xref: /linux/mm/filemap.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  *	linux/mm/filemap.c
3  *
4  * Copyright (C) 1994-1999  Linus Torvalds
5  */
6 
7 /*
8  * This file handles the generic file mmap semantics used by
9  * most "normal" filesystems (but you don't /have/ to use this:
10  * the NFS filesystem used to do this differently, for example)
11  */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/capability.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/gfp.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/mman.h>
22 #include <linux/pagemap.h>
23 #include <linux/file.h>
24 #include <linux/uio.h>
25 #include <linux/hash.h>
26 #include <linux/writeback.h>
27 #include <linux/backing-dev.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/cpuset.h>
32 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
33 #include <linux/hugetlb.h>
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41 
42 /*
43  * FIXME: remove all knowledge of the buffer layer from the core VM
44  */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46 
47 #include <asm/mman.h>
48 
49 /*
50  * Shared mappings implemented 30.11.1994. It's not fully working yet,
51  * though.
52  *
53  * Shared mappings now work. 15.8.1995  Bruno.
54  *
55  * finished 'unifying' the page and buffer cache and SMP-threaded the
56  * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57  *
58  * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59  */
60 
61 /*
62  * Lock ordering:
63  *
64  *  ->i_mmap_rwsem		(truncate_pagecache)
65  *    ->private_lock		(__free_pte->__set_page_dirty_buffers)
66  *      ->swap_lock		(exclusive_swap_page, others)
67  *        ->mapping->tree_lock
68  *
69  *  ->i_mutex
70  *    ->i_mmap_rwsem		(truncate->unmap_mapping_range)
71  *
72  *  ->mmap_sem
73  *    ->i_mmap_rwsem
74  *      ->page_table_lock or pte_lock	(various, mainly in memory.c)
75  *        ->mapping->tree_lock	(arch-dependent flush_dcache_mmap_lock)
76  *
77  *  ->mmap_sem
78  *    ->lock_page		(access_process_vm)
79  *
80  *  ->i_mutex			(generic_perform_write)
81  *    ->mmap_sem		(fault_in_pages_readable->do_page_fault)
82  *
83  *  bdi->wb.list_lock
84  *    sb_lock			(fs/fs-writeback.c)
85  *    ->mapping->tree_lock	(__sync_single_inode)
86  *
87  *  ->i_mmap_rwsem
88  *    ->anon_vma.lock		(vma_adjust)
89  *
90  *  ->anon_vma.lock
91  *    ->page_table_lock or pte_lock	(anon_vma_prepare and various)
92  *
93  *  ->page_table_lock or pte_lock
94  *    ->swap_lock		(try_to_unmap_one)
95  *    ->private_lock		(try_to_unmap_one)
96  *    ->tree_lock		(try_to_unmap_one)
97  *    ->zone.lru_lock		(follow_page->mark_page_accessed)
98  *    ->zone.lru_lock		(check_pte_range->isolate_lru_page)
99  *    ->private_lock		(page_remove_rmap->set_page_dirty)
100  *    ->tree_lock		(page_remove_rmap->set_page_dirty)
101  *    bdi.wb->list_lock		(page_remove_rmap->set_page_dirty)
102  *    ->inode->i_lock		(page_remove_rmap->set_page_dirty)
103  *    ->memcg->move_lock	(page_remove_rmap->mem_cgroup_begin_page_stat)
104  *    bdi.wb->list_lock		(zap_pte_range->set_page_dirty)
105  *    ->inode->i_lock		(zap_pte_range->set_page_dirty)
106  *    ->private_lock		(zap_pte_range->__set_page_dirty_buffers)
107  *
108  * ->i_mmap_rwsem
109  *   ->tasklist_lock            (memory_failure, collect_procs_ao)
110  */
111 
112 static void page_cache_tree_delete(struct address_space *mapping,
113 				   struct page *page, void *shadow)
114 {
115 	struct radix_tree_node *node;
116 	unsigned long index;
117 	unsigned int offset;
118 	unsigned int tag;
119 	void **slot;
120 
121 	VM_BUG_ON(!PageLocked(page));
122 
123 	__radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124 
125 	if (shadow) {
126 		mapping->nrshadows++;
127 		/*
128 		 * Make sure the nrshadows update is committed before
129 		 * the nrpages update so that final truncate racing
130 		 * with reclaim does not see both counters 0 at the
131 		 * same time and miss a shadow entry.
132 		 */
133 		smp_wmb();
134 	}
135 	mapping->nrpages--;
136 
137 	if (!node) {
138 		/* Clear direct pointer tags in root node */
139 		mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 		radix_tree_replace_slot(slot, shadow);
141 		return;
142 	}
143 
144 	/* Clear tree tags for the removed page */
145 	index = page->index;
146 	offset = index & RADIX_TREE_MAP_MASK;
147 	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 		if (test_bit(offset, node->tags[tag]))
149 			radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 	}
151 
152 	/* Delete page, swap shadow entry */
153 	radix_tree_replace_slot(slot, shadow);
154 	workingset_node_pages_dec(node);
155 	if (shadow)
156 		workingset_node_shadows_inc(node);
157 	else
158 		if (__radix_tree_delete_node(&mapping->page_tree, node))
159 			return;
160 
161 	/*
162 	 * Track node that only contains shadow entries.
163 	 *
164 	 * Avoid acquiring the list_lru lock if already tracked.  The
165 	 * list_empty() test is safe as node->private_list is
166 	 * protected by mapping->tree_lock.
167 	 */
168 	if (!workingset_node_pages(node) &&
169 	    list_empty(&node->private_list)) {
170 		node->private_data = mapping;
171 		list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 	}
173 }
174 
175 /*
176  * Delete a page from the page cache and free it. Caller has to make
177  * sure the page is locked and that nobody else uses it - or that usage
178  * is safe.  The caller must hold the mapping's tree_lock and
179  * mem_cgroup_begin_page_stat().
180  */
181 void __delete_from_page_cache(struct page *page, void *shadow,
182 			      struct mem_cgroup *memcg)
183 {
184 	struct address_space *mapping = page->mapping;
185 
186 	trace_mm_filemap_delete_from_page_cache(page);
187 	/*
188 	 * if we're uptodate, flush out into the cleancache, otherwise
189 	 * invalidate any existing cleancache entries.  We can't leave
190 	 * stale data around in the cleancache once our page is gone
191 	 */
192 	if (PageUptodate(page) && PageMappedToDisk(page))
193 		cleancache_put_page(page);
194 	else
195 		cleancache_invalidate_page(mapping, page);
196 
197 	page_cache_tree_delete(mapping, page, shadow);
198 
199 	page->mapping = NULL;
200 	/* Leave page->index set: truncation lookup relies upon it */
201 
202 	/* hugetlb pages do not participate in page cache accounting. */
203 	if (!PageHuge(page))
204 		__dec_zone_page_state(page, NR_FILE_PAGES);
205 	if (PageSwapBacked(page))
206 		__dec_zone_page_state(page, NR_SHMEM);
207 	BUG_ON(page_mapped(page));
208 
209 	/*
210 	 * At this point page must be either written or cleaned by truncate.
211 	 * Dirty page here signals a bug and loss of unwritten data.
212 	 *
213 	 * This fixes dirty accounting after removing the page entirely but
214 	 * leaves PageDirty set: it has no effect for truncated page and
215 	 * anyway will be cleared before returning page into buddy allocator.
216 	 */
217 	if (WARN_ON_ONCE(PageDirty(page)))
218 		account_page_cleaned(page, mapping, memcg,
219 				     inode_to_wb(mapping->host));
220 }
221 
222 /**
223  * delete_from_page_cache - delete page from page cache
224  * @page: the page which the kernel is trying to remove from page cache
225  *
226  * This must be called only on pages that have been verified to be in the page
227  * cache and locked.  It will never put the page into the free list, the caller
228  * has a reference on the page.
229  */
230 void delete_from_page_cache(struct page *page)
231 {
232 	struct address_space *mapping = page->mapping;
233 	struct mem_cgroup *memcg;
234 	unsigned long flags;
235 
236 	void (*freepage)(struct page *);
237 
238 	BUG_ON(!PageLocked(page));
239 
240 	freepage = mapping->a_ops->freepage;
241 
242 	memcg = mem_cgroup_begin_page_stat(page);
243 	spin_lock_irqsave(&mapping->tree_lock, flags);
244 	__delete_from_page_cache(page, NULL, memcg);
245 	spin_unlock_irqrestore(&mapping->tree_lock, flags);
246 	mem_cgroup_end_page_stat(memcg);
247 
248 	if (freepage)
249 		freepage(page);
250 	page_cache_release(page);
251 }
252 EXPORT_SYMBOL(delete_from_page_cache);
253 
254 static int filemap_check_errors(struct address_space *mapping)
255 {
256 	int ret = 0;
257 	/* Check for outstanding write errors */
258 	if (test_bit(AS_ENOSPC, &mapping->flags) &&
259 	    test_and_clear_bit(AS_ENOSPC, &mapping->flags))
260 		ret = -ENOSPC;
261 	if (test_bit(AS_EIO, &mapping->flags) &&
262 	    test_and_clear_bit(AS_EIO, &mapping->flags))
263 		ret = -EIO;
264 	return ret;
265 }
266 
267 /**
268  * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269  * @mapping:	address space structure to write
270  * @start:	offset in bytes where the range starts
271  * @end:	offset in bytes where the range ends (inclusive)
272  * @sync_mode:	enable synchronous operation
273  *
274  * Start writeback against all of a mapping's dirty pages that lie
275  * within the byte offsets <start, end> inclusive.
276  *
277  * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278  * opposed to a regular memory cleansing writeback.  The difference between
279  * these two operations is that if a dirty page/buffer is encountered, it must
280  * be waited upon, and not just skipped over.
281  */
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 				loff_t end, int sync_mode)
284 {
285 	int ret;
286 	struct writeback_control wbc = {
287 		.sync_mode = sync_mode,
288 		.nr_to_write = LONG_MAX,
289 		.range_start = start,
290 		.range_end = end,
291 	};
292 
293 	if (!mapping_cap_writeback_dirty(mapping))
294 		return 0;
295 
296 	wbc_attach_fdatawrite_inode(&wbc, mapping->host);
297 	ret = do_writepages(mapping, &wbc);
298 	wbc_detach_inode(&wbc);
299 	return ret;
300 }
301 
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 	int sync_mode)
304 {
305 	return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307 
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310 	return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313 
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 				loff_t end)
316 {
317 	return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320 
321 /**
322  * filemap_flush - mostly a non-blocking flush
323  * @mapping:	target address_space
324  *
325  * This is a mostly non-blocking flush.  Not suitable for data-integrity
326  * purposes - I/O may not be started against all dirty pages.
327  */
328 int filemap_flush(struct address_space *mapping)
329 {
330 	return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333 
334 /**
335  * filemap_fdatawait_range - wait for writeback to complete
336  * @mapping:		address space structure to wait for
337  * @start_byte:		offset in bytes where the range starts
338  * @end_byte:		offset in bytes where the range ends (inclusive)
339  *
340  * Walk the list of under-writeback pages of the given address space
341  * in the given range and wait for all of them.
342  */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 			    loff_t end_byte)
345 {
346 	pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 	pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348 	struct pagevec pvec;
349 	int nr_pages;
350 	int ret2, ret = 0;
351 
352 	if (end_byte < start_byte)
353 		goto out;
354 
355 	pagevec_init(&pvec, 0);
356 	while ((index <= end) &&
357 			(nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 			PAGECACHE_TAG_WRITEBACK,
359 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 		unsigned i;
361 
362 		for (i = 0; i < nr_pages; i++) {
363 			struct page *page = pvec.pages[i];
364 
365 			/* until radix tree lookup accepts end_index */
366 			if (page->index > end)
367 				continue;
368 
369 			wait_on_page_writeback(page);
370 			if (TestClearPageError(page))
371 				ret = -EIO;
372 		}
373 		pagevec_release(&pvec);
374 		cond_resched();
375 	}
376 out:
377 	ret2 = filemap_check_errors(mapping);
378 	if (!ret)
379 		ret = ret2;
380 
381 	return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384 
385 /**
386  * filemap_fdatawait - wait for all under-writeback pages to complete
387  * @mapping: address space structure to wait for
388  *
389  * Walk the list of under-writeback pages of the given address space
390  * and wait for all of them.
391  */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394 	loff_t i_size = i_size_read(mapping->host);
395 
396 	if (i_size == 0)
397 		return 0;
398 
399 	return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402 
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405 	int err = 0;
406 
407 	if (mapping->nrpages) {
408 		err = filemap_fdatawrite(mapping);
409 		/*
410 		 * Even if the above returned error, the pages may be
411 		 * written partially (e.g. -ENOSPC), so we wait for it.
412 		 * But the -EIO is special case, it may indicate the worst
413 		 * thing (e.g. bug) happened, so we avoid waiting for it.
414 		 */
415 		if (err != -EIO) {
416 			int err2 = filemap_fdatawait(mapping);
417 			if (!err)
418 				err = err2;
419 		}
420 	} else {
421 		err = filemap_check_errors(mapping);
422 	}
423 	return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426 
427 /**
428  * filemap_write_and_wait_range - write out & wait on a file range
429  * @mapping:	the address_space for the pages
430  * @lstart:	offset in bytes where the range starts
431  * @lend:	offset in bytes where the range ends (inclusive)
432  *
433  * Write out and wait upon file offsets lstart->lend, inclusive.
434  *
435  * Note that `lend' is inclusive (describes the last byte to be written) so
436  * that this function can be used to write to the very end-of-file (end = -1).
437  */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 				 loff_t lstart, loff_t lend)
440 {
441 	int err = 0;
442 
443 	if (mapping->nrpages) {
444 		err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 						 WB_SYNC_ALL);
446 		/* See comment of filemap_write_and_wait() */
447 		if (err != -EIO) {
448 			int err2 = filemap_fdatawait_range(mapping,
449 						lstart, lend);
450 			if (!err)
451 				err = err2;
452 		}
453 	} else {
454 		err = filemap_check_errors(mapping);
455 	}
456 	return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459 
460 /**
461  * replace_page_cache_page - replace a pagecache page with a new one
462  * @old:	page to be replaced
463  * @new:	page to replace with
464  * @gfp_mask:	allocation mode
465  *
466  * This function replaces a page in the pagecache with a new one.  On
467  * success it acquires the pagecache reference for the new page and
468  * drops it for the old page.  Both the old and new pages must be
469  * locked.  This function does not add the new page to the LRU, the
470  * caller must do that.
471  *
472  * The remove + add is atomic.  The only way this function can fail is
473  * memory allocation failure.
474  */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477 	int error;
478 
479 	VM_BUG_ON_PAGE(!PageLocked(old), old);
480 	VM_BUG_ON_PAGE(!PageLocked(new), new);
481 	VM_BUG_ON_PAGE(new->mapping, new);
482 
483 	error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 	if (!error) {
485 		struct address_space *mapping = old->mapping;
486 		void (*freepage)(struct page *);
487 		struct mem_cgroup *memcg;
488 		unsigned long flags;
489 
490 		pgoff_t offset = old->index;
491 		freepage = mapping->a_ops->freepage;
492 
493 		page_cache_get(new);
494 		new->mapping = mapping;
495 		new->index = offset;
496 
497 		memcg = mem_cgroup_begin_page_stat(old);
498 		spin_lock_irqsave(&mapping->tree_lock, flags);
499 		__delete_from_page_cache(old, NULL, memcg);
500 		error = radix_tree_insert(&mapping->page_tree, offset, new);
501 		BUG_ON(error);
502 		mapping->nrpages++;
503 
504 		/*
505 		 * hugetlb pages do not participate in page cache accounting.
506 		 */
507 		if (!PageHuge(new))
508 			__inc_zone_page_state(new, NR_FILE_PAGES);
509 		if (PageSwapBacked(new))
510 			__inc_zone_page_state(new, NR_SHMEM);
511 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
512 		mem_cgroup_end_page_stat(memcg);
513 		mem_cgroup_migrate(old, new, true);
514 		radix_tree_preload_end();
515 		if (freepage)
516 			freepage(old);
517 		page_cache_release(old);
518 	}
519 
520 	return error;
521 }
522 EXPORT_SYMBOL_GPL(replace_page_cache_page);
523 
524 static int page_cache_tree_insert(struct address_space *mapping,
525 				  struct page *page, void **shadowp)
526 {
527 	struct radix_tree_node *node;
528 	void **slot;
529 	int error;
530 
531 	error = __radix_tree_create(&mapping->page_tree, page->index,
532 				    &node, &slot);
533 	if (error)
534 		return error;
535 	if (*slot) {
536 		void *p;
537 
538 		p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
539 		if (!radix_tree_exceptional_entry(p))
540 			return -EEXIST;
541 		if (shadowp)
542 			*shadowp = p;
543 		mapping->nrshadows--;
544 		if (node)
545 			workingset_node_shadows_dec(node);
546 	}
547 	radix_tree_replace_slot(slot, page);
548 	mapping->nrpages++;
549 	if (node) {
550 		workingset_node_pages_inc(node);
551 		/*
552 		 * Don't track node that contains actual pages.
553 		 *
554 		 * Avoid acquiring the list_lru lock if already
555 		 * untracked.  The list_empty() test is safe as
556 		 * node->private_list is protected by
557 		 * mapping->tree_lock.
558 		 */
559 		if (!list_empty(&node->private_list))
560 			list_lru_del(&workingset_shadow_nodes,
561 				     &node->private_list);
562 	}
563 	return 0;
564 }
565 
566 static int __add_to_page_cache_locked(struct page *page,
567 				      struct address_space *mapping,
568 				      pgoff_t offset, gfp_t gfp_mask,
569 				      void **shadowp)
570 {
571 	int huge = PageHuge(page);
572 	struct mem_cgroup *memcg;
573 	int error;
574 
575 	VM_BUG_ON_PAGE(!PageLocked(page), page);
576 	VM_BUG_ON_PAGE(PageSwapBacked(page), page);
577 
578 	if (!huge) {
579 		error = mem_cgroup_try_charge(page, current->mm,
580 					      gfp_mask, &memcg);
581 		if (error)
582 			return error;
583 	}
584 
585 	error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
586 	if (error) {
587 		if (!huge)
588 			mem_cgroup_cancel_charge(page, memcg);
589 		return error;
590 	}
591 
592 	page_cache_get(page);
593 	page->mapping = mapping;
594 	page->index = offset;
595 
596 	spin_lock_irq(&mapping->tree_lock);
597 	error = page_cache_tree_insert(mapping, page, shadowp);
598 	radix_tree_preload_end();
599 	if (unlikely(error))
600 		goto err_insert;
601 
602 	/* hugetlb pages do not participate in page cache accounting. */
603 	if (!huge)
604 		__inc_zone_page_state(page, NR_FILE_PAGES);
605 	spin_unlock_irq(&mapping->tree_lock);
606 	if (!huge)
607 		mem_cgroup_commit_charge(page, memcg, false);
608 	trace_mm_filemap_add_to_page_cache(page);
609 	return 0;
610 err_insert:
611 	page->mapping = NULL;
612 	/* Leave page->index set: truncation relies upon it */
613 	spin_unlock_irq(&mapping->tree_lock);
614 	if (!huge)
615 		mem_cgroup_cancel_charge(page, memcg);
616 	page_cache_release(page);
617 	return error;
618 }
619 
620 /**
621  * add_to_page_cache_locked - add a locked page to the pagecache
622  * @page:	page to add
623  * @mapping:	the page's address_space
624  * @offset:	page index
625  * @gfp_mask:	page allocation mode
626  *
627  * This function is used to add a page to the pagecache. It must be locked.
628  * This function does not add the page to the LRU.  The caller must do that.
629  */
630 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
631 		pgoff_t offset, gfp_t gfp_mask)
632 {
633 	return __add_to_page_cache_locked(page, mapping, offset,
634 					  gfp_mask, NULL);
635 }
636 EXPORT_SYMBOL(add_to_page_cache_locked);
637 
638 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
639 				pgoff_t offset, gfp_t gfp_mask)
640 {
641 	void *shadow = NULL;
642 	int ret;
643 
644 	__set_page_locked(page);
645 	ret = __add_to_page_cache_locked(page, mapping, offset,
646 					 gfp_mask, &shadow);
647 	if (unlikely(ret))
648 		__clear_page_locked(page);
649 	else {
650 		/*
651 		 * The page might have been evicted from cache only
652 		 * recently, in which case it should be activated like
653 		 * any other repeatedly accessed page.
654 		 */
655 		if (shadow && workingset_refault(shadow)) {
656 			SetPageActive(page);
657 			workingset_activation(page);
658 		} else
659 			ClearPageActive(page);
660 		lru_cache_add(page);
661 	}
662 	return ret;
663 }
664 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
665 
666 #ifdef CONFIG_NUMA
667 struct page *__page_cache_alloc(gfp_t gfp)
668 {
669 	int n;
670 	struct page *page;
671 
672 	if (cpuset_do_page_mem_spread()) {
673 		unsigned int cpuset_mems_cookie;
674 		do {
675 			cpuset_mems_cookie = read_mems_allowed_begin();
676 			n = cpuset_mem_spread_node();
677 			page = alloc_pages_exact_node(n, gfp, 0);
678 		} while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
679 
680 		return page;
681 	}
682 	return alloc_pages(gfp, 0);
683 }
684 EXPORT_SYMBOL(__page_cache_alloc);
685 #endif
686 
687 /*
688  * In order to wait for pages to become available there must be
689  * waitqueues associated with pages. By using a hash table of
690  * waitqueues where the bucket discipline is to maintain all
691  * waiters on the same queue and wake all when any of the pages
692  * become available, and for the woken contexts to check to be
693  * sure the appropriate page became available, this saves space
694  * at a cost of "thundering herd" phenomena during rare hash
695  * collisions.
696  */
697 wait_queue_head_t *page_waitqueue(struct page *page)
698 {
699 	const struct zone *zone = page_zone(page);
700 
701 	return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
702 }
703 EXPORT_SYMBOL(page_waitqueue);
704 
705 void wait_on_page_bit(struct page *page, int bit_nr)
706 {
707 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
708 
709 	if (test_bit(bit_nr, &page->flags))
710 		__wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
711 							TASK_UNINTERRUPTIBLE);
712 }
713 EXPORT_SYMBOL(wait_on_page_bit);
714 
715 int wait_on_page_bit_killable(struct page *page, int bit_nr)
716 {
717 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
718 
719 	if (!test_bit(bit_nr, &page->flags))
720 		return 0;
721 
722 	return __wait_on_bit(page_waitqueue(page), &wait,
723 			     bit_wait_io, TASK_KILLABLE);
724 }
725 
726 int wait_on_page_bit_killable_timeout(struct page *page,
727 				       int bit_nr, unsigned long timeout)
728 {
729 	DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
730 
731 	wait.key.timeout = jiffies + timeout;
732 	if (!test_bit(bit_nr, &page->flags))
733 		return 0;
734 	return __wait_on_bit(page_waitqueue(page), &wait,
735 			     bit_wait_io_timeout, TASK_KILLABLE);
736 }
737 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
738 
739 /**
740  * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
741  * @page: Page defining the wait queue of interest
742  * @waiter: Waiter to add to the queue
743  *
744  * Add an arbitrary @waiter to the wait queue for the nominated @page.
745  */
746 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
747 {
748 	wait_queue_head_t *q = page_waitqueue(page);
749 	unsigned long flags;
750 
751 	spin_lock_irqsave(&q->lock, flags);
752 	__add_wait_queue(q, waiter);
753 	spin_unlock_irqrestore(&q->lock, flags);
754 }
755 EXPORT_SYMBOL_GPL(add_page_wait_queue);
756 
757 /**
758  * unlock_page - unlock a locked page
759  * @page: the page
760  *
761  * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
762  * Also wakes sleepers in wait_on_page_writeback() because the wakeup
763  * mechanism between PageLocked pages and PageWriteback pages is shared.
764  * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
765  *
766  * The mb is necessary to enforce ordering between the clear_bit and the read
767  * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
768  */
769 void unlock_page(struct page *page)
770 {
771 	VM_BUG_ON_PAGE(!PageLocked(page), page);
772 	clear_bit_unlock(PG_locked, &page->flags);
773 	smp_mb__after_atomic();
774 	wake_up_page(page, PG_locked);
775 }
776 EXPORT_SYMBOL(unlock_page);
777 
778 /**
779  * end_page_writeback - end writeback against a page
780  * @page: the page
781  */
782 void end_page_writeback(struct page *page)
783 {
784 	/*
785 	 * TestClearPageReclaim could be used here but it is an atomic
786 	 * operation and overkill in this particular case. Failing to
787 	 * shuffle a page marked for immediate reclaim is too mild to
788 	 * justify taking an atomic operation penalty at the end of
789 	 * ever page writeback.
790 	 */
791 	if (PageReclaim(page)) {
792 		ClearPageReclaim(page);
793 		rotate_reclaimable_page(page);
794 	}
795 
796 	if (!test_clear_page_writeback(page))
797 		BUG();
798 
799 	smp_mb__after_atomic();
800 	wake_up_page(page, PG_writeback);
801 }
802 EXPORT_SYMBOL(end_page_writeback);
803 
804 /*
805  * After completing I/O on a page, call this routine to update the page
806  * flags appropriately
807  */
808 void page_endio(struct page *page, int rw, int err)
809 {
810 	if (rw == READ) {
811 		if (!err) {
812 			SetPageUptodate(page);
813 		} else {
814 			ClearPageUptodate(page);
815 			SetPageError(page);
816 		}
817 		unlock_page(page);
818 	} else { /* rw == WRITE */
819 		if (err) {
820 			SetPageError(page);
821 			if (page->mapping)
822 				mapping_set_error(page->mapping, err);
823 		}
824 		end_page_writeback(page);
825 	}
826 }
827 EXPORT_SYMBOL_GPL(page_endio);
828 
829 /**
830  * __lock_page - get a lock on the page, assuming we need to sleep to get it
831  * @page: the page to lock
832  */
833 void __lock_page(struct page *page)
834 {
835 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
836 
837 	__wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
838 							TASK_UNINTERRUPTIBLE);
839 }
840 EXPORT_SYMBOL(__lock_page);
841 
842 int __lock_page_killable(struct page *page)
843 {
844 	DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
845 
846 	return __wait_on_bit_lock(page_waitqueue(page), &wait,
847 					bit_wait_io, TASK_KILLABLE);
848 }
849 EXPORT_SYMBOL_GPL(__lock_page_killable);
850 
851 /*
852  * Return values:
853  * 1 - page is locked; mmap_sem is still held.
854  * 0 - page is not locked.
855  *     mmap_sem has been released (up_read()), unless flags had both
856  *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
857  *     which case mmap_sem is still held.
858  *
859  * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
860  * with the page locked and the mmap_sem unperturbed.
861  */
862 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
863 			 unsigned int flags)
864 {
865 	if (flags & FAULT_FLAG_ALLOW_RETRY) {
866 		/*
867 		 * CAUTION! In this case, mmap_sem is not released
868 		 * even though return 0.
869 		 */
870 		if (flags & FAULT_FLAG_RETRY_NOWAIT)
871 			return 0;
872 
873 		up_read(&mm->mmap_sem);
874 		if (flags & FAULT_FLAG_KILLABLE)
875 			wait_on_page_locked_killable(page);
876 		else
877 			wait_on_page_locked(page);
878 		return 0;
879 	} else {
880 		if (flags & FAULT_FLAG_KILLABLE) {
881 			int ret;
882 
883 			ret = __lock_page_killable(page);
884 			if (ret) {
885 				up_read(&mm->mmap_sem);
886 				return 0;
887 			}
888 		} else
889 			__lock_page(page);
890 		return 1;
891 	}
892 }
893 
894 /**
895  * page_cache_next_hole - find the next hole (not-present entry)
896  * @mapping: mapping
897  * @index: index
898  * @max_scan: maximum range to search
899  *
900  * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
901  * lowest indexed hole.
902  *
903  * Returns: the index of the hole if found, otherwise returns an index
904  * outside of the set specified (in which case 'return - index >=
905  * max_scan' will be true). In rare cases of index wrap-around, 0 will
906  * be returned.
907  *
908  * page_cache_next_hole may be called under rcu_read_lock. However,
909  * like radix_tree_gang_lookup, this will not atomically search a
910  * snapshot of the tree at a single point in time. For example, if a
911  * hole is created at index 5, then subsequently a hole is created at
912  * index 10, page_cache_next_hole covering both indexes may return 10
913  * if called under rcu_read_lock.
914  */
915 pgoff_t page_cache_next_hole(struct address_space *mapping,
916 			     pgoff_t index, unsigned long max_scan)
917 {
918 	unsigned long i;
919 
920 	for (i = 0; i < max_scan; i++) {
921 		struct page *page;
922 
923 		page = radix_tree_lookup(&mapping->page_tree, index);
924 		if (!page || radix_tree_exceptional_entry(page))
925 			break;
926 		index++;
927 		if (index == 0)
928 			break;
929 	}
930 
931 	return index;
932 }
933 EXPORT_SYMBOL(page_cache_next_hole);
934 
935 /**
936  * page_cache_prev_hole - find the prev hole (not-present entry)
937  * @mapping: mapping
938  * @index: index
939  * @max_scan: maximum range to search
940  *
941  * Search backwards in the range [max(index-max_scan+1, 0), index] for
942  * the first hole.
943  *
944  * Returns: the index of the hole if found, otherwise returns an index
945  * outside of the set specified (in which case 'index - return >=
946  * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
947  * will be returned.
948  *
949  * page_cache_prev_hole may be called under rcu_read_lock. However,
950  * like radix_tree_gang_lookup, this will not atomically search a
951  * snapshot of the tree at a single point in time. For example, if a
952  * hole is created at index 10, then subsequently a hole is created at
953  * index 5, page_cache_prev_hole covering both indexes may return 5 if
954  * called under rcu_read_lock.
955  */
956 pgoff_t page_cache_prev_hole(struct address_space *mapping,
957 			     pgoff_t index, unsigned long max_scan)
958 {
959 	unsigned long i;
960 
961 	for (i = 0; i < max_scan; i++) {
962 		struct page *page;
963 
964 		page = radix_tree_lookup(&mapping->page_tree, index);
965 		if (!page || radix_tree_exceptional_entry(page))
966 			break;
967 		index--;
968 		if (index == ULONG_MAX)
969 			break;
970 	}
971 
972 	return index;
973 }
974 EXPORT_SYMBOL(page_cache_prev_hole);
975 
976 /**
977  * find_get_entry - find and get a page cache entry
978  * @mapping: the address_space to search
979  * @offset: the page cache index
980  *
981  * Looks up the page cache slot at @mapping & @offset.  If there is a
982  * page cache page, it is returned with an increased refcount.
983  *
984  * If the slot holds a shadow entry of a previously evicted page, or a
985  * swap entry from shmem/tmpfs, it is returned.
986  *
987  * Otherwise, %NULL is returned.
988  */
989 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
990 {
991 	void **pagep;
992 	struct page *page;
993 
994 	rcu_read_lock();
995 repeat:
996 	page = NULL;
997 	pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
998 	if (pagep) {
999 		page = radix_tree_deref_slot(pagep);
1000 		if (unlikely(!page))
1001 			goto out;
1002 		if (radix_tree_exception(page)) {
1003 			if (radix_tree_deref_retry(page))
1004 				goto repeat;
1005 			/*
1006 			 * A shadow entry of a recently evicted page,
1007 			 * or a swap entry from shmem/tmpfs.  Return
1008 			 * it without attempting to raise page count.
1009 			 */
1010 			goto out;
1011 		}
1012 		if (!page_cache_get_speculative(page))
1013 			goto repeat;
1014 
1015 		/*
1016 		 * Has the page moved?
1017 		 * This is part of the lockless pagecache protocol. See
1018 		 * include/linux/pagemap.h for details.
1019 		 */
1020 		if (unlikely(page != *pagep)) {
1021 			page_cache_release(page);
1022 			goto repeat;
1023 		}
1024 	}
1025 out:
1026 	rcu_read_unlock();
1027 
1028 	return page;
1029 }
1030 EXPORT_SYMBOL(find_get_entry);
1031 
1032 /**
1033  * find_lock_entry - locate, pin and lock a page cache entry
1034  * @mapping: the address_space to search
1035  * @offset: the page cache index
1036  *
1037  * Looks up the page cache slot at @mapping & @offset.  If there is a
1038  * page cache page, it is returned locked and with an increased
1039  * refcount.
1040  *
1041  * If the slot holds a shadow entry of a previously evicted page, or a
1042  * swap entry from shmem/tmpfs, it is returned.
1043  *
1044  * Otherwise, %NULL is returned.
1045  *
1046  * find_lock_entry() may sleep.
1047  */
1048 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1049 {
1050 	struct page *page;
1051 
1052 repeat:
1053 	page = find_get_entry(mapping, offset);
1054 	if (page && !radix_tree_exception(page)) {
1055 		lock_page(page);
1056 		/* Has the page been truncated? */
1057 		if (unlikely(page->mapping != mapping)) {
1058 			unlock_page(page);
1059 			page_cache_release(page);
1060 			goto repeat;
1061 		}
1062 		VM_BUG_ON_PAGE(page->index != offset, page);
1063 	}
1064 	return page;
1065 }
1066 EXPORT_SYMBOL(find_lock_entry);
1067 
1068 /**
1069  * pagecache_get_page - find and get a page reference
1070  * @mapping: the address_space to search
1071  * @offset: the page index
1072  * @fgp_flags: PCG flags
1073  * @gfp_mask: gfp mask to use for the page cache data page allocation
1074  *
1075  * Looks up the page cache slot at @mapping & @offset.
1076  *
1077  * PCG flags modify how the page is returned.
1078  *
1079  * FGP_ACCESSED: the page will be marked accessed
1080  * FGP_LOCK: Page is return locked
1081  * FGP_CREAT: If page is not present then a new page is allocated using
1082  *		@gfp_mask and added to the page cache and the VM's LRU
1083  *		list. The page is returned locked and with an increased
1084  *		refcount. Otherwise, %NULL is returned.
1085  *
1086  * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1087  * if the GFP flags specified for FGP_CREAT are atomic.
1088  *
1089  * If there is a page cache page, it is returned with an increased refcount.
1090  */
1091 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1092 	int fgp_flags, gfp_t gfp_mask)
1093 {
1094 	struct page *page;
1095 
1096 repeat:
1097 	page = find_get_entry(mapping, offset);
1098 	if (radix_tree_exceptional_entry(page))
1099 		page = NULL;
1100 	if (!page)
1101 		goto no_page;
1102 
1103 	if (fgp_flags & FGP_LOCK) {
1104 		if (fgp_flags & FGP_NOWAIT) {
1105 			if (!trylock_page(page)) {
1106 				page_cache_release(page);
1107 				return NULL;
1108 			}
1109 		} else {
1110 			lock_page(page);
1111 		}
1112 
1113 		/* Has the page been truncated? */
1114 		if (unlikely(page->mapping != mapping)) {
1115 			unlock_page(page);
1116 			page_cache_release(page);
1117 			goto repeat;
1118 		}
1119 		VM_BUG_ON_PAGE(page->index != offset, page);
1120 	}
1121 
1122 	if (page && (fgp_flags & FGP_ACCESSED))
1123 		mark_page_accessed(page);
1124 
1125 no_page:
1126 	if (!page && (fgp_flags & FGP_CREAT)) {
1127 		int err;
1128 		if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1129 			gfp_mask |= __GFP_WRITE;
1130 		if (fgp_flags & FGP_NOFS)
1131 			gfp_mask &= ~__GFP_FS;
1132 
1133 		page = __page_cache_alloc(gfp_mask);
1134 		if (!page)
1135 			return NULL;
1136 
1137 		if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1138 			fgp_flags |= FGP_LOCK;
1139 
1140 		/* Init accessed so avoid atomic mark_page_accessed later */
1141 		if (fgp_flags & FGP_ACCESSED)
1142 			__SetPageReferenced(page);
1143 
1144 		err = add_to_page_cache_lru(page, mapping, offset,
1145 				gfp_mask & GFP_RECLAIM_MASK);
1146 		if (unlikely(err)) {
1147 			page_cache_release(page);
1148 			page = NULL;
1149 			if (err == -EEXIST)
1150 				goto repeat;
1151 		}
1152 	}
1153 
1154 	return page;
1155 }
1156 EXPORT_SYMBOL(pagecache_get_page);
1157 
1158 /**
1159  * find_get_entries - gang pagecache lookup
1160  * @mapping:	The address_space to search
1161  * @start:	The starting page cache index
1162  * @nr_entries:	The maximum number of entries
1163  * @entries:	Where the resulting entries are placed
1164  * @indices:	The cache indices corresponding to the entries in @entries
1165  *
1166  * find_get_entries() will search for and return a group of up to
1167  * @nr_entries entries in the mapping.  The entries are placed at
1168  * @entries.  find_get_entries() takes a reference against any actual
1169  * pages it returns.
1170  *
1171  * The search returns a group of mapping-contiguous page cache entries
1172  * with ascending indexes.  There may be holes in the indices due to
1173  * not-present pages.
1174  *
1175  * Any shadow entries of evicted pages, or swap entries from
1176  * shmem/tmpfs, are included in the returned array.
1177  *
1178  * find_get_entries() returns the number of pages and shadow entries
1179  * which were found.
1180  */
1181 unsigned find_get_entries(struct address_space *mapping,
1182 			  pgoff_t start, unsigned int nr_entries,
1183 			  struct page **entries, pgoff_t *indices)
1184 {
1185 	void **slot;
1186 	unsigned int ret = 0;
1187 	struct radix_tree_iter iter;
1188 
1189 	if (!nr_entries)
1190 		return 0;
1191 
1192 	rcu_read_lock();
1193 restart:
1194 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1195 		struct page *page;
1196 repeat:
1197 		page = radix_tree_deref_slot(slot);
1198 		if (unlikely(!page))
1199 			continue;
1200 		if (radix_tree_exception(page)) {
1201 			if (radix_tree_deref_retry(page))
1202 				goto restart;
1203 			/*
1204 			 * A shadow entry of a recently evicted page,
1205 			 * or a swap entry from shmem/tmpfs.  Return
1206 			 * it without attempting to raise page count.
1207 			 */
1208 			goto export;
1209 		}
1210 		if (!page_cache_get_speculative(page))
1211 			goto repeat;
1212 
1213 		/* Has the page moved? */
1214 		if (unlikely(page != *slot)) {
1215 			page_cache_release(page);
1216 			goto repeat;
1217 		}
1218 export:
1219 		indices[ret] = iter.index;
1220 		entries[ret] = page;
1221 		if (++ret == nr_entries)
1222 			break;
1223 	}
1224 	rcu_read_unlock();
1225 	return ret;
1226 }
1227 
1228 /**
1229  * find_get_pages - gang pagecache lookup
1230  * @mapping:	The address_space to search
1231  * @start:	The starting page index
1232  * @nr_pages:	The maximum number of pages
1233  * @pages:	Where the resulting pages are placed
1234  *
1235  * find_get_pages() will search for and return a group of up to
1236  * @nr_pages pages in the mapping.  The pages are placed at @pages.
1237  * find_get_pages() takes a reference against the returned pages.
1238  *
1239  * The search returns a group of mapping-contiguous pages with ascending
1240  * indexes.  There may be holes in the indices due to not-present pages.
1241  *
1242  * find_get_pages() returns the number of pages which were found.
1243  */
1244 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1245 			    unsigned int nr_pages, struct page **pages)
1246 {
1247 	struct radix_tree_iter iter;
1248 	void **slot;
1249 	unsigned ret = 0;
1250 
1251 	if (unlikely(!nr_pages))
1252 		return 0;
1253 
1254 	rcu_read_lock();
1255 restart:
1256 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1257 		struct page *page;
1258 repeat:
1259 		page = radix_tree_deref_slot(slot);
1260 		if (unlikely(!page))
1261 			continue;
1262 
1263 		if (radix_tree_exception(page)) {
1264 			if (radix_tree_deref_retry(page)) {
1265 				/*
1266 				 * Transient condition which can only trigger
1267 				 * when entry at index 0 moves out of or back
1268 				 * to root: none yet gotten, safe to restart.
1269 				 */
1270 				WARN_ON(iter.index);
1271 				goto restart;
1272 			}
1273 			/*
1274 			 * A shadow entry of a recently evicted page,
1275 			 * or a swap entry from shmem/tmpfs.  Skip
1276 			 * over it.
1277 			 */
1278 			continue;
1279 		}
1280 
1281 		if (!page_cache_get_speculative(page))
1282 			goto repeat;
1283 
1284 		/* Has the page moved? */
1285 		if (unlikely(page != *slot)) {
1286 			page_cache_release(page);
1287 			goto repeat;
1288 		}
1289 
1290 		pages[ret] = page;
1291 		if (++ret == nr_pages)
1292 			break;
1293 	}
1294 
1295 	rcu_read_unlock();
1296 	return ret;
1297 }
1298 
1299 /**
1300  * find_get_pages_contig - gang contiguous pagecache lookup
1301  * @mapping:	The address_space to search
1302  * @index:	The starting page index
1303  * @nr_pages:	The maximum number of pages
1304  * @pages:	Where the resulting pages are placed
1305  *
1306  * find_get_pages_contig() works exactly like find_get_pages(), except
1307  * that the returned number of pages are guaranteed to be contiguous.
1308  *
1309  * find_get_pages_contig() returns the number of pages which were found.
1310  */
1311 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1312 			       unsigned int nr_pages, struct page **pages)
1313 {
1314 	struct radix_tree_iter iter;
1315 	void **slot;
1316 	unsigned int ret = 0;
1317 
1318 	if (unlikely(!nr_pages))
1319 		return 0;
1320 
1321 	rcu_read_lock();
1322 restart:
1323 	radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1324 		struct page *page;
1325 repeat:
1326 		page = radix_tree_deref_slot(slot);
1327 		/* The hole, there no reason to continue */
1328 		if (unlikely(!page))
1329 			break;
1330 
1331 		if (radix_tree_exception(page)) {
1332 			if (radix_tree_deref_retry(page)) {
1333 				/*
1334 				 * Transient condition which can only trigger
1335 				 * when entry at index 0 moves out of or back
1336 				 * to root: none yet gotten, safe to restart.
1337 				 */
1338 				goto restart;
1339 			}
1340 			/*
1341 			 * A shadow entry of a recently evicted page,
1342 			 * or a swap entry from shmem/tmpfs.  Stop
1343 			 * looking for contiguous pages.
1344 			 */
1345 			break;
1346 		}
1347 
1348 		if (!page_cache_get_speculative(page))
1349 			goto repeat;
1350 
1351 		/* Has the page moved? */
1352 		if (unlikely(page != *slot)) {
1353 			page_cache_release(page);
1354 			goto repeat;
1355 		}
1356 
1357 		/*
1358 		 * must check mapping and index after taking the ref.
1359 		 * otherwise we can get both false positives and false
1360 		 * negatives, which is just confusing to the caller.
1361 		 */
1362 		if (page->mapping == NULL || page->index != iter.index) {
1363 			page_cache_release(page);
1364 			break;
1365 		}
1366 
1367 		pages[ret] = page;
1368 		if (++ret == nr_pages)
1369 			break;
1370 	}
1371 	rcu_read_unlock();
1372 	return ret;
1373 }
1374 EXPORT_SYMBOL(find_get_pages_contig);
1375 
1376 /**
1377  * find_get_pages_tag - find and return pages that match @tag
1378  * @mapping:	the address_space to search
1379  * @index:	the starting page index
1380  * @tag:	the tag index
1381  * @nr_pages:	the maximum number of pages
1382  * @pages:	where the resulting pages are placed
1383  *
1384  * Like find_get_pages, except we only return pages which are tagged with
1385  * @tag.   We update @index to index the next page for the traversal.
1386  */
1387 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1388 			int tag, unsigned int nr_pages, struct page **pages)
1389 {
1390 	struct radix_tree_iter iter;
1391 	void **slot;
1392 	unsigned ret = 0;
1393 
1394 	if (unlikely(!nr_pages))
1395 		return 0;
1396 
1397 	rcu_read_lock();
1398 restart:
1399 	radix_tree_for_each_tagged(slot, &mapping->page_tree,
1400 				   &iter, *index, tag) {
1401 		struct page *page;
1402 repeat:
1403 		page = radix_tree_deref_slot(slot);
1404 		if (unlikely(!page))
1405 			continue;
1406 
1407 		if (radix_tree_exception(page)) {
1408 			if (radix_tree_deref_retry(page)) {
1409 				/*
1410 				 * Transient condition which can only trigger
1411 				 * when entry at index 0 moves out of or back
1412 				 * to root: none yet gotten, safe to restart.
1413 				 */
1414 				goto restart;
1415 			}
1416 			/*
1417 			 * A shadow entry of a recently evicted page.
1418 			 *
1419 			 * Those entries should never be tagged, but
1420 			 * this tree walk is lockless and the tags are
1421 			 * looked up in bulk, one radix tree node at a
1422 			 * time, so there is a sizable window for page
1423 			 * reclaim to evict a page we saw tagged.
1424 			 *
1425 			 * Skip over it.
1426 			 */
1427 			continue;
1428 		}
1429 
1430 		if (!page_cache_get_speculative(page))
1431 			goto repeat;
1432 
1433 		/* Has the page moved? */
1434 		if (unlikely(page != *slot)) {
1435 			page_cache_release(page);
1436 			goto repeat;
1437 		}
1438 
1439 		pages[ret] = page;
1440 		if (++ret == nr_pages)
1441 			break;
1442 	}
1443 
1444 	rcu_read_unlock();
1445 
1446 	if (ret)
1447 		*index = pages[ret - 1]->index + 1;
1448 
1449 	return ret;
1450 }
1451 EXPORT_SYMBOL(find_get_pages_tag);
1452 
1453 /*
1454  * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1455  * a _large_ part of the i/o request. Imagine the worst scenario:
1456  *
1457  *      ---R__________________________________________B__________
1458  *         ^ reading here                             ^ bad block(assume 4k)
1459  *
1460  * read(R) => miss => readahead(R...B) => media error => frustrating retries
1461  * => failing the whole request => read(R) => read(R+1) =>
1462  * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1463  * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1464  * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1465  *
1466  * It is going insane. Fix it by quickly scaling down the readahead size.
1467  */
1468 static void shrink_readahead_size_eio(struct file *filp,
1469 					struct file_ra_state *ra)
1470 {
1471 	ra->ra_pages /= 4;
1472 }
1473 
1474 /**
1475  * do_generic_file_read - generic file read routine
1476  * @filp:	the file to read
1477  * @ppos:	current file position
1478  * @iter:	data destination
1479  * @written:	already copied
1480  *
1481  * This is a generic file read routine, and uses the
1482  * mapping->a_ops->readpage() function for the actual low-level stuff.
1483  *
1484  * This is really ugly. But the goto's actually try to clarify some
1485  * of the logic when it comes to error handling etc.
1486  */
1487 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1488 		struct iov_iter *iter, ssize_t written)
1489 {
1490 	struct address_space *mapping = filp->f_mapping;
1491 	struct inode *inode = mapping->host;
1492 	struct file_ra_state *ra = &filp->f_ra;
1493 	pgoff_t index;
1494 	pgoff_t last_index;
1495 	pgoff_t prev_index;
1496 	unsigned long offset;      /* offset into pagecache page */
1497 	unsigned int prev_offset;
1498 	int error = 0;
1499 
1500 	index = *ppos >> PAGE_CACHE_SHIFT;
1501 	prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1502 	prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1503 	last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1504 	offset = *ppos & ~PAGE_CACHE_MASK;
1505 
1506 	for (;;) {
1507 		struct page *page;
1508 		pgoff_t end_index;
1509 		loff_t isize;
1510 		unsigned long nr, ret;
1511 
1512 		cond_resched();
1513 find_page:
1514 		page = find_get_page(mapping, index);
1515 		if (!page) {
1516 			page_cache_sync_readahead(mapping,
1517 					ra, filp,
1518 					index, last_index - index);
1519 			page = find_get_page(mapping, index);
1520 			if (unlikely(page == NULL))
1521 				goto no_cached_page;
1522 		}
1523 		if (PageReadahead(page)) {
1524 			page_cache_async_readahead(mapping,
1525 					ra, filp, page,
1526 					index, last_index - index);
1527 		}
1528 		if (!PageUptodate(page)) {
1529 			if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1530 					!mapping->a_ops->is_partially_uptodate)
1531 				goto page_not_up_to_date;
1532 			if (!trylock_page(page))
1533 				goto page_not_up_to_date;
1534 			/* Did it get truncated before we got the lock? */
1535 			if (!page->mapping)
1536 				goto page_not_up_to_date_locked;
1537 			if (!mapping->a_ops->is_partially_uptodate(page,
1538 							offset, iter->count))
1539 				goto page_not_up_to_date_locked;
1540 			unlock_page(page);
1541 		}
1542 page_ok:
1543 		/*
1544 		 * i_size must be checked after we know the page is Uptodate.
1545 		 *
1546 		 * Checking i_size after the check allows us to calculate
1547 		 * the correct value for "nr", which means the zero-filled
1548 		 * part of the page is not copied back to userspace (unless
1549 		 * another truncate extends the file - this is desired though).
1550 		 */
1551 
1552 		isize = i_size_read(inode);
1553 		end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1554 		if (unlikely(!isize || index > end_index)) {
1555 			page_cache_release(page);
1556 			goto out;
1557 		}
1558 
1559 		/* nr is the maximum number of bytes to copy from this page */
1560 		nr = PAGE_CACHE_SIZE;
1561 		if (index == end_index) {
1562 			nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1563 			if (nr <= offset) {
1564 				page_cache_release(page);
1565 				goto out;
1566 			}
1567 		}
1568 		nr = nr - offset;
1569 
1570 		/* If users can be writing to this page using arbitrary
1571 		 * virtual addresses, take care about potential aliasing
1572 		 * before reading the page on the kernel side.
1573 		 */
1574 		if (mapping_writably_mapped(mapping))
1575 			flush_dcache_page(page);
1576 
1577 		/*
1578 		 * When a sequential read accesses a page several times,
1579 		 * only mark it as accessed the first time.
1580 		 */
1581 		if (prev_index != index || offset != prev_offset)
1582 			mark_page_accessed(page);
1583 		prev_index = index;
1584 
1585 		/*
1586 		 * Ok, we have the page, and it's up-to-date, so
1587 		 * now we can copy it to user space...
1588 		 */
1589 
1590 		ret = copy_page_to_iter(page, offset, nr, iter);
1591 		offset += ret;
1592 		index += offset >> PAGE_CACHE_SHIFT;
1593 		offset &= ~PAGE_CACHE_MASK;
1594 		prev_offset = offset;
1595 
1596 		page_cache_release(page);
1597 		written += ret;
1598 		if (!iov_iter_count(iter))
1599 			goto out;
1600 		if (ret < nr) {
1601 			error = -EFAULT;
1602 			goto out;
1603 		}
1604 		continue;
1605 
1606 page_not_up_to_date:
1607 		/* Get exclusive access to the page ... */
1608 		error = lock_page_killable(page);
1609 		if (unlikely(error))
1610 			goto readpage_error;
1611 
1612 page_not_up_to_date_locked:
1613 		/* Did it get truncated before we got the lock? */
1614 		if (!page->mapping) {
1615 			unlock_page(page);
1616 			page_cache_release(page);
1617 			continue;
1618 		}
1619 
1620 		/* Did somebody else fill it already? */
1621 		if (PageUptodate(page)) {
1622 			unlock_page(page);
1623 			goto page_ok;
1624 		}
1625 
1626 readpage:
1627 		/*
1628 		 * A previous I/O error may have been due to temporary
1629 		 * failures, eg. multipath errors.
1630 		 * PG_error will be set again if readpage fails.
1631 		 */
1632 		ClearPageError(page);
1633 		/* Start the actual read. The read will unlock the page. */
1634 		error = mapping->a_ops->readpage(filp, page);
1635 
1636 		if (unlikely(error)) {
1637 			if (error == AOP_TRUNCATED_PAGE) {
1638 				page_cache_release(page);
1639 				error = 0;
1640 				goto find_page;
1641 			}
1642 			goto readpage_error;
1643 		}
1644 
1645 		if (!PageUptodate(page)) {
1646 			error = lock_page_killable(page);
1647 			if (unlikely(error))
1648 				goto readpage_error;
1649 			if (!PageUptodate(page)) {
1650 				if (page->mapping == NULL) {
1651 					/*
1652 					 * invalidate_mapping_pages got it
1653 					 */
1654 					unlock_page(page);
1655 					page_cache_release(page);
1656 					goto find_page;
1657 				}
1658 				unlock_page(page);
1659 				shrink_readahead_size_eio(filp, ra);
1660 				error = -EIO;
1661 				goto readpage_error;
1662 			}
1663 			unlock_page(page);
1664 		}
1665 
1666 		goto page_ok;
1667 
1668 readpage_error:
1669 		/* UHHUH! A synchronous read error occurred. Report it */
1670 		page_cache_release(page);
1671 		goto out;
1672 
1673 no_cached_page:
1674 		/*
1675 		 * Ok, it wasn't cached, so we need to create a new
1676 		 * page..
1677 		 */
1678 		page = page_cache_alloc_cold(mapping);
1679 		if (!page) {
1680 			error = -ENOMEM;
1681 			goto out;
1682 		}
1683 		error = add_to_page_cache_lru(page, mapping, index,
1684 					GFP_KERNEL & mapping_gfp_mask(mapping));
1685 		if (error) {
1686 			page_cache_release(page);
1687 			if (error == -EEXIST) {
1688 				error = 0;
1689 				goto find_page;
1690 			}
1691 			goto out;
1692 		}
1693 		goto readpage;
1694 	}
1695 
1696 out:
1697 	ra->prev_pos = prev_index;
1698 	ra->prev_pos <<= PAGE_CACHE_SHIFT;
1699 	ra->prev_pos |= prev_offset;
1700 
1701 	*ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1702 	file_accessed(filp);
1703 	return written ? written : error;
1704 }
1705 
1706 /**
1707  * generic_file_read_iter - generic filesystem read routine
1708  * @iocb:	kernel I/O control block
1709  * @iter:	destination for the data read
1710  *
1711  * This is the "read_iter()" routine for all filesystems
1712  * that can use the page cache directly.
1713  */
1714 ssize_t
1715 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1716 {
1717 	struct file *file = iocb->ki_filp;
1718 	ssize_t retval = 0;
1719 	loff_t *ppos = &iocb->ki_pos;
1720 	loff_t pos = *ppos;
1721 
1722 	if (iocb->ki_flags & IOCB_DIRECT) {
1723 		struct address_space *mapping = file->f_mapping;
1724 		struct inode *inode = mapping->host;
1725 		size_t count = iov_iter_count(iter);
1726 		loff_t size;
1727 
1728 		if (!count)
1729 			goto out; /* skip atime */
1730 		size = i_size_read(inode);
1731 		retval = filemap_write_and_wait_range(mapping, pos,
1732 					pos + count - 1);
1733 		if (!retval) {
1734 			struct iov_iter data = *iter;
1735 			retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1736 		}
1737 
1738 		if (retval > 0) {
1739 			*ppos = pos + retval;
1740 			iov_iter_advance(iter, retval);
1741 		}
1742 
1743 		/*
1744 		 * Btrfs can have a short DIO read if we encounter
1745 		 * compressed extents, so if there was an error, or if
1746 		 * we've already read everything we wanted to, or if
1747 		 * there was a short read because we hit EOF, go ahead
1748 		 * and return.  Otherwise fallthrough to buffered io for
1749 		 * the rest of the read.  Buffered reads will not work for
1750 		 * DAX files, so don't bother trying.
1751 		 */
1752 		if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1753 		    IS_DAX(inode)) {
1754 			file_accessed(file);
1755 			goto out;
1756 		}
1757 	}
1758 
1759 	retval = do_generic_file_read(file, ppos, iter, retval);
1760 out:
1761 	return retval;
1762 }
1763 EXPORT_SYMBOL(generic_file_read_iter);
1764 
1765 #ifdef CONFIG_MMU
1766 /**
1767  * page_cache_read - adds requested page to the page cache if not already there
1768  * @file:	file to read
1769  * @offset:	page index
1770  *
1771  * This adds the requested page to the page cache if it isn't already there,
1772  * and schedules an I/O to read in its contents from disk.
1773  */
1774 static int page_cache_read(struct file *file, pgoff_t offset)
1775 {
1776 	struct address_space *mapping = file->f_mapping;
1777 	struct page *page;
1778 	int ret;
1779 
1780 	do {
1781 		page = page_cache_alloc_cold(mapping);
1782 		if (!page)
1783 			return -ENOMEM;
1784 
1785 		ret = add_to_page_cache_lru(page, mapping, offset,
1786 				GFP_KERNEL & mapping_gfp_mask(mapping));
1787 		if (ret == 0)
1788 			ret = mapping->a_ops->readpage(file, page);
1789 		else if (ret == -EEXIST)
1790 			ret = 0; /* losing race to add is OK */
1791 
1792 		page_cache_release(page);
1793 
1794 	} while (ret == AOP_TRUNCATED_PAGE);
1795 
1796 	return ret;
1797 }
1798 
1799 #define MMAP_LOTSAMISS  (100)
1800 
1801 /*
1802  * Synchronous readahead happens when we don't even find
1803  * a page in the page cache at all.
1804  */
1805 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1806 				   struct file_ra_state *ra,
1807 				   struct file *file,
1808 				   pgoff_t offset)
1809 {
1810 	unsigned long ra_pages;
1811 	struct address_space *mapping = file->f_mapping;
1812 
1813 	/* If we don't want any read-ahead, don't bother */
1814 	if (vma->vm_flags & VM_RAND_READ)
1815 		return;
1816 	if (!ra->ra_pages)
1817 		return;
1818 
1819 	if (vma->vm_flags & VM_SEQ_READ) {
1820 		page_cache_sync_readahead(mapping, ra, file, offset,
1821 					  ra->ra_pages);
1822 		return;
1823 	}
1824 
1825 	/* Avoid banging the cache line if not needed */
1826 	if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1827 		ra->mmap_miss++;
1828 
1829 	/*
1830 	 * Do we miss much more than hit in this file? If so,
1831 	 * stop bothering with read-ahead. It will only hurt.
1832 	 */
1833 	if (ra->mmap_miss > MMAP_LOTSAMISS)
1834 		return;
1835 
1836 	/*
1837 	 * mmap read-around
1838 	 */
1839 	ra_pages = max_sane_readahead(ra->ra_pages);
1840 	ra->start = max_t(long, 0, offset - ra_pages / 2);
1841 	ra->size = ra_pages;
1842 	ra->async_size = ra_pages / 4;
1843 	ra_submit(ra, mapping, file);
1844 }
1845 
1846 /*
1847  * Asynchronous readahead happens when we find the page and PG_readahead,
1848  * so we want to possibly extend the readahead further..
1849  */
1850 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1851 				    struct file_ra_state *ra,
1852 				    struct file *file,
1853 				    struct page *page,
1854 				    pgoff_t offset)
1855 {
1856 	struct address_space *mapping = file->f_mapping;
1857 
1858 	/* If we don't want any read-ahead, don't bother */
1859 	if (vma->vm_flags & VM_RAND_READ)
1860 		return;
1861 	if (ra->mmap_miss > 0)
1862 		ra->mmap_miss--;
1863 	if (PageReadahead(page))
1864 		page_cache_async_readahead(mapping, ra, file,
1865 					   page, offset, ra->ra_pages);
1866 }
1867 
1868 /**
1869  * filemap_fault - read in file data for page fault handling
1870  * @vma:	vma in which the fault was taken
1871  * @vmf:	struct vm_fault containing details of the fault
1872  *
1873  * filemap_fault() is invoked via the vma operations vector for a
1874  * mapped memory region to read in file data during a page fault.
1875  *
1876  * The goto's are kind of ugly, but this streamlines the normal case of having
1877  * it in the page cache, and handles the special cases reasonably without
1878  * having a lot of duplicated code.
1879  *
1880  * vma->vm_mm->mmap_sem must be held on entry.
1881  *
1882  * If our return value has VM_FAULT_RETRY set, it's because
1883  * lock_page_or_retry() returned 0.
1884  * The mmap_sem has usually been released in this case.
1885  * See __lock_page_or_retry() for the exception.
1886  *
1887  * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1888  * has not been released.
1889  *
1890  * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1891  */
1892 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1893 {
1894 	int error;
1895 	struct file *file = vma->vm_file;
1896 	struct address_space *mapping = file->f_mapping;
1897 	struct file_ra_state *ra = &file->f_ra;
1898 	struct inode *inode = mapping->host;
1899 	pgoff_t offset = vmf->pgoff;
1900 	struct page *page;
1901 	loff_t size;
1902 	int ret = 0;
1903 
1904 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1905 	if (offset >= size >> PAGE_CACHE_SHIFT)
1906 		return VM_FAULT_SIGBUS;
1907 
1908 	/*
1909 	 * Do we have something in the page cache already?
1910 	 */
1911 	page = find_get_page(mapping, offset);
1912 	if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1913 		/*
1914 		 * We found the page, so try async readahead before
1915 		 * waiting for the lock.
1916 		 */
1917 		do_async_mmap_readahead(vma, ra, file, page, offset);
1918 	} else if (!page) {
1919 		/* No page in the page cache at all */
1920 		do_sync_mmap_readahead(vma, ra, file, offset);
1921 		count_vm_event(PGMAJFAULT);
1922 		mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1923 		ret = VM_FAULT_MAJOR;
1924 retry_find:
1925 		page = find_get_page(mapping, offset);
1926 		if (!page)
1927 			goto no_cached_page;
1928 	}
1929 
1930 	if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1931 		page_cache_release(page);
1932 		return ret | VM_FAULT_RETRY;
1933 	}
1934 
1935 	/* Did it get truncated? */
1936 	if (unlikely(page->mapping != mapping)) {
1937 		unlock_page(page);
1938 		put_page(page);
1939 		goto retry_find;
1940 	}
1941 	VM_BUG_ON_PAGE(page->index != offset, page);
1942 
1943 	/*
1944 	 * We have a locked page in the page cache, now we need to check
1945 	 * that it's up-to-date. If not, it is going to be due to an error.
1946 	 */
1947 	if (unlikely(!PageUptodate(page)))
1948 		goto page_not_uptodate;
1949 
1950 	/*
1951 	 * Found the page and have a reference on it.
1952 	 * We must recheck i_size under page lock.
1953 	 */
1954 	size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1955 	if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1956 		unlock_page(page);
1957 		page_cache_release(page);
1958 		return VM_FAULT_SIGBUS;
1959 	}
1960 
1961 	vmf->page = page;
1962 	return ret | VM_FAULT_LOCKED;
1963 
1964 no_cached_page:
1965 	/*
1966 	 * We're only likely to ever get here if MADV_RANDOM is in
1967 	 * effect.
1968 	 */
1969 	error = page_cache_read(file, offset);
1970 
1971 	/*
1972 	 * The page we want has now been added to the page cache.
1973 	 * In the unlikely event that someone removed it in the
1974 	 * meantime, we'll just come back here and read it again.
1975 	 */
1976 	if (error >= 0)
1977 		goto retry_find;
1978 
1979 	/*
1980 	 * An error return from page_cache_read can result if the
1981 	 * system is low on memory, or a problem occurs while trying
1982 	 * to schedule I/O.
1983 	 */
1984 	if (error == -ENOMEM)
1985 		return VM_FAULT_OOM;
1986 	return VM_FAULT_SIGBUS;
1987 
1988 page_not_uptodate:
1989 	/*
1990 	 * Umm, take care of errors if the page isn't up-to-date.
1991 	 * Try to re-read it _once_. We do this synchronously,
1992 	 * because there really aren't any performance issues here
1993 	 * and we need to check for errors.
1994 	 */
1995 	ClearPageError(page);
1996 	error = mapping->a_ops->readpage(file, page);
1997 	if (!error) {
1998 		wait_on_page_locked(page);
1999 		if (!PageUptodate(page))
2000 			error = -EIO;
2001 	}
2002 	page_cache_release(page);
2003 
2004 	if (!error || error == AOP_TRUNCATED_PAGE)
2005 		goto retry_find;
2006 
2007 	/* Things didn't work out. Return zero to tell the mm layer so. */
2008 	shrink_readahead_size_eio(file, ra);
2009 	return VM_FAULT_SIGBUS;
2010 }
2011 EXPORT_SYMBOL(filemap_fault);
2012 
2013 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2014 {
2015 	struct radix_tree_iter iter;
2016 	void **slot;
2017 	struct file *file = vma->vm_file;
2018 	struct address_space *mapping = file->f_mapping;
2019 	loff_t size;
2020 	struct page *page;
2021 	unsigned long address = (unsigned long) vmf->virtual_address;
2022 	unsigned long addr;
2023 	pte_t *pte;
2024 
2025 	rcu_read_lock();
2026 	radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2027 		if (iter.index > vmf->max_pgoff)
2028 			break;
2029 repeat:
2030 		page = radix_tree_deref_slot(slot);
2031 		if (unlikely(!page))
2032 			goto next;
2033 		if (radix_tree_exception(page)) {
2034 			if (radix_tree_deref_retry(page))
2035 				break;
2036 			else
2037 				goto next;
2038 		}
2039 
2040 		if (!page_cache_get_speculative(page))
2041 			goto repeat;
2042 
2043 		/* Has the page moved? */
2044 		if (unlikely(page != *slot)) {
2045 			page_cache_release(page);
2046 			goto repeat;
2047 		}
2048 
2049 		if (!PageUptodate(page) ||
2050 				PageReadahead(page) ||
2051 				PageHWPoison(page))
2052 			goto skip;
2053 		if (!trylock_page(page))
2054 			goto skip;
2055 
2056 		if (page->mapping != mapping || !PageUptodate(page))
2057 			goto unlock;
2058 
2059 		size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2060 		if (page->index >= size >> PAGE_CACHE_SHIFT)
2061 			goto unlock;
2062 
2063 		pte = vmf->pte + page->index - vmf->pgoff;
2064 		if (!pte_none(*pte))
2065 			goto unlock;
2066 
2067 		if (file->f_ra.mmap_miss > 0)
2068 			file->f_ra.mmap_miss--;
2069 		addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2070 		do_set_pte(vma, addr, page, pte, false, false);
2071 		unlock_page(page);
2072 		goto next;
2073 unlock:
2074 		unlock_page(page);
2075 skip:
2076 		page_cache_release(page);
2077 next:
2078 		if (iter.index == vmf->max_pgoff)
2079 			break;
2080 	}
2081 	rcu_read_unlock();
2082 }
2083 EXPORT_SYMBOL(filemap_map_pages);
2084 
2085 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2086 {
2087 	struct page *page = vmf->page;
2088 	struct inode *inode = file_inode(vma->vm_file);
2089 	int ret = VM_FAULT_LOCKED;
2090 
2091 	sb_start_pagefault(inode->i_sb);
2092 	file_update_time(vma->vm_file);
2093 	lock_page(page);
2094 	if (page->mapping != inode->i_mapping) {
2095 		unlock_page(page);
2096 		ret = VM_FAULT_NOPAGE;
2097 		goto out;
2098 	}
2099 	/*
2100 	 * We mark the page dirty already here so that when freeze is in
2101 	 * progress, we are guaranteed that writeback during freezing will
2102 	 * see the dirty page and writeprotect it again.
2103 	 */
2104 	set_page_dirty(page);
2105 	wait_for_stable_page(page);
2106 out:
2107 	sb_end_pagefault(inode->i_sb);
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL(filemap_page_mkwrite);
2111 
2112 const struct vm_operations_struct generic_file_vm_ops = {
2113 	.fault		= filemap_fault,
2114 	.map_pages	= filemap_map_pages,
2115 	.page_mkwrite	= filemap_page_mkwrite,
2116 };
2117 
2118 /* This is used for a general mmap of a disk file */
2119 
2120 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2121 {
2122 	struct address_space *mapping = file->f_mapping;
2123 
2124 	if (!mapping->a_ops->readpage)
2125 		return -ENOEXEC;
2126 	file_accessed(file);
2127 	vma->vm_ops = &generic_file_vm_ops;
2128 	return 0;
2129 }
2130 
2131 /*
2132  * This is for filesystems which do not implement ->writepage.
2133  */
2134 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2135 {
2136 	if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2137 		return -EINVAL;
2138 	return generic_file_mmap(file, vma);
2139 }
2140 #else
2141 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2142 {
2143 	return -ENOSYS;
2144 }
2145 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2146 {
2147 	return -ENOSYS;
2148 }
2149 #endif /* CONFIG_MMU */
2150 
2151 EXPORT_SYMBOL(generic_file_mmap);
2152 EXPORT_SYMBOL(generic_file_readonly_mmap);
2153 
2154 static struct page *wait_on_page_read(struct page *page)
2155 {
2156 	if (!IS_ERR(page)) {
2157 		wait_on_page_locked(page);
2158 		if (!PageUptodate(page)) {
2159 			page_cache_release(page);
2160 			page = ERR_PTR(-EIO);
2161 		}
2162 	}
2163 	return page;
2164 }
2165 
2166 static struct page *__read_cache_page(struct address_space *mapping,
2167 				pgoff_t index,
2168 				int (*filler)(void *, struct page *),
2169 				void *data,
2170 				gfp_t gfp)
2171 {
2172 	struct page *page;
2173 	int err;
2174 repeat:
2175 	page = find_get_page(mapping, index);
2176 	if (!page) {
2177 		page = __page_cache_alloc(gfp | __GFP_COLD);
2178 		if (!page)
2179 			return ERR_PTR(-ENOMEM);
2180 		err = add_to_page_cache_lru(page, mapping, index, gfp);
2181 		if (unlikely(err)) {
2182 			page_cache_release(page);
2183 			if (err == -EEXIST)
2184 				goto repeat;
2185 			/* Presumably ENOMEM for radix tree node */
2186 			return ERR_PTR(err);
2187 		}
2188 		err = filler(data, page);
2189 		if (err < 0) {
2190 			page_cache_release(page);
2191 			page = ERR_PTR(err);
2192 		} else {
2193 			page = wait_on_page_read(page);
2194 		}
2195 	}
2196 	return page;
2197 }
2198 
2199 static struct page *do_read_cache_page(struct address_space *mapping,
2200 				pgoff_t index,
2201 				int (*filler)(void *, struct page *),
2202 				void *data,
2203 				gfp_t gfp)
2204 
2205 {
2206 	struct page *page;
2207 	int err;
2208 
2209 retry:
2210 	page = __read_cache_page(mapping, index, filler, data, gfp);
2211 	if (IS_ERR(page))
2212 		return page;
2213 	if (PageUptodate(page))
2214 		goto out;
2215 
2216 	lock_page(page);
2217 	if (!page->mapping) {
2218 		unlock_page(page);
2219 		page_cache_release(page);
2220 		goto retry;
2221 	}
2222 	if (PageUptodate(page)) {
2223 		unlock_page(page);
2224 		goto out;
2225 	}
2226 	err = filler(data, page);
2227 	if (err < 0) {
2228 		page_cache_release(page);
2229 		return ERR_PTR(err);
2230 	} else {
2231 		page = wait_on_page_read(page);
2232 		if (IS_ERR(page))
2233 			return page;
2234 	}
2235 out:
2236 	mark_page_accessed(page);
2237 	return page;
2238 }
2239 
2240 /**
2241  * read_cache_page - read into page cache, fill it if needed
2242  * @mapping:	the page's address_space
2243  * @index:	the page index
2244  * @filler:	function to perform the read
2245  * @data:	first arg to filler(data, page) function, often left as NULL
2246  *
2247  * Read into the page cache. If a page already exists, and PageUptodate() is
2248  * not set, try to fill the page and wait for it to become unlocked.
2249  *
2250  * If the page does not get brought uptodate, return -EIO.
2251  */
2252 struct page *read_cache_page(struct address_space *mapping,
2253 				pgoff_t index,
2254 				int (*filler)(void *, struct page *),
2255 				void *data)
2256 {
2257 	return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2258 }
2259 EXPORT_SYMBOL(read_cache_page);
2260 
2261 /**
2262  * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2263  * @mapping:	the page's address_space
2264  * @index:	the page index
2265  * @gfp:	the page allocator flags to use if allocating
2266  *
2267  * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2268  * any new page allocations done using the specified allocation flags.
2269  *
2270  * If the page does not get brought uptodate, return -EIO.
2271  */
2272 struct page *read_cache_page_gfp(struct address_space *mapping,
2273 				pgoff_t index,
2274 				gfp_t gfp)
2275 {
2276 	filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2277 
2278 	return do_read_cache_page(mapping, index, filler, NULL, gfp);
2279 }
2280 EXPORT_SYMBOL(read_cache_page_gfp);
2281 
2282 /*
2283  * Performs necessary checks before doing a write
2284  *
2285  * Can adjust writing position or amount of bytes to write.
2286  * Returns appropriate error code that caller should return or
2287  * zero in case that write should be allowed.
2288  */
2289 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2290 {
2291 	struct file *file = iocb->ki_filp;
2292 	struct inode *inode = file->f_mapping->host;
2293 	unsigned long limit = rlimit(RLIMIT_FSIZE);
2294 	loff_t pos;
2295 
2296 	if (!iov_iter_count(from))
2297 		return 0;
2298 
2299 	/* FIXME: this is for backwards compatibility with 2.4 */
2300 	if (iocb->ki_flags & IOCB_APPEND)
2301 		iocb->ki_pos = i_size_read(inode);
2302 
2303 	pos = iocb->ki_pos;
2304 
2305 	if (limit != RLIM_INFINITY) {
2306 		if (iocb->ki_pos >= limit) {
2307 			send_sig(SIGXFSZ, current, 0);
2308 			return -EFBIG;
2309 		}
2310 		iov_iter_truncate(from, limit - (unsigned long)pos);
2311 	}
2312 
2313 	/*
2314 	 * LFS rule
2315 	 */
2316 	if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2317 				!(file->f_flags & O_LARGEFILE))) {
2318 		if (pos >= MAX_NON_LFS)
2319 			return -EFBIG;
2320 		iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2321 	}
2322 
2323 	/*
2324 	 * Are we about to exceed the fs block limit ?
2325 	 *
2326 	 * If we have written data it becomes a short write.  If we have
2327 	 * exceeded without writing data we send a signal and return EFBIG.
2328 	 * Linus frestrict idea will clean these up nicely..
2329 	 */
2330 	if (unlikely(pos >= inode->i_sb->s_maxbytes))
2331 		return -EFBIG;
2332 
2333 	iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2334 	return iov_iter_count(from);
2335 }
2336 EXPORT_SYMBOL(generic_write_checks);
2337 
2338 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2339 				loff_t pos, unsigned len, unsigned flags,
2340 				struct page **pagep, void **fsdata)
2341 {
2342 	const struct address_space_operations *aops = mapping->a_ops;
2343 
2344 	return aops->write_begin(file, mapping, pos, len, flags,
2345 							pagep, fsdata);
2346 }
2347 EXPORT_SYMBOL(pagecache_write_begin);
2348 
2349 int pagecache_write_end(struct file *file, struct address_space *mapping,
2350 				loff_t pos, unsigned len, unsigned copied,
2351 				struct page *page, void *fsdata)
2352 {
2353 	const struct address_space_operations *aops = mapping->a_ops;
2354 
2355 	return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2356 }
2357 EXPORT_SYMBOL(pagecache_write_end);
2358 
2359 ssize_t
2360 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2361 {
2362 	struct file	*file = iocb->ki_filp;
2363 	struct address_space *mapping = file->f_mapping;
2364 	struct inode	*inode = mapping->host;
2365 	ssize_t		written;
2366 	size_t		write_len;
2367 	pgoff_t		end;
2368 	struct iov_iter data;
2369 
2370 	write_len = iov_iter_count(from);
2371 	end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2372 
2373 	written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2374 	if (written)
2375 		goto out;
2376 
2377 	/*
2378 	 * After a write we want buffered reads to be sure to go to disk to get
2379 	 * the new data.  We invalidate clean cached page from the region we're
2380 	 * about to write.  We do this *before* the write so that we can return
2381 	 * without clobbering -EIOCBQUEUED from ->direct_IO().
2382 	 */
2383 	if (mapping->nrpages) {
2384 		written = invalidate_inode_pages2_range(mapping,
2385 					pos >> PAGE_CACHE_SHIFT, end);
2386 		/*
2387 		 * If a page can not be invalidated, return 0 to fall back
2388 		 * to buffered write.
2389 		 */
2390 		if (written) {
2391 			if (written == -EBUSY)
2392 				return 0;
2393 			goto out;
2394 		}
2395 	}
2396 
2397 	data = *from;
2398 	written = mapping->a_ops->direct_IO(iocb, &data, pos);
2399 
2400 	/*
2401 	 * Finally, try again to invalidate clean pages which might have been
2402 	 * cached by non-direct readahead, or faulted in by get_user_pages()
2403 	 * if the source of the write was an mmap'ed region of the file
2404 	 * we're writing.  Either one is a pretty crazy thing to do,
2405 	 * so we don't support it 100%.  If this invalidation
2406 	 * fails, tough, the write still worked...
2407 	 */
2408 	if (mapping->nrpages) {
2409 		invalidate_inode_pages2_range(mapping,
2410 					      pos >> PAGE_CACHE_SHIFT, end);
2411 	}
2412 
2413 	if (written > 0) {
2414 		pos += written;
2415 		iov_iter_advance(from, written);
2416 		if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2417 			i_size_write(inode, pos);
2418 			mark_inode_dirty(inode);
2419 		}
2420 		iocb->ki_pos = pos;
2421 	}
2422 out:
2423 	return written;
2424 }
2425 EXPORT_SYMBOL(generic_file_direct_write);
2426 
2427 /*
2428  * Find or create a page at the given pagecache position. Return the locked
2429  * page. This function is specifically for buffered writes.
2430  */
2431 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2432 					pgoff_t index, unsigned flags)
2433 {
2434 	struct page *page;
2435 	int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2436 
2437 	if (flags & AOP_FLAG_NOFS)
2438 		fgp_flags |= FGP_NOFS;
2439 
2440 	page = pagecache_get_page(mapping, index, fgp_flags,
2441 			mapping_gfp_mask(mapping));
2442 	if (page)
2443 		wait_for_stable_page(page);
2444 
2445 	return page;
2446 }
2447 EXPORT_SYMBOL(grab_cache_page_write_begin);
2448 
2449 ssize_t generic_perform_write(struct file *file,
2450 				struct iov_iter *i, loff_t pos)
2451 {
2452 	struct address_space *mapping = file->f_mapping;
2453 	const struct address_space_operations *a_ops = mapping->a_ops;
2454 	long status = 0;
2455 	ssize_t written = 0;
2456 	unsigned int flags = 0;
2457 
2458 	/*
2459 	 * Copies from kernel address space cannot fail (NFSD is a big user).
2460 	 */
2461 	if (!iter_is_iovec(i))
2462 		flags |= AOP_FLAG_UNINTERRUPTIBLE;
2463 
2464 	do {
2465 		struct page *page;
2466 		unsigned long offset;	/* Offset into pagecache page */
2467 		unsigned long bytes;	/* Bytes to write to page */
2468 		size_t copied;		/* Bytes copied from user */
2469 		void *fsdata;
2470 
2471 		offset = (pos & (PAGE_CACHE_SIZE - 1));
2472 		bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2473 						iov_iter_count(i));
2474 
2475 again:
2476 		/*
2477 		 * Bring in the user page that we will copy from _first_.
2478 		 * Otherwise there's a nasty deadlock on copying from the
2479 		 * same page as we're writing to, without it being marked
2480 		 * up-to-date.
2481 		 *
2482 		 * Not only is this an optimisation, but it is also required
2483 		 * to check that the address is actually valid, when atomic
2484 		 * usercopies are used, below.
2485 		 */
2486 		if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2487 			status = -EFAULT;
2488 			break;
2489 		}
2490 
2491 		status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2492 						&page, &fsdata);
2493 		if (unlikely(status < 0))
2494 			break;
2495 
2496 		if (mapping_writably_mapped(mapping))
2497 			flush_dcache_page(page);
2498 
2499 		copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2500 		flush_dcache_page(page);
2501 
2502 		status = a_ops->write_end(file, mapping, pos, bytes, copied,
2503 						page, fsdata);
2504 		if (unlikely(status < 0))
2505 			break;
2506 		copied = status;
2507 
2508 		cond_resched();
2509 
2510 		iov_iter_advance(i, copied);
2511 		if (unlikely(copied == 0)) {
2512 			/*
2513 			 * If we were unable to copy any data at all, we must
2514 			 * fall back to a single segment length write.
2515 			 *
2516 			 * If we didn't fallback here, we could livelock
2517 			 * because not all segments in the iov can be copied at
2518 			 * once without a pagefault.
2519 			 */
2520 			bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2521 						iov_iter_single_seg_count(i));
2522 			goto again;
2523 		}
2524 		pos += copied;
2525 		written += copied;
2526 
2527 		balance_dirty_pages_ratelimited(mapping);
2528 		if (fatal_signal_pending(current)) {
2529 			status = -EINTR;
2530 			break;
2531 		}
2532 	} while (iov_iter_count(i));
2533 
2534 	return written ? written : status;
2535 }
2536 EXPORT_SYMBOL(generic_perform_write);
2537 
2538 /**
2539  * __generic_file_write_iter - write data to a file
2540  * @iocb:	IO state structure (file, offset, etc.)
2541  * @from:	iov_iter with data to write
2542  *
2543  * This function does all the work needed for actually writing data to a
2544  * file. It does all basic checks, removes SUID from the file, updates
2545  * modification times and calls proper subroutines depending on whether we
2546  * do direct IO or a standard buffered write.
2547  *
2548  * It expects i_mutex to be grabbed unless we work on a block device or similar
2549  * object which does not need locking at all.
2550  *
2551  * This function does *not* take care of syncing data in case of O_SYNC write.
2552  * A caller has to handle it. This is mainly due to the fact that we want to
2553  * avoid syncing under i_mutex.
2554  */
2555 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2556 {
2557 	struct file *file = iocb->ki_filp;
2558 	struct address_space * mapping = file->f_mapping;
2559 	struct inode 	*inode = mapping->host;
2560 	ssize_t		written = 0;
2561 	ssize_t		err;
2562 	ssize_t		status;
2563 
2564 	/* We can write back this queue in page reclaim */
2565 	current->backing_dev_info = inode_to_bdi(inode);
2566 	err = file_remove_privs(file);
2567 	if (err)
2568 		goto out;
2569 
2570 	err = file_update_time(file);
2571 	if (err)
2572 		goto out;
2573 
2574 	if (iocb->ki_flags & IOCB_DIRECT) {
2575 		loff_t pos, endbyte;
2576 
2577 		written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2578 		/*
2579 		 * If the write stopped short of completing, fall back to
2580 		 * buffered writes.  Some filesystems do this for writes to
2581 		 * holes, for example.  For DAX files, a buffered write will
2582 		 * not succeed (even if it did, DAX does not handle dirty
2583 		 * page-cache pages correctly).
2584 		 */
2585 		if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2586 			goto out;
2587 
2588 		status = generic_perform_write(file, from, pos = iocb->ki_pos);
2589 		/*
2590 		 * If generic_perform_write() returned a synchronous error
2591 		 * then we want to return the number of bytes which were
2592 		 * direct-written, or the error code if that was zero.  Note
2593 		 * that this differs from normal direct-io semantics, which
2594 		 * will return -EFOO even if some bytes were written.
2595 		 */
2596 		if (unlikely(status < 0)) {
2597 			err = status;
2598 			goto out;
2599 		}
2600 		/*
2601 		 * We need to ensure that the page cache pages are written to
2602 		 * disk and invalidated to preserve the expected O_DIRECT
2603 		 * semantics.
2604 		 */
2605 		endbyte = pos + status - 1;
2606 		err = filemap_write_and_wait_range(mapping, pos, endbyte);
2607 		if (err == 0) {
2608 			iocb->ki_pos = endbyte + 1;
2609 			written += status;
2610 			invalidate_mapping_pages(mapping,
2611 						 pos >> PAGE_CACHE_SHIFT,
2612 						 endbyte >> PAGE_CACHE_SHIFT);
2613 		} else {
2614 			/*
2615 			 * We don't know how much we wrote, so just return
2616 			 * the number of bytes which were direct-written
2617 			 */
2618 		}
2619 	} else {
2620 		written = generic_perform_write(file, from, iocb->ki_pos);
2621 		if (likely(written > 0))
2622 			iocb->ki_pos += written;
2623 	}
2624 out:
2625 	current->backing_dev_info = NULL;
2626 	return written ? written : err;
2627 }
2628 EXPORT_SYMBOL(__generic_file_write_iter);
2629 
2630 /**
2631  * generic_file_write_iter - write data to a file
2632  * @iocb:	IO state structure
2633  * @from:	iov_iter with data to write
2634  *
2635  * This is a wrapper around __generic_file_write_iter() to be used by most
2636  * filesystems. It takes care of syncing the file in case of O_SYNC file
2637  * and acquires i_mutex as needed.
2638  */
2639 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2640 {
2641 	struct file *file = iocb->ki_filp;
2642 	struct inode *inode = file->f_mapping->host;
2643 	ssize_t ret;
2644 
2645 	mutex_lock(&inode->i_mutex);
2646 	ret = generic_write_checks(iocb, from);
2647 	if (ret > 0)
2648 		ret = __generic_file_write_iter(iocb, from);
2649 	mutex_unlock(&inode->i_mutex);
2650 
2651 	if (ret > 0) {
2652 		ssize_t err;
2653 
2654 		err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655 		if (err < 0)
2656 			ret = err;
2657 	}
2658 	return ret;
2659 }
2660 EXPORT_SYMBOL(generic_file_write_iter);
2661 
2662 /**
2663  * try_to_release_page() - release old fs-specific metadata on a page
2664  *
2665  * @page: the page which the kernel is trying to free
2666  * @gfp_mask: memory allocation flags (and I/O mode)
2667  *
2668  * The address_space is to try to release any data against the page
2669  * (presumably at page->private).  If the release was successful, return `1'.
2670  * Otherwise return zero.
2671  *
2672  * This may also be called if PG_fscache is set on a page, indicating that the
2673  * page is known to the local caching routines.
2674  *
2675  * The @gfp_mask argument specifies whether I/O may be performed to release
2676  * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2677  *
2678  */
2679 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680 {
2681 	struct address_space * const mapping = page->mapping;
2682 
2683 	BUG_ON(!PageLocked(page));
2684 	if (PageWriteback(page))
2685 		return 0;
2686 
2687 	if (mapping && mapping->a_ops->releasepage)
2688 		return mapping->a_ops->releasepage(page, gfp_mask);
2689 	return try_to_free_buffers(page);
2690 }
2691 
2692 EXPORT_SYMBOL(try_to_release_page);
2693