xref: /linux/mm/filemap.c (revision 040932cdcfca9b0ac55a4f74f194c2e2c8a2527b)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38 
39 /*
40  * FIXME: remove all knowledge of the buffer layer from the core VM
41  */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43 
44 #include <asm/mman.h>
45 
46 /*
47  * Shared mappings implemented 30.11.1994. It's not fully working yet,
48  * though.
49  *
50  * Shared mappings now work. 15.8.1995  Bruno.
51  *
52  * finished 'unifying' the page and buffer cache and SMP-threaded the
53  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54  *
55  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56  */
57 
58 /*
59  * Lock ordering:
60  *
61  *  ->i_mmap_lock		(vmtruncate)
62  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
63  *      ->swap_lock		(exclusive_swap_page, others)
64  *        ->mapping->tree_lock
65  *
66  *  ->i_mutex
67  *    ->i_mmap_lock		(truncate->unmap_mapping_range)
68  *
69  *  ->mmap_sem
70  *    ->i_mmap_lock
71  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
72  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
73  *
74  *  ->mmap_sem
75  *    ->lock_page		(access_process_vm)
76  *
77  *  ->i_mutex			(generic_file_buffered_write)
78  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
79  *
80  *  ->i_mutex
81  *    ->i_alloc_sem             (various)
82  *
83  *  ->inode_lock
84  *    ->sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_lock
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    ->inode_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode_lock		(zap_pte_range->set_page_dirty)
103  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
104  *
105  *  ->task->proc_lock
106  *    ->dcache_lock		(proc_pid_lookup)
107  */
108 
109 /*
110  * Remove a page from the page cache and free it. Caller has to make
111  * sure the page is locked and that nobody else uses it - or that usage
112  * is safe.  The caller must hold the mapping's tree_lock.
113  */
114 void __remove_from_page_cache(struct page *page)
115 {
116 	struct address_space *mapping = page->mapping;
117 
118 	radix_tree_delete(&mapping->page_tree, page->index);
119 	page->mapping = NULL;
120 	mapping->nrpages--;
121 	__dec_zone_page_state(page, NR_FILE_PAGES);
122 	BUG_ON(page_mapped(page));
123 
124 	/*
125 	 * Some filesystems seem to re-dirty the page even after
126 	 * the VM has canceled the dirty bit (eg ext3 journaling).
127 	 *
128 	 * Fix it up by doing a final dirty accounting check after
129 	 * having removed the page entirely.
130 	 */
131 	if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
132 		dec_zone_page_state(page, NR_FILE_DIRTY);
133 		dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
134 	}
135 }
136 
137 void remove_from_page_cache(struct page *page)
138 {
139 	struct address_space *mapping = page->mapping;
140 
141 	BUG_ON(!PageLocked(page));
142 
143 	spin_lock_irq(&mapping->tree_lock);
144 	__remove_from_page_cache(page);
145 	spin_unlock_irq(&mapping->tree_lock);
146 	mem_cgroup_uncharge_cache_page(page);
147 }
148 
149 static int sync_page(void *word)
150 {
151 	struct address_space *mapping;
152 	struct page *page;
153 
154 	page = container_of((unsigned long *)word, struct page, flags);
155 
156 	/*
157 	 * page_mapping() is being called without PG_locked held.
158 	 * Some knowledge of the state and use of the page is used to
159 	 * reduce the requirements down to a memory barrier.
160 	 * The danger here is of a stale page_mapping() return value
161 	 * indicating a struct address_space different from the one it's
162 	 * associated with when it is associated with one.
163 	 * After smp_mb(), it's either the correct page_mapping() for
164 	 * the page, or an old page_mapping() and the page's own
165 	 * page_mapping() has gone NULL.
166 	 * The ->sync_page() address_space operation must tolerate
167 	 * page_mapping() going NULL. By an amazing coincidence,
168 	 * this comes about because none of the users of the page
169 	 * in the ->sync_page() methods make essential use of the
170 	 * page_mapping(), merely passing the page down to the backing
171 	 * device's unplug functions when it's non-NULL, which in turn
172 	 * ignore it for all cases but swap, where only page_private(page) is
173 	 * of interest. When page_mapping() does go NULL, the entire
174 	 * call stack gracefully ignores the page and returns.
175 	 * -- wli
176 	 */
177 	smp_mb();
178 	mapping = page_mapping(page);
179 	if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 		mapping->a_ops->sync_page(page);
181 	io_schedule();
182 	return 0;
183 }
184 
185 static int sync_page_killable(void *word)
186 {
187 	sync_page(word);
188 	return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190 
191 /**
192  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
193  * @mapping:	address space structure to write
194  * @start:	offset in bytes where the range starts
195  * @end:	offset in bytes where the range ends (inclusive)
196  * @sync_mode:	enable synchronous operation
197  *
198  * Start writeback against all of a mapping's dirty pages that lie
199  * within the byte offsets <start, end> inclusive.
200  *
201  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
202  * opposed to a regular memory cleansing writeback.  The difference between
203  * these two operations is that if a dirty page/buffer is encountered, it must
204  * be waited upon, and not just skipped over.
205  */
206 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 				loff_t end, int sync_mode)
208 {
209 	int ret;
210 	struct writeback_control wbc = {
211 		.sync_mode = sync_mode,
212 		.nr_to_write = LONG_MAX,
213 		.range_start = start,
214 		.range_end = end,
215 	};
216 
217 	if (!mapping_cap_writeback_dirty(mapping))
218 		return 0;
219 
220 	ret = do_writepages(mapping, &wbc);
221 	return ret;
222 }
223 
224 static inline int __filemap_fdatawrite(struct address_space *mapping,
225 	int sync_mode)
226 {
227 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
228 }
229 
230 int filemap_fdatawrite(struct address_space *mapping)
231 {
232 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233 }
234 EXPORT_SYMBOL(filemap_fdatawrite);
235 
236 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
237 				loff_t end)
238 {
239 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite_range);
242 
243 /**
244  * filemap_flush - mostly a non-blocking flush
245  * @mapping:	target address_space
246  *
247  * This is a mostly non-blocking flush.  Not suitable for data-integrity
248  * purposes - I/O may not be started against all dirty pages.
249  */
250 int filemap_flush(struct address_space *mapping)
251 {
252 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253 }
254 EXPORT_SYMBOL(filemap_flush);
255 
256 /**
257  * wait_on_page_writeback_range - wait for writeback to complete
258  * @mapping:	target address_space
259  * @start:	beginning page index
260  * @end:	ending page index
261  *
262  * Wait for writeback to complete against pages indexed by start->end
263  * inclusive
264  */
265 int wait_on_page_writeback_range(struct address_space *mapping,
266 				pgoff_t start, pgoff_t end)
267 {
268 	struct pagevec pvec;
269 	int nr_pages;
270 	int ret = 0;
271 	pgoff_t index;
272 
273 	if (end < start)
274 		return 0;
275 
276 	pagevec_init(&pvec, 0);
277 	index = start;
278 	while ((index <= end) &&
279 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 			PAGECACHE_TAG_WRITEBACK,
281 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 		unsigned i;
283 
284 		for (i = 0; i < nr_pages; i++) {
285 			struct page *page = pvec.pages[i];
286 
287 			/* until radix tree lookup accepts end_index */
288 			if (page->index > end)
289 				continue;
290 
291 			wait_on_page_writeback(page);
292 			if (PageError(page))
293 				ret = -EIO;
294 		}
295 		pagevec_release(&pvec);
296 		cond_resched();
297 	}
298 
299 	/* Check for outstanding write errors */
300 	if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 		ret = -ENOSPC;
302 	if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 		ret = -EIO;
304 
305 	return ret;
306 }
307 
308 /**
309  * filemap_fdatawait_range - wait for all under-writeback pages to complete in a given range
310  * @mapping: address space structure to wait for
311  * @start:	offset in bytes where the range starts
312  * @end:	offset in bytes where the range ends (inclusive)
313  *
314  * Walk the list of under-writeback pages of the given address space
315  * in the given range and wait for all of them.
316  *
317  * This is just a simple wrapper so that callers don't have to convert offsets
318  * to page indexes themselves
319  */
320 int filemap_fdatawait_range(struct address_space *mapping, loff_t start,
321 			    loff_t end)
322 {
323 	return wait_on_page_writeback_range(mapping, start >> PAGE_CACHE_SHIFT,
324 					    end >> PAGE_CACHE_SHIFT);
325 }
326 EXPORT_SYMBOL(filemap_fdatawait_range);
327 
328 /**
329  * filemap_fdatawait - wait for all under-writeback pages to complete
330  * @mapping: address space structure to wait for
331  *
332  * Walk the list of under-writeback pages of the given address space
333  * and wait for all of them.
334  */
335 int filemap_fdatawait(struct address_space *mapping)
336 {
337 	loff_t i_size = i_size_read(mapping->host);
338 
339 	if (i_size == 0)
340 		return 0;
341 
342 	return wait_on_page_writeback_range(mapping, 0,
343 				(i_size - 1) >> PAGE_CACHE_SHIFT);
344 }
345 EXPORT_SYMBOL(filemap_fdatawait);
346 
347 int filemap_write_and_wait(struct address_space *mapping)
348 {
349 	int err = 0;
350 
351 	if (mapping->nrpages) {
352 		err = filemap_fdatawrite(mapping);
353 		/*
354 		 * Even if the above returned error, the pages may be
355 		 * written partially (e.g. -ENOSPC), so we wait for it.
356 		 * But the -EIO is special case, it may indicate the worst
357 		 * thing (e.g. bug) happened, so we avoid waiting for it.
358 		 */
359 		if (err != -EIO) {
360 			int err2 = filemap_fdatawait(mapping);
361 			if (!err)
362 				err = err2;
363 		}
364 	}
365 	return err;
366 }
367 EXPORT_SYMBOL(filemap_write_and_wait);
368 
369 /**
370  * filemap_write_and_wait_range - write out & wait on a file range
371  * @mapping:	the address_space for the pages
372  * @lstart:	offset in bytes where the range starts
373  * @lend:	offset in bytes where the range ends (inclusive)
374  *
375  * Write out and wait upon file offsets lstart->lend, inclusive.
376  *
377  * Note that `lend' is inclusive (describes the last byte to be written) so
378  * that this function can be used to write to the very end-of-file (end = -1).
379  */
380 int filemap_write_and_wait_range(struct address_space *mapping,
381 				 loff_t lstart, loff_t lend)
382 {
383 	int err = 0;
384 
385 	if (mapping->nrpages) {
386 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
387 						 WB_SYNC_ALL);
388 		/* See comment of filemap_write_and_wait() */
389 		if (err != -EIO) {
390 			int err2 = wait_on_page_writeback_range(mapping,
391 						lstart >> PAGE_CACHE_SHIFT,
392 						lend >> PAGE_CACHE_SHIFT);
393 			if (!err)
394 				err = err2;
395 		}
396 	}
397 	return err;
398 }
399 EXPORT_SYMBOL(filemap_write_and_wait_range);
400 
401 /**
402  * add_to_page_cache_locked - add a locked page to the pagecache
403  * @page:	page to add
404  * @mapping:	the page's address_space
405  * @offset:	page index
406  * @gfp_mask:	page allocation mode
407  *
408  * This function is used to add a page to the pagecache. It must be locked.
409  * This function does not add the page to the LRU.  The caller must do that.
410  */
411 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
412 		pgoff_t offset, gfp_t gfp_mask)
413 {
414 	int error;
415 
416 	VM_BUG_ON(!PageLocked(page));
417 
418 	error = mem_cgroup_cache_charge(page, current->mm,
419 					gfp_mask & GFP_RECLAIM_MASK);
420 	if (error)
421 		goto out;
422 
423 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
424 	if (error == 0) {
425 		page_cache_get(page);
426 		page->mapping = mapping;
427 		page->index = offset;
428 
429 		spin_lock_irq(&mapping->tree_lock);
430 		error = radix_tree_insert(&mapping->page_tree, offset, page);
431 		if (likely(!error)) {
432 			mapping->nrpages++;
433 			__inc_zone_page_state(page, NR_FILE_PAGES);
434 			spin_unlock_irq(&mapping->tree_lock);
435 		} else {
436 			page->mapping = NULL;
437 			spin_unlock_irq(&mapping->tree_lock);
438 			mem_cgroup_uncharge_cache_page(page);
439 			page_cache_release(page);
440 		}
441 		radix_tree_preload_end();
442 	} else
443 		mem_cgroup_uncharge_cache_page(page);
444 out:
445 	return error;
446 }
447 EXPORT_SYMBOL(add_to_page_cache_locked);
448 
449 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
450 				pgoff_t offset, gfp_t gfp_mask)
451 {
452 	int ret;
453 
454 	/*
455 	 * Splice_read and readahead add shmem/tmpfs pages into the page cache
456 	 * before shmem_readpage has a chance to mark them as SwapBacked: they
457 	 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
458 	 * (called in add_to_page_cache) needs to know where they're going too.
459 	 */
460 	if (mapping_cap_swap_backed(mapping))
461 		SetPageSwapBacked(page);
462 
463 	ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 	if (ret == 0) {
465 		if (page_is_file_cache(page))
466 			lru_cache_add_file(page);
467 		else
468 			lru_cache_add_active_anon(page);
469 	}
470 	return ret;
471 }
472 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
473 
474 #ifdef CONFIG_NUMA
475 struct page *__page_cache_alloc(gfp_t gfp)
476 {
477 	if (cpuset_do_page_mem_spread()) {
478 		int n = cpuset_mem_spread_node();
479 		return alloc_pages_exact_node(n, gfp, 0);
480 	}
481 	return alloc_pages(gfp, 0);
482 }
483 EXPORT_SYMBOL(__page_cache_alloc);
484 #endif
485 
486 static int __sleep_on_page_lock(void *word)
487 {
488 	io_schedule();
489 	return 0;
490 }
491 
492 /*
493  * In order to wait for pages to become available there must be
494  * waitqueues associated with pages. By using a hash table of
495  * waitqueues where the bucket discipline is to maintain all
496  * waiters on the same queue and wake all when any of the pages
497  * become available, and for the woken contexts to check to be
498  * sure the appropriate page became available, this saves space
499  * at a cost of "thundering herd" phenomena during rare hash
500  * collisions.
501  */
502 static wait_queue_head_t *page_waitqueue(struct page *page)
503 {
504 	const struct zone *zone = page_zone(page);
505 
506 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
507 }
508 
509 static inline void wake_up_page(struct page *page, int bit)
510 {
511 	__wake_up_bit(page_waitqueue(page), &page->flags, bit);
512 }
513 
514 void wait_on_page_bit(struct page *page, int bit_nr)
515 {
516 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
517 
518 	if (test_bit(bit_nr, &page->flags))
519 		__wait_on_bit(page_waitqueue(page), &wait, sync_page,
520 							TASK_UNINTERRUPTIBLE);
521 }
522 EXPORT_SYMBOL(wait_on_page_bit);
523 
524 /**
525  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
526  * @page: Page defining the wait queue of interest
527  * @waiter: Waiter to add to the queue
528  *
529  * Add an arbitrary @waiter to the wait queue for the nominated @page.
530  */
531 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
532 {
533 	wait_queue_head_t *q = page_waitqueue(page);
534 	unsigned long flags;
535 
536 	spin_lock_irqsave(&q->lock, flags);
537 	__add_wait_queue(q, waiter);
538 	spin_unlock_irqrestore(&q->lock, flags);
539 }
540 EXPORT_SYMBOL_GPL(add_page_wait_queue);
541 
542 /**
543  * unlock_page - unlock a locked page
544  * @page: the page
545  *
546  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
547  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
548  * mechananism between PageLocked pages and PageWriteback pages is shared.
549  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
550  *
551  * The mb is necessary to enforce ordering between the clear_bit and the read
552  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
553  */
554 void unlock_page(struct page *page)
555 {
556 	VM_BUG_ON(!PageLocked(page));
557 	clear_bit_unlock(PG_locked, &page->flags);
558 	smp_mb__after_clear_bit();
559 	wake_up_page(page, PG_locked);
560 }
561 EXPORT_SYMBOL(unlock_page);
562 
563 /**
564  * end_page_writeback - end writeback against a page
565  * @page: the page
566  */
567 void end_page_writeback(struct page *page)
568 {
569 	if (TestClearPageReclaim(page))
570 		rotate_reclaimable_page(page);
571 
572 	if (!test_clear_page_writeback(page))
573 		BUG();
574 
575 	smp_mb__after_clear_bit();
576 	wake_up_page(page, PG_writeback);
577 }
578 EXPORT_SYMBOL(end_page_writeback);
579 
580 /**
581  * __lock_page - get a lock on the page, assuming we need to sleep to get it
582  * @page: the page to lock
583  *
584  * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary.  If some
585  * random driver's requestfn sets TASK_RUNNING, we could busywait.  However
586  * chances are that on the second loop, the block layer's plug list is empty,
587  * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
588  */
589 void __lock_page(struct page *page)
590 {
591 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
592 
593 	__wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
594 							TASK_UNINTERRUPTIBLE);
595 }
596 EXPORT_SYMBOL(__lock_page);
597 
598 int __lock_page_killable(struct page *page)
599 {
600 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
601 
602 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
603 					sync_page_killable, TASK_KILLABLE);
604 }
605 EXPORT_SYMBOL_GPL(__lock_page_killable);
606 
607 /**
608  * __lock_page_nosync - get a lock on the page, without calling sync_page()
609  * @page: the page to lock
610  *
611  * Variant of lock_page that does not require the caller to hold a reference
612  * on the page's mapping.
613  */
614 void __lock_page_nosync(struct page *page)
615 {
616 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
617 	__wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
618 							TASK_UNINTERRUPTIBLE);
619 }
620 
621 /**
622  * find_get_page - find and get a page reference
623  * @mapping: the address_space to search
624  * @offset: the page index
625  *
626  * Is there a pagecache struct page at the given (mapping, offset) tuple?
627  * If yes, increment its refcount and return it; if no, return NULL.
628  */
629 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
630 {
631 	void **pagep;
632 	struct page *page;
633 
634 	rcu_read_lock();
635 repeat:
636 	page = NULL;
637 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
638 	if (pagep) {
639 		page = radix_tree_deref_slot(pagep);
640 		if (unlikely(!page || page == RADIX_TREE_RETRY))
641 			goto repeat;
642 
643 		if (!page_cache_get_speculative(page))
644 			goto repeat;
645 
646 		/*
647 		 * Has the page moved?
648 		 * This is part of the lockless pagecache protocol. See
649 		 * include/linux/pagemap.h for details.
650 		 */
651 		if (unlikely(page != *pagep)) {
652 			page_cache_release(page);
653 			goto repeat;
654 		}
655 	}
656 	rcu_read_unlock();
657 
658 	return page;
659 }
660 EXPORT_SYMBOL(find_get_page);
661 
662 /**
663  * find_lock_page - locate, pin and lock a pagecache page
664  * @mapping: the address_space to search
665  * @offset: the page index
666  *
667  * Locates the desired pagecache page, locks it, increments its reference
668  * count and returns its address.
669  *
670  * Returns zero if the page was not present. find_lock_page() may sleep.
671  */
672 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
673 {
674 	struct page *page;
675 
676 repeat:
677 	page = find_get_page(mapping, offset);
678 	if (page) {
679 		lock_page(page);
680 		/* Has the page been truncated? */
681 		if (unlikely(page->mapping != mapping)) {
682 			unlock_page(page);
683 			page_cache_release(page);
684 			goto repeat;
685 		}
686 		VM_BUG_ON(page->index != offset);
687 	}
688 	return page;
689 }
690 EXPORT_SYMBOL(find_lock_page);
691 
692 /**
693  * find_or_create_page - locate or add a pagecache page
694  * @mapping: the page's address_space
695  * @index: the page's index into the mapping
696  * @gfp_mask: page allocation mode
697  *
698  * Locates a page in the pagecache.  If the page is not present, a new page
699  * is allocated using @gfp_mask and is added to the pagecache and to the VM's
700  * LRU list.  The returned page is locked and has its reference count
701  * incremented.
702  *
703  * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
704  * allocation!
705  *
706  * find_or_create_page() returns the desired page's address, or zero on
707  * memory exhaustion.
708  */
709 struct page *find_or_create_page(struct address_space *mapping,
710 		pgoff_t index, gfp_t gfp_mask)
711 {
712 	struct page *page;
713 	int err;
714 repeat:
715 	page = find_lock_page(mapping, index);
716 	if (!page) {
717 		page = __page_cache_alloc(gfp_mask);
718 		if (!page)
719 			return NULL;
720 		/*
721 		 * We want a regular kernel memory (not highmem or DMA etc)
722 		 * allocation for the radix tree nodes, but we need to honour
723 		 * the context-specific requirements the caller has asked for.
724 		 * GFP_RECLAIM_MASK collects those requirements.
725 		 */
726 		err = add_to_page_cache_lru(page, mapping, index,
727 			(gfp_mask & GFP_RECLAIM_MASK));
728 		if (unlikely(err)) {
729 			page_cache_release(page);
730 			page = NULL;
731 			if (err == -EEXIST)
732 				goto repeat;
733 		}
734 	}
735 	return page;
736 }
737 EXPORT_SYMBOL(find_or_create_page);
738 
739 /**
740  * find_get_pages - gang pagecache lookup
741  * @mapping:	The address_space to search
742  * @start:	The starting page index
743  * @nr_pages:	The maximum number of pages
744  * @pages:	Where the resulting pages are placed
745  *
746  * find_get_pages() will search for and return a group of up to
747  * @nr_pages pages in the mapping.  The pages are placed at @pages.
748  * find_get_pages() takes a reference against the returned pages.
749  *
750  * The search returns a group of mapping-contiguous pages with ascending
751  * indexes.  There may be holes in the indices due to not-present pages.
752  *
753  * find_get_pages() returns the number of pages which were found.
754  */
755 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
756 			    unsigned int nr_pages, struct page **pages)
757 {
758 	unsigned int i;
759 	unsigned int ret;
760 	unsigned int nr_found;
761 
762 	rcu_read_lock();
763 restart:
764 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
765 				(void ***)pages, start, nr_pages);
766 	ret = 0;
767 	for (i = 0; i < nr_found; i++) {
768 		struct page *page;
769 repeat:
770 		page = radix_tree_deref_slot((void **)pages[i]);
771 		if (unlikely(!page))
772 			continue;
773 		/*
774 		 * this can only trigger if nr_found == 1, making livelock
775 		 * a non issue.
776 		 */
777 		if (unlikely(page == RADIX_TREE_RETRY))
778 			goto restart;
779 
780 		if (!page_cache_get_speculative(page))
781 			goto repeat;
782 
783 		/* Has the page moved? */
784 		if (unlikely(page != *((void **)pages[i]))) {
785 			page_cache_release(page);
786 			goto repeat;
787 		}
788 
789 		pages[ret] = page;
790 		ret++;
791 	}
792 	rcu_read_unlock();
793 	return ret;
794 }
795 
796 /**
797  * find_get_pages_contig - gang contiguous pagecache lookup
798  * @mapping:	The address_space to search
799  * @index:	The starting page index
800  * @nr_pages:	The maximum number of pages
801  * @pages:	Where the resulting pages are placed
802  *
803  * find_get_pages_contig() works exactly like find_get_pages(), except
804  * that the returned number of pages are guaranteed to be contiguous.
805  *
806  * find_get_pages_contig() returns the number of pages which were found.
807  */
808 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
809 			       unsigned int nr_pages, struct page **pages)
810 {
811 	unsigned int i;
812 	unsigned int ret;
813 	unsigned int nr_found;
814 
815 	rcu_read_lock();
816 restart:
817 	nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
818 				(void ***)pages, index, nr_pages);
819 	ret = 0;
820 	for (i = 0; i < nr_found; i++) {
821 		struct page *page;
822 repeat:
823 		page = radix_tree_deref_slot((void **)pages[i]);
824 		if (unlikely(!page))
825 			continue;
826 		/*
827 		 * this can only trigger if nr_found == 1, making livelock
828 		 * a non issue.
829 		 */
830 		if (unlikely(page == RADIX_TREE_RETRY))
831 			goto restart;
832 
833 		if (page->mapping == NULL || page->index != index)
834 			break;
835 
836 		if (!page_cache_get_speculative(page))
837 			goto repeat;
838 
839 		/* Has the page moved? */
840 		if (unlikely(page != *((void **)pages[i]))) {
841 			page_cache_release(page);
842 			goto repeat;
843 		}
844 
845 		pages[ret] = page;
846 		ret++;
847 		index++;
848 	}
849 	rcu_read_unlock();
850 	return ret;
851 }
852 EXPORT_SYMBOL(find_get_pages_contig);
853 
854 /**
855  * find_get_pages_tag - find and return pages that match @tag
856  * @mapping:	the address_space to search
857  * @index:	the starting page index
858  * @tag:	the tag index
859  * @nr_pages:	the maximum number of pages
860  * @pages:	where the resulting pages are placed
861  *
862  * Like find_get_pages, except we only return pages which are tagged with
863  * @tag.   We update @index to index the next page for the traversal.
864  */
865 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
866 			int tag, unsigned int nr_pages, struct page **pages)
867 {
868 	unsigned int i;
869 	unsigned int ret;
870 	unsigned int nr_found;
871 
872 	rcu_read_lock();
873 restart:
874 	nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
875 				(void ***)pages, *index, nr_pages, tag);
876 	ret = 0;
877 	for (i = 0; i < nr_found; i++) {
878 		struct page *page;
879 repeat:
880 		page = radix_tree_deref_slot((void **)pages[i]);
881 		if (unlikely(!page))
882 			continue;
883 		/*
884 		 * this can only trigger if nr_found == 1, making livelock
885 		 * a non issue.
886 		 */
887 		if (unlikely(page == RADIX_TREE_RETRY))
888 			goto restart;
889 
890 		if (!page_cache_get_speculative(page))
891 			goto repeat;
892 
893 		/* Has the page moved? */
894 		if (unlikely(page != *((void **)pages[i]))) {
895 			page_cache_release(page);
896 			goto repeat;
897 		}
898 
899 		pages[ret] = page;
900 		ret++;
901 	}
902 	rcu_read_unlock();
903 
904 	if (ret)
905 		*index = pages[ret - 1]->index + 1;
906 
907 	return ret;
908 }
909 EXPORT_SYMBOL(find_get_pages_tag);
910 
911 /**
912  * grab_cache_page_nowait - returns locked page at given index in given cache
913  * @mapping: target address_space
914  * @index: the page index
915  *
916  * Same as grab_cache_page(), but do not wait if the page is unavailable.
917  * This is intended for speculative data generators, where the data can
918  * be regenerated if the page couldn't be grabbed.  This routine should
919  * be safe to call while holding the lock for another page.
920  *
921  * Clear __GFP_FS when allocating the page to avoid recursion into the fs
922  * and deadlock against the caller's locked page.
923  */
924 struct page *
925 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
926 {
927 	struct page *page = find_get_page(mapping, index);
928 
929 	if (page) {
930 		if (trylock_page(page))
931 			return page;
932 		page_cache_release(page);
933 		return NULL;
934 	}
935 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
936 	if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
937 		page_cache_release(page);
938 		page = NULL;
939 	}
940 	return page;
941 }
942 EXPORT_SYMBOL(grab_cache_page_nowait);
943 
944 /*
945  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
946  * a _large_ part of the i/o request. Imagine the worst scenario:
947  *
948  *      ---R__________________________________________B__________
949  *         ^ reading here                             ^ bad block(assume 4k)
950  *
951  * read(R) => miss => readahead(R...B) => media error => frustrating retries
952  * => failing the whole request => read(R) => read(R+1) =>
953  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
954  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
955  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
956  *
957  * It is going insane. Fix it by quickly scaling down the readahead size.
958  */
959 static void shrink_readahead_size_eio(struct file *filp,
960 					struct file_ra_state *ra)
961 {
962 	ra->ra_pages /= 4;
963 }
964 
965 /**
966  * do_generic_file_read - generic file read routine
967  * @filp:	the file to read
968  * @ppos:	current file position
969  * @desc:	read_descriptor
970  * @actor:	read method
971  *
972  * This is a generic file read routine, and uses the
973  * mapping->a_ops->readpage() function for the actual low-level stuff.
974  *
975  * This is really ugly. But the goto's actually try to clarify some
976  * of the logic when it comes to error handling etc.
977  */
978 static void do_generic_file_read(struct file *filp, loff_t *ppos,
979 		read_descriptor_t *desc, read_actor_t actor)
980 {
981 	struct address_space *mapping = filp->f_mapping;
982 	struct inode *inode = mapping->host;
983 	struct file_ra_state *ra = &filp->f_ra;
984 	pgoff_t index;
985 	pgoff_t last_index;
986 	pgoff_t prev_index;
987 	unsigned long offset;      /* offset into pagecache page */
988 	unsigned int prev_offset;
989 	int error;
990 
991 	index = *ppos >> PAGE_CACHE_SHIFT;
992 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
993 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
994 	last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
995 	offset = *ppos & ~PAGE_CACHE_MASK;
996 
997 	for (;;) {
998 		struct page *page;
999 		pgoff_t end_index;
1000 		loff_t isize;
1001 		unsigned long nr, ret;
1002 
1003 		cond_resched();
1004 find_page:
1005 		page = find_get_page(mapping, index);
1006 		if (!page) {
1007 			page_cache_sync_readahead(mapping,
1008 					ra, filp,
1009 					index, last_index - index);
1010 			page = find_get_page(mapping, index);
1011 			if (unlikely(page == NULL))
1012 				goto no_cached_page;
1013 		}
1014 		if (PageReadahead(page)) {
1015 			page_cache_async_readahead(mapping,
1016 					ra, filp, page,
1017 					index, last_index - index);
1018 		}
1019 		if (!PageUptodate(page)) {
1020 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1021 					!mapping->a_ops->is_partially_uptodate)
1022 				goto page_not_up_to_date;
1023 			if (!trylock_page(page))
1024 				goto page_not_up_to_date;
1025 			if (!mapping->a_ops->is_partially_uptodate(page,
1026 								desc, offset))
1027 				goto page_not_up_to_date_locked;
1028 			unlock_page(page);
1029 		}
1030 page_ok:
1031 		/*
1032 		 * i_size must be checked after we know the page is Uptodate.
1033 		 *
1034 		 * Checking i_size after the check allows us to calculate
1035 		 * the correct value for "nr", which means the zero-filled
1036 		 * part of the page is not copied back to userspace (unless
1037 		 * another truncate extends the file - this is desired though).
1038 		 */
1039 
1040 		isize = i_size_read(inode);
1041 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1042 		if (unlikely(!isize || index > end_index)) {
1043 			page_cache_release(page);
1044 			goto out;
1045 		}
1046 
1047 		/* nr is the maximum number of bytes to copy from this page */
1048 		nr = PAGE_CACHE_SIZE;
1049 		if (index == end_index) {
1050 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1051 			if (nr <= offset) {
1052 				page_cache_release(page);
1053 				goto out;
1054 			}
1055 		}
1056 		nr = nr - offset;
1057 
1058 		/* If users can be writing to this page using arbitrary
1059 		 * virtual addresses, take care about potential aliasing
1060 		 * before reading the page on the kernel side.
1061 		 */
1062 		if (mapping_writably_mapped(mapping))
1063 			flush_dcache_page(page);
1064 
1065 		/*
1066 		 * When a sequential read accesses a page several times,
1067 		 * only mark it as accessed the first time.
1068 		 */
1069 		if (prev_index != index || offset != prev_offset)
1070 			mark_page_accessed(page);
1071 		prev_index = index;
1072 
1073 		/*
1074 		 * Ok, we have the page, and it's up-to-date, so
1075 		 * now we can copy it to user space...
1076 		 *
1077 		 * The actor routine returns how many bytes were actually used..
1078 		 * NOTE! This may not be the same as how much of a user buffer
1079 		 * we filled up (we may be padding etc), so we can only update
1080 		 * "pos" here (the actor routine has to update the user buffer
1081 		 * pointers and the remaining count).
1082 		 */
1083 		ret = actor(desc, page, offset, nr);
1084 		offset += ret;
1085 		index += offset >> PAGE_CACHE_SHIFT;
1086 		offset &= ~PAGE_CACHE_MASK;
1087 		prev_offset = offset;
1088 
1089 		page_cache_release(page);
1090 		if (ret == nr && desc->count)
1091 			continue;
1092 		goto out;
1093 
1094 page_not_up_to_date:
1095 		/* Get exclusive access to the page ... */
1096 		error = lock_page_killable(page);
1097 		if (unlikely(error))
1098 			goto readpage_error;
1099 
1100 page_not_up_to_date_locked:
1101 		/* Did it get truncated before we got the lock? */
1102 		if (!page->mapping) {
1103 			unlock_page(page);
1104 			page_cache_release(page);
1105 			continue;
1106 		}
1107 
1108 		/* Did somebody else fill it already? */
1109 		if (PageUptodate(page)) {
1110 			unlock_page(page);
1111 			goto page_ok;
1112 		}
1113 
1114 readpage:
1115 		/* Start the actual read. The read will unlock the page. */
1116 		error = mapping->a_ops->readpage(filp, page);
1117 
1118 		if (unlikely(error)) {
1119 			if (error == AOP_TRUNCATED_PAGE) {
1120 				page_cache_release(page);
1121 				goto find_page;
1122 			}
1123 			goto readpage_error;
1124 		}
1125 
1126 		if (!PageUptodate(page)) {
1127 			error = lock_page_killable(page);
1128 			if (unlikely(error))
1129 				goto readpage_error;
1130 			if (!PageUptodate(page)) {
1131 				if (page->mapping == NULL) {
1132 					/*
1133 					 * invalidate_inode_pages got it
1134 					 */
1135 					unlock_page(page);
1136 					page_cache_release(page);
1137 					goto find_page;
1138 				}
1139 				unlock_page(page);
1140 				shrink_readahead_size_eio(filp, ra);
1141 				error = -EIO;
1142 				goto readpage_error;
1143 			}
1144 			unlock_page(page);
1145 		}
1146 
1147 		goto page_ok;
1148 
1149 readpage_error:
1150 		/* UHHUH! A synchronous read error occurred. Report it */
1151 		desc->error = error;
1152 		page_cache_release(page);
1153 		goto out;
1154 
1155 no_cached_page:
1156 		/*
1157 		 * Ok, it wasn't cached, so we need to create a new
1158 		 * page..
1159 		 */
1160 		page = page_cache_alloc_cold(mapping);
1161 		if (!page) {
1162 			desc->error = -ENOMEM;
1163 			goto out;
1164 		}
1165 		error = add_to_page_cache_lru(page, mapping,
1166 						index, GFP_KERNEL);
1167 		if (error) {
1168 			page_cache_release(page);
1169 			if (error == -EEXIST)
1170 				goto find_page;
1171 			desc->error = error;
1172 			goto out;
1173 		}
1174 		goto readpage;
1175 	}
1176 
1177 out:
1178 	ra->prev_pos = prev_index;
1179 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1180 	ra->prev_pos |= prev_offset;
1181 
1182 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1183 	file_accessed(filp);
1184 }
1185 
1186 int file_read_actor(read_descriptor_t *desc, struct page *page,
1187 			unsigned long offset, unsigned long size)
1188 {
1189 	char *kaddr;
1190 	unsigned long left, count = desc->count;
1191 
1192 	if (size > count)
1193 		size = count;
1194 
1195 	/*
1196 	 * Faults on the destination of a read are common, so do it before
1197 	 * taking the kmap.
1198 	 */
1199 	if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1200 		kaddr = kmap_atomic(page, KM_USER0);
1201 		left = __copy_to_user_inatomic(desc->arg.buf,
1202 						kaddr + offset, size);
1203 		kunmap_atomic(kaddr, KM_USER0);
1204 		if (left == 0)
1205 			goto success;
1206 	}
1207 
1208 	/* Do it the slow way */
1209 	kaddr = kmap(page);
1210 	left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1211 	kunmap(page);
1212 
1213 	if (left) {
1214 		size -= left;
1215 		desc->error = -EFAULT;
1216 	}
1217 success:
1218 	desc->count = count - size;
1219 	desc->written += size;
1220 	desc->arg.buf += size;
1221 	return size;
1222 }
1223 
1224 /*
1225  * Performs necessary checks before doing a write
1226  * @iov:	io vector request
1227  * @nr_segs:	number of segments in the iovec
1228  * @count:	number of bytes to write
1229  * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1230  *
1231  * Adjust number of segments and amount of bytes to write (nr_segs should be
1232  * properly initialized first). Returns appropriate error code that caller
1233  * should return or zero in case that write should be allowed.
1234  */
1235 int generic_segment_checks(const struct iovec *iov,
1236 			unsigned long *nr_segs, size_t *count, int access_flags)
1237 {
1238 	unsigned long   seg;
1239 	size_t cnt = 0;
1240 	for (seg = 0; seg < *nr_segs; seg++) {
1241 		const struct iovec *iv = &iov[seg];
1242 
1243 		/*
1244 		 * If any segment has a negative length, or the cumulative
1245 		 * length ever wraps negative then return -EINVAL.
1246 		 */
1247 		cnt += iv->iov_len;
1248 		if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1249 			return -EINVAL;
1250 		if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1251 			continue;
1252 		if (seg == 0)
1253 			return -EFAULT;
1254 		*nr_segs = seg;
1255 		cnt -= iv->iov_len;	/* This segment is no good */
1256 		break;
1257 	}
1258 	*count = cnt;
1259 	return 0;
1260 }
1261 EXPORT_SYMBOL(generic_segment_checks);
1262 
1263 /**
1264  * generic_file_aio_read - generic filesystem read routine
1265  * @iocb:	kernel I/O control block
1266  * @iov:	io vector request
1267  * @nr_segs:	number of segments in the iovec
1268  * @pos:	current file position
1269  *
1270  * This is the "read()" routine for all filesystems
1271  * that can use the page cache directly.
1272  */
1273 ssize_t
1274 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1275 		unsigned long nr_segs, loff_t pos)
1276 {
1277 	struct file *filp = iocb->ki_filp;
1278 	ssize_t retval;
1279 	unsigned long seg;
1280 	size_t count;
1281 	loff_t *ppos = &iocb->ki_pos;
1282 
1283 	count = 0;
1284 	retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1285 	if (retval)
1286 		return retval;
1287 
1288 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1289 	if (filp->f_flags & O_DIRECT) {
1290 		loff_t size;
1291 		struct address_space *mapping;
1292 		struct inode *inode;
1293 
1294 		mapping = filp->f_mapping;
1295 		inode = mapping->host;
1296 		if (!count)
1297 			goto out; /* skip atime */
1298 		size = i_size_read(inode);
1299 		if (pos < size) {
1300 			retval = filemap_write_and_wait_range(mapping, pos,
1301 					pos + iov_length(iov, nr_segs) - 1);
1302 			if (!retval) {
1303 				retval = mapping->a_ops->direct_IO(READ, iocb,
1304 							iov, pos, nr_segs);
1305 			}
1306 			if (retval > 0)
1307 				*ppos = pos + retval;
1308 			if (retval) {
1309 				file_accessed(filp);
1310 				goto out;
1311 			}
1312 		}
1313 	}
1314 
1315 	for (seg = 0; seg < nr_segs; seg++) {
1316 		read_descriptor_t desc;
1317 
1318 		desc.written = 0;
1319 		desc.arg.buf = iov[seg].iov_base;
1320 		desc.count = iov[seg].iov_len;
1321 		if (desc.count == 0)
1322 			continue;
1323 		desc.error = 0;
1324 		do_generic_file_read(filp, ppos, &desc, file_read_actor);
1325 		retval += desc.written;
1326 		if (desc.error) {
1327 			retval = retval ?: desc.error;
1328 			break;
1329 		}
1330 		if (desc.count > 0)
1331 			break;
1332 	}
1333 out:
1334 	return retval;
1335 }
1336 EXPORT_SYMBOL(generic_file_aio_read);
1337 
1338 static ssize_t
1339 do_readahead(struct address_space *mapping, struct file *filp,
1340 	     pgoff_t index, unsigned long nr)
1341 {
1342 	if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1343 		return -EINVAL;
1344 
1345 	force_page_cache_readahead(mapping, filp, index, nr);
1346 	return 0;
1347 }
1348 
1349 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1350 {
1351 	ssize_t ret;
1352 	struct file *file;
1353 
1354 	ret = -EBADF;
1355 	file = fget(fd);
1356 	if (file) {
1357 		if (file->f_mode & FMODE_READ) {
1358 			struct address_space *mapping = file->f_mapping;
1359 			pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1360 			pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1361 			unsigned long len = end - start + 1;
1362 			ret = do_readahead(mapping, file, start, len);
1363 		}
1364 		fput(file);
1365 	}
1366 	return ret;
1367 }
1368 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1369 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1370 {
1371 	return SYSC_readahead((int) fd, offset, (size_t) count);
1372 }
1373 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1374 #endif
1375 
1376 #ifdef CONFIG_MMU
1377 /**
1378  * page_cache_read - adds requested page to the page cache if not already there
1379  * @file:	file to read
1380  * @offset:	page index
1381  *
1382  * This adds the requested page to the page cache if it isn't already there,
1383  * and schedules an I/O to read in its contents from disk.
1384  */
1385 static int page_cache_read(struct file *file, pgoff_t offset)
1386 {
1387 	struct address_space *mapping = file->f_mapping;
1388 	struct page *page;
1389 	int ret;
1390 
1391 	do {
1392 		page = page_cache_alloc_cold(mapping);
1393 		if (!page)
1394 			return -ENOMEM;
1395 
1396 		ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1397 		if (ret == 0)
1398 			ret = mapping->a_ops->readpage(file, page);
1399 		else if (ret == -EEXIST)
1400 			ret = 0; /* losing race to add is OK */
1401 
1402 		page_cache_release(page);
1403 
1404 	} while (ret == AOP_TRUNCATED_PAGE);
1405 
1406 	return ret;
1407 }
1408 
1409 #define MMAP_LOTSAMISS  (100)
1410 
1411 /*
1412  * Synchronous readahead happens when we don't even find
1413  * a page in the page cache at all.
1414  */
1415 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1416 				   struct file_ra_state *ra,
1417 				   struct file *file,
1418 				   pgoff_t offset)
1419 {
1420 	unsigned long ra_pages;
1421 	struct address_space *mapping = file->f_mapping;
1422 
1423 	/* If we don't want any read-ahead, don't bother */
1424 	if (VM_RandomReadHint(vma))
1425 		return;
1426 
1427 	if (VM_SequentialReadHint(vma) ||
1428 			offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1429 		page_cache_sync_readahead(mapping, ra, file, offset,
1430 					  ra->ra_pages);
1431 		return;
1432 	}
1433 
1434 	if (ra->mmap_miss < INT_MAX)
1435 		ra->mmap_miss++;
1436 
1437 	/*
1438 	 * Do we miss much more than hit in this file? If so,
1439 	 * stop bothering with read-ahead. It will only hurt.
1440 	 */
1441 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1442 		return;
1443 
1444 	/*
1445 	 * mmap read-around
1446 	 */
1447 	ra_pages = max_sane_readahead(ra->ra_pages);
1448 	if (ra_pages) {
1449 		ra->start = max_t(long, 0, offset - ra_pages/2);
1450 		ra->size = ra_pages;
1451 		ra->async_size = 0;
1452 		ra_submit(ra, mapping, file);
1453 	}
1454 }
1455 
1456 /*
1457  * Asynchronous readahead happens when we find the page and PG_readahead,
1458  * so we want to possibly extend the readahead further..
1459  */
1460 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1461 				    struct file_ra_state *ra,
1462 				    struct file *file,
1463 				    struct page *page,
1464 				    pgoff_t offset)
1465 {
1466 	struct address_space *mapping = file->f_mapping;
1467 
1468 	/* If we don't want any read-ahead, don't bother */
1469 	if (VM_RandomReadHint(vma))
1470 		return;
1471 	if (ra->mmap_miss > 0)
1472 		ra->mmap_miss--;
1473 	if (PageReadahead(page))
1474 		page_cache_async_readahead(mapping, ra, file,
1475 					   page, offset, ra->ra_pages);
1476 }
1477 
1478 /**
1479  * filemap_fault - read in file data for page fault handling
1480  * @vma:	vma in which the fault was taken
1481  * @vmf:	struct vm_fault containing details of the fault
1482  *
1483  * filemap_fault() is invoked via the vma operations vector for a
1484  * mapped memory region to read in file data during a page fault.
1485  *
1486  * The goto's are kind of ugly, but this streamlines the normal case of having
1487  * it in the page cache, and handles the special cases reasonably without
1488  * having a lot of duplicated code.
1489  */
1490 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1491 {
1492 	int error;
1493 	struct file *file = vma->vm_file;
1494 	struct address_space *mapping = file->f_mapping;
1495 	struct file_ra_state *ra = &file->f_ra;
1496 	struct inode *inode = mapping->host;
1497 	pgoff_t offset = vmf->pgoff;
1498 	struct page *page;
1499 	pgoff_t size;
1500 	int ret = 0;
1501 
1502 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1503 	if (offset >= size)
1504 		return VM_FAULT_SIGBUS;
1505 
1506 	/*
1507 	 * Do we have something in the page cache already?
1508 	 */
1509 	page = find_get_page(mapping, offset);
1510 	if (likely(page)) {
1511 		/*
1512 		 * We found the page, so try async readahead before
1513 		 * waiting for the lock.
1514 		 */
1515 		do_async_mmap_readahead(vma, ra, file, page, offset);
1516 		lock_page(page);
1517 
1518 		/* Did it get truncated? */
1519 		if (unlikely(page->mapping != mapping)) {
1520 			unlock_page(page);
1521 			put_page(page);
1522 			goto no_cached_page;
1523 		}
1524 	} else {
1525 		/* No page in the page cache at all */
1526 		do_sync_mmap_readahead(vma, ra, file, offset);
1527 		count_vm_event(PGMAJFAULT);
1528 		ret = VM_FAULT_MAJOR;
1529 retry_find:
1530 		page = find_lock_page(mapping, offset);
1531 		if (!page)
1532 			goto no_cached_page;
1533 	}
1534 
1535 	/*
1536 	 * We have a locked page in the page cache, now we need to check
1537 	 * that it's up-to-date. If not, it is going to be due to an error.
1538 	 */
1539 	if (unlikely(!PageUptodate(page)))
1540 		goto page_not_uptodate;
1541 
1542 	/*
1543 	 * Found the page and have a reference on it.
1544 	 * We must recheck i_size under page lock.
1545 	 */
1546 	size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1547 	if (unlikely(offset >= size)) {
1548 		unlock_page(page);
1549 		page_cache_release(page);
1550 		return VM_FAULT_SIGBUS;
1551 	}
1552 
1553 	ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1554 	vmf->page = page;
1555 	return ret | VM_FAULT_LOCKED;
1556 
1557 no_cached_page:
1558 	/*
1559 	 * We're only likely to ever get here if MADV_RANDOM is in
1560 	 * effect.
1561 	 */
1562 	error = page_cache_read(file, offset);
1563 
1564 	/*
1565 	 * The page we want has now been added to the page cache.
1566 	 * In the unlikely event that someone removed it in the
1567 	 * meantime, we'll just come back here and read it again.
1568 	 */
1569 	if (error >= 0)
1570 		goto retry_find;
1571 
1572 	/*
1573 	 * An error return from page_cache_read can result if the
1574 	 * system is low on memory, or a problem occurs while trying
1575 	 * to schedule I/O.
1576 	 */
1577 	if (error == -ENOMEM)
1578 		return VM_FAULT_OOM;
1579 	return VM_FAULT_SIGBUS;
1580 
1581 page_not_uptodate:
1582 	/*
1583 	 * Umm, take care of errors if the page isn't up-to-date.
1584 	 * Try to re-read it _once_. We do this synchronously,
1585 	 * because there really aren't any performance issues here
1586 	 * and we need to check for errors.
1587 	 */
1588 	ClearPageError(page);
1589 	error = mapping->a_ops->readpage(file, page);
1590 	if (!error) {
1591 		wait_on_page_locked(page);
1592 		if (!PageUptodate(page))
1593 			error = -EIO;
1594 	}
1595 	page_cache_release(page);
1596 
1597 	if (!error || error == AOP_TRUNCATED_PAGE)
1598 		goto retry_find;
1599 
1600 	/* Things didn't work out. Return zero to tell the mm layer so. */
1601 	shrink_readahead_size_eio(file, ra);
1602 	return VM_FAULT_SIGBUS;
1603 }
1604 EXPORT_SYMBOL(filemap_fault);
1605 
1606 struct vm_operations_struct generic_file_vm_ops = {
1607 	.fault		= filemap_fault,
1608 };
1609 
1610 /* This is used for a general mmap of a disk file */
1611 
1612 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1613 {
1614 	struct address_space *mapping = file->f_mapping;
1615 
1616 	if (!mapping->a_ops->readpage)
1617 		return -ENOEXEC;
1618 	file_accessed(file);
1619 	vma->vm_ops = &generic_file_vm_ops;
1620 	vma->vm_flags |= VM_CAN_NONLINEAR;
1621 	return 0;
1622 }
1623 
1624 /*
1625  * This is for filesystems which do not implement ->writepage.
1626  */
1627 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1628 {
1629 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1630 		return -EINVAL;
1631 	return generic_file_mmap(file, vma);
1632 }
1633 #else
1634 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1635 {
1636 	return -ENOSYS;
1637 }
1638 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1639 {
1640 	return -ENOSYS;
1641 }
1642 #endif /* CONFIG_MMU */
1643 
1644 EXPORT_SYMBOL(generic_file_mmap);
1645 EXPORT_SYMBOL(generic_file_readonly_mmap);
1646 
1647 static struct page *__read_cache_page(struct address_space *mapping,
1648 				pgoff_t index,
1649 				int (*filler)(void *,struct page*),
1650 				void *data)
1651 {
1652 	struct page *page;
1653 	int err;
1654 repeat:
1655 	page = find_get_page(mapping, index);
1656 	if (!page) {
1657 		page = page_cache_alloc_cold(mapping);
1658 		if (!page)
1659 			return ERR_PTR(-ENOMEM);
1660 		err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1661 		if (unlikely(err)) {
1662 			page_cache_release(page);
1663 			if (err == -EEXIST)
1664 				goto repeat;
1665 			/* Presumably ENOMEM for radix tree node */
1666 			return ERR_PTR(err);
1667 		}
1668 		err = filler(data, page);
1669 		if (err < 0) {
1670 			page_cache_release(page);
1671 			page = ERR_PTR(err);
1672 		}
1673 	}
1674 	return page;
1675 }
1676 
1677 /**
1678  * read_cache_page_async - read into page cache, fill it if needed
1679  * @mapping:	the page's address_space
1680  * @index:	the page index
1681  * @filler:	function to perform the read
1682  * @data:	destination for read data
1683  *
1684  * Same as read_cache_page, but don't wait for page to become unlocked
1685  * after submitting it to the filler.
1686  *
1687  * Read into the page cache. If a page already exists, and PageUptodate() is
1688  * not set, try to fill the page but don't wait for it to become unlocked.
1689  *
1690  * If the page does not get brought uptodate, return -EIO.
1691  */
1692 struct page *read_cache_page_async(struct address_space *mapping,
1693 				pgoff_t index,
1694 				int (*filler)(void *,struct page*),
1695 				void *data)
1696 {
1697 	struct page *page;
1698 	int err;
1699 
1700 retry:
1701 	page = __read_cache_page(mapping, index, filler, data);
1702 	if (IS_ERR(page))
1703 		return page;
1704 	if (PageUptodate(page))
1705 		goto out;
1706 
1707 	lock_page(page);
1708 	if (!page->mapping) {
1709 		unlock_page(page);
1710 		page_cache_release(page);
1711 		goto retry;
1712 	}
1713 	if (PageUptodate(page)) {
1714 		unlock_page(page);
1715 		goto out;
1716 	}
1717 	err = filler(data, page);
1718 	if (err < 0) {
1719 		page_cache_release(page);
1720 		return ERR_PTR(err);
1721 	}
1722 out:
1723 	mark_page_accessed(page);
1724 	return page;
1725 }
1726 EXPORT_SYMBOL(read_cache_page_async);
1727 
1728 /**
1729  * read_cache_page - read into page cache, fill it if needed
1730  * @mapping:	the page's address_space
1731  * @index:	the page index
1732  * @filler:	function to perform the read
1733  * @data:	destination for read data
1734  *
1735  * Read into the page cache. If a page already exists, and PageUptodate() is
1736  * not set, try to fill the page then wait for it to become unlocked.
1737  *
1738  * If the page does not get brought uptodate, return -EIO.
1739  */
1740 struct page *read_cache_page(struct address_space *mapping,
1741 				pgoff_t index,
1742 				int (*filler)(void *,struct page*),
1743 				void *data)
1744 {
1745 	struct page *page;
1746 
1747 	page = read_cache_page_async(mapping, index, filler, data);
1748 	if (IS_ERR(page))
1749 		goto out;
1750 	wait_on_page_locked(page);
1751 	if (!PageUptodate(page)) {
1752 		page_cache_release(page);
1753 		page = ERR_PTR(-EIO);
1754 	}
1755  out:
1756 	return page;
1757 }
1758 EXPORT_SYMBOL(read_cache_page);
1759 
1760 /*
1761  * The logic we want is
1762  *
1763  *	if suid or (sgid and xgrp)
1764  *		remove privs
1765  */
1766 int should_remove_suid(struct dentry *dentry)
1767 {
1768 	mode_t mode = dentry->d_inode->i_mode;
1769 	int kill = 0;
1770 
1771 	/* suid always must be killed */
1772 	if (unlikely(mode & S_ISUID))
1773 		kill = ATTR_KILL_SUID;
1774 
1775 	/*
1776 	 * sgid without any exec bits is just a mandatory locking mark; leave
1777 	 * it alone.  If some exec bits are set, it's a real sgid; kill it.
1778 	 */
1779 	if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1780 		kill |= ATTR_KILL_SGID;
1781 
1782 	if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1783 		return kill;
1784 
1785 	return 0;
1786 }
1787 EXPORT_SYMBOL(should_remove_suid);
1788 
1789 static int __remove_suid(struct dentry *dentry, int kill)
1790 {
1791 	struct iattr newattrs;
1792 
1793 	newattrs.ia_valid = ATTR_FORCE | kill;
1794 	return notify_change(dentry, &newattrs);
1795 }
1796 
1797 int file_remove_suid(struct file *file)
1798 {
1799 	struct dentry *dentry = file->f_path.dentry;
1800 	int killsuid = should_remove_suid(dentry);
1801 	int killpriv = security_inode_need_killpriv(dentry);
1802 	int error = 0;
1803 
1804 	if (killpriv < 0)
1805 		return killpriv;
1806 	if (killpriv)
1807 		error = security_inode_killpriv(dentry);
1808 	if (!error && killsuid)
1809 		error = __remove_suid(dentry, killsuid);
1810 
1811 	return error;
1812 }
1813 EXPORT_SYMBOL(file_remove_suid);
1814 
1815 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1816 			const struct iovec *iov, size_t base, size_t bytes)
1817 {
1818 	size_t copied = 0, left = 0;
1819 
1820 	while (bytes) {
1821 		char __user *buf = iov->iov_base + base;
1822 		int copy = min(bytes, iov->iov_len - base);
1823 
1824 		base = 0;
1825 		left = __copy_from_user_inatomic(vaddr, buf, copy);
1826 		copied += copy;
1827 		bytes -= copy;
1828 		vaddr += copy;
1829 		iov++;
1830 
1831 		if (unlikely(left))
1832 			break;
1833 	}
1834 	return copied - left;
1835 }
1836 
1837 /*
1838  * Copy as much as we can into the page and return the number of bytes which
1839  * were sucessfully copied.  If a fault is encountered then return the number of
1840  * bytes which were copied.
1841  */
1842 size_t iov_iter_copy_from_user_atomic(struct page *page,
1843 		struct iov_iter *i, unsigned long offset, size_t bytes)
1844 {
1845 	char *kaddr;
1846 	size_t copied;
1847 
1848 	BUG_ON(!in_atomic());
1849 	kaddr = kmap_atomic(page, KM_USER0);
1850 	if (likely(i->nr_segs == 1)) {
1851 		int left;
1852 		char __user *buf = i->iov->iov_base + i->iov_offset;
1853 		left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1854 		copied = bytes - left;
1855 	} else {
1856 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1857 						i->iov, i->iov_offset, bytes);
1858 	}
1859 	kunmap_atomic(kaddr, KM_USER0);
1860 
1861 	return copied;
1862 }
1863 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1864 
1865 /*
1866  * This has the same sideeffects and return value as
1867  * iov_iter_copy_from_user_atomic().
1868  * The difference is that it attempts to resolve faults.
1869  * Page must not be locked.
1870  */
1871 size_t iov_iter_copy_from_user(struct page *page,
1872 		struct iov_iter *i, unsigned long offset, size_t bytes)
1873 {
1874 	char *kaddr;
1875 	size_t copied;
1876 
1877 	kaddr = kmap(page);
1878 	if (likely(i->nr_segs == 1)) {
1879 		int left;
1880 		char __user *buf = i->iov->iov_base + i->iov_offset;
1881 		left = __copy_from_user(kaddr + offset, buf, bytes);
1882 		copied = bytes - left;
1883 	} else {
1884 		copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1885 						i->iov, i->iov_offset, bytes);
1886 	}
1887 	kunmap(page);
1888 	return copied;
1889 }
1890 EXPORT_SYMBOL(iov_iter_copy_from_user);
1891 
1892 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1893 {
1894 	BUG_ON(i->count < bytes);
1895 
1896 	if (likely(i->nr_segs == 1)) {
1897 		i->iov_offset += bytes;
1898 		i->count -= bytes;
1899 	} else {
1900 		const struct iovec *iov = i->iov;
1901 		size_t base = i->iov_offset;
1902 
1903 		/*
1904 		 * The !iov->iov_len check ensures we skip over unlikely
1905 		 * zero-length segments (without overruning the iovec).
1906 		 */
1907 		while (bytes || unlikely(i->count && !iov->iov_len)) {
1908 			int copy;
1909 
1910 			copy = min(bytes, iov->iov_len - base);
1911 			BUG_ON(!i->count || i->count < copy);
1912 			i->count -= copy;
1913 			bytes -= copy;
1914 			base += copy;
1915 			if (iov->iov_len == base) {
1916 				iov++;
1917 				base = 0;
1918 			}
1919 		}
1920 		i->iov = iov;
1921 		i->iov_offset = base;
1922 	}
1923 }
1924 EXPORT_SYMBOL(iov_iter_advance);
1925 
1926 /*
1927  * Fault in the first iovec of the given iov_iter, to a maximum length
1928  * of bytes. Returns 0 on success, or non-zero if the memory could not be
1929  * accessed (ie. because it is an invalid address).
1930  *
1931  * writev-intensive code may want this to prefault several iovecs -- that
1932  * would be possible (callers must not rely on the fact that _only_ the
1933  * first iovec will be faulted with the current implementation).
1934  */
1935 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1936 {
1937 	char __user *buf = i->iov->iov_base + i->iov_offset;
1938 	bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1939 	return fault_in_pages_readable(buf, bytes);
1940 }
1941 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1942 
1943 /*
1944  * Return the count of just the current iov_iter segment.
1945  */
1946 size_t iov_iter_single_seg_count(struct iov_iter *i)
1947 {
1948 	const struct iovec *iov = i->iov;
1949 	if (i->nr_segs == 1)
1950 		return i->count;
1951 	else
1952 		return min(i->count, iov->iov_len - i->iov_offset);
1953 }
1954 EXPORT_SYMBOL(iov_iter_single_seg_count);
1955 
1956 /*
1957  * Performs necessary checks before doing a write
1958  *
1959  * Can adjust writing position or amount of bytes to write.
1960  * Returns appropriate error code that caller should return or
1961  * zero in case that write should be allowed.
1962  */
1963 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1964 {
1965 	struct inode *inode = file->f_mapping->host;
1966 	unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1967 
1968         if (unlikely(*pos < 0))
1969                 return -EINVAL;
1970 
1971 	if (!isblk) {
1972 		/* FIXME: this is for backwards compatibility with 2.4 */
1973 		if (file->f_flags & O_APPEND)
1974                         *pos = i_size_read(inode);
1975 
1976 		if (limit != RLIM_INFINITY) {
1977 			if (*pos >= limit) {
1978 				send_sig(SIGXFSZ, current, 0);
1979 				return -EFBIG;
1980 			}
1981 			if (*count > limit - (typeof(limit))*pos) {
1982 				*count = limit - (typeof(limit))*pos;
1983 			}
1984 		}
1985 	}
1986 
1987 	/*
1988 	 * LFS rule
1989 	 */
1990 	if (unlikely(*pos + *count > MAX_NON_LFS &&
1991 				!(file->f_flags & O_LARGEFILE))) {
1992 		if (*pos >= MAX_NON_LFS) {
1993 			return -EFBIG;
1994 		}
1995 		if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1996 			*count = MAX_NON_LFS - (unsigned long)*pos;
1997 		}
1998 	}
1999 
2000 	/*
2001 	 * Are we about to exceed the fs block limit ?
2002 	 *
2003 	 * If we have written data it becomes a short write.  If we have
2004 	 * exceeded without writing data we send a signal and return EFBIG.
2005 	 * Linus frestrict idea will clean these up nicely..
2006 	 */
2007 	if (likely(!isblk)) {
2008 		if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2009 			if (*count || *pos > inode->i_sb->s_maxbytes) {
2010 				return -EFBIG;
2011 			}
2012 			/* zero-length writes at ->s_maxbytes are OK */
2013 		}
2014 
2015 		if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2016 			*count = inode->i_sb->s_maxbytes - *pos;
2017 	} else {
2018 #ifdef CONFIG_BLOCK
2019 		loff_t isize;
2020 		if (bdev_read_only(I_BDEV(inode)))
2021 			return -EPERM;
2022 		isize = i_size_read(inode);
2023 		if (*pos >= isize) {
2024 			if (*count || *pos > isize)
2025 				return -ENOSPC;
2026 		}
2027 
2028 		if (*pos + *count > isize)
2029 			*count = isize - *pos;
2030 #else
2031 		return -EPERM;
2032 #endif
2033 	}
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL(generic_write_checks);
2037 
2038 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2039 				loff_t pos, unsigned len, unsigned flags,
2040 				struct page **pagep, void **fsdata)
2041 {
2042 	const struct address_space_operations *aops = mapping->a_ops;
2043 
2044 	return aops->write_begin(file, mapping, pos, len, flags,
2045 							pagep, fsdata);
2046 }
2047 EXPORT_SYMBOL(pagecache_write_begin);
2048 
2049 int pagecache_write_end(struct file *file, struct address_space *mapping,
2050 				loff_t pos, unsigned len, unsigned copied,
2051 				struct page *page, void *fsdata)
2052 {
2053 	const struct address_space_operations *aops = mapping->a_ops;
2054 
2055 	mark_page_accessed(page);
2056 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2057 }
2058 EXPORT_SYMBOL(pagecache_write_end);
2059 
2060 ssize_t
2061 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2062 		unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2063 		size_t count, size_t ocount)
2064 {
2065 	struct file	*file = iocb->ki_filp;
2066 	struct address_space *mapping = file->f_mapping;
2067 	struct inode	*inode = mapping->host;
2068 	ssize_t		written;
2069 	size_t		write_len;
2070 	pgoff_t		end;
2071 
2072 	if (count != ocount)
2073 		*nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2074 
2075 	write_len = iov_length(iov, *nr_segs);
2076 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2077 
2078 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2079 	if (written)
2080 		goto out;
2081 
2082 	/*
2083 	 * After a write we want buffered reads to be sure to go to disk to get
2084 	 * the new data.  We invalidate clean cached page from the region we're
2085 	 * about to write.  We do this *before* the write so that we can return
2086 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2087 	 */
2088 	if (mapping->nrpages) {
2089 		written = invalidate_inode_pages2_range(mapping,
2090 					pos >> PAGE_CACHE_SHIFT, end);
2091 		/*
2092 		 * If a page can not be invalidated, return 0 to fall back
2093 		 * to buffered write.
2094 		 */
2095 		if (written) {
2096 			if (written == -EBUSY)
2097 				return 0;
2098 			goto out;
2099 		}
2100 	}
2101 
2102 	written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2103 
2104 	/*
2105 	 * Finally, try again to invalidate clean pages which might have been
2106 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2107 	 * if the source of the write was an mmap'ed region of the file
2108 	 * we're writing.  Either one is a pretty crazy thing to do,
2109 	 * so we don't support it 100%.  If this invalidation
2110 	 * fails, tough, the write still worked...
2111 	 */
2112 	if (mapping->nrpages) {
2113 		invalidate_inode_pages2_range(mapping,
2114 					      pos >> PAGE_CACHE_SHIFT, end);
2115 	}
2116 
2117 	if (written > 0) {
2118 		loff_t end = pos + written;
2119 		if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2120 			i_size_write(inode,  end);
2121 			mark_inode_dirty(inode);
2122 		}
2123 		*ppos = end;
2124 	}
2125 out:
2126 	return written;
2127 }
2128 EXPORT_SYMBOL(generic_file_direct_write);
2129 
2130 /*
2131  * Find or create a page at the given pagecache position. Return the locked
2132  * page. This function is specifically for buffered writes.
2133  */
2134 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2135 					pgoff_t index, unsigned flags)
2136 {
2137 	int status;
2138 	struct page *page;
2139 	gfp_t gfp_notmask = 0;
2140 	if (flags & AOP_FLAG_NOFS)
2141 		gfp_notmask = __GFP_FS;
2142 repeat:
2143 	page = find_lock_page(mapping, index);
2144 	if (likely(page))
2145 		return page;
2146 
2147 	page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2148 	if (!page)
2149 		return NULL;
2150 	status = add_to_page_cache_lru(page, mapping, index,
2151 						GFP_KERNEL & ~gfp_notmask);
2152 	if (unlikely(status)) {
2153 		page_cache_release(page);
2154 		if (status == -EEXIST)
2155 			goto repeat;
2156 		return NULL;
2157 	}
2158 	return page;
2159 }
2160 EXPORT_SYMBOL(grab_cache_page_write_begin);
2161 
2162 static ssize_t generic_perform_write(struct file *file,
2163 				struct iov_iter *i, loff_t pos)
2164 {
2165 	struct address_space *mapping = file->f_mapping;
2166 	const struct address_space_operations *a_ops = mapping->a_ops;
2167 	long status = 0;
2168 	ssize_t written = 0;
2169 	unsigned int flags = 0;
2170 
2171 	/*
2172 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2173 	 */
2174 	if (segment_eq(get_fs(), KERNEL_DS))
2175 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2176 
2177 	do {
2178 		struct page *page;
2179 		pgoff_t index;		/* Pagecache index for current page */
2180 		unsigned long offset;	/* Offset into pagecache page */
2181 		unsigned long bytes;	/* Bytes to write to page */
2182 		size_t copied;		/* Bytes copied from user */
2183 		void *fsdata;
2184 
2185 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2186 		index = pos >> PAGE_CACHE_SHIFT;
2187 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2188 						iov_iter_count(i));
2189 
2190 again:
2191 
2192 		/*
2193 		 * Bring in the user page that we will copy from _first_.
2194 		 * Otherwise there's a nasty deadlock on copying from the
2195 		 * same page as we're writing to, without it being marked
2196 		 * up-to-date.
2197 		 *
2198 		 * Not only is this an optimisation, but it is also required
2199 		 * to check that the address is actually valid, when atomic
2200 		 * usercopies are used, below.
2201 		 */
2202 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2203 			status = -EFAULT;
2204 			break;
2205 		}
2206 
2207 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2208 						&page, &fsdata);
2209 		if (unlikely(status))
2210 			break;
2211 
2212 		pagefault_disable();
2213 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2214 		pagefault_enable();
2215 		flush_dcache_page(page);
2216 
2217 		mark_page_accessed(page);
2218 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2219 						page, fsdata);
2220 		if (unlikely(status < 0))
2221 			break;
2222 		copied = status;
2223 
2224 		cond_resched();
2225 
2226 		iov_iter_advance(i, copied);
2227 		if (unlikely(copied == 0)) {
2228 			/*
2229 			 * If we were unable to copy any data at all, we must
2230 			 * fall back to a single segment length write.
2231 			 *
2232 			 * If we didn't fallback here, we could livelock
2233 			 * because not all segments in the iov can be copied at
2234 			 * once without a pagefault.
2235 			 */
2236 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2237 						iov_iter_single_seg_count(i));
2238 			goto again;
2239 		}
2240 		pos += copied;
2241 		written += copied;
2242 
2243 		balance_dirty_pages_ratelimited(mapping);
2244 
2245 	} while (iov_iter_count(i));
2246 
2247 	return written ? written : status;
2248 }
2249 
2250 ssize_t
2251 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2252 		unsigned long nr_segs, loff_t pos, loff_t *ppos,
2253 		size_t count, ssize_t written)
2254 {
2255 	struct file *file = iocb->ki_filp;
2256 	struct address_space *mapping = file->f_mapping;
2257 	ssize_t status;
2258 	struct iov_iter i;
2259 
2260 	iov_iter_init(&i, iov, nr_segs, count, written);
2261 	status = generic_perform_write(file, &i, pos);
2262 
2263 	if (likely(status >= 0)) {
2264 		written += status;
2265 		*ppos = pos + status;
2266   	}
2267 
2268 	/*
2269 	 * If we get here for O_DIRECT writes then we must have fallen through
2270 	 * to buffered writes (block instantiation inside i_size).  So we sync
2271 	 * the file data here, to try to honour O_DIRECT expectations.
2272 	 */
2273 	if (unlikely(file->f_flags & O_DIRECT) && written)
2274 		status = filemap_write_and_wait_range(mapping,
2275 					pos, pos + written - 1);
2276 
2277 	return written ? written : status;
2278 }
2279 EXPORT_SYMBOL(generic_file_buffered_write);
2280 
2281 /**
2282  * __generic_file_aio_write - write data to a file
2283  * @iocb:	IO state structure (file, offset, etc.)
2284  * @iov:	vector with data to write
2285  * @nr_segs:	number of segments in the vector
2286  * @ppos:	position where to write
2287  *
2288  * This function does all the work needed for actually writing data to a
2289  * file. It does all basic checks, removes SUID from the file, updates
2290  * modification times and calls proper subroutines depending on whether we
2291  * do direct IO or a standard buffered write.
2292  *
2293  * It expects i_mutex to be grabbed unless we work on a block device or similar
2294  * object which does not need locking at all.
2295  *
2296  * This function does *not* take care of syncing data in case of O_SYNC write.
2297  * A caller has to handle it. This is mainly due to the fact that we want to
2298  * avoid syncing under i_mutex.
2299  */
2300 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2301 				 unsigned long nr_segs, loff_t *ppos)
2302 {
2303 	struct file *file = iocb->ki_filp;
2304 	struct address_space * mapping = file->f_mapping;
2305 	size_t ocount;		/* original count */
2306 	size_t count;		/* after file limit checks */
2307 	struct inode 	*inode = mapping->host;
2308 	loff_t		pos;
2309 	ssize_t		written;
2310 	ssize_t		err;
2311 
2312 	ocount = 0;
2313 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2314 	if (err)
2315 		return err;
2316 
2317 	count = ocount;
2318 	pos = *ppos;
2319 
2320 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2321 
2322 	/* We can write back this queue in page reclaim */
2323 	current->backing_dev_info = mapping->backing_dev_info;
2324 	written = 0;
2325 
2326 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2327 	if (err)
2328 		goto out;
2329 
2330 	if (count == 0)
2331 		goto out;
2332 
2333 	err = file_remove_suid(file);
2334 	if (err)
2335 		goto out;
2336 
2337 	file_update_time(file);
2338 
2339 	/* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2340 	if (unlikely(file->f_flags & O_DIRECT)) {
2341 		loff_t endbyte;
2342 		ssize_t written_buffered;
2343 
2344 		written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2345 							ppos, count, ocount);
2346 		if (written < 0 || written == count)
2347 			goto out;
2348 		/*
2349 		 * direct-io write to a hole: fall through to buffered I/O
2350 		 * for completing the rest of the request.
2351 		 */
2352 		pos += written;
2353 		count -= written;
2354 		written_buffered = generic_file_buffered_write(iocb, iov,
2355 						nr_segs, pos, ppos, count,
2356 						written);
2357 		/*
2358 		 * If generic_file_buffered_write() retuned a synchronous error
2359 		 * then we want to return the number of bytes which were
2360 		 * direct-written, or the error code if that was zero.  Note
2361 		 * that this differs from normal direct-io semantics, which
2362 		 * will return -EFOO even if some bytes were written.
2363 		 */
2364 		if (written_buffered < 0) {
2365 			err = written_buffered;
2366 			goto out;
2367 		}
2368 
2369 		/*
2370 		 * We need to ensure that the page cache pages are written to
2371 		 * disk and invalidated to preserve the expected O_DIRECT
2372 		 * semantics.
2373 		 */
2374 		endbyte = pos + written_buffered - written - 1;
2375 		err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2376 					    SYNC_FILE_RANGE_WAIT_BEFORE|
2377 					    SYNC_FILE_RANGE_WRITE|
2378 					    SYNC_FILE_RANGE_WAIT_AFTER);
2379 		if (err == 0) {
2380 			written = written_buffered;
2381 			invalidate_mapping_pages(mapping,
2382 						 pos >> PAGE_CACHE_SHIFT,
2383 						 endbyte >> PAGE_CACHE_SHIFT);
2384 		} else {
2385 			/*
2386 			 * We don't know how much we wrote, so just return
2387 			 * the number of bytes which were direct-written
2388 			 */
2389 		}
2390 	} else {
2391 		written = generic_file_buffered_write(iocb, iov, nr_segs,
2392 				pos, ppos, count, written);
2393 	}
2394 out:
2395 	current->backing_dev_info = NULL;
2396 	return written ? written : err;
2397 }
2398 EXPORT_SYMBOL(__generic_file_aio_write);
2399 
2400 /**
2401  * generic_file_aio_write - write data to a file
2402  * @iocb:	IO state structure
2403  * @iov:	vector with data to write
2404  * @nr_segs:	number of segments in the vector
2405  * @pos:	position in file where to write
2406  *
2407  * This is a wrapper around __generic_file_aio_write() to be used by most
2408  * filesystems. It takes care of syncing the file in case of O_SYNC file
2409  * and acquires i_mutex as needed.
2410  */
2411 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2412 		unsigned long nr_segs, loff_t pos)
2413 {
2414 	struct file *file = iocb->ki_filp;
2415 	struct inode *inode = file->f_mapping->host;
2416 	ssize_t ret;
2417 
2418 	BUG_ON(iocb->ki_pos != pos);
2419 
2420 	mutex_lock(&inode->i_mutex);
2421 	ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2422 	mutex_unlock(&inode->i_mutex);
2423 
2424 	if (ret > 0 || ret == -EIOCBQUEUED) {
2425 		ssize_t err;
2426 
2427 		err = generic_write_sync(file, pos, ret);
2428 		if (err < 0 && ret > 0)
2429 			ret = err;
2430 	}
2431 	return ret;
2432 }
2433 EXPORT_SYMBOL(generic_file_aio_write);
2434 
2435 /**
2436  * try_to_release_page() - release old fs-specific metadata on a page
2437  *
2438  * @page: the page which the kernel is trying to free
2439  * @gfp_mask: memory allocation flags (and I/O mode)
2440  *
2441  * The address_space is to try to release any data against the page
2442  * (presumably at page->private).  If the release was successful, return `1'.
2443  * Otherwise return zero.
2444  *
2445  * This may also be called if PG_fscache is set on a page, indicating that the
2446  * page is known to the local caching routines.
2447  *
2448  * The @gfp_mask argument specifies whether I/O may be performed to release
2449  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2450  *
2451  */
2452 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2453 {
2454 	struct address_space * const mapping = page->mapping;
2455 
2456 	BUG_ON(!PageLocked(page));
2457 	if (PageWriteback(page))
2458 		return 0;
2459 
2460 	if (mapping && mapping->a_ops->releasepage)
2461 		return mapping->a_ops->releasepage(page, gfp_mask);
2462 	return try_to_free_buffers(page);
2463 }
2464 
2465 EXPORT_SYMBOL(try_to_release_page);
2466