page)
747 {
748 	const struct zone *zone = page_zone(page);
749 
750 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
751 }
752 EXPORT_SYMBOL(page_waitqueue);
753 
754 void wait_on_page_bit(struct page *page, int bit_nr)
755 {
756 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
757 
758 	if (test_bit(bit_nr, &page->flags))
759 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
760 							TASK_UNINTERRUPTIBLE);
761 }
762 EXPORT_SYMBOL(wait_on_page_bit);
763 
764 int wait_on_page_bit_killable(struct page *page, int bit_nr)
765 {
766 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
767 
768 	if (!test_bit(bit_nr, &page->flags))
769 		return 0;
770 
771 	return __wait_on_bit(page_waitqueue(page), &wait,
772 			     bit_wait_io, TASK_KILLABLE);
773 }
774 
775 int wait_on_page_bit_killable_timeout(struct page *page,
776 				       int bit_nr, unsigned long timeout)
777 {
778 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
779 
780 	wait.key.timeout = jiffies + timeout;
781 	if (!test_bit(bit_nr, &page->flags))
782 		return 0;
783 	return __wait_on_bit(page_waitqueue(page), &wait,
784 			     bit_wait_io_timeout, TASK_KILLABLE);
785 }
786 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
787 
788 /**
789  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
790  * @page: Page defining the wait queue of interest
791  * @waiter: Waiter to add to the queue
792  *
793  * Add an arbitrary @waiter to the wait queue for the nominated @page.
794  */
795 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
796 {
797 	wait_queue_head_t *q = page_waitqueue(page);
798 	unsigned long flags;
799 
800 	spin_lock_irqsave(&q->lock, flags);
801 	__add_wait_queue(q, waiter);
802 	spin_unlock_irqrestore(&q->lock, flags);
803 }
804 EXPORT_SYMBOL_GPL(add_page_wait_queue);
805 
806 /**
807  * unlock_page - unlock a locked page
808  * @page: the page
809  *
810  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
811  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
812  * mechanism between PageLocked pages and PageWriteback pages is shared.
813  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
814  *
815  * The mb is necessary to enforce ordering between the clear_bit and the read
816  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
817  */
818 void unlock_page(struct page *page)
819 {
820 	page = compound_head(page);
821 	VM_BUG_ON_PAGE(!PageLocked(page), page);
822 	clear_bit_unlock(PG_locked, &page->flags);
823 	smp_mb__after_atomic();
824 	wake_up_page(page, PG_locked);
825 }
826 EXPORT_SYMBOL(unlock_page);
827 
828 /**
829  * end_page_writeback - end writeback against a page
830  * @page: the page
831  */
832 void end_page_writeback(struct page *page)
833 {
834 	/*
835 	 * TestClearPageReclaim could be used here but it is an atomic
836 	 * operation and overkill in this particular case. Failing to
837 	 * shuffle a page marked for immediate reclaim is too mild to
838 	 * justify taking an atomic operation penalty at the end of
839 	 * ever page writeback.
840 	 */
841 	if (PageReclaim(page)) {
842 		ClearPageReclaim(page);
843 		rotate_reclaimable_page(page);
844 	}
845 
846 	if (!test_clear_page_writeback(page))
847 		BUG();
848 
849 	smp_mb__after_atomic();
850 	wake_up_page(page, PG_writeback);
851 }
852 EXPORT_SYMBOL(end_page_writeback);
853 
854 /*
855  * After completing I/O on a page, call this routine to update the page
856  * flags appropriately
857  */
858 void page_endio(struct page *page, int rw, int err)
859 {
860 	if (rw == READ) {
861 		if (!err) {
862 			SetPageUptodate(page);
863 		} else {
864 			ClearPageUptodate(page);
865 			SetPageError(page);
866 		}
867 		unlock_page(page);
868 	} else { /* rw == WRITE */
869 		if (err) {
870 			SetPageError(page);
871 			if (page->mapping)
872 				mapping_set_error(page->mapping, err);
873 		}
874 		end_page_writeback(page);
875 	}
876 }
877 EXPORT_SYMBOL_GPL(page_endio);
878 
879 /**
880  * __lock_page - get a lock on the page, assuming we need to sleep to get it
881  * @page: the page to lock
882  */
883 void __lock_page(struct page *page)
884 {
885 	struct page *page_head = compound_head(page);
886 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
887 
888 	__wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
889 							TASK_UNINTERRUPTIBLE);
890 }
891 EXPORT_SYMBOL(__lock_page);
892 
893 int __lock_page_killable(struct page *page)
894 {
895 	struct page *page_head = compound_head(page);
896 	DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
897 
898 	return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
899 					bit_wait_io, TASK_KILLABLE);
900 }
901 EXPORT_SYMBOL_GPL(__lock_page_killable);
902 
903 /*
904  * Return values:
905  * 1 - page is locked; mmap_sem is still held.
906  * 0 - page is not locked.
907  *     mmap_sem has been released (up_read()), unless flags had both
908  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
909  *     which case mmap_sem is still held.
910  *
911  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
912  * with the page locked and the mmap_sem unperturbed.
913  */
914 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
915 			 unsigned int flags)
916 {
917 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
918 		/*
919 		 * CAUTION! In this case, mmap_sem is not released
920 		 * even though return 0.
921 		 */
922 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
923 			return 0;
924 
925 		up_read(&mm->mmap_sem);
926 		if (flags & FAULT_FLAG_KILLABLE)
927 			wait_on_page_locked_killable(page);
928 		else
929 			wait_on_page_locked(page);
930 		return 0;
931 	} else {
932 		if (flags & FAULT_FLAG_KILLABLE) {
933 			int ret;
934 
935 			ret = __lock_page_killable(page);
936 			if (ret) {
937 				up_read(&mm->mmap_sem);
938 				return 0;
939 			}
940 		} else
941 			__lock_page(page);
942 		return 1;
943 	}
944 }
945 
946 /**
947  * page_cache_next_hole - find the next hole (not-present entry)
948  * @mapping: mapping
949  * @index: index
950  * @max_scan: maximum range to search
951  *
952  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
953  * lowest indexed hole.
954  *
955  * Returns: the index of the hole if found, otherwise returns an index
956  * outside of the set specified (in which case 'return - index >=
957  * max_scan' will be true). In rare cases of index wrap-around, 0 will
958  * be returned.
959  *
960  * page_cache_next_hole may be called under rcu_read_lock. However,
961  * like radix_tree_gang_lookup, this will not atomically search a
962  * snapshot of the tree at a single point in time. For example, if a
963  * hole is created at index 5, then subsequently a hole is created at
964  * index 10, page_cache_next_hole covering both indexes may return 10
965  * if called under rcu_read_lock.
966  */
967 pgoff_t page_cache_next_hole(struct address_space *mapping,
968 			     pgoff_t index, unsigned long max_scan)
969 {
970 	unsigned long i;
971 
972 	for (i = 0; i < max_scan; i++) {
973 		struct page *page;
974 
975 		page = radix_tree_lookup(&mapping->page_tree, index);
976 		if (!page || radix_tree_exceptional_entry(page))
977 			break;
978 		index++;
979 		if (index == 0)
980 			break;
981 	}
982 
983 	return index;
984 }
985 EXPORT_SYMBOL(page_cache_next_hole);
986 
987 /**
988  * page_cache_prev_hole - find the prev hole (not-present entry)
989  * @mapping: mapping
990  * @index: index
991  * @max_scan: maximum range to search
992  *
993  * Search backwards in the range [max(index-max_scan+1, 0), index] for
994  * the first hole.
995  *
996  * Returns: the index of the hole if found, otherwise returns an index
997  * outside of the set specified (in which case 'index - return >=
998  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
999  * will be returned.
1000  *
1001  * page_cache_prev_hole may be called under rcu_read_lock. However,
1002  * like radix_tree_gang_lookup, this will not atomically search a
1003  * snapshot of the tree at a single point in time. For example, if a
1004  * hole is created at index 10, then subsequently a hole is created at
1005  * index 5, page_cache_prev_hole covering both indexes may return 5 if
1006  * called under rcu_read_lock.
1007  */
1008 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1009 			     pgoff_t index, unsigned long max_scan)
1010 {
1011 	unsigned long i;
1012 
1013 	for (i = 0; i < max_scan; i++) {
1014 		struct page *page;
1015 
1016 		page = radix_tree_lookup(&mapping->page_tree, index);
1017 		if (!page || radix_tree_exceptional_entry(page))
1018 			break;
1019 		index--;
1020 		if (index == ULONG_MAX)
1021 			break;
1022 	}
1023 
1024 	return index;
1025 }
1026 EXPORT_SYMBOL(page_cache_prev_hole);
1027 
1028 /**
1029  * find_get_entry - find and get a page cache entry
1030  * @mapping: the address_space to search
1031  * @offset: the page cache index
1032  *
1033  * Looks up the page cache slot at @mapping & @offset.  If there is a
1034  * page cache page, it is returned with an increased refcount.
1035  *
1036  * If the slot holds a shadow entry of a previously evicted page, or a
1037  * swap entry from shmem/tmpfs, it is returned.
1038  *
1039  * Otherwise, %NULL is returned.
1040  */
1041 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1042 {
1043 	void **pagep;
1044 	struct page *page;
1045 
1046 	rcu_read_lock();
1047 repeat:
1048 	page = NULL;
1049 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1050 	if (pagep) {
1051 		page = radix_tree_deref_slot(pagep);
1052 		if (unlikely(!page))
1053 			goto out;
1054 		if (radix_tree_exception(page)) {
1055 			if (radix_tree_deref_retry(page))
1056 				goto repeat;
1057 			/*
1058 			 * A shadow entry of a recently evicted page,
1059 			 * or a swap entry from shmem/tmpfs.  Return
1060 			 * it without attempting to raise page count.
1061 			 */
1062 			goto out;
1063 		}
1064 		if (!page_cache_get_speculative(page))
1065 			goto repeat;
1066 
1067 		/*
1068 		 * Has the page moved?
1069 		 * This is part of the lockless pagecache protocol. See
1070 		 * include/linux/pagemap.h for details.
1071 		 */
1072 		if (unlikely(page != *pagep)) {
1073 			put_page(page);
1074 			goto repeat;
1075 		}
1076 	}
1077 out:
1078 	rcu_read_unlock();
1079 
1080 	return page;
1081 }
1082 EXPORT_SYMBOL(find_get_entry);
1083 
1084 /**
1085  * find_lock_entry - locate, pin and lock a page cache entry
1086  * @mapping: the address_space to search
1087  * @offset: the page cache index
1088  *
1089  * Looks up the page cache slot at @mapping & @offset.  If there is a
1090  * page cache page, it is returned locked and with an increased
1091  * refcount.
1092  *
1093  * If the slot holds a shadow entry of a previously evicted page, or a
1094  * swap entry from shmem/tmpfs, it is returned.
1095  *
1096  * Otherwise, %NULL is returned.
1097  *
1098  * find_lock_entry() may sleep.
1099  */
1100 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1101 {
1102 	struct page *page;
1103 
1104 repeat:
1105 	page = find_get_entry(mapping, offset);
1106 	if (page && !radix_tree_exception(page)) {
1107 		lock_page(page);
1108 		/* Has the page been truncated? */
1109 		if (unlikely(page->mapping != mapping)) {
1110 			unlock_page(page);
1111 			put_page(page);
1112 			goto repeat;
1113 		}
1114 		VM_BUG_ON_PAGE(page->index != offset, page);
1115 	}
1116 	return page;
1117 }
1118 EXPORT_SYMBOL(find_lock_entry);
1119 
1120 /**
1121  * pagecache_get_page - find and get a page reference
1122  * @mapping: the address_space to search
1123  * @offset: the page index
1124  * @fgp_flags: PCG flags
1125  * @gfp_mask: gfp mask to use for the page cache data page allocation
1126  *
1127  * Looks up the page cache slot at @mapping & @offset.
1128  *
1129  * PCG flags modify how the page is returned.
1130  *
1131  * FGP_ACCESSED: the page will be marked accessed
1132  * FGP_LOCK: Page is return locked
1133  * FGP_CREAT: If page is not present then a new page is allocated using
1134  *		@gfp_mask and added to the page cache and the VM's LRU
1135  *		list. The page is returned locked and with an increased
1136  *		refcount. Otherwise, %NULL is returned.
1137  *
1138  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1139  * if the GFP flags specified for FGP_CREAT are atomic.
1140  *
1141  * If there is a page cache page, it is returned with an increased refcount.
1142  */
1143 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1144 	int fgp_flags, gfp_t gfp_mask)
1145 {
1146 	struct page *page;
1147 
1148 repeat:
1149 	page = find_get_entry(mapping, offset);
1150 	if (radix_tree_exceptional_entry(page))
1151 		page = NULL;
1152 	if (!page)
1153 		goto no_page;
1154 
1155 	if (fgp_flags & FGP_LOCK) {
1156 		if (fgp_flags & FGP_NOWAIT) {
1157 			if (!trylock_page(page)) {
1158 				put_page(page);
1159 				return NULL;
1160 			}
1161 		} else {
1162 			lock_page(page);
1163 		}
1164 
1165 		/* Has the page been truncated? */
1166 		if (unlikely(page->mapping != mapping)) {
1167 			unlock_page(page);
1168 			put_page(page);
1169 			goto repeat;
1170 		}
1171 		VM_BUG_ON_PAGE(page->index != offset, page);
1172 	}
1173 
1174 	if (page && (fgp_flags & FGP_ACCESSED))
1175 		mark_page_accessed(page);
1176 
1177 no_page:
1178 	if (!page && (fgp_flags & FGP_CREAT)) {
1179 		int err;
1180 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1181 			gfp_mask |= __GFP_WRITE;
1182 		if (fgp_flags & FGP_NOFS)
1183 			gfp_mask &= ~__GFP_FS;
1184 
1185 		page = __page_cache_alloc(gfp_mask);
1186 		if (!page)
1187 			return NULL;
1188 
1189 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1190 			fgp_flags |= FGP_LOCK;
1191 
1192 		/* Init accessed so avoid atomic mark_page_accessed later */
1193 		if (fgp_flags & FGP_ACCESSED)
1194 			__SetPageReferenced(page);
1195 
1196 		err = add_to_page_cache_lru(page, mapping, offset,
1197 				gfp_mask & GFP_RECLAIM_MASK);
1198 		if (unlikely(err)) {
1199 			put_page(page);
1200 			page = NULL;
1201 			if (err == -EEXIST)
1202 				goto repeat;
1203 		}
1204 	}
1205 
1206 	return page;
1207 }
1208 EXPORT_SYMBOL(pagecache_get_page);
1209 
1210 /**
1211  * find_get_entries - gang pagecache lookup
1212  * @mapping:	The address_space to search
1213  * @start:	The starting page cache index
1214  * @nr_entries:	The maximum number of entries
1215  * @entries:	Where the resulting entries are placed
1216  * @indices:	The cache indices corresponding to the entries in @entries
1217  *
1218  * find_get_entries() will search for and return a group of up to
1219  * @nr_entries entries in the mapping.  The entries are placed at
1220  * @entries.  find_get_entries() takes a reference against any actual
1221  * pages it returns.
1222  *
1223  * The search returns a group of mapping-contiguous page cache entries
1224  * with ascending indexes.  There may be holes in the indices due to
1225  * not-present pages.
1226  *
1227  * Any shadow entries of evicted pages, or swap entries from
1228  * shmem/tmpfs, are included in the returned array.
1229  *
1230  * find_get_entries() returns the number of pages and shadow entries
1231  * which were found.
1232  */
1233 unsigned find_get_entries(struct address_space *mapping,
1234 			  pgoff_t start, unsigned int nr_entries,
1235 			  struct page **entries, pgoff_t *indices)
1236 {
1237 	void **slot;
1238 	unsigned int ret = 0;
1239 	struct radix_tree_iter iter;
1240 
1241 	if (!nr_entries)
1242 		return 0;
1243 
1244 	rcu_read_lock();
1245 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1246 		struct page *page;
1247 repeat:
1248 		page = radix_tree_deref_slot(slot);
1249 		if (unlikely(!page))
1250 			continue;
1251 		if (radix_tree_exception(page)) {
1252 			if (radix_tree_deref_retry(page)) {
1253 				slot = radix_tree_iter_retry(&iter);
1254 				continue;
1255 			}
1256 			/*
1257 			 * A shadow entry of a recently evicted page, a swap
1258 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1259 			 * without attempting to raise page count.
1260 			 */
1261 			goto export;
1262 		}
1263 		if (!page_cache_get_speculative(page))
1264 			goto repeat;
1265 
1266 		/* Has the page moved? */
1267 		if (unlikely(page != *slot)) {
1268 			put_page(page);
1269 			goto repeat;
1270 		}
1271 export:
1272 		indices[ret] = iter.index;
1273 		entries[ret] = page;
1274 		if (++ret == nr_entries)
1275 			break;
1276 	}
1277 	rcu_read_unlock();
1278 	return ret;
1279 }
1280 
1281 /**
1282  * find_get_pages - gang pagecache lookup
1283  * @mapping:	The address_space to search
1284  * @start:	The starting page index
1285  * @nr_pages:	The maximum number of pages
1286  * @pages:	Where the resulting pages are placed
1287  *
1288  * find_get_pages() will search for and return a group of up to
1289  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1290  * find_get_pages() takes a reference against the returned pages.
1291  *
1292  * The search returns a group of mapping-contiguous pages with ascending
1293  * indexes.  There may be holes in the indices due to not-present pages.
1294  *
1295  * find_get_pages() returns the number of pages which were found.
1296  */
1297 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1298 			    unsigned int nr_pages, struct page **pages)
1299 {
1300 	struct radix_tree_iter iter;
1301 	void **slot;
1302 	unsigned ret = 0;
1303 
1304 	if (unlikely(!nr_pages))
1305 		return 0;
1306 
1307 	rcu_read_lock();
1308 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1309 		struct page *page;
1310 repeat:
1311 		page = radix_tree_deref_slot(slot);
1312 		if (unlikely(!page))
1313 			continue;
1314 
1315 		if (radix_tree_exception(page)) {
1316 			if (radix_tree_deref_retry(page)) {
1317 				slot = radix_tree_iter_retry(&iter);
1318 				continue;
1319 			}
1320 			/*
1321 			 * A shadow entry of a recently evicted page,
1322 			 * or a swap entry from shmem/tmpfs.  Skip
1323 			 * over it.
1324 			 */
1325 			continue;
1326 		}
1327 
1328 		if (!page_cache_get_speculative(page))
1329 			goto repeat;
1330 
1331 		/* Has the page moved? */
1332 		if (unlikely(page != *slot)) {
1333 			put_page(page);
1334 			goto repeat;
1335 		}
1336 
1337 		pages[ret] = page;
1338 		if (++ret == nr_pages)
1339 			break;
1340 	}
1341 
1342 	rcu_read_unlock();
1343 	return ret;
1344 }
1345 
1346 /**
1347  * find_get_pages_contig - gang contiguous pagecache lookup
1348  * @mapping:	The address_space to search
1349  * @index:	The starting page index
1350  * @nr_pages:	The maximum number of pages
1351  * @pages:	Where the resulting pages are placed
1352  *
1353  * find_get_pages_contig() works exactly like find_get_pages(), except
1354  * that the returned number of pages are guaranteed to be contiguous.
1355  *
1356  * find_get_pages_contig() returns the number of pages which were found.
1357  */
1358 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1359 			       unsigned int nr_pages, struct page **pages)
1360 {
1361 	struct radix_tree_iter iter;
1362 	void **slot;
1363 	unsigned int ret = 0;
1364 
1365 	if (unlikely(!nr_pages))
1366 		return 0;
1367 
1368 	rcu_read_lock();
1369 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1370 		struct page *page;
1371 repeat:
1372 		page = radix_tree_deref_slot(slot);
1373 		/* The hole, there no reason to continue */
1374 		if (unlikely(!page))
1375 			break;
1376 
1377 		if (radix_tree_exception(page)) {
1378 			if (radix_tree_deref_retry(page)) {
1379 				slot = radix_tree_iter_retry(&iter);
1380 				continue;
1381 			}
1382 			/*
1383 			 * A shadow entry of a recently evicted page,
1384 			 * or a swap entry from shmem/tmpfs.  Stop
1385 			 * looking for contiguous pages.
1386 			 */
1387 			break;
1388 		}
1389 
1390 		if (!page_cache_get_speculative(page))
1391 			goto repeat;
1392 
1393 		/* Has the page moved? */
1394 		if (unlikely(page != *slot)) {
1395 			put_page(page);
1396 			goto repeat;
1397 		}
1398 
1399 		/*
1400 		 * must check mapping and index after taking the ref.
1401 		 * otherwise we can get both false positives and false
1402 		 * negatives, which is just confusing to the caller.
1403 		 */
1404 		if (page->mapping == NULL || page->index != iter.index) {
1405 			put_page(page);
1406 			break;
1407 		}
1408 
1409 		pages[ret] = page;
1410 		if (++ret == nr_pages)
1411 			break;
1412 	}
1413 	rcu_read_unlock();
1414 	return ret;
1415 }
1416 EXPORT_SYMBOL(find_get_pages_contig);
1417 
1418 /**
1419  * find_get_pages_tag - find and return pages that match @tag
1420  * @mapping:	the address_space to search
1421  * @index:	the starting page index
1422  * @tag:	the tag index
1423  * @nr_pages:	the maximum number of pages
1424  * @pages:	where the resulting pages are placed
1425  *
1426  * Like find_get_pages, except we only return pages which are tagged with
1427  * @tag.   We update @index to index the next page for the traversal.
1428  */
1429 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1430 			int tag, unsigned int nr_pages, struct page **pages)
1431 {
1432 	struct radix_tree_iter iter;
1433 	void **slot;
1434 	unsigned ret = 0;
1435 
1436 	if (unlikely(!nr_pages))
1437 		return 0;
1438 
1439 	rcu_read_lock();
1440 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1441 				   &iter, *index, tag) {
1442 		struct page *page;
1443 repeat:
1444 		page = radix_tree_deref_slot(slot);
1445 		if (unlikely(!page))
1446 			continue;
1447 
1448 		if (radix_tree_exception(page)) {
1449 			if (radix_tree_deref_retry(page)) {
1450 				slot = radix_tree_iter_retry(&iter);
1451 				continue;
1452 			}
1453 			/*
1454 			 * A shadow entry of a recently evicted page.
1455 			 *
1456 			 * Those entries should never be tagged, but
1457 			 * this tree walk is lockless and the tags are
1458 			 * looked up in bulk, one radix tree node at a
1459 			 * time, so there is a sizable window for page
1460 			 * reclaim to evict a page we saw tagged.
1461 			 *
1462 			 * Skip over it.
1463 			 */
1464 			continue;
1465 		}
1466 
1467 		if (!page_cache_get_speculative(page))
1468 			goto repeat;
1469 
1470 		/* Has the page moved? */
1471 		if (unlikely(page != *slot)) {
1472 			put_page(page);
1473 			goto repeat;
1474 		}
1475 
1476 		pages[ret] = page;
1477 		if (++ret == nr_pages)
1478 			break;
1479 	}
1480 
1481 	rcu_read_unlock();
1482 
1483 	if (ret)
1484 		*index = pages[ret - 1]->index + 1;
1485 
1486 	return ret;
1487 }
1488 EXPORT_SYMBOL(find_get_pages_tag);
1489 
1490 /**
1491  * find_get_entries_tag - find and return entries that match @tag
1492  * @mapping:	the address_space to search
1493  * @start:	the starting page cache index
1494  * @tag:	the tag index
1495  * @nr_entries:	the maximum number of entries
1496  * @entries:	where the resulting entries are placed
1497  * @indices:	the cache indices corresponding to the entries in @entries
1498  *
1499  * Like find_get_entries, except we only return entries which are tagged with
1500  * @tag.
1501  */
1502 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1503 			int tag, unsigned int nr_entries,
1504 			struct page **entries, pgoff_t *indices)
1505 {
1506 	void **slot;
1507 	unsigned int ret = 0;
1508 	struct radix_tree_iter iter;
1509 
1510 	if (!nr_entries)
1511 		return 0;
1512 
1513 	rcu_read_lock();
1514 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1515 				   &iter, start, tag) {
1516 		struct page *page;
1517 repeat:
1518 		page = radix_tree_deref_slot(slot);
1519 		if (unlikely(!page))
1520 			continue;
1521 		if (radix_tree_exception(page)) {
1522 			if (radix_tree_deref_retry(page)) {
1523 				slot = radix_tree_iter_retry(&iter);
1524 				continue;
1525 			}
1526 
1527 			/*
1528 			 * A shadow entry of a recently evicted page, a swap
1529 			 * entry from shmem/tmpfs or a DAX entry.  Return it
1530 			 * without attempting to raise page count.
1531 			 */
1532 			goto export;
1533 		}
1534 		if (!page_cache_get_speculative(page))
1535 			goto repeat;
1536 
1537 		/* Has the page moved? */
1538 		if (unlikely(page != *slot)) {
1539 			put_page(page);
1540 			goto repeat;
1541 		}
1542 export:
1543 		indices[ret] = iter.index;
1544 		entries[ret] = page;
1545 		if (++ret == nr_entries)
1546 			break;
1547 	}
1548 	rcu_read_unlock();
1549 	return ret;
1550 }
1551 EXPORT_SYMBOL(find_get_entries_tag);
1552 
1553 /*
1554  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1555  * a _large_ part of the i/o request. Imagine the worst scenario:
1556  *
1557  *      ---R__________________________________________B__________
1558  *         ^ reading here                             ^ bad block(assume 4k)
1559  *
1560  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1561  * => failing the whole request => read(R) => read(R+1) =>
1562  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1563  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1564  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1565  *
1566  * It is going insane. Fix it by quickly scaling down the readahead size.
1567  */
1568 static void shrink_readahead_size_eio(struct file *filp,
1569 					struct file_ra_state *ra)
1570 {
1571 	ra->ra_pages /= 4;
1572 }
1573 
1574 /**
1575  * do_generic_file_read - generic file read routine
1576  * @filp:	the file to read
1577  * @ppos:	current file position
1578  * @iter:	data destination
1579  * @written:	already copied
1580  *
1581  * This is a generic file read routine, and uses the
1582  * mapping->a_ops->readpage() function for the actual low-level stuff.
1583  *
1584  * This is really ugly. But the goto's actually try to clarify some
1585  * of the logic when it comes to error handling etc.
1586  */
1587 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1588 		struct iov_iter *iter, ssize_t written)
1589 {
1590 	struct address_space *mapping = filp->f_mapping;
1591 	struct inode *inode = mapping->host;
1592 	struct file_ra_state *ra = &filp->f_ra;
1593 	pgoff_t index;
1594 	pgoff_t last_index;
1595 	pgoff_t prev_index;
1596 	unsigned long offset;      /* offset into pagecache page */
1597 	unsigned int prev_offset;
1598 	int error = 0;
1599 
1600 	index = *ppos >> PAGE_SHIFT;
1601 	prev_index = ra->prev_pos >> PAGE_SHIFT;
1602 	prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1603 	last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1604 	offset = *ppos & ~PAGE_MASK;
1605 
1606 	for (;;) {
1607 		struct page *page;
1608 		pgoff_t end_index;
1609 		loff_t isize;
1610 		unsigned long nr, ret;
1611 
1612 		cond_resched();
1613 find_page:
1614 		page = find_get_page(mapping, index);
1615 		if (!page) {
1616 			page_cache_sync_readahead(mapping,
1617 					ra, filp,
1618 					index, last_index - index);
1619 			page = find_get_page(mapping, index);
1620 			if (unlikely(page == NULL))
1621 				goto no_cached_page;
1622 		}
1623 		if (PageReadahead(page)) {
1624 			page_cache_async_readahead(mapping,
1625 					ra, filp, page,
1626 					index, last_index - index);
1627 		}
1628 		if (!PageUptodate(page)) {
1629 			/*
1630 			 * See comment in do_read_cache_page on why
1631 			 * wait_on_page_locked is used to avoid unnecessarily
1632 			 * serialisations and why it's safe.
1633 			 */
1634 			wait_on_page_locked_killable(page);
1635 			if (PageUptodate(page))
1636 				goto page_ok;
1637 
1638 			if (inode->i_blkbits == PAGE_SHIFT ||
1639 					!mapping->a_ops->is_partially_uptodate)
1640 				goto page_not_up_to_date;
1641 			if (!trylock_page(page))
1642 				goto page_not_up_to_date;
1643 			/* Did it get truncated before we got the lock? */
1644 			if (!page->mapping)
1645 				goto page_not_up_to_date_locked;
1646 			if (!mapping->a_ops->is_partially_uptodate(page,
1647 							offset, iter->count))
1648 				goto page_not_up_to_date_locked;
1649 			unlock_page(page);
1650 		}
1651 page_ok:
1652 		/*
1653 		 * i_size must be checked after we know the page is Uptodate.
1654 		 *
1655 		 * Checking i_size after the check allows us to calculate
1656 		 * the correct value for "nr", which means the zero-filled
1657 		 * part of the page is not copied back to userspace (unless
1658 		 * another truncate extends the file - this is desired though).
1659 		 */
1660 
1661 		isize = i_size_read(inode);
1662 		end_index = (isize - 1) >> PAGE_SHIFT;
1663 		if (unlikely(!isize || index > end_index)) {
1664 			put_page(page);
1665 			goto out;
1666 		}
1667 
1668 		/* nr is the maximum number of bytes to copy from this page */
1669 		nr = PAGE_SIZE;
1670 		if (index == end_index) {
1671 			nr = ((isize - 1) & ~PAGE_MASK) + 1;
1672 			if (nr <= offset) {
1673 				put_page(page);
1674 				goto out;
1675 			}
1676 		}
1677 		nr = nr - offset;
1678 
1679 		/* If users can be writing to this page using arbitrary
1680 		 * virtual addresses, take care about potential aliasing
1681 		 * before reading the page on the kernel side.
1682 		 */
1683 		if (mapping_writably_mapped(mapping))
1684 			flush_dcache_page(page);
1685 
1686 		/*
1687 		 * When a sequential read accesses a page several times,
1688 		 * only mark it as accessed the first time.
1689 		 */
1690 		if (prev_index != index || offset != prev_offset)
1691 			mark_page_accessed(page);
1692 		prev_index = index;
1693 
1694 		/*
1695 		 * Ok, we have the page, and it's up-to-date, so
1696 		 * now we can copy it to user space...
1697 		 */
1698 
1699 		ret = copy_page_to_iter(page, offset, nr, iter);
1700 		offset += ret;
1701 		index += offset >> PAGE_SHIFT;
1702 		offset &= ~PAGE_MASK;
1703 		prev_offset = offset;
1704 
1705 		put_page(page);
1706 		written += ret;
1707 		if (!iov_iter_count(iter))
1708 			goto out;
1709 		if (ret < nr) {
1710 			error = -EFAULT;
1711 			goto out;
1712 		}
1713 		continue;
1714 
1715 page_not_up_to_date:
1716 		/* Get exclusive access to the page ... */
1717 		error = lock_page_killable(page);
1718 		if (unlikely(error))
1719 			goto readpage_error;
1720 
1721 page_not_up_to_date_locked:
1722 		/* Did it get truncated before we got the lock? */
1723 		if (!page->mapping) {
1724 			unlock_page(page);
1725 			put_page(page);
1726 			continue;
1727 		}
1728 
1729 		/* Did somebody else fill it already? */
1730 		if (PageUptodate(page)) {
1731 			unlock_page(page);
1732 			goto page_ok;
1733 		}
1734 
1735 readpage:
1736 		/*
1737 		 * A previous I/O error may have been due to temporary
1738 		 * failures, eg. multipath errors.
1739 		 * PG_error will be set again if readpage fails.
1740 		 */
1741 		ClearPageError(page);
1742 		/* Start the actual read. The read will unlock the page. */
1743 		error = mapping->a_ops->readpage(filp, page);
1744 
1745 		if (unlikely(error)) {
1746 			if (error == AOP_TRUNCATED_PAGE) {
1747 				put_page(page);
1748 				error = 0;
1749 				goto find_page;
1750 			}
1751 			goto readpage_error;
1752 		}
1753 
1754 		if (!PageUptodate(page)) {
1755 			error = lock_page_killable(page);
1756 			if (unlikely(error))
1757 				goto readpage_error;
1758 			if (!PageUptodate(page)) {
1759 				if (page->mapping == NULL) {
1760 					/*
1761 					 * invalidate_mapping_pages got it
1762 					 */
1763 					unlock_page(page);
1764 					put_page(page);
1765 					goto find_page;
1766 				}
1767 				unlock_page(page);
1768 				shrink_readahead_size_eio(filp, ra);
1769 				error = -EIO;
1770 				goto readpage_error;
1771 			}
1772 			unlock_page(page);
1773 		}
1774 
1775 		goto page_ok;
1776 
1777 readpage_error:
1778 		/* UHHUH! A synchronous read error occurred. Report it */
1779 		put_page(page);
1780 		goto out;
1781 
1782 no_cached_page:
1783 		/*
1784 		 * Ok, it wasn't cached, so we need to create a new
1785 		 * page..
1786 		 */
1787 		page = page_cache_alloc_cold(mapping);
1788 		if (!page) {
1789 			error = -ENOMEM;
1790 			goto out;
1791 		}
1792 		error = add_to_page_cache_lru(page, mapping, index,
1793 				mapping_gfp_constraint(mapping, GFP_KERNEL));
1794 		if (error) {
1795 			put_page(page);
1796 			if (error == -EEXIST) {
1797 				error = 0;
1798 				goto find_page;
1799 			}
1800 			goto out;
1801 		}
1802 		goto readpage;
1803 	}
1804 
1805 out:
1806 	ra->prev_pos = prev_index;
1807 	ra->prev_pos <<= PAGE_SHIFT;
1808 	ra->prev_pos |= prev_offset;
1809 
1810 	*ppos = ((loff_t)index << PAGE_SHIFT) + offset;
1811 	file_accessed(filp);
1812 	return written ? written : error;
1813 }
1814 
1815 /**
1816  * generic_file_read_iter - generic filesystem read routine
1817  * @iocb:	kernel I/O control block
1818  * @iter:	destination for the data read
1819  *
1820  * This is the "read_iter()" routine for all filesystems
1821  * that can use the page cache directly.
1822  */
1823 ssize_t
1824 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1825 {
1826 	struct file *file = iocb->ki_filp;
1827 	ssize_t retval = 0;
1828 	size_t count = iov_iter_count(iter);
1829 
1830 	if (!count)
1831 		goto out; /* skip atime */
1832 
1833 	if (iocb->ki_flags & IOCB_DIRECT) {
1834 		struct address_space *mapping = file->f_mapping;
1835 		struct inode *inode = mapping->host;
1836 		loff_t size;
1837 
1838 		size = i_size_read(inode);
1839 		retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1840 					iocb->ki_pos + count - 1);
1841 		if (!retval) {
1842 			struct iov_iter data = *iter;
1843 			retval = mapping->a_ops->direct_IO(iocb, &data);
1844 		}
1845 
1846 		if (retval > 0) {
1847 			iocb->ki_pos += retval;
1848 			iov_iter_advance(iter, retval);
1849 		}
1850 
1851 		/*
1852 		 * Btrfs can have a short DIO read if we encounter
1853 		 * compressed extents, so if there was an error, or if
1854 		 * we've already read everything we wanted to, or if
1855 		 * there was a short read because we hit EOF, go ahead
1856 		 * and return.  Otherwise fallthrough to buffered io for
1857 		 * the rest of the read.  Buffered reads will not work for
1858 		 * DAX files, so don't bother trying.
1859 		 */
1860 		if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
1861 		    IS_DAX(inode)) {
1862 			file_accessed(file);
1863 			goto out;
1864 		}
1865 	}
1866 
1867 	retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1868 out:
1869 	return retval;
1870 }
1871 EXPORT_SYMBOL(generic_file_read_iter);
1872 
1873 #ifdef CONFIG_MMU
1874 /**
1875  * page_cache_read - adds requested page to the page cache if not already there
1876  * @file:	file to read
1877  * @offset:	page index
1878  * @gfp_mask:	memory allocation flags
1879  *
1880  * This adds the requested page to the page cache if it isn't already there,
1881  * and schedules an I/O to read in its contents from disk.
1882  */
1883 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1884 {
1885 	struct address_space *mapping = file->f_mapping;
1886 	struct page *page;
1887 	int ret;
1888 
1889 	do {
1890 		page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1891 		if (!page)
1892 			return -ENOMEM;
1893 
1894 		ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1895 		if (ret == 0)
1896 			ret = mapping->a_ops->readpage(file, page);
1897 		else if (ret == -EEXIST)
1898 			ret = 0; /* losing race to add is OK */
1899 
1900 		put_page(page);
1901 
1902 	} while (ret == AOP_TRUNCATED_PAGE);
1903 
1904 	return ret;
1905 }
1906 
1907 #define MMAP_LOTSAMISS  (100)
1908 
1909 /*
1910  * Synchronous readahead happens when we don't even find
1911  * a page in the page cache at all.
1912  */
1913 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1914 				   struct file_ra_state *ra,
1915 				   struct file *file,
1916 				   pgoff_t offset)
1917 {
1918 	struct address_space *mapping = file->f_mapping;
1919 
1920 	/* If we don't want any read-ahead, don't bother */
1921 	if (vma->vm_flags & VM_RAND_READ)
1922 		return;
1923 	if (!ra->ra_pages)
1924 		return;
1925 
1926 	if (vma->vm_flags & VM_SEQ_READ) {
1927 		page_cache_sync_readahead(mapping, ra, file, offset,
1928 					  ra->ra_pages);
1929 		return;
1930 	}
1931 
1932 	/* Avoid banging the cache line if not needed */
1933 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1934 		ra->mmap_miss++;
1935 
1936 	/*
1937 	 * Do we miss much more than hit in this file? If so,
1938 	 * stop bothering with read-ahead. It will only hurt.
1939 	 */
1940 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1941 		return;
1942 
1943 	/*
1944 	 * mmap read-around
1945 	 */
1946 	ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1947 	ra->size = ra->ra_pages;
1948 	ra->async_size = ra->ra_pages / 4;
1949 	ra_submit(ra, mapping, file);
1950 }
1951 
1952 /*
1953  * Asynchronous readahead happens when we find the page and PG_readahead,
1954  * so we want to possibly extend the readahead further..
1955  */
1956 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1957 				    struct file_ra_state *ra,
1958 				    struct file *file,
1959 				    struct page *page,
1960 				    pgoff_t offset)
1961 {
1962 	struct address_space *mapping = file->f_mapping;
1963 
1964 	/* If we don't want any read-ahead, don't bother */
1965 	if (vma->vm_flags & VM_RAND_READ)
1966 		return;
1967 	if (ra->mmap_miss > 0)
1968 		ra->mmap_miss--;
1969 	if (PageReadahead(page))
1970 		page_cache_async_readahead(mapping, ra, file,
1971 					   page, offset, ra->ra_pages);
1972 }
1973 
1974 /**
1975  * filemap_fault - read in file data for page fault handling
1976  * @vma:	vma in which the fault was taken
1977  * @vmf:	struct vm_fault containing details of the fault
1978  *
1979  * filemap_fault() is invoked via the vma operations vector for a
1980  * mapped memory region to read in file data during a page fault.
1981  *
1982  * The goto's are kind of ugly, but this streamlines the normal case of having
1983  * it in the page cache, and handles the special cases reasonably without
1984  * having a lot of duplicated code.
1985  *
1986  * vma->vm_mm->mmap_sem must be held on entry.
1987  *
1988  * If our return value has VM_FAULT_RETRY set, it's because
1989  * lock_page_or_retry() returned 0.
1990  * The mmap_sem has usually been released in this case.
1991  * See __lock_page_or_retry() for the exception.
1992  *
1993  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1994  * has not been released.
1995  *
1996  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1997  */
1998 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1999 {
2000 	int error;
2001 	struct file *file = vma->vm_file;
2002 	struct address_space *mapping = file->f_mapping;
2003 	struct file_ra_state *ra = &file->f_ra;
2004 	struct inode *inode = mapping->host;
2005 	pgoff_t offset = vmf->pgoff;
2006 	struct page *page;
2007 	loff_t size;
2008 	int ret = 0;
2009 
2010 	size = round_up(i_size_read(inode), PAGE_SIZE);
2011 	if (offset >= size >> PAGE_SHIFT)
2012 		return VM_FAULT_SIGBUS;
2013 
2014 	/*
2015 	 * Do we have something in the page cache already?
2016 	 */
2017 	page = find_get_page(mapping, offset);
2018 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2019 		/*
2020 		 * We found the page, so try async readahead before
2021 		 * waiting for the lock.
2022 		 */
2023 		do_async_mmap_readahead(vma, ra, file, page, offset);
2024 	} else if (!page) {
2025 		/* No page in the page cache at all */
2026 		do_sync_mmap_readahead(vma, ra, file, offset);
2027 		count_vm_event(PGMAJFAULT);
2028 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2029 		ret = VM_FAULT_MAJOR;
2030 retry_find:
2031 		page = find_get_page(mapping, offset);
2032 		if (!page)
2033 			goto no_cached_page;
2034 	}
2035 
2036 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2037 		put_page(page);
2038 		return ret | VM_FAULT_RETRY;
2039 	}
2040 
2041 	/* Did it get truncated? */
2042 	if (unlikely(page->mapping != mapping)) {
2043 		unlock_page(page);
2044 		put_page(page);
2045 		goto retry_find;
2046 	}
2047 	VM_BUG_ON_PAGE(page->index != offset, page);
2048 
2049 	/*
2050 	 * We have a locked page in the page cache, now we need to check
2051 	 * that it's up-to-date. If not, it is going to be due to an error.
2052 	 */
2053 	if (unlikely(!PageUptodate(page)))
2054 		goto page_not_uptodate;
2055 
2056 	/*
2057 	 * Found the page and have a reference on it.
2058 	 * We must recheck i_size under page lock.
2059 	 */
2060 	size = round_up(i_size_read(inode), PAGE_SIZE);
2061 	if (unlikely(offset >= size >> PAGE_SHIFT)) {
2062 		unlock_page(page);
2063 		put_page(page);
2064 		return VM_FAULT_SIGBUS;
2065 	}
2066 
2067 	vmf->page = page;
2068 	return ret | VM_FAULT_LOCKED;
2069 
2070 no_cached_page:
2071 	/*
2072 	 * We're only likely to ever get here if MADV_RANDOM is in
2073 	 * effect.
2074 	 */
2075 	error = page_cache_read(file, offset, vmf->gfp_mask);
2076 
2077 	/*
2078 	 * The page we want has now been added to the page cache.
2079 	 * In the unlikely event that someone removed it in the
2080 	 * meantime, we'll just come back here and read it again.
2081 	 */
2082 	if (error >= 0)
2083 		goto retry_find;
2084 
2085 	/*
2086 	 * An error return from page_cache_read can result if the
2087 	 * system is low on memory, or a problem occurs while trying
2088 	 * to schedule I/O.
2089 	 */
2090 	if (error == -ENOMEM)
2091 		return VM_FAULT_OOM;
2092 	return VM_FAULT_SIGBUS;
2093 
2094 page_not_uptodate:
2095 	/*
2096 	 * Umm, take care of errors if the page isn't up-to-date.
2097 	 * Try to re-read it _once_. We do this synchronously,
2098 	 * because there really aren't any performance issues here
2099 	 * and we need to check for errors.
2100 	 */
2101 	ClearPageError(page);
2102 	error = mapping->a_ops->readpage(file, page);
2103 	if (!error) {
2104 		wait_on_page_locked(page);
2105 		if (!PageUptodate(page))
2106 			error = -EIO;
2107 	}
2108 	put_page(page);
2109 
2110 	if (!error || error == AOP_TRUNCATED_PAGE)
2111 		goto retry_find;
2112 
2113 	/* Things didn't work out. Return zero to tell the mm layer so. */
2114 	shrink_readahead_size_eio(file, ra);
2115 	return VM_FAULT_SIGBUS;
2116 }
2117 EXPORT_SYMBOL(filemap_fault);
2118 
2119 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2120 {
2121 	struct radix_tree_iter iter;
2122 	void **slot;
2123 	struct file *file = vma->vm_file;
2124 	struct address_space *mapping = file->f_mapping;
2125 	loff_t size;
2126 	struct page *page;
2127 	unsigned long address = (unsigned long) vmf->virtual_address;
2128 	unsigned long addr;
2129 	pte_t *pte;
2130 
2131 	rcu_read_lock();
2132 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2133 		if (iter.index > vmf->max_pgoff)
2134 			break;
2135 repeat:
2136 		page = radix_tree_deref_slot(slot);
2137 		if (unlikely(!page))
2138 			goto next;
2139 		if (radix_tree_exception(page)) {
2140 			if (radix_tree_deref_retry(page)) {
2141 				slot = radix_tree_iter_retry(&iter);
2142 				continue;
2143 			}
2144 			goto next;
2145 		}
2146 
2147 		if (!page_cache_get_speculative(page))
2148 			goto repeat;
2149 
2150 		/* Has the page moved? */
2151 		if (unlikely(page != *slot)) {
2152 			put_page(page);
2153 			goto repeat;
2154 		}
2155 
2156 		if (!PageUptodate(page) ||
2157 				PageReadahead(page) ||
2158 				PageHWPoison(page))
2159 			goto skip;
2160 		if (!trylock_page(page))
2161 			goto skip;
2162 
2163 		if (page->mapping != mapping || !PageUptodate(page))
2164 			goto unlock;
2165 
2166 		size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2167 		if (page->index >= size >> PAGE_SHIFT)
2168 			goto unlock;
2169 
2170 		pte = vmf->pte + page->index - vmf->pgoff;
2171 		if (!pte_none(*pte))
2172 			goto unlock;
2173 
2174 		if (file->f_ra.mmap_miss > 0)
2175 			file->f_ra.mmap_miss--;
2176 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2177 		do_set_pte(vma, addr, page, pte, false, false, true);
2178 		unlock_page(page);
2179 		goto next;
2180 unlock:
2181 		unlock_page(page);
2182 skip:
2183 		put_page(page);
2184 next:
2185 		if (iter.index == vmf->max_pgoff)
2186 			break;
2187 	}
2188 	rcu_read_unlock();
2189 }
2190 EXPORT_SYMBOL(filemap_map_pages);
2191 
2192 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2193 {
2194 	struct page *page = vmf->page;
2195 	struct inode *inode = file_inode(vma->vm_file);
2196 	int ret = VM_FAULT_LOCKED;
2197 
2198 	sb_start_pagefault(inode->i_sb);
2199 	file_update_time(vma->vm_file);
2200 	lock_page(page);
2201 	if (page->mapping != inode->i_mapping) {
2202 		unlock_page(page);
2203 		ret = VM_FAULT_NOPAGE;
2204 		goto out;
2205 	}
2206 	/*
2207 	 * We mark the page dirty already here so that when freeze is in
2208 	 * progress, we are guaranteed that writeback during freezing will
2209 	 * see the dirty page and writeprotect it again.
2210 	 */
2211 	set_page_dirty(page);
2212 	wait_for_stable_page(page);
2213 out:
2214 	sb_end_pagefault(inode->i_sb);
2215 	return ret;
2216 }
2217 EXPORT_SYMBOL(filemap_page_mkwrite);
2218 
2219 const struct vm_operations_struct generic_file_vm_ops = {
2220 	.fault		= filemap_fault,
2221 	.map_pages	= filemap_map_pages,
2222 	.page_mkwrite	= filemap_page_mkwrite,
2223 };
2224 
2225 /* This is used for a general mmap of a disk file */
2226 
2227 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2228 {
2229 	struct address_space *mapping = file->f_mapping;
2230 
2231 	if (!mapping->a_ops->readpage)
2232 		return -ENOEXEC;
2233 	file_accessed(file);
2234 	vma->vm_ops = &generic_file_vm_ops;
2235 	return 0;
2236 }
2237 
2238 /*
2239  * This is for filesystems which do not implement ->writepage.
2240  */
2241 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2242 {
2243 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2244 		return -EINVAL;
2245 	return generic_file_mmap(file, vma);
2246 }
2247 #else
2248 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2249 {
2250 	return -ENOSYS;
2251 }
2252 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2253 {
2254 	return -ENOSYS;
2255 }
2256 #endif /* CONFIG_MMU */
2257 
2258 EXPORT_SYMBOL(generic_file_mmap);
2259 EXPORT_SYMBOL(generic_file_readonly_mmap);
2260 
2261 static struct page *wait_on_page_read(struct page *page)
2262 {
2263 	if (!IS_ERR(page)) {
2264 		wait_on_page_locked(page);
2265 		if (!PageUptodate(page)) {
2266 			put_page(page);
2267 			page = ERR_PTR(-EIO);
2268 		}
2269 	}
2270 	return page;
2271 }
2272 
2273 static struct page *do_read_cache_page(struct address_space *mapping,
2274 				pgoff_t index,
2275 				int (*filler)(void *, struct page *),
2276 				void *data,
2277 				gfp_t gfp)
2278 {
2279 	struct page *page;
2280 	int err;
2281 repeat:
2282 	page = find_get_page(mapping, index);
2283 	if (!page) {
2284 		page = __page_cache_alloc(gfp | __GFP_COLD);
2285 		if (!page)
2286 			return ERR_PTR(-ENOMEM);
2287 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2288 		if (unlikely(err)) {
2289 			put_page(page);
2290 			if (err == -EEXIST)
2291 				goto repeat;
2292 			/* Presumably ENOMEM for radix tree node */
2293 			return ERR_PTR(err);
2294 		}
2295 
2296 filler:
2297 		err = filler(data, page);
2298 		if (err < 0) {
2299 			put_page(page);
2300 			return ERR_PTR(err);
2301 		}
2302 
2303 		page = wait_on_page_read(page);
2304 		if (IS_ERR(page))
2305 			return page;
2306 		goto out;
2307 	}
2308 	if (PageUptodate(page))
2309 		goto out;
2310 
2311 	/*
2312 	 * Page is not up to date and may be locked due one of the following
2313 	 * case a: Page is being filled and the page lock is held
2314 	 * case b: Read/write error clearing the page uptodate status
2315 	 * case c: Truncation in progress (page locked)
2316 	 * case d: Reclaim in progress
2317 	 *
2318 	 * Case a, the page will be up to date when the page is unlocked.
2319 	 *    There is no need to serialise on the page lock here as the page
2320 	 *    is pinned so the lock gives no additional protection. Even if the
2321 	 *    the page is truncated, the data is still valid if PageUptodate as
2322 	 *    it's a race vs truncate race.
2323 	 * Case b, the page will not be up to date
2324 	 * Case c, the page may be truncated but in itself, the data may still
2325 	 *    be valid after IO completes as it's a read vs truncate race. The
2326 	 *    operation must restart if the page is not uptodate on unlock but
2327 	 *    otherwise serialising on page lock to stabilise the mapping gives
2328 	 *    no additional guarantees to the caller as the page lock is
2329 	 *    released before return.
2330 	 * Case d, similar to truncation. If reclaim holds the page lock, it
2331 	 *    will be a race with remove_mapping that determines if the mapping
2332 	 *    is valid on unlock but otherwise the data is valid and there is
2333 	 *    no need to serialise with page lock.
2334 	 *
2335 	 * As the page lock gives no additional guarantee, we optimistically
2336 	 * wait on the page to be unlocked and check if it's up to date and
2337 	 * use the page if it is. Otherwise, the page lock is required to
2338 	 * distinguish between the different cases. The motivation is that we
2339 	 * avoid spurious serialisations and wakeups when multiple processes
2340 	 * wait on the same page for IO to complete.
2341 	 */
2342 	wait_on_page_locked(page);
2343 	if (PageUptodate(page))
2344 		goto out;
2345 
2346 	/* Distinguish between all the cases under the safety of the lock */
2347 	lock_page(page);
2348 
2349 	/* Case c or d, restart the operation */
2350 	if (!page->mapping) {
2351 		unlock_page(page);
2352 		put_page(page);
2353 		goto repeat;
2354 	}
2355 
2356 	/* Someone else locked and filled the page in a very small window */
2357 	if (PageUptodate(page)) {
2358 		unlock_page(page);
2359 		goto out;
2360 	}
2361 	goto filler;
2362 
2363 out:
2364 	mark_page_accessed(page);
2365 	return page;
2366 }
2367 
2368 /**
2369  * read_cache_page - read into page cache, fill it if needed
2370  * @mapping:	the page's address_space
2371  * @index:	the page index
2372  * @filler:	function to perform the read
2373  * @data:	first arg to filler(data, page) function, often left as NULL
2374  *
2375  * Read into the page cache. If a page already exists, and PageUptodate() is
2376  * not set, try to fill the page and wait for it to become unlocked.
2377  *
2378  * If the page does not get brought uptodate, return -EIO.
2379  */
2380 struct page *read_cache_page(struct address_space *mapping,
2381 				pgoff_t index,
2382 				int (*filler)(void *, struct page *),
2383 				void *data)
2384 {
2385 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2386 }
2387 EXPORT_SYMBOL(read_cache_page);
2388 
2389 /**
2390  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2391  * @mapping:	the page's address_space
2392  * @index:	the page index
2393  * @gfp:	the page allocator flags to use if allocating
2394  *
2395  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2396  * any new page allocations done using the specified allocation flags.
2397  *
2398  * If the page does not get brought uptodate, return -EIO.
2399  */
2400 struct page *read_cache_page_gfp(struct address_space *mapping,
2401 				pgoff_t index,
2402 				gfp_t gfp)
2403 {
2404 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2405 
2406 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2407 }
2408 EXPORT_SYMBOL(read_cache_page_gfp);
2409 
2410 /*
2411  * Performs necessary checks before doing a write
2412  *
2413  * Can adjust writing position or amount of bytes to write.
2414  * Returns appropriate error code that caller should return or
2415  * zero in case that write should be allowed.
2416  */
2417 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2418 {
2419 	struct file *file = iocb->ki_filp;
2420 	struct inode *inode = file->f_mapping->host;
2421 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2422 	loff_t pos;
2423 
2424 	if (!iov_iter_count(from))
2425 		return 0;
2426 
2427 	/* FIXME: this is for backwards compatibility with 2.4 */
2428 	if (iocb->ki_flags & IOCB_APPEND)
2429 		iocb->ki_pos = i_size_read(inode);
2430 
2431 	pos = iocb->ki_pos;
2432 
2433 	if (limit != RLIM_INFINITY) {
2434 		if (iocb->ki_pos >= limit) {
2435 			send_sig(SIGXFSZ, current, 0);
2436 			return -EFBIG;
2437 		}
2438 		iov_iter_truncate(from, limit - (unsigned long)pos);
2439 	}
2440 
2441 	/*
2442 	 * LFS rule
2443 	 */
2444 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2445 				!(file->f_flags & O_LARGEFILE))) {
2446 		if (pos >= MAX_NON_LFS)
2447 			return -EFBIG;
2448 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2449 	}
2450 
2451 	/*
2452 	 * Are we about to exceed the fs block limit ?
2453 	 *
2454 	 * If we have written data it becomes a short write.  If we have
2455 	 * exceeded without writing data we send a signal and return EFBIG.
2456 	 * Linus frestrict idea will clean these up nicely..
2457 	 */
2458 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2459 		return -EFBIG;
2460 
2461 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2462 	return iov_iter_count(from);
2463 }
2464 EXPORT_SYMBOL(generic_write_checks);
2465 
2466 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2467 				loff_t pos, unsigned len, unsigned flags,
2468 				struct page **pagep, void **fsdata)
2469 {
2470 	const struct address_space_operations *aops = mapping->a_ops;
2471 
2472 	return aops->write_begin(file, mapping, pos, len, flags,
2473 							pagep, fsdata);
2474 }
2475 EXPORT_SYMBOL(pagecache_write_begin);
2476 
2477 int pagecache_write_end(struct file *file, struct address_space *mapping,
2478 				loff_t pos, unsigned len, unsigned copied,
2479 				struct page *page, void *fsdata)
2480 {
2481 	const struct address_space_operations *aops = mapping->a_ops;
2482 
2483 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2484 }
2485 EXPORT_SYMBOL(pagecache_write_end);
2486 
2487 ssize_t
2488 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
2489 {
2490 	struct file	*file = iocb->ki_filp;
2491 	struct address_space *mapping = file->f_mapping;
2492 	struct inode	*inode = mapping->host;
2493 	loff_t		pos = iocb->ki_pos;
2494 	ssize_t		written;
2495 	size_t		write_len;
2496 	pgoff_t		end;
2497 	struct iov_iter data;
2498 
2499 	write_len = iov_iter_count(from);
2500 	end = (pos + write_len - 1) >> PAGE_SHIFT;
2501 
2502 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2503 	if (written)
2504 		goto out;
2505 
2506 	/*
2507 	 * After a write we want buffered reads to be sure to go to disk to get
2508 	 * the new data.  We invalidate clean cached page from the region we're
2509 	 * about to write.  We do this *before* the write so that we can return
2510 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2511 	 */
2512 	if (mapping->nrpages) {
2513 		written = invalidate_inode_pages2_range(mapping,
2514 					pos >> PAGE_SHIFT, end);
2515 		/*
2516 		 * If a page can not be invalidated, return 0 to fall back
2517 		 * to buffered write.
2518 		 */
2519 		if (written) {
2520 			if (written == -EBUSY)
2521 				return 0;
2522 			goto out;
2523 		}
2524 	}
2525 
2526 	data = *from;
2527 	written = mapping->a_ops->direct_IO(iocb, &data);
2528 
2529 	/*
2530 	 * Finally, try again to invalidate clean pages which might have been
2531 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2532 	 * if the source of the write was an mmap'ed region of the file
2533 	 * we're writing.  Either one is a pretty crazy thing to do,
2534 	 * so we don't support it 100%.  If this invalidation
2535 	 * fails, tough, the write still worked...
2536 	 */
2537 	if (mapping->nrpages) {
2538 		invalidate_inode_pages2_range(mapping,
2539 					      pos >> PAGE_SHIFT, end);
2540 	}
2541 
2542 	if (written > 0) {
2543 		pos += written;
2544 		iov_iter_advance(from, written);
2545 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2546 			i_size_write(inode, pos);
2547 			mark_inode_dirty(inode);
2548 		}
2549 		iocb->ki_pos = pos;
2550 	}
2551 out:
2552 	return written;
2553 }
2554 EXPORT_SYMBOL(generic_file_direct_write);
2555 
2556 /*
2557  * Find or create a page at the given pagecache position. Return the locked
2558  * page. This function is specifically for buffered writes.
2559  */
2560 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2561 					pgoff_t index, unsigned flags)
2562 {
2563 	struct page *page;
2564 	int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
2565 
2566 	if (flags & AOP_FLAG_NOFS)
2567 		fgp_flags |= FGP_NOFS;
2568 
2569 	page = pagecache_get_page(mapping, index, fgp_flags,
2570 			mapping_gfp_mask(mapping));
2571 	if (page)
2572 		wait_for_stable_page(page);
2573 
2574 	return page;
2575 }
2576 EXPORT_SYMBOL(grab_cache_page_write_begin);
2577 
2578 ssize_t generic_perform_write(struct file *file,
2579 				struct iov_iter *i, loff_t pos)
2580 {
2581 	struct address_space *mapping = file->f_mapping;
2582 	const struct address_space_operations *a_ops = mapping->a_ops;
2583 	long status = 0;
2584 	ssize_t written = 0;
2585 	unsigned int flags = 0;
2586 
2587 	/*
2588 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2589 	 */
2590 	if (!iter_is_iovec(i))
2591 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2592 
2593 	do {
2594 		struct page *page;
2595 		unsigned long offset;	/* Offset into pagecache page */
2596 		unsigned long bytes;	/* Bytes to write to page */
2597 		size_t copied;		/* Bytes copied from user */
2598 		void *fsdata;
2599 
2600 		offset = (pos & (PAGE_SIZE - 1));
2601 		bytes = min_t(unsigned long, PAGE_SIZE - offset,
2602 						iov_iter_count(i));
2603 
2604 again:
2605 		/*
2606 		 * Bring in the user page that we will copy from _first_.
2607 		 * Otherwise there's a nasty deadlock on copying from the
2608 		 * same page as we're writing to, without it being marked
2609 		 * up-to-date.
2610 		 *
2611 		 * Not only is this an optimisation, but it is also required
2612 		 * to check that the address is actually valid, when atomic
2613 		 * usercopies are used, below.
2614 		 */
2615 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2616 			status = -EFAULT;
2617 			break;
2618 		}
2619 
2620 		if (fatal_signal_pending(current)) {
2621 			status = -EINTR;
2622 			break;
2623 		}
2624 
2625 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2626 						&page, &fsdata);
2627 		if (unlikely(status < 0))
2628 			break;
2629 
2630 		if (mapping_writably_mapped(mapping))
2631 			flush_dcache_page(page);
2632 
2633 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2634 		flush_dcache_page(page);
2635 
2636 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2637 						page, fsdata);
2638 		if (unlikely(status < 0))
2639 			break;
2640 		copied = status;
2641 
2642 		cond_resched();
2643 
2644 		iov_iter_advance(i, copied);
2645 		if (unlikely(copied == 0)) {
2646 			/*
2647 			 * If we were unable to copy any data at all, we must
2648 			 * fall back to a single segment length write.
2649 			 *
2650 			 * If we didn't fallback here, we could livelock
2651 			 * because not all segments in the iov can be copied at
2652 			 * once without a pagefault.
2653 			 */
2654 			bytes = min_t(unsigned long, PAGE_SIZE - offset,
2655 						iov_iter_single_seg_count(i));
2656 			goto again;
2657 		}
2658 		pos += copied;
2659 		written += copied;
2660 
2661 		balance_dirty_pages_ratelimited(mapping);
2662 	} while (iov_iter_count(i));
2663 
2664 	return written ? written : status;
2665 }
2666 EXPORT_SYMBOL(generic_perform_write);
2667 
2668 /**
2669  * __generic_file_write_iter - write data to a file
2670  * @iocb:	IO state structure (file, offset, etc.)
2671  * @from:	iov_iter with data to write
2672  *
2673  * This function does all the work needed for actually writing data to a
2674  * file. It does all basic checks, removes SUID from the file, updates
2675  * modification times and calls proper subroutines depending on whether we
2676  * do direct IO or a standard buffered write.
2677  *
2678  * It expects i_mutex to be grabbed unless we work on a block device or similar
2679  * object which does not need locking at all.
2680  *
2681  * This function does *not* take care of syncing data in case of O_SYNC write.
2682  * A caller has to handle it. This is mainly due to the fact that we want to
2683  * avoid syncing under i_mutex.
2684  */
2685 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2686 {
2687 	struct file *file = iocb->ki_filp;
2688 	struct address_space * mapping = file->f_mapping;
2689 	struct inode 	*inode = mapping->host;
2690 	ssize_t		written = 0;
2691 	ssize_t		err;
2692 	ssize_t		status;
2693 
2694 	/* We can write back this queue in page reclaim */
2695 	current->backing_dev_info = inode_to_bdi(inode);
2696 	err = file_remove_privs(file);
2697 	if (err)
2698 		goto out;
2699 
2700 	err = file_update_time(file);
2701 	if (err)
2702 		goto out;
2703 
2704 	if (iocb->ki_flags & IOCB_DIRECT) {
2705 		loff_t pos, endbyte;
2706 
2707 		written = generic_file_direct_write(iocb, from);
2708 		/*
2709 		 * If the write stopped short of completing, fall back to
2710 		 * buffered writes.  Some filesystems do this for writes to
2711 		 * holes, for example.  For DAX files, a buffered write will
2712 		 * not succeed (even if it did, DAX does not handle dirty
2713 		 * page-cache pages correctly).
2714 		 */
2715 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2716 			goto out;
2717 
2718 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2719 		/*
2720 		 * If generic_perform_write() returned a synchronous error
2721 		 * then we want to return the number of bytes which were
2722 		 * direct-written, or the error code if that was zero.  Note
2723 		 * that this differs from normal direct-io semantics, which
2724 		 * will return -EFOO even if some bytes were written.
2725 		 */
2726 		if (unlikely(status < 0)) {
2727 			err = status;
2728 			goto out;
2729 		}
2730 		/*
2731 		 * We need to ensure that the page cache pages are written to
2732 		 * disk and invalidated to preserve the expected O_DIRECT
2733 		 * semantics.
2734 		 */
2735 		endbyte = pos + status - 1;
2736 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2737 		if (err == 0) {
2738 			iocb->ki_pos = endbyte + 1;
2739 			written += status;
2740 			invalidate_mapping_pages(mapping,
2741 						 pos >> PAGE_SHIFT,
2742 						 endbyte >> PAGE_SHIFT);
2743 		} else {
2744 			/*
2745 			 * We don't know how much we wrote, so just return
2746 			 * the number of bytes which were direct-written
2747 			 */
2748 		}
2749 	} else {
2750 		written = generic_perform_write(file, from, iocb->ki_pos);
2751 		if (likely(written > 0))
2752 			iocb->ki_pos += written;
2753 	}
2754 out:
2755 	current->backing_dev_info = NULL;
2756 	return written ? written : err;
2757 }
2758 EXPORT_SYMBOL(__generic_file_write_iter);
2759 
2760 /**
2761  * generic_file_write_iter - write data to a file
2762  * @iocb:	IO state structure
2763  * @from:	iov_iter with data to write
2764  *
2765  * This is a wrapper around __generic_file_write_iter() to be used by most
2766  * filesystems. It takes care of syncing the file in case of O_SYNC file
2767  * and acquires i_mutex as needed.
2768  */
2769 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2770 {
2771 	struct file *file = iocb->ki_filp;
2772 	struct inode *inode = file->f_mapping->host;
2773 	ssize_t ret;
2774 
2775 	inode_lock(inode);
2776 	ret = generic_write_checks(iocb, from);
2777 	if (ret > 0)
2778 		ret = __generic_file_write_iter(iocb, from);
2779 	inode_unlock(inode);
2780 
2781 	if (ret > 0)
2782 		ret = generic_write_sync(iocb, ret);
2783 	return ret;
2784 }
2785 EXPORT_SYMBOL(generic_file_write_iter);
2786 
2787 /**
2788  * try_to_release_page() - release old fs-specific metadata on a page
2789  *
2790  * @page: the page which the kernel is trying to free
2791  * @gfp_mask: memory allocation flags (and I/O mode)
2792  *
2793  * The address_space is to try to release any data against the page
2794  * (presumably at page->private).  If the release was successful, return `1'.
2795  * Otherwise return zero.
2796  *
2797  * This may also be called if PG_fscache is set on a page, indicating that the
2798  * page is known to the local caching routines.
2799  *
2800  * The @gfp_mask argument specifies whether I/O may be performed to release
2801  * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2802  *
2803  */
2804 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2805 {
2806 	struct address_space * const mapping = page->mapping;
2807 
2808 	BUG_ON(!PageLocked(page));
2809 	if (PageWriteback(page))
2810 		return 0;
2811 
2812 	if (mapping && mapping->a_ops->releasepage)
2813 		return mapping->a_ops->releasepage(page, gfp_mask);
2814 	return try_to_free_buffers(page);
2815 }
2816 
2817 EXPORT_SYMBOL(try_to_release_page);
2818