1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave folio->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 folio_put_refs(folio, folio_nr_pages(folio)); 236 } 237 238 /** 239 * filemap_remove_folio - Remove folio from page cache. 240 * @folio: The folio. 241 * 242 * This must be called only on folios that are locked and have been 243 * verified to be in the page cache. It will never put the folio into 244 * the free list because the caller has a reference on the page. 245 */ 246 void filemap_remove_folio(struct folio *folio) 247 { 248 struct address_space *mapping = folio->mapping; 249 250 BUG_ON(!folio_test_locked(folio)); 251 spin_lock(&mapping->host->i_lock); 252 xa_lock_irq(&mapping->i_pages); 253 __filemap_remove_folio(folio, NULL); 254 xa_unlock_irq(&mapping->i_pages); 255 if (mapping_shrinkable(mapping)) 256 inode_add_lru(mapping->host); 257 spin_unlock(&mapping->host->i_lock); 258 259 filemap_free_folio(mapping, folio); 260 } 261 262 /* 263 * page_cache_delete_batch - delete several folios from page cache 264 * @mapping: the mapping to which folios belong 265 * @fbatch: batch of folios to delete 266 * 267 * The function walks over mapping->i_pages and removes folios passed in 268 * @fbatch from the mapping. The function expects @fbatch to be sorted 269 * by page index and is optimised for it to be dense. 270 * It tolerates holes in @fbatch (mapping entries at those indices are not 271 * modified). 272 * 273 * The function expects the i_pages lock to be held. 274 */ 275 static void page_cache_delete_batch(struct address_space *mapping, 276 struct folio_batch *fbatch) 277 { 278 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 279 long total_pages = 0; 280 int i = 0; 281 struct folio *folio; 282 283 mapping_set_update(&xas, mapping); 284 xas_for_each(&xas, folio, ULONG_MAX) { 285 if (i >= folio_batch_count(fbatch)) 286 break; 287 288 /* A swap/dax/shadow entry got inserted? Skip it. */ 289 if (xa_is_value(folio)) 290 continue; 291 /* 292 * A page got inserted in our range? Skip it. We have our 293 * pages locked so they are protected from being removed. 294 * If we see a page whose index is higher than ours, it 295 * means our page has been removed, which shouldn't be 296 * possible because we're holding the PageLock. 297 */ 298 if (folio != fbatch->folios[i]) { 299 VM_BUG_ON_FOLIO(folio->index > 300 fbatch->folios[i]->index, folio); 301 continue; 302 } 303 304 WARN_ON_ONCE(!folio_test_locked(folio)); 305 306 folio->mapping = NULL; 307 /* Leave folio->index set: truncation lookup relies on it */ 308 309 i++; 310 xas_store(&xas, NULL); 311 total_pages += folio_nr_pages(folio); 312 } 313 mapping->nrpages -= total_pages; 314 } 315 316 void delete_from_page_cache_batch(struct address_space *mapping, 317 struct folio_batch *fbatch) 318 { 319 int i; 320 321 if (!folio_batch_count(fbatch)) 322 return; 323 324 spin_lock(&mapping->host->i_lock); 325 xa_lock_irq(&mapping->i_pages); 326 for (i = 0; i < folio_batch_count(fbatch); i++) { 327 struct folio *folio = fbatch->folios[i]; 328 329 trace_mm_filemap_delete_from_page_cache(folio); 330 filemap_unaccount_folio(mapping, folio); 331 } 332 page_cache_delete_batch(mapping, fbatch); 333 xa_unlock_irq(&mapping->i_pages); 334 if (mapping_shrinkable(mapping)) 335 inode_add_lru(mapping->host); 336 spin_unlock(&mapping->host->i_lock); 337 338 for (i = 0; i < folio_batch_count(fbatch); i++) 339 filemap_free_folio(mapping, fbatch->folios[i]); 340 } 341 342 int filemap_check_errors(struct address_space *mapping) 343 { 344 int ret = 0; 345 /* Check for outstanding write errors */ 346 if (test_bit(AS_ENOSPC, &mapping->flags) && 347 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 348 ret = -ENOSPC; 349 if (test_bit(AS_EIO, &mapping->flags) && 350 test_and_clear_bit(AS_EIO, &mapping->flags)) 351 ret = -EIO; 352 return ret; 353 } 354 EXPORT_SYMBOL(filemap_check_errors); 355 356 static int filemap_check_and_keep_errors(struct address_space *mapping) 357 { 358 /* Check for outstanding write errors */ 359 if (test_bit(AS_EIO, &mapping->flags)) 360 return -EIO; 361 if (test_bit(AS_ENOSPC, &mapping->flags)) 362 return -ENOSPC; 363 return 0; 364 } 365 366 /** 367 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 368 * @mapping: address space structure to write 369 * @wbc: the writeback_control controlling the writeout 370 * 371 * Call writepages on the mapping using the provided wbc to control the 372 * writeout. 373 * 374 * Return: %0 on success, negative error code otherwise. 375 */ 376 int filemap_fdatawrite_wbc(struct address_space *mapping, 377 struct writeback_control *wbc) 378 { 379 int ret; 380 381 if (!mapping_can_writeback(mapping) || 382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 383 return 0; 384 385 wbc_attach_fdatawrite_inode(wbc, mapping->host); 386 ret = do_writepages(mapping, wbc); 387 wbc_detach_inode(wbc); 388 return ret; 389 } 390 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 391 392 /** 393 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 394 * @mapping: address space structure to write 395 * @start: offset in bytes where the range starts 396 * @end: offset in bytes where the range ends (inclusive) 397 * @sync_mode: enable synchronous operation 398 * 399 * Start writeback against all of a mapping's dirty pages that lie 400 * within the byte offsets <start, end> inclusive. 401 * 402 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 403 * opposed to a regular memory cleansing writeback. The difference between 404 * these two operations is that if a dirty page/buffer is encountered, it must 405 * be waited upon, and not just skipped over. 406 * 407 * Return: %0 on success, negative error code otherwise. 408 */ 409 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 410 loff_t end, int sync_mode) 411 { 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 return filemap_fdatawrite_wbc(mapping, &wbc); 420 } 421 422 static inline int __filemap_fdatawrite(struct address_space *mapping, 423 int sync_mode) 424 { 425 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 426 } 427 428 int filemap_fdatawrite(struct address_space *mapping) 429 { 430 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 431 } 432 EXPORT_SYMBOL(filemap_fdatawrite); 433 434 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 435 loff_t end) 436 { 437 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite_range); 440 441 /** 442 * filemap_fdatawrite_range_kick - start writeback on a range 443 * @mapping: target address_space 444 * @start: index to start writeback on 445 * @end: last (inclusive) index for writeback 446 * 447 * This is a non-integrity writeback helper, to start writing back folios 448 * for the indicated range. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 453 loff_t end) 454 { 455 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 456 } 457 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 458 459 /** 460 * filemap_flush - mostly a non-blocking flush 461 * @mapping: target address_space 462 * 463 * This is a mostly non-blocking flush. Not suitable for data-integrity 464 * purposes - I/O may not be started against all dirty pages. 465 * 466 * Return: %0 on success, negative error code otherwise. 467 */ 468 int filemap_flush(struct address_space *mapping) 469 { 470 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 471 } 472 EXPORT_SYMBOL(filemap_flush); 473 474 /** 475 * filemap_range_has_page - check if a page exists in range. 476 * @mapping: address space within which to check 477 * @start_byte: offset in bytes where the range starts 478 * @end_byte: offset in bytes where the range ends (inclusive) 479 * 480 * Find at least one page in the range supplied, usually used to check if 481 * direct writing in this range will trigger a writeback. 482 * 483 * Return: %true if at least one page exists in the specified range, 484 * %false otherwise. 485 */ 486 bool filemap_range_has_page(struct address_space *mapping, 487 loff_t start_byte, loff_t end_byte) 488 { 489 struct folio *folio; 490 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 491 pgoff_t max = end_byte >> PAGE_SHIFT; 492 493 if (end_byte < start_byte) 494 return false; 495 496 rcu_read_lock(); 497 for (;;) { 498 folio = xas_find(&xas, max); 499 if (xas_retry(&xas, folio)) 500 continue; 501 /* Shadow entries don't count */ 502 if (xa_is_value(folio)) 503 continue; 504 /* 505 * We don't need to try to pin this page; we're about to 506 * release the RCU lock anyway. It is enough to know that 507 * there was a page here recently. 508 */ 509 break; 510 } 511 rcu_read_unlock(); 512 513 return folio != NULL; 514 } 515 EXPORT_SYMBOL(filemap_range_has_page); 516 517 static void __filemap_fdatawait_range(struct address_space *mapping, 518 loff_t start_byte, loff_t end_byte) 519 { 520 pgoff_t index = start_byte >> PAGE_SHIFT; 521 pgoff_t end = end_byte >> PAGE_SHIFT; 522 struct folio_batch fbatch; 523 unsigned nr_folios; 524 525 folio_batch_init(&fbatch); 526 527 while (index <= end) { 528 unsigned i; 529 530 nr_folios = filemap_get_folios_tag(mapping, &index, end, 531 PAGECACHE_TAG_WRITEBACK, &fbatch); 532 533 if (!nr_folios) 534 break; 535 536 for (i = 0; i < nr_folios; i++) { 537 struct folio *folio = fbatch.folios[i]; 538 539 folio_wait_writeback(folio); 540 } 541 folio_batch_release(&fbatch); 542 cond_resched(); 543 } 544 } 545 546 /** 547 * filemap_fdatawait_range - wait for writeback to complete 548 * @mapping: address space structure to wait for 549 * @start_byte: offset in bytes where the range starts 550 * @end_byte: offset in bytes where the range ends (inclusive) 551 * 552 * Walk the list of under-writeback pages of the given address space 553 * in the given range and wait for all of them. Check error status of 554 * the address space and return it. 555 * 556 * Since the error status of the address space is cleared by this function, 557 * callers are responsible for checking the return value and handling and/or 558 * reporting the error. 559 * 560 * Return: error status of the address space. 561 */ 562 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 563 loff_t end_byte) 564 { 565 __filemap_fdatawait_range(mapping, start_byte, end_byte); 566 return filemap_check_errors(mapping); 567 } 568 EXPORT_SYMBOL(filemap_fdatawait_range); 569 570 /** 571 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 572 * @mapping: address space structure to wait for 573 * @start_byte: offset in bytes where the range starts 574 * @end_byte: offset in bytes where the range ends (inclusive) 575 * 576 * Walk the list of under-writeback pages of the given address space in the 577 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 578 * this function does not clear error status of the address space. 579 * 580 * Use this function if callers don't handle errors themselves. Expected 581 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 582 * fsfreeze(8) 583 */ 584 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 585 loff_t start_byte, loff_t end_byte) 586 { 587 __filemap_fdatawait_range(mapping, start_byte, end_byte); 588 return filemap_check_and_keep_errors(mapping); 589 } 590 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 591 592 /** 593 * file_fdatawait_range - wait for writeback to complete 594 * @file: file pointing to address space structure to wait for 595 * @start_byte: offset in bytes where the range starts 596 * @end_byte: offset in bytes where the range ends (inclusive) 597 * 598 * Walk the list of under-writeback pages of the address space that file 599 * refers to, in the given range and wait for all of them. Check error 600 * status of the address space vs. the file->f_wb_err cursor and return it. 601 * 602 * Since the error status of the file is advanced by this function, 603 * callers are responsible for checking the return value and handling and/or 604 * reporting the error. 605 * 606 * Return: error status of the address space vs. the file->f_wb_err cursor. 607 */ 608 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 609 { 610 struct address_space *mapping = file->f_mapping; 611 612 __filemap_fdatawait_range(mapping, start_byte, end_byte); 613 return file_check_and_advance_wb_err(file); 614 } 615 EXPORT_SYMBOL(file_fdatawait_range); 616 617 /** 618 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 619 * @mapping: address space structure to wait for 620 * 621 * Walk the list of under-writeback pages of the given address space 622 * and wait for all of them. Unlike filemap_fdatawait(), this function 623 * does not clear error status of the address space. 624 * 625 * Use this function if callers don't handle errors themselves. Expected 626 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 627 * fsfreeze(8) 628 * 629 * Return: error status of the address space. 630 */ 631 int filemap_fdatawait_keep_errors(struct address_space *mapping) 632 { 633 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 634 return filemap_check_and_keep_errors(mapping); 635 } 636 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 637 638 /* Returns true if writeback might be needed or already in progress. */ 639 static bool mapping_needs_writeback(struct address_space *mapping) 640 { 641 return mapping->nrpages; 642 } 643 644 bool filemap_range_has_writeback(struct address_space *mapping, 645 loff_t start_byte, loff_t end_byte) 646 { 647 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 648 pgoff_t max = end_byte >> PAGE_SHIFT; 649 struct folio *folio; 650 651 if (end_byte < start_byte) 652 return false; 653 654 rcu_read_lock(); 655 xas_for_each(&xas, folio, max) { 656 if (xas_retry(&xas, folio)) 657 continue; 658 if (xa_is_value(folio)) 659 continue; 660 if (folio_test_dirty(folio) || folio_test_locked(folio) || 661 folio_test_writeback(folio)) 662 break; 663 } 664 rcu_read_unlock(); 665 return folio != NULL; 666 } 667 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 668 669 /** 670 * filemap_write_and_wait_range - write out & wait on a file range 671 * @mapping: the address_space for the pages 672 * @lstart: offset in bytes where the range starts 673 * @lend: offset in bytes where the range ends (inclusive) 674 * 675 * Write out and wait upon file offsets lstart->lend, inclusive. 676 * 677 * Note that @lend is inclusive (describes the last byte to be written) so 678 * that this function can be used to write to the very end-of-file (end = -1). 679 * 680 * Return: error status of the address space. 681 */ 682 int filemap_write_and_wait_range(struct address_space *mapping, 683 loff_t lstart, loff_t lend) 684 { 685 int err = 0, err2; 686 687 if (lend < lstart) 688 return 0; 689 690 if (mapping_needs_writeback(mapping)) { 691 err = __filemap_fdatawrite_range(mapping, lstart, lend, 692 WB_SYNC_ALL); 693 /* 694 * Even if the above returned error, the pages may be 695 * written partially (e.g. -ENOSPC), so we wait for it. 696 * But the -EIO is special case, it may indicate the worst 697 * thing (e.g. bug) happened, so we avoid waiting for it. 698 */ 699 if (err != -EIO) 700 __filemap_fdatawait_range(mapping, lstart, lend); 701 } 702 err2 = filemap_check_errors(mapping); 703 if (!err) 704 err = err2; 705 return err; 706 } 707 EXPORT_SYMBOL(filemap_write_and_wait_range); 708 709 void __filemap_set_wb_err(struct address_space *mapping, int err) 710 { 711 errseq_t eseq = errseq_set(&mapping->wb_err, err); 712 713 trace_filemap_set_wb_err(mapping, eseq); 714 } 715 EXPORT_SYMBOL(__filemap_set_wb_err); 716 717 /** 718 * file_check_and_advance_wb_err - report wb error (if any) that was previously 719 * and advance wb_err to current one 720 * @file: struct file on which the error is being reported 721 * 722 * When userland calls fsync (or something like nfsd does the equivalent), we 723 * want to report any writeback errors that occurred since the last fsync (or 724 * since the file was opened if there haven't been any). 725 * 726 * Grab the wb_err from the mapping. If it matches what we have in the file, 727 * then just quickly return 0. The file is all caught up. 728 * 729 * If it doesn't match, then take the mapping value, set the "seen" flag in 730 * it and try to swap it into place. If it works, or another task beat us 731 * to it with the new value, then update the f_wb_err and return the error 732 * portion. The error at this point must be reported via proper channels 733 * (a'la fsync, or NFS COMMIT operation, etc.). 734 * 735 * While we handle mapping->wb_err with atomic operations, the f_wb_err 736 * value is protected by the f_lock since we must ensure that it reflects 737 * the latest value swapped in for this file descriptor. 738 * 739 * Return: %0 on success, negative error code otherwise. 740 */ 741 int file_check_and_advance_wb_err(struct file *file) 742 { 743 int err = 0; 744 errseq_t old = READ_ONCE(file->f_wb_err); 745 struct address_space *mapping = file->f_mapping; 746 747 /* Locklessly handle the common case where nothing has changed */ 748 if (errseq_check(&mapping->wb_err, old)) { 749 /* Something changed, must use slow path */ 750 spin_lock(&file->f_lock); 751 old = file->f_wb_err; 752 err = errseq_check_and_advance(&mapping->wb_err, 753 &file->f_wb_err); 754 trace_file_check_and_advance_wb_err(file, old); 755 spin_unlock(&file->f_lock); 756 } 757 758 /* 759 * We're mostly using this function as a drop in replacement for 760 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 761 * that the legacy code would have had on these flags. 762 */ 763 clear_bit(AS_EIO, &mapping->flags); 764 clear_bit(AS_ENOSPC, &mapping->flags); 765 return err; 766 } 767 EXPORT_SYMBOL(file_check_and_advance_wb_err); 768 769 /** 770 * file_write_and_wait_range - write out & wait on a file range 771 * @file: file pointing to address_space with pages 772 * @lstart: offset in bytes where the range starts 773 * @lend: offset in bytes where the range ends (inclusive) 774 * 775 * Write out and wait upon file offsets lstart->lend, inclusive. 776 * 777 * Note that @lend is inclusive (describes the last byte to be written) so 778 * that this function can be used to write to the very end-of-file (end = -1). 779 * 780 * After writing out and waiting on the data, we check and advance the 781 * f_wb_err cursor to the latest value, and return any errors detected there. 782 * 783 * Return: %0 on success, negative error code otherwise. 784 */ 785 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 786 { 787 int err = 0, err2; 788 struct address_space *mapping = file->f_mapping; 789 790 if (lend < lstart) 791 return 0; 792 793 if (mapping_needs_writeback(mapping)) { 794 err = __filemap_fdatawrite_range(mapping, lstart, lend, 795 WB_SYNC_ALL); 796 /* See comment of filemap_write_and_wait() */ 797 if (err != -EIO) 798 __filemap_fdatawait_range(mapping, lstart, lend); 799 } 800 err2 = file_check_and_advance_wb_err(file); 801 if (!err) 802 err = err2; 803 return err; 804 } 805 EXPORT_SYMBOL(file_write_and_wait_range); 806 807 /** 808 * replace_page_cache_folio - replace a pagecache folio with a new one 809 * @old: folio to be replaced 810 * @new: folio to replace with 811 * 812 * This function replaces a folio in the pagecache with a new one. On 813 * success it acquires the pagecache reference for the new folio and 814 * drops it for the old folio. Both the old and new folios must be 815 * locked. This function does not add the new folio to the LRU, the 816 * caller must do that. 817 * 818 * The remove + add is atomic. This function cannot fail. 819 */ 820 void replace_page_cache_folio(struct folio *old, struct folio *new) 821 { 822 struct address_space *mapping = old->mapping; 823 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 824 pgoff_t offset = old->index; 825 XA_STATE(xas, &mapping->i_pages, offset); 826 827 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 828 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 829 VM_BUG_ON_FOLIO(new->mapping, new); 830 831 folio_get(new); 832 new->mapping = mapping; 833 new->index = offset; 834 835 mem_cgroup_replace_folio(old, new); 836 837 xas_lock_irq(&xas); 838 xas_store(&xas, new); 839 840 old->mapping = NULL; 841 /* hugetlb pages do not participate in page cache accounting. */ 842 if (!folio_test_hugetlb(old)) 843 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 844 if (!folio_test_hugetlb(new)) 845 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 846 if (folio_test_swapbacked(old)) 847 __lruvec_stat_sub_folio(old, NR_SHMEM); 848 if (folio_test_swapbacked(new)) 849 __lruvec_stat_add_folio(new, NR_SHMEM); 850 xas_unlock_irq(&xas); 851 if (free_folio) 852 free_folio(old); 853 folio_put(old); 854 } 855 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 856 857 noinline int __filemap_add_folio(struct address_space *mapping, 858 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 859 { 860 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 861 bool huge; 862 long nr; 863 unsigned int forder = folio_order(folio); 864 865 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 866 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 867 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 868 folio); 869 mapping_set_update(&xas, mapping); 870 871 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 872 huge = folio_test_hugetlb(folio); 873 nr = folio_nr_pages(folio); 874 875 gfp &= GFP_RECLAIM_MASK; 876 folio_ref_add(folio, nr); 877 folio->mapping = mapping; 878 folio->index = xas.xa_index; 879 880 for (;;) { 881 int order = -1; 882 void *entry, *old = NULL; 883 884 xas_lock_irq(&xas); 885 xas_for_each_conflict(&xas, entry) { 886 old = entry; 887 if (!xa_is_value(entry)) { 888 xas_set_err(&xas, -EEXIST); 889 goto unlock; 890 } 891 /* 892 * If a larger entry exists, 893 * it will be the first and only entry iterated. 894 */ 895 if (order == -1) 896 order = xas_get_order(&xas); 897 } 898 899 if (old) { 900 if (order > 0 && order > forder) { 901 unsigned int split_order = max(forder, 902 xas_try_split_min_order(order)); 903 904 /* How to handle large swap entries? */ 905 BUG_ON(shmem_mapping(mapping)); 906 907 while (order > forder) { 908 xas_set_order(&xas, index, split_order); 909 xas_try_split(&xas, old, order); 910 if (xas_error(&xas)) 911 goto unlock; 912 order = split_order; 913 split_order = 914 max(xas_try_split_min_order( 915 split_order), 916 forder); 917 } 918 xas_reset(&xas); 919 } 920 if (shadowp) 921 *shadowp = old; 922 } 923 924 xas_store(&xas, folio); 925 if (xas_error(&xas)) 926 goto unlock; 927 928 mapping->nrpages += nr; 929 930 /* hugetlb pages do not participate in page cache accounting */ 931 if (!huge) { 932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 933 if (folio_test_pmd_mappable(folio)) 934 __lruvec_stat_mod_folio(folio, 935 NR_FILE_THPS, nr); 936 } 937 938 unlock: 939 xas_unlock_irq(&xas); 940 941 if (!xas_nomem(&xas, gfp)) 942 break; 943 } 944 945 if (xas_error(&xas)) 946 goto error; 947 948 trace_mm_filemap_add_to_page_cache(folio); 949 return 0; 950 error: 951 folio->mapping = NULL; 952 /* Leave folio->index set: truncation relies upon it */ 953 folio_put_refs(folio, nr); 954 return xas_error(&xas); 955 } 956 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 957 958 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 959 pgoff_t index, gfp_t gfp) 960 { 961 void *shadow = NULL; 962 int ret; 963 964 ret = mem_cgroup_charge(folio, NULL, gfp); 965 if (ret) 966 return ret; 967 968 __folio_set_locked(folio); 969 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 970 if (unlikely(ret)) { 971 mem_cgroup_uncharge(folio); 972 __folio_clear_locked(folio); 973 } else { 974 /* 975 * The folio might have been evicted from cache only 976 * recently, in which case it should be activated like 977 * any other repeatedly accessed folio. 978 * The exception is folios getting rewritten; evicting other 979 * data from the working set, only to cache data that will 980 * get overwritten with something else, is a waste of memory. 981 */ 982 WARN_ON_ONCE(folio_test_active(folio)); 983 if (!(gfp & __GFP_WRITE) && shadow) 984 workingset_refault(folio, shadow); 985 folio_add_lru(folio); 986 } 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(filemap_add_folio); 990 991 #ifdef CONFIG_NUMA 992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 993 { 994 int n; 995 struct folio *folio; 996 997 if (cpuset_do_page_mem_spread()) { 998 unsigned int cpuset_mems_cookie; 999 do { 1000 cpuset_mems_cookie = read_mems_allowed_begin(); 1001 n = cpuset_mem_spread_node(); 1002 folio = __folio_alloc_node_noprof(gfp, order, n); 1003 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1004 1005 return folio; 1006 } 1007 return folio_alloc_noprof(gfp, order); 1008 } 1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1010 #endif 1011 1012 /* 1013 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1014 * 1015 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1016 * 1017 * @mapping1: the first mapping to lock 1018 * @mapping2: the second mapping to lock 1019 */ 1020 void filemap_invalidate_lock_two(struct address_space *mapping1, 1021 struct address_space *mapping2) 1022 { 1023 if (mapping1 > mapping2) 1024 swap(mapping1, mapping2); 1025 if (mapping1) 1026 down_write(&mapping1->invalidate_lock); 1027 if (mapping2 && mapping1 != mapping2) 1028 down_write_nested(&mapping2->invalidate_lock, 1); 1029 } 1030 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1031 1032 /* 1033 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1034 * 1035 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1036 * 1037 * @mapping1: the first mapping to unlock 1038 * @mapping2: the second mapping to unlock 1039 */ 1040 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1041 struct address_space *mapping2) 1042 { 1043 if (mapping1) 1044 up_write(&mapping1->invalidate_lock); 1045 if (mapping2 && mapping1 != mapping2) 1046 up_write(&mapping2->invalidate_lock); 1047 } 1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1049 1050 /* 1051 * In order to wait for pages to become available there must be 1052 * waitqueues associated with pages. By using a hash table of 1053 * waitqueues where the bucket discipline is to maintain all 1054 * waiters on the same queue and wake all when any of the pages 1055 * become available, and for the woken contexts to check to be 1056 * sure the appropriate page became available, this saves space 1057 * at a cost of "thundering herd" phenomena during rare hash 1058 * collisions. 1059 */ 1060 #define PAGE_WAIT_TABLE_BITS 8 1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1063 1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1065 { 1066 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1067 } 1068 1069 /* How many times do we accept lock stealing from under a waiter? */ 1070 static int sysctl_page_lock_unfairness = 5; 1071 static const struct ctl_table filemap_sysctl_table[] = { 1072 { 1073 .procname = "page_lock_unfairness", 1074 .data = &sysctl_page_lock_unfairness, 1075 .maxlen = sizeof(sysctl_page_lock_unfairness), 1076 .mode = 0644, 1077 .proc_handler = proc_dointvec_minmax, 1078 .extra1 = SYSCTL_ZERO, 1079 } 1080 }; 1081 1082 void __init pagecache_init(void) 1083 { 1084 int i; 1085 1086 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1087 init_waitqueue_head(&folio_wait_table[i]); 1088 1089 page_writeback_init(); 1090 register_sysctl_init("vm", filemap_sysctl_table); 1091 } 1092 1093 /* 1094 * The page wait code treats the "wait->flags" somewhat unusually, because 1095 * we have multiple different kinds of waits, not just the usual "exclusive" 1096 * one. 1097 * 1098 * We have: 1099 * 1100 * (a) no special bits set: 1101 * 1102 * We're just waiting for the bit to be released, and when a waker 1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1104 * and remove it from the wait queue. 1105 * 1106 * Simple and straightforward. 1107 * 1108 * (b) WQ_FLAG_EXCLUSIVE: 1109 * 1110 * The waiter is waiting to get the lock, and only one waiter should 1111 * be woken up to avoid any thundering herd behavior. We'll set the 1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1113 * 1114 * This is the traditional exclusive wait. 1115 * 1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1117 * 1118 * The waiter is waiting to get the bit, and additionally wants the 1119 * lock to be transferred to it for fair lock behavior. If the lock 1120 * cannot be taken, we stop walking the wait queue without waking 1121 * the waiter. 1122 * 1123 * This is the "fair lock handoff" case, and in addition to setting 1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1125 * that it now has the lock. 1126 */ 1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1128 { 1129 unsigned int flags; 1130 struct wait_page_key *key = arg; 1131 struct wait_page_queue *wait_page 1132 = container_of(wait, struct wait_page_queue, wait); 1133 1134 if (!wake_page_match(wait_page, key)) 1135 return 0; 1136 1137 /* 1138 * If it's a lock handoff wait, we get the bit for it, and 1139 * stop walking (and do not wake it up) if we can't. 1140 */ 1141 flags = wait->flags; 1142 if (flags & WQ_FLAG_EXCLUSIVE) { 1143 if (test_bit(key->bit_nr, &key->folio->flags)) 1144 return -1; 1145 if (flags & WQ_FLAG_CUSTOM) { 1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1147 return -1; 1148 flags |= WQ_FLAG_DONE; 1149 } 1150 } 1151 1152 /* 1153 * We are holding the wait-queue lock, but the waiter that 1154 * is waiting for this will be checking the flags without 1155 * any locking. 1156 * 1157 * So update the flags atomically, and wake up the waiter 1158 * afterwards to avoid any races. This store-release pairs 1159 * with the load-acquire in folio_wait_bit_common(). 1160 */ 1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1162 wake_up_state(wait->private, mode); 1163 1164 /* 1165 * Ok, we have successfully done what we're waiting for, 1166 * and we can unconditionally remove the wait entry. 1167 * 1168 * Note that this pairs with the "finish_wait()" in the 1169 * waiter, and has to be the absolute last thing we do. 1170 * After this list_del_init(&wait->entry) the wait entry 1171 * might be de-allocated and the process might even have 1172 * exited. 1173 */ 1174 list_del_init_careful(&wait->entry); 1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1176 } 1177 1178 static void folio_wake_bit(struct folio *folio, int bit_nr) 1179 { 1180 wait_queue_head_t *q = folio_waitqueue(folio); 1181 struct wait_page_key key; 1182 unsigned long flags; 1183 1184 key.folio = folio; 1185 key.bit_nr = bit_nr; 1186 key.page_match = 0; 1187 1188 spin_lock_irqsave(&q->lock, flags); 1189 __wake_up_locked_key(q, TASK_NORMAL, &key); 1190 1191 /* 1192 * It's possible to miss clearing waiters here, when we woke our page 1193 * waiters, but the hashed waitqueue has waiters for other pages on it. 1194 * That's okay, it's a rare case. The next waker will clear it. 1195 * 1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1197 * other), the flag may be cleared in the course of freeing the page; 1198 * but that is not required for correctness. 1199 */ 1200 if (!waitqueue_active(q) || !key.page_match) 1201 folio_clear_waiters(folio); 1202 1203 spin_unlock_irqrestore(&q->lock, flags); 1204 } 1205 1206 /* 1207 * A choice of three behaviors for folio_wait_bit_common(): 1208 */ 1209 enum behavior { 1210 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1211 * __folio_lock() waiting on then setting PG_locked. 1212 */ 1213 SHARED, /* Hold ref to page and check the bit when woken, like 1214 * folio_wait_writeback() waiting on PG_writeback. 1215 */ 1216 DROP, /* Drop ref to page before wait, no check when woken, 1217 * like folio_put_wait_locked() on PG_locked. 1218 */ 1219 }; 1220 1221 /* 1222 * Attempt to check (or get) the folio flag, and mark us done 1223 * if successful. 1224 */ 1225 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1226 struct wait_queue_entry *wait) 1227 { 1228 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1229 if (test_and_set_bit(bit_nr, &folio->flags)) 1230 return false; 1231 } else if (test_bit(bit_nr, &folio->flags)) 1232 return false; 1233 1234 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1235 return true; 1236 } 1237 1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1239 int state, enum behavior behavior) 1240 { 1241 wait_queue_head_t *q = folio_waitqueue(folio); 1242 int unfairness = sysctl_page_lock_unfairness; 1243 struct wait_page_queue wait_page; 1244 wait_queue_entry_t *wait = &wait_page.wait; 1245 bool thrashing = false; 1246 unsigned long pflags; 1247 bool in_thrashing; 1248 1249 if (bit_nr == PG_locked && 1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1251 delayacct_thrashing_start(&in_thrashing); 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.folio = folio; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the folio_set_waiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 folio_set_waiters(folio); 1285 if (!folio_trylock_flag(folio, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the folio. 1296 */ 1297 if (behavior == DROP) 1298 folio_put(folio); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the folio waiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 delayacct_thrashing_end(&in_thrashing); 1352 psi_memstall_leave(&pflags); 1353 } 1354 1355 /* 1356 * NOTE! The wait->flags weren't stable until we've done the 1357 * 'finish_wait()', and we could have exited the loop above due 1358 * to a signal, and had a wakeup event happen after the signal 1359 * test but before the 'finish_wait()'. 1360 * 1361 * So only after the finish_wait() can we reliably determine 1362 * if we got woken up or not, so we can now figure out the final 1363 * return value based on that state without races. 1364 * 1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1366 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1367 */ 1368 if (behavior == EXCLUSIVE) 1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1370 1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1372 } 1373 1374 #ifdef CONFIG_MIGRATION 1375 /** 1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1377 * @entry: migration swap entry. 1378 * @ptl: already locked ptl. This function will drop the lock. 1379 * 1380 * Wait for a migration entry referencing the given page to be removed. This is 1381 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1382 * this can be called without taking a reference on the page. Instead this 1383 * should be called while holding the ptl for the migration entry referencing 1384 * the page. 1385 * 1386 * Returns after unlocking the ptl. 1387 * 1388 * This follows the same logic as folio_wait_bit_common() so see the comments 1389 * there. 1390 */ 1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1392 __releases(ptl) 1393 { 1394 struct wait_page_queue wait_page; 1395 wait_queue_entry_t *wait = &wait_page.wait; 1396 bool thrashing = false; 1397 unsigned long pflags; 1398 bool in_thrashing; 1399 wait_queue_head_t *q; 1400 struct folio *folio = pfn_swap_entry_folio(entry); 1401 1402 q = folio_waitqueue(folio); 1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1404 delayacct_thrashing_start(&in_thrashing); 1405 psi_memstall_enter(&pflags); 1406 thrashing = true; 1407 } 1408 1409 init_wait(wait); 1410 wait->func = wake_page_function; 1411 wait_page.folio = folio; 1412 wait_page.bit_nr = PG_locked; 1413 wait->flags = 0; 1414 1415 spin_lock_irq(&q->lock); 1416 folio_set_waiters(folio); 1417 if (!folio_trylock_flag(folio, PG_locked, wait)) 1418 __add_wait_queue_entry_tail(q, wait); 1419 spin_unlock_irq(&q->lock); 1420 1421 /* 1422 * If a migration entry exists for the page the migration path must hold 1423 * a valid reference to the page, and it must take the ptl to remove the 1424 * migration entry. So the page is valid until the ptl is dropped. 1425 */ 1426 spin_unlock(ptl); 1427 1428 for (;;) { 1429 unsigned int flags; 1430 1431 set_current_state(TASK_UNINTERRUPTIBLE); 1432 1433 /* Loop until we've been woken or interrupted */ 1434 flags = smp_load_acquire(&wait->flags); 1435 if (!(flags & WQ_FLAG_WOKEN)) { 1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1437 break; 1438 1439 io_schedule(); 1440 continue; 1441 } 1442 break; 1443 } 1444 1445 finish_wait(q, wait); 1446 1447 if (thrashing) { 1448 delayacct_thrashing_end(&in_thrashing); 1449 psi_memstall_leave(&pflags); 1450 } 1451 } 1452 #endif 1453 1454 void folio_wait_bit(struct folio *folio, int bit_nr) 1455 { 1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1457 } 1458 EXPORT_SYMBOL(folio_wait_bit); 1459 1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1461 { 1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit_killable); 1465 1466 /** 1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1468 * @folio: The folio to wait for. 1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1470 * 1471 * The caller should hold a reference on @folio. They expect the page to 1472 * become unlocked relatively soon, but do not wish to hold up migration 1473 * (for example) by holding the reference while waiting for the folio to 1474 * come unlocked. After this function returns, the caller should not 1475 * dereference @folio. 1476 * 1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1478 */ 1479 static int folio_put_wait_locked(struct folio *folio, int state) 1480 { 1481 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1482 } 1483 1484 /** 1485 * folio_unlock - Unlock a locked folio. 1486 * @folio: The folio. 1487 * 1488 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_unlock(struct folio *folio) 1494 { 1495 /* Bit 7 allows x86 to check the byte's sign bit */ 1496 BUILD_BUG_ON(PG_waiters != 7); 1497 BUILD_BUG_ON(PG_locked > 7); 1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1500 folio_wake_bit(folio, PG_locked); 1501 } 1502 EXPORT_SYMBOL(folio_unlock); 1503 1504 /** 1505 * folio_end_read - End read on a folio. 1506 * @folio: The folio. 1507 * @success: True if all reads completed successfully. 1508 * 1509 * When all reads against a folio have completed, filesystems should 1510 * call this function to let the pagecache know that no more reads 1511 * are outstanding. This will unlock the folio and wake up any thread 1512 * sleeping on the lock. The folio will also be marked uptodate if all 1513 * reads succeeded. 1514 * 1515 * Context: May be called from interrupt or process context. May not be 1516 * called from NMI context. 1517 */ 1518 void folio_end_read(struct folio *folio, bool success) 1519 { 1520 unsigned long mask = 1 << PG_locked; 1521 1522 /* Must be in bottom byte for x86 to work */ 1523 BUILD_BUG_ON(PG_uptodate > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1526 1527 if (likely(success)) 1528 mask |= 1 << PG_uptodate; 1529 if (folio_xor_flags_has_waiters(folio, mask)) 1530 folio_wake_bit(folio, PG_locked); 1531 } 1532 EXPORT_SYMBOL(folio_end_read); 1533 1534 /** 1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1536 * @folio: The folio. 1537 * 1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1539 * it. The folio reference held for PG_private_2 being set is released. 1540 * 1541 * This is, for example, used when a netfs folio is being written to a local 1542 * disk cache, thereby allowing writes to the cache for the same folio to be 1543 * serialised. 1544 */ 1545 void folio_end_private_2(struct folio *folio) 1546 { 1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1549 folio_wake_bit(folio, PG_private_2); 1550 folio_put(folio); 1551 } 1552 EXPORT_SYMBOL(folio_end_private_2); 1553 1554 /** 1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1556 * @folio: The folio to wait on. 1557 * 1558 * Wait for PG_private_2 to be cleared on a folio. 1559 */ 1560 void folio_wait_private_2(struct folio *folio) 1561 { 1562 while (folio_test_private_2(folio)) 1563 folio_wait_bit(folio, PG_private_2); 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2); 1566 1567 /** 1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1572 * received by the calling task. 1573 * 1574 * Return: 1575 * - 0 if successful. 1576 * - -EINTR if a fatal signal was encountered. 1577 */ 1578 int folio_wait_private_2_killable(struct folio *folio) 1579 { 1580 int ret = 0; 1581 1582 while (folio_test_private_2(folio)) { 1583 ret = folio_wait_bit_killable(folio, PG_private_2); 1584 if (ret < 0) 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(folio_wait_private_2_killable); 1591 1592 static void filemap_end_dropbehind(struct folio *folio) 1593 { 1594 struct address_space *mapping = folio->mapping; 1595 1596 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1597 1598 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 1599 return; 1600 if (!folio_test_clear_dropbehind(folio)) 1601 return; 1602 if (mapping) 1603 folio_unmap_invalidate(mapping, folio, 0); 1604 } 1605 1606 /* 1607 * If folio was marked as dropbehind, then pages should be dropped when writeback 1608 * completes. Do that now. If we fail, it's likely because of a big folio - 1609 * just reset dropbehind for that case and latter completions should invalidate. 1610 */ 1611 static void filemap_end_dropbehind_write(struct folio *folio) 1612 { 1613 if (!folio_test_dropbehind(folio)) 1614 return; 1615 1616 /* 1617 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1618 * but can happen if normal writeback just happens to find dirty folios 1619 * that were created as part of uncached writeback, and that writeback 1620 * would otherwise not need non-IRQ handling. Just skip the 1621 * invalidation in that case. 1622 */ 1623 if (in_task() && folio_trylock(folio)) { 1624 filemap_end_dropbehind(folio); 1625 folio_unlock(folio); 1626 } 1627 } 1628 1629 /** 1630 * folio_end_writeback - End writeback against a folio. 1631 * @folio: The folio. 1632 * 1633 * The folio must actually be under writeback. 1634 * 1635 * Context: May be called from process or interrupt context. 1636 */ 1637 void folio_end_writeback(struct folio *folio) 1638 { 1639 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1640 1641 /* 1642 * folio_test_clear_reclaim() could be used here but it is an 1643 * atomic operation and overkill in this particular case. Failing 1644 * to shuffle a folio marked for immediate reclaim is too mild 1645 * a gain to justify taking an atomic operation penalty at the 1646 * end of every folio writeback. 1647 */ 1648 if (folio_test_reclaim(folio)) { 1649 folio_clear_reclaim(folio); 1650 folio_rotate_reclaimable(folio); 1651 } 1652 1653 /* 1654 * Writeback does not hold a folio reference of its own, relying 1655 * on truncation to wait for the clearing of PG_writeback. 1656 * But here we must make sure that the folio is not freed and 1657 * reused before the folio_wake_bit(). 1658 */ 1659 folio_get(folio); 1660 if (__folio_end_writeback(folio)) 1661 folio_wake_bit(folio, PG_writeback); 1662 1663 filemap_end_dropbehind_write(folio); 1664 acct_reclaim_writeback(folio); 1665 folio_put(folio); 1666 } 1667 EXPORT_SYMBOL(folio_end_writeback); 1668 1669 /** 1670 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1671 * @folio: The folio to lock 1672 */ 1673 void __folio_lock(struct folio *folio) 1674 { 1675 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1676 EXCLUSIVE); 1677 } 1678 EXPORT_SYMBOL(__folio_lock); 1679 1680 int __folio_lock_killable(struct folio *folio) 1681 { 1682 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1683 EXCLUSIVE); 1684 } 1685 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1686 1687 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1688 { 1689 struct wait_queue_head *q = folio_waitqueue(folio); 1690 int ret; 1691 1692 wait->folio = folio; 1693 wait->bit_nr = PG_locked; 1694 1695 spin_lock_irq(&q->lock); 1696 __add_wait_queue_entry_tail(q, &wait->wait); 1697 folio_set_waiters(folio); 1698 ret = !folio_trylock(folio); 1699 /* 1700 * If we were successful now, we know we're still on the 1701 * waitqueue as we're still under the lock. This means it's 1702 * safe to remove and return success, we know the callback 1703 * isn't going to trigger. 1704 */ 1705 if (!ret) 1706 __remove_wait_queue(q, &wait->wait); 1707 else 1708 ret = -EIOCBQUEUED; 1709 spin_unlock_irq(&q->lock); 1710 return ret; 1711 } 1712 1713 /* 1714 * Return values: 1715 * 0 - folio is locked. 1716 * non-zero - folio is not locked. 1717 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1718 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1719 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1720 * 1721 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1722 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1723 */ 1724 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1725 { 1726 unsigned int flags = vmf->flags; 1727 1728 if (fault_flag_allow_retry_first(flags)) { 1729 /* 1730 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1731 * released even though returning VM_FAULT_RETRY. 1732 */ 1733 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1734 return VM_FAULT_RETRY; 1735 1736 release_fault_lock(vmf); 1737 if (flags & FAULT_FLAG_KILLABLE) 1738 folio_wait_locked_killable(folio); 1739 else 1740 folio_wait_locked(folio); 1741 return VM_FAULT_RETRY; 1742 } 1743 if (flags & FAULT_FLAG_KILLABLE) { 1744 bool ret; 1745 1746 ret = __folio_lock_killable(folio); 1747 if (ret) { 1748 release_fault_lock(vmf); 1749 return VM_FAULT_RETRY; 1750 } 1751 } else { 1752 __folio_lock(folio); 1753 } 1754 1755 return 0; 1756 } 1757 1758 /** 1759 * page_cache_next_miss() - Find the next gap in the page cache. 1760 * @mapping: Mapping. 1761 * @index: Index. 1762 * @max_scan: Maximum range to search. 1763 * 1764 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1765 * gap with the lowest index. 1766 * 1767 * This function may be called under the rcu_read_lock. However, this will 1768 * not atomically search a snapshot of the cache at a single point in time. 1769 * For example, if a gap is created at index 5, then subsequently a gap is 1770 * created at index 10, page_cache_next_miss covering both indices may 1771 * return 10 if called under the rcu_read_lock. 1772 * 1773 * Return: The index of the gap if found, otherwise an index outside the 1774 * range specified (in which case 'return - index >= max_scan' will be true). 1775 * In the rare case of index wrap-around, 0 will be returned. 1776 */ 1777 pgoff_t page_cache_next_miss(struct address_space *mapping, 1778 pgoff_t index, unsigned long max_scan) 1779 { 1780 XA_STATE(xas, &mapping->i_pages, index); 1781 1782 while (max_scan--) { 1783 void *entry = xas_next(&xas); 1784 if (!entry || xa_is_value(entry)) 1785 return xas.xa_index; 1786 if (xas.xa_index == 0) 1787 return 0; 1788 } 1789 1790 return index + max_scan; 1791 } 1792 EXPORT_SYMBOL(page_cache_next_miss); 1793 1794 /** 1795 * page_cache_prev_miss() - Find the previous gap in the page cache. 1796 * @mapping: Mapping. 1797 * @index: Index. 1798 * @max_scan: Maximum range to search. 1799 * 1800 * Search the range [max(index - max_scan + 1, 0), index] for the 1801 * gap with the highest index. 1802 * 1803 * This function may be called under the rcu_read_lock. However, this will 1804 * not atomically search a snapshot of the cache at a single point in time. 1805 * For example, if a gap is created at index 10, then subsequently a gap is 1806 * created at index 5, page_cache_prev_miss() covering both indices may 1807 * return 5 if called under the rcu_read_lock. 1808 * 1809 * Return: The index of the gap if found, otherwise an index outside the 1810 * range specified (in which case 'index - return >= max_scan' will be true). 1811 * In the rare case of wrap-around, ULONG_MAX will be returned. 1812 */ 1813 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1814 pgoff_t index, unsigned long max_scan) 1815 { 1816 XA_STATE(xas, &mapping->i_pages, index); 1817 1818 while (max_scan--) { 1819 void *entry = xas_prev(&xas); 1820 if (!entry || xa_is_value(entry)) 1821 break; 1822 if (xas.xa_index == ULONG_MAX) 1823 break; 1824 } 1825 1826 return xas.xa_index; 1827 } 1828 EXPORT_SYMBOL(page_cache_prev_miss); 1829 1830 /* 1831 * Lockless page cache protocol: 1832 * On the lookup side: 1833 * 1. Load the folio from i_pages 1834 * 2. Increment the refcount if it's not zero 1835 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1836 * 1837 * On the removal side: 1838 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1839 * B. Remove the page from i_pages 1840 * C. Return the page to the page allocator 1841 * 1842 * This means that any page may have its reference count temporarily 1843 * increased by a speculative page cache (or GUP-fast) lookup as it can 1844 * be allocated by another user before the RCU grace period expires. 1845 * Because the refcount temporarily acquired here may end up being the 1846 * last refcount on the page, any page allocation must be freeable by 1847 * folio_put(). 1848 */ 1849 1850 /* 1851 * filemap_get_entry - Get a page cache entry. 1852 * @mapping: the address_space to search 1853 * @index: The page cache index. 1854 * 1855 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1856 * it is returned with an increased refcount. If it is a shadow entry 1857 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1858 * it is returned without further action. 1859 * 1860 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1861 */ 1862 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1863 { 1864 XA_STATE(xas, &mapping->i_pages, index); 1865 struct folio *folio; 1866 1867 rcu_read_lock(); 1868 repeat: 1869 xas_reset(&xas); 1870 folio = xas_load(&xas); 1871 if (xas_retry(&xas, folio)) 1872 goto repeat; 1873 /* 1874 * A shadow entry of a recently evicted page, or a swap entry from 1875 * shmem/tmpfs. Return it without attempting to raise page count. 1876 */ 1877 if (!folio || xa_is_value(folio)) 1878 goto out; 1879 1880 if (!folio_try_get(folio)) 1881 goto repeat; 1882 1883 if (unlikely(folio != xas_reload(&xas))) { 1884 folio_put(folio); 1885 goto repeat; 1886 } 1887 out: 1888 rcu_read_unlock(); 1889 1890 return folio; 1891 } 1892 1893 /** 1894 * __filemap_get_folio - Find and get a reference to a folio. 1895 * @mapping: The address_space to search. 1896 * @index: The page index. 1897 * @fgp_flags: %FGP flags modify how the folio is returned. 1898 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1899 * 1900 * Looks up the page cache entry at @mapping & @index. 1901 * 1902 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1903 * if the %GFP flags specified for %FGP_CREAT are atomic. 1904 * 1905 * If this function returns a folio, it is returned with an increased refcount. 1906 * 1907 * Return: The found folio or an ERR_PTR() otherwise. 1908 */ 1909 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1910 fgf_t fgp_flags, gfp_t gfp) 1911 { 1912 struct folio *folio; 1913 1914 repeat: 1915 folio = filemap_get_entry(mapping, index); 1916 if (xa_is_value(folio)) 1917 folio = NULL; 1918 if (!folio) 1919 goto no_page; 1920 1921 if (fgp_flags & FGP_LOCK) { 1922 if (fgp_flags & FGP_NOWAIT) { 1923 if (!folio_trylock(folio)) { 1924 folio_put(folio); 1925 return ERR_PTR(-EAGAIN); 1926 } 1927 } else { 1928 folio_lock(folio); 1929 } 1930 1931 /* Has the page been truncated? */ 1932 if (unlikely(folio->mapping != mapping)) { 1933 folio_unlock(folio); 1934 folio_put(folio); 1935 goto repeat; 1936 } 1937 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1938 } 1939 1940 if (fgp_flags & FGP_ACCESSED) 1941 folio_mark_accessed(folio); 1942 else if (fgp_flags & FGP_WRITE) { 1943 /* Clear idle flag for buffer write */ 1944 if (folio_test_idle(folio)) 1945 folio_clear_idle(folio); 1946 } 1947 1948 if (fgp_flags & FGP_STABLE) 1949 folio_wait_stable(folio); 1950 no_page: 1951 if (!folio && (fgp_flags & FGP_CREAT)) { 1952 unsigned int min_order = mapping_min_folio_order(mapping); 1953 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1954 int err; 1955 index = mapping_align_index(mapping, index); 1956 1957 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1958 gfp |= __GFP_WRITE; 1959 if (fgp_flags & FGP_NOFS) 1960 gfp &= ~__GFP_FS; 1961 if (fgp_flags & FGP_NOWAIT) { 1962 gfp &= ~GFP_KERNEL; 1963 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1964 } 1965 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1966 fgp_flags |= FGP_LOCK; 1967 1968 if (order > mapping_max_folio_order(mapping)) 1969 order = mapping_max_folio_order(mapping); 1970 /* If we're not aligned, allocate a smaller folio */ 1971 if (index & ((1UL << order) - 1)) 1972 order = __ffs(index); 1973 1974 do { 1975 gfp_t alloc_gfp = gfp; 1976 1977 err = -ENOMEM; 1978 if (order > min_order) 1979 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1980 folio = filemap_alloc_folio(alloc_gfp, order); 1981 if (!folio) 1982 continue; 1983 1984 /* Init accessed so avoid atomic mark_page_accessed later */ 1985 if (fgp_flags & FGP_ACCESSED) 1986 __folio_set_referenced(folio); 1987 if (fgp_flags & FGP_DONTCACHE) 1988 __folio_set_dropbehind(folio); 1989 1990 err = filemap_add_folio(mapping, folio, index, gfp); 1991 if (!err) 1992 break; 1993 folio_put(folio); 1994 folio = NULL; 1995 } while (order-- > min_order); 1996 1997 if (err == -EEXIST) 1998 goto repeat; 1999 if (err) { 2000 /* 2001 * When NOWAIT I/O fails to allocate folios this could 2002 * be due to a nonblocking memory allocation and not 2003 * because the system actually is out of memory. 2004 * Return -EAGAIN so that there caller retries in a 2005 * blocking fashion instead of propagating -ENOMEM 2006 * to the application. 2007 */ 2008 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2009 err = -EAGAIN; 2010 return ERR_PTR(err); 2011 } 2012 /* 2013 * filemap_add_folio locks the page, and for mmap 2014 * we expect an unlocked page. 2015 */ 2016 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2017 folio_unlock(folio); 2018 } 2019 2020 if (!folio) 2021 return ERR_PTR(-ENOENT); 2022 /* not an uncached lookup, clear uncached if set */ 2023 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2024 folio_clear_dropbehind(folio); 2025 return folio; 2026 } 2027 EXPORT_SYMBOL(__filemap_get_folio); 2028 2029 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2030 xa_mark_t mark) 2031 { 2032 struct folio *folio; 2033 2034 retry: 2035 if (mark == XA_PRESENT) 2036 folio = xas_find(xas, max); 2037 else 2038 folio = xas_find_marked(xas, max, mark); 2039 2040 if (xas_retry(xas, folio)) 2041 goto retry; 2042 /* 2043 * A shadow entry of a recently evicted page, a swap 2044 * entry from shmem/tmpfs or a DAX entry. Return it 2045 * without attempting to raise page count. 2046 */ 2047 if (!folio || xa_is_value(folio)) 2048 return folio; 2049 2050 if (!folio_try_get(folio)) 2051 goto reset; 2052 2053 if (unlikely(folio != xas_reload(xas))) { 2054 folio_put(folio); 2055 goto reset; 2056 } 2057 2058 return folio; 2059 reset: 2060 xas_reset(xas); 2061 goto retry; 2062 } 2063 2064 /** 2065 * find_get_entries - gang pagecache lookup 2066 * @mapping: The address_space to search 2067 * @start: The starting page cache index 2068 * @end: The final page index (inclusive). 2069 * @fbatch: Where the resulting entries are placed. 2070 * @indices: The cache indices corresponding to the entries in @entries 2071 * 2072 * find_get_entries() will search for and return a batch of entries in 2073 * the mapping. The entries are placed in @fbatch. find_get_entries() 2074 * takes a reference on any actual folios it returns. 2075 * 2076 * The entries have ascending indexes. The indices may not be consecutive 2077 * due to not-present entries or large folios. 2078 * 2079 * Any shadow entries of evicted folios, or swap entries from 2080 * shmem/tmpfs, are included in the returned array. 2081 * 2082 * Return: The number of entries which were found. 2083 */ 2084 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2085 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2086 { 2087 XA_STATE(xas, &mapping->i_pages, *start); 2088 struct folio *folio; 2089 2090 rcu_read_lock(); 2091 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2092 indices[fbatch->nr] = xas.xa_index; 2093 if (!folio_batch_add(fbatch, folio)) 2094 break; 2095 } 2096 2097 if (folio_batch_count(fbatch)) { 2098 unsigned long nr; 2099 int idx = folio_batch_count(fbatch) - 1; 2100 2101 folio = fbatch->folios[idx]; 2102 if (!xa_is_value(folio)) 2103 nr = folio_nr_pages(folio); 2104 else 2105 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2106 *start = round_down(indices[idx] + nr, nr); 2107 } 2108 rcu_read_unlock(); 2109 2110 return folio_batch_count(fbatch); 2111 } 2112 2113 /** 2114 * find_lock_entries - Find a batch of pagecache entries. 2115 * @mapping: The address_space to search. 2116 * @start: The starting page cache index. 2117 * @end: The final page index (inclusive). 2118 * @fbatch: Where the resulting entries are placed. 2119 * @indices: The cache indices of the entries in @fbatch. 2120 * 2121 * find_lock_entries() will return a batch of entries from @mapping. 2122 * Swap, shadow and DAX entries are included. Folios are returned 2123 * locked and with an incremented refcount. Folios which are locked 2124 * by somebody else or under writeback are skipped. Folios which are 2125 * partially outside the range are not returned. 2126 * 2127 * The entries have ascending indexes. The indices may not be consecutive 2128 * due to not-present entries, large folios, folios which could not be 2129 * locked or folios under writeback. 2130 * 2131 * Return: The number of entries which were found. 2132 */ 2133 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2134 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2135 { 2136 XA_STATE(xas, &mapping->i_pages, *start); 2137 struct folio *folio; 2138 2139 rcu_read_lock(); 2140 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2141 unsigned long base; 2142 unsigned long nr; 2143 2144 if (!xa_is_value(folio)) { 2145 nr = folio_nr_pages(folio); 2146 base = folio->index; 2147 /* Omit large folio which begins before the start */ 2148 if (base < *start) 2149 goto put; 2150 /* Omit large folio which extends beyond the end */ 2151 if (base + nr - 1 > end) 2152 goto put; 2153 if (!folio_trylock(folio)) 2154 goto put; 2155 if (folio->mapping != mapping || 2156 folio_test_writeback(folio)) 2157 goto unlock; 2158 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2159 folio); 2160 } else { 2161 nr = 1 << xas_get_order(&xas); 2162 base = xas.xa_index & ~(nr - 1); 2163 /* Omit order>0 value which begins before the start */ 2164 if (base < *start) 2165 continue; 2166 /* Omit order>0 value which extends beyond the end */ 2167 if (base + nr - 1 > end) 2168 break; 2169 } 2170 2171 /* Update start now so that last update is correct on return */ 2172 *start = base + nr; 2173 indices[fbatch->nr] = xas.xa_index; 2174 if (!folio_batch_add(fbatch, folio)) 2175 break; 2176 continue; 2177 unlock: 2178 folio_unlock(folio); 2179 put: 2180 folio_put(folio); 2181 } 2182 rcu_read_unlock(); 2183 2184 return folio_batch_count(fbatch); 2185 } 2186 2187 /** 2188 * filemap_get_folios - Get a batch of folios 2189 * @mapping: The address_space to search 2190 * @start: The starting page index 2191 * @end: The final page index (inclusive) 2192 * @fbatch: The batch to fill. 2193 * 2194 * Search for and return a batch of folios in the mapping starting at 2195 * index @start and up to index @end (inclusive). The folios are returned 2196 * in @fbatch with an elevated reference count. 2197 * 2198 * Return: The number of folios which were found. 2199 * We also update @start to index the next folio for the traversal. 2200 */ 2201 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2202 pgoff_t end, struct folio_batch *fbatch) 2203 { 2204 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2205 } 2206 EXPORT_SYMBOL(filemap_get_folios); 2207 2208 /** 2209 * filemap_get_folios_contig - Get a batch of contiguous folios 2210 * @mapping: The address_space to search 2211 * @start: The starting page index 2212 * @end: The final page index (inclusive) 2213 * @fbatch: The batch to fill 2214 * 2215 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2216 * except the returned folios are guaranteed to be contiguous. This may 2217 * not return all contiguous folios if the batch gets filled up. 2218 * 2219 * Return: The number of folios found. 2220 * Also update @start to be positioned for traversal of the next folio. 2221 */ 2222 2223 unsigned filemap_get_folios_contig(struct address_space *mapping, 2224 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2225 { 2226 XA_STATE(xas, &mapping->i_pages, *start); 2227 unsigned long nr; 2228 struct folio *folio; 2229 2230 rcu_read_lock(); 2231 2232 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2233 folio = xas_next(&xas)) { 2234 if (xas_retry(&xas, folio)) 2235 continue; 2236 /* 2237 * If the entry has been swapped out, we can stop looking. 2238 * No current caller is looking for DAX entries. 2239 */ 2240 if (xa_is_value(folio)) 2241 goto update_start; 2242 2243 /* If we landed in the middle of a THP, continue at its end. */ 2244 if (xa_is_sibling(folio)) 2245 goto update_start; 2246 2247 if (!folio_try_get(folio)) 2248 goto retry; 2249 2250 if (unlikely(folio != xas_reload(&xas))) 2251 goto put_folio; 2252 2253 if (!folio_batch_add(fbatch, folio)) { 2254 nr = folio_nr_pages(folio); 2255 *start = folio->index + nr; 2256 goto out; 2257 } 2258 xas_advance(&xas, folio_next_index(folio) - 1); 2259 continue; 2260 put_folio: 2261 folio_put(folio); 2262 2263 retry: 2264 xas_reset(&xas); 2265 } 2266 2267 update_start: 2268 nr = folio_batch_count(fbatch); 2269 2270 if (nr) { 2271 folio = fbatch->folios[nr - 1]; 2272 *start = folio_next_index(folio); 2273 } 2274 out: 2275 rcu_read_unlock(); 2276 return folio_batch_count(fbatch); 2277 } 2278 EXPORT_SYMBOL(filemap_get_folios_contig); 2279 2280 /** 2281 * filemap_get_folios_tag - Get a batch of folios matching @tag 2282 * @mapping: The address_space to search 2283 * @start: The starting page index 2284 * @end: The final page index (inclusive) 2285 * @tag: The tag index 2286 * @fbatch: The batch to fill 2287 * 2288 * The first folio may start before @start; if it does, it will contain 2289 * @start. The final folio may extend beyond @end; if it does, it will 2290 * contain @end. The folios have ascending indices. There may be gaps 2291 * between the folios if there are indices which have no folio in the 2292 * page cache. If folios are added to or removed from the page cache 2293 * while this is running, they may or may not be found by this call. 2294 * Only returns folios that are tagged with @tag. 2295 * 2296 * Return: The number of folios found. 2297 * Also update @start to index the next folio for traversal. 2298 */ 2299 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2300 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2301 { 2302 XA_STATE(xas, &mapping->i_pages, *start); 2303 struct folio *folio; 2304 2305 rcu_read_lock(); 2306 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2307 /* 2308 * Shadow entries should never be tagged, but this iteration 2309 * is lockless so there is a window for page reclaim to evict 2310 * a page we saw tagged. Skip over it. 2311 */ 2312 if (xa_is_value(folio)) 2313 continue; 2314 if (!folio_batch_add(fbatch, folio)) { 2315 unsigned long nr = folio_nr_pages(folio); 2316 *start = folio->index + nr; 2317 goto out; 2318 } 2319 } 2320 /* 2321 * We come here when there is no page beyond @end. We take care to not 2322 * overflow the index @start as it confuses some of the callers. This 2323 * breaks the iteration when there is a page at index -1 but that is 2324 * already broke anyway. 2325 */ 2326 if (end == (pgoff_t)-1) 2327 *start = (pgoff_t)-1; 2328 else 2329 *start = end + 1; 2330 out: 2331 rcu_read_unlock(); 2332 2333 return folio_batch_count(fbatch); 2334 } 2335 EXPORT_SYMBOL(filemap_get_folios_tag); 2336 2337 /* 2338 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2339 * a _large_ part of the i/o request. Imagine the worst scenario: 2340 * 2341 * ---R__________________________________________B__________ 2342 * ^ reading here ^ bad block(assume 4k) 2343 * 2344 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2345 * => failing the whole request => read(R) => read(R+1) => 2346 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2347 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2348 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2349 * 2350 * It is going insane. Fix it by quickly scaling down the readahead size. 2351 */ 2352 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2353 { 2354 ra->ra_pages /= 4; 2355 } 2356 2357 /* 2358 * filemap_get_read_batch - Get a batch of folios for read 2359 * 2360 * Get a batch of folios which represent a contiguous range of bytes in 2361 * the file. No exceptional entries will be returned. If @index is in 2362 * the middle of a folio, the entire folio will be returned. The last 2363 * folio in the batch may have the readahead flag set or the uptodate flag 2364 * clear so that the caller can take the appropriate action. 2365 */ 2366 static void filemap_get_read_batch(struct address_space *mapping, 2367 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2368 { 2369 XA_STATE(xas, &mapping->i_pages, index); 2370 struct folio *folio; 2371 2372 rcu_read_lock(); 2373 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2374 if (xas_retry(&xas, folio)) 2375 continue; 2376 if (xas.xa_index > max || xa_is_value(folio)) 2377 break; 2378 if (xa_is_sibling(folio)) 2379 break; 2380 if (!folio_try_get(folio)) 2381 goto retry; 2382 2383 if (unlikely(folio != xas_reload(&xas))) 2384 goto put_folio; 2385 2386 if (!folio_batch_add(fbatch, folio)) 2387 break; 2388 if (!folio_test_uptodate(folio)) 2389 break; 2390 if (folio_test_readahead(folio)) 2391 break; 2392 xas_advance(&xas, folio_next_index(folio) - 1); 2393 continue; 2394 put_folio: 2395 folio_put(folio); 2396 retry: 2397 xas_reset(&xas); 2398 } 2399 rcu_read_unlock(); 2400 } 2401 2402 static int filemap_read_folio(struct file *file, filler_t filler, 2403 struct folio *folio) 2404 { 2405 bool workingset = folio_test_workingset(folio); 2406 unsigned long pflags; 2407 int error; 2408 2409 /* Start the actual read. The read will unlock the page. */ 2410 if (unlikely(workingset)) 2411 psi_memstall_enter(&pflags); 2412 error = filler(file, folio); 2413 if (unlikely(workingset)) 2414 psi_memstall_leave(&pflags); 2415 if (error) 2416 return error; 2417 2418 error = folio_wait_locked_killable(folio); 2419 if (error) 2420 return error; 2421 if (folio_test_uptodate(folio)) 2422 return 0; 2423 if (file) 2424 shrink_readahead_size_eio(&file->f_ra); 2425 return -EIO; 2426 } 2427 2428 static bool filemap_range_uptodate(struct address_space *mapping, 2429 loff_t pos, size_t count, struct folio *folio, 2430 bool need_uptodate) 2431 { 2432 if (folio_test_uptodate(folio)) 2433 return true; 2434 /* pipes can't handle partially uptodate pages */ 2435 if (need_uptodate) 2436 return false; 2437 if (!mapping->a_ops->is_partially_uptodate) 2438 return false; 2439 if (mapping->host->i_blkbits >= folio_shift(folio)) 2440 return false; 2441 2442 if (folio_pos(folio) > pos) { 2443 count -= folio_pos(folio) - pos; 2444 pos = 0; 2445 } else { 2446 pos -= folio_pos(folio); 2447 } 2448 2449 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2450 } 2451 2452 static int filemap_update_page(struct kiocb *iocb, 2453 struct address_space *mapping, size_t count, 2454 struct folio *folio, bool need_uptodate) 2455 { 2456 int error; 2457 2458 if (iocb->ki_flags & IOCB_NOWAIT) { 2459 if (!filemap_invalidate_trylock_shared(mapping)) 2460 return -EAGAIN; 2461 } else { 2462 filemap_invalidate_lock_shared(mapping); 2463 } 2464 2465 if (!folio_trylock(folio)) { 2466 error = -EAGAIN; 2467 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2468 goto unlock_mapping; 2469 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2470 filemap_invalidate_unlock_shared(mapping); 2471 /* 2472 * This is where we usually end up waiting for a 2473 * previously submitted readahead to finish. 2474 */ 2475 folio_put_wait_locked(folio, TASK_KILLABLE); 2476 return AOP_TRUNCATED_PAGE; 2477 } 2478 error = __folio_lock_async(folio, iocb->ki_waitq); 2479 if (error) 2480 goto unlock_mapping; 2481 } 2482 2483 error = AOP_TRUNCATED_PAGE; 2484 if (!folio->mapping) 2485 goto unlock; 2486 2487 error = 0; 2488 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2489 need_uptodate)) 2490 goto unlock; 2491 2492 error = -EAGAIN; 2493 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2494 goto unlock; 2495 2496 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2497 folio); 2498 goto unlock_mapping; 2499 unlock: 2500 folio_unlock(folio); 2501 unlock_mapping: 2502 filemap_invalidate_unlock_shared(mapping); 2503 if (error == AOP_TRUNCATED_PAGE) 2504 folio_put(folio); 2505 return error; 2506 } 2507 2508 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2509 { 2510 struct address_space *mapping = iocb->ki_filp->f_mapping; 2511 struct folio *folio; 2512 int error; 2513 unsigned int min_order = mapping_min_folio_order(mapping); 2514 pgoff_t index; 2515 2516 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2517 return -EAGAIN; 2518 2519 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2520 if (!folio) 2521 return -ENOMEM; 2522 if (iocb->ki_flags & IOCB_DONTCACHE) 2523 __folio_set_dropbehind(folio); 2524 2525 /* 2526 * Protect against truncate / hole punch. Grabbing invalidate_lock 2527 * here assures we cannot instantiate and bring uptodate new 2528 * pagecache folios after evicting page cache during truncate 2529 * and before actually freeing blocks. Note that we could 2530 * release invalidate_lock after inserting the folio into 2531 * the page cache as the locked folio would then be enough to 2532 * synchronize with hole punching. But there are code paths 2533 * such as filemap_update_page() filling in partially uptodate 2534 * pages or ->readahead() that need to hold invalidate_lock 2535 * while mapping blocks for IO so let's hold the lock here as 2536 * well to keep locking rules simple. 2537 */ 2538 filemap_invalidate_lock_shared(mapping); 2539 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2540 error = filemap_add_folio(mapping, folio, index, 2541 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2542 if (error == -EEXIST) 2543 error = AOP_TRUNCATED_PAGE; 2544 if (error) 2545 goto error; 2546 2547 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2548 folio); 2549 if (error) 2550 goto error; 2551 2552 filemap_invalidate_unlock_shared(mapping); 2553 folio_batch_add(fbatch, folio); 2554 return 0; 2555 error: 2556 filemap_invalidate_unlock_shared(mapping); 2557 folio_put(folio); 2558 return error; 2559 } 2560 2561 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2562 struct address_space *mapping, struct folio *folio, 2563 pgoff_t last_index) 2564 { 2565 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2566 2567 if (iocb->ki_flags & IOCB_NOIO) 2568 return -EAGAIN; 2569 if (iocb->ki_flags & IOCB_DONTCACHE) 2570 ractl.dropbehind = 1; 2571 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2572 return 0; 2573 } 2574 2575 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2576 struct folio_batch *fbatch, bool need_uptodate) 2577 { 2578 struct file *filp = iocb->ki_filp; 2579 struct address_space *mapping = filp->f_mapping; 2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2581 pgoff_t last_index; 2582 struct folio *folio; 2583 unsigned int flags; 2584 int err = 0; 2585 2586 /* "last_index" is the index of the page beyond the end of the read */ 2587 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2588 retry: 2589 if (fatal_signal_pending(current)) 2590 return -EINTR; 2591 2592 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2593 if (!folio_batch_count(fbatch)) { 2594 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2595 2596 if (iocb->ki_flags & IOCB_NOIO) 2597 return -EAGAIN; 2598 if (iocb->ki_flags & IOCB_NOWAIT) 2599 flags = memalloc_noio_save(); 2600 if (iocb->ki_flags & IOCB_DONTCACHE) 2601 ractl.dropbehind = 1; 2602 page_cache_sync_ra(&ractl, last_index - index); 2603 if (iocb->ki_flags & IOCB_NOWAIT) 2604 memalloc_noio_restore(flags); 2605 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2606 } 2607 if (!folio_batch_count(fbatch)) { 2608 err = filemap_create_folio(iocb, fbatch); 2609 if (err == AOP_TRUNCATED_PAGE) 2610 goto retry; 2611 return err; 2612 } 2613 2614 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2615 if (folio_test_readahead(folio)) { 2616 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2617 if (err) 2618 goto err; 2619 } 2620 if (!folio_test_uptodate(folio)) { 2621 if ((iocb->ki_flags & IOCB_WAITQ) && 2622 folio_batch_count(fbatch) > 1) 2623 iocb->ki_flags |= IOCB_NOWAIT; 2624 err = filemap_update_page(iocb, mapping, count, folio, 2625 need_uptodate); 2626 if (err) 2627 goto err; 2628 } 2629 2630 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2631 return 0; 2632 err: 2633 if (err < 0) 2634 folio_put(folio); 2635 if (likely(--fbatch->nr)) 2636 return 0; 2637 if (err == AOP_TRUNCATED_PAGE) 2638 goto retry; 2639 return err; 2640 } 2641 2642 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2643 { 2644 unsigned int shift = folio_shift(folio); 2645 2646 return (pos1 >> shift == pos2 >> shift); 2647 } 2648 2649 static void filemap_end_dropbehind_read(struct folio *folio) 2650 { 2651 if (!folio_test_dropbehind(folio)) 2652 return; 2653 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2654 return; 2655 if (folio_trylock(folio)) { 2656 filemap_end_dropbehind(folio); 2657 folio_unlock(folio); 2658 } 2659 } 2660 2661 /** 2662 * filemap_read - Read data from the page cache. 2663 * @iocb: The iocb to read. 2664 * @iter: Destination for the data. 2665 * @already_read: Number of bytes already read by the caller. 2666 * 2667 * Copies data from the page cache. If the data is not currently present, 2668 * uses the readahead and read_folio address_space operations to fetch it. 2669 * 2670 * Return: Total number of bytes copied, including those already read by 2671 * the caller. If an error happens before any bytes are copied, returns 2672 * a negative error number. 2673 */ 2674 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2675 ssize_t already_read) 2676 { 2677 struct file *filp = iocb->ki_filp; 2678 struct file_ra_state *ra = &filp->f_ra; 2679 struct address_space *mapping = filp->f_mapping; 2680 struct inode *inode = mapping->host; 2681 struct folio_batch fbatch; 2682 int i, error = 0; 2683 bool writably_mapped; 2684 loff_t isize, end_offset; 2685 loff_t last_pos = ra->prev_pos; 2686 2687 if (unlikely(iocb->ki_pos < 0)) 2688 return -EINVAL; 2689 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2690 return 0; 2691 if (unlikely(!iov_iter_count(iter))) 2692 return 0; 2693 2694 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2695 folio_batch_init(&fbatch); 2696 2697 do { 2698 cond_resched(); 2699 2700 /* 2701 * If we've already successfully copied some data, then we 2702 * can no longer safely return -EIOCBQUEUED. Hence mark 2703 * an async read NOWAIT at that point. 2704 */ 2705 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2706 iocb->ki_flags |= IOCB_NOWAIT; 2707 2708 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2709 break; 2710 2711 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2712 if (error < 0) 2713 break; 2714 2715 /* 2716 * i_size must be checked after we know the pages are Uptodate. 2717 * 2718 * Checking i_size after the check allows us to calculate 2719 * the correct value for "nr", which means the zero-filled 2720 * part of the page is not copied back to userspace (unless 2721 * another truncate extends the file - this is desired though). 2722 */ 2723 isize = i_size_read(inode); 2724 if (unlikely(iocb->ki_pos >= isize)) 2725 goto put_folios; 2726 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2727 2728 /* 2729 * Once we start copying data, we don't want to be touching any 2730 * cachelines that might be contended: 2731 */ 2732 writably_mapped = mapping_writably_mapped(mapping); 2733 2734 /* 2735 * When a read accesses the same folio several times, only 2736 * mark it as accessed the first time. 2737 */ 2738 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2739 fbatch.folios[0])) 2740 folio_mark_accessed(fbatch.folios[0]); 2741 2742 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2743 struct folio *folio = fbatch.folios[i]; 2744 size_t fsize = folio_size(folio); 2745 size_t offset = iocb->ki_pos & (fsize - 1); 2746 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2747 fsize - offset); 2748 size_t copied; 2749 2750 if (end_offset < folio_pos(folio)) 2751 break; 2752 if (i > 0) 2753 folio_mark_accessed(folio); 2754 /* 2755 * If users can be writing to this folio using arbitrary 2756 * virtual addresses, take care of potential aliasing 2757 * before reading the folio on the kernel side. 2758 */ 2759 if (writably_mapped) 2760 flush_dcache_folio(folio); 2761 2762 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2763 2764 already_read += copied; 2765 iocb->ki_pos += copied; 2766 last_pos = iocb->ki_pos; 2767 2768 if (copied < bytes) { 2769 error = -EFAULT; 2770 break; 2771 } 2772 } 2773 put_folios: 2774 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2775 struct folio *folio = fbatch.folios[i]; 2776 2777 filemap_end_dropbehind_read(folio); 2778 folio_put(folio); 2779 } 2780 folio_batch_init(&fbatch); 2781 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2782 2783 file_accessed(filp); 2784 ra->prev_pos = last_pos; 2785 return already_read ? already_read : error; 2786 } 2787 EXPORT_SYMBOL_GPL(filemap_read); 2788 2789 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2790 { 2791 struct address_space *mapping = iocb->ki_filp->f_mapping; 2792 loff_t pos = iocb->ki_pos; 2793 loff_t end = pos + count - 1; 2794 2795 if (iocb->ki_flags & IOCB_NOWAIT) { 2796 if (filemap_range_needs_writeback(mapping, pos, end)) 2797 return -EAGAIN; 2798 return 0; 2799 } 2800 2801 return filemap_write_and_wait_range(mapping, pos, end); 2802 } 2803 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2804 2805 int filemap_invalidate_pages(struct address_space *mapping, 2806 loff_t pos, loff_t end, bool nowait) 2807 { 2808 int ret; 2809 2810 if (nowait) { 2811 /* we could block if there are any pages in the range */ 2812 if (filemap_range_has_page(mapping, pos, end)) 2813 return -EAGAIN; 2814 } else { 2815 ret = filemap_write_and_wait_range(mapping, pos, end); 2816 if (ret) 2817 return ret; 2818 } 2819 2820 /* 2821 * After a write we want buffered reads to be sure to go to disk to get 2822 * the new data. We invalidate clean cached page from the region we're 2823 * about to write. We do this *before* the write so that we can return 2824 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2825 */ 2826 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2827 end >> PAGE_SHIFT); 2828 } 2829 2830 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2831 { 2832 struct address_space *mapping = iocb->ki_filp->f_mapping; 2833 2834 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2835 iocb->ki_pos + count - 1, 2836 iocb->ki_flags & IOCB_NOWAIT); 2837 } 2838 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2839 2840 /** 2841 * generic_file_read_iter - generic filesystem read routine 2842 * @iocb: kernel I/O control block 2843 * @iter: destination for the data read 2844 * 2845 * This is the "read_iter()" routine for all filesystems 2846 * that can use the page cache directly. 2847 * 2848 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2849 * be returned when no data can be read without waiting for I/O requests 2850 * to complete; it doesn't prevent readahead. 2851 * 2852 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2853 * requests shall be made for the read or for readahead. When no data 2854 * can be read, -EAGAIN shall be returned. When readahead would be 2855 * triggered, a partial, possibly empty read shall be returned. 2856 * 2857 * Return: 2858 * * number of bytes copied, even for partial reads 2859 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2860 */ 2861 ssize_t 2862 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2863 { 2864 size_t count = iov_iter_count(iter); 2865 ssize_t retval = 0; 2866 2867 if (!count) 2868 return 0; /* skip atime */ 2869 2870 if (iocb->ki_flags & IOCB_DIRECT) { 2871 struct file *file = iocb->ki_filp; 2872 struct address_space *mapping = file->f_mapping; 2873 struct inode *inode = mapping->host; 2874 2875 retval = kiocb_write_and_wait(iocb, count); 2876 if (retval < 0) 2877 return retval; 2878 file_accessed(file); 2879 2880 retval = mapping->a_ops->direct_IO(iocb, iter); 2881 if (retval >= 0) { 2882 iocb->ki_pos += retval; 2883 count -= retval; 2884 } 2885 if (retval != -EIOCBQUEUED) 2886 iov_iter_revert(iter, count - iov_iter_count(iter)); 2887 2888 /* 2889 * Btrfs can have a short DIO read if we encounter 2890 * compressed extents, so if there was an error, or if 2891 * we've already read everything we wanted to, or if 2892 * there was a short read because we hit EOF, go ahead 2893 * and return. Otherwise fallthrough to buffered io for 2894 * the rest of the read. Buffered reads will not work for 2895 * DAX files, so don't bother trying. 2896 */ 2897 if (retval < 0 || !count || IS_DAX(inode)) 2898 return retval; 2899 if (iocb->ki_pos >= i_size_read(inode)) 2900 return retval; 2901 } 2902 2903 return filemap_read(iocb, iter, retval); 2904 } 2905 EXPORT_SYMBOL(generic_file_read_iter); 2906 2907 /* 2908 * Splice subpages from a folio into a pipe. 2909 */ 2910 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2911 struct folio *folio, loff_t fpos, size_t size) 2912 { 2913 struct page *page; 2914 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2915 2916 page = folio_page(folio, offset / PAGE_SIZE); 2917 size = min(size, folio_size(folio) - offset); 2918 offset %= PAGE_SIZE; 2919 2920 while (spliced < size && !pipe_is_full(pipe)) { 2921 struct pipe_buffer *buf = pipe_head_buf(pipe); 2922 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2923 2924 *buf = (struct pipe_buffer) { 2925 .ops = &page_cache_pipe_buf_ops, 2926 .page = page, 2927 .offset = offset, 2928 .len = part, 2929 }; 2930 folio_get(folio); 2931 pipe->head++; 2932 page++; 2933 spliced += part; 2934 offset = 0; 2935 } 2936 2937 return spliced; 2938 } 2939 2940 /** 2941 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2942 * @in: The file to read from 2943 * @ppos: Pointer to the file position to read from 2944 * @pipe: The pipe to splice into 2945 * @len: The amount to splice 2946 * @flags: The SPLICE_F_* flags 2947 * 2948 * This function gets folios from a file's pagecache and splices them into the 2949 * pipe. Readahead will be called as necessary to fill more folios. This may 2950 * be used for blockdevs also. 2951 * 2952 * Return: On success, the number of bytes read will be returned and *@ppos 2953 * will be updated if appropriate; 0 will be returned if there is no more data 2954 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2955 * other negative error code will be returned on error. A short read may occur 2956 * if the pipe has insufficient space, we reach the end of the data or we hit a 2957 * hole. 2958 */ 2959 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2960 struct pipe_inode_info *pipe, 2961 size_t len, unsigned int flags) 2962 { 2963 struct folio_batch fbatch; 2964 struct kiocb iocb; 2965 size_t total_spliced = 0, used, npages; 2966 loff_t isize, end_offset; 2967 bool writably_mapped; 2968 int i, error = 0; 2969 2970 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2971 return 0; 2972 2973 init_sync_kiocb(&iocb, in); 2974 iocb.ki_pos = *ppos; 2975 2976 /* Work out how much data we can actually add into the pipe */ 2977 used = pipe_buf_usage(pipe); 2978 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2979 len = min_t(size_t, len, npages * PAGE_SIZE); 2980 2981 folio_batch_init(&fbatch); 2982 2983 do { 2984 cond_resched(); 2985 2986 if (*ppos >= i_size_read(in->f_mapping->host)) 2987 break; 2988 2989 iocb.ki_pos = *ppos; 2990 error = filemap_get_pages(&iocb, len, &fbatch, true); 2991 if (error < 0) 2992 break; 2993 2994 /* 2995 * i_size must be checked after we know the pages are Uptodate. 2996 * 2997 * Checking i_size after the check allows us to calculate 2998 * the correct value for "nr", which means the zero-filled 2999 * part of the page is not copied back to userspace (unless 3000 * another truncate extends the file - this is desired though). 3001 */ 3002 isize = i_size_read(in->f_mapping->host); 3003 if (unlikely(*ppos >= isize)) 3004 break; 3005 end_offset = min_t(loff_t, isize, *ppos + len); 3006 3007 /* 3008 * Once we start copying data, we don't want to be touching any 3009 * cachelines that might be contended: 3010 */ 3011 writably_mapped = mapping_writably_mapped(in->f_mapping); 3012 3013 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3014 struct folio *folio = fbatch.folios[i]; 3015 size_t n; 3016 3017 if (folio_pos(folio) >= end_offset) 3018 goto out; 3019 folio_mark_accessed(folio); 3020 3021 /* 3022 * If users can be writing to this folio using arbitrary 3023 * virtual addresses, take care of potential aliasing 3024 * before reading the folio on the kernel side. 3025 */ 3026 if (writably_mapped) 3027 flush_dcache_folio(folio); 3028 3029 n = min_t(loff_t, len, isize - *ppos); 3030 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3031 if (!n) 3032 goto out; 3033 len -= n; 3034 total_spliced += n; 3035 *ppos += n; 3036 in->f_ra.prev_pos = *ppos; 3037 if (pipe_is_full(pipe)) 3038 goto out; 3039 } 3040 3041 folio_batch_release(&fbatch); 3042 } while (len); 3043 3044 out: 3045 folio_batch_release(&fbatch); 3046 file_accessed(in); 3047 3048 return total_spliced ? total_spliced : error; 3049 } 3050 EXPORT_SYMBOL(filemap_splice_read); 3051 3052 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3053 struct address_space *mapping, struct folio *folio, 3054 loff_t start, loff_t end, bool seek_data) 3055 { 3056 const struct address_space_operations *ops = mapping->a_ops; 3057 size_t offset, bsz = i_blocksize(mapping->host); 3058 3059 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3060 return seek_data ? start : end; 3061 if (!ops->is_partially_uptodate) 3062 return seek_data ? end : start; 3063 3064 xas_pause(xas); 3065 rcu_read_unlock(); 3066 folio_lock(folio); 3067 if (unlikely(folio->mapping != mapping)) 3068 goto unlock; 3069 3070 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3071 3072 do { 3073 if (ops->is_partially_uptodate(folio, offset, bsz) == 3074 seek_data) 3075 break; 3076 start = (start + bsz) & ~((u64)bsz - 1); 3077 offset += bsz; 3078 } while (offset < folio_size(folio)); 3079 unlock: 3080 folio_unlock(folio); 3081 rcu_read_lock(); 3082 return start; 3083 } 3084 3085 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3086 { 3087 if (xa_is_value(folio)) 3088 return PAGE_SIZE << xas_get_order(xas); 3089 return folio_size(folio); 3090 } 3091 3092 /** 3093 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3094 * @mapping: Address space to search. 3095 * @start: First byte to consider. 3096 * @end: Limit of search (exclusive). 3097 * @whence: Either SEEK_HOLE or SEEK_DATA. 3098 * 3099 * If the page cache knows which blocks contain holes and which blocks 3100 * contain data, your filesystem can use this function to implement 3101 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3102 * entirely memory-based such as tmpfs, and filesystems which support 3103 * unwritten extents. 3104 * 3105 * Return: The requested offset on success, or -ENXIO if @whence specifies 3106 * SEEK_DATA and there is no data after @start. There is an implicit hole 3107 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3108 * and @end contain data. 3109 */ 3110 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3111 loff_t end, int whence) 3112 { 3113 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3114 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3115 bool seek_data = (whence == SEEK_DATA); 3116 struct folio *folio; 3117 3118 if (end <= start) 3119 return -ENXIO; 3120 3121 rcu_read_lock(); 3122 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3123 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3124 size_t seek_size; 3125 3126 if (start < pos) { 3127 if (!seek_data) 3128 goto unlock; 3129 start = pos; 3130 } 3131 3132 seek_size = seek_folio_size(&xas, folio); 3133 pos = round_up((u64)pos + 1, seek_size); 3134 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3135 seek_data); 3136 if (start < pos) 3137 goto unlock; 3138 if (start >= end) 3139 break; 3140 if (seek_size > PAGE_SIZE) 3141 xas_set(&xas, pos >> PAGE_SHIFT); 3142 if (!xa_is_value(folio)) 3143 folio_put(folio); 3144 } 3145 if (seek_data) 3146 start = -ENXIO; 3147 unlock: 3148 rcu_read_unlock(); 3149 if (folio && !xa_is_value(folio)) 3150 folio_put(folio); 3151 if (start > end) 3152 return end; 3153 return start; 3154 } 3155 3156 #ifdef CONFIG_MMU 3157 #define MMAP_LOTSAMISS (100) 3158 /* 3159 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3160 * @vmf - the vm_fault for this fault. 3161 * @folio - the folio to lock. 3162 * @fpin - the pointer to the file we may pin (or is already pinned). 3163 * 3164 * This works similar to lock_folio_or_retry in that it can drop the 3165 * mmap_lock. It differs in that it actually returns the folio locked 3166 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3167 * to drop the mmap_lock then fpin will point to the pinned file and 3168 * needs to be fput()'ed at a later point. 3169 */ 3170 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3171 struct file **fpin) 3172 { 3173 if (folio_trylock(folio)) 3174 return 1; 3175 3176 /* 3177 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3178 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3179 * is supposed to work. We have way too many special cases.. 3180 */ 3181 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3182 return 0; 3183 3184 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3185 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3186 if (__folio_lock_killable(folio)) { 3187 /* 3188 * We didn't have the right flags to drop the 3189 * fault lock, but all fault_handlers only check 3190 * for fatal signals if we return VM_FAULT_RETRY, 3191 * so we need to drop the fault lock here and 3192 * return 0 if we don't have a fpin. 3193 */ 3194 if (*fpin == NULL) 3195 release_fault_lock(vmf); 3196 return 0; 3197 } 3198 } else 3199 __folio_lock(folio); 3200 3201 return 1; 3202 } 3203 3204 /* 3205 * Synchronous readahead happens when we don't even find a page in the page 3206 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3207 * to drop the mmap sem we return the file that was pinned in order for us to do 3208 * that. If we didn't pin a file then we return NULL. The file that is 3209 * returned needs to be fput()'ed when we're done with it. 3210 */ 3211 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3212 { 3213 struct file *file = vmf->vma->vm_file; 3214 struct file_ra_state *ra = &file->f_ra; 3215 struct address_space *mapping = file->f_mapping; 3216 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3217 struct file *fpin = NULL; 3218 unsigned long vm_flags = vmf->vma->vm_flags; 3219 unsigned int mmap_miss; 3220 3221 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3222 /* Use the readahead code, even if readahead is disabled */ 3223 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3224 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3225 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3226 ra->size = HPAGE_PMD_NR; 3227 /* 3228 * Fetch two PMD folios, so we get the chance to actually 3229 * readahead, unless we've been told not to. 3230 */ 3231 if (!(vm_flags & VM_RAND_READ)) 3232 ra->size *= 2; 3233 ra->async_size = HPAGE_PMD_NR; 3234 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3235 return fpin; 3236 } 3237 #endif 3238 3239 /* If we don't want any read-ahead, don't bother */ 3240 if (vm_flags & VM_RAND_READ) 3241 return fpin; 3242 if (!ra->ra_pages) 3243 return fpin; 3244 3245 if (vm_flags & VM_SEQ_READ) { 3246 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3247 page_cache_sync_ra(&ractl, ra->ra_pages); 3248 return fpin; 3249 } 3250 3251 /* Avoid banging the cache line if not needed */ 3252 mmap_miss = READ_ONCE(ra->mmap_miss); 3253 if (mmap_miss < MMAP_LOTSAMISS * 10) 3254 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3255 3256 /* 3257 * Do we miss much more than hit in this file? If so, 3258 * stop bothering with read-ahead. It will only hurt. 3259 */ 3260 if (mmap_miss > MMAP_LOTSAMISS) 3261 return fpin; 3262 3263 /* 3264 * mmap read-around 3265 */ 3266 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3267 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3268 ra->size = ra->ra_pages; 3269 ra->async_size = ra->ra_pages / 4; 3270 ractl._index = ra->start; 3271 page_cache_ra_order(&ractl, ra, 0); 3272 return fpin; 3273 } 3274 3275 /* 3276 * Asynchronous readahead happens when we find the page and PG_readahead, 3277 * so we want to possibly extend the readahead further. We return the file that 3278 * was pinned if we have to drop the mmap_lock in order to do IO. 3279 */ 3280 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3281 struct folio *folio) 3282 { 3283 struct file *file = vmf->vma->vm_file; 3284 struct file_ra_state *ra = &file->f_ra; 3285 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3286 struct file *fpin = NULL; 3287 unsigned int mmap_miss; 3288 3289 /* If we don't want any read-ahead, don't bother */ 3290 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3291 return fpin; 3292 3293 mmap_miss = READ_ONCE(ra->mmap_miss); 3294 if (mmap_miss) 3295 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3296 3297 if (folio_test_readahead(folio)) { 3298 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3299 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3300 } 3301 return fpin; 3302 } 3303 3304 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3305 { 3306 struct vm_area_struct *vma = vmf->vma; 3307 vm_fault_t ret = 0; 3308 pte_t *ptep; 3309 3310 /* 3311 * We might have COW'ed a pagecache folio and might now have an mlocked 3312 * anon folio mapped. The original pagecache folio is not mlocked and 3313 * might have been evicted. During a read+clear/modify/write update of 3314 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3315 * temporarily clear the PTE under PT lock and might detect it here as 3316 * "none" when not holding the PT lock. 3317 * 3318 * Not rechecking the PTE under PT lock could result in an unexpected 3319 * major fault in an mlock'ed region. Recheck only for this special 3320 * scenario while holding the PT lock, to not degrade non-mlocked 3321 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3322 * the number of times we hold PT lock. 3323 */ 3324 if (!(vma->vm_flags & VM_LOCKED)) 3325 return 0; 3326 3327 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3328 return 0; 3329 3330 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3331 &vmf->ptl); 3332 if (unlikely(!ptep)) 3333 return VM_FAULT_NOPAGE; 3334 3335 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3336 ret = VM_FAULT_NOPAGE; 3337 } else { 3338 spin_lock(vmf->ptl); 3339 if (unlikely(!pte_none(ptep_get(ptep)))) 3340 ret = VM_FAULT_NOPAGE; 3341 spin_unlock(vmf->ptl); 3342 } 3343 pte_unmap(ptep); 3344 return ret; 3345 } 3346 3347 /** 3348 * filemap_fault - read in file data for page fault handling 3349 * @vmf: struct vm_fault containing details of the fault 3350 * 3351 * filemap_fault() is invoked via the vma operations vector for a 3352 * mapped memory region to read in file data during a page fault. 3353 * 3354 * The goto's are kind of ugly, but this streamlines the normal case of having 3355 * it in the page cache, and handles the special cases reasonably without 3356 * having a lot of duplicated code. 3357 * 3358 * vma->vm_mm->mmap_lock must be held on entry. 3359 * 3360 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3361 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3362 * 3363 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3364 * has not been released. 3365 * 3366 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3367 * 3368 * Return: bitwise-OR of %VM_FAULT_ codes. 3369 */ 3370 vm_fault_t filemap_fault(struct vm_fault *vmf) 3371 { 3372 int error; 3373 struct file *file = vmf->vma->vm_file; 3374 struct file *fpin = NULL; 3375 struct address_space *mapping = file->f_mapping; 3376 struct inode *inode = mapping->host; 3377 pgoff_t max_idx, index = vmf->pgoff; 3378 struct folio *folio; 3379 vm_fault_t ret = 0; 3380 bool mapping_locked = false; 3381 3382 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3383 if (unlikely(index >= max_idx)) 3384 return VM_FAULT_SIGBUS; 3385 3386 trace_mm_filemap_fault(mapping, index); 3387 3388 /* 3389 * Do we have something in the page cache already? 3390 */ 3391 folio = filemap_get_folio(mapping, index); 3392 if (likely(!IS_ERR(folio))) { 3393 /* 3394 * We found the page, so try async readahead before waiting for 3395 * the lock. 3396 */ 3397 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3398 fpin = do_async_mmap_readahead(vmf, folio); 3399 if (unlikely(!folio_test_uptodate(folio))) { 3400 filemap_invalidate_lock_shared(mapping); 3401 mapping_locked = true; 3402 } 3403 } else { 3404 ret = filemap_fault_recheck_pte_none(vmf); 3405 if (unlikely(ret)) 3406 return ret; 3407 3408 /* No page in the page cache at all */ 3409 count_vm_event(PGMAJFAULT); 3410 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3411 ret = VM_FAULT_MAJOR; 3412 fpin = do_sync_mmap_readahead(vmf); 3413 retry_find: 3414 /* 3415 * See comment in filemap_create_folio() why we need 3416 * invalidate_lock 3417 */ 3418 if (!mapping_locked) { 3419 filemap_invalidate_lock_shared(mapping); 3420 mapping_locked = true; 3421 } 3422 folio = __filemap_get_folio(mapping, index, 3423 FGP_CREAT|FGP_FOR_MMAP, 3424 vmf->gfp_mask); 3425 if (IS_ERR(folio)) { 3426 if (fpin) 3427 goto out_retry; 3428 filemap_invalidate_unlock_shared(mapping); 3429 return VM_FAULT_OOM; 3430 } 3431 } 3432 3433 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3434 goto out_retry; 3435 3436 /* Did it get truncated? */ 3437 if (unlikely(folio->mapping != mapping)) { 3438 folio_unlock(folio); 3439 folio_put(folio); 3440 goto retry_find; 3441 } 3442 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3443 3444 /* 3445 * We have a locked folio in the page cache, now we need to check 3446 * that it's up-to-date. If not, it is going to be due to an error, 3447 * or because readahead was otherwise unable to retrieve it. 3448 */ 3449 if (unlikely(!folio_test_uptodate(folio))) { 3450 /* 3451 * If the invalidate lock is not held, the folio was in cache 3452 * and uptodate and now it is not. Strange but possible since we 3453 * didn't hold the page lock all the time. Let's drop 3454 * everything, get the invalidate lock and try again. 3455 */ 3456 if (!mapping_locked) { 3457 folio_unlock(folio); 3458 folio_put(folio); 3459 goto retry_find; 3460 } 3461 3462 /* 3463 * OK, the folio is really not uptodate. This can be because the 3464 * VMA has the VM_RAND_READ flag set, or because an error 3465 * arose. Let's read it in directly. 3466 */ 3467 goto page_not_uptodate; 3468 } 3469 3470 /* 3471 * We've made it this far and we had to drop our mmap_lock, now is the 3472 * time to return to the upper layer and have it re-find the vma and 3473 * redo the fault. 3474 */ 3475 if (fpin) { 3476 folio_unlock(folio); 3477 goto out_retry; 3478 } 3479 if (mapping_locked) 3480 filemap_invalidate_unlock_shared(mapping); 3481 3482 /* 3483 * Found the page and have a reference on it. 3484 * We must recheck i_size under page lock. 3485 */ 3486 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3487 if (unlikely(index >= max_idx)) { 3488 folio_unlock(folio); 3489 folio_put(folio); 3490 return VM_FAULT_SIGBUS; 3491 } 3492 3493 vmf->page = folio_file_page(folio, index); 3494 return ret | VM_FAULT_LOCKED; 3495 3496 page_not_uptodate: 3497 /* 3498 * Umm, take care of errors if the page isn't up-to-date. 3499 * Try to re-read it _once_. We do this synchronously, 3500 * because there really aren't any performance issues here 3501 * and we need to check for errors. 3502 */ 3503 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3504 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3505 if (fpin) 3506 goto out_retry; 3507 folio_put(folio); 3508 3509 if (!error || error == AOP_TRUNCATED_PAGE) 3510 goto retry_find; 3511 filemap_invalidate_unlock_shared(mapping); 3512 3513 return VM_FAULT_SIGBUS; 3514 3515 out_retry: 3516 /* 3517 * We dropped the mmap_lock, we need to return to the fault handler to 3518 * re-find the vma and come back and find our hopefully still populated 3519 * page. 3520 */ 3521 if (!IS_ERR(folio)) 3522 folio_put(folio); 3523 if (mapping_locked) 3524 filemap_invalidate_unlock_shared(mapping); 3525 if (fpin) 3526 fput(fpin); 3527 return ret | VM_FAULT_RETRY; 3528 } 3529 EXPORT_SYMBOL(filemap_fault); 3530 3531 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3532 pgoff_t start) 3533 { 3534 struct mm_struct *mm = vmf->vma->vm_mm; 3535 3536 /* Huge page is mapped? No need to proceed. */ 3537 if (pmd_trans_huge(*vmf->pmd)) { 3538 folio_unlock(folio); 3539 folio_put(folio); 3540 return true; 3541 } 3542 3543 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3544 struct page *page = folio_file_page(folio, start); 3545 vm_fault_t ret = do_set_pmd(vmf, folio, page); 3546 if (!ret) { 3547 /* The page is mapped successfully, reference consumed. */ 3548 folio_unlock(folio); 3549 return true; 3550 } 3551 } 3552 3553 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3554 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3555 3556 return false; 3557 } 3558 3559 static struct folio *next_uptodate_folio(struct xa_state *xas, 3560 struct address_space *mapping, pgoff_t end_pgoff) 3561 { 3562 struct folio *folio = xas_next_entry(xas, end_pgoff); 3563 unsigned long max_idx; 3564 3565 do { 3566 if (!folio) 3567 return NULL; 3568 if (xas_retry(xas, folio)) 3569 continue; 3570 if (xa_is_value(folio)) 3571 continue; 3572 if (!folio_try_get(folio)) 3573 continue; 3574 if (folio_test_locked(folio)) 3575 goto skip; 3576 /* Has the page moved or been split? */ 3577 if (unlikely(folio != xas_reload(xas))) 3578 goto skip; 3579 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3580 goto skip; 3581 if (!folio_trylock(folio)) 3582 goto skip; 3583 if (folio->mapping != mapping) 3584 goto unlock; 3585 if (!folio_test_uptodate(folio)) 3586 goto unlock; 3587 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3588 if (xas->xa_index >= max_idx) 3589 goto unlock; 3590 return folio; 3591 unlock: 3592 folio_unlock(folio); 3593 skip: 3594 folio_put(folio); 3595 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3596 3597 return NULL; 3598 } 3599 3600 /* 3601 * Map page range [start_page, start_page + nr_pages) of folio. 3602 * start_page is gotten from start by folio_page(folio, start) 3603 */ 3604 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3605 struct folio *folio, unsigned long start, 3606 unsigned long addr, unsigned int nr_pages, 3607 unsigned long *rss, unsigned int *mmap_miss) 3608 { 3609 vm_fault_t ret = 0; 3610 struct page *page = folio_page(folio, start); 3611 unsigned int count = 0; 3612 pte_t *old_ptep = vmf->pte; 3613 3614 do { 3615 if (PageHWPoison(page + count)) 3616 goto skip; 3617 3618 /* 3619 * If there are too many folios that are recently evicted 3620 * in a file, they will probably continue to be evicted. 3621 * In such situation, read-ahead is only a waste of IO. 3622 * Don't decrease mmap_miss in this scenario to make sure 3623 * we can stop read-ahead. 3624 */ 3625 if (!folio_test_workingset(folio)) 3626 (*mmap_miss)++; 3627 3628 /* 3629 * NOTE: If there're PTE markers, we'll leave them to be 3630 * handled in the specific fault path, and it'll prohibit the 3631 * fault-around logic. 3632 */ 3633 if (!pte_none(ptep_get(&vmf->pte[count]))) 3634 goto skip; 3635 3636 count++; 3637 continue; 3638 skip: 3639 if (count) { 3640 set_pte_range(vmf, folio, page, count, addr); 3641 *rss += count; 3642 folio_ref_add(folio, count); 3643 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3644 ret = VM_FAULT_NOPAGE; 3645 } 3646 3647 count++; 3648 page += count; 3649 vmf->pte += count; 3650 addr += count * PAGE_SIZE; 3651 count = 0; 3652 } while (--nr_pages > 0); 3653 3654 if (count) { 3655 set_pte_range(vmf, folio, page, count, addr); 3656 *rss += count; 3657 folio_ref_add(folio, count); 3658 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3659 ret = VM_FAULT_NOPAGE; 3660 } 3661 3662 vmf->pte = old_ptep; 3663 3664 return ret; 3665 } 3666 3667 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3668 struct folio *folio, unsigned long addr, 3669 unsigned long *rss, unsigned int *mmap_miss) 3670 { 3671 vm_fault_t ret = 0; 3672 struct page *page = &folio->page; 3673 3674 if (PageHWPoison(page)) 3675 return ret; 3676 3677 /* See comment of filemap_map_folio_range() */ 3678 if (!folio_test_workingset(folio)) 3679 (*mmap_miss)++; 3680 3681 /* 3682 * NOTE: If there're PTE markers, we'll leave them to be 3683 * handled in the specific fault path, and it'll prohibit 3684 * the fault-around logic. 3685 */ 3686 if (!pte_none(ptep_get(vmf->pte))) 3687 return ret; 3688 3689 if (vmf->address == addr) 3690 ret = VM_FAULT_NOPAGE; 3691 3692 set_pte_range(vmf, folio, page, 1, addr); 3693 (*rss)++; 3694 folio_ref_inc(folio); 3695 3696 return ret; 3697 } 3698 3699 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3700 pgoff_t start_pgoff, pgoff_t end_pgoff) 3701 { 3702 struct vm_area_struct *vma = vmf->vma; 3703 struct file *file = vma->vm_file; 3704 struct address_space *mapping = file->f_mapping; 3705 pgoff_t file_end, last_pgoff = start_pgoff; 3706 unsigned long addr; 3707 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3708 struct folio *folio; 3709 vm_fault_t ret = 0; 3710 unsigned long rss = 0; 3711 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3712 3713 rcu_read_lock(); 3714 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3715 if (!folio) 3716 goto out; 3717 3718 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3719 ret = VM_FAULT_NOPAGE; 3720 goto out; 3721 } 3722 3723 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3724 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3725 if (!vmf->pte) { 3726 folio_unlock(folio); 3727 folio_put(folio); 3728 goto out; 3729 } 3730 3731 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3732 if (end_pgoff > file_end) 3733 end_pgoff = file_end; 3734 3735 folio_type = mm_counter_file(folio); 3736 do { 3737 unsigned long end; 3738 3739 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3740 vmf->pte += xas.xa_index - last_pgoff; 3741 last_pgoff = xas.xa_index; 3742 end = folio_next_index(folio) - 1; 3743 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3744 3745 if (!folio_test_large(folio)) 3746 ret |= filemap_map_order0_folio(vmf, 3747 folio, addr, &rss, &mmap_miss); 3748 else 3749 ret |= filemap_map_folio_range(vmf, folio, 3750 xas.xa_index - folio->index, addr, 3751 nr_pages, &rss, &mmap_miss); 3752 3753 folio_unlock(folio); 3754 folio_put(folio); 3755 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3756 add_mm_counter(vma->vm_mm, folio_type, rss); 3757 pte_unmap_unlock(vmf->pte, vmf->ptl); 3758 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3759 out: 3760 rcu_read_unlock(); 3761 3762 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3763 if (mmap_miss >= mmap_miss_saved) 3764 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3765 else 3766 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3767 3768 return ret; 3769 } 3770 EXPORT_SYMBOL(filemap_map_pages); 3771 3772 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3773 { 3774 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3775 struct folio *folio = page_folio(vmf->page); 3776 vm_fault_t ret = VM_FAULT_LOCKED; 3777 3778 sb_start_pagefault(mapping->host->i_sb); 3779 file_update_time(vmf->vma->vm_file); 3780 folio_lock(folio); 3781 if (folio->mapping != mapping) { 3782 folio_unlock(folio); 3783 ret = VM_FAULT_NOPAGE; 3784 goto out; 3785 } 3786 /* 3787 * We mark the folio dirty already here so that when freeze is in 3788 * progress, we are guaranteed that writeback during freezing will 3789 * see the dirty folio and writeprotect it again. 3790 */ 3791 folio_mark_dirty(folio); 3792 folio_wait_stable(folio); 3793 out: 3794 sb_end_pagefault(mapping->host->i_sb); 3795 return ret; 3796 } 3797 3798 const struct vm_operations_struct generic_file_vm_ops = { 3799 .fault = filemap_fault, 3800 .map_pages = filemap_map_pages, 3801 .page_mkwrite = filemap_page_mkwrite, 3802 }; 3803 3804 /* This is used for a general mmap of a disk file */ 3805 3806 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3807 { 3808 struct address_space *mapping = file->f_mapping; 3809 3810 if (!mapping->a_ops->read_folio) 3811 return -ENOEXEC; 3812 file_accessed(file); 3813 vma->vm_ops = &generic_file_vm_ops; 3814 return 0; 3815 } 3816 3817 /* 3818 * This is for filesystems which do not implement ->writepage. 3819 */ 3820 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3821 { 3822 if (vma_is_shared_maywrite(vma)) 3823 return -EINVAL; 3824 return generic_file_mmap(file, vma); 3825 } 3826 #else 3827 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3828 { 3829 return VM_FAULT_SIGBUS; 3830 } 3831 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3832 { 3833 return -ENOSYS; 3834 } 3835 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3836 { 3837 return -ENOSYS; 3838 } 3839 #endif /* CONFIG_MMU */ 3840 3841 EXPORT_SYMBOL(filemap_page_mkwrite); 3842 EXPORT_SYMBOL(generic_file_mmap); 3843 EXPORT_SYMBOL(generic_file_readonly_mmap); 3844 3845 static struct folio *do_read_cache_folio(struct address_space *mapping, 3846 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3847 { 3848 struct folio *folio; 3849 int err; 3850 3851 if (!filler) 3852 filler = mapping->a_ops->read_folio; 3853 repeat: 3854 folio = filemap_get_folio(mapping, index); 3855 if (IS_ERR(folio)) { 3856 folio = filemap_alloc_folio(gfp, 3857 mapping_min_folio_order(mapping)); 3858 if (!folio) 3859 return ERR_PTR(-ENOMEM); 3860 index = mapping_align_index(mapping, index); 3861 err = filemap_add_folio(mapping, folio, index, gfp); 3862 if (unlikely(err)) { 3863 folio_put(folio); 3864 if (err == -EEXIST) 3865 goto repeat; 3866 /* Presumably ENOMEM for xarray node */ 3867 return ERR_PTR(err); 3868 } 3869 3870 goto filler; 3871 } 3872 if (folio_test_uptodate(folio)) 3873 goto out; 3874 3875 if (!folio_trylock(folio)) { 3876 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3877 goto repeat; 3878 } 3879 3880 /* Folio was truncated from mapping */ 3881 if (!folio->mapping) { 3882 folio_unlock(folio); 3883 folio_put(folio); 3884 goto repeat; 3885 } 3886 3887 /* Someone else locked and filled the page in a very small window */ 3888 if (folio_test_uptodate(folio)) { 3889 folio_unlock(folio); 3890 goto out; 3891 } 3892 3893 filler: 3894 err = filemap_read_folio(file, filler, folio); 3895 if (err) { 3896 folio_put(folio); 3897 if (err == AOP_TRUNCATED_PAGE) 3898 goto repeat; 3899 return ERR_PTR(err); 3900 } 3901 3902 out: 3903 folio_mark_accessed(folio); 3904 return folio; 3905 } 3906 3907 /** 3908 * read_cache_folio - Read into page cache, fill it if needed. 3909 * @mapping: The address_space to read from. 3910 * @index: The index to read. 3911 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3912 * @file: Passed to filler function, may be NULL if not required. 3913 * 3914 * Read one page into the page cache. If it succeeds, the folio returned 3915 * will contain @index, but it may not be the first page of the folio. 3916 * 3917 * If the filler function returns an error, it will be returned to the 3918 * caller. 3919 * 3920 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3921 * Return: An uptodate folio on success, ERR_PTR() on failure. 3922 */ 3923 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3924 filler_t filler, struct file *file) 3925 { 3926 return do_read_cache_folio(mapping, index, filler, file, 3927 mapping_gfp_mask(mapping)); 3928 } 3929 EXPORT_SYMBOL(read_cache_folio); 3930 3931 /** 3932 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3933 * @mapping: The address_space for the folio. 3934 * @index: The index that the allocated folio will contain. 3935 * @gfp: The page allocator flags to use if allocating. 3936 * 3937 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3938 * any new memory allocations done using the specified allocation flags. 3939 * 3940 * The most likely error from this function is EIO, but ENOMEM is 3941 * possible and so is EINTR. If ->read_folio returns another error, 3942 * that will be returned to the caller. 3943 * 3944 * The function expects mapping->invalidate_lock to be already held. 3945 * 3946 * Return: Uptodate folio on success, ERR_PTR() on failure. 3947 */ 3948 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3949 pgoff_t index, gfp_t gfp) 3950 { 3951 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3952 } 3953 EXPORT_SYMBOL(mapping_read_folio_gfp); 3954 3955 static struct page *do_read_cache_page(struct address_space *mapping, 3956 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3957 { 3958 struct folio *folio; 3959 3960 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3961 if (IS_ERR(folio)) 3962 return &folio->page; 3963 return folio_file_page(folio, index); 3964 } 3965 3966 struct page *read_cache_page(struct address_space *mapping, 3967 pgoff_t index, filler_t *filler, struct file *file) 3968 { 3969 return do_read_cache_page(mapping, index, filler, file, 3970 mapping_gfp_mask(mapping)); 3971 } 3972 EXPORT_SYMBOL(read_cache_page); 3973 3974 /** 3975 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3976 * @mapping: the page's address_space 3977 * @index: the page index 3978 * @gfp: the page allocator flags to use if allocating 3979 * 3980 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3981 * any new page allocations done using the specified allocation flags. 3982 * 3983 * If the page does not get brought uptodate, return -EIO. 3984 * 3985 * The function expects mapping->invalidate_lock to be already held. 3986 * 3987 * Return: up to date page on success, ERR_PTR() on failure. 3988 */ 3989 struct page *read_cache_page_gfp(struct address_space *mapping, 3990 pgoff_t index, 3991 gfp_t gfp) 3992 { 3993 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3994 } 3995 EXPORT_SYMBOL(read_cache_page_gfp); 3996 3997 /* 3998 * Warn about a page cache invalidation failure during a direct I/O write. 3999 */ 4000 static void dio_warn_stale_pagecache(struct file *filp) 4001 { 4002 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4003 char pathname[128]; 4004 char *path; 4005 4006 errseq_set(&filp->f_mapping->wb_err, -EIO); 4007 if (__ratelimit(&_rs)) { 4008 path = file_path(filp, pathname, sizeof(pathname)); 4009 if (IS_ERR(path)) 4010 path = "(unknown)"; 4011 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4012 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4013 current->comm); 4014 } 4015 } 4016 4017 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4018 { 4019 struct address_space *mapping = iocb->ki_filp->f_mapping; 4020 4021 if (mapping->nrpages && 4022 invalidate_inode_pages2_range(mapping, 4023 iocb->ki_pos >> PAGE_SHIFT, 4024 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4025 dio_warn_stale_pagecache(iocb->ki_filp); 4026 } 4027 4028 ssize_t 4029 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4030 { 4031 struct address_space *mapping = iocb->ki_filp->f_mapping; 4032 size_t write_len = iov_iter_count(from); 4033 ssize_t written; 4034 4035 /* 4036 * If a page can not be invalidated, return 0 to fall back 4037 * to buffered write. 4038 */ 4039 written = kiocb_invalidate_pages(iocb, write_len); 4040 if (written) { 4041 if (written == -EBUSY) 4042 return 0; 4043 return written; 4044 } 4045 4046 written = mapping->a_ops->direct_IO(iocb, from); 4047 4048 /* 4049 * Finally, try again to invalidate clean pages which might have been 4050 * cached by non-direct readahead, or faulted in by get_user_pages() 4051 * if the source of the write was an mmap'ed region of the file 4052 * we're writing. Either one is a pretty crazy thing to do, 4053 * so we don't support it 100%. If this invalidation 4054 * fails, tough, the write still worked... 4055 * 4056 * Most of the time we do not need this since dio_complete() will do 4057 * the invalidation for us. However there are some file systems that 4058 * do not end up with dio_complete() being called, so let's not break 4059 * them by removing it completely. 4060 * 4061 * Noticeable example is a blkdev_direct_IO(). 4062 * 4063 * Skip invalidation for async writes or if mapping has no pages. 4064 */ 4065 if (written > 0) { 4066 struct inode *inode = mapping->host; 4067 loff_t pos = iocb->ki_pos; 4068 4069 kiocb_invalidate_post_direct_write(iocb, written); 4070 pos += written; 4071 write_len -= written; 4072 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4073 i_size_write(inode, pos); 4074 mark_inode_dirty(inode); 4075 } 4076 iocb->ki_pos = pos; 4077 } 4078 if (written != -EIOCBQUEUED) 4079 iov_iter_revert(from, write_len - iov_iter_count(from)); 4080 return written; 4081 } 4082 EXPORT_SYMBOL(generic_file_direct_write); 4083 4084 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4085 { 4086 struct file *file = iocb->ki_filp; 4087 loff_t pos = iocb->ki_pos; 4088 struct address_space *mapping = file->f_mapping; 4089 const struct address_space_operations *a_ops = mapping->a_ops; 4090 size_t chunk = mapping_max_folio_size(mapping); 4091 long status = 0; 4092 ssize_t written = 0; 4093 4094 do { 4095 struct folio *folio; 4096 size_t offset; /* Offset into folio */ 4097 size_t bytes; /* Bytes to write to folio */ 4098 size_t copied; /* Bytes copied from user */ 4099 void *fsdata = NULL; 4100 4101 bytes = iov_iter_count(i); 4102 retry: 4103 offset = pos & (chunk - 1); 4104 bytes = min(chunk - offset, bytes); 4105 balance_dirty_pages_ratelimited(mapping); 4106 4107 if (fatal_signal_pending(current)) { 4108 status = -EINTR; 4109 break; 4110 } 4111 4112 status = a_ops->write_begin(file, mapping, pos, bytes, 4113 &folio, &fsdata); 4114 if (unlikely(status < 0)) 4115 break; 4116 4117 offset = offset_in_folio(folio, pos); 4118 if (bytes > folio_size(folio) - offset) 4119 bytes = folio_size(folio) - offset; 4120 4121 if (mapping_writably_mapped(mapping)) 4122 flush_dcache_folio(folio); 4123 4124 /* 4125 * Faults here on mmap()s can recurse into arbitrary 4126 * filesystem code. Lots of locks are held that can 4127 * deadlock. Use an atomic copy to avoid deadlocking 4128 * in page fault handling. 4129 */ 4130 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4131 flush_dcache_folio(folio); 4132 4133 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4134 folio, fsdata); 4135 if (unlikely(status != copied)) { 4136 iov_iter_revert(i, copied - max(status, 0L)); 4137 if (unlikely(status < 0)) 4138 break; 4139 } 4140 cond_resched(); 4141 4142 if (unlikely(status == 0)) { 4143 /* 4144 * A short copy made ->write_end() reject the 4145 * thing entirely. Might be memory poisoning 4146 * halfway through, might be a race with munmap, 4147 * might be severe memory pressure. 4148 */ 4149 if (chunk > PAGE_SIZE) 4150 chunk /= 2; 4151 if (copied) { 4152 bytes = copied; 4153 goto retry; 4154 } 4155 4156 /* 4157 * 'folio' is now unlocked and faults on it can be 4158 * handled. Ensure forward progress by trying to 4159 * fault it in now. 4160 */ 4161 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4162 status = -EFAULT; 4163 break; 4164 } 4165 } else { 4166 pos += status; 4167 written += status; 4168 } 4169 } while (iov_iter_count(i)); 4170 4171 if (!written) 4172 return status; 4173 iocb->ki_pos += written; 4174 return written; 4175 } 4176 EXPORT_SYMBOL(generic_perform_write); 4177 4178 /** 4179 * __generic_file_write_iter - write data to a file 4180 * @iocb: IO state structure (file, offset, etc.) 4181 * @from: iov_iter with data to write 4182 * 4183 * This function does all the work needed for actually writing data to a 4184 * file. It does all basic checks, removes SUID from the file, updates 4185 * modification times and calls proper subroutines depending on whether we 4186 * do direct IO or a standard buffered write. 4187 * 4188 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4189 * object which does not need locking at all. 4190 * 4191 * This function does *not* take care of syncing data in case of O_SYNC write. 4192 * A caller has to handle it. This is mainly due to the fact that we want to 4193 * avoid syncing under i_rwsem. 4194 * 4195 * Return: 4196 * * number of bytes written, even for truncated writes 4197 * * negative error code if no data has been written at all 4198 */ 4199 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4200 { 4201 struct file *file = iocb->ki_filp; 4202 struct address_space *mapping = file->f_mapping; 4203 struct inode *inode = mapping->host; 4204 ssize_t ret; 4205 4206 ret = file_remove_privs(file); 4207 if (ret) 4208 return ret; 4209 4210 ret = file_update_time(file); 4211 if (ret) 4212 return ret; 4213 4214 if (iocb->ki_flags & IOCB_DIRECT) { 4215 ret = generic_file_direct_write(iocb, from); 4216 /* 4217 * If the write stopped short of completing, fall back to 4218 * buffered writes. Some filesystems do this for writes to 4219 * holes, for example. For DAX files, a buffered write will 4220 * not succeed (even if it did, DAX does not handle dirty 4221 * page-cache pages correctly). 4222 */ 4223 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4224 return ret; 4225 return direct_write_fallback(iocb, from, ret, 4226 generic_perform_write(iocb, from)); 4227 } 4228 4229 return generic_perform_write(iocb, from); 4230 } 4231 EXPORT_SYMBOL(__generic_file_write_iter); 4232 4233 /** 4234 * generic_file_write_iter - write data to a file 4235 * @iocb: IO state structure 4236 * @from: iov_iter with data to write 4237 * 4238 * This is a wrapper around __generic_file_write_iter() to be used by most 4239 * filesystems. It takes care of syncing the file in case of O_SYNC file 4240 * and acquires i_rwsem as needed. 4241 * Return: 4242 * * negative error code if no data has been written at all of 4243 * vfs_fsync_range() failed for a synchronous write 4244 * * number of bytes written, even for truncated writes 4245 */ 4246 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4247 { 4248 struct file *file = iocb->ki_filp; 4249 struct inode *inode = file->f_mapping->host; 4250 ssize_t ret; 4251 4252 inode_lock(inode); 4253 ret = generic_write_checks(iocb, from); 4254 if (ret > 0) 4255 ret = __generic_file_write_iter(iocb, from); 4256 inode_unlock(inode); 4257 4258 if (ret > 0) 4259 ret = generic_write_sync(iocb, ret); 4260 return ret; 4261 } 4262 EXPORT_SYMBOL(generic_file_write_iter); 4263 4264 /** 4265 * filemap_release_folio() - Release fs-specific metadata on a folio. 4266 * @folio: The folio which the kernel is trying to free. 4267 * @gfp: Memory allocation flags (and I/O mode). 4268 * 4269 * The address_space is trying to release any data attached to a folio 4270 * (presumably at folio->private). 4271 * 4272 * This will also be called if the private_2 flag is set on a page, 4273 * indicating that the folio has other metadata associated with it. 4274 * 4275 * The @gfp argument specifies whether I/O may be performed to release 4276 * this page (__GFP_IO), and whether the call may block 4277 * (__GFP_RECLAIM & __GFP_FS). 4278 * 4279 * Return: %true if the release was successful, otherwise %false. 4280 */ 4281 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4282 { 4283 struct address_space * const mapping = folio->mapping; 4284 4285 BUG_ON(!folio_test_locked(folio)); 4286 if (!folio_needs_release(folio)) 4287 return true; 4288 if (folio_test_writeback(folio)) 4289 return false; 4290 4291 if (mapping && mapping->a_ops->release_folio) 4292 return mapping->a_ops->release_folio(folio, gfp); 4293 return try_to_free_buffers(folio); 4294 } 4295 EXPORT_SYMBOL(filemap_release_folio); 4296 4297 /** 4298 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4299 * @inode: The inode to flush 4300 * @flush: Set to write back rather than simply invalidate. 4301 * @start: First byte to in range. 4302 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4303 * onwards. 4304 * 4305 * Invalidate all the folios on an inode that contribute to the specified 4306 * range, possibly writing them back first. Whilst the operation is 4307 * undertaken, the invalidate lock is held to prevent new folios from being 4308 * installed. 4309 */ 4310 int filemap_invalidate_inode(struct inode *inode, bool flush, 4311 loff_t start, loff_t end) 4312 { 4313 struct address_space *mapping = inode->i_mapping; 4314 pgoff_t first = start >> PAGE_SHIFT; 4315 pgoff_t last = end >> PAGE_SHIFT; 4316 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4317 4318 if (!mapping || !mapping->nrpages || end < start) 4319 goto out; 4320 4321 /* Prevent new folios from being added to the inode. */ 4322 filemap_invalidate_lock(mapping); 4323 4324 if (!mapping->nrpages) 4325 goto unlock; 4326 4327 unmap_mapping_pages(mapping, first, nr, false); 4328 4329 /* Write back the data if we're asked to. */ 4330 if (flush) { 4331 struct writeback_control wbc = { 4332 .sync_mode = WB_SYNC_ALL, 4333 .nr_to_write = LONG_MAX, 4334 .range_start = start, 4335 .range_end = end, 4336 }; 4337 4338 filemap_fdatawrite_wbc(mapping, &wbc); 4339 } 4340 4341 /* Wait for writeback to complete on all folios and discard. */ 4342 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4343 4344 unlock: 4345 filemap_invalidate_unlock(mapping); 4346 out: 4347 return filemap_check_errors(mapping); 4348 } 4349 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4350 4351 #ifdef CONFIG_CACHESTAT_SYSCALL 4352 /** 4353 * filemap_cachestat() - compute the page cache statistics of a mapping 4354 * @mapping: The mapping to compute the statistics for. 4355 * @first_index: The starting page cache index. 4356 * @last_index: The final page index (inclusive). 4357 * @cs: the cachestat struct to write the result to. 4358 * 4359 * This will query the page cache statistics of a mapping in the 4360 * page range of [first_index, last_index] (inclusive). The statistics 4361 * queried include: number of dirty pages, number of pages marked for 4362 * writeback, and the number of (recently) evicted pages. 4363 */ 4364 static void filemap_cachestat(struct address_space *mapping, 4365 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4366 { 4367 XA_STATE(xas, &mapping->i_pages, first_index); 4368 struct folio *folio; 4369 4370 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4371 mem_cgroup_flush_stats_ratelimited(NULL); 4372 4373 rcu_read_lock(); 4374 xas_for_each(&xas, folio, last_index) { 4375 int order; 4376 unsigned long nr_pages; 4377 pgoff_t folio_first_index, folio_last_index; 4378 4379 /* 4380 * Don't deref the folio. It is not pinned, and might 4381 * get freed (and reused) underneath us. 4382 * 4383 * We *could* pin it, but that would be expensive for 4384 * what should be a fast and lightweight syscall. 4385 * 4386 * Instead, derive all information of interest from 4387 * the rcu-protected xarray. 4388 */ 4389 4390 if (xas_retry(&xas, folio)) 4391 continue; 4392 4393 order = xas_get_order(&xas); 4394 nr_pages = 1 << order; 4395 folio_first_index = round_down(xas.xa_index, 1 << order); 4396 folio_last_index = folio_first_index + nr_pages - 1; 4397 4398 /* Folios might straddle the range boundaries, only count covered pages */ 4399 if (folio_first_index < first_index) 4400 nr_pages -= first_index - folio_first_index; 4401 4402 if (folio_last_index > last_index) 4403 nr_pages -= folio_last_index - last_index; 4404 4405 if (xa_is_value(folio)) { 4406 /* page is evicted */ 4407 void *shadow = (void *)folio; 4408 bool workingset; /* not used */ 4409 4410 cs->nr_evicted += nr_pages; 4411 4412 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4413 if (shmem_mapping(mapping)) { 4414 /* shmem file - in swap cache */ 4415 swp_entry_t swp = radix_to_swp_entry(folio); 4416 4417 /* swapin error results in poisoned entry */ 4418 if (non_swap_entry(swp)) 4419 goto resched; 4420 4421 /* 4422 * Getting a swap entry from the shmem 4423 * inode means we beat 4424 * shmem_unuse(). rcu_read_lock() 4425 * ensures swapoff waits for us before 4426 * freeing the swapper space. However, 4427 * we can race with swapping and 4428 * invalidation, so there might not be 4429 * a shadow in the swapcache (yet). 4430 */ 4431 shadow = get_shadow_from_swap_cache(swp); 4432 if (!shadow) 4433 goto resched; 4434 } 4435 #endif 4436 if (workingset_test_recent(shadow, true, &workingset, false)) 4437 cs->nr_recently_evicted += nr_pages; 4438 4439 goto resched; 4440 } 4441 4442 /* page is in cache */ 4443 cs->nr_cache += nr_pages; 4444 4445 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4446 cs->nr_dirty += nr_pages; 4447 4448 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4449 cs->nr_writeback += nr_pages; 4450 4451 resched: 4452 if (need_resched()) { 4453 xas_pause(&xas); 4454 cond_resched_rcu(); 4455 } 4456 } 4457 rcu_read_unlock(); 4458 } 4459 4460 /* 4461 * See mincore: reveal pagecache information only for files 4462 * that the calling process has write access to, or could (if 4463 * tried) open for writing. 4464 */ 4465 static inline bool can_do_cachestat(struct file *f) 4466 { 4467 if (f->f_mode & FMODE_WRITE) 4468 return true; 4469 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4470 return true; 4471 return file_permission(f, MAY_WRITE) == 0; 4472 } 4473 4474 /* 4475 * The cachestat(2) system call. 4476 * 4477 * cachestat() returns the page cache statistics of a file in the 4478 * bytes range specified by `off` and `len`: number of cached pages, 4479 * number of dirty pages, number of pages marked for writeback, 4480 * number of evicted pages, and number of recently evicted pages. 4481 * 4482 * An evicted page is a page that is previously in the page cache 4483 * but has been evicted since. A page is recently evicted if its last 4484 * eviction was recent enough that its reentry to the cache would 4485 * indicate that it is actively being used by the system, and that 4486 * there is memory pressure on the system. 4487 * 4488 * `off` and `len` must be non-negative integers. If `len` > 0, 4489 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4490 * we will query in the range from `off` to the end of the file. 4491 * 4492 * The `flags` argument is unused for now, but is included for future 4493 * extensibility. User should pass 0 (i.e no flag specified). 4494 * 4495 * Currently, hugetlbfs is not supported. 4496 * 4497 * Because the status of a page can change after cachestat() checks it 4498 * but before it returns to the application, the returned values may 4499 * contain stale information. 4500 * 4501 * return values: 4502 * zero - success 4503 * -EFAULT - cstat or cstat_range points to an illegal address 4504 * -EINVAL - invalid flags 4505 * -EBADF - invalid file descriptor 4506 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4507 */ 4508 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4509 struct cachestat_range __user *, cstat_range, 4510 struct cachestat __user *, cstat, unsigned int, flags) 4511 { 4512 CLASS(fd, f)(fd); 4513 struct address_space *mapping; 4514 struct cachestat_range csr; 4515 struct cachestat cs; 4516 pgoff_t first_index, last_index; 4517 4518 if (fd_empty(f)) 4519 return -EBADF; 4520 4521 if (copy_from_user(&csr, cstat_range, 4522 sizeof(struct cachestat_range))) 4523 return -EFAULT; 4524 4525 /* hugetlbfs is not supported */ 4526 if (is_file_hugepages(fd_file(f))) 4527 return -EOPNOTSUPP; 4528 4529 if (!can_do_cachestat(fd_file(f))) 4530 return -EPERM; 4531 4532 if (flags != 0) 4533 return -EINVAL; 4534 4535 first_index = csr.off >> PAGE_SHIFT; 4536 last_index = 4537 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4538 memset(&cs, 0, sizeof(struct cachestat)); 4539 mapping = fd_file(f)->f_mapping; 4540 filemap_cachestat(mapping, first_index, last_index, &cs); 4541 4542 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4543 return -EFAULT; 4544 4545 return 0; 4546 } 4547 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4548