1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <asm/pgalloc.h> 51 #include <asm/tlbflush.h> 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 56 57 /* 58 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 60 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 62 #include <asm/mman.h> 63 64 #include "swap.h" 65 66 /* 67 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 69 * 70 * Shared mappings now work. 15.8.1995 Bruno. 71 * 72 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 77 78 /* 79 * Lock ordering: 80 * 81 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->block_dirty_folio) 83 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 85 * 86 * ->i_rwsem 87 * ->invalidate_lock (acquired by fs in truncate path) 88 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 89 * 90 * ->mmap_lock 91 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 95 * ->mmap_lock 96 * ->invalidate_lock (filemap_fault) 97 * ->lock_page (filemap_fault, access_process_vm) 98 * 99 * ->i_rwsem (generic_perform_write) 100 * ->mmap_lock (fault_in_readable->do_page_fault) 101 * 102 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single_inode) 105 * 106 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) 108 * 109 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 112 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->memcg->move_lock (folio_remove_rmap_pte->folio_memcg_lock) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void mapping_set_update(struct xa_state *xas, 129 struct address_space *mapping) 130 { 131 if (dax_mapping(mapping) || shmem_mapping(mapping)) 132 return; 133 xas_set_update(xas, workingset_update_node); 134 xas_set_lru(xas, &shadow_nodes); 135 } 136 137 static void page_cache_delete(struct address_space *mapping, 138 struct folio *folio, void *shadow) 139 { 140 XA_STATE(xas, &mapping->i_pages, folio->index); 141 long nr = 1; 142 143 mapping_set_update(&xas, mapping); 144 145 xas_set_order(&xas, folio->index, folio_order(folio)); 146 nr = folio_nr_pages(folio); 147 148 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 149 150 xas_store(&xas, shadow); 151 xas_init_marks(&xas); 152 153 folio->mapping = NULL; 154 /* Leave page->index set: truncation lookup relies upon it */ 155 mapping->nrpages -= nr; 156 } 157 158 static void filemap_unaccount_folio(struct address_space *mapping, 159 struct folio *folio) 160 { 161 long nr; 162 163 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 164 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 165 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 166 current->comm, folio_pfn(folio)); 167 dump_page(&folio->page, "still mapped when deleted"); 168 dump_stack(); 169 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 170 171 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 172 int mapcount = folio_mapcount(folio); 173 174 if (folio_ref_count(folio) >= mapcount + 2) { 175 /* 176 * All vmas have already been torn down, so it's 177 * a good bet that actually the page is unmapped 178 * and we'd rather not leak it: if we're wrong, 179 * another bad page check should catch it later. 180 */ 181 atomic_set(&folio->_mapcount, -1); 182 folio_ref_sub(folio, mapcount); 183 } 184 } 185 } 186 187 /* hugetlb folios do not participate in page cache accounting. */ 188 if (folio_test_hugetlb(folio)) 189 return; 190 191 nr = folio_nr_pages(folio); 192 193 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 194 if (folio_test_swapbacked(folio)) { 195 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 196 if (folio_test_pmd_mappable(folio)) 197 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 198 } else if (folio_test_pmd_mappable(folio)) { 199 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 200 filemap_nr_thps_dec(mapping); 201 } 202 203 /* 204 * At this point folio must be either written or cleaned by 205 * truncate. Dirty folio here signals a bug and loss of 206 * unwritten data - on ordinary filesystems. 207 * 208 * But it's harmless on in-memory filesystems like tmpfs; and can 209 * occur when a driver which did get_user_pages() sets page dirty 210 * before putting it, while the inode is being finally evicted. 211 * 212 * Below fixes dirty accounting after removing the folio entirely 213 * but leaves the dirty flag set: it has no effect for truncated 214 * folio and anyway will be cleared before returning folio to 215 * buddy allocator. 216 */ 217 if (WARN_ON_ONCE(folio_test_dirty(folio) && 218 mapping_can_writeback(mapping))) 219 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 220 } 221 222 /* 223 * Delete a page from the page cache and free it. Caller has to make 224 * sure the page is locked and that nobody else uses it - or that usage 225 * is safe. The caller must hold the i_pages lock. 226 */ 227 void __filemap_remove_folio(struct folio *folio, void *shadow) 228 { 229 struct address_space *mapping = folio->mapping; 230 231 trace_mm_filemap_delete_from_page_cache(folio); 232 filemap_unaccount_folio(mapping, folio); 233 page_cache_delete(mapping, folio, shadow); 234 } 235 236 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 237 { 238 void (*free_folio)(struct folio *); 239 int refs = 1; 240 241 free_folio = mapping->a_ops->free_folio; 242 if (free_folio) 243 free_folio(folio); 244 245 if (folio_test_large(folio)) 246 refs = folio_nr_pages(folio); 247 folio_put_refs(folio, refs); 248 } 249 250 /** 251 * filemap_remove_folio - Remove folio from page cache. 252 * @folio: The folio. 253 * 254 * This must be called only on folios that are locked and have been 255 * verified to be in the page cache. It will never put the folio into 256 * the free list because the caller has a reference on the page. 257 */ 258 void filemap_remove_folio(struct folio *folio) 259 { 260 struct address_space *mapping = folio->mapping; 261 262 BUG_ON(!folio_test_locked(folio)); 263 spin_lock(&mapping->host->i_lock); 264 xa_lock_irq(&mapping->i_pages); 265 __filemap_remove_folio(folio, NULL); 266 xa_unlock_irq(&mapping->i_pages); 267 if (mapping_shrinkable(mapping)) 268 inode_add_lru(mapping->host); 269 spin_unlock(&mapping->host->i_lock); 270 271 filemap_free_folio(mapping, folio); 272 } 273 274 /* 275 * page_cache_delete_batch - delete several folios from page cache 276 * @mapping: the mapping to which folios belong 277 * @fbatch: batch of folios to delete 278 * 279 * The function walks over mapping->i_pages and removes folios passed in 280 * @fbatch from the mapping. The function expects @fbatch to be sorted 281 * by page index and is optimised for it to be dense. 282 * It tolerates holes in @fbatch (mapping entries at those indices are not 283 * modified). 284 * 285 * The function expects the i_pages lock to be held. 286 */ 287 static void page_cache_delete_batch(struct address_space *mapping, 288 struct folio_batch *fbatch) 289 { 290 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 291 long total_pages = 0; 292 int i = 0; 293 struct folio *folio; 294 295 mapping_set_update(&xas, mapping); 296 xas_for_each(&xas, folio, ULONG_MAX) { 297 if (i >= folio_batch_count(fbatch)) 298 break; 299 300 /* A swap/dax/shadow entry got inserted? Skip it. */ 301 if (xa_is_value(folio)) 302 continue; 303 /* 304 * A page got inserted in our range? Skip it. We have our 305 * pages locked so they are protected from being removed. 306 * If we see a page whose index is higher than ours, it 307 * means our page has been removed, which shouldn't be 308 * possible because we're holding the PageLock. 309 */ 310 if (folio != fbatch->folios[i]) { 311 VM_BUG_ON_FOLIO(folio->index > 312 fbatch->folios[i]->index, folio); 313 continue; 314 } 315 316 WARN_ON_ONCE(!folio_test_locked(folio)); 317 318 folio->mapping = NULL; 319 /* Leave folio->index set: truncation lookup relies on it */ 320 321 i++; 322 xas_store(&xas, NULL); 323 total_pages += folio_nr_pages(folio); 324 } 325 mapping->nrpages -= total_pages; 326 } 327 328 void delete_from_page_cache_batch(struct address_space *mapping, 329 struct folio_batch *fbatch) 330 { 331 int i; 332 333 if (!folio_batch_count(fbatch)) 334 return; 335 336 spin_lock(&mapping->host->i_lock); 337 xa_lock_irq(&mapping->i_pages); 338 for (i = 0; i < folio_batch_count(fbatch); i++) { 339 struct folio *folio = fbatch->folios[i]; 340 341 trace_mm_filemap_delete_from_page_cache(folio); 342 filemap_unaccount_folio(mapping, folio); 343 } 344 page_cache_delete_batch(mapping, fbatch); 345 xa_unlock_irq(&mapping->i_pages); 346 if (mapping_shrinkable(mapping)) 347 inode_add_lru(mapping->host); 348 spin_unlock(&mapping->host->i_lock); 349 350 for (i = 0; i < folio_batch_count(fbatch); i++) 351 filemap_free_folio(mapping, fbatch->folios[i]); 352 } 353 354 int filemap_check_errors(struct address_space *mapping) 355 { 356 int ret = 0; 357 /* Check for outstanding write errors */ 358 if (test_bit(AS_ENOSPC, &mapping->flags) && 359 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 360 ret = -ENOSPC; 361 if (test_bit(AS_EIO, &mapping->flags) && 362 test_and_clear_bit(AS_EIO, &mapping->flags)) 363 ret = -EIO; 364 return ret; 365 } 366 EXPORT_SYMBOL(filemap_check_errors); 367 368 static int filemap_check_and_keep_errors(struct address_space *mapping) 369 { 370 /* Check for outstanding write errors */ 371 if (test_bit(AS_EIO, &mapping->flags)) 372 return -EIO; 373 if (test_bit(AS_ENOSPC, &mapping->flags)) 374 return -ENOSPC; 375 return 0; 376 } 377 378 /** 379 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 380 * @mapping: address space structure to write 381 * @wbc: the writeback_control controlling the writeout 382 * 383 * Call writepages on the mapping using the provided wbc to control the 384 * writeout. 385 * 386 * Return: %0 on success, negative error code otherwise. 387 */ 388 int filemap_fdatawrite_wbc(struct address_space *mapping, 389 struct writeback_control *wbc) 390 { 391 int ret; 392 393 if (!mapping_can_writeback(mapping) || 394 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 395 return 0; 396 397 wbc_attach_fdatawrite_inode(wbc, mapping->host); 398 ret = do_writepages(mapping, wbc); 399 wbc_detach_inode(wbc); 400 return ret; 401 } 402 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 403 404 /** 405 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 406 * @mapping: address space structure to write 407 * @start: offset in bytes where the range starts 408 * @end: offset in bytes where the range ends (inclusive) 409 * @sync_mode: enable synchronous operation 410 * 411 * Start writeback against all of a mapping's dirty pages that lie 412 * within the byte offsets <start, end> inclusive. 413 * 414 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 415 * opposed to a regular memory cleansing writeback. The difference between 416 * these two operations is that if a dirty page/buffer is encountered, it must 417 * be waited upon, and not just skipped over. 418 * 419 * Return: %0 on success, negative error code otherwise. 420 */ 421 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 422 loff_t end, int sync_mode) 423 { 424 struct writeback_control wbc = { 425 .sync_mode = sync_mode, 426 .nr_to_write = LONG_MAX, 427 .range_start = start, 428 .range_end = end, 429 }; 430 431 return filemap_fdatawrite_wbc(mapping, &wbc); 432 } 433 434 static inline int __filemap_fdatawrite(struct address_space *mapping, 435 int sync_mode) 436 { 437 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 438 } 439 440 int filemap_fdatawrite(struct address_space *mapping) 441 { 442 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 443 } 444 EXPORT_SYMBOL(filemap_fdatawrite); 445 446 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 447 loff_t end) 448 { 449 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 450 } 451 EXPORT_SYMBOL(filemap_fdatawrite_range); 452 453 /** 454 * filemap_flush - mostly a non-blocking flush 455 * @mapping: target address_space 456 * 457 * This is a mostly non-blocking flush. Not suitable for data-integrity 458 * purposes - I/O may not be started against all dirty pages. 459 * 460 * Return: %0 on success, negative error code otherwise. 461 */ 462 int filemap_flush(struct address_space *mapping) 463 { 464 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 465 } 466 EXPORT_SYMBOL(filemap_flush); 467 468 /** 469 * filemap_range_has_page - check if a page exists in range. 470 * @mapping: address space within which to check 471 * @start_byte: offset in bytes where the range starts 472 * @end_byte: offset in bytes where the range ends (inclusive) 473 * 474 * Find at least one page in the range supplied, usually used to check if 475 * direct writing in this range will trigger a writeback. 476 * 477 * Return: %true if at least one page exists in the specified range, 478 * %false otherwise. 479 */ 480 bool filemap_range_has_page(struct address_space *mapping, 481 loff_t start_byte, loff_t end_byte) 482 { 483 struct folio *folio; 484 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 485 pgoff_t max = end_byte >> PAGE_SHIFT; 486 487 if (end_byte < start_byte) 488 return false; 489 490 rcu_read_lock(); 491 for (;;) { 492 folio = xas_find(&xas, max); 493 if (xas_retry(&xas, folio)) 494 continue; 495 /* Shadow entries don't count */ 496 if (xa_is_value(folio)) 497 continue; 498 /* 499 * We don't need to try to pin this page; we're about to 500 * release the RCU lock anyway. It is enough to know that 501 * there was a page here recently. 502 */ 503 break; 504 } 505 rcu_read_unlock(); 506 507 return folio != NULL; 508 } 509 EXPORT_SYMBOL(filemap_range_has_page); 510 511 static void __filemap_fdatawait_range(struct address_space *mapping, 512 loff_t start_byte, loff_t end_byte) 513 { 514 pgoff_t index = start_byte >> PAGE_SHIFT; 515 pgoff_t end = end_byte >> PAGE_SHIFT; 516 struct folio_batch fbatch; 517 unsigned nr_folios; 518 519 folio_batch_init(&fbatch); 520 521 while (index <= end) { 522 unsigned i; 523 524 nr_folios = filemap_get_folios_tag(mapping, &index, end, 525 PAGECACHE_TAG_WRITEBACK, &fbatch); 526 527 if (!nr_folios) 528 break; 529 530 for (i = 0; i < nr_folios; i++) { 531 struct folio *folio = fbatch.folios[i]; 532 533 folio_wait_writeback(folio); 534 } 535 folio_batch_release(&fbatch); 536 cond_resched(); 537 } 538 } 539 540 /** 541 * filemap_fdatawait_range - wait for writeback to complete 542 * @mapping: address space structure to wait for 543 * @start_byte: offset in bytes where the range starts 544 * @end_byte: offset in bytes where the range ends (inclusive) 545 * 546 * Walk the list of under-writeback pages of the given address space 547 * in the given range and wait for all of them. Check error status of 548 * the address space and return it. 549 * 550 * Since the error status of the address space is cleared by this function, 551 * callers are responsible for checking the return value and handling and/or 552 * reporting the error. 553 * 554 * Return: error status of the address space. 555 */ 556 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 557 loff_t end_byte) 558 { 559 __filemap_fdatawait_range(mapping, start_byte, end_byte); 560 return filemap_check_errors(mapping); 561 } 562 EXPORT_SYMBOL(filemap_fdatawait_range); 563 564 /** 565 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 566 * @mapping: address space structure to wait for 567 * @start_byte: offset in bytes where the range starts 568 * @end_byte: offset in bytes where the range ends (inclusive) 569 * 570 * Walk the list of under-writeback pages of the given address space in the 571 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 572 * this function does not clear error status of the address space. 573 * 574 * Use this function if callers don't handle errors themselves. Expected 575 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 576 * fsfreeze(8) 577 */ 578 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 579 loff_t start_byte, loff_t end_byte) 580 { 581 __filemap_fdatawait_range(mapping, start_byte, end_byte); 582 return filemap_check_and_keep_errors(mapping); 583 } 584 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 585 586 /** 587 * file_fdatawait_range - wait for writeback to complete 588 * @file: file pointing to address space structure to wait for 589 * @start_byte: offset in bytes where the range starts 590 * @end_byte: offset in bytes where the range ends (inclusive) 591 * 592 * Walk the list of under-writeback pages of the address space that file 593 * refers to, in the given range and wait for all of them. Check error 594 * status of the address space vs. the file->f_wb_err cursor and return it. 595 * 596 * Since the error status of the file is advanced by this function, 597 * callers are responsible for checking the return value and handling and/or 598 * reporting the error. 599 * 600 * Return: error status of the address space vs. the file->f_wb_err cursor. 601 */ 602 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 603 { 604 struct address_space *mapping = file->f_mapping; 605 606 __filemap_fdatawait_range(mapping, start_byte, end_byte); 607 return file_check_and_advance_wb_err(file); 608 } 609 EXPORT_SYMBOL(file_fdatawait_range); 610 611 /** 612 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 613 * @mapping: address space structure to wait for 614 * 615 * Walk the list of under-writeback pages of the given address space 616 * and wait for all of them. Unlike filemap_fdatawait(), this function 617 * does not clear error status of the address space. 618 * 619 * Use this function if callers don't handle errors themselves. Expected 620 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 621 * fsfreeze(8) 622 * 623 * Return: error status of the address space. 624 */ 625 int filemap_fdatawait_keep_errors(struct address_space *mapping) 626 { 627 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 628 return filemap_check_and_keep_errors(mapping); 629 } 630 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 631 632 /* Returns true if writeback might be needed or already in progress. */ 633 static bool mapping_needs_writeback(struct address_space *mapping) 634 { 635 return mapping->nrpages; 636 } 637 638 bool filemap_range_has_writeback(struct address_space *mapping, 639 loff_t start_byte, loff_t end_byte) 640 { 641 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 642 pgoff_t max = end_byte >> PAGE_SHIFT; 643 struct folio *folio; 644 645 if (end_byte < start_byte) 646 return false; 647 648 rcu_read_lock(); 649 xas_for_each(&xas, folio, max) { 650 if (xas_retry(&xas, folio)) 651 continue; 652 if (xa_is_value(folio)) 653 continue; 654 if (folio_test_dirty(folio) || folio_test_locked(folio) || 655 folio_test_writeback(folio)) 656 break; 657 } 658 rcu_read_unlock(); 659 return folio != NULL; 660 } 661 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 662 663 /** 664 * filemap_write_and_wait_range - write out & wait on a file range 665 * @mapping: the address_space for the pages 666 * @lstart: offset in bytes where the range starts 667 * @lend: offset in bytes where the range ends (inclusive) 668 * 669 * Write out and wait upon file offsets lstart->lend, inclusive. 670 * 671 * Note that @lend is inclusive (describes the last byte to be written) so 672 * that this function can be used to write to the very end-of-file (end = -1). 673 * 674 * Return: error status of the address space. 675 */ 676 int filemap_write_and_wait_range(struct address_space *mapping, 677 loff_t lstart, loff_t lend) 678 { 679 int err = 0, err2; 680 681 if (lend < lstart) 682 return 0; 683 684 if (mapping_needs_writeback(mapping)) { 685 err = __filemap_fdatawrite_range(mapping, lstart, lend, 686 WB_SYNC_ALL); 687 /* 688 * Even if the above returned error, the pages may be 689 * written partially (e.g. -ENOSPC), so we wait for it. 690 * But the -EIO is special case, it may indicate the worst 691 * thing (e.g. bug) happened, so we avoid waiting for it. 692 */ 693 if (err != -EIO) 694 __filemap_fdatawait_range(mapping, lstart, lend); 695 } 696 err2 = filemap_check_errors(mapping); 697 if (!err) 698 err = err2; 699 return err; 700 } 701 EXPORT_SYMBOL(filemap_write_and_wait_range); 702 703 void __filemap_set_wb_err(struct address_space *mapping, int err) 704 { 705 errseq_t eseq = errseq_set(&mapping->wb_err, err); 706 707 trace_filemap_set_wb_err(mapping, eseq); 708 } 709 EXPORT_SYMBOL(__filemap_set_wb_err); 710 711 /** 712 * file_check_and_advance_wb_err - report wb error (if any) that was previously 713 * and advance wb_err to current one 714 * @file: struct file on which the error is being reported 715 * 716 * When userland calls fsync (or something like nfsd does the equivalent), we 717 * want to report any writeback errors that occurred since the last fsync (or 718 * since the file was opened if there haven't been any). 719 * 720 * Grab the wb_err from the mapping. If it matches what we have in the file, 721 * then just quickly return 0. The file is all caught up. 722 * 723 * If it doesn't match, then take the mapping value, set the "seen" flag in 724 * it and try to swap it into place. If it works, or another task beat us 725 * to it with the new value, then update the f_wb_err and return the error 726 * portion. The error at this point must be reported via proper channels 727 * (a'la fsync, or NFS COMMIT operation, etc.). 728 * 729 * While we handle mapping->wb_err with atomic operations, the f_wb_err 730 * value is protected by the f_lock since we must ensure that it reflects 731 * the latest value swapped in for this file descriptor. 732 * 733 * Return: %0 on success, negative error code otherwise. 734 */ 735 int file_check_and_advance_wb_err(struct file *file) 736 { 737 int err = 0; 738 errseq_t old = READ_ONCE(file->f_wb_err); 739 struct address_space *mapping = file->f_mapping; 740 741 /* Locklessly handle the common case where nothing has changed */ 742 if (errseq_check(&mapping->wb_err, old)) { 743 /* Something changed, must use slow path */ 744 spin_lock(&file->f_lock); 745 old = file->f_wb_err; 746 err = errseq_check_and_advance(&mapping->wb_err, 747 &file->f_wb_err); 748 trace_file_check_and_advance_wb_err(file, old); 749 spin_unlock(&file->f_lock); 750 } 751 752 /* 753 * We're mostly using this function as a drop in replacement for 754 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 755 * that the legacy code would have had on these flags. 756 */ 757 clear_bit(AS_EIO, &mapping->flags); 758 clear_bit(AS_ENOSPC, &mapping->flags); 759 return err; 760 } 761 EXPORT_SYMBOL(file_check_and_advance_wb_err); 762 763 /** 764 * file_write_and_wait_range - write out & wait on a file range 765 * @file: file pointing to address_space with pages 766 * @lstart: offset in bytes where the range starts 767 * @lend: offset in bytes where the range ends (inclusive) 768 * 769 * Write out and wait upon file offsets lstart->lend, inclusive. 770 * 771 * Note that @lend is inclusive (describes the last byte to be written) so 772 * that this function can be used to write to the very end-of-file (end = -1). 773 * 774 * After writing out and waiting on the data, we check and advance the 775 * f_wb_err cursor to the latest value, and return any errors detected there. 776 * 777 * Return: %0 on success, negative error code otherwise. 778 */ 779 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 780 { 781 int err = 0, err2; 782 struct address_space *mapping = file->f_mapping; 783 784 if (lend < lstart) 785 return 0; 786 787 if (mapping_needs_writeback(mapping)) { 788 err = __filemap_fdatawrite_range(mapping, lstart, lend, 789 WB_SYNC_ALL); 790 /* See comment of filemap_write_and_wait() */ 791 if (err != -EIO) 792 __filemap_fdatawait_range(mapping, lstart, lend); 793 } 794 err2 = file_check_and_advance_wb_err(file); 795 if (!err) 796 err = err2; 797 return err; 798 } 799 EXPORT_SYMBOL(file_write_and_wait_range); 800 801 /** 802 * replace_page_cache_folio - replace a pagecache folio with a new one 803 * @old: folio to be replaced 804 * @new: folio to replace with 805 * 806 * This function replaces a folio in the pagecache with a new one. On 807 * success it acquires the pagecache reference for the new folio and 808 * drops it for the old folio. Both the old and new folios must be 809 * locked. This function does not add the new folio to the LRU, the 810 * caller must do that. 811 * 812 * The remove + add is atomic. This function cannot fail. 813 */ 814 void replace_page_cache_folio(struct folio *old, struct folio *new) 815 { 816 struct address_space *mapping = old->mapping; 817 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 818 pgoff_t offset = old->index; 819 XA_STATE(xas, &mapping->i_pages, offset); 820 821 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 822 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 823 VM_BUG_ON_FOLIO(new->mapping, new); 824 825 folio_get(new); 826 new->mapping = mapping; 827 new->index = offset; 828 829 mem_cgroup_replace_folio(old, new); 830 831 xas_lock_irq(&xas); 832 xas_store(&xas, new); 833 834 old->mapping = NULL; 835 /* hugetlb pages do not participate in page cache accounting. */ 836 if (!folio_test_hugetlb(old)) 837 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 838 if (!folio_test_hugetlb(new)) 839 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 840 if (folio_test_swapbacked(old)) 841 __lruvec_stat_sub_folio(old, NR_SHMEM); 842 if (folio_test_swapbacked(new)) 843 __lruvec_stat_add_folio(new, NR_SHMEM); 844 xas_unlock_irq(&xas); 845 if (free_folio) 846 free_folio(old); 847 folio_put(old); 848 } 849 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 850 851 noinline int __filemap_add_folio(struct address_space *mapping, 852 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 853 { 854 XA_STATE(xas, &mapping->i_pages, index); 855 void *alloced_shadow = NULL; 856 int alloced_order = 0; 857 bool huge; 858 long nr; 859 860 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 861 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 862 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 863 folio); 864 mapping_set_update(&xas, mapping); 865 866 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 867 xas_set_order(&xas, index, folio_order(folio)); 868 huge = folio_test_hugetlb(folio); 869 nr = folio_nr_pages(folio); 870 871 gfp &= GFP_RECLAIM_MASK; 872 folio_ref_add(folio, nr); 873 folio->mapping = mapping; 874 folio->index = xas.xa_index; 875 876 for (;;) { 877 int order = -1, split_order = 0; 878 void *entry, *old = NULL; 879 880 xas_lock_irq(&xas); 881 xas_for_each_conflict(&xas, entry) { 882 old = entry; 883 if (!xa_is_value(entry)) { 884 xas_set_err(&xas, -EEXIST); 885 goto unlock; 886 } 887 /* 888 * If a larger entry exists, 889 * it will be the first and only entry iterated. 890 */ 891 if (order == -1) 892 order = xas_get_order(&xas); 893 } 894 895 /* entry may have changed before we re-acquire the lock */ 896 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 897 xas_destroy(&xas); 898 alloced_order = 0; 899 } 900 901 if (old) { 902 if (order > 0 && order > folio_order(folio)) { 903 /* How to handle large swap entries? */ 904 BUG_ON(shmem_mapping(mapping)); 905 if (!alloced_order) { 906 split_order = order; 907 goto unlock; 908 } 909 xas_split(&xas, old, order); 910 xas_reset(&xas); 911 } 912 if (shadowp) 913 *shadowp = old; 914 } 915 916 xas_store(&xas, folio); 917 if (xas_error(&xas)) 918 goto unlock; 919 920 mapping->nrpages += nr; 921 922 /* hugetlb pages do not participate in page cache accounting */ 923 if (!huge) { 924 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 925 if (folio_test_pmd_mappable(folio)) 926 __lruvec_stat_mod_folio(folio, 927 NR_FILE_THPS, nr); 928 } 929 930 unlock: 931 xas_unlock_irq(&xas); 932 933 /* split needed, alloc here and retry. */ 934 if (split_order) { 935 xas_split_alloc(&xas, old, split_order, gfp); 936 if (xas_error(&xas)) 937 goto error; 938 alloced_shadow = old; 939 alloced_order = split_order; 940 xas_reset(&xas); 941 continue; 942 } 943 944 if (!xas_nomem(&xas, gfp)) 945 break; 946 } 947 948 if (xas_error(&xas)) 949 goto error; 950 951 trace_mm_filemap_add_to_page_cache(folio); 952 return 0; 953 error: 954 folio->mapping = NULL; 955 /* Leave page->index set: truncation relies upon it */ 956 folio_put_refs(folio, nr); 957 return xas_error(&xas); 958 } 959 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 960 961 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 962 pgoff_t index, gfp_t gfp) 963 { 964 void *shadow = NULL; 965 int ret; 966 967 ret = mem_cgroup_charge(folio, NULL, gfp); 968 if (ret) 969 return ret; 970 971 __folio_set_locked(folio); 972 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 973 if (unlikely(ret)) { 974 mem_cgroup_uncharge(folio); 975 __folio_clear_locked(folio); 976 } else { 977 /* 978 * The folio might have been evicted from cache only 979 * recently, in which case it should be activated like 980 * any other repeatedly accessed folio. 981 * The exception is folios getting rewritten; evicting other 982 * data from the working set, only to cache data that will 983 * get overwritten with something else, is a waste of memory. 984 */ 985 WARN_ON_ONCE(folio_test_active(folio)); 986 if (!(gfp & __GFP_WRITE) && shadow) 987 workingset_refault(folio, shadow); 988 folio_add_lru(folio); 989 } 990 return ret; 991 } 992 EXPORT_SYMBOL_GPL(filemap_add_folio); 993 994 #ifdef CONFIG_NUMA 995 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 996 { 997 int n; 998 struct folio *folio; 999 1000 if (cpuset_do_page_mem_spread()) { 1001 unsigned int cpuset_mems_cookie; 1002 do { 1003 cpuset_mems_cookie = read_mems_allowed_begin(); 1004 n = cpuset_mem_spread_node(); 1005 folio = __folio_alloc_node_noprof(gfp, order, n); 1006 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1007 1008 return folio; 1009 } 1010 return folio_alloc_noprof(gfp, order); 1011 } 1012 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1013 #endif 1014 1015 /* 1016 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1017 * 1018 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1019 * 1020 * @mapping1: the first mapping to lock 1021 * @mapping2: the second mapping to lock 1022 */ 1023 void filemap_invalidate_lock_two(struct address_space *mapping1, 1024 struct address_space *mapping2) 1025 { 1026 if (mapping1 > mapping2) 1027 swap(mapping1, mapping2); 1028 if (mapping1) 1029 down_write(&mapping1->invalidate_lock); 1030 if (mapping2 && mapping1 != mapping2) 1031 down_write_nested(&mapping2->invalidate_lock, 1); 1032 } 1033 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1034 1035 /* 1036 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1037 * 1038 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1039 * 1040 * @mapping1: the first mapping to unlock 1041 * @mapping2: the second mapping to unlock 1042 */ 1043 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1044 struct address_space *mapping2) 1045 { 1046 if (mapping1) 1047 up_write(&mapping1->invalidate_lock); 1048 if (mapping2 && mapping1 != mapping2) 1049 up_write(&mapping2->invalidate_lock); 1050 } 1051 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1052 1053 /* 1054 * In order to wait for pages to become available there must be 1055 * waitqueues associated with pages. By using a hash table of 1056 * waitqueues where the bucket discipline is to maintain all 1057 * waiters on the same queue and wake all when any of the pages 1058 * become available, and for the woken contexts to check to be 1059 * sure the appropriate page became available, this saves space 1060 * at a cost of "thundering herd" phenomena during rare hash 1061 * collisions. 1062 */ 1063 #define PAGE_WAIT_TABLE_BITS 8 1064 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1065 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1066 1067 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1068 { 1069 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1070 } 1071 1072 void __init pagecache_init(void) 1073 { 1074 int i; 1075 1076 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1077 init_waitqueue_head(&folio_wait_table[i]); 1078 1079 page_writeback_init(); 1080 } 1081 1082 /* 1083 * The page wait code treats the "wait->flags" somewhat unusually, because 1084 * we have multiple different kinds of waits, not just the usual "exclusive" 1085 * one. 1086 * 1087 * We have: 1088 * 1089 * (a) no special bits set: 1090 * 1091 * We're just waiting for the bit to be released, and when a waker 1092 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1093 * and remove it from the wait queue. 1094 * 1095 * Simple and straightforward. 1096 * 1097 * (b) WQ_FLAG_EXCLUSIVE: 1098 * 1099 * The waiter is waiting to get the lock, and only one waiter should 1100 * be woken up to avoid any thundering herd behavior. We'll set the 1101 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1102 * 1103 * This is the traditional exclusive wait. 1104 * 1105 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1106 * 1107 * The waiter is waiting to get the bit, and additionally wants the 1108 * lock to be transferred to it for fair lock behavior. If the lock 1109 * cannot be taken, we stop walking the wait queue without waking 1110 * the waiter. 1111 * 1112 * This is the "fair lock handoff" case, and in addition to setting 1113 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1114 * that it now has the lock. 1115 */ 1116 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1117 { 1118 unsigned int flags; 1119 struct wait_page_key *key = arg; 1120 struct wait_page_queue *wait_page 1121 = container_of(wait, struct wait_page_queue, wait); 1122 1123 if (!wake_page_match(wait_page, key)) 1124 return 0; 1125 1126 /* 1127 * If it's a lock handoff wait, we get the bit for it, and 1128 * stop walking (and do not wake it up) if we can't. 1129 */ 1130 flags = wait->flags; 1131 if (flags & WQ_FLAG_EXCLUSIVE) { 1132 if (test_bit(key->bit_nr, &key->folio->flags)) 1133 return -1; 1134 if (flags & WQ_FLAG_CUSTOM) { 1135 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1136 return -1; 1137 flags |= WQ_FLAG_DONE; 1138 } 1139 } 1140 1141 /* 1142 * We are holding the wait-queue lock, but the waiter that 1143 * is waiting for this will be checking the flags without 1144 * any locking. 1145 * 1146 * So update the flags atomically, and wake up the waiter 1147 * afterwards to avoid any races. This store-release pairs 1148 * with the load-acquire in folio_wait_bit_common(). 1149 */ 1150 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1151 wake_up_state(wait->private, mode); 1152 1153 /* 1154 * Ok, we have successfully done what we're waiting for, 1155 * and we can unconditionally remove the wait entry. 1156 * 1157 * Note that this pairs with the "finish_wait()" in the 1158 * waiter, and has to be the absolute last thing we do. 1159 * After this list_del_init(&wait->entry) the wait entry 1160 * might be de-allocated and the process might even have 1161 * exited. 1162 */ 1163 list_del_init_careful(&wait->entry); 1164 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1165 } 1166 1167 static void folio_wake_bit(struct folio *folio, int bit_nr) 1168 { 1169 wait_queue_head_t *q = folio_waitqueue(folio); 1170 struct wait_page_key key; 1171 unsigned long flags; 1172 1173 key.folio = folio; 1174 key.bit_nr = bit_nr; 1175 key.page_match = 0; 1176 1177 spin_lock_irqsave(&q->lock, flags); 1178 __wake_up_locked_key(q, TASK_NORMAL, &key); 1179 1180 /* 1181 * It's possible to miss clearing waiters here, when we woke our page 1182 * waiters, but the hashed waitqueue has waiters for other pages on it. 1183 * That's okay, it's a rare case. The next waker will clear it. 1184 * 1185 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1186 * other), the flag may be cleared in the course of freeing the page; 1187 * but that is not required for correctness. 1188 */ 1189 if (!waitqueue_active(q) || !key.page_match) 1190 folio_clear_waiters(folio); 1191 1192 spin_unlock_irqrestore(&q->lock, flags); 1193 } 1194 1195 /* 1196 * A choice of three behaviors for folio_wait_bit_common(): 1197 */ 1198 enum behavior { 1199 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1200 * __folio_lock() waiting on then setting PG_locked. 1201 */ 1202 SHARED, /* Hold ref to page and check the bit when woken, like 1203 * folio_wait_writeback() waiting on PG_writeback. 1204 */ 1205 DROP, /* Drop ref to page before wait, no check when woken, 1206 * like folio_put_wait_locked() on PG_locked. 1207 */ 1208 }; 1209 1210 /* 1211 * Attempt to check (or get) the folio flag, and mark us done 1212 * if successful. 1213 */ 1214 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1215 struct wait_queue_entry *wait) 1216 { 1217 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1218 if (test_and_set_bit(bit_nr, &folio->flags)) 1219 return false; 1220 } else if (test_bit(bit_nr, &folio->flags)) 1221 return false; 1222 1223 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1224 return true; 1225 } 1226 1227 /* How many times do we accept lock stealing from under a waiter? */ 1228 int sysctl_page_lock_unfairness = 5; 1229 1230 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1231 int state, enum behavior behavior) 1232 { 1233 wait_queue_head_t *q = folio_waitqueue(folio); 1234 int unfairness = sysctl_page_lock_unfairness; 1235 struct wait_page_queue wait_page; 1236 wait_queue_entry_t *wait = &wait_page.wait; 1237 bool thrashing = false; 1238 unsigned long pflags; 1239 bool in_thrashing; 1240 1241 if (bit_nr == PG_locked && 1242 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1243 delayacct_thrashing_start(&in_thrashing); 1244 psi_memstall_enter(&pflags); 1245 thrashing = true; 1246 } 1247 1248 init_wait(wait); 1249 wait->func = wake_page_function; 1250 wait_page.folio = folio; 1251 wait_page.bit_nr = bit_nr; 1252 1253 repeat: 1254 wait->flags = 0; 1255 if (behavior == EXCLUSIVE) { 1256 wait->flags = WQ_FLAG_EXCLUSIVE; 1257 if (--unfairness < 0) 1258 wait->flags |= WQ_FLAG_CUSTOM; 1259 } 1260 1261 /* 1262 * Do one last check whether we can get the 1263 * page bit synchronously. 1264 * 1265 * Do the folio_set_waiters() marking before that 1266 * to let any waker we _just_ missed know they 1267 * need to wake us up (otherwise they'll never 1268 * even go to the slow case that looks at the 1269 * page queue), and add ourselves to the wait 1270 * queue if we need to sleep. 1271 * 1272 * This part needs to be done under the queue 1273 * lock to avoid races. 1274 */ 1275 spin_lock_irq(&q->lock); 1276 folio_set_waiters(folio); 1277 if (!folio_trylock_flag(folio, bit_nr, wait)) 1278 __add_wait_queue_entry_tail(q, wait); 1279 spin_unlock_irq(&q->lock); 1280 1281 /* 1282 * From now on, all the logic will be based on 1283 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1284 * see whether the page bit testing has already 1285 * been done by the wake function. 1286 * 1287 * We can drop our reference to the folio. 1288 */ 1289 if (behavior == DROP) 1290 folio_put(folio); 1291 1292 /* 1293 * Note that until the "finish_wait()", or until 1294 * we see the WQ_FLAG_WOKEN flag, we need to 1295 * be very careful with the 'wait->flags', because 1296 * we may race with a waker that sets them. 1297 */ 1298 for (;;) { 1299 unsigned int flags; 1300 1301 set_current_state(state); 1302 1303 /* Loop until we've been woken or interrupted */ 1304 flags = smp_load_acquire(&wait->flags); 1305 if (!(flags & WQ_FLAG_WOKEN)) { 1306 if (signal_pending_state(state, current)) 1307 break; 1308 1309 io_schedule(); 1310 continue; 1311 } 1312 1313 /* If we were non-exclusive, we're done */ 1314 if (behavior != EXCLUSIVE) 1315 break; 1316 1317 /* If the waker got the lock for us, we're done */ 1318 if (flags & WQ_FLAG_DONE) 1319 break; 1320 1321 /* 1322 * Otherwise, if we're getting the lock, we need to 1323 * try to get it ourselves. 1324 * 1325 * And if that fails, we'll have to retry this all. 1326 */ 1327 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1328 goto repeat; 1329 1330 wait->flags |= WQ_FLAG_DONE; 1331 break; 1332 } 1333 1334 /* 1335 * If a signal happened, this 'finish_wait()' may remove the last 1336 * waiter from the wait-queues, but the folio waiters bit will remain 1337 * set. That's ok. The next wakeup will take care of it, and trying 1338 * to do it here would be difficult and prone to races. 1339 */ 1340 finish_wait(q, wait); 1341 1342 if (thrashing) { 1343 delayacct_thrashing_end(&in_thrashing); 1344 psi_memstall_leave(&pflags); 1345 } 1346 1347 /* 1348 * NOTE! The wait->flags weren't stable until we've done the 1349 * 'finish_wait()', and we could have exited the loop above due 1350 * to a signal, and had a wakeup event happen after the signal 1351 * test but before the 'finish_wait()'. 1352 * 1353 * So only after the finish_wait() can we reliably determine 1354 * if we got woken up or not, so we can now figure out the final 1355 * return value based on that state without races. 1356 * 1357 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1358 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1359 */ 1360 if (behavior == EXCLUSIVE) 1361 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1362 1363 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1364 } 1365 1366 #ifdef CONFIG_MIGRATION 1367 /** 1368 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1369 * @entry: migration swap entry. 1370 * @ptl: already locked ptl. This function will drop the lock. 1371 * 1372 * Wait for a migration entry referencing the given page to be removed. This is 1373 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1374 * this can be called without taking a reference on the page. Instead this 1375 * should be called while holding the ptl for the migration entry referencing 1376 * the page. 1377 * 1378 * Returns after unlocking the ptl. 1379 * 1380 * This follows the same logic as folio_wait_bit_common() so see the comments 1381 * there. 1382 */ 1383 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1384 __releases(ptl) 1385 { 1386 struct wait_page_queue wait_page; 1387 wait_queue_entry_t *wait = &wait_page.wait; 1388 bool thrashing = false; 1389 unsigned long pflags; 1390 bool in_thrashing; 1391 wait_queue_head_t *q; 1392 struct folio *folio = pfn_swap_entry_folio(entry); 1393 1394 q = folio_waitqueue(folio); 1395 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1396 delayacct_thrashing_start(&in_thrashing); 1397 psi_memstall_enter(&pflags); 1398 thrashing = true; 1399 } 1400 1401 init_wait(wait); 1402 wait->func = wake_page_function; 1403 wait_page.folio = folio; 1404 wait_page.bit_nr = PG_locked; 1405 wait->flags = 0; 1406 1407 spin_lock_irq(&q->lock); 1408 folio_set_waiters(folio); 1409 if (!folio_trylock_flag(folio, PG_locked, wait)) 1410 __add_wait_queue_entry_tail(q, wait); 1411 spin_unlock_irq(&q->lock); 1412 1413 /* 1414 * If a migration entry exists for the page the migration path must hold 1415 * a valid reference to the page, and it must take the ptl to remove the 1416 * migration entry. So the page is valid until the ptl is dropped. 1417 */ 1418 spin_unlock(ptl); 1419 1420 for (;;) { 1421 unsigned int flags; 1422 1423 set_current_state(TASK_UNINTERRUPTIBLE); 1424 1425 /* Loop until we've been woken or interrupted */ 1426 flags = smp_load_acquire(&wait->flags); 1427 if (!(flags & WQ_FLAG_WOKEN)) { 1428 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1429 break; 1430 1431 io_schedule(); 1432 continue; 1433 } 1434 break; 1435 } 1436 1437 finish_wait(q, wait); 1438 1439 if (thrashing) { 1440 delayacct_thrashing_end(&in_thrashing); 1441 psi_memstall_leave(&pflags); 1442 } 1443 } 1444 #endif 1445 1446 void folio_wait_bit(struct folio *folio, int bit_nr) 1447 { 1448 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1449 } 1450 EXPORT_SYMBOL(folio_wait_bit); 1451 1452 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1453 { 1454 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1455 } 1456 EXPORT_SYMBOL(folio_wait_bit_killable); 1457 1458 /** 1459 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1460 * @folio: The folio to wait for. 1461 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1462 * 1463 * The caller should hold a reference on @folio. They expect the page to 1464 * become unlocked relatively soon, but do not wish to hold up migration 1465 * (for example) by holding the reference while waiting for the folio to 1466 * come unlocked. After this function returns, the caller should not 1467 * dereference @folio. 1468 * 1469 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1470 */ 1471 static int folio_put_wait_locked(struct folio *folio, int state) 1472 { 1473 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1474 } 1475 1476 /** 1477 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue 1478 * @folio: Folio defining the wait queue of interest 1479 * @waiter: Waiter to add to the queue 1480 * 1481 * Add an arbitrary @waiter to the wait queue for the nominated @folio. 1482 */ 1483 void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter) 1484 { 1485 wait_queue_head_t *q = folio_waitqueue(folio); 1486 unsigned long flags; 1487 1488 spin_lock_irqsave(&q->lock, flags); 1489 __add_wait_queue_entry_tail(q, waiter); 1490 folio_set_waiters(folio); 1491 spin_unlock_irqrestore(&q->lock, flags); 1492 } 1493 EXPORT_SYMBOL_GPL(folio_add_wait_queue); 1494 1495 /** 1496 * folio_unlock - Unlock a locked folio. 1497 * @folio: The folio. 1498 * 1499 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1500 * 1501 * Context: May be called from interrupt or process context. May not be 1502 * called from NMI context. 1503 */ 1504 void folio_unlock(struct folio *folio) 1505 { 1506 /* Bit 7 allows x86 to check the byte's sign bit */ 1507 BUILD_BUG_ON(PG_waiters != 7); 1508 BUILD_BUG_ON(PG_locked > 7); 1509 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1510 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1511 folio_wake_bit(folio, PG_locked); 1512 } 1513 EXPORT_SYMBOL(folio_unlock); 1514 1515 /** 1516 * folio_end_read - End read on a folio. 1517 * @folio: The folio. 1518 * @success: True if all reads completed successfully. 1519 * 1520 * When all reads against a folio have completed, filesystems should 1521 * call this function to let the pagecache know that no more reads 1522 * are outstanding. This will unlock the folio and wake up any thread 1523 * sleeping on the lock. The folio will also be marked uptodate if all 1524 * reads succeeded. 1525 * 1526 * Context: May be called from interrupt or process context. May not be 1527 * called from NMI context. 1528 */ 1529 void folio_end_read(struct folio *folio, bool success) 1530 { 1531 unsigned long mask = 1 << PG_locked; 1532 1533 /* Must be in bottom byte for x86 to work */ 1534 BUILD_BUG_ON(PG_uptodate > 7); 1535 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1536 VM_BUG_ON_FOLIO(folio_test_uptodate(folio), folio); 1537 1538 if (likely(success)) 1539 mask |= 1 << PG_uptodate; 1540 if (folio_xor_flags_has_waiters(folio, mask)) 1541 folio_wake_bit(folio, PG_locked); 1542 } 1543 EXPORT_SYMBOL(folio_end_read); 1544 1545 /** 1546 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1547 * @folio: The folio. 1548 * 1549 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1550 * it. The folio reference held for PG_private_2 being set is released. 1551 * 1552 * This is, for example, used when a netfs folio is being written to a local 1553 * disk cache, thereby allowing writes to the cache for the same folio to be 1554 * serialised. 1555 */ 1556 void folio_end_private_2(struct folio *folio) 1557 { 1558 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1559 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1560 folio_wake_bit(folio, PG_private_2); 1561 folio_put(folio); 1562 } 1563 EXPORT_SYMBOL(folio_end_private_2); 1564 1565 /** 1566 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1567 * @folio: The folio to wait on. 1568 * 1569 * Wait for PG_private_2 to be cleared on a folio. 1570 */ 1571 void folio_wait_private_2(struct folio *folio) 1572 { 1573 while (folio_test_private_2(folio)) 1574 folio_wait_bit(folio, PG_private_2); 1575 } 1576 EXPORT_SYMBOL(folio_wait_private_2); 1577 1578 /** 1579 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1580 * @folio: The folio to wait on. 1581 * 1582 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1583 * received by the calling task. 1584 * 1585 * Return: 1586 * - 0 if successful. 1587 * - -EINTR if a fatal signal was encountered. 1588 */ 1589 int folio_wait_private_2_killable(struct folio *folio) 1590 { 1591 int ret = 0; 1592 1593 while (folio_test_private_2(folio)) { 1594 ret = folio_wait_bit_killable(folio, PG_private_2); 1595 if (ret < 0) 1596 break; 1597 } 1598 1599 return ret; 1600 } 1601 EXPORT_SYMBOL(folio_wait_private_2_killable); 1602 1603 /** 1604 * folio_end_writeback - End writeback against a folio. 1605 * @folio: The folio. 1606 * 1607 * The folio must actually be under writeback. 1608 * 1609 * Context: May be called from process or interrupt context. 1610 */ 1611 void folio_end_writeback(struct folio *folio) 1612 { 1613 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1614 1615 /* 1616 * folio_test_clear_reclaim() could be used here but it is an 1617 * atomic operation and overkill in this particular case. Failing 1618 * to shuffle a folio marked for immediate reclaim is too mild 1619 * a gain to justify taking an atomic operation penalty at the 1620 * end of every folio writeback. 1621 */ 1622 if (folio_test_reclaim(folio)) { 1623 folio_clear_reclaim(folio); 1624 folio_rotate_reclaimable(folio); 1625 } 1626 1627 /* 1628 * Writeback does not hold a folio reference of its own, relying 1629 * on truncation to wait for the clearing of PG_writeback. 1630 * But here we must make sure that the folio is not freed and 1631 * reused before the folio_wake_bit(). 1632 */ 1633 folio_get(folio); 1634 if (__folio_end_writeback(folio)) 1635 folio_wake_bit(folio, PG_writeback); 1636 acct_reclaim_writeback(folio); 1637 folio_put(folio); 1638 } 1639 EXPORT_SYMBOL(folio_end_writeback); 1640 1641 /** 1642 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1643 * @folio: The folio to lock 1644 */ 1645 void __folio_lock(struct folio *folio) 1646 { 1647 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1648 EXCLUSIVE); 1649 } 1650 EXPORT_SYMBOL(__folio_lock); 1651 1652 int __folio_lock_killable(struct folio *folio) 1653 { 1654 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1655 EXCLUSIVE); 1656 } 1657 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1658 1659 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1660 { 1661 struct wait_queue_head *q = folio_waitqueue(folio); 1662 int ret; 1663 1664 wait->folio = folio; 1665 wait->bit_nr = PG_locked; 1666 1667 spin_lock_irq(&q->lock); 1668 __add_wait_queue_entry_tail(q, &wait->wait); 1669 folio_set_waiters(folio); 1670 ret = !folio_trylock(folio); 1671 /* 1672 * If we were successful now, we know we're still on the 1673 * waitqueue as we're still under the lock. This means it's 1674 * safe to remove and return success, we know the callback 1675 * isn't going to trigger. 1676 */ 1677 if (!ret) 1678 __remove_wait_queue(q, &wait->wait); 1679 else 1680 ret = -EIOCBQUEUED; 1681 spin_unlock_irq(&q->lock); 1682 return ret; 1683 } 1684 1685 /* 1686 * Return values: 1687 * 0 - folio is locked. 1688 * non-zero - folio is not locked. 1689 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1690 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1691 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1692 * 1693 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1694 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1695 */ 1696 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1697 { 1698 unsigned int flags = vmf->flags; 1699 1700 if (fault_flag_allow_retry_first(flags)) { 1701 /* 1702 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1703 * released even though returning VM_FAULT_RETRY. 1704 */ 1705 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1706 return VM_FAULT_RETRY; 1707 1708 release_fault_lock(vmf); 1709 if (flags & FAULT_FLAG_KILLABLE) 1710 folio_wait_locked_killable(folio); 1711 else 1712 folio_wait_locked(folio); 1713 return VM_FAULT_RETRY; 1714 } 1715 if (flags & FAULT_FLAG_KILLABLE) { 1716 bool ret; 1717 1718 ret = __folio_lock_killable(folio); 1719 if (ret) { 1720 release_fault_lock(vmf); 1721 return VM_FAULT_RETRY; 1722 } 1723 } else { 1724 __folio_lock(folio); 1725 } 1726 1727 return 0; 1728 } 1729 1730 /** 1731 * page_cache_next_miss() - Find the next gap in the page cache. 1732 * @mapping: Mapping. 1733 * @index: Index. 1734 * @max_scan: Maximum range to search. 1735 * 1736 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1737 * gap with the lowest index. 1738 * 1739 * This function may be called under the rcu_read_lock. However, this will 1740 * not atomically search a snapshot of the cache at a single point in time. 1741 * For example, if a gap is created at index 5, then subsequently a gap is 1742 * created at index 10, page_cache_next_miss covering both indices may 1743 * return 10 if called under the rcu_read_lock. 1744 * 1745 * Return: The index of the gap if found, otherwise an index outside the 1746 * range specified (in which case 'return - index >= max_scan' will be true). 1747 * In the rare case of index wrap-around, 0 will be returned. 1748 */ 1749 pgoff_t page_cache_next_miss(struct address_space *mapping, 1750 pgoff_t index, unsigned long max_scan) 1751 { 1752 XA_STATE(xas, &mapping->i_pages, index); 1753 1754 while (max_scan--) { 1755 void *entry = xas_next(&xas); 1756 if (!entry || xa_is_value(entry)) 1757 return xas.xa_index; 1758 if (xas.xa_index == 0) 1759 return 0; 1760 } 1761 1762 return index + max_scan; 1763 } 1764 EXPORT_SYMBOL(page_cache_next_miss); 1765 1766 /** 1767 * page_cache_prev_miss() - Find the previous gap in the page cache. 1768 * @mapping: Mapping. 1769 * @index: Index. 1770 * @max_scan: Maximum range to search. 1771 * 1772 * Search the range [max(index - max_scan + 1, 0), index] for the 1773 * gap with the highest index. 1774 * 1775 * This function may be called under the rcu_read_lock. However, this will 1776 * not atomically search a snapshot of the cache at a single point in time. 1777 * For example, if a gap is created at index 10, then subsequently a gap is 1778 * created at index 5, page_cache_prev_miss() covering both indices may 1779 * return 5 if called under the rcu_read_lock. 1780 * 1781 * Return: The index of the gap if found, otherwise an index outside the 1782 * range specified (in which case 'index - return >= max_scan' will be true). 1783 * In the rare case of wrap-around, ULONG_MAX will be returned. 1784 */ 1785 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1786 pgoff_t index, unsigned long max_scan) 1787 { 1788 XA_STATE(xas, &mapping->i_pages, index); 1789 1790 while (max_scan--) { 1791 void *entry = xas_prev(&xas); 1792 if (!entry || xa_is_value(entry)) 1793 break; 1794 if (xas.xa_index == ULONG_MAX) 1795 break; 1796 } 1797 1798 return xas.xa_index; 1799 } 1800 EXPORT_SYMBOL(page_cache_prev_miss); 1801 1802 /* 1803 * Lockless page cache protocol: 1804 * On the lookup side: 1805 * 1. Load the folio from i_pages 1806 * 2. Increment the refcount if it's not zero 1807 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1808 * 1809 * On the removal side: 1810 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1811 * B. Remove the page from i_pages 1812 * C. Return the page to the page allocator 1813 * 1814 * This means that any page may have its reference count temporarily 1815 * increased by a speculative page cache (or GUP-fast) lookup as it can 1816 * be allocated by another user before the RCU grace period expires. 1817 * Because the refcount temporarily acquired here may end up being the 1818 * last refcount on the page, any page allocation must be freeable by 1819 * folio_put(). 1820 */ 1821 1822 /* 1823 * filemap_get_entry - Get a page cache entry. 1824 * @mapping: the address_space to search 1825 * @index: The page cache index. 1826 * 1827 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1828 * it is returned with an increased refcount. If it is a shadow entry 1829 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1830 * it is returned without further action. 1831 * 1832 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1833 */ 1834 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1835 { 1836 XA_STATE(xas, &mapping->i_pages, index); 1837 struct folio *folio; 1838 1839 rcu_read_lock(); 1840 repeat: 1841 xas_reset(&xas); 1842 folio = xas_load(&xas); 1843 if (xas_retry(&xas, folio)) 1844 goto repeat; 1845 /* 1846 * A shadow entry of a recently evicted page, or a swap entry from 1847 * shmem/tmpfs. Return it without attempting to raise page count. 1848 */ 1849 if (!folio || xa_is_value(folio)) 1850 goto out; 1851 1852 if (!folio_try_get(folio)) 1853 goto repeat; 1854 1855 if (unlikely(folio != xas_reload(&xas))) { 1856 folio_put(folio); 1857 goto repeat; 1858 } 1859 out: 1860 rcu_read_unlock(); 1861 1862 return folio; 1863 } 1864 1865 /** 1866 * __filemap_get_folio - Find and get a reference to a folio. 1867 * @mapping: The address_space to search. 1868 * @index: The page index. 1869 * @fgp_flags: %FGP flags modify how the folio is returned. 1870 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1871 * 1872 * Looks up the page cache entry at @mapping & @index. 1873 * 1874 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1875 * if the %GFP flags specified for %FGP_CREAT are atomic. 1876 * 1877 * If this function returns a folio, it is returned with an increased refcount. 1878 * 1879 * Return: The found folio or an ERR_PTR() otherwise. 1880 */ 1881 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1882 fgf_t fgp_flags, gfp_t gfp) 1883 { 1884 struct folio *folio; 1885 1886 repeat: 1887 folio = filemap_get_entry(mapping, index); 1888 if (xa_is_value(folio)) 1889 folio = NULL; 1890 if (!folio) 1891 goto no_page; 1892 1893 if (fgp_flags & FGP_LOCK) { 1894 if (fgp_flags & FGP_NOWAIT) { 1895 if (!folio_trylock(folio)) { 1896 folio_put(folio); 1897 return ERR_PTR(-EAGAIN); 1898 } 1899 } else { 1900 folio_lock(folio); 1901 } 1902 1903 /* Has the page been truncated? */ 1904 if (unlikely(folio->mapping != mapping)) { 1905 folio_unlock(folio); 1906 folio_put(folio); 1907 goto repeat; 1908 } 1909 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1910 } 1911 1912 if (fgp_flags & FGP_ACCESSED) 1913 folio_mark_accessed(folio); 1914 else if (fgp_flags & FGP_WRITE) { 1915 /* Clear idle flag for buffer write */ 1916 if (folio_test_idle(folio)) 1917 folio_clear_idle(folio); 1918 } 1919 1920 if (fgp_flags & FGP_STABLE) 1921 folio_wait_stable(folio); 1922 no_page: 1923 if (!folio && (fgp_flags & FGP_CREAT)) { 1924 unsigned int min_order = mapping_min_folio_order(mapping); 1925 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1926 int err; 1927 index = mapping_align_index(mapping, index); 1928 1929 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1930 gfp |= __GFP_WRITE; 1931 if (fgp_flags & FGP_NOFS) 1932 gfp &= ~__GFP_FS; 1933 if (fgp_flags & FGP_NOWAIT) { 1934 gfp &= ~GFP_KERNEL; 1935 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1936 } 1937 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1938 fgp_flags |= FGP_LOCK; 1939 1940 if (order > mapping_max_folio_order(mapping)) 1941 order = mapping_max_folio_order(mapping); 1942 /* If we're not aligned, allocate a smaller folio */ 1943 if (index & ((1UL << order) - 1)) 1944 order = __ffs(index); 1945 1946 do { 1947 gfp_t alloc_gfp = gfp; 1948 1949 err = -ENOMEM; 1950 if (order > min_order) 1951 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1952 folio = filemap_alloc_folio(alloc_gfp, order); 1953 if (!folio) 1954 continue; 1955 1956 /* Init accessed so avoid atomic mark_page_accessed later */ 1957 if (fgp_flags & FGP_ACCESSED) 1958 __folio_set_referenced(folio); 1959 1960 err = filemap_add_folio(mapping, folio, index, gfp); 1961 if (!err) 1962 break; 1963 folio_put(folio); 1964 folio = NULL; 1965 } while (order-- > min_order); 1966 1967 if (err == -EEXIST) 1968 goto repeat; 1969 if (err) 1970 return ERR_PTR(err); 1971 /* 1972 * filemap_add_folio locks the page, and for mmap 1973 * we expect an unlocked page. 1974 */ 1975 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1976 folio_unlock(folio); 1977 } 1978 1979 if (!folio) 1980 return ERR_PTR(-ENOENT); 1981 return folio; 1982 } 1983 EXPORT_SYMBOL(__filemap_get_folio); 1984 1985 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 1986 xa_mark_t mark) 1987 { 1988 struct folio *folio; 1989 1990 retry: 1991 if (mark == XA_PRESENT) 1992 folio = xas_find(xas, max); 1993 else 1994 folio = xas_find_marked(xas, max, mark); 1995 1996 if (xas_retry(xas, folio)) 1997 goto retry; 1998 /* 1999 * A shadow entry of a recently evicted page, a swap 2000 * entry from shmem/tmpfs or a DAX entry. Return it 2001 * without attempting to raise page count. 2002 */ 2003 if (!folio || xa_is_value(folio)) 2004 return folio; 2005 2006 if (!folio_try_get(folio)) 2007 goto reset; 2008 2009 if (unlikely(folio != xas_reload(xas))) { 2010 folio_put(folio); 2011 goto reset; 2012 } 2013 2014 return folio; 2015 reset: 2016 xas_reset(xas); 2017 goto retry; 2018 } 2019 2020 /** 2021 * find_get_entries - gang pagecache lookup 2022 * @mapping: The address_space to search 2023 * @start: The starting page cache index 2024 * @end: The final page index (inclusive). 2025 * @fbatch: Where the resulting entries are placed. 2026 * @indices: The cache indices corresponding to the entries in @entries 2027 * 2028 * find_get_entries() will search for and return a batch of entries in 2029 * the mapping. The entries are placed in @fbatch. find_get_entries() 2030 * takes a reference on any actual folios it returns. 2031 * 2032 * The entries have ascending indexes. The indices may not be consecutive 2033 * due to not-present entries or large folios. 2034 * 2035 * Any shadow entries of evicted folios, or swap entries from 2036 * shmem/tmpfs, are included in the returned array. 2037 * 2038 * Return: The number of entries which were found. 2039 */ 2040 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2041 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2042 { 2043 XA_STATE(xas, &mapping->i_pages, *start); 2044 struct folio *folio; 2045 2046 rcu_read_lock(); 2047 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2048 indices[fbatch->nr] = xas.xa_index; 2049 if (!folio_batch_add(fbatch, folio)) 2050 break; 2051 } 2052 2053 if (folio_batch_count(fbatch)) { 2054 unsigned long nr; 2055 int idx = folio_batch_count(fbatch) - 1; 2056 2057 folio = fbatch->folios[idx]; 2058 if (!xa_is_value(folio)) 2059 nr = folio_nr_pages(folio); 2060 else 2061 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2062 *start = round_down(indices[idx] + nr, nr); 2063 } 2064 rcu_read_unlock(); 2065 2066 return folio_batch_count(fbatch); 2067 } 2068 2069 /** 2070 * find_lock_entries - Find a batch of pagecache entries. 2071 * @mapping: The address_space to search. 2072 * @start: The starting page cache index. 2073 * @end: The final page index (inclusive). 2074 * @fbatch: Where the resulting entries are placed. 2075 * @indices: The cache indices of the entries in @fbatch. 2076 * 2077 * find_lock_entries() will return a batch of entries from @mapping. 2078 * Swap, shadow and DAX entries are included. Folios are returned 2079 * locked and with an incremented refcount. Folios which are locked 2080 * by somebody else or under writeback are skipped. Folios which are 2081 * partially outside the range are not returned. 2082 * 2083 * The entries have ascending indexes. The indices may not be consecutive 2084 * due to not-present entries, large folios, folios which could not be 2085 * locked or folios under writeback. 2086 * 2087 * Return: The number of entries which were found. 2088 */ 2089 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2090 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2091 { 2092 XA_STATE(xas, &mapping->i_pages, *start); 2093 struct folio *folio; 2094 2095 rcu_read_lock(); 2096 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2097 unsigned long base; 2098 unsigned long nr; 2099 2100 if (!xa_is_value(folio)) { 2101 nr = folio_nr_pages(folio); 2102 base = folio->index; 2103 /* Omit large folio which begins before the start */ 2104 if (base < *start) 2105 goto put; 2106 /* Omit large folio which extends beyond the end */ 2107 if (base + nr - 1 > end) 2108 goto put; 2109 if (!folio_trylock(folio)) 2110 goto put; 2111 if (folio->mapping != mapping || 2112 folio_test_writeback(folio)) 2113 goto unlock; 2114 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2115 folio); 2116 } else { 2117 nr = 1 << xas_get_order(&xas); 2118 base = xas.xa_index & ~(nr - 1); 2119 /* Omit order>0 value which begins before the start */ 2120 if (base < *start) 2121 continue; 2122 /* Omit order>0 value which extends beyond the end */ 2123 if (base + nr - 1 > end) 2124 break; 2125 } 2126 2127 /* Update start now so that last update is correct on return */ 2128 *start = base + nr; 2129 indices[fbatch->nr] = xas.xa_index; 2130 if (!folio_batch_add(fbatch, folio)) 2131 break; 2132 continue; 2133 unlock: 2134 folio_unlock(folio); 2135 put: 2136 folio_put(folio); 2137 } 2138 rcu_read_unlock(); 2139 2140 return folio_batch_count(fbatch); 2141 } 2142 2143 /** 2144 * filemap_get_folios - Get a batch of folios 2145 * @mapping: The address_space to search 2146 * @start: The starting page index 2147 * @end: The final page index (inclusive) 2148 * @fbatch: The batch to fill. 2149 * 2150 * Search for and return a batch of folios in the mapping starting at 2151 * index @start and up to index @end (inclusive). The folios are returned 2152 * in @fbatch with an elevated reference count. 2153 * 2154 * Return: The number of folios which were found. 2155 * We also update @start to index the next folio for the traversal. 2156 */ 2157 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2158 pgoff_t end, struct folio_batch *fbatch) 2159 { 2160 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2161 } 2162 EXPORT_SYMBOL(filemap_get_folios); 2163 2164 /** 2165 * filemap_get_folios_contig - Get a batch of contiguous folios 2166 * @mapping: The address_space to search 2167 * @start: The starting page index 2168 * @end: The final page index (inclusive) 2169 * @fbatch: The batch to fill 2170 * 2171 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2172 * except the returned folios are guaranteed to be contiguous. This may 2173 * not return all contiguous folios if the batch gets filled up. 2174 * 2175 * Return: The number of folios found. 2176 * Also update @start to be positioned for traversal of the next folio. 2177 */ 2178 2179 unsigned filemap_get_folios_contig(struct address_space *mapping, 2180 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2181 { 2182 XA_STATE(xas, &mapping->i_pages, *start); 2183 unsigned long nr; 2184 struct folio *folio; 2185 2186 rcu_read_lock(); 2187 2188 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2189 folio = xas_next(&xas)) { 2190 if (xas_retry(&xas, folio)) 2191 continue; 2192 /* 2193 * If the entry has been swapped out, we can stop looking. 2194 * No current caller is looking for DAX entries. 2195 */ 2196 if (xa_is_value(folio)) 2197 goto update_start; 2198 2199 /* If we landed in the middle of a THP, continue at its end. */ 2200 if (xa_is_sibling(folio)) 2201 goto update_start; 2202 2203 if (!folio_try_get(folio)) 2204 goto retry; 2205 2206 if (unlikely(folio != xas_reload(&xas))) 2207 goto put_folio; 2208 2209 if (!folio_batch_add(fbatch, folio)) { 2210 nr = folio_nr_pages(folio); 2211 *start = folio->index + nr; 2212 goto out; 2213 } 2214 continue; 2215 put_folio: 2216 folio_put(folio); 2217 2218 retry: 2219 xas_reset(&xas); 2220 } 2221 2222 update_start: 2223 nr = folio_batch_count(fbatch); 2224 2225 if (nr) { 2226 folio = fbatch->folios[nr - 1]; 2227 *start = folio_next_index(folio); 2228 } 2229 out: 2230 rcu_read_unlock(); 2231 return folio_batch_count(fbatch); 2232 } 2233 EXPORT_SYMBOL(filemap_get_folios_contig); 2234 2235 /** 2236 * filemap_get_folios_tag - Get a batch of folios matching @tag 2237 * @mapping: The address_space to search 2238 * @start: The starting page index 2239 * @end: The final page index (inclusive) 2240 * @tag: The tag index 2241 * @fbatch: The batch to fill 2242 * 2243 * The first folio may start before @start; if it does, it will contain 2244 * @start. The final folio may extend beyond @end; if it does, it will 2245 * contain @end. The folios have ascending indices. There may be gaps 2246 * between the folios if there are indices which have no folio in the 2247 * page cache. If folios are added to or removed from the page cache 2248 * while this is running, they may or may not be found by this call. 2249 * Only returns folios that are tagged with @tag. 2250 * 2251 * Return: The number of folios found. 2252 * Also update @start to index the next folio for traversal. 2253 */ 2254 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2255 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2256 { 2257 XA_STATE(xas, &mapping->i_pages, *start); 2258 struct folio *folio; 2259 2260 rcu_read_lock(); 2261 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2262 /* 2263 * Shadow entries should never be tagged, but this iteration 2264 * is lockless so there is a window for page reclaim to evict 2265 * a page we saw tagged. Skip over it. 2266 */ 2267 if (xa_is_value(folio)) 2268 continue; 2269 if (!folio_batch_add(fbatch, folio)) { 2270 unsigned long nr = folio_nr_pages(folio); 2271 *start = folio->index + nr; 2272 goto out; 2273 } 2274 } 2275 /* 2276 * We come here when there is no page beyond @end. We take care to not 2277 * overflow the index @start as it confuses some of the callers. This 2278 * breaks the iteration when there is a page at index -1 but that is 2279 * already broke anyway. 2280 */ 2281 if (end == (pgoff_t)-1) 2282 *start = (pgoff_t)-1; 2283 else 2284 *start = end + 1; 2285 out: 2286 rcu_read_unlock(); 2287 2288 return folio_batch_count(fbatch); 2289 } 2290 EXPORT_SYMBOL(filemap_get_folios_tag); 2291 2292 /* 2293 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2294 * a _large_ part of the i/o request. Imagine the worst scenario: 2295 * 2296 * ---R__________________________________________B__________ 2297 * ^ reading here ^ bad block(assume 4k) 2298 * 2299 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2300 * => failing the whole request => read(R) => read(R+1) => 2301 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2302 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2303 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2304 * 2305 * It is going insane. Fix it by quickly scaling down the readahead size. 2306 */ 2307 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2308 { 2309 ra->ra_pages /= 4; 2310 } 2311 2312 /* 2313 * filemap_get_read_batch - Get a batch of folios for read 2314 * 2315 * Get a batch of folios which represent a contiguous range of bytes in 2316 * the file. No exceptional entries will be returned. If @index is in 2317 * the middle of a folio, the entire folio will be returned. The last 2318 * folio in the batch may have the readahead flag set or the uptodate flag 2319 * clear so that the caller can take the appropriate action. 2320 */ 2321 static void filemap_get_read_batch(struct address_space *mapping, 2322 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2323 { 2324 XA_STATE(xas, &mapping->i_pages, index); 2325 struct folio *folio; 2326 2327 rcu_read_lock(); 2328 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2329 if (xas_retry(&xas, folio)) 2330 continue; 2331 if (xas.xa_index > max || xa_is_value(folio)) 2332 break; 2333 if (xa_is_sibling(folio)) 2334 break; 2335 if (!folio_try_get(folio)) 2336 goto retry; 2337 2338 if (unlikely(folio != xas_reload(&xas))) 2339 goto put_folio; 2340 2341 if (!folio_batch_add(fbatch, folio)) 2342 break; 2343 if (!folio_test_uptodate(folio)) 2344 break; 2345 if (folio_test_readahead(folio)) 2346 break; 2347 xas_advance(&xas, folio_next_index(folio) - 1); 2348 continue; 2349 put_folio: 2350 folio_put(folio); 2351 retry: 2352 xas_reset(&xas); 2353 } 2354 rcu_read_unlock(); 2355 } 2356 2357 static int filemap_read_folio(struct file *file, filler_t filler, 2358 struct folio *folio) 2359 { 2360 bool workingset = folio_test_workingset(folio); 2361 unsigned long pflags; 2362 int error; 2363 2364 /* Start the actual read. The read will unlock the page. */ 2365 if (unlikely(workingset)) 2366 psi_memstall_enter(&pflags); 2367 error = filler(file, folio); 2368 if (unlikely(workingset)) 2369 psi_memstall_leave(&pflags); 2370 if (error) 2371 return error; 2372 2373 error = folio_wait_locked_killable(folio); 2374 if (error) 2375 return error; 2376 if (folio_test_uptodate(folio)) 2377 return 0; 2378 if (file) 2379 shrink_readahead_size_eio(&file->f_ra); 2380 return -EIO; 2381 } 2382 2383 static bool filemap_range_uptodate(struct address_space *mapping, 2384 loff_t pos, size_t count, struct folio *folio, 2385 bool need_uptodate) 2386 { 2387 if (folio_test_uptodate(folio)) 2388 return true; 2389 /* pipes can't handle partially uptodate pages */ 2390 if (need_uptodate) 2391 return false; 2392 if (!mapping->a_ops->is_partially_uptodate) 2393 return false; 2394 if (mapping->host->i_blkbits >= folio_shift(folio)) 2395 return false; 2396 2397 if (folio_pos(folio) > pos) { 2398 count -= folio_pos(folio) - pos; 2399 pos = 0; 2400 } else { 2401 pos -= folio_pos(folio); 2402 } 2403 2404 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2405 } 2406 2407 static int filemap_update_page(struct kiocb *iocb, 2408 struct address_space *mapping, size_t count, 2409 struct folio *folio, bool need_uptodate) 2410 { 2411 int error; 2412 2413 if (iocb->ki_flags & IOCB_NOWAIT) { 2414 if (!filemap_invalidate_trylock_shared(mapping)) 2415 return -EAGAIN; 2416 } else { 2417 filemap_invalidate_lock_shared(mapping); 2418 } 2419 2420 if (!folio_trylock(folio)) { 2421 error = -EAGAIN; 2422 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2423 goto unlock_mapping; 2424 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2425 filemap_invalidate_unlock_shared(mapping); 2426 /* 2427 * This is where we usually end up waiting for a 2428 * previously submitted readahead to finish. 2429 */ 2430 folio_put_wait_locked(folio, TASK_KILLABLE); 2431 return AOP_TRUNCATED_PAGE; 2432 } 2433 error = __folio_lock_async(folio, iocb->ki_waitq); 2434 if (error) 2435 goto unlock_mapping; 2436 } 2437 2438 error = AOP_TRUNCATED_PAGE; 2439 if (!folio->mapping) 2440 goto unlock; 2441 2442 error = 0; 2443 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2444 need_uptodate)) 2445 goto unlock; 2446 2447 error = -EAGAIN; 2448 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2449 goto unlock; 2450 2451 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2452 folio); 2453 goto unlock_mapping; 2454 unlock: 2455 folio_unlock(folio); 2456 unlock_mapping: 2457 filemap_invalidate_unlock_shared(mapping); 2458 if (error == AOP_TRUNCATED_PAGE) 2459 folio_put(folio); 2460 return error; 2461 } 2462 2463 static int filemap_create_folio(struct file *file, 2464 struct address_space *mapping, loff_t pos, 2465 struct folio_batch *fbatch) 2466 { 2467 struct folio *folio; 2468 int error; 2469 unsigned int min_order = mapping_min_folio_order(mapping); 2470 pgoff_t index; 2471 2472 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2473 if (!folio) 2474 return -ENOMEM; 2475 2476 /* 2477 * Protect against truncate / hole punch. Grabbing invalidate_lock 2478 * here assures we cannot instantiate and bring uptodate new 2479 * pagecache folios after evicting page cache during truncate 2480 * and before actually freeing blocks. Note that we could 2481 * release invalidate_lock after inserting the folio into 2482 * the page cache as the locked folio would then be enough to 2483 * synchronize with hole punching. But there are code paths 2484 * such as filemap_update_page() filling in partially uptodate 2485 * pages or ->readahead() that need to hold invalidate_lock 2486 * while mapping blocks for IO so let's hold the lock here as 2487 * well to keep locking rules simple. 2488 */ 2489 filemap_invalidate_lock_shared(mapping); 2490 index = (pos >> (PAGE_SHIFT + min_order)) << min_order; 2491 error = filemap_add_folio(mapping, folio, index, 2492 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2493 if (error == -EEXIST) 2494 error = AOP_TRUNCATED_PAGE; 2495 if (error) 2496 goto error; 2497 2498 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 2499 if (error) 2500 goto error; 2501 2502 filemap_invalidate_unlock_shared(mapping); 2503 folio_batch_add(fbatch, folio); 2504 return 0; 2505 error: 2506 filemap_invalidate_unlock_shared(mapping); 2507 folio_put(folio); 2508 return error; 2509 } 2510 2511 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2512 struct address_space *mapping, struct folio *folio, 2513 pgoff_t last_index) 2514 { 2515 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2516 2517 if (iocb->ki_flags & IOCB_NOIO) 2518 return -EAGAIN; 2519 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2520 return 0; 2521 } 2522 2523 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2524 struct folio_batch *fbatch, bool need_uptodate) 2525 { 2526 struct file *filp = iocb->ki_filp; 2527 struct address_space *mapping = filp->f_mapping; 2528 struct file_ra_state *ra = &filp->f_ra; 2529 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2530 pgoff_t last_index; 2531 struct folio *folio; 2532 unsigned int flags; 2533 int err = 0; 2534 2535 /* "last_index" is the index of the page beyond the end of the read */ 2536 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2537 retry: 2538 if (fatal_signal_pending(current)) 2539 return -EINTR; 2540 2541 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2542 if (!folio_batch_count(fbatch)) { 2543 if (iocb->ki_flags & IOCB_NOIO) 2544 return -EAGAIN; 2545 if (iocb->ki_flags & IOCB_NOWAIT) 2546 flags = memalloc_noio_save(); 2547 page_cache_sync_readahead(mapping, ra, filp, index, 2548 last_index - index); 2549 if (iocb->ki_flags & IOCB_NOWAIT) 2550 memalloc_noio_restore(flags); 2551 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2552 } 2553 if (!folio_batch_count(fbatch)) { 2554 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2555 return -EAGAIN; 2556 err = filemap_create_folio(filp, mapping, iocb->ki_pos, fbatch); 2557 if (err == AOP_TRUNCATED_PAGE) 2558 goto retry; 2559 return err; 2560 } 2561 2562 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2563 if (folio_test_readahead(folio)) { 2564 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2565 if (err) 2566 goto err; 2567 } 2568 if (!folio_test_uptodate(folio)) { 2569 if ((iocb->ki_flags & IOCB_WAITQ) && 2570 folio_batch_count(fbatch) > 1) 2571 iocb->ki_flags |= IOCB_NOWAIT; 2572 err = filemap_update_page(iocb, mapping, count, folio, 2573 need_uptodate); 2574 if (err) 2575 goto err; 2576 } 2577 2578 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2579 return 0; 2580 err: 2581 if (err < 0) 2582 folio_put(folio); 2583 if (likely(--fbatch->nr)) 2584 return 0; 2585 if (err == AOP_TRUNCATED_PAGE) 2586 goto retry; 2587 return err; 2588 } 2589 2590 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2591 { 2592 unsigned int shift = folio_shift(folio); 2593 2594 return (pos1 >> shift == pos2 >> shift); 2595 } 2596 2597 /** 2598 * filemap_read - Read data from the page cache. 2599 * @iocb: The iocb to read. 2600 * @iter: Destination for the data. 2601 * @already_read: Number of bytes already read by the caller. 2602 * 2603 * Copies data from the page cache. If the data is not currently present, 2604 * uses the readahead and read_folio address_space operations to fetch it. 2605 * 2606 * Return: Total number of bytes copied, including those already read by 2607 * the caller. If an error happens before any bytes are copied, returns 2608 * a negative error number. 2609 */ 2610 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2611 ssize_t already_read) 2612 { 2613 struct file *filp = iocb->ki_filp; 2614 struct file_ra_state *ra = &filp->f_ra; 2615 struct address_space *mapping = filp->f_mapping; 2616 struct inode *inode = mapping->host; 2617 struct folio_batch fbatch; 2618 int i, error = 0; 2619 bool writably_mapped; 2620 loff_t isize, end_offset; 2621 loff_t last_pos = ra->prev_pos; 2622 2623 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2624 return 0; 2625 if (unlikely(!iov_iter_count(iter))) 2626 return 0; 2627 2628 iov_iter_truncate(iter, inode->i_sb->s_maxbytes); 2629 folio_batch_init(&fbatch); 2630 2631 do { 2632 cond_resched(); 2633 2634 /* 2635 * If we've already successfully copied some data, then we 2636 * can no longer safely return -EIOCBQUEUED. Hence mark 2637 * an async read NOWAIT at that point. 2638 */ 2639 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2640 iocb->ki_flags |= IOCB_NOWAIT; 2641 2642 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2643 break; 2644 2645 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2646 if (error < 0) 2647 break; 2648 2649 /* 2650 * i_size must be checked after we know the pages are Uptodate. 2651 * 2652 * Checking i_size after the check allows us to calculate 2653 * the correct value for "nr", which means the zero-filled 2654 * part of the page is not copied back to userspace (unless 2655 * another truncate extends the file - this is desired though). 2656 */ 2657 isize = i_size_read(inode); 2658 if (unlikely(iocb->ki_pos >= isize)) 2659 goto put_folios; 2660 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2661 2662 /* 2663 * Once we start copying data, we don't want to be touching any 2664 * cachelines that might be contended: 2665 */ 2666 writably_mapped = mapping_writably_mapped(mapping); 2667 2668 /* 2669 * When a read accesses the same folio several times, only 2670 * mark it as accessed the first time. 2671 */ 2672 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2673 fbatch.folios[0])) 2674 folio_mark_accessed(fbatch.folios[0]); 2675 2676 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2677 struct folio *folio = fbatch.folios[i]; 2678 size_t fsize = folio_size(folio); 2679 size_t offset = iocb->ki_pos & (fsize - 1); 2680 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2681 fsize - offset); 2682 size_t copied; 2683 2684 if (end_offset < folio_pos(folio)) 2685 break; 2686 if (i > 0) 2687 folio_mark_accessed(folio); 2688 /* 2689 * If users can be writing to this folio using arbitrary 2690 * virtual addresses, take care of potential aliasing 2691 * before reading the folio on the kernel side. 2692 */ 2693 if (writably_mapped) 2694 flush_dcache_folio(folio); 2695 2696 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2697 2698 already_read += copied; 2699 iocb->ki_pos += copied; 2700 last_pos = iocb->ki_pos; 2701 2702 if (copied < bytes) { 2703 error = -EFAULT; 2704 break; 2705 } 2706 } 2707 put_folios: 2708 for (i = 0; i < folio_batch_count(&fbatch); i++) 2709 folio_put(fbatch.folios[i]); 2710 folio_batch_init(&fbatch); 2711 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2712 2713 file_accessed(filp); 2714 ra->prev_pos = last_pos; 2715 return already_read ? already_read : error; 2716 } 2717 EXPORT_SYMBOL_GPL(filemap_read); 2718 2719 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2720 { 2721 struct address_space *mapping = iocb->ki_filp->f_mapping; 2722 loff_t pos = iocb->ki_pos; 2723 loff_t end = pos + count - 1; 2724 2725 if (iocb->ki_flags & IOCB_NOWAIT) { 2726 if (filemap_range_needs_writeback(mapping, pos, end)) 2727 return -EAGAIN; 2728 return 0; 2729 } 2730 2731 return filemap_write_and_wait_range(mapping, pos, end); 2732 } 2733 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2734 2735 int filemap_invalidate_pages(struct address_space *mapping, 2736 loff_t pos, loff_t end, bool nowait) 2737 { 2738 int ret; 2739 2740 if (nowait) { 2741 /* we could block if there are any pages in the range */ 2742 if (filemap_range_has_page(mapping, pos, end)) 2743 return -EAGAIN; 2744 } else { 2745 ret = filemap_write_and_wait_range(mapping, pos, end); 2746 if (ret) 2747 return ret; 2748 } 2749 2750 /* 2751 * After a write we want buffered reads to be sure to go to disk to get 2752 * the new data. We invalidate clean cached page from the region we're 2753 * about to write. We do this *before* the write so that we can return 2754 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2755 */ 2756 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2757 end >> PAGE_SHIFT); 2758 } 2759 2760 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2761 { 2762 struct address_space *mapping = iocb->ki_filp->f_mapping; 2763 2764 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2765 iocb->ki_pos + count - 1, 2766 iocb->ki_flags & IOCB_NOWAIT); 2767 } 2768 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2769 2770 /** 2771 * generic_file_read_iter - generic filesystem read routine 2772 * @iocb: kernel I/O control block 2773 * @iter: destination for the data read 2774 * 2775 * This is the "read_iter()" routine for all filesystems 2776 * that can use the page cache directly. 2777 * 2778 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2779 * be returned when no data can be read without waiting for I/O requests 2780 * to complete; it doesn't prevent readahead. 2781 * 2782 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2783 * requests shall be made for the read or for readahead. When no data 2784 * can be read, -EAGAIN shall be returned. When readahead would be 2785 * triggered, a partial, possibly empty read shall be returned. 2786 * 2787 * Return: 2788 * * number of bytes copied, even for partial reads 2789 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2790 */ 2791 ssize_t 2792 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2793 { 2794 size_t count = iov_iter_count(iter); 2795 ssize_t retval = 0; 2796 2797 if (!count) 2798 return 0; /* skip atime */ 2799 2800 if (iocb->ki_flags & IOCB_DIRECT) { 2801 struct file *file = iocb->ki_filp; 2802 struct address_space *mapping = file->f_mapping; 2803 struct inode *inode = mapping->host; 2804 2805 retval = kiocb_write_and_wait(iocb, count); 2806 if (retval < 0) 2807 return retval; 2808 file_accessed(file); 2809 2810 retval = mapping->a_ops->direct_IO(iocb, iter); 2811 if (retval >= 0) { 2812 iocb->ki_pos += retval; 2813 count -= retval; 2814 } 2815 if (retval != -EIOCBQUEUED) 2816 iov_iter_revert(iter, count - iov_iter_count(iter)); 2817 2818 /* 2819 * Btrfs can have a short DIO read if we encounter 2820 * compressed extents, so if there was an error, or if 2821 * we've already read everything we wanted to, or if 2822 * there was a short read because we hit EOF, go ahead 2823 * and return. Otherwise fallthrough to buffered io for 2824 * the rest of the read. Buffered reads will not work for 2825 * DAX files, so don't bother trying. 2826 */ 2827 if (retval < 0 || !count || IS_DAX(inode)) 2828 return retval; 2829 if (iocb->ki_pos >= i_size_read(inode)) 2830 return retval; 2831 } 2832 2833 return filemap_read(iocb, iter, retval); 2834 } 2835 EXPORT_SYMBOL(generic_file_read_iter); 2836 2837 /* 2838 * Splice subpages from a folio into a pipe. 2839 */ 2840 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2841 struct folio *folio, loff_t fpos, size_t size) 2842 { 2843 struct page *page; 2844 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2845 2846 page = folio_page(folio, offset / PAGE_SIZE); 2847 size = min(size, folio_size(folio) - offset); 2848 offset %= PAGE_SIZE; 2849 2850 while (spliced < size && 2851 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) { 2852 struct pipe_buffer *buf = pipe_head_buf(pipe); 2853 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2854 2855 *buf = (struct pipe_buffer) { 2856 .ops = &page_cache_pipe_buf_ops, 2857 .page = page, 2858 .offset = offset, 2859 .len = part, 2860 }; 2861 folio_get(folio); 2862 pipe->head++; 2863 page++; 2864 spliced += part; 2865 offset = 0; 2866 } 2867 2868 return spliced; 2869 } 2870 2871 /** 2872 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2873 * @in: The file to read from 2874 * @ppos: Pointer to the file position to read from 2875 * @pipe: The pipe to splice into 2876 * @len: The amount to splice 2877 * @flags: The SPLICE_F_* flags 2878 * 2879 * This function gets folios from a file's pagecache and splices them into the 2880 * pipe. Readahead will be called as necessary to fill more folios. This may 2881 * be used for blockdevs also. 2882 * 2883 * Return: On success, the number of bytes read will be returned and *@ppos 2884 * will be updated if appropriate; 0 will be returned if there is no more data 2885 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2886 * other negative error code will be returned on error. A short read may occur 2887 * if the pipe has insufficient space, we reach the end of the data or we hit a 2888 * hole. 2889 */ 2890 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2891 struct pipe_inode_info *pipe, 2892 size_t len, unsigned int flags) 2893 { 2894 struct folio_batch fbatch; 2895 struct kiocb iocb; 2896 size_t total_spliced = 0, used, npages; 2897 loff_t isize, end_offset; 2898 bool writably_mapped; 2899 int i, error = 0; 2900 2901 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2902 return 0; 2903 2904 init_sync_kiocb(&iocb, in); 2905 iocb.ki_pos = *ppos; 2906 2907 /* Work out how much data we can actually add into the pipe */ 2908 used = pipe_occupancy(pipe->head, pipe->tail); 2909 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2910 len = min_t(size_t, len, npages * PAGE_SIZE); 2911 2912 folio_batch_init(&fbatch); 2913 2914 do { 2915 cond_resched(); 2916 2917 if (*ppos >= i_size_read(in->f_mapping->host)) 2918 break; 2919 2920 iocb.ki_pos = *ppos; 2921 error = filemap_get_pages(&iocb, len, &fbatch, true); 2922 if (error < 0) 2923 break; 2924 2925 /* 2926 * i_size must be checked after we know the pages are Uptodate. 2927 * 2928 * Checking i_size after the check allows us to calculate 2929 * the correct value for "nr", which means the zero-filled 2930 * part of the page is not copied back to userspace (unless 2931 * another truncate extends the file - this is desired though). 2932 */ 2933 isize = i_size_read(in->f_mapping->host); 2934 if (unlikely(*ppos >= isize)) 2935 break; 2936 end_offset = min_t(loff_t, isize, *ppos + len); 2937 2938 /* 2939 * Once we start copying data, we don't want to be touching any 2940 * cachelines that might be contended: 2941 */ 2942 writably_mapped = mapping_writably_mapped(in->f_mapping); 2943 2944 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2945 struct folio *folio = fbatch.folios[i]; 2946 size_t n; 2947 2948 if (folio_pos(folio) >= end_offset) 2949 goto out; 2950 folio_mark_accessed(folio); 2951 2952 /* 2953 * If users can be writing to this folio using arbitrary 2954 * virtual addresses, take care of potential aliasing 2955 * before reading the folio on the kernel side. 2956 */ 2957 if (writably_mapped) 2958 flush_dcache_folio(folio); 2959 2960 n = min_t(loff_t, len, isize - *ppos); 2961 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 2962 if (!n) 2963 goto out; 2964 len -= n; 2965 total_spliced += n; 2966 *ppos += n; 2967 in->f_ra.prev_pos = *ppos; 2968 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage)) 2969 goto out; 2970 } 2971 2972 folio_batch_release(&fbatch); 2973 } while (len); 2974 2975 out: 2976 folio_batch_release(&fbatch); 2977 file_accessed(in); 2978 2979 return total_spliced ? total_spliced : error; 2980 } 2981 EXPORT_SYMBOL(filemap_splice_read); 2982 2983 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 2984 struct address_space *mapping, struct folio *folio, 2985 loff_t start, loff_t end, bool seek_data) 2986 { 2987 const struct address_space_operations *ops = mapping->a_ops; 2988 size_t offset, bsz = i_blocksize(mapping->host); 2989 2990 if (xa_is_value(folio) || folio_test_uptodate(folio)) 2991 return seek_data ? start : end; 2992 if (!ops->is_partially_uptodate) 2993 return seek_data ? end : start; 2994 2995 xas_pause(xas); 2996 rcu_read_unlock(); 2997 folio_lock(folio); 2998 if (unlikely(folio->mapping != mapping)) 2999 goto unlock; 3000 3001 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3002 3003 do { 3004 if (ops->is_partially_uptodate(folio, offset, bsz) == 3005 seek_data) 3006 break; 3007 start = (start + bsz) & ~(bsz - 1); 3008 offset += bsz; 3009 } while (offset < folio_size(folio)); 3010 unlock: 3011 folio_unlock(folio); 3012 rcu_read_lock(); 3013 return start; 3014 } 3015 3016 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3017 { 3018 if (xa_is_value(folio)) 3019 return PAGE_SIZE << xas_get_order(xas); 3020 return folio_size(folio); 3021 } 3022 3023 /** 3024 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3025 * @mapping: Address space to search. 3026 * @start: First byte to consider. 3027 * @end: Limit of search (exclusive). 3028 * @whence: Either SEEK_HOLE or SEEK_DATA. 3029 * 3030 * If the page cache knows which blocks contain holes and which blocks 3031 * contain data, your filesystem can use this function to implement 3032 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3033 * entirely memory-based such as tmpfs, and filesystems which support 3034 * unwritten extents. 3035 * 3036 * Return: The requested offset on success, or -ENXIO if @whence specifies 3037 * SEEK_DATA and there is no data after @start. There is an implicit hole 3038 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3039 * and @end contain data. 3040 */ 3041 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3042 loff_t end, int whence) 3043 { 3044 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3045 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3046 bool seek_data = (whence == SEEK_DATA); 3047 struct folio *folio; 3048 3049 if (end <= start) 3050 return -ENXIO; 3051 3052 rcu_read_lock(); 3053 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3054 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3055 size_t seek_size; 3056 3057 if (start < pos) { 3058 if (!seek_data) 3059 goto unlock; 3060 start = pos; 3061 } 3062 3063 seek_size = seek_folio_size(&xas, folio); 3064 pos = round_up((u64)pos + 1, seek_size); 3065 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3066 seek_data); 3067 if (start < pos) 3068 goto unlock; 3069 if (start >= end) 3070 break; 3071 if (seek_size > PAGE_SIZE) 3072 xas_set(&xas, pos >> PAGE_SHIFT); 3073 if (!xa_is_value(folio)) 3074 folio_put(folio); 3075 } 3076 if (seek_data) 3077 start = -ENXIO; 3078 unlock: 3079 rcu_read_unlock(); 3080 if (folio && !xa_is_value(folio)) 3081 folio_put(folio); 3082 if (start > end) 3083 return end; 3084 return start; 3085 } 3086 3087 #ifdef CONFIG_MMU 3088 #define MMAP_LOTSAMISS (100) 3089 /* 3090 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3091 * @vmf - the vm_fault for this fault. 3092 * @folio - the folio to lock. 3093 * @fpin - the pointer to the file we may pin (or is already pinned). 3094 * 3095 * This works similar to lock_folio_or_retry in that it can drop the 3096 * mmap_lock. It differs in that it actually returns the folio locked 3097 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3098 * to drop the mmap_lock then fpin will point to the pinned file and 3099 * needs to be fput()'ed at a later point. 3100 */ 3101 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3102 struct file **fpin) 3103 { 3104 if (folio_trylock(folio)) 3105 return 1; 3106 3107 /* 3108 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3109 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3110 * is supposed to work. We have way too many special cases.. 3111 */ 3112 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3113 return 0; 3114 3115 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3116 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3117 if (__folio_lock_killable(folio)) { 3118 /* 3119 * We didn't have the right flags to drop the 3120 * fault lock, but all fault_handlers only check 3121 * for fatal signals if we return VM_FAULT_RETRY, 3122 * so we need to drop the fault lock here and 3123 * return 0 if we don't have a fpin. 3124 */ 3125 if (*fpin == NULL) 3126 release_fault_lock(vmf); 3127 return 0; 3128 } 3129 } else 3130 __folio_lock(folio); 3131 3132 return 1; 3133 } 3134 3135 /* 3136 * Synchronous readahead happens when we don't even find a page in the page 3137 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3138 * to drop the mmap sem we return the file that was pinned in order for us to do 3139 * that. If we didn't pin a file then we return NULL. The file that is 3140 * returned needs to be fput()'ed when we're done with it. 3141 */ 3142 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3143 { 3144 struct file *file = vmf->vma->vm_file; 3145 struct file_ra_state *ra = &file->f_ra; 3146 struct address_space *mapping = file->f_mapping; 3147 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3148 struct file *fpin = NULL; 3149 unsigned long vm_flags = vmf->vma->vm_flags; 3150 unsigned int mmap_miss; 3151 3152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3153 /* Use the readahead code, even if readahead is disabled */ 3154 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3155 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3156 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3157 ra->size = HPAGE_PMD_NR; 3158 /* 3159 * Fetch two PMD folios, so we get the chance to actually 3160 * readahead, unless we've been told not to. 3161 */ 3162 if (!(vm_flags & VM_RAND_READ)) 3163 ra->size *= 2; 3164 ra->async_size = HPAGE_PMD_NR; 3165 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3166 return fpin; 3167 } 3168 #endif 3169 3170 /* If we don't want any read-ahead, don't bother */ 3171 if (vm_flags & VM_RAND_READ) 3172 return fpin; 3173 if (!ra->ra_pages) 3174 return fpin; 3175 3176 if (vm_flags & VM_SEQ_READ) { 3177 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3178 page_cache_sync_ra(&ractl, ra->ra_pages); 3179 return fpin; 3180 } 3181 3182 /* Avoid banging the cache line if not needed */ 3183 mmap_miss = READ_ONCE(ra->mmap_miss); 3184 if (mmap_miss < MMAP_LOTSAMISS * 10) 3185 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3186 3187 /* 3188 * Do we miss much more than hit in this file? If so, 3189 * stop bothering with read-ahead. It will only hurt. 3190 */ 3191 if (mmap_miss > MMAP_LOTSAMISS) 3192 return fpin; 3193 3194 /* 3195 * mmap read-around 3196 */ 3197 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3198 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3199 ra->size = ra->ra_pages; 3200 ra->async_size = ra->ra_pages / 4; 3201 ractl._index = ra->start; 3202 page_cache_ra_order(&ractl, ra, 0); 3203 return fpin; 3204 } 3205 3206 /* 3207 * Asynchronous readahead happens when we find the page and PG_readahead, 3208 * so we want to possibly extend the readahead further. We return the file that 3209 * was pinned if we have to drop the mmap_lock in order to do IO. 3210 */ 3211 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3212 struct folio *folio) 3213 { 3214 struct file *file = vmf->vma->vm_file; 3215 struct file_ra_state *ra = &file->f_ra; 3216 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3217 struct file *fpin = NULL; 3218 unsigned int mmap_miss; 3219 3220 /* If we don't want any read-ahead, don't bother */ 3221 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3222 return fpin; 3223 3224 mmap_miss = READ_ONCE(ra->mmap_miss); 3225 if (mmap_miss) 3226 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3227 3228 if (folio_test_readahead(folio)) { 3229 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3230 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3231 } 3232 return fpin; 3233 } 3234 3235 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3236 { 3237 struct vm_area_struct *vma = vmf->vma; 3238 vm_fault_t ret = 0; 3239 pte_t *ptep; 3240 3241 /* 3242 * We might have COW'ed a pagecache folio and might now have an mlocked 3243 * anon folio mapped. The original pagecache folio is not mlocked and 3244 * might have been evicted. During a read+clear/modify/write update of 3245 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3246 * temporarily clear the PTE under PT lock and might detect it here as 3247 * "none" when not holding the PT lock. 3248 * 3249 * Not rechecking the PTE under PT lock could result in an unexpected 3250 * major fault in an mlock'ed region. Recheck only for this special 3251 * scenario while holding the PT lock, to not degrade non-mlocked 3252 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3253 * the number of times we hold PT lock. 3254 */ 3255 if (!(vma->vm_flags & VM_LOCKED)) 3256 return 0; 3257 3258 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3259 return 0; 3260 3261 ptep = pte_offset_map_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3262 &vmf->ptl); 3263 if (unlikely(!ptep)) 3264 return VM_FAULT_NOPAGE; 3265 3266 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3267 ret = VM_FAULT_NOPAGE; 3268 } else { 3269 spin_lock(vmf->ptl); 3270 if (unlikely(!pte_none(ptep_get(ptep)))) 3271 ret = VM_FAULT_NOPAGE; 3272 spin_unlock(vmf->ptl); 3273 } 3274 pte_unmap(ptep); 3275 return ret; 3276 } 3277 3278 /** 3279 * filemap_fault - read in file data for page fault handling 3280 * @vmf: struct vm_fault containing details of the fault 3281 * 3282 * filemap_fault() is invoked via the vma operations vector for a 3283 * mapped memory region to read in file data during a page fault. 3284 * 3285 * The goto's are kind of ugly, but this streamlines the normal case of having 3286 * it in the page cache, and handles the special cases reasonably without 3287 * having a lot of duplicated code. 3288 * 3289 * vma->vm_mm->mmap_lock must be held on entry. 3290 * 3291 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3292 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3293 * 3294 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3295 * has not been released. 3296 * 3297 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3298 * 3299 * Return: bitwise-OR of %VM_FAULT_ codes. 3300 */ 3301 vm_fault_t filemap_fault(struct vm_fault *vmf) 3302 { 3303 int error; 3304 struct file *file = vmf->vma->vm_file; 3305 struct file *fpin = NULL; 3306 struct address_space *mapping = file->f_mapping; 3307 struct inode *inode = mapping->host; 3308 pgoff_t max_idx, index = vmf->pgoff; 3309 struct folio *folio; 3310 vm_fault_t ret = 0; 3311 bool mapping_locked = false; 3312 3313 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3314 if (unlikely(index >= max_idx)) 3315 return VM_FAULT_SIGBUS; 3316 3317 trace_mm_filemap_fault(mapping, index); 3318 3319 /* 3320 * Do we have something in the page cache already? 3321 */ 3322 folio = filemap_get_folio(mapping, index); 3323 if (likely(!IS_ERR(folio))) { 3324 /* 3325 * We found the page, so try async readahead before waiting for 3326 * the lock. 3327 */ 3328 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3329 fpin = do_async_mmap_readahead(vmf, folio); 3330 if (unlikely(!folio_test_uptodate(folio))) { 3331 filemap_invalidate_lock_shared(mapping); 3332 mapping_locked = true; 3333 } 3334 } else { 3335 ret = filemap_fault_recheck_pte_none(vmf); 3336 if (unlikely(ret)) 3337 return ret; 3338 3339 /* No page in the page cache at all */ 3340 count_vm_event(PGMAJFAULT); 3341 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3342 ret = VM_FAULT_MAJOR; 3343 fpin = do_sync_mmap_readahead(vmf); 3344 retry_find: 3345 /* 3346 * See comment in filemap_create_folio() why we need 3347 * invalidate_lock 3348 */ 3349 if (!mapping_locked) { 3350 filemap_invalidate_lock_shared(mapping); 3351 mapping_locked = true; 3352 } 3353 folio = __filemap_get_folio(mapping, index, 3354 FGP_CREAT|FGP_FOR_MMAP, 3355 vmf->gfp_mask); 3356 if (IS_ERR(folio)) { 3357 if (fpin) 3358 goto out_retry; 3359 filemap_invalidate_unlock_shared(mapping); 3360 return VM_FAULT_OOM; 3361 } 3362 } 3363 3364 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3365 goto out_retry; 3366 3367 /* Did it get truncated? */ 3368 if (unlikely(folio->mapping != mapping)) { 3369 folio_unlock(folio); 3370 folio_put(folio); 3371 goto retry_find; 3372 } 3373 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3374 3375 /* 3376 * We have a locked folio in the page cache, now we need to check 3377 * that it's up-to-date. If not, it is going to be due to an error, 3378 * or because readahead was otherwise unable to retrieve it. 3379 */ 3380 if (unlikely(!folio_test_uptodate(folio))) { 3381 /* 3382 * If the invalidate lock is not held, the folio was in cache 3383 * and uptodate and now it is not. Strange but possible since we 3384 * didn't hold the page lock all the time. Let's drop 3385 * everything, get the invalidate lock and try again. 3386 */ 3387 if (!mapping_locked) { 3388 folio_unlock(folio); 3389 folio_put(folio); 3390 goto retry_find; 3391 } 3392 3393 /* 3394 * OK, the folio is really not uptodate. This can be because the 3395 * VMA has the VM_RAND_READ flag set, or because an error 3396 * arose. Let's read it in directly. 3397 */ 3398 goto page_not_uptodate; 3399 } 3400 3401 /* 3402 * We've made it this far and we had to drop our mmap_lock, now is the 3403 * time to return to the upper layer and have it re-find the vma and 3404 * redo the fault. 3405 */ 3406 if (fpin) { 3407 folio_unlock(folio); 3408 goto out_retry; 3409 } 3410 if (mapping_locked) 3411 filemap_invalidate_unlock_shared(mapping); 3412 3413 /* 3414 * Found the page and have a reference on it. 3415 * We must recheck i_size under page lock. 3416 */ 3417 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3418 if (unlikely(index >= max_idx)) { 3419 folio_unlock(folio); 3420 folio_put(folio); 3421 return VM_FAULT_SIGBUS; 3422 } 3423 3424 vmf->page = folio_file_page(folio, index); 3425 return ret | VM_FAULT_LOCKED; 3426 3427 page_not_uptodate: 3428 /* 3429 * Umm, take care of errors if the page isn't up-to-date. 3430 * Try to re-read it _once_. We do this synchronously, 3431 * because there really aren't any performance issues here 3432 * and we need to check for errors. 3433 */ 3434 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3435 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3436 if (fpin) 3437 goto out_retry; 3438 folio_put(folio); 3439 3440 if (!error || error == AOP_TRUNCATED_PAGE) 3441 goto retry_find; 3442 filemap_invalidate_unlock_shared(mapping); 3443 3444 return VM_FAULT_SIGBUS; 3445 3446 out_retry: 3447 /* 3448 * We dropped the mmap_lock, we need to return to the fault handler to 3449 * re-find the vma and come back and find our hopefully still populated 3450 * page. 3451 */ 3452 if (!IS_ERR(folio)) 3453 folio_put(folio); 3454 if (mapping_locked) 3455 filemap_invalidate_unlock_shared(mapping); 3456 if (fpin) 3457 fput(fpin); 3458 return ret | VM_FAULT_RETRY; 3459 } 3460 EXPORT_SYMBOL(filemap_fault); 3461 3462 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3463 pgoff_t start) 3464 { 3465 struct mm_struct *mm = vmf->vma->vm_mm; 3466 3467 /* Huge page is mapped? No need to proceed. */ 3468 if (pmd_trans_huge(*vmf->pmd)) { 3469 folio_unlock(folio); 3470 folio_put(folio); 3471 return true; 3472 } 3473 3474 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3475 struct page *page = folio_file_page(folio, start); 3476 vm_fault_t ret = do_set_pmd(vmf, page); 3477 if (!ret) { 3478 /* The page is mapped successfully, reference consumed. */ 3479 folio_unlock(folio); 3480 return true; 3481 } 3482 } 3483 3484 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3485 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3486 3487 return false; 3488 } 3489 3490 static struct folio *next_uptodate_folio(struct xa_state *xas, 3491 struct address_space *mapping, pgoff_t end_pgoff) 3492 { 3493 struct folio *folio = xas_next_entry(xas, end_pgoff); 3494 unsigned long max_idx; 3495 3496 do { 3497 if (!folio) 3498 return NULL; 3499 if (xas_retry(xas, folio)) 3500 continue; 3501 if (xa_is_value(folio)) 3502 continue; 3503 if (folio_test_locked(folio)) 3504 continue; 3505 if (!folio_try_get(folio)) 3506 continue; 3507 /* Has the page moved or been split? */ 3508 if (unlikely(folio != xas_reload(xas))) 3509 goto skip; 3510 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3511 goto skip; 3512 if (!folio_trylock(folio)) 3513 goto skip; 3514 if (folio->mapping != mapping) 3515 goto unlock; 3516 if (!folio_test_uptodate(folio)) 3517 goto unlock; 3518 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3519 if (xas->xa_index >= max_idx) 3520 goto unlock; 3521 return folio; 3522 unlock: 3523 folio_unlock(folio); 3524 skip: 3525 folio_put(folio); 3526 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3527 3528 return NULL; 3529 } 3530 3531 /* 3532 * Map page range [start_page, start_page + nr_pages) of folio. 3533 * start_page is gotten from start by folio_page(folio, start) 3534 */ 3535 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3536 struct folio *folio, unsigned long start, 3537 unsigned long addr, unsigned int nr_pages, 3538 unsigned long *rss, unsigned int *mmap_miss) 3539 { 3540 vm_fault_t ret = 0; 3541 struct page *page = folio_page(folio, start); 3542 unsigned int count = 0; 3543 pte_t *old_ptep = vmf->pte; 3544 3545 do { 3546 if (PageHWPoison(page + count)) 3547 goto skip; 3548 3549 /* 3550 * If there are too many folios that are recently evicted 3551 * in a file, they will probably continue to be evicted. 3552 * In such situation, read-ahead is only a waste of IO. 3553 * Don't decrease mmap_miss in this scenario to make sure 3554 * we can stop read-ahead. 3555 */ 3556 if (!folio_test_workingset(folio)) 3557 (*mmap_miss)++; 3558 3559 /* 3560 * NOTE: If there're PTE markers, we'll leave them to be 3561 * handled in the specific fault path, and it'll prohibit the 3562 * fault-around logic. 3563 */ 3564 if (!pte_none(ptep_get(&vmf->pte[count]))) 3565 goto skip; 3566 3567 count++; 3568 continue; 3569 skip: 3570 if (count) { 3571 set_pte_range(vmf, folio, page, count, addr); 3572 *rss += count; 3573 folio_ref_add(folio, count); 3574 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3575 ret = VM_FAULT_NOPAGE; 3576 } 3577 3578 count++; 3579 page += count; 3580 vmf->pte += count; 3581 addr += count * PAGE_SIZE; 3582 count = 0; 3583 } while (--nr_pages > 0); 3584 3585 if (count) { 3586 set_pte_range(vmf, folio, page, count, addr); 3587 *rss += count; 3588 folio_ref_add(folio, count); 3589 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3590 ret = VM_FAULT_NOPAGE; 3591 } 3592 3593 vmf->pte = old_ptep; 3594 3595 return ret; 3596 } 3597 3598 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3599 struct folio *folio, unsigned long addr, 3600 unsigned long *rss, unsigned int *mmap_miss) 3601 { 3602 vm_fault_t ret = 0; 3603 struct page *page = &folio->page; 3604 3605 if (PageHWPoison(page)) 3606 return ret; 3607 3608 /* See comment of filemap_map_folio_range() */ 3609 if (!folio_test_workingset(folio)) 3610 (*mmap_miss)++; 3611 3612 /* 3613 * NOTE: If there're PTE markers, we'll leave them to be 3614 * handled in the specific fault path, and it'll prohibit 3615 * the fault-around logic. 3616 */ 3617 if (!pte_none(ptep_get(vmf->pte))) 3618 return ret; 3619 3620 if (vmf->address == addr) 3621 ret = VM_FAULT_NOPAGE; 3622 3623 set_pte_range(vmf, folio, page, 1, addr); 3624 (*rss)++; 3625 folio_ref_inc(folio); 3626 3627 return ret; 3628 } 3629 3630 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3631 pgoff_t start_pgoff, pgoff_t end_pgoff) 3632 { 3633 struct vm_area_struct *vma = vmf->vma; 3634 struct file *file = vma->vm_file; 3635 struct address_space *mapping = file->f_mapping; 3636 pgoff_t file_end, last_pgoff = start_pgoff; 3637 unsigned long addr; 3638 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3639 struct folio *folio; 3640 vm_fault_t ret = 0; 3641 unsigned long rss = 0; 3642 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3643 3644 rcu_read_lock(); 3645 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3646 if (!folio) 3647 goto out; 3648 3649 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3650 ret = VM_FAULT_NOPAGE; 3651 goto out; 3652 } 3653 3654 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3655 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3656 if (!vmf->pte) { 3657 folio_unlock(folio); 3658 folio_put(folio); 3659 goto out; 3660 } 3661 3662 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3663 if (end_pgoff > file_end) 3664 end_pgoff = file_end; 3665 3666 folio_type = mm_counter_file(folio); 3667 do { 3668 unsigned long end; 3669 3670 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3671 vmf->pte += xas.xa_index - last_pgoff; 3672 last_pgoff = xas.xa_index; 3673 end = folio_next_index(folio) - 1; 3674 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3675 3676 if (!folio_test_large(folio)) 3677 ret |= filemap_map_order0_folio(vmf, 3678 folio, addr, &rss, &mmap_miss); 3679 else 3680 ret |= filemap_map_folio_range(vmf, folio, 3681 xas.xa_index - folio->index, addr, 3682 nr_pages, &rss, &mmap_miss); 3683 3684 folio_unlock(folio); 3685 folio_put(folio); 3686 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3687 add_mm_counter(vma->vm_mm, folio_type, rss); 3688 pte_unmap_unlock(vmf->pte, vmf->ptl); 3689 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3690 out: 3691 rcu_read_unlock(); 3692 3693 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3694 if (mmap_miss >= mmap_miss_saved) 3695 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3696 else 3697 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3698 3699 return ret; 3700 } 3701 EXPORT_SYMBOL(filemap_map_pages); 3702 3703 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3704 { 3705 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3706 struct folio *folio = page_folio(vmf->page); 3707 vm_fault_t ret = VM_FAULT_LOCKED; 3708 3709 sb_start_pagefault(mapping->host->i_sb); 3710 file_update_time(vmf->vma->vm_file); 3711 folio_lock(folio); 3712 if (folio->mapping != mapping) { 3713 folio_unlock(folio); 3714 ret = VM_FAULT_NOPAGE; 3715 goto out; 3716 } 3717 /* 3718 * We mark the folio dirty already here so that when freeze is in 3719 * progress, we are guaranteed that writeback during freezing will 3720 * see the dirty folio and writeprotect it again. 3721 */ 3722 folio_mark_dirty(folio); 3723 folio_wait_stable(folio); 3724 out: 3725 sb_end_pagefault(mapping->host->i_sb); 3726 return ret; 3727 } 3728 3729 const struct vm_operations_struct generic_file_vm_ops = { 3730 .fault = filemap_fault, 3731 .map_pages = filemap_map_pages, 3732 .page_mkwrite = filemap_page_mkwrite, 3733 }; 3734 3735 /* This is used for a general mmap of a disk file */ 3736 3737 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3738 { 3739 struct address_space *mapping = file->f_mapping; 3740 3741 if (!mapping->a_ops->read_folio) 3742 return -ENOEXEC; 3743 file_accessed(file); 3744 vma->vm_ops = &generic_file_vm_ops; 3745 return 0; 3746 } 3747 3748 /* 3749 * This is for filesystems which do not implement ->writepage. 3750 */ 3751 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3752 { 3753 if (vma_is_shared_maywrite(vma)) 3754 return -EINVAL; 3755 return generic_file_mmap(file, vma); 3756 } 3757 #else 3758 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3759 { 3760 return VM_FAULT_SIGBUS; 3761 } 3762 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3763 { 3764 return -ENOSYS; 3765 } 3766 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3767 { 3768 return -ENOSYS; 3769 } 3770 #endif /* CONFIG_MMU */ 3771 3772 EXPORT_SYMBOL(filemap_page_mkwrite); 3773 EXPORT_SYMBOL(generic_file_mmap); 3774 EXPORT_SYMBOL(generic_file_readonly_mmap); 3775 3776 static struct folio *do_read_cache_folio(struct address_space *mapping, 3777 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3778 { 3779 struct folio *folio; 3780 int err; 3781 3782 if (!filler) 3783 filler = mapping->a_ops->read_folio; 3784 repeat: 3785 folio = filemap_get_folio(mapping, index); 3786 if (IS_ERR(folio)) { 3787 folio = filemap_alloc_folio(gfp, 3788 mapping_min_folio_order(mapping)); 3789 if (!folio) 3790 return ERR_PTR(-ENOMEM); 3791 index = mapping_align_index(mapping, index); 3792 err = filemap_add_folio(mapping, folio, index, gfp); 3793 if (unlikely(err)) { 3794 folio_put(folio); 3795 if (err == -EEXIST) 3796 goto repeat; 3797 /* Presumably ENOMEM for xarray node */ 3798 return ERR_PTR(err); 3799 } 3800 3801 goto filler; 3802 } 3803 if (folio_test_uptodate(folio)) 3804 goto out; 3805 3806 if (!folio_trylock(folio)) { 3807 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3808 goto repeat; 3809 } 3810 3811 /* Folio was truncated from mapping */ 3812 if (!folio->mapping) { 3813 folio_unlock(folio); 3814 folio_put(folio); 3815 goto repeat; 3816 } 3817 3818 /* Someone else locked and filled the page in a very small window */ 3819 if (folio_test_uptodate(folio)) { 3820 folio_unlock(folio); 3821 goto out; 3822 } 3823 3824 filler: 3825 err = filemap_read_folio(file, filler, folio); 3826 if (err) { 3827 folio_put(folio); 3828 if (err == AOP_TRUNCATED_PAGE) 3829 goto repeat; 3830 return ERR_PTR(err); 3831 } 3832 3833 out: 3834 folio_mark_accessed(folio); 3835 return folio; 3836 } 3837 3838 /** 3839 * read_cache_folio - Read into page cache, fill it if needed. 3840 * @mapping: The address_space to read from. 3841 * @index: The index to read. 3842 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3843 * @file: Passed to filler function, may be NULL if not required. 3844 * 3845 * Read one page into the page cache. If it succeeds, the folio returned 3846 * will contain @index, but it may not be the first page of the folio. 3847 * 3848 * If the filler function returns an error, it will be returned to the 3849 * caller. 3850 * 3851 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3852 * Return: An uptodate folio on success, ERR_PTR() on failure. 3853 */ 3854 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3855 filler_t filler, struct file *file) 3856 { 3857 return do_read_cache_folio(mapping, index, filler, file, 3858 mapping_gfp_mask(mapping)); 3859 } 3860 EXPORT_SYMBOL(read_cache_folio); 3861 3862 /** 3863 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3864 * @mapping: The address_space for the folio. 3865 * @index: The index that the allocated folio will contain. 3866 * @gfp: The page allocator flags to use if allocating. 3867 * 3868 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3869 * any new memory allocations done using the specified allocation flags. 3870 * 3871 * The most likely error from this function is EIO, but ENOMEM is 3872 * possible and so is EINTR. If ->read_folio returns another error, 3873 * that will be returned to the caller. 3874 * 3875 * The function expects mapping->invalidate_lock to be already held. 3876 * 3877 * Return: Uptodate folio on success, ERR_PTR() on failure. 3878 */ 3879 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3880 pgoff_t index, gfp_t gfp) 3881 { 3882 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3883 } 3884 EXPORT_SYMBOL(mapping_read_folio_gfp); 3885 3886 static struct page *do_read_cache_page(struct address_space *mapping, 3887 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3888 { 3889 struct folio *folio; 3890 3891 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3892 if (IS_ERR(folio)) 3893 return &folio->page; 3894 return folio_file_page(folio, index); 3895 } 3896 3897 struct page *read_cache_page(struct address_space *mapping, 3898 pgoff_t index, filler_t *filler, struct file *file) 3899 { 3900 return do_read_cache_page(mapping, index, filler, file, 3901 mapping_gfp_mask(mapping)); 3902 } 3903 EXPORT_SYMBOL(read_cache_page); 3904 3905 /** 3906 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3907 * @mapping: the page's address_space 3908 * @index: the page index 3909 * @gfp: the page allocator flags to use if allocating 3910 * 3911 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3912 * any new page allocations done using the specified allocation flags. 3913 * 3914 * If the page does not get brought uptodate, return -EIO. 3915 * 3916 * The function expects mapping->invalidate_lock to be already held. 3917 * 3918 * Return: up to date page on success, ERR_PTR() on failure. 3919 */ 3920 struct page *read_cache_page_gfp(struct address_space *mapping, 3921 pgoff_t index, 3922 gfp_t gfp) 3923 { 3924 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3925 } 3926 EXPORT_SYMBOL(read_cache_page_gfp); 3927 3928 /* 3929 * Warn about a page cache invalidation failure during a direct I/O write. 3930 */ 3931 static void dio_warn_stale_pagecache(struct file *filp) 3932 { 3933 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3934 char pathname[128]; 3935 char *path; 3936 3937 errseq_set(&filp->f_mapping->wb_err, -EIO); 3938 if (__ratelimit(&_rs)) { 3939 path = file_path(filp, pathname, sizeof(pathname)); 3940 if (IS_ERR(path)) 3941 path = "(unknown)"; 3942 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3943 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3944 current->comm); 3945 } 3946 } 3947 3948 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3949 { 3950 struct address_space *mapping = iocb->ki_filp->f_mapping; 3951 3952 if (mapping->nrpages && 3953 invalidate_inode_pages2_range(mapping, 3954 iocb->ki_pos >> PAGE_SHIFT, 3955 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 3956 dio_warn_stale_pagecache(iocb->ki_filp); 3957 } 3958 3959 ssize_t 3960 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 3961 { 3962 struct address_space *mapping = iocb->ki_filp->f_mapping; 3963 size_t write_len = iov_iter_count(from); 3964 ssize_t written; 3965 3966 /* 3967 * If a page can not be invalidated, return 0 to fall back 3968 * to buffered write. 3969 */ 3970 written = kiocb_invalidate_pages(iocb, write_len); 3971 if (written) { 3972 if (written == -EBUSY) 3973 return 0; 3974 return written; 3975 } 3976 3977 written = mapping->a_ops->direct_IO(iocb, from); 3978 3979 /* 3980 * Finally, try again to invalidate clean pages which might have been 3981 * cached by non-direct readahead, or faulted in by get_user_pages() 3982 * if the source of the write was an mmap'ed region of the file 3983 * we're writing. Either one is a pretty crazy thing to do, 3984 * so we don't support it 100%. If this invalidation 3985 * fails, tough, the write still worked... 3986 * 3987 * Most of the time we do not need this since dio_complete() will do 3988 * the invalidation for us. However there are some file systems that 3989 * do not end up with dio_complete() being called, so let's not break 3990 * them by removing it completely. 3991 * 3992 * Noticeable example is a blkdev_direct_IO(). 3993 * 3994 * Skip invalidation for async writes or if mapping has no pages. 3995 */ 3996 if (written > 0) { 3997 struct inode *inode = mapping->host; 3998 loff_t pos = iocb->ki_pos; 3999 4000 kiocb_invalidate_post_direct_write(iocb, written); 4001 pos += written; 4002 write_len -= written; 4003 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4004 i_size_write(inode, pos); 4005 mark_inode_dirty(inode); 4006 } 4007 iocb->ki_pos = pos; 4008 } 4009 if (written != -EIOCBQUEUED) 4010 iov_iter_revert(from, write_len - iov_iter_count(from)); 4011 return written; 4012 } 4013 EXPORT_SYMBOL(generic_file_direct_write); 4014 4015 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4016 { 4017 struct file *file = iocb->ki_filp; 4018 loff_t pos = iocb->ki_pos; 4019 struct address_space *mapping = file->f_mapping; 4020 const struct address_space_operations *a_ops = mapping->a_ops; 4021 size_t chunk = mapping_max_folio_size(mapping); 4022 long status = 0; 4023 ssize_t written = 0; 4024 4025 do { 4026 struct folio *folio; 4027 size_t offset; /* Offset into folio */ 4028 size_t bytes; /* Bytes to write to folio */ 4029 size_t copied; /* Bytes copied from user */ 4030 void *fsdata = NULL; 4031 4032 bytes = iov_iter_count(i); 4033 retry: 4034 offset = pos & (chunk - 1); 4035 bytes = min(chunk - offset, bytes); 4036 balance_dirty_pages_ratelimited(mapping); 4037 4038 /* 4039 * Bring in the user page that we will copy from _first_. 4040 * Otherwise there's a nasty deadlock on copying from the 4041 * same page as we're writing to, without it being marked 4042 * up-to-date. 4043 */ 4044 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4045 status = -EFAULT; 4046 break; 4047 } 4048 4049 if (fatal_signal_pending(current)) { 4050 status = -EINTR; 4051 break; 4052 } 4053 4054 status = a_ops->write_begin(file, mapping, pos, bytes, 4055 &folio, &fsdata); 4056 if (unlikely(status < 0)) 4057 break; 4058 4059 offset = offset_in_folio(folio, pos); 4060 if (bytes > folio_size(folio) - offset) 4061 bytes = folio_size(folio) - offset; 4062 4063 if (mapping_writably_mapped(mapping)) 4064 flush_dcache_folio(folio); 4065 4066 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4067 flush_dcache_folio(folio); 4068 4069 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4070 folio, fsdata); 4071 if (unlikely(status != copied)) { 4072 iov_iter_revert(i, copied - max(status, 0L)); 4073 if (unlikely(status < 0)) 4074 break; 4075 } 4076 cond_resched(); 4077 4078 if (unlikely(status == 0)) { 4079 /* 4080 * A short copy made ->write_end() reject the 4081 * thing entirely. Might be memory poisoning 4082 * halfway through, might be a race with munmap, 4083 * might be severe memory pressure. 4084 */ 4085 if (chunk > PAGE_SIZE) 4086 chunk /= 2; 4087 if (copied) { 4088 bytes = copied; 4089 goto retry; 4090 } 4091 } else { 4092 pos += status; 4093 written += status; 4094 } 4095 } while (iov_iter_count(i)); 4096 4097 if (!written) 4098 return status; 4099 iocb->ki_pos += written; 4100 return written; 4101 } 4102 EXPORT_SYMBOL(generic_perform_write); 4103 4104 /** 4105 * __generic_file_write_iter - write data to a file 4106 * @iocb: IO state structure (file, offset, etc.) 4107 * @from: iov_iter with data to write 4108 * 4109 * This function does all the work needed for actually writing data to a 4110 * file. It does all basic checks, removes SUID from the file, updates 4111 * modification times and calls proper subroutines depending on whether we 4112 * do direct IO or a standard buffered write. 4113 * 4114 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4115 * object which does not need locking at all. 4116 * 4117 * This function does *not* take care of syncing data in case of O_SYNC write. 4118 * A caller has to handle it. This is mainly due to the fact that we want to 4119 * avoid syncing under i_rwsem. 4120 * 4121 * Return: 4122 * * number of bytes written, even for truncated writes 4123 * * negative error code if no data has been written at all 4124 */ 4125 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4126 { 4127 struct file *file = iocb->ki_filp; 4128 struct address_space *mapping = file->f_mapping; 4129 struct inode *inode = mapping->host; 4130 ssize_t ret; 4131 4132 ret = file_remove_privs(file); 4133 if (ret) 4134 return ret; 4135 4136 ret = file_update_time(file); 4137 if (ret) 4138 return ret; 4139 4140 if (iocb->ki_flags & IOCB_DIRECT) { 4141 ret = generic_file_direct_write(iocb, from); 4142 /* 4143 * If the write stopped short of completing, fall back to 4144 * buffered writes. Some filesystems do this for writes to 4145 * holes, for example. For DAX files, a buffered write will 4146 * not succeed (even if it did, DAX does not handle dirty 4147 * page-cache pages correctly). 4148 */ 4149 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4150 return ret; 4151 return direct_write_fallback(iocb, from, ret, 4152 generic_perform_write(iocb, from)); 4153 } 4154 4155 return generic_perform_write(iocb, from); 4156 } 4157 EXPORT_SYMBOL(__generic_file_write_iter); 4158 4159 /** 4160 * generic_file_write_iter - write data to a file 4161 * @iocb: IO state structure 4162 * @from: iov_iter with data to write 4163 * 4164 * This is a wrapper around __generic_file_write_iter() to be used by most 4165 * filesystems. It takes care of syncing the file in case of O_SYNC file 4166 * and acquires i_rwsem as needed. 4167 * Return: 4168 * * negative error code if no data has been written at all of 4169 * vfs_fsync_range() failed for a synchronous write 4170 * * number of bytes written, even for truncated writes 4171 */ 4172 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4173 { 4174 struct file *file = iocb->ki_filp; 4175 struct inode *inode = file->f_mapping->host; 4176 ssize_t ret; 4177 4178 inode_lock(inode); 4179 ret = generic_write_checks(iocb, from); 4180 if (ret > 0) 4181 ret = __generic_file_write_iter(iocb, from); 4182 inode_unlock(inode); 4183 4184 if (ret > 0) 4185 ret = generic_write_sync(iocb, ret); 4186 return ret; 4187 } 4188 EXPORT_SYMBOL(generic_file_write_iter); 4189 4190 /** 4191 * filemap_release_folio() - Release fs-specific metadata on a folio. 4192 * @folio: The folio which the kernel is trying to free. 4193 * @gfp: Memory allocation flags (and I/O mode). 4194 * 4195 * The address_space is trying to release any data attached to a folio 4196 * (presumably at folio->private). 4197 * 4198 * This will also be called if the private_2 flag is set on a page, 4199 * indicating that the folio has other metadata associated with it. 4200 * 4201 * The @gfp argument specifies whether I/O may be performed to release 4202 * this page (__GFP_IO), and whether the call may block 4203 * (__GFP_RECLAIM & __GFP_FS). 4204 * 4205 * Return: %true if the release was successful, otherwise %false. 4206 */ 4207 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4208 { 4209 struct address_space * const mapping = folio->mapping; 4210 4211 BUG_ON(!folio_test_locked(folio)); 4212 if (!folio_needs_release(folio)) 4213 return true; 4214 if (folio_test_writeback(folio)) 4215 return false; 4216 4217 if (mapping && mapping->a_ops->release_folio) 4218 return mapping->a_ops->release_folio(folio, gfp); 4219 return try_to_free_buffers(folio); 4220 } 4221 EXPORT_SYMBOL(filemap_release_folio); 4222 4223 /** 4224 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4225 * @inode: The inode to flush 4226 * @flush: Set to write back rather than simply invalidate. 4227 * @start: First byte to in range. 4228 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4229 * onwards. 4230 * 4231 * Invalidate all the folios on an inode that contribute to the specified 4232 * range, possibly writing them back first. Whilst the operation is 4233 * undertaken, the invalidate lock is held to prevent new folios from being 4234 * installed. 4235 */ 4236 int filemap_invalidate_inode(struct inode *inode, bool flush, 4237 loff_t start, loff_t end) 4238 { 4239 struct address_space *mapping = inode->i_mapping; 4240 pgoff_t first = start >> PAGE_SHIFT; 4241 pgoff_t last = end >> PAGE_SHIFT; 4242 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4243 4244 if (!mapping || !mapping->nrpages || end < start) 4245 goto out; 4246 4247 /* Prevent new folios from being added to the inode. */ 4248 filemap_invalidate_lock(mapping); 4249 4250 if (!mapping->nrpages) 4251 goto unlock; 4252 4253 unmap_mapping_pages(mapping, first, nr, false); 4254 4255 /* Write back the data if we're asked to. */ 4256 if (flush) { 4257 struct writeback_control wbc = { 4258 .sync_mode = WB_SYNC_ALL, 4259 .nr_to_write = LONG_MAX, 4260 .range_start = start, 4261 .range_end = end, 4262 }; 4263 4264 filemap_fdatawrite_wbc(mapping, &wbc); 4265 } 4266 4267 /* Wait for writeback to complete on all folios and discard. */ 4268 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4269 4270 unlock: 4271 filemap_invalidate_unlock(mapping); 4272 out: 4273 return filemap_check_errors(mapping); 4274 } 4275 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4276 4277 #ifdef CONFIG_CACHESTAT_SYSCALL 4278 /** 4279 * filemap_cachestat() - compute the page cache statistics of a mapping 4280 * @mapping: The mapping to compute the statistics for. 4281 * @first_index: The starting page cache index. 4282 * @last_index: The final page index (inclusive). 4283 * @cs: the cachestat struct to write the result to. 4284 * 4285 * This will query the page cache statistics of a mapping in the 4286 * page range of [first_index, last_index] (inclusive). The statistics 4287 * queried include: number of dirty pages, number of pages marked for 4288 * writeback, and the number of (recently) evicted pages. 4289 */ 4290 static void filemap_cachestat(struct address_space *mapping, 4291 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4292 { 4293 XA_STATE(xas, &mapping->i_pages, first_index); 4294 struct folio *folio; 4295 4296 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4297 mem_cgroup_flush_stats_ratelimited(NULL); 4298 4299 rcu_read_lock(); 4300 xas_for_each(&xas, folio, last_index) { 4301 int order; 4302 unsigned long nr_pages; 4303 pgoff_t folio_first_index, folio_last_index; 4304 4305 /* 4306 * Don't deref the folio. It is not pinned, and might 4307 * get freed (and reused) underneath us. 4308 * 4309 * We *could* pin it, but that would be expensive for 4310 * what should be a fast and lightweight syscall. 4311 * 4312 * Instead, derive all information of interest from 4313 * the rcu-protected xarray. 4314 */ 4315 4316 if (xas_retry(&xas, folio)) 4317 continue; 4318 4319 order = xas_get_order(&xas); 4320 nr_pages = 1 << order; 4321 folio_first_index = round_down(xas.xa_index, 1 << order); 4322 folio_last_index = folio_first_index + nr_pages - 1; 4323 4324 /* Folios might straddle the range boundaries, only count covered pages */ 4325 if (folio_first_index < first_index) 4326 nr_pages -= first_index - folio_first_index; 4327 4328 if (folio_last_index > last_index) 4329 nr_pages -= folio_last_index - last_index; 4330 4331 if (xa_is_value(folio)) { 4332 /* page is evicted */ 4333 void *shadow = (void *)folio; 4334 bool workingset; /* not used */ 4335 4336 cs->nr_evicted += nr_pages; 4337 4338 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4339 if (shmem_mapping(mapping)) { 4340 /* shmem file - in swap cache */ 4341 swp_entry_t swp = radix_to_swp_entry(folio); 4342 4343 /* swapin error results in poisoned entry */ 4344 if (non_swap_entry(swp)) 4345 goto resched; 4346 4347 /* 4348 * Getting a swap entry from the shmem 4349 * inode means we beat 4350 * shmem_unuse(). rcu_read_lock() 4351 * ensures swapoff waits for us before 4352 * freeing the swapper space. However, 4353 * we can race with swapping and 4354 * invalidation, so there might not be 4355 * a shadow in the swapcache (yet). 4356 */ 4357 shadow = get_shadow_from_swap_cache(swp); 4358 if (!shadow) 4359 goto resched; 4360 } 4361 #endif 4362 if (workingset_test_recent(shadow, true, &workingset, false)) 4363 cs->nr_recently_evicted += nr_pages; 4364 4365 goto resched; 4366 } 4367 4368 /* page is in cache */ 4369 cs->nr_cache += nr_pages; 4370 4371 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4372 cs->nr_dirty += nr_pages; 4373 4374 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4375 cs->nr_writeback += nr_pages; 4376 4377 resched: 4378 if (need_resched()) { 4379 xas_pause(&xas); 4380 cond_resched_rcu(); 4381 } 4382 } 4383 rcu_read_unlock(); 4384 } 4385 4386 /* 4387 * The cachestat(2) system call. 4388 * 4389 * cachestat() returns the page cache statistics of a file in the 4390 * bytes range specified by `off` and `len`: number of cached pages, 4391 * number of dirty pages, number of pages marked for writeback, 4392 * number of evicted pages, and number of recently evicted pages. 4393 * 4394 * An evicted page is a page that is previously in the page cache 4395 * but has been evicted since. A page is recently evicted if its last 4396 * eviction was recent enough that its reentry to the cache would 4397 * indicate that it is actively being used by the system, and that 4398 * there is memory pressure on the system. 4399 * 4400 * `off` and `len` must be non-negative integers. If `len` > 0, 4401 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4402 * we will query in the range from `off` to the end of the file. 4403 * 4404 * The `flags` argument is unused for now, but is included for future 4405 * extensibility. User should pass 0 (i.e no flag specified). 4406 * 4407 * Currently, hugetlbfs is not supported. 4408 * 4409 * Because the status of a page can change after cachestat() checks it 4410 * but before it returns to the application, the returned values may 4411 * contain stale information. 4412 * 4413 * return values: 4414 * zero - success 4415 * -EFAULT - cstat or cstat_range points to an illegal address 4416 * -EINVAL - invalid flags 4417 * -EBADF - invalid file descriptor 4418 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4419 */ 4420 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4421 struct cachestat_range __user *, cstat_range, 4422 struct cachestat __user *, cstat, unsigned int, flags) 4423 { 4424 struct fd f = fdget(fd); 4425 struct address_space *mapping; 4426 struct cachestat_range csr; 4427 struct cachestat cs; 4428 pgoff_t first_index, last_index; 4429 4430 if (!fd_file(f)) 4431 return -EBADF; 4432 4433 if (copy_from_user(&csr, cstat_range, 4434 sizeof(struct cachestat_range))) { 4435 fdput(f); 4436 return -EFAULT; 4437 } 4438 4439 /* hugetlbfs is not supported */ 4440 if (is_file_hugepages(fd_file(f))) { 4441 fdput(f); 4442 return -EOPNOTSUPP; 4443 } 4444 4445 if (flags != 0) { 4446 fdput(f); 4447 return -EINVAL; 4448 } 4449 4450 first_index = csr.off >> PAGE_SHIFT; 4451 last_index = 4452 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4453 memset(&cs, 0, sizeof(struct cachestat)); 4454 mapping = fd_file(f)->f_mapping; 4455 filemap_cachestat(mapping, first_index, last_index, &cs); 4456 fdput(f); 4457 4458 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4459 return -EFAULT; 4460 4461 return 0; 4462 } 4463 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4464