1 /* 2 * linux/mm/filemap.c 3 * 4 * Copyright (C) 1994-1999 Linus Torvalds 5 */ 6 7 /* 8 * This file handles the generic file mmap semantics used by 9 * most "normal" filesystems (but you don't /have/ to use this: 10 * the NFS filesystem used to do this differently, for example) 11 */ 12 #include <linux/export.h> 13 #include <linux/compiler.h> 14 #include <linux/fs.h> 15 #include <linux/uaccess.h> 16 #include <linux/aio.h> 17 #include <linux/capability.h> 18 #include <linux/kernel_stat.h> 19 #include <linux/gfp.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/mman.h> 23 #include <linux/pagemap.h> 24 #include <linux/file.h> 25 #include <linux/uio.h> 26 #include <linux/hash.h> 27 #include <linux/writeback.h> 28 #include <linux/backing-dev.h> 29 #include <linux/pagevec.h> 30 #include <linux/blkdev.h> 31 #include <linux/security.h> 32 #include <linux/cpuset.h> 33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */ 34 #include <linux/memcontrol.h> 35 #include <linux/cleancache.h> 36 #include <linux/rmap.h> 37 #include "internal.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/filemap.h> 41 42 /* 43 * FIXME: remove all knowledge of the buffer layer from the core VM 44 */ 45 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 46 47 #include <asm/mman.h> 48 49 /* 50 * Shared mappings implemented 30.11.1994. It's not fully working yet, 51 * though. 52 * 53 * Shared mappings now work. 15.8.1995 Bruno. 54 * 55 * finished 'unifying' the page and buffer cache and SMP-threaded the 56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 57 * 58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 59 */ 60 61 /* 62 * Lock ordering: 63 * 64 * ->i_mmap_mutex (truncate_pagecache) 65 * ->private_lock (__free_pte->__set_page_dirty_buffers) 66 * ->swap_lock (exclusive_swap_page, others) 67 * ->mapping->tree_lock 68 * 69 * ->i_mutex 70 * ->i_mmap_mutex (truncate->unmap_mapping_range) 71 * 72 * ->mmap_sem 73 * ->i_mmap_mutex 74 * ->page_table_lock or pte_lock (various, mainly in memory.c) 75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock) 76 * 77 * ->mmap_sem 78 * ->lock_page (access_process_vm) 79 * 80 * ->i_mutex (generic_perform_write) 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault) 82 * 83 * bdi->wb.list_lock 84 * sb_lock (fs/fs-writeback.c) 85 * ->mapping->tree_lock (__sync_single_inode) 86 * 87 * ->i_mmap_mutex 88 * ->anon_vma.lock (vma_adjust) 89 * 90 * ->anon_vma.lock 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 92 * 93 * ->page_table_lock or pte_lock 94 * ->swap_lock (try_to_unmap_one) 95 * ->private_lock (try_to_unmap_one) 96 * ->tree_lock (try_to_unmap_one) 97 * ->zone.lru_lock (follow_page->mark_page_accessed) 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page) 99 * ->private_lock (page_remove_rmap->set_page_dirty) 100 * ->tree_lock (page_remove_rmap->set_page_dirty) 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty) 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty) 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 104 * ->inode->i_lock (zap_pte_range->set_page_dirty) 105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers) 106 * 107 * ->i_mmap_mutex 108 * ->tasklist_lock (memory_failure, collect_procs_ao) 109 */ 110 111 static void page_cache_tree_delete(struct address_space *mapping, 112 struct page *page, void *shadow) 113 { 114 struct radix_tree_node *node; 115 unsigned long index; 116 unsigned int offset; 117 unsigned int tag; 118 void **slot; 119 120 VM_BUG_ON(!PageLocked(page)); 121 122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot); 123 124 if (shadow) { 125 mapping->nrshadows++; 126 /* 127 * Make sure the nrshadows update is committed before 128 * the nrpages update so that final truncate racing 129 * with reclaim does not see both counters 0 at the 130 * same time and miss a shadow entry. 131 */ 132 smp_wmb(); 133 } 134 mapping->nrpages--; 135 136 if (!node) { 137 /* Clear direct pointer tags in root node */ 138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK; 139 radix_tree_replace_slot(slot, shadow); 140 return; 141 } 142 143 /* Clear tree tags for the removed page */ 144 index = page->index; 145 offset = index & RADIX_TREE_MAP_MASK; 146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) { 147 if (test_bit(offset, node->tags[tag])) 148 radix_tree_tag_clear(&mapping->page_tree, index, tag); 149 } 150 151 /* Delete page, swap shadow entry */ 152 radix_tree_replace_slot(slot, shadow); 153 workingset_node_pages_dec(node); 154 if (shadow) 155 workingset_node_shadows_inc(node); 156 else 157 if (__radix_tree_delete_node(&mapping->page_tree, node)) 158 return; 159 160 /* 161 * Track node that only contains shadow entries. 162 * 163 * Avoid acquiring the list_lru lock if already tracked. The 164 * list_empty() test is safe as node->private_list is 165 * protected by mapping->tree_lock. 166 */ 167 if (!workingset_node_pages(node) && 168 list_empty(&node->private_list)) { 169 node->private_data = mapping; 170 list_lru_add(&workingset_shadow_nodes, &node->private_list); 171 } 172 } 173 174 /* 175 * Delete a page from the page cache and free it. Caller has to make 176 * sure the page is locked and that nobody else uses it - or that usage 177 * is safe. The caller must hold the mapping's tree_lock. 178 */ 179 void __delete_from_page_cache(struct page *page, void *shadow) 180 { 181 struct address_space *mapping = page->mapping; 182 183 trace_mm_filemap_delete_from_page_cache(page); 184 /* 185 * if we're uptodate, flush out into the cleancache, otherwise 186 * invalidate any existing cleancache entries. We can't leave 187 * stale data around in the cleancache once our page is gone 188 */ 189 if (PageUptodate(page) && PageMappedToDisk(page)) 190 cleancache_put_page(page); 191 else 192 cleancache_invalidate_page(mapping, page); 193 194 page_cache_tree_delete(mapping, page, shadow); 195 196 page->mapping = NULL; 197 /* Leave page->index set: truncation lookup relies upon it */ 198 199 __dec_zone_page_state(page, NR_FILE_PAGES); 200 if (PageSwapBacked(page)) 201 __dec_zone_page_state(page, NR_SHMEM); 202 BUG_ON(page_mapped(page)); 203 204 /* 205 * Some filesystems seem to re-dirty the page even after 206 * the VM has canceled the dirty bit (eg ext3 journaling). 207 * 208 * Fix it up by doing a final dirty accounting check after 209 * having removed the page entirely. 210 */ 211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) { 212 dec_zone_page_state(page, NR_FILE_DIRTY); 213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 214 } 215 } 216 217 /** 218 * delete_from_page_cache - delete page from page cache 219 * @page: the page which the kernel is trying to remove from page cache 220 * 221 * This must be called only on pages that have been verified to be in the page 222 * cache and locked. It will never put the page into the free list, the caller 223 * has a reference on the page. 224 */ 225 void delete_from_page_cache(struct page *page) 226 { 227 struct address_space *mapping = page->mapping; 228 void (*freepage)(struct page *); 229 230 BUG_ON(!PageLocked(page)); 231 232 freepage = mapping->a_ops->freepage; 233 spin_lock_irq(&mapping->tree_lock); 234 __delete_from_page_cache(page, NULL); 235 spin_unlock_irq(&mapping->tree_lock); 236 mem_cgroup_uncharge_cache_page(page); 237 238 if (freepage) 239 freepage(page); 240 page_cache_release(page); 241 } 242 EXPORT_SYMBOL(delete_from_page_cache); 243 244 static int sleep_on_page(void *word) 245 { 246 io_schedule(); 247 return 0; 248 } 249 250 static int sleep_on_page_killable(void *word) 251 { 252 sleep_on_page(word); 253 return fatal_signal_pending(current) ? -EINTR : 0; 254 } 255 256 static int filemap_check_errors(struct address_space *mapping) 257 { 258 int ret = 0; 259 /* Check for outstanding write errors */ 260 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 261 ret = -ENOSPC; 262 if (test_and_clear_bit(AS_EIO, &mapping->flags)) 263 ret = -EIO; 264 return ret; 265 } 266 267 /** 268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 269 * @mapping: address space structure to write 270 * @start: offset in bytes where the range starts 271 * @end: offset in bytes where the range ends (inclusive) 272 * @sync_mode: enable synchronous operation 273 * 274 * Start writeback against all of a mapping's dirty pages that lie 275 * within the byte offsets <start, end> inclusive. 276 * 277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 278 * opposed to a regular memory cleansing writeback. The difference between 279 * these two operations is that if a dirty page/buffer is encountered, it must 280 * be waited upon, and not just skipped over. 281 */ 282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 283 loff_t end, int sync_mode) 284 { 285 int ret; 286 struct writeback_control wbc = { 287 .sync_mode = sync_mode, 288 .nr_to_write = LONG_MAX, 289 .range_start = start, 290 .range_end = end, 291 }; 292 293 if (!mapping_cap_writeback_dirty(mapping)) 294 return 0; 295 296 ret = do_writepages(mapping, &wbc); 297 return ret; 298 } 299 300 static inline int __filemap_fdatawrite(struct address_space *mapping, 301 int sync_mode) 302 { 303 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 304 } 305 306 int filemap_fdatawrite(struct address_space *mapping) 307 { 308 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 309 } 310 EXPORT_SYMBOL(filemap_fdatawrite); 311 312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 313 loff_t end) 314 { 315 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 316 } 317 EXPORT_SYMBOL(filemap_fdatawrite_range); 318 319 /** 320 * filemap_flush - mostly a non-blocking flush 321 * @mapping: target address_space 322 * 323 * This is a mostly non-blocking flush. Not suitable for data-integrity 324 * purposes - I/O may not be started against all dirty pages. 325 */ 326 int filemap_flush(struct address_space *mapping) 327 { 328 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 329 } 330 EXPORT_SYMBOL(filemap_flush); 331 332 /** 333 * filemap_fdatawait_range - wait for writeback to complete 334 * @mapping: address space structure to wait for 335 * @start_byte: offset in bytes where the range starts 336 * @end_byte: offset in bytes where the range ends (inclusive) 337 * 338 * Walk the list of under-writeback pages of the given address space 339 * in the given range and wait for all of them. 340 */ 341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 342 loff_t end_byte) 343 { 344 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT; 345 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT; 346 struct pagevec pvec; 347 int nr_pages; 348 int ret2, ret = 0; 349 350 if (end_byte < start_byte) 351 goto out; 352 353 pagevec_init(&pvec, 0); 354 while ((index <= end) && 355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 356 PAGECACHE_TAG_WRITEBACK, 357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) { 358 unsigned i; 359 360 for (i = 0; i < nr_pages; i++) { 361 struct page *page = pvec.pages[i]; 362 363 /* until radix tree lookup accepts end_index */ 364 if (page->index > end) 365 continue; 366 367 wait_on_page_writeback(page); 368 if (TestClearPageError(page)) 369 ret = -EIO; 370 } 371 pagevec_release(&pvec); 372 cond_resched(); 373 } 374 out: 375 ret2 = filemap_check_errors(mapping); 376 if (!ret) 377 ret = ret2; 378 379 return ret; 380 } 381 EXPORT_SYMBOL(filemap_fdatawait_range); 382 383 /** 384 * filemap_fdatawait - wait for all under-writeback pages to complete 385 * @mapping: address space structure to wait for 386 * 387 * Walk the list of under-writeback pages of the given address space 388 * and wait for all of them. 389 */ 390 int filemap_fdatawait(struct address_space *mapping) 391 { 392 loff_t i_size = i_size_read(mapping->host); 393 394 if (i_size == 0) 395 return 0; 396 397 return filemap_fdatawait_range(mapping, 0, i_size - 1); 398 } 399 EXPORT_SYMBOL(filemap_fdatawait); 400 401 int filemap_write_and_wait(struct address_space *mapping) 402 { 403 int err = 0; 404 405 if (mapping->nrpages) { 406 err = filemap_fdatawrite(mapping); 407 /* 408 * Even if the above returned error, the pages may be 409 * written partially (e.g. -ENOSPC), so we wait for it. 410 * But the -EIO is special case, it may indicate the worst 411 * thing (e.g. bug) happened, so we avoid waiting for it. 412 */ 413 if (err != -EIO) { 414 int err2 = filemap_fdatawait(mapping); 415 if (!err) 416 err = err2; 417 } 418 } else { 419 err = filemap_check_errors(mapping); 420 } 421 return err; 422 } 423 EXPORT_SYMBOL(filemap_write_and_wait); 424 425 /** 426 * filemap_write_and_wait_range - write out & wait on a file range 427 * @mapping: the address_space for the pages 428 * @lstart: offset in bytes where the range starts 429 * @lend: offset in bytes where the range ends (inclusive) 430 * 431 * Write out and wait upon file offsets lstart->lend, inclusive. 432 * 433 * Note that `lend' is inclusive (describes the last byte to be written) so 434 * that this function can be used to write to the very end-of-file (end = -1). 435 */ 436 int filemap_write_and_wait_range(struct address_space *mapping, 437 loff_t lstart, loff_t lend) 438 { 439 int err = 0; 440 441 if (mapping->nrpages) { 442 err = __filemap_fdatawrite_range(mapping, lstart, lend, 443 WB_SYNC_ALL); 444 /* See comment of filemap_write_and_wait() */ 445 if (err != -EIO) { 446 int err2 = filemap_fdatawait_range(mapping, 447 lstart, lend); 448 if (!err) 449 err = err2; 450 } 451 } else { 452 err = filemap_check_errors(mapping); 453 } 454 return err; 455 } 456 EXPORT_SYMBOL(filemap_write_and_wait_range); 457 458 /** 459 * replace_page_cache_page - replace a pagecache page with a new one 460 * @old: page to be replaced 461 * @new: page to replace with 462 * @gfp_mask: allocation mode 463 * 464 * This function replaces a page in the pagecache with a new one. On 465 * success it acquires the pagecache reference for the new page and 466 * drops it for the old page. Both the old and new pages must be 467 * locked. This function does not add the new page to the LRU, the 468 * caller must do that. 469 * 470 * The remove + add is atomic. The only way this function can fail is 471 * memory allocation failure. 472 */ 473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask) 474 { 475 int error; 476 477 VM_BUG_ON_PAGE(!PageLocked(old), old); 478 VM_BUG_ON_PAGE(!PageLocked(new), new); 479 VM_BUG_ON_PAGE(new->mapping, new); 480 481 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM); 482 if (!error) { 483 struct address_space *mapping = old->mapping; 484 void (*freepage)(struct page *); 485 486 pgoff_t offset = old->index; 487 freepage = mapping->a_ops->freepage; 488 489 page_cache_get(new); 490 new->mapping = mapping; 491 new->index = offset; 492 493 spin_lock_irq(&mapping->tree_lock); 494 __delete_from_page_cache(old, NULL); 495 error = radix_tree_insert(&mapping->page_tree, offset, new); 496 BUG_ON(error); 497 mapping->nrpages++; 498 __inc_zone_page_state(new, NR_FILE_PAGES); 499 if (PageSwapBacked(new)) 500 __inc_zone_page_state(new, NR_SHMEM); 501 spin_unlock_irq(&mapping->tree_lock); 502 /* mem_cgroup codes must not be called under tree_lock */ 503 mem_cgroup_replace_page_cache(old, new); 504 radix_tree_preload_end(); 505 if (freepage) 506 freepage(old); 507 page_cache_release(old); 508 } 509 510 return error; 511 } 512 EXPORT_SYMBOL_GPL(replace_page_cache_page); 513 514 static int page_cache_tree_insert(struct address_space *mapping, 515 struct page *page, void **shadowp) 516 { 517 struct radix_tree_node *node; 518 void **slot; 519 int error; 520 521 error = __radix_tree_create(&mapping->page_tree, page->index, 522 &node, &slot); 523 if (error) 524 return error; 525 if (*slot) { 526 void *p; 527 528 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock); 529 if (!radix_tree_exceptional_entry(p)) 530 return -EEXIST; 531 if (shadowp) 532 *shadowp = p; 533 mapping->nrshadows--; 534 if (node) 535 workingset_node_shadows_dec(node); 536 } 537 radix_tree_replace_slot(slot, page); 538 mapping->nrpages++; 539 if (node) { 540 workingset_node_pages_inc(node); 541 /* 542 * Don't track node that contains actual pages. 543 * 544 * Avoid acquiring the list_lru lock if already 545 * untracked. The list_empty() test is safe as 546 * node->private_list is protected by 547 * mapping->tree_lock. 548 */ 549 if (!list_empty(&node->private_list)) 550 list_lru_del(&workingset_shadow_nodes, 551 &node->private_list); 552 } 553 return 0; 554 } 555 556 static int __add_to_page_cache_locked(struct page *page, 557 struct address_space *mapping, 558 pgoff_t offset, gfp_t gfp_mask, 559 void **shadowp) 560 { 561 int error; 562 563 VM_BUG_ON_PAGE(!PageLocked(page), page); 564 VM_BUG_ON_PAGE(PageSwapBacked(page), page); 565 566 error = mem_cgroup_charge_file(page, current->mm, 567 gfp_mask & GFP_RECLAIM_MASK); 568 if (error) 569 return error; 570 571 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM); 572 if (error) { 573 mem_cgroup_uncharge_cache_page(page); 574 return error; 575 } 576 577 page_cache_get(page); 578 page->mapping = mapping; 579 page->index = offset; 580 581 spin_lock_irq(&mapping->tree_lock); 582 error = page_cache_tree_insert(mapping, page, shadowp); 583 radix_tree_preload_end(); 584 if (unlikely(error)) 585 goto err_insert; 586 __inc_zone_page_state(page, NR_FILE_PAGES); 587 spin_unlock_irq(&mapping->tree_lock); 588 trace_mm_filemap_add_to_page_cache(page); 589 return 0; 590 err_insert: 591 page->mapping = NULL; 592 /* Leave page->index set: truncation relies upon it */ 593 spin_unlock_irq(&mapping->tree_lock); 594 mem_cgroup_uncharge_cache_page(page); 595 page_cache_release(page); 596 return error; 597 } 598 599 /** 600 * add_to_page_cache_locked - add a locked page to the pagecache 601 * @page: page to add 602 * @mapping: the page's address_space 603 * @offset: page index 604 * @gfp_mask: page allocation mode 605 * 606 * This function is used to add a page to the pagecache. It must be locked. 607 * This function does not add the page to the LRU. The caller must do that. 608 */ 609 int add_to_page_cache_locked(struct page *page, struct address_space *mapping, 610 pgoff_t offset, gfp_t gfp_mask) 611 { 612 return __add_to_page_cache_locked(page, mapping, offset, 613 gfp_mask, NULL); 614 } 615 EXPORT_SYMBOL(add_to_page_cache_locked); 616 617 int add_to_page_cache_lru(struct page *page, struct address_space *mapping, 618 pgoff_t offset, gfp_t gfp_mask) 619 { 620 void *shadow = NULL; 621 int ret; 622 623 __set_page_locked(page); 624 ret = __add_to_page_cache_locked(page, mapping, offset, 625 gfp_mask, &shadow); 626 if (unlikely(ret)) 627 __clear_page_locked(page); 628 else { 629 /* 630 * The page might have been evicted from cache only 631 * recently, in which case it should be activated like 632 * any other repeatedly accessed page. 633 */ 634 if (shadow && workingset_refault(shadow)) { 635 SetPageActive(page); 636 workingset_activation(page); 637 } else 638 ClearPageActive(page); 639 lru_cache_add(page); 640 } 641 return ret; 642 } 643 EXPORT_SYMBOL_GPL(add_to_page_cache_lru); 644 645 #ifdef CONFIG_NUMA 646 struct page *__page_cache_alloc(gfp_t gfp) 647 { 648 int n; 649 struct page *page; 650 651 if (cpuset_do_page_mem_spread()) { 652 unsigned int cpuset_mems_cookie; 653 do { 654 cpuset_mems_cookie = read_mems_allowed_begin(); 655 n = cpuset_mem_spread_node(); 656 page = alloc_pages_exact_node(n, gfp, 0); 657 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie)); 658 659 return page; 660 } 661 return alloc_pages(gfp, 0); 662 } 663 EXPORT_SYMBOL(__page_cache_alloc); 664 #endif 665 666 /* 667 * In order to wait for pages to become available there must be 668 * waitqueues associated with pages. By using a hash table of 669 * waitqueues where the bucket discipline is to maintain all 670 * waiters on the same queue and wake all when any of the pages 671 * become available, and for the woken contexts to check to be 672 * sure the appropriate page became available, this saves space 673 * at a cost of "thundering herd" phenomena during rare hash 674 * collisions. 675 */ 676 static wait_queue_head_t *page_waitqueue(struct page *page) 677 { 678 const struct zone *zone = page_zone(page); 679 680 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)]; 681 } 682 683 static inline void wake_up_page(struct page *page, int bit) 684 { 685 __wake_up_bit(page_waitqueue(page), &page->flags, bit); 686 } 687 688 void wait_on_page_bit(struct page *page, int bit_nr) 689 { 690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 691 692 if (test_bit(bit_nr, &page->flags)) 693 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page, 694 TASK_UNINTERRUPTIBLE); 695 } 696 EXPORT_SYMBOL(wait_on_page_bit); 697 698 int wait_on_page_bit_killable(struct page *page, int bit_nr) 699 { 700 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr); 701 702 if (!test_bit(bit_nr, &page->flags)) 703 return 0; 704 705 return __wait_on_bit(page_waitqueue(page), &wait, 706 sleep_on_page_killable, TASK_KILLABLE); 707 } 708 709 /** 710 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue 711 * @page: Page defining the wait queue of interest 712 * @waiter: Waiter to add to the queue 713 * 714 * Add an arbitrary @waiter to the wait queue for the nominated @page. 715 */ 716 void add_page_wait_queue(struct page *page, wait_queue_t *waiter) 717 { 718 wait_queue_head_t *q = page_waitqueue(page); 719 unsigned long flags; 720 721 spin_lock_irqsave(&q->lock, flags); 722 __add_wait_queue(q, waiter); 723 spin_unlock_irqrestore(&q->lock, flags); 724 } 725 EXPORT_SYMBOL_GPL(add_page_wait_queue); 726 727 /** 728 * unlock_page - unlock a locked page 729 * @page: the page 730 * 731 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked(). 732 * Also wakes sleepers in wait_on_page_writeback() because the wakeup 733 * mechananism between PageLocked pages and PageWriteback pages is shared. 734 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep. 735 * 736 * The mb is necessary to enforce ordering between the clear_bit and the read 737 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()). 738 */ 739 void unlock_page(struct page *page) 740 { 741 VM_BUG_ON_PAGE(!PageLocked(page), page); 742 clear_bit_unlock(PG_locked, &page->flags); 743 smp_mb__after_clear_bit(); 744 wake_up_page(page, PG_locked); 745 } 746 EXPORT_SYMBOL(unlock_page); 747 748 /** 749 * end_page_writeback - end writeback against a page 750 * @page: the page 751 */ 752 void end_page_writeback(struct page *page) 753 { 754 if (TestClearPageReclaim(page)) 755 rotate_reclaimable_page(page); 756 757 if (!test_clear_page_writeback(page)) 758 BUG(); 759 760 smp_mb__after_clear_bit(); 761 wake_up_page(page, PG_writeback); 762 } 763 EXPORT_SYMBOL(end_page_writeback); 764 765 /** 766 * __lock_page - get a lock on the page, assuming we need to sleep to get it 767 * @page: the page to lock 768 */ 769 void __lock_page(struct page *page) 770 { 771 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 772 773 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page, 774 TASK_UNINTERRUPTIBLE); 775 } 776 EXPORT_SYMBOL(__lock_page); 777 778 int __lock_page_killable(struct page *page) 779 { 780 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked); 781 782 return __wait_on_bit_lock(page_waitqueue(page), &wait, 783 sleep_on_page_killable, TASK_KILLABLE); 784 } 785 EXPORT_SYMBOL_GPL(__lock_page_killable); 786 787 int __lock_page_or_retry(struct page *page, struct mm_struct *mm, 788 unsigned int flags) 789 { 790 if (flags & FAULT_FLAG_ALLOW_RETRY) { 791 /* 792 * CAUTION! In this case, mmap_sem is not released 793 * even though return 0. 794 */ 795 if (flags & FAULT_FLAG_RETRY_NOWAIT) 796 return 0; 797 798 up_read(&mm->mmap_sem); 799 if (flags & FAULT_FLAG_KILLABLE) 800 wait_on_page_locked_killable(page); 801 else 802 wait_on_page_locked(page); 803 return 0; 804 } else { 805 if (flags & FAULT_FLAG_KILLABLE) { 806 int ret; 807 808 ret = __lock_page_killable(page); 809 if (ret) { 810 up_read(&mm->mmap_sem); 811 return 0; 812 } 813 } else 814 __lock_page(page); 815 return 1; 816 } 817 } 818 819 /** 820 * page_cache_next_hole - find the next hole (not-present entry) 821 * @mapping: mapping 822 * @index: index 823 * @max_scan: maximum range to search 824 * 825 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the 826 * lowest indexed hole. 827 * 828 * Returns: the index of the hole if found, otherwise returns an index 829 * outside of the set specified (in which case 'return - index >= 830 * max_scan' will be true). In rare cases of index wrap-around, 0 will 831 * be returned. 832 * 833 * page_cache_next_hole may be called under rcu_read_lock. However, 834 * like radix_tree_gang_lookup, this will not atomically search a 835 * snapshot of the tree at a single point in time. For example, if a 836 * hole is created at index 5, then subsequently a hole is created at 837 * index 10, page_cache_next_hole covering both indexes may return 10 838 * if called under rcu_read_lock. 839 */ 840 pgoff_t page_cache_next_hole(struct address_space *mapping, 841 pgoff_t index, unsigned long max_scan) 842 { 843 unsigned long i; 844 845 for (i = 0; i < max_scan; i++) { 846 struct page *page; 847 848 page = radix_tree_lookup(&mapping->page_tree, index); 849 if (!page || radix_tree_exceptional_entry(page)) 850 break; 851 index++; 852 if (index == 0) 853 break; 854 } 855 856 return index; 857 } 858 EXPORT_SYMBOL(page_cache_next_hole); 859 860 /** 861 * page_cache_prev_hole - find the prev hole (not-present entry) 862 * @mapping: mapping 863 * @index: index 864 * @max_scan: maximum range to search 865 * 866 * Search backwards in the range [max(index-max_scan+1, 0), index] for 867 * the first hole. 868 * 869 * Returns: the index of the hole if found, otherwise returns an index 870 * outside of the set specified (in which case 'index - return >= 871 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX 872 * will be returned. 873 * 874 * page_cache_prev_hole may be called under rcu_read_lock. However, 875 * like radix_tree_gang_lookup, this will not atomically search a 876 * snapshot of the tree at a single point in time. For example, if a 877 * hole is created at index 10, then subsequently a hole is created at 878 * index 5, page_cache_prev_hole covering both indexes may return 5 if 879 * called under rcu_read_lock. 880 */ 881 pgoff_t page_cache_prev_hole(struct address_space *mapping, 882 pgoff_t index, unsigned long max_scan) 883 { 884 unsigned long i; 885 886 for (i = 0; i < max_scan; i++) { 887 struct page *page; 888 889 page = radix_tree_lookup(&mapping->page_tree, index); 890 if (!page || radix_tree_exceptional_entry(page)) 891 break; 892 index--; 893 if (index == ULONG_MAX) 894 break; 895 } 896 897 return index; 898 } 899 EXPORT_SYMBOL(page_cache_prev_hole); 900 901 /** 902 * find_get_entry - find and get a page cache entry 903 * @mapping: the address_space to search 904 * @offset: the page cache index 905 * 906 * Looks up the page cache slot at @mapping & @offset. If there is a 907 * page cache page, it is returned with an increased refcount. 908 * 909 * If the slot holds a shadow entry of a previously evicted page, or a 910 * swap entry from shmem/tmpfs, it is returned. 911 * 912 * Otherwise, %NULL is returned. 913 */ 914 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset) 915 { 916 void **pagep; 917 struct page *page; 918 919 rcu_read_lock(); 920 repeat: 921 page = NULL; 922 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset); 923 if (pagep) { 924 page = radix_tree_deref_slot(pagep); 925 if (unlikely(!page)) 926 goto out; 927 if (radix_tree_exception(page)) { 928 if (radix_tree_deref_retry(page)) 929 goto repeat; 930 /* 931 * A shadow entry of a recently evicted page, 932 * or a swap entry from shmem/tmpfs. Return 933 * it without attempting to raise page count. 934 */ 935 goto out; 936 } 937 if (!page_cache_get_speculative(page)) 938 goto repeat; 939 940 /* 941 * Has the page moved? 942 * This is part of the lockless pagecache protocol. See 943 * include/linux/pagemap.h for details. 944 */ 945 if (unlikely(page != *pagep)) { 946 page_cache_release(page); 947 goto repeat; 948 } 949 } 950 out: 951 rcu_read_unlock(); 952 953 return page; 954 } 955 EXPORT_SYMBOL(find_get_entry); 956 957 /** 958 * find_get_page - find and get a page reference 959 * @mapping: the address_space to search 960 * @offset: the page index 961 * 962 * Looks up the page cache slot at @mapping & @offset. If there is a 963 * page cache page, it is returned with an increased refcount. 964 * 965 * Otherwise, %NULL is returned. 966 */ 967 struct page *find_get_page(struct address_space *mapping, pgoff_t offset) 968 { 969 struct page *page = find_get_entry(mapping, offset); 970 971 if (radix_tree_exceptional_entry(page)) 972 page = NULL; 973 return page; 974 } 975 EXPORT_SYMBOL(find_get_page); 976 977 /** 978 * find_lock_entry - locate, pin and lock a page cache entry 979 * @mapping: the address_space to search 980 * @offset: the page cache index 981 * 982 * Looks up the page cache slot at @mapping & @offset. If there is a 983 * page cache page, it is returned locked and with an increased 984 * refcount. 985 * 986 * If the slot holds a shadow entry of a previously evicted page, or a 987 * swap entry from shmem/tmpfs, it is returned. 988 * 989 * Otherwise, %NULL is returned. 990 * 991 * find_lock_entry() may sleep. 992 */ 993 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset) 994 { 995 struct page *page; 996 997 repeat: 998 page = find_get_entry(mapping, offset); 999 if (page && !radix_tree_exception(page)) { 1000 lock_page(page); 1001 /* Has the page been truncated? */ 1002 if (unlikely(page->mapping != mapping)) { 1003 unlock_page(page); 1004 page_cache_release(page); 1005 goto repeat; 1006 } 1007 VM_BUG_ON_PAGE(page->index != offset, page); 1008 } 1009 return page; 1010 } 1011 EXPORT_SYMBOL(find_lock_entry); 1012 1013 /** 1014 * find_lock_page - locate, pin and lock a pagecache page 1015 * @mapping: the address_space to search 1016 * @offset: the page index 1017 * 1018 * Looks up the page cache slot at @mapping & @offset. If there is a 1019 * page cache page, it is returned locked and with an increased 1020 * refcount. 1021 * 1022 * Otherwise, %NULL is returned. 1023 * 1024 * find_lock_page() may sleep. 1025 */ 1026 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset) 1027 { 1028 struct page *page = find_lock_entry(mapping, offset); 1029 1030 if (radix_tree_exceptional_entry(page)) 1031 page = NULL; 1032 return page; 1033 } 1034 EXPORT_SYMBOL(find_lock_page); 1035 1036 /** 1037 * find_or_create_page - locate or add a pagecache page 1038 * @mapping: the page's address_space 1039 * @index: the page's index into the mapping 1040 * @gfp_mask: page allocation mode 1041 * 1042 * Looks up the page cache slot at @mapping & @offset. If there is a 1043 * page cache page, it is returned locked and with an increased 1044 * refcount. 1045 * 1046 * If the page is not present, a new page is allocated using @gfp_mask 1047 * and added to the page cache and the VM's LRU list. The page is 1048 * returned locked and with an increased refcount. 1049 * 1050 * On memory exhaustion, %NULL is returned. 1051 * 1052 * find_or_create_page() may sleep, even if @gfp_flags specifies an 1053 * atomic allocation! 1054 */ 1055 struct page *find_or_create_page(struct address_space *mapping, 1056 pgoff_t index, gfp_t gfp_mask) 1057 { 1058 struct page *page; 1059 int err; 1060 repeat: 1061 page = find_lock_page(mapping, index); 1062 if (!page) { 1063 page = __page_cache_alloc(gfp_mask); 1064 if (!page) 1065 return NULL; 1066 /* 1067 * We want a regular kernel memory (not highmem or DMA etc) 1068 * allocation for the radix tree nodes, but we need to honour 1069 * the context-specific requirements the caller has asked for. 1070 * GFP_RECLAIM_MASK collects those requirements. 1071 */ 1072 err = add_to_page_cache_lru(page, mapping, index, 1073 (gfp_mask & GFP_RECLAIM_MASK)); 1074 if (unlikely(err)) { 1075 page_cache_release(page); 1076 page = NULL; 1077 if (err == -EEXIST) 1078 goto repeat; 1079 } 1080 } 1081 return page; 1082 } 1083 EXPORT_SYMBOL(find_or_create_page); 1084 1085 /** 1086 * find_get_entries - gang pagecache lookup 1087 * @mapping: The address_space to search 1088 * @start: The starting page cache index 1089 * @nr_entries: The maximum number of entries 1090 * @entries: Where the resulting entries are placed 1091 * @indices: The cache indices corresponding to the entries in @entries 1092 * 1093 * find_get_entries() will search for and return a group of up to 1094 * @nr_entries entries in the mapping. The entries are placed at 1095 * @entries. find_get_entries() takes a reference against any actual 1096 * pages it returns. 1097 * 1098 * The search returns a group of mapping-contiguous page cache entries 1099 * with ascending indexes. There may be holes in the indices due to 1100 * not-present pages. 1101 * 1102 * Any shadow entries of evicted pages, or swap entries from 1103 * shmem/tmpfs, are included in the returned array. 1104 * 1105 * find_get_entries() returns the number of pages and shadow entries 1106 * which were found. 1107 */ 1108 unsigned find_get_entries(struct address_space *mapping, 1109 pgoff_t start, unsigned int nr_entries, 1110 struct page **entries, pgoff_t *indices) 1111 { 1112 void **slot; 1113 unsigned int ret = 0; 1114 struct radix_tree_iter iter; 1115 1116 if (!nr_entries) 1117 return 0; 1118 1119 rcu_read_lock(); 1120 restart: 1121 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1122 struct page *page; 1123 repeat: 1124 page = radix_tree_deref_slot(slot); 1125 if (unlikely(!page)) 1126 continue; 1127 if (radix_tree_exception(page)) { 1128 if (radix_tree_deref_retry(page)) 1129 goto restart; 1130 /* 1131 * A shadow entry of a recently evicted page, 1132 * or a swap entry from shmem/tmpfs. Return 1133 * it without attempting to raise page count. 1134 */ 1135 goto export; 1136 } 1137 if (!page_cache_get_speculative(page)) 1138 goto repeat; 1139 1140 /* Has the page moved? */ 1141 if (unlikely(page != *slot)) { 1142 page_cache_release(page); 1143 goto repeat; 1144 } 1145 export: 1146 indices[ret] = iter.index; 1147 entries[ret] = page; 1148 if (++ret == nr_entries) 1149 break; 1150 } 1151 rcu_read_unlock(); 1152 return ret; 1153 } 1154 1155 /** 1156 * find_get_pages - gang pagecache lookup 1157 * @mapping: The address_space to search 1158 * @start: The starting page index 1159 * @nr_pages: The maximum number of pages 1160 * @pages: Where the resulting pages are placed 1161 * 1162 * find_get_pages() will search for and return a group of up to 1163 * @nr_pages pages in the mapping. The pages are placed at @pages. 1164 * find_get_pages() takes a reference against the returned pages. 1165 * 1166 * The search returns a group of mapping-contiguous pages with ascending 1167 * indexes. There may be holes in the indices due to not-present pages. 1168 * 1169 * find_get_pages() returns the number of pages which were found. 1170 */ 1171 unsigned find_get_pages(struct address_space *mapping, pgoff_t start, 1172 unsigned int nr_pages, struct page **pages) 1173 { 1174 struct radix_tree_iter iter; 1175 void **slot; 1176 unsigned ret = 0; 1177 1178 if (unlikely(!nr_pages)) 1179 return 0; 1180 1181 rcu_read_lock(); 1182 restart: 1183 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) { 1184 struct page *page; 1185 repeat: 1186 page = radix_tree_deref_slot(slot); 1187 if (unlikely(!page)) 1188 continue; 1189 1190 if (radix_tree_exception(page)) { 1191 if (radix_tree_deref_retry(page)) { 1192 /* 1193 * Transient condition which can only trigger 1194 * when entry at index 0 moves out of or back 1195 * to root: none yet gotten, safe to restart. 1196 */ 1197 WARN_ON(iter.index); 1198 goto restart; 1199 } 1200 /* 1201 * A shadow entry of a recently evicted page, 1202 * or a swap entry from shmem/tmpfs. Skip 1203 * over it. 1204 */ 1205 continue; 1206 } 1207 1208 if (!page_cache_get_speculative(page)) 1209 goto repeat; 1210 1211 /* Has the page moved? */ 1212 if (unlikely(page != *slot)) { 1213 page_cache_release(page); 1214 goto repeat; 1215 } 1216 1217 pages[ret] = page; 1218 if (++ret == nr_pages) 1219 break; 1220 } 1221 1222 rcu_read_unlock(); 1223 return ret; 1224 } 1225 1226 /** 1227 * find_get_pages_contig - gang contiguous pagecache lookup 1228 * @mapping: The address_space to search 1229 * @index: The starting page index 1230 * @nr_pages: The maximum number of pages 1231 * @pages: Where the resulting pages are placed 1232 * 1233 * find_get_pages_contig() works exactly like find_get_pages(), except 1234 * that the returned number of pages are guaranteed to be contiguous. 1235 * 1236 * find_get_pages_contig() returns the number of pages which were found. 1237 */ 1238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index, 1239 unsigned int nr_pages, struct page **pages) 1240 { 1241 struct radix_tree_iter iter; 1242 void **slot; 1243 unsigned int ret = 0; 1244 1245 if (unlikely(!nr_pages)) 1246 return 0; 1247 1248 rcu_read_lock(); 1249 restart: 1250 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) { 1251 struct page *page; 1252 repeat: 1253 page = radix_tree_deref_slot(slot); 1254 /* The hole, there no reason to continue */ 1255 if (unlikely(!page)) 1256 break; 1257 1258 if (radix_tree_exception(page)) { 1259 if (radix_tree_deref_retry(page)) { 1260 /* 1261 * Transient condition which can only trigger 1262 * when entry at index 0 moves out of or back 1263 * to root: none yet gotten, safe to restart. 1264 */ 1265 goto restart; 1266 } 1267 /* 1268 * A shadow entry of a recently evicted page, 1269 * or a swap entry from shmem/tmpfs. Stop 1270 * looking for contiguous pages. 1271 */ 1272 break; 1273 } 1274 1275 if (!page_cache_get_speculative(page)) 1276 goto repeat; 1277 1278 /* Has the page moved? */ 1279 if (unlikely(page != *slot)) { 1280 page_cache_release(page); 1281 goto repeat; 1282 } 1283 1284 /* 1285 * must check mapping and index after taking the ref. 1286 * otherwise we can get both false positives and false 1287 * negatives, which is just confusing to the caller. 1288 */ 1289 if (page->mapping == NULL || page->index != iter.index) { 1290 page_cache_release(page); 1291 break; 1292 } 1293 1294 pages[ret] = page; 1295 if (++ret == nr_pages) 1296 break; 1297 } 1298 rcu_read_unlock(); 1299 return ret; 1300 } 1301 EXPORT_SYMBOL(find_get_pages_contig); 1302 1303 /** 1304 * find_get_pages_tag - find and return pages that match @tag 1305 * @mapping: the address_space to search 1306 * @index: the starting page index 1307 * @tag: the tag index 1308 * @nr_pages: the maximum number of pages 1309 * @pages: where the resulting pages are placed 1310 * 1311 * Like find_get_pages, except we only return pages which are tagged with 1312 * @tag. We update @index to index the next page for the traversal. 1313 */ 1314 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index, 1315 int tag, unsigned int nr_pages, struct page **pages) 1316 { 1317 struct radix_tree_iter iter; 1318 void **slot; 1319 unsigned ret = 0; 1320 1321 if (unlikely(!nr_pages)) 1322 return 0; 1323 1324 rcu_read_lock(); 1325 restart: 1326 radix_tree_for_each_tagged(slot, &mapping->page_tree, 1327 &iter, *index, tag) { 1328 struct page *page; 1329 repeat: 1330 page = radix_tree_deref_slot(slot); 1331 if (unlikely(!page)) 1332 continue; 1333 1334 if (radix_tree_exception(page)) { 1335 if (radix_tree_deref_retry(page)) { 1336 /* 1337 * Transient condition which can only trigger 1338 * when entry at index 0 moves out of or back 1339 * to root: none yet gotten, safe to restart. 1340 */ 1341 goto restart; 1342 } 1343 /* 1344 * A shadow entry of a recently evicted page. 1345 * 1346 * Those entries should never be tagged, but 1347 * this tree walk is lockless and the tags are 1348 * looked up in bulk, one radix tree node at a 1349 * time, so there is a sizable window for page 1350 * reclaim to evict a page we saw tagged. 1351 * 1352 * Skip over it. 1353 */ 1354 continue; 1355 } 1356 1357 if (!page_cache_get_speculative(page)) 1358 goto repeat; 1359 1360 /* Has the page moved? */ 1361 if (unlikely(page != *slot)) { 1362 page_cache_release(page); 1363 goto repeat; 1364 } 1365 1366 pages[ret] = page; 1367 if (++ret == nr_pages) 1368 break; 1369 } 1370 1371 rcu_read_unlock(); 1372 1373 if (ret) 1374 *index = pages[ret - 1]->index + 1; 1375 1376 return ret; 1377 } 1378 EXPORT_SYMBOL(find_get_pages_tag); 1379 1380 /** 1381 * grab_cache_page_nowait - returns locked page at given index in given cache 1382 * @mapping: target address_space 1383 * @index: the page index 1384 * 1385 * Same as grab_cache_page(), but do not wait if the page is unavailable. 1386 * This is intended for speculative data generators, where the data can 1387 * be regenerated if the page couldn't be grabbed. This routine should 1388 * be safe to call while holding the lock for another page. 1389 * 1390 * Clear __GFP_FS when allocating the page to avoid recursion into the fs 1391 * and deadlock against the caller's locked page. 1392 */ 1393 struct page * 1394 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index) 1395 { 1396 struct page *page = find_get_page(mapping, index); 1397 1398 if (page) { 1399 if (trylock_page(page)) 1400 return page; 1401 page_cache_release(page); 1402 return NULL; 1403 } 1404 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS); 1405 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) { 1406 page_cache_release(page); 1407 page = NULL; 1408 } 1409 return page; 1410 } 1411 EXPORT_SYMBOL(grab_cache_page_nowait); 1412 1413 /* 1414 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 1415 * a _large_ part of the i/o request. Imagine the worst scenario: 1416 * 1417 * ---R__________________________________________B__________ 1418 * ^ reading here ^ bad block(assume 4k) 1419 * 1420 * read(R) => miss => readahead(R...B) => media error => frustrating retries 1421 * => failing the whole request => read(R) => read(R+1) => 1422 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 1423 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 1424 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 1425 * 1426 * It is going insane. Fix it by quickly scaling down the readahead size. 1427 */ 1428 static void shrink_readahead_size_eio(struct file *filp, 1429 struct file_ra_state *ra) 1430 { 1431 ra->ra_pages /= 4; 1432 } 1433 1434 /** 1435 * do_generic_file_read - generic file read routine 1436 * @filp: the file to read 1437 * @ppos: current file position 1438 * @iter: data destination 1439 * @written: already copied 1440 * 1441 * This is a generic file read routine, and uses the 1442 * mapping->a_ops->readpage() function for the actual low-level stuff. 1443 * 1444 * This is really ugly. But the goto's actually try to clarify some 1445 * of the logic when it comes to error handling etc. 1446 */ 1447 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos, 1448 struct iov_iter *iter, ssize_t written) 1449 { 1450 struct address_space *mapping = filp->f_mapping; 1451 struct inode *inode = mapping->host; 1452 struct file_ra_state *ra = &filp->f_ra; 1453 pgoff_t index; 1454 pgoff_t last_index; 1455 pgoff_t prev_index; 1456 unsigned long offset; /* offset into pagecache page */ 1457 unsigned int prev_offset; 1458 int error = 0; 1459 1460 index = *ppos >> PAGE_CACHE_SHIFT; 1461 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT; 1462 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1); 1463 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT; 1464 offset = *ppos & ~PAGE_CACHE_MASK; 1465 1466 for (;;) { 1467 struct page *page; 1468 pgoff_t end_index; 1469 loff_t isize; 1470 unsigned long nr, ret; 1471 1472 cond_resched(); 1473 find_page: 1474 page = find_get_page(mapping, index); 1475 if (!page) { 1476 page_cache_sync_readahead(mapping, 1477 ra, filp, 1478 index, last_index - index); 1479 page = find_get_page(mapping, index); 1480 if (unlikely(page == NULL)) 1481 goto no_cached_page; 1482 } 1483 if (PageReadahead(page)) { 1484 page_cache_async_readahead(mapping, 1485 ra, filp, page, 1486 index, last_index - index); 1487 } 1488 if (!PageUptodate(page)) { 1489 if (inode->i_blkbits == PAGE_CACHE_SHIFT || 1490 !mapping->a_ops->is_partially_uptodate) 1491 goto page_not_up_to_date; 1492 if (!trylock_page(page)) 1493 goto page_not_up_to_date; 1494 /* Did it get truncated before we got the lock? */ 1495 if (!page->mapping) 1496 goto page_not_up_to_date_locked; 1497 if (!mapping->a_ops->is_partially_uptodate(page, 1498 offset, iter->count)) 1499 goto page_not_up_to_date_locked; 1500 unlock_page(page); 1501 } 1502 page_ok: 1503 /* 1504 * i_size must be checked after we know the page is Uptodate. 1505 * 1506 * Checking i_size after the check allows us to calculate 1507 * the correct value for "nr", which means the zero-filled 1508 * part of the page is not copied back to userspace (unless 1509 * another truncate extends the file - this is desired though). 1510 */ 1511 1512 isize = i_size_read(inode); 1513 end_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1514 if (unlikely(!isize || index > end_index)) { 1515 page_cache_release(page); 1516 goto out; 1517 } 1518 1519 /* nr is the maximum number of bytes to copy from this page */ 1520 nr = PAGE_CACHE_SIZE; 1521 if (index == end_index) { 1522 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1; 1523 if (nr <= offset) { 1524 page_cache_release(page); 1525 goto out; 1526 } 1527 } 1528 nr = nr - offset; 1529 1530 /* If users can be writing to this page using arbitrary 1531 * virtual addresses, take care about potential aliasing 1532 * before reading the page on the kernel side. 1533 */ 1534 if (mapping_writably_mapped(mapping)) 1535 flush_dcache_page(page); 1536 1537 /* 1538 * When a sequential read accesses a page several times, 1539 * only mark it as accessed the first time. 1540 */ 1541 if (prev_index != index || offset != prev_offset) 1542 mark_page_accessed(page); 1543 prev_index = index; 1544 1545 /* 1546 * Ok, we have the page, and it's up-to-date, so 1547 * now we can copy it to user space... 1548 */ 1549 1550 ret = copy_page_to_iter(page, offset, nr, iter); 1551 offset += ret; 1552 index += offset >> PAGE_CACHE_SHIFT; 1553 offset &= ~PAGE_CACHE_MASK; 1554 prev_offset = offset; 1555 1556 page_cache_release(page); 1557 written += ret; 1558 if (!iov_iter_count(iter)) 1559 goto out; 1560 if (ret < nr) { 1561 error = -EFAULT; 1562 goto out; 1563 } 1564 continue; 1565 1566 page_not_up_to_date: 1567 /* Get exclusive access to the page ... */ 1568 error = lock_page_killable(page); 1569 if (unlikely(error)) 1570 goto readpage_error; 1571 1572 page_not_up_to_date_locked: 1573 /* Did it get truncated before we got the lock? */ 1574 if (!page->mapping) { 1575 unlock_page(page); 1576 page_cache_release(page); 1577 continue; 1578 } 1579 1580 /* Did somebody else fill it already? */ 1581 if (PageUptodate(page)) { 1582 unlock_page(page); 1583 goto page_ok; 1584 } 1585 1586 readpage: 1587 /* 1588 * A previous I/O error may have been due to temporary 1589 * failures, eg. multipath errors. 1590 * PG_error will be set again if readpage fails. 1591 */ 1592 ClearPageError(page); 1593 /* Start the actual read. The read will unlock the page. */ 1594 error = mapping->a_ops->readpage(filp, page); 1595 1596 if (unlikely(error)) { 1597 if (error == AOP_TRUNCATED_PAGE) { 1598 page_cache_release(page); 1599 error = 0; 1600 goto find_page; 1601 } 1602 goto readpage_error; 1603 } 1604 1605 if (!PageUptodate(page)) { 1606 error = lock_page_killable(page); 1607 if (unlikely(error)) 1608 goto readpage_error; 1609 if (!PageUptodate(page)) { 1610 if (page->mapping == NULL) { 1611 /* 1612 * invalidate_mapping_pages got it 1613 */ 1614 unlock_page(page); 1615 page_cache_release(page); 1616 goto find_page; 1617 } 1618 unlock_page(page); 1619 shrink_readahead_size_eio(filp, ra); 1620 error = -EIO; 1621 goto readpage_error; 1622 } 1623 unlock_page(page); 1624 } 1625 1626 goto page_ok; 1627 1628 readpage_error: 1629 /* UHHUH! A synchronous read error occurred. Report it */ 1630 page_cache_release(page); 1631 goto out; 1632 1633 no_cached_page: 1634 /* 1635 * Ok, it wasn't cached, so we need to create a new 1636 * page.. 1637 */ 1638 page = page_cache_alloc_cold(mapping); 1639 if (!page) { 1640 error = -ENOMEM; 1641 goto out; 1642 } 1643 error = add_to_page_cache_lru(page, mapping, 1644 index, GFP_KERNEL); 1645 if (error) { 1646 page_cache_release(page); 1647 if (error == -EEXIST) { 1648 error = 0; 1649 goto find_page; 1650 } 1651 goto out; 1652 } 1653 goto readpage; 1654 } 1655 1656 out: 1657 ra->prev_pos = prev_index; 1658 ra->prev_pos <<= PAGE_CACHE_SHIFT; 1659 ra->prev_pos |= prev_offset; 1660 1661 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset; 1662 file_accessed(filp); 1663 return written ? written : error; 1664 } 1665 1666 /* 1667 * Performs necessary checks before doing a write 1668 * @iov: io vector request 1669 * @nr_segs: number of segments in the iovec 1670 * @count: number of bytes to write 1671 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE 1672 * 1673 * Adjust number of segments and amount of bytes to write (nr_segs should be 1674 * properly initialized first). Returns appropriate error code that caller 1675 * should return or zero in case that write should be allowed. 1676 */ 1677 int generic_segment_checks(const struct iovec *iov, 1678 unsigned long *nr_segs, size_t *count, int access_flags) 1679 { 1680 unsigned long seg; 1681 size_t cnt = 0; 1682 for (seg = 0; seg < *nr_segs; seg++) { 1683 const struct iovec *iv = &iov[seg]; 1684 1685 /* 1686 * If any segment has a negative length, or the cumulative 1687 * length ever wraps negative then return -EINVAL. 1688 */ 1689 cnt += iv->iov_len; 1690 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0)) 1691 return -EINVAL; 1692 if (access_ok(access_flags, iv->iov_base, iv->iov_len)) 1693 continue; 1694 if (seg == 0) 1695 return -EFAULT; 1696 *nr_segs = seg; 1697 cnt -= iv->iov_len; /* This segment is no good */ 1698 break; 1699 } 1700 *count = cnt; 1701 return 0; 1702 } 1703 EXPORT_SYMBOL(generic_segment_checks); 1704 1705 /** 1706 * generic_file_aio_read - generic filesystem read routine 1707 * @iocb: kernel I/O control block 1708 * @iov: io vector request 1709 * @nr_segs: number of segments in the iovec 1710 * @pos: current file position 1711 * 1712 * This is the "read()" routine for all filesystems 1713 * that can use the page cache directly. 1714 */ 1715 ssize_t 1716 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov, 1717 unsigned long nr_segs, loff_t pos) 1718 { 1719 struct file *filp = iocb->ki_filp; 1720 ssize_t retval; 1721 size_t count; 1722 loff_t *ppos = &iocb->ki_pos; 1723 struct iov_iter i; 1724 1725 count = 0; 1726 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE); 1727 if (retval) 1728 return retval; 1729 iov_iter_init(&i, iov, nr_segs, count, 0); 1730 1731 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 1732 if (filp->f_flags & O_DIRECT) { 1733 loff_t size; 1734 struct address_space *mapping; 1735 struct inode *inode; 1736 1737 mapping = filp->f_mapping; 1738 inode = mapping->host; 1739 if (!count) 1740 goto out; /* skip atime */ 1741 size = i_size_read(inode); 1742 retval = filemap_write_and_wait_range(mapping, pos, 1743 pos + iov_length(iov, nr_segs) - 1); 1744 if (!retval) { 1745 retval = mapping->a_ops->direct_IO(READ, iocb, 1746 iov, pos, nr_segs); 1747 } 1748 if (retval > 0) { 1749 *ppos = pos + retval; 1750 count -= retval; 1751 /* 1752 * If we did a short DIO read we need to skip the 1753 * section of the iov that we've already read data into. 1754 */ 1755 iov_iter_advance(&i, retval); 1756 } 1757 1758 /* 1759 * Btrfs can have a short DIO read if we encounter 1760 * compressed extents, so if there was an error, or if 1761 * we've already read everything we wanted to, or if 1762 * there was a short read because we hit EOF, go ahead 1763 * and return. Otherwise fallthrough to buffered io for 1764 * the rest of the read. 1765 */ 1766 if (retval < 0 || !count || *ppos >= size) { 1767 file_accessed(filp); 1768 goto out; 1769 } 1770 } 1771 1772 retval = do_generic_file_read(filp, ppos, &i, retval); 1773 out: 1774 return retval; 1775 } 1776 EXPORT_SYMBOL(generic_file_aio_read); 1777 1778 #ifdef CONFIG_MMU 1779 /** 1780 * page_cache_read - adds requested page to the page cache if not already there 1781 * @file: file to read 1782 * @offset: page index 1783 * 1784 * This adds the requested page to the page cache if it isn't already there, 1785 * and schedules an I/O to read in its contents from disk. 1786 */ 1787 static int page_cache_read(struct file *file, pgoff_t offset) 1788 { 1789 struct address_space *mapping = file->f_mapping; 1790 struct page *page; 1791 int ret; 1792 1793 do { 1794 page = page_cache_alloc_cold(mapping); 1795 if (!page) 1796 return -ENOMEM; 1797 1798 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL); 1799 if (ret == 0) 1800 ret = mapping->a_ops->readpage(file, page); 1801 else if (ret == -EEXIST) 1802 ret = 0; /* losing race to add is OK */ 1803 1804 page_cache_release(page); 1805 1806 } while (ret == AOP_TRUNCATED_PAGE); 1807 1808 return ret; 1809 } 1810 1811 #define MMAP_LOTSAMISS (100) 1812 1813 /* 1814 * Synchronous readahead happens when we don't even find 1815 * a page in the page cache at all. 1816 */ 1817 static void do_sync_mmap_readahead(struct vm_area_struct *vma, 1818 struct file_ra_state *ra, 1819 struct file *file, 1820 pgoff_t offset) 1821 { 1822 unsigned long ra_pages; 1823 struct address_space *mapping = file->f_mapping; 1824 1825 /* If we don't want any read-ahead, don't bother */ 1826 if (vma->vm_flags & VM_RAND_READ) 1827 return; 1828 if (!ra->ra_pages) 1829 return; 1830 1831 if (vma->vm_flags & VM_SEQ_READ) { 1832 page_cache_sync_readahead(mapping, ra, file, offset, 1833 ra->ra_pages); 1834 return; 1835 } 1836 1837 /* Avoid banging the cache line if not needed */ 1838 if (ra->mmap_miss < MMAP_LOTSAMISS * 10) 1839 ra->mmap_miss++; 1840 1841 /* 1842 * Do we miss much more than hit in this file? If so, 1843 * stop bothering with read-ahead. It will only hurt. 1844 */ 1845 if (ra->mmap_miss > MMAP_LOTSAMISS) 1846 return; 1847 1848 /* 1849 * mmap read-around 1850 */ 1851 ra_pages = max_sane_readahead(ra->ra_pages); 1852 ra->start = max_t(long, 0, offset - ra_pages / 2); 1853 ra->size = ra_pages; 1854 ra->async_size = ra_pages / 4; 1855 ra_submit(ra, mapping, file); 1856 } 1857 1858 /* 1859 * Asynchronous readahead happens when we find the page and PG_readahead, 1860 * so we want to possibly extend the readahead further.. 1861 */ 1862 static void do_async_mmap_readahead(struct vm_area_struct *vma, 1863 struct file_ra_state *ra, 1864 struct file *file, 1865 struct page *page, 1866 pgoff_t offset) 1867 { 1868 struct address_space *mapping = file->f_mapping; 1869 1870 /* If we don't want any read-ahead, don't bother */ 1871 if (vma->vm_flags & VM_RAND_READ) 1872 return; 1873 if (ra->mmap_miss > 0) 1874 ra->mmap_miss--; 1875 if (PageReadahead(page)) 1876 page_cache_async_readahead(mapping, ra, file, 1877 page, offset, ra->ra_pages); 1878 } 1879 1880 /** 1881 * filemap_fault - read in file data for page fault handling 1882 * @vma: vma in which the fault was taken 1883 * @vmf: struct vm_fault containing details of the fault 1884 * 1885 * filemap_fault() is invoked via the vma operations vector for a 1886 * mapped memory region to read in file data during a page fault. 1887 * 1888 * The goto's are kind of ugly, but this streamlines the normal case of having 1889 * it in the page cache, and handles the special cases reasonably without 1890 * having a lot of duplicated code. 1891 */ 1892 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 1893 { 1894 int error; 1895 struct file *file = vma->vm_file; 1896 struct address_space *mapping = file->f_mapping; 1897 struct file_ra_state *ra = &file->f_ra; 1898 struct inode *inode = mapping->host; 1899 pgoff_t offset = vmf->pgoff; 1900 struct page *page; 1901 loff_t size; 1902 int ret = 0; 1903 1904 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1905 if (offset >= size >> PAGE_CACHE_SHIFT) 1906 return VM_FAULT_SIGBUS; 1907 1908 /* 1909 * Do we have something in the page cache already? 1910 */ 1911 page = find_get_page(mapping, offset); 1912 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) { 1913 /* 1914 * We found the page, so try async readahead before 1915 * waiting for the lock. 1916 */ 1917 do_async_mmap_readahead(vma, ra, file, page, offset); 1918 } else if (!page) { 1919 /* No page in the page cache at all */ 1920 do_sync_mmap_readahead(vma, ra, file, offset); 1921 count_vm_event(PGMAJFAULT); 1922 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT); 1923 ret = VM_FAULT_MAJOR; 1924 retry_find: 1925 page = find_get_page(mapping, offset); 1926 if (!page) 1927 goto no_cached_page; 1928 } 1929 1930 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) { 1931 page_cache_release(page); 1932 return ret | VM_FAULT_RETRY; 1933 } 1934 1935 /* Did it get truncated? */ 1936 if (unlikely(page->mapping != mapping)) { 1937 unlock_page(page); 1938 put_page(page); 1939 goto retry_find; 1940 } 1941 VM_BUG_ON_PAGE(page->index != offset, page); 1942 1943 /* 1944 * We have a locked page in the page cache, now we need to check 1945 * that it's up-to-date. If not, it is going to be due to an error. 1946 */ 1947 if (unlikely(!PageUptodate(page))) 1948 goto page_not_uptodate; 1949 1950 /* 1951 * Found the page and have a reference on it. 1952 * We must recheck i_size under page lock. 1953 */ 1954 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE); 1955 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) { 1956 unlock_page(page); 1957 page_cache_release(page); 1958 return VM_FAULT_SIGBUS; 1959 } 1960 1961 vmf->page = page; 1962 return ret | VM_FAULT_LOCKED; 1963 1964 no_cached_page: 1965 /* 1966 * We're only likely to ever get here if MADV_RANDOM is in 1967 * effect. 1968 */ 1969 error = page_cache_read(file, offset); 1970 1971 /* 1972 * The page we want has now been added to the page cache. 1973 * In the unlikely event that someone removed it in the 1974 * meantime, we'll just come back here and read it again. 1975 */ 1976 if (error >= 0) 1977 goto retry_find; 1978 1979 /* 1980 * An error return from page_cache_read can result if the 1981 * system is low on memory, or a problem occurs while trying 1982 * to schedule I/O. 1983 */ 1984 if (error == -ENOMEM) 1985 return VM_FAULT_OOM; 1986 return VM_FAULT_SIGBUS; 1987 1988 page_not_uptodate: 1989 /* 1990 * Umm, take care of errors if the page isn't up-to-date. 1991 * Try to re-read it _once_. We do this synchronously, 1992 * because there really aren't any performance issues here 1993 * and we need to check for errors. 1994 */ 1995 ClearPageError(page); 1996 error = mapping->a_ops->readpage(file, page); 1997 if (!error) { 1998 wait_on_page_locked(page); 1999 if (!PageUptodate(page)) 2000 error = -EIO; 2001 } 2002 page_cache_release(page); 2003 2004 if (!error || error == AOP_TRUNCATED_PAGE) 2005 goto retry_find; 2006 2007 /* Things didn't work out. Return zero to tell the mm layer so. */ 2008 shrink_readahead_size_eio(file, ra); 2009 return VM_FAULT_SIGBUS; 2010 } 2011 EXPORT_SYMBOL(filemap_fault); 2012 2013 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf) 2014 { 2015 struct radix_tree_iter iter; 2016 void **slot; 2017 struct file *file = vma->vm_file; 2018 struct address_space *mapping = file->f_mapping; 2019 loff_t size; 2020 struct page *page; 2021 unsigned long address = (unsigned long) vmf->virtual_address; 2022 unsigned long addr; 2023 pte_t *pte; 2024 2025 rcu_read_lock(); 2026 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) { 2027 if (iter.index > vmf->max_pgoff) 2028 break; 2029 repeat: 2030 page = radix_tree_deref_slot(slot); 2031 if (unlikely(!page)) 2032 goto next; 2033 if (radix_tree_exception(page)) { 2034 if (radix_tree_deref_retry(page)) 2035 break; 2036 else 2037 goto next; 2038 } 2039 2040 if (!page_cache_get_speculative(page)) 2041 goto repeat; 2042 2043 /* Has the page moved? */ 2044 if (unlikely(page != *slot)) { 2045 page_cache_release(page); 2046 goto repeat; 2047 } 2048 2049 if (!PageUptodate(page) || 2050 PageReadahead(page) || 2051 PageHWPoison(page)) 2052 goto skip; 2053 if (!trylock_page(page)) 2054 goto skip; 2055 2056 if (page->mapping != mapping || !PageUptodate(page)) 2057 goto unlock; 2058 2059 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE); 2060 if (page->index >= size >> PAGE_CACHE_SHIFT) 2061 goto unlock; 2062 2063 pte = vmf->pte + page->index - vmf->pgoff; 2064 if (!pte_none(*pte)) 2065 goto unlock; 2066 2067 if (file->f_ra.mmap_miss > 0) 2068 file->f_ra.mmap_miss--; 2069 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE; 2070 do_set_pte(vma, addr, page, pte, false, false); 2071 unlock_page(page); 2072 goto next; 2073 unlock: 2074 unlock_page(page); 2075 skip: 2076 page_cache_release(page); 2077 next: 2078 if (iter.index == vmf->max_pgoff) 2079 break; 2080 } 2081 rcu_read_unlock(); 2082 } 2083 EXPORT_SYMBOL(filemap_map_pages); 2084 2085 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 2086 { 2087 struct page *page = vmf->page; 2088 struct inode *inode = file_inode(vma->vm_file); 2089 int ret = VM_FAULT_LOCKED; 2090 2091 sb_start_pagefault(inode->i_sb); 2092 file_update_time(vma->vm_file); 2093 lock_page(page); 2094 if (page->mapping != inode->i_mapping) { 2095 unlock_page(page); 2096 ret = VM_FAULT_NOPAGE; 2097 goto out; 2098 } 2099 /* 2100 * We mark the page dirty already here so that when freeze is in 2101 * progress, we are guaranteed that writeback during freezing will 2102 * see the dirty page and writeprotect it again. 2103 */ 2104 set_page_dirty(page); 2105 wait_for_stable_page(page); 2106 out: 2107 sb_end_pagefault(inode->i_sb); 2108 return ret; 2109 } 2110 EXPORT_SYMBOL(filemap_page_mkwrite); 2111 2112 const struct vm_operations_struct generic_file_vm_ops = { 2113 .fault = filemap_fault, 2114 .map_pages = filemap_map_pages, 2115 .page_mkwrite = filemap_page_mkwrite, 2116 .remap_pages = generic_file_remap_pages, 2117 }; 2118 2119 /* This is used for a general mmap of a disk file */ 2120 2121 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2122 { 2123 struct address_space *mapping = file->f_mapping; 2124 2125 if (!mapping->a_ops->readpage) 2126 return -ENOEXEC; 2127 file_accessed(file); 2128 vma->vm_ops = &generic_file_vm_ops; 2129 return 0; 2130 } 2131 2132 /* 2133 * This is for filesystems which do not implement ->writepage. 2134 */ 2135 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 2136 { 2137 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE)) 2138 return -EINVAL; 2139 return generic_file_mmap(file, vma); 2140 } 2141 #else 2142 int generic_file_mmap(struct file * file, struct vm_area_struct * vma) 2143 { 2144 return -ENOSYS; 2145 } 2146 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma) 2147 { 2148 return -ENOSYS; 2149 } 2150 #endif /* CONFIG_MMU */ 2151 2152 EXPORT_SYMBOL(generic_file_mmap); 2153 EXPORT_SYMBOL(generic_file_readonly_mmap); 2154 2155 static struct page *wait_on_page_read(struct page *page) 2156 { 2157 if (!IS_ERR(page)) { 2158 wait_on_page_locked(page); 2159 if (!PageUptodate(page)) { 2160 page_cache_release(page); 2161 page = ERR_PTR(-EIO); 2162 } 2163 } 2164 return page; 2165 } 2166 2167 static struct page *__read_cache_page(struct address_space *mapping, 2168 pgoff_t index, 2169 int (*filler)(void *, struct page *), 2170 void *data, 2171 gfp_t gfp) 2172 { 2173 struct page *page; 2174 int err; 2175 repeat: 2176 page = find_get_page(mapping, index); 2177 if (!page) { 2178 page = __page_cache_alloc(gfp | __GFP_COLD); 2179 if (!page) 2180 return ERR_PTR(-ENOMEM); 2181 err = add_to_page_cache_lru(page, mapping, index, gfp); 2182 if (unlikely(err)) { 2183 page_cache_release(page); 2184 if (err == -EEXIST) 2185 goto repeat; 2186 /* Presumably ENOMEM for radix tree node */ 2187 return ERR_PTR(err); 2188 } 2189 err = filler(data, page); 2190 if (err < 0) { 2191 page_cache_release(page); 2192 page = ERR_PTR(err); 2193 } else { 2194 page = wait_on_page_read(page); 2195 } 2196 } 2197 return page; 2198 } 2199 2200 static struct page *do_read_cache_page(struct address_space *mapping, 2201 pgoff_t index, 2202 int (*filler)(void *, struct page *), 2203 void *data, 2204 gfp_t gfp) 2205 2206 { 2207 struct page *page; 2208 int err; 2209 2210 retry: 2211 page = __read_cache_page(mapping, index, filler, data, gfp); 2212 if (IS_ERR(page)) 2213 return page; 2214 if (PageUptodate(page)) 2215 goto out; 2216 2217 lock_page(page); 2218 if (!page->mapping) { 2219 unlock_page(page); 2220 page_cache_release(page); 2221 goto retry; 2222 } 2223 if (PageUptodate(page)) { 2224 unlock_page(page); 2225 goto out; 2226 } 2227 err = filler(data, page); 2228 if (err < 0) { 2229 page_cache_release(page); 2230 return ERR_PTR(err); 2231 } else { 2232 page = wait_on_page_read(page); 2233 if (IS_ERR(page)) 2234 return page; 2235 } 2236 out: 2237 mark_page_accessed(page); 2238 return page; 2239 } 2240 2241 /** 2242 * read_cache_page - read into page cache, fill it if needed 2243 * @mapping: the page's address_space 2244 * @index: the page index 2245 * @filler: function to perform the read 2246 * @data: first arg to filler(data, page) function, often left as NULL 2247 * 2248 * Read into the page cache. If a page already exists, and PageUptodate() is 2249 * not set, try to fill the page and wait for it to become unlocked. 2250 * 2251 * If the page does not get brought uptodate, return -EIO. 2252 */ 2253 struct page *read_cache_page(struct address_space *mapping, 2254 pgoff_t index, 2255 int (*filler)(void *, struct page *), 2256 void *data) 2257 { 2258 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping)); 2259 } 2260 EXPORT_SYMBOL(read_cache_page); 2261 2262 /** 2263 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 2264 * @mapping: the page's address_space 2265 * @index: the page index 2266 * @gfp: the page allocator flags to use if allocating 2267 * 2268 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 2269 * any new page allocations done using the specified allocation flags. 2270 * 2271 * If the page does not get brought uptodate, return -EIO. 2272 */ 2273 struct page *read_cache_page_gfp(struct address_space *mapping, 2274 pgoff_t index, 2275 gfp_t gfp) 2276 { 2277 filler_t *filler = (filler_t *)mapping->a_ops->readpage; 2278 2279 return do_read_cache_page(mapping, index, filler, NULL, gfp); 2280 } 2281 EXPORT_SYMBOL(read_cache_page_gfp); 2282 2283 /* 2284 * Performs necessary checks before doing a write 2285 * 2286 * Can adjust writing position or amount of bytes to write. 2287 * Returns appropriate error code that caller should return or 2288 * zero in case that write should be allowed. 2289 */ 2290 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk) 2291 { 2292 struct inode *inode = file->f_mapping->host; 2293 unsigned long limit = rlimit(RLIMIT_FSIZE); 2294 2295 if (unlikely(*pos < 0)) 2296 return -EINVAL; 2297 2298 if (!isblk) { 2299 /* FIXME: this is for backwards compatibility with 2.4 */ 2300 if (file->f_flags & O_APPEND) 2301 *pos = i_size_read(inode); 2302 2303 if (limit != RLIM_INFINITY) { 2304 if (*pos >= limit) { 2305 send_sig(SIGXFSZ, current, 0); 2306 return -EFBIG; 2307 } 2308 if (*count > limit - (typeof(limit))*pos) { 2309 *count = limit - (typeof(limit))*pos; 2310 } 2311 } 2312 } 2313 2314 /* 2315 * LFS rule 2316 */ 2317 if (unlikely(*pos + *count > MAX_NON_LFS && 2318 !(file->f_flags & O_LARGEFILE))) { 2319 if (*pos >= MAX_NON_LFS) { 2320 return -EFBIG; 2321 } 2322 if (*count > MAX_NON_LFS - (unsigned long)*pos) { 2323 *count = MAX_NON_LFS - (unsigned long)*pos; 2324 } 2325 } 2326 2327 /* 2328 * Are we about to exceed the fs block limit ? 2329 * 2330 * If we have written data it becomes a short write. If we have 2331 * exceeded without writing data we send a signal and return EFBIG. 2332 * Linus frestrict idea will clean these up nicely.. 2333 */ 2334 if (likely(!isblk)) { 2335 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) { 2336 if (*count || *pos > inode->i_sb->s_maxbytes) { 2337 return -EFBIG; 2338 } 2339 /* zero-length writes at ->s_maxbytes are OK */ 2340 } 2341 2342 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes)) 2343 *count = inode->i_sb->s_maxbytes - *pos; 2344 } else { 2345 #ifdef CONFIG_BLOCK 2346 loff_t isize; 2347 if (bdev_read_only(I_BDEV(inode))) 2348 return -EPERM; 2349 isize = i_size_read(inode); 2350 if (*pos >= isize) { 2351 if (*count || *pos > isize) 2352 return -ENOSPC; 2353 } 2354 2355 if (*pos + *count > isize) 2356 *count = isize - *pos; 2357 #else 2358 return -EPERM; 2359 #endif 2360 } 2361 return 0; 2362 } 2363 EXPORT_SYMBOL(generic_write_checks); 2364 2365 int pagecache_write_begin(struct file *file, struct address_space *mapping, 2366 loff_t pos, unsigned len, unsigned flags, 2367 struct page **pagep, void **fsdata) 2368 { 2369 const struct address_space_operations *aops = mapping->a_ops; 2370 2371 return aops->write_begin(file, mapping, pos, len, flags, 2372 pagep, fsdata); 2373 } 2374 EXPORT_SYMBOL(pagecache_write_begin); 2375 2376 int pagecache_write_end(struct file *file, struct address_space *mapping, 2377 loff_t pos, unsigned len, unsigned copied, 2378 struct page *page, void *fsdata) 2379 { 2380 const struct address_space_operations *aops = mapping->a_ops; 2381 2382 mark_page_accessed(page); 2383 return aops->write_end(file, mapping, pos, len, copied, page, fsdata); 2384 } 2385 EXPORT_SYMBOL(pagecache_write_end); 2386 2387 ssize_t 2388 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov, 2389 unsigned long *nr_segs, loff_t pos, 2390 size_t count, size_t ocount) 2391 { 2392 struct file *file = iocb->ki_filp; 2393 struct address_space *mapping = file->f_mapping; 2394 struct inode *inode = mapping->host; 2395 ssize_t written; 2396 size_t write_len; 2397 pgoff_t end; 2398 2399 if (count != ocount) 2400 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count); 2401 2402 write_len = iov_length(iov, *nr_segs); 2403 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT; 2404 2405 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1); 2406 if (written) 2407 goto out; 2408 2409 /* 2410 * After a write we want buffered reads to be sure to go to disk to get 2411 * the new data. We invalidate clean cached page from the region we're 2412 * about to write. We do this *before* the write so that we can return 2413 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2414 */ 2415 if (mapping->nrpages) { 2416 written = invalidate_inode_pages2_range(mapping, 2417 pos >> PAGE_CACHE_SHIFT, end); 2418 /* 2419 * If a page can not be invalidated, return 0 to fall back 2420 * to buffered write. 2421 */ 2422 if (written) { 2423 if (written == -EBUSY) 2424 return 0; 2425 goto out; 2426 } 2427 } 2428 2429 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs); 2430 2431 /* 2432 * Finally, try again to invalidate clean pages which might have been 2433 * cached by non-direct readahead, or faulted in by get_user_pages() 2434 * if the source of the write was an mmap'ed region of the file 2435 * we're writing. Either one is a pretty crazy thing to do, 2436 * so we don't support it 100%. If this invalidation 2437 * fails, tough, the write still worked... 2438 */ 2439 if (mapping->nrpages) { 2440 invalidate_inode_pages2_range(mapping, 2441 pos >> PAGE_CACHE_SHIFT, end); 2442 } 2443 2444 if (written > 0) { 2445 pos += written; 2446 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 2447 i_size_write(inode, pos); 2448 mark_inode_dirty(inode); 2449 } 2450 iocb->ki_pos = pos; 2451 } 2452 out: 2453 return written; 2454 } 2455 EXPORT_SYMBOL(generic_file_direct_write); 2456 2457 /* 2458 * Find or create a page at the given pagecache position. Return the locked 2459 * page. This function is specifically for buffered writes. 2460 */ 2461 struct page *grab_cache_page_write_begin(struct address_space *mapping, 2462 pgoff_t index, unsigned flags) 2463 { 2464 int status; 2465 gfp_t gfp_mask; 2466 struct page *page; 2467 gfp_t gfp_notmask = 0; 2468 2469 gfp_mask = mapping_gfp_mask(mapping); 2470 if (mapping_cap_account_dirty(mapping)) 2471 gfp_mask |= __GFP_WRITE; 2472 if (flags & AOP_FLAG_NOFS) 2473 gfp_notmask = __GFP_FS; 2474 repeat: 2475 page = find_lock_page(mapping, index); 2476 if (page) 2477 goto found; 2478 2479 page = __page_cache_alloc(gfp_mask & ~gfp_notmask); 2480 if (!page) 2481 return NULL; 2482 status = add_to_page_cache_lru(page, mapping, index, 2483 GFP_KERNEL & ~gfp_notmask); 2484 if (unlikely(status)) { 2485 page_cache_release(page); 2486 if (status == -EEXIST) 2487 goto repeat; 2488 return NULL; 2489 } 2490 found: 2491 wait_for_stable_page(page); 2492 return page; 2493 } 2494 EXPORT_SYMBOL(grab_cache_page_write_begin); 2495 2496 ssize_t generic_perform_write(struct file *file, 2497 struct iov_iter *i, loff_t pos) 2498 { 2499 struct address_space *mapping = file->f_mapping; 2500 const struct address_space_operations *a_ops = mapping->a_ops; 2501 long status = 0; 2502 ssize_t written = 0; 2503 unsigned int flags = 0; 2504 2505 /* 2506 * Copies from kernel address space cannot fail (NFSD is a big user). 2507 */ 2508 if (segment_eq(get_fs(), KERNEL_DS)) 2509 flags |= AOP_FLAG_UNINTERRUPTIBLE; 2510 2511 do { 2512 struct page *page; 2513 unsigned long offset; /* Offset into pagecache page */ 2514 unsigned long bytes; /* Bytes to write to page */ 2515 size_t copied; /* Bytes copied from user */ 2516 void *fsdata; 2517 2518 offset = (pos & (PAGE_CACHE_SIZE - 1)); 2519 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2520 iov_iter_count(i)); 2521 2522 again: 2523 /* 2524 * Bring in the user page that we will copy from _first_. 2525 * Otherwise there's a nasty deadlock on copying from the 2526 * same page as we're writing to, without it being marked 2527 * up-to-date. 2528 * 2529 * Not only is this an optimisation, but it is also required 2530 * to check that the address is actually valid, when atomic 2531 * usercopies are used, below. 2532 */ 2533 if (unlikely(iov_iter_fault_in_readable(i, bytes))) { 2534 status = -EFAULT; 2535 break; 2536 } 2537 2538 status = a_ops->write_begin(file, mapping, pos, bytes, flags, 2539 &page, &fsdata); 2540 if (unlikely(status)) 2541 break; 2542 2543 if (mapping_writably_mapped(mapping)) 2544 flush_dcache_page(page); 2545 2546 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes); 2547 flush_dcache_page(page); 2548 2549 mark_page_accessed(page); 2550 status = a_ops->write_end(file, mapping, pos, bytes, copied, 2551 page, fsdata); 2552 if (unlikely(status < 0)) 2553 break; 2554 copied = status; 2555 2556 cond_resched(); 2557 2558 iov_iter_advance(i, copied); 2559 if (unlikely(copied == 0)) { 2560 /* 2561 * If we were unable to copy any data at all, we must 2562 * fall back to a single segment length write. 2563 * 2564 * If we didn't fallback here, we could livelock 2565 * because not all segments in the iov can be copied at 2566 * once without a pagefault. 2567 */ 2568 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset, 2569 iov_iter_single_seg_count(i)); 2570 goto again; 2571 } 2572 pos += copied; 2573 written += copied; 2574 2575 balance_dirty_pages_ratelimited(mapping); 2576 if (fatal_signal_pending(current)) { 2577 status = -EINTR; 2578 break; 2579 } 2580 } while (iov_iter_count(i)); 2581 2582 return written ? written : status; 2583 } 2584 EXPORT_SYMBOL(generic_perform_write); 2585 2586 /** 2587 * __generic_file_aio_write - write data to a file 2588 * @iocb: IO state structure (file, offset, etc.) 2589 * @iov: vector with data to write 2590 * @nr_segs: number of segments in the vector 2591 * 2592 * This function does all the work needed for actually writing data to a 2593 * file. It does all basic checks, removes SUID from the file, updates 2594 * modification times and calls proper subroutines depending on whether we 2595 * do direct IO or a standard buffered write. 2596 * 2597 * It expects i_mutex to be grabbed unless we work on a block device or similar 2598 * object which does not need locking at all. 2599 * 2600 * This function does *not* take care of syncing data in case of O_SYNC write. 2601 * A caller has to handle it. This is mainly due to the fact that we want to 2602 * avoid syncing under i_mutex. 2603 */ 2604 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2605 unsigned long nr_segs) 2606 { 2607 struct file *file = iocb->ki_filp; 2608 struct address_space * mapping = file->f_mapping; 2609 size_t ocount; /* original count */ 2610 size_t count; /* after file limit checks */ 2611 struct inode *inode = mapping->host; 2612 loff_t pos = iocb->ki_pos; 2613 ssize_t written = 0; 2614 ssize_t err; 2615 ssize_t status; 2616 struct iov_iter from; 2617 2618 ocount = 0; 2619 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ); 2620 if (err) 2621 return err; 2622 2623 count = ocount; 2624 2625 /* We can write back this queue in page reclaim */ 2626 current->backing_dev_info = mapping->backing_dev_info; 2627 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode)); 2628 if (err) 2629 goto out; 2630 2631 if (count == 0) 2632 goto out; 2633 2634 err = file_remove_suid(file); 2635 if (err) 2636 goto out; 2637 2638 err = file_update_time(file); 2639 if (err) 2640 goto out; 2641 2642 iov_iter_init(&from, iov, nr_segs, count, 0); 2643 2644 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */ 2645 if (unlikely(file->f_flags & O_DIRECT)) { 2646 loff_t endbyte; 2647 2648 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos, 2649 count, ocount); 2650 if (written < 0 || written == count) 2651 goto out; 2652 iov_iter_advance(&from, written); 2653 2654 /* 2655 * direct-io write to a hole: fall through to buffered I/O 2656 * for completing the rest of the request. 2657 */ 2658 pos += written; 2659 count -= written; 2660 2661 status = generic_perform_write(file, &from, pos); 2662 /* 2663 * If generic_perform_write() returned a synchronous error 2664 * then we want to return the number of bytes which were 2665 * direct-written, or the error code if that was zero. Note 2666 * that this differs from normal direct-io semantics, which 2667 * will return -EFOO even if some bytes were written. 2668 */ 2669 if (unlikely(status < 0) && !written) { 2670 err = status; 2671 goto out; 2672 } 2673 iocb->ki_pos = pos + status; 2674 /* 2675 * We need to ensure that the page cache pages are written to 2676 * disk and invalidated to preserve the expected O_DIRECT 2677 * semantics. 2678 */ 2679 endbyte = pos + status - 1; 2680 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte); 2681 if (err == 0) { 2682 written += status; 2683 invalidate_mapping_pages(mapping, 2684 pos >> PAGE_CACHE_SHIFT, 2685 endbyte >> PAGE_CACHE_SHIFT); 2686 } else { 2687 /* 2688 * We don't know how much we wrote, so just return 2689 * the number of bytes which were direct-written 2690 */ 2691 } 2692 } else { 2693 written = generic_perform_write(file, &from, pos); 2694 if (likely(written >= 0)) 2695 iocb->ki_pos = pos + written; 2696 } 2697 out: 2698 current->backing_dev_info = NULL; 2699 return written ? written : err; 2700 } 2701 EXPORT_SYMBOL(__generic_file_aio_write); 2702 2703 /** 2704 * generic_file_aio_write - write data to a file 2705 * @iocb: IO state structure 2706 * @iov: vector with data to write 2707 * @nr_segs: number of segments in the vector 2708 * @pos: position in file where to write 2709 * 2710 * This is a wrapper around __generic_file_aio_write() to be used by most 2711 * filesystems. It takes care of syncing the file in case of O_SYNC file 2712 * and acquires i_mutex as needed. 2713 */ 2714 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov, 2715 unsigned long nr_segs, loff_t pos) 2716 { 2717 struct file *file = iocb->ki_filp; 2718 struct inode *inode = file->f_mapping->host; 2719 ssize_t ret; 2720 2721 BUG_ON(iocb->ki_pos != pos); 2722 2723 mutex_lock(&inode->i_mutex); 2724 ret = __generic_file_aio_write(iocb, iov, nr_segs); 2725 mutex_unlock(&inode->i_mutex); 2726 2727 if (ret > 0) { 2728 ssize_t err; 2729 2730 err = generic_write_sync(file, iocb->ki_pos - ret, ret); 2731 if (err < 0) 2732 ret = err; 2733 } 2734 return ret; 2735 } 2736 EXPORT_SYMBOL(generic_file_aio_write); 2737 2738 /** 2739 * try_to_release_page() - release old fs-specific metadata on a page 2740 * 2741 * @page: the page which the kernel is trying to free 2742 * @gfp_mask: memory allocation flags (and I/O mode) 2743 * 2744 * The address_space is to try to release any data against the page 2745 * (presumably at page->private). If the release was successful, return `1'. 2746 * Otherwise return zero. 2747 * 2748 * This may also be called if PG_fscache is set on a page, indicating that the 2749 * page is known to the local caching routines. 2750 * 2751 * The @gfp_mask argument specifies whether I/O may be performed to release 2752 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS). 2753 * 2754 */ 2755 int try_to_release_page(struct page *page, gfp_t gfp_mask) 2756 { 2757 struct address_space * const mapping = page->mapping; 2758 2759 BUG_ON(!PageLocked(page)); 2760 if (PageWriteback(page)) 2761 return 0; 2762 2763 if (mapping && mapping->a_ops->releasepage) 2764 return mapping->a_ops->releasepage(page, gfp_mask); 2765 return try_to_free_buffers(page); 2766 } 2767 2768 EXPORT_SYMBOL(try_to_release_page); 2769