1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 int refs = 1; 231 232 free_folio = mapping->a_ops->free_folio; 233 if (free_folio) 234 free_folio(folio); 235 236 if (folio_test_large(folio)) 237 refs = folio_nr_pages(folio); 238 folio_put_refs(folio, refs); 239 } 240 241 /** 242 * filemap_remove_folio - Remove folio from page cache. 243 * @folio: The folio. 244 * 245 * This must be called only on folios that are locked and have been 246 * verified to be in the page cache. It will never put the folio into 247 * the free list because the caller has a reference on the page. 248 */ 249 void filemap_remove_folio(struct folio *folio) 250 { 251 struct address_space *mapping = folio->mapping; 252 253 BUG_ON(!folio_test_locked(folio)); 254 spin_lock(&mapping->host->i_lock); 255 xa_lock_irq(&mapping->i_pages); 256 __filemap_remove_folio(folio, NULL); 257 xa_unlock_irq(&mapping->i_pages); 258 if (mapping_shrinkable(mapping)) 259 inode_add_lru(mapping->host); 260 spin_unlock(&mapping->host->i_lock); 261 262 filemap_free_folio(mapping, folio); 263 } 264 265 /* 266 * page_cache_delete_batch - delete several folios from page cache 267 * @mapping: the mapping to which folios belong 268 * @fbatch: batch of folios to delete 269 * 270 * The function walks over mapping->i_pages and removes folios passed in 271 * @fbatch from the mapping. The function expects @fbatch to be sorted 272 * by page index and is optimised for it to be dense. 273 * It tolerates holes in @fbatch (mapping entries at those indices are not 274 * modified). 275 * 276 * The function expects the i_pages lock to be held. 277 */ 278 static void page_cache_delete_batch(struct address_space *mapping, 279 struct folio_batch *fbatch) 280 { 281 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 282 long total_pages = 0; 283 int i = 0; 284 struct folio *folio; 285 286 mapping_set_update(&xas, mapping); 287 xas_for_each(&xas, folio, ULONG_MAX) { 288 if (i >= folio_batch_count(fbatch)) 289 break; 290 291 /* A swap/dax/shadow entry got inserted? Skip it. */ 292 if (xa_is_value(folio)) 293 continue; 294 /* 295 * A page got inserted in our range? Skip it. We have our 296 * pages locked so they are protected from being removed. 297 * If we see a page whose index is higher than ours, it 298 * means our page has been removed, which shouldn't be 299 * possible because we're holding the PageLock. 300 */ 301 if (folio != fbatch->folios[i]) { 302 VM_BUG_ON_FOLIO(folio->index > 303 fbatch->folios[i]->index, folio); 304 continue; 305 } 306 307 WARN_ON_ONCE(!folio_test_locked(folio)); 308 309 folio->mapping = NULL; 310 /* Leave folio->index set: truncation lookup relies on it */ 311 312 i++; 313 xas_store(&xas, NULL); 314 total_pages += folio_nr_pages(folio); 315 } 316 mapping->nrpages -= total_pages; 317 } 318 319 void delete_from_page_cache_batch(struct address_space *mapping, 320 struct folio_batch *fbatch) 321 { 322 int i; 323 324 if (!folio_batch_count(fbatch)) 325 return; 326 327 spin_lock(&mapping->host->i_lock); 328 xa_lock_irq(&mapping->i_pages); 329 for (i = 0; i < folio_batch_count(fbatch); i++) { 330 struct folio *folio = fbatch->folios[i]; 331 332 trace_mm_filemap_delete_from_page_cache(folio); 333 filemap_unaccount_folio(mapping, folio); 334 } 335 page_cache_delete_batch(mapping, fbatch); 336 xa_unlock_irq(&mapping->i_pages); 337 if (mapping_shrinkable(mapping)) 338 inode_add_lru(mapping->host); 339 spin_unlock(&mapping->host->i_lock); 340 341 for (i = 0; i < folio_batch_count(fbatch); i++) 342 filemap_free_folio(mapping, fbatch->folios[i]); 343 } 344 345 int filemap_check_errors(struct address_space *mapping) 346 { 347 int ret = 0; 348 /* Check for outstanding write errors */ 349 if (test_bit(AS_ENOSPC, &mapping->flags) && 350 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 351 ret = -ENOSPC; 352 if (test_bit(AS_EIO, &mapping->flags) && 353 test_and_clear_bit(AS_EIO, &mapping->flags)) 354 ret = -EIO; 355 return ret; 356 } 357 EXPORT_SYMBOL(filemap_check_errors); 358 359 static int filemap_check_and_keep_errors(struct address_space *mapping) 360 { 361 /* Check for outstanding write errors */ 362 if (test_bit(AS_EIO, &mapping->flags)) 363 return -EIO; 364 if (test_bit(AS_ENOSPC, &mapping->flags)) 365 return -ENOSPC; 366 return 0; 367 } 368 369 /** 370 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 371 * @mapping: address space structure to write 372 * @wbc: the writeback_control controlling the writeout 373 * 374 * Call writepages on the mapping using the provided wbc to control the 375 * writeout. 376 * 377 * Return: %0 on success, negative error code otherwise. 378 */ 379 int filemap_fdatawrite_wbc(struct address_space *mapping, 380 struct writeback_control *wbc) 381 { 382 int ret; 383 384 if (!mapping_can_writeback(mapping) || 385 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 386 return 0; 387 388 wbc_attach_fdatawrite_inode(wbc, mapping->host); 389 ret = do_writepages(mapping, wbc); 390 wbc_detach_inode(wbc); 391 return ret; 392 } 393 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 394 395 /** 396 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 397 * @mapping: address space structure to write 398 * @start: offset in bytes where the range starts 399 * @end: offset in bytes where the range ends (inclusive) 400 * @sync_mode: enable synchronous operation 401 * 402 * Start writeback against all of a mapping's dirty pages that lie 403 * within the byte offsets <start, end> inclusive. 404 * 405 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 406 * opposed to a regular memory cleansing writeback. The difference between 407 * these two operations is that if a dirty page/buffer is encountered, it must 408 * be waited upon, and not just skipped over. 409 * 410 * Return: %0 on success, negative error code otherwise. 411 */ 412 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 413 loff_t end, int sync_mode) 414 { 415 struct writeback_control wbc = { 416 .sync_mode = sync_mode, 417 .nr_to_write = LONG_MAX, 418 .range_start = start, 419 .range_end = end, 420 }; 421 422 return filemap_fdatawrite_wbc(mapping, &wbc); 423 } 424 425 static inline int __filemap_fdatawrite(struct address_space *mapping, 426 int sync_mode) 427 { 428 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 429 } 430 431 int filemap_fdatawrite(struct address_space *mapping) 432 { 433 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 434 } 435 EXPORT_SYMBOL(filemap_fdatawrite); 436 437 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 438 loff_t end) 439 { 440 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 441 } 442 EXPORT_SYMBOL(filemap_fdatawrite_range); 443 444 /** 445 * filemap_fdatawrite_range_kick - start writeback on a range 446 * @mapping: target address_space 447 * @start: index to start writeback on 448 * @end: last (inclusive) index for writeback 449 * 450 * This is a non-integrity writeback helper, to start writing back folios 451 * for the indicated range. 452 * 453 * Return: %0 on success, negative error code otherwise. 454 */ 455 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 456 loff_t end) 457 { 458 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 459 } 460 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 461 462 /** 463 * filemap_flush - mostly a non-blocking flush 464 * @mapping: target address_space 465 * 466 * This is a mostly non-blocking flush. Not suitable for data-integrity 467 * purposes - I/O may not be started against all dirty pages. 468 * 469 * Return: %0 on success, negative error code otherwise. 470 */ 471 int filemap_flush(struct address_space *mapping) 472 { 473 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 474 } 475 EXPORT_SYMBOL(filemap_flush); 476 477 /** 478 * filemap_range_has_page - check if a page exists in range. 479 * @mapping: address space within which to check 480 * @start_byte: offset in bytes where the range starts 481 * @end_byte: offset in bytes where the range ends (inclusive) 482 * 483 * Find at least one page in the range supplied, usually used to check if 484 * direct writing in this range will trigger a writeback. 485 * 486 * Return: %true if at least one page exists in the specified range, 487 * %false otherwise. 488 */ 489 bool filemap_range_has_page(struct address_space *mapping, 490 loff_t start_byte, loff_t end_byte) 491 { 492 struct folio *folio; 493 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 494 pgoff_t max = end_byte >> PAGE_SHIFT; 495 496 if (end_byte < start_byte) 497 return false; 498 499 rcu_read_lock(); 500 for (;;) { 501 folio = xas_find(&xas, max); 502 if (xas_retry(&xas, folio)) 503 continue; 504 /* Shadow entries don't count */ 505 if (xa_is_value(folio)) 506 continue; 507 /* 508 * We don't need to try to pin this page; we're about to 509 * release the RCU lock anyway. It is enough to know that 510 * there was a page here recently. 511 */ 512 break; 513 } 514 rcu_read_unlock(); 515 516 return folio != NULL; 517 } 518 EXPORT_SYMBOL(filemap_range_has_page); 519 520 static void __filemap_fdatawait_range(struct address_space *mapping, 521 loff_t start_byte, loff_t end_byte) 522 { 523 pgoff_t index = start_byte >> PAGE_SHIFT; 524 pgoff_t end = end_byte >> PAGE_SHIFT; 525 struct folio_batch fbatch; 526 unsigned nr_folios; 527 528 folio_batch_init(&fbatch); 529 530 while (index <= end) { 531 unsigned i; 532 533 nr_folios = filemap_get_folios_tag(mapping, &index, end, 534 PAGECACHE_TAG_WRITEBACK, &fbatch); 535 536 if (!nr_folios) 537 break; 538 539 for (i = 0; i < nr_folios; i++) { 540 struct folio *folio = fbatch.folios[i]; 541 542 folio_wait_writeback(folio); 543 } 544 folio_batch_release(&fbatch); 545 cond_resched(); 546 } 547 } 548 549 /** 550 * filemap_fdatawait_range - wait for writeback to complete 551 * @mapping: address space structure to wait for 552 * @start_byte: offset in bytes where the range starts 553 * @end_byte: offset in bytes where the range ends (inclusive) 554 * 555 * Walk the list of under-writeback pages of the given address space 556 * in the given range and wait for all of them. Check error status of 557 * the address space and return it. 558 * 559 * Since the error status of the address space is cleared by this function, 560 * callers are responsible for checking the return value and handling and/or 561 * reporting the error. 562 * 563 * Return: error status of the address space. 564 */ 565 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 566 loff_t end_byte) 567 { 568 __filemap_fdatawait_range(mapping, start_byte, end_byte); 569 return filemap_check_errors(mapping); 570 } 571 EXPORT_SYMBOL(filemap_fdatawait_range); 572 573 /** 574 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 575 * @mapping: address space structure to wait for 576 * @start_byte: offset in bytes where the range starts 577 * @end_byte: offset in bytes where the range ends (inclusive) 578 * 579 * Walk the list of under-writeback pages of the given address space in the 580 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 581 * this function does not clear error status of the address space. 582 * 583 * Use this function if callers don't handle errors themselves. Expected 584 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 585 * fsfreeze(8) 586 */ 587 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 588 loff_t start_byte, loff_t end_byte) 589 { 590 __filemap_fdatawait_range(mapping, start_byte, end_byte); 591 return filemap_check_and_keep_errors(mapping); 592 } 593 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 594 595 /** 596 * file_fdatawait_range - wait for writeback to complete 597 * @file: file pointing to address space structure to wait for 598 * @start_byte: offset in bytes where the range starts 599 * @end_byte: offset in bytes where the range ends (inclusive) 600 * 601 * Walk the list of under-writeback pages of the address space that file 602 * refers to, in the given range and wait for all of them. Check error 603 * status of the address space vs. the file->f_wb_err cursor and return it. 604 * 605 * Since the error status of the file is advanced by this function, 606 * callers are responsible for checking the return value and handling and/or 607 * reporting the error. 608 * 609 * Return: error status of the address space vs. the file->f_wb_err cursor. 610 */ 611 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 612 { 613 struct address_space *mapping = file->f_mapping; 614 615 __filemap_fdatawait_range(mapping, start_byte, end_byte); 616 return file_check_and_advance_wb_err(file); 617 } 618 EXPORT_SYMBOL(file_fdatawait_range); 619 620 /** 621 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 622 * @mapping: address space structure to wait for 623 * 624 * Walk the list of under-writeback pages of the given address space 625 * and wait for all of them. Unlike filemap_fdatawait(), this function 626 * does not clear error status of the address space. 627 * 628 * Use this function if callers don't handle errors themselves. Expected 629 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 630 * fsfreeze(8) 631 * 632 * Return: error status of the address space. 633 */ 634 int filemap_fdatawait_keep_errors(struct address_space *mapping) 635 { 636 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 637 return filemap_check_and_keep_errors(mapping); 638 } 639 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 640 641 /* Returns true if writeback might be needed or already in progress. */ 642 static bool mapping_needs_writeback(struct address_space *mapping) 643 { 644 return mapping->nrpages; 645 } 646 647 bool filemap_range_has_writeback(struct address_space *mapping, 648 loff_t start_byte, loff_t end_byte) 649 { 650 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 651 pgoff_t max = end_byte >> PAGE_SHIFT; 652 struct folio *folio; 653 654 if (end_byte < start_byte) 655 return false; 656 657 rcu_read_lock(); 658 xas_for_each(&xas, folio, max) { 659 if (xas_retry(&xas, folio)) 660 continue; 661 if (xa_is_value(folio)) 662 continue; 663 if (folio_test_dirty(folio) || folio_test_locked(folio) || 664 folio_test_writeback(folio)) 665 break; 666 } 667 rcu_read_unlock(); 668 return folio != NULL; 669 } 670 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 671 672 /** 673 * filemap_write_and_wait_range - write out & wait on a file range 674 * @mapping: the address_space for the pages 675 * @lstart: offset in bytes where the range starts 676 * @lend: offset in bytes where the range ends (inclusive) 677 * 678 * Write out and wait upon file offsets lstart->lend, inclusive. 679 * 680 * Note that @lend is inclusive (describes the last byte to be written) so 681 * that this function can be used to write to the very end-of-file (end = -1). 682 * 683 * Return: error status of the address space. 684 */ 685 int filemap_write_and_wait_range(struct address_space *mapping, 686 loff_t lstart, loff_t lend) 687 { 688 int err = 0, err2; 689 690 if (lend < lstart) 691 return 0; 692 693 if (mapping_needs_writeback(mapping)) { 694 err = __filemap_fdatawrite_range(mapping, lstart, lend, 695 WB_SYNC_ALL); 696 /* 697 * Even if the above returned error, the pages may be 698 * written partially (e.g. -ENOSPC), so we wait for it. 699 * But the -EIO is special case, it may indicate the worst 700 * thing (e.g. bug) happened, so we avoid waiting for it. 701 */ 702 if (err != -EIO) 703 __filemap_fdatawait_range(mapping, lstart, lend); 704 } 705 err2 = filemap_check_errors(mapping); 706 if (!err) 707 err = err2; 708 return err; 709 } 710 EXPORT_SYMBOL(filemap_write_and_wait_range); 711 712 void __filemap_set_wb_err(struct address_space *mapping, int err) 713 { 714 errseq_t eseq = errseq_set(&mapping->wb_err, err); 715 716 trace_filemap_set_wb_err(mapping, eseq); 717 } 718 EXPORT_SYMBOL(__filemap_set_wb_err); 719 720 /** 721 * file_check_and_advance_wb_err - report wb error (if any) that was previously 722 * and advance wb_err to current one 723 * @file: struct file on which the error is being reported 724 * 725 * When userland calls fsync (or something like nfsd does the equivalent), we 726 * want to report any writeback errors that occurred since the last fsync (or 727 * since the file was opened if there haven't been any). 728 * 729 * Grab the wb_err from the mapping. If it matches what we have in the file, 730 * then just quickly return 0. The file is all caught up. 731 * 732 * If it doesn't match, then take the mapping value, set the "seen" flag in 733 * it and try to swap it into place. If it works, or another task beat us 734 * to it with the new value, then update the f_wb_err and return the error 735 * portion. The error at this point must be reported via proper channels 736 * (a'la fsync, or NFS COMMIT operation, etc.). 737 * 738 * While we handle mapping->wb_err with atomic operations, the f_wb_err 739 * value is protected by the f_lock since we must ensure that it reflects 740 * the latest value swapped in for this file descriptor. 741 * 742 * Return: %0 on success, negative error code otherwise. 743 */ 744 int file_check_and_advance_wb_err(struct file *file) 745 { 746 int err = 0; 747 errseq_t old = READ_ONCE(file->f_wb_err); 748 struct address_space *mapping = file->f_mapping; 749 750 /* Locklessly handle the common case where nothing has changed */ 751 if (errseq_check(&mapping->wb_err, old)) { 752 /* Something changed, must use slow path */ 753 spin_lock(&file->f_lock); 754 old = file->f_wb_err; 755 err = errseq_check_and_advance(&mapping->wb_err, 756 &file->f_wb_err); 757 trace_file_check_and_advance_wb_err(file, old); 758 spin_unlock(&file->f_lock); 759 } 760 761 /* 762 * We're mostly using this function as a drop in replacement for 763 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 764 * that the legacy code would have had on these flags. 765 */ 766 clear_bit(AS_EIO, &mapping->flags); 767 clear_bit(AS_ENOSPC, &mapping->flags); 768 return err; 769 } 770 EXPORT_SYMBOL(file_check_and_advance_wb_err); 771 772 /** 773 * file_write_and_wait_range - write out & wait on a file range 774 * @file: file pointing to address_space with pages 775 * @lstart: offset in bytes where the range starts 776 * @lend: offset in bytes where the range ends (inclusive) 777 * 778 * Write out and wait upon file offsets lstart->lend, inclusive. 779 * 780 * Note that @lend is inclusive (describes the last byte to be written) so 781 * that this function can be used to write to the very end-of-file (end = -1). 782 * 783 * After writing out and waiting on the data, we check and advance the 784 * f_wb_err cursor to the latest value, and return any errors detected there. 785 * 786 * Return: %0 on success, negative error code otherwise. 787 */ 788 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 789 { 790 int err = 0, err2; 791 struct address_space *mapping = file->f_mapping; 792 793 if (lend < lstart) 794 return 0; 795 796 if (mapping_needs_writeback(mapping)) { 797 err = __filemap_fdatawrite_range(mapping, lstart, lend, 798 WB_SYNC_ALL); 799 /* See comment of filemap_write_and_wait() */ 800 if (err != -EIO) 801 __filemap_fdatawait_range(mapping, lstart, lend); 802 } 803 err2 = file_check_and_advance_wb_err(file); 804 if (!err) 805 err = err2; 806 return err; 807 } 808 EXPORT_SYMBOL(file_write_and_wait_range); 809 810 /** 811 * replace_page_cache_folio - replace a pagecache folio with a new one 812 * @old: folio to be replaced 813 * @new: folio to replace with 814 * 815 * This function replaces a folio in the pagecache with a new one. On 816 * success it acquires the pagecache reference for the new folio and 817 * drops it for the old folio. Both the old and new folios must be 818 * locked. This function does not add the new folio to the LRU, the 819 * caller must do that. 820 * 821 * The remove + add is atomic. This function cannot fail. 822 */ 823 void replace_page_cache_folio(struct folio *old, struct folio *new) 824 { 825 struct address_space *mapping = old->mapping; 826 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 827 pgoff_t offset = old->index; 828 XA_STATE(xas, &mapping->i_pages, offset); 829 830 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 831 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 832 VM_BUG_ON_FOLIO(new->mapping, new); 833 834 folio_get(new); 835 new->mapping = mapping; 836 new->index = offset; 837 838 mem_cgroup_replace_folio(old, new); 839 840 xas_lock_irq(&xas); 841 xas_store(&xas, new); 842 843 old->mapping = NULL; 844 /* hugetlb pages do not participate in page cache accounting. */ 845 if (!folio_test_hugetlb(old)) 846 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 847 if (!folio_test_hugetlb(new)) 848 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 849 if (folio_test_swapbacked(old)) 850 __lruvec_stat_sub_folio(old, NR_SHMEM); 851 if (folio_test_swapbacked(new)) 852 __lruvec_stat_add_folio(new, NR_SHMEM); 853 xas_unlock_irq(&xas); 854 if (free_folio) 855 free_folio(old); 856 folio_put(old); 857 } 858 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 859 860 noinline int __filemap_add_folio(struct address_space *mapping, 861 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 862 { 863 XA_STATE(xas, &mapping->i_pages, index); 864 void *alloced_shadow = NULL; 865 int alloced_order = 0; 866 bool huge; 867 long nr; 868 869 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 871 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 872 folio); 873 mapping_set_update(&xas, mapping); 874 875 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 876 xas_set_order(&xas, index, folio_order(folio)); 877 huge = folio_test_hugetlb(folio); 878 nr = folio_nr_pages(folio); 879 880 gfp &= GFP_RECLAIM_MASK; 881 folio_ref_add(folio, nr); 882 folio->mapping = mapping; 883 folio->index = xas.xa_index; 884 885 for (;;) { 886 int order = -1, split_order = 0; 887 void *entry, *old = NULL; 888 889 xas_lock_irq(&xas); 890 xas_for_each_conflict(&xas, entry) { 891 old = entry; 892 if (!xa_is_value(entry)) { 893 xas_set_err(&xas, -EEXIST); 894 goto unlock; 895 } 896 /* 897 * If a larger entry exists, 898 * it will be the first and only entry iterated. 899 */ 900 if (order == -1) 901 order = xas_get_order(&xas); 902 } 903 904 /* entry may have changed before we re-acquire the lock */ 905 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 906 xas_destroy(&xas); 907 alloced_order = 0; 908 } 909 910 if (old) { 911 if (order > 0 && order > folio_order(folio)) { 912 /* How to handle large swap entries? */ 913 BUG_ON(shmem_mapping(mapping)); 914 if (!alloced_order) { 915 split_order = order; 916 goto unlock; 917 } 918 xas_split(&xas, old, order); 919 xas_reset(&xas); 920 } 921 if (shadowp) 922 *shadowp = old; 923 } 924 925 xas_store(&xas, folio); 926 if (xas_error(&xas)) 927 goto unlock; 928 929 mapping->nrpages += nr; 930 931 /* hugetlb pages do not participate in page cache accounting */ 932 if (!huge) { 933 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 934 if (folio_test_pmd_mappable(folio)) 935 __lruvec_stat_mod_folio(folio, 936 NR_FILE_THPS, nr); 937 } 938 939 unlock: 940 xas_unlock_irq(&xas); 941 942 /* split needed, alloc here and retry. */ 943 if (split_order) { 944 xas_split_alloc(&xas, old, split_order, gfp); 945 if (xas_error(&xas)) 946 goto error; 947 alloced_shadow = old; 948 alloced_order = split_order; 949 xas_reset(&xas); 950 continue; 951 } 952 953 if (!xas_nomem(&xas, gfp)) 954 break; 955 } 956 957 if (xas_error(&xas)) 958 goto error; 959 960 trace_mm_filemap_add_to_page_cache(folio); 961 return 0; 962 error: 963 folio->mapping = NULL; 964 /* Leave page->index set: truncation relies upon it */ 965 folio_put_refs(folio, nr); 966 return xas_error(&xas); 967 } 968 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 969 970 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 971 pgoff_t index, gfp_t gfp) 972 { 973 void *shadow = NULL; 974 int ret; 975 976 ret = mem_cgroup_charge(folio, NULL, gfp); 977 if (ret) 978 return ret; 979 980 __folio_set_locked(folio); 981 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 982 if (unlikely(ret)) { 983 mem_cgroup_uncharge(folio); 984 __folio_clear_locked(folio); 985 } else { 986 /* 987 * The folio might have been evicted from cache only 988 * recently, in which case it should be activated like 989 * any other repeatedly accessed folio. 990 * The exception is folios getting rewritten; evicting other 991 * data from the working set, only to cache data that will 992 * get overwritten with something else, is a waste of memory. 993 */ 994 WARN_ON_ONCE(folio_test_active(folio)); 995 if (!(gfp & __GFP_WRITE) && shadow) 996 workingset_refault(folio, shadow); 997 folio_add_lru(folio); 998 } 999 return ret; 1000 } 1001 EXPORT_SYMBOL_GPL(filemap_add_folio); 1002 1003 #ifdef CONFIG_NUMA 1004 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1005 { 1006 int n; 1007 struct folio *folio; 1008 1009 if (cpuset_do_page_mem_spread()) { 1010 unsigned int cpuset_mems_cookie; 1011 do { 1012 cpuset_mems_cookie = read_mems_allowed_begin(); 1013 n = cpuset_mem_spread_node(); 1014 folio = __folio_alloc_node_noprof(gfp, order, n); 1015 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1016 1017 return folio; 1018 } 1019 return folio_alloc_noprof(gfp, order); 1020 } 1021 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1022 #endif 1023 1024 /* 1025 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1026 * 1027 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1028 * 1029 * @mapping1: the first mapping to lock 1030 * @mapping2: the second mapping to lock 1031 */ 1032 void filemap_invalidate_lock_two(struct address_space *mapping1, 1033 struct address_space *mapping2) 1034 { 1035 if (mapping1 > mapping2) 1036 swap(mapping1, mapping2); 1037 if (mapping1) 1038 down_write(&mapping1->invalidate_lock); 1039 if (mapping2 && mapping1 != mapping2) 1040 down_write_nested(&mapping2->invalidate_lock, 1); 1041 } 1042 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1043 1044 /* 1045 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1046 * 1047 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1048 * 1049 * @mapping1: the first mapping to unlock 1050 * @mapping2: the second mapping to unlock 1051 */ 1052 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1053 struct address_space *mapping2) 1054 { 1055 if (mapping1) 1056 up_write(&mapping1->invalidate_lock); 1057 if (mapping2 && mapping1 != mapping2) 1058 up_write(&mapping2->invalidate_lock); 1059 } 1060 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1061 1062 /* 1063 * In order to wait for pages to become available there must be 1064 * waitqueues associated with pages. By using a hash table of 1065 * waitqueues where the bucket discipline is to maintain all 1066 * waiters on the same queue and wake all when any of the pages 1067 * become available, and for the woken contexts to check to be 1068 * sure the appropriate page became available, this saves space 1069 * at a cost of "thundering herd" phenomena during rare hash 1070 * collisions. 1071 */ 1072 #define PAGE_WAIT_TABLE_BITS 8 1073 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1074 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1075 1076 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1077 { 1078 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1079 } 1080 1081 /* How many times do we accept lock stealing from under a waiter? */ 1082 static int sysctl_page_lock_unfairness = 5; 1083 static const struct ctl_table filemap_sysctl_table[] = { 1084 { 1085 .procname = "page_lock_unfairness", 1086 .data = &sysctl_page_lock_unfairness, 1087 .maxlen = sizeof(sysctl_page_lock_unfairness), 1088 .mode = 0644, 1089 .proc_handler = proc_dointvec_minmax, 1090 .extra1 = SYSCTL_ZERO, 1091 } 1092 }; 1093 1094 void __init pagecache_init(void) 1095 { 1096 int i; 1097 1098 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1099 init_waitqueue_head(&folio_wait_table[i]); 1100 1101 page_writeback_init(); 1102 register_sysctl_init("vm", filemap_sysctl_table); 1103 } 1104 1105 /* 1106 * The page wait code treats the "wait->flags" somewhat unusually, because 1107 * we have multiple different kinds of waits, not just the usual "exclusive" 1108 * one. 1109 * 1110 * We have: 1111 * 1112 * (a) no special bits set: 1113 * 1114 * We're just waiting for the bit to be released, and when a waker 1115 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1116 * and remove it from the wait queue. 1117 * 1118 * Simple and straightforward. 1119 * 1120 * (b) WQ_FLAG_EXCLUSIVE: 1121 * 1122 * The waiter is waiting to get the lock, and only one waiter should 1123 * be woken up to avoid any thundering herd behavior. We'll set the 1124 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1125 * 1126 * This is the traditional exclusive wait. 1127 * 1128 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1129 * 1130 * The waiter is waiting to get the bit, and additionally wants the 1131 * lock to be transferred to it for fair lock behavior. If the lock 1132 * cannot be taken, we stop walking the wait queue without waking 1133 * the waiter. 1134 * 1135 * This is the "fair lock handoff" case, and in addition to setting 1136 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1137 * that it now has the lock. 1138 */ 1139 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1140 { 1141 unsigned int flags; 1142 struct wait_page_key *key = arg; 1143 struct wait_page_queue *wait_page 1144 = container_of(wait, struct wait_page_queue, wait); 1145 1146 if (!wake_page_match(wait_page, key)) 1147 return 0; 1148 1149 /* 1150 * If it's a lock handoff wait, we get the bit for it, and 1151 * stop walking (and do not wake it up) if we can't. 1152 */ 1153 flags = wait->flags; 1154 if (flags & WQ_FLAG_EXCLUSIVE) { 1155 if (test_bit(key->bit_nr, &key->folio->flags)) 1156 return -1; 1157 if (flags & WQ_FLAG_CUSTOM) { 1158 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1159 return -1; 1160 flags |= WQ_FLAG_DONE; 1161 } 1162 } 1163 1164 /* 1165 * We are holding the wait-queue lock, but the waiter that 1166 * is waiting for this will be checking the flags without 1167 * any locking. 1168 * 1169 * So update the flags atomically, and wake up the waiter 1170 * afterwards to avoid any races. This store-release pairs 1171 * with the load-acquire in folio_wait_bit_common(). 1172 */ 1173 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1174 wake_up_state(wait->private, mode); 1175 1176 /* 1177 * Ok, we have successfully done what we're waiting for, 1178 * and we can unconditionally remove the wait entry. 1179 * 1180 * Note that this pairs with the "finish_wait()" in the 1181 * waiter, and has to be the absolute last thing we do. 1182 * After this list_del_init(&wait->entry) the wait entry 1183 * might be de-allocated and the process might even have 1184 * exited. 1185 */ 1186 list_del_init_careful(&wait->entry); 1187 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1188 } 1189 1190 static void folio_wake_bit(struct folio *folio, int bit_nr) 1191 { 1192 wait_queue_head_t *q = folio_waitqueue(folio); 1193 struct wait_page_key key; 1194 unsigned long flags; 1195 1196 key.folio = folio; 1197 key.bit_nr = bit_nr; 1198 key.page_match = 0; 1199 1200 spin_lock_irqsave(&q->lock, flags); 1201 __wake_up_locked_key(q, TASK_NORMAL, &key); 1202 1203 /* 1204 * It's possible to miss clearing waiters here, when we woke our page 1205 * waiters, but the hashed waitqueue has waiters for other pages on it. 1206 * That's okay, it's a rare case. The next waker will clear it. 1207 * 1208 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1209 * other), the flag may be cleared in the course of freeing the page; 1210 * but that is not required for correctness. 1211 */ 1212 if (!waitqueue_active(q) || !key.page_match) 1213 folio_clear_waiters(folio); 1214 1215 spin_unlock_irqrestore(&q->lock, flags); 1216 } 1217 1218 /* 1219 * A choice of three behaviors for folio_wait_bit_common(): 1220 */ 1221 enum behavior { 1222 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1223 * __folio_lock() waiting on then setting PG_locked. 1224 */ 1225 SHARED, /* Hold ref to page and check the bit when woken, like 1226 * folio_wait_writeback() waiting on PG_writeback. 1227 */ 1228 DROP, /* Drop ref to page before wait, no check when woken, 1229 * like folio_put_wait_locked() on PG_locked. 1230 */ 1231 }; 1232 1233 /* 1234 * Attempt to check (or get) the folio flag, and mark us done 1235 * if successful. 1236 */ 1237 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1238 struct wait_queue_entry *wait) 1239 { 1240 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1241 if (test_and_set_bit(bit_nr, &folio->flags)) 1242 return false; 1243 } else if (test_bit(bit_nr, &folio->flags)) 1244 return false; 1245 1246 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1247 return true; 1248 } 1249 1250 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1251 int state, enum behavior behavior) 1252 { 1253 wait_queue_head_t *q = folio_waitqueue(folio); 1254 int unfairness = sysctl_page_lock_unfairness; 1255 struct wait_page_queue wait_page; 1256 wait_queue_entry_t *wait = &wait_page.wait; 1257 bool thrashing = false; 1258 unsigned long pflags; 1259 bool in_thrashing; 1260 1261 if (bit_nr == PG_locked && 1262 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1263 delayacct_thrashing_start(&in_thrashing); 1264 psi_memstall_enter(&pflags); 1265 thrashing = true; 1266 } 1267 1268 init_wait(wait); 1269 wait->func = wake_page_function; 1270 wait_page.folio = folio; 1271 wait_page.bit_nr = bit_nr; 1272 1273 repeat: 1274 wait->flags = 0; 1275 if (behavior == EXCLUSIVE) { 1276 wait->flags = WQ_FLAG_EXCLUSIVE; 1277 if (--unfairness < 0) 1278 wait->flags |= WQ_FLAG_CUSTOM; 1279 } 1280 1281 /* 1282 * Do one last check whether we can get the 1283 * page bit synchronously. 1284 * 1285 * Do the folio_set_waiters() marking before that 1286 * to let any waker we _just_ missed know they 1287 * need to wake us up (otherwise they'll never 1288 * even go to the slow case that looks at the 1289 * page queue), and add ourselves to the wait 1290 * queue if we need to sleep. 1291 * 1292 * This part needs to be done under the queue 1293 * lock to avoid races. 1294 */ 1295 spin_lock_irq(&q->lock); 1296 folio_set_waiters(folio); 1297 if (!folio_trylock_flag(folio, bit_nr, wait)) 1298 __add_wait_queue_entry_tail(q, wait); 1299 spin_unlock_irq(&q->lock); 1300 1301 /* 1302 * From now on, all the logic will be based on 1303 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1304 * see whether the page bit testing has already 1305 * been done by the wake function. 1306 * 1307 * We can drop our reference to the folio. 1308 */ 1309 if (behavior == DROP) 1310 folio_put(folio); 1311 1312 /* 1313 * Note that until the "finish_wait()", or until 1314 * we see the WQ_FLAG_WOKEN flag, we need to 1315 * be very careful with the 'wait->flags', because 1316 * we may race with a waker that sets them. 1317 */ 1318 for (;;) { 1319 unsigned int flags; 1320 1321 set_current_state(state); 1322 1323 /* Loop until we've been woken or interrupted */ 1324 flags = smp_load_acquire(&wait->flags); 1325 if (!(flags & WQ_FLAG_WOKEN)) { 1326 if (signal_pending_state(state, current)) 1327 break; 1328 1329 io_schedule(); 1330 continue; 1331 } 1332 1333 /* If we were non-exclusive, we're done */ 1334 if (behavior != EXCLUSIVE) 1335 break; 1336 1337 /* If the waker got the lock for us, we're done */ 1338 if (flags & WQ_FLAG_DONE) 1339 break; 1340 1341 /* 1342 * Otherwise, if we're getting the lock, we need to 1343 * try to get it ourselves. 1344 * 1345 * And if that fails, we'll have to retry this all. 1346 */ 1347 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1348 goto repeat; 1349 1350 wait->flags |= WQ_FLAG_DONE; 1351 break; 1352 } 1353 1354 /* 1355 * If a signal happened, this 'finish_wait()' may remove the last 1356 * waiter from the wait-queues, but the folio waiters bit will remain 1357 * set. That's ok. The next wakeup will take care of it, and trying 1358 * to do it here would be difficult and prone to races. 1359 */ 1360 finish_wait(q, wait); 1361 1362 if (thrashing) { 1363 delayacct_thrashing_end(&in_thrashing); 1364 psi_memstall_leave(&pflags); 1365 } 1366 1367 /* 1368 * NOTE! The wait->flags weren't stable until we've done the 1369 * 'finish_wait()', and we could have exited the loop above due 1370 * to a signal, and had a wakeup event happen after the signal 1371 * test but before the 'finish_wait()'. 1372 * 1373 * So only after the finish_wait() can we reliably determine 1374 * if we got woken up or not, so we can now figure out the final 1375 * return value based on that state without races. 1376 * 1377 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1378 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1379 */ 1380 if (behavior == EXCLUSIVE) 1381 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1382 1383 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1384 } 1385 1386 #ifdef CONFIG_MIGRATION 1387 /** 1388 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1389 * @entry: migration swap entry. 1390 * @ptl: already locked ptl. This function will drop the lock. 1391 * 1392 * Wait for a migration entry referencing the given page to be removed. This is 1393 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1394 * this can be called without taking a reference on the page. Instead this 1395 * should be called while holding the ptl for the migration entry referencing 1396 * the page. 1397 * 1398 * Returns after unlocking the ptl. 1399 * 1400 * This follows the same logic as folio_wait_bit_common() so see the comments 1401 * there. 1402 */ 1403 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1404 __releases(ptl) 1405 { 1406 struct wait_page_queue wait_page; 1407 wait_queue_entry_t *wait = &wait_page.wait; 1408 bool thrashing = false; 1409 unsigned long pflags; 1410 bool in_thrashing; 1411 wait_queue_head_t *q; 1412 struct folio *folio = pfn_swap_entry_folio(entry); 1413 1414 q = folio_waitqueue(folio); 1415 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1416 delayacct_thrashing_start(&in_thrashing); 1417 psi_memstall_enter(&pflags); 1418 thrashing = true; 1419 } 1420 1421 init_wait(wait); 1422 wait->func = wake_page_function; 1423 wait_page.folio = folio; 1424 wait_page.bit_nr = PG_locked; 1425 wait->flags = 0; 1426 1427 spin_lock_irq(&q->lock); 1428 folio_set_waiters(folio); 1429 if (!folio_trylock_flag(folio, PG_locked, wait)) 1430 __add_wait_queue_entry_tail(q, wait); 1431 spin_unlock_irq(&q->lock); 1432 1433 /* 1434 * If a migration entry exists for the page the migration path must hold 1435 * a valid reference to the page, and it must take the ptl to remove the 1436 * migration entry. So the page is valid until the ptl is dropped. 1437 */ 1438 spin_unlock(ptl); 1439 1440 for (;;) { 1441 unsigned int flags; 1442 1443 set_current_state(TASK_UNINTERRUPTIBLE); 1444 1445 /* Loop until we've been woken or interrupted */ 1446 flags = smp_load_acquire(&wait->flags); 1447 if (!(flags & WQ_FLAG_WOKEN)) { 1448 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1449 break; 1450 1451 io_schedule(); 1452 continue; 1453 } 1454 break; 1455 } 1456 1457 finish_wait(q, wait); 1458 1459 if (thrashing) { 1460 delayacct_thrashing_end(&in_thrashing); 1461 psi_memstall_leave(&pflags); 1462 } 1463 } 1464 #endif 1465 1466 void folio_wait_bit(struct folio *folio, int bit_nr) 1467 { 1468 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1469 } 1470 EXPORT_SYMBOL(folio_wait_bit); 1471 1472 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1473 { 1474 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1475 } 1476 EXPORT_SYMBOL(folio_wait_bit_killable); 1477 1478 /** 1479 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1480 * @folio: The folio to wait for. 1481 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1482 * 1483 * The caller should hold a reference on @folio. They expect the page to 1484 * become unlocked relatively soon, but do not wish to hold up migration 1485 * (for example) by holding the reference while waiting for the folio to 1486 * come unlocked. After this function returns, the caller should not 1487 * dereference @folio. 1488 * 1489 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1490 */ 1491 static int folio_put_wait_locked(struct folio *folio, int state) 1492 { 1493 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1494 } 1495 1496 /** 1497 * folio_unlock - Unlock a locked folio. 1498 * @folio: The folio. 1499 * 1500 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1501 * 1502 * Context: May be called from interrupt or process context. May not be 1503 * called from NMI context. 1504 */ 1505 void folio_unlock(struct folio *folio) 1506 { 1507 /* Bit 7 allows x86 to check the byte's sign bit */ 1508 BUILD_BUG_ON(PG_waiters != 7); 1509 BUILD_BUG_ON(PG_locked > 7); 1510 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1511 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1512 folio_wake_bit(folio, PG_locked); 1513 } 1514 EXPORT_SYMBOL(folio_unlock); 1515 1516 /** 1517 * folio_end_read - End read on a folio. 1518 * @folio: The folio. 1519 * @success: True if all reads completed successfully. 1520 * 1521 * When all reads against a folio have completed, filesystems should 1522 * call this function to let the pagecache know that no more reads 1523 * are outstanding. This will unlock the folio and wake up any thread 1524 * sleeping on the lock. The folio will also be marked uptodate if all 1525 * reads succeeded. 1526 * 1527 * Context: May be called from interrupt or process context. May not be 1528 * called from NMI context. 1529 */ 1530 void folio_end_read(struct folio *folio, bool success) 1531 { 1532 unsigned long mask = 1 << PG_locked; 1533 1534 /* Must be in bottom byte for x86 to work */ 1535 BUILD_BUG_ON(PG_uptodate > 7); 1536 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1537 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1538 1539 if (likely(success)) 1540 mask |= 1 << PG_uptodate; 1541 if (folio_xor_flags_has_waiters(folio, mask)) 1542 folio_wake_bit(folio, PG_locked); 1543 } 1544 EXPORT_SYMBOL(folio_end_read); 1545 1546 /** 1547 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1548 * @folio: The folio. 1549 * 1550 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1551 * it. The folio reference held for PG_private_2 being set is released. 1552 * 1553 * This is, for example, used when a netfs folio is being written to a local 1554 * disk cache, thereby allowing writes to the cache for the same folio to be 1555 * serialised. 1556 */ 1557 void folio_end_private_2(struct folio *folio) 1558 { 1559 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1560 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1561 folio_wake_bit(folio, PG_private_2); 1562 folio_put(folio); 1563 } 1564 EXPORT_SYMBOL(folio_end_private_2); 1565 1566 /** 1567 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1568 * @folio: The folio to wait on. 1569 * 1570 * Wait for PG_private_2 to be cleared on a folio. 1571 */ 1572 void folio_wait_private_2(struct folio *folio) 1573 { 1574 while (folio_test_private_2(folio)) 1575 folio_wait_bit(folio, PG_private_2); 1576 } 1577 EXPORT_SYMBOL(folio_wait_private_2); 1578 1579 /** 1580 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1581 * @folio: The folio to wait on. 1582 * 1583 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1584 * received by the calling task. 1585 * 1586 * Return: 1587 * - 0 if successful. 1588 * - -EINTR if a fatal signal was encountered. 1589 */ 1590 int folio_wait_private_2_killable(struct folio *folio) 1591 { 1592 int ret = 0; 1593 1594 while (folio_test_private_2(folio)) { 1595 ret = folio_wait_bit_killable(folio, PG_private_2); 1596 if (ret < 0) 1597 break; 1598 } 1599 1600 return ret; 1601 } 1602 EXPORT_SYMBOL(folio_wait_private_2_killable); 1603 1604 /* 1605 * If folio was marked as dropbehind, then pages should be dropped when writeback 1606 * completes. Do that now. If we fail, it's likely because of a big folio - 1607 * just reset dropbehind for that case and latter completions should invalidate. 1608 */ 1609 static void folio_end_dropbehind_write(struct folio *folio) 1610 { 1611 /* 1612 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1613 * but can happen if normal writeback just happens to find dirty folios 1614 * that were created as part of uncached writeback, and that writeback 1615 * would otherwise not need non-IRQ handling. Just skip the 1616 * invalidation in that case. 1617 */ 1618 if (in_task() && folio_trylock(folio)) { 1619 if (folio->mapping) 1620 folio_unmap_invalidate(folio->mapping, folio, 0); 1621 folio_unlock(folio); 1622 } 1623 } 1624 1625 /** 1626 * folio_end_writeback - End writeback against a folio. 1627 * @folio: The folio. 1628 * 1629 * The folio must actually be under writeback. 1630 * 1631 * Context: May be called from process or interrupt context. 1632 */ 1633 void folio_end_writeback(struct folio *folio) 1634 { 1635 bool folio_dropbehind = false; 1636 1637 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1638 1639 /* 1640 * folio_test_clear_reclaim() could be used here but it is an 1641 * atomic operation and overkill in this particular case. Failing 1642 * to shuffle a folio marked for immediate reclaim is too mild 1643 * a gain to justify taking an atomic operation penalty at the 1644 * end of every folio writeback. 1645 */ 1646 if (folio_test_reclaim(folio)) { 1647 folio_clear_reclaim(folio); 1648 folio_rotate_reclaimable(folio); 1649 } 1650 1651 /* 1652 * Writeback does not hold a folio reference of its own, relying 1653 * on truncation to wait for the clearing of PG_writeback. 1654 * But here we must make sure that the folio is not freed and 1655 * reused before the folio_wake_bit(). 1656 */ 1657 folio_get(folio); 1658 if (!folio_test_dirty(folio)) 1659 folio_dropbehind = folio_test_clear_dropbehind(folio); 1660 if (__folio_end_writeback(folio)) 1661 folio_wake_bit(folio, PG_writeback); 1662 acct_reclaim_writeback(folio); 1663 1664 if (folio_dropbehind) 1665 folio_end_dropbehind_write(folio); 1666 folio_put(folio); 1667 } 1668 EXPORT_SYMBOL(folio_end_writeback); 1669 1670 /** 1671 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1672 * @folio: The folio to lock 1673 */ 1674 void __folio_lock(struct folio *folio) 1675 { 1676 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1677 EXCLUSIVE); 1678 } 1679 EXPORT_SYMBOL(__folio_lock); 1680 1681 int __folio_lock_killable(struct folio *folio) 1682 { 1683 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1684 EXCLUSIVE); 1685 } 1686 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1687 1688 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1689 { 1690 struct wait_queue_head *q = folio_waitqueue(folio); 1691 int ret; 1692 1693 wait->folio = folio; 1694 wait->bit_nr = PG_locked; 1695 1696 spin_lock_irq(&q->lock); 1697 __add_wait_queue_entry_tail(q, &wait->wait); 1698 folio_set_waiters(folio); 1699 ret = !folio_trylock(folio); 1700 /* 1701 * If we were successful now, we know we're still on the 1702 * waitqueue as we're still under the lock. This means it's 1703 * safe to remove and return success, we know the callback 1704 * isn't going to trigger. 1705 */ 1706 if (!ret) 1707 __remove_wait_queue(q, &wait->wait); 1708 else 1709 ret = -EIOCBQUEUED; 1710 spin_unlock_irq(&q->lock); 1711 return ret; 1712 } 1713 1714 /* 1715 * Return values: 1716 * 0 - folio is locked. 1717 * non-zero - folio is not locked. 1718 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1719 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1720 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1721 * 1722 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1723 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1724 */ 1725 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1726 { 1727 unsigned int flags = vmf->flags; 1728 1729 if (fault_flag_allow_retry_first(flags)) { 1730 /* 1731 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1732 * released even though returning VM_FAULT_RETRY. 1733 */ 1734 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1735 return VM_FAULT_RETRY; 1736 1737 release_fault_lock(vmf); 1738 if (flags & FAULT_FLAG_KILLABLE) 1739 folio_wait_locked_killable(folio); 1740 else 1741 folio_wait_locked(folio); 1742 return VM_FAULT_RETRY; 1743 } 1744 if (flags & FAULT_FLAG_KILLABLE) { 1745 bool ret; 1746 1747 ret = __folio_lock_killable(folio); 1748 if (ret) { 1749 release_fault_lock(vmf); 1750 return VM_FAULT_RETRY; 1751 } 1752 } else { 1753 __folio_lock(folio); 1754 } 1755 1756 return 0; 1757 } 1758 1759 /** 1760 * page_cache_next_miss() - Find the next gap in the page cache. 1761 * @mapping: Mapping. 1762 * @index: Index. 1763 * @max_scan: Maximum range to search. 1764 * 1765 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1766 * gap with the lowest index. 1767 * 1768 * This function may be called under the rcu_read_lock. However, this will 1769 * not atomically search a snapshot of the cache at a single point in time. 1770 * For example, if a gap is created at index 5, then subsequently a gap is 1771 * created at index 10, page_cache_next_miss covering both indices may 1772 * return 10 if called under the rcu_read_lock. 1773 * 1774 * Return: The index of the gap if found, otherwise an index outside the 1775 * range specified (in which case 'return - index >= max_scan' will be true). 1776 * In the rare case of index wrap-around, 0 will be returned. 1777 */ 1778 pgoff_t page_cache_next_miss(struct address_space *mapping, 1779 pgoff_t index, unsigned long max_scan) 1780 { 1781 XA_STATE(xas, &mapping->i_pages, index); 1782 1783 while (max_scan--) { 1784 void *entry = xas_next(&xas); 1785 if (!entry || xa_is_value(entry)) 1786 return xas.xa_index; 1787 if (xas.xa_index == 0) 1788 return 0; 1789 } 1790 1791 return index + max_scan; 1792 } 1793 EXPORT_SYMBOL(page_cache_next_miss); 1794 1795 /** 1796 * page_cache_prev_miss() - Find the previous gap in the page cache. 1797 * @mapping: Mapping. 1798 * @index: Index. 1799 * @max_scan: Maximum range to search. 1800 * 1801 * Search the range [max(index - max_scan + 1, 0), index] for the 1802 * gap with the highest index. 1803 * 1804 * This function may be called under the rcu_read_lock. However, this will 1805 * not atomically search a snapshot of the cache at a single point in time. 1806 * For example, if a gap is created at index 10, then subsequently a gap is 1807 * created at index 5, page_cache_prev_miss() covering both indices may 1808 * return 5 if called under the rcu_read_lock. 1809 * 1810 * Return: The index of the gap if found, otherwise an index outside the 1811 * range specified (in which case 'index - return >= max_scan' will be true). 1812 * In the rare case of wrap-around, ULONG_MAX will be returned. 1813 */ 1814 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1815 pgoff_t index, unsigned long max_scan) 1816 { 1817 XA_STATE(xas, &mapping->i_pages, index); 1818 1819 while (max_scan--) { 1820 void *entry = xas_prev(&xas); 1821 if (!entry || xa_is_value(entry)) 1822 break; 1823 if (xas.xa_index == ULONG_MAX) 1824 break; 1825 } 1826 1827 return xas.xa_index; 1828 } 1829 EXPORT_SYMBOL(page_cache_prev_miss); 1830 1831 /* 1832 * Lockless page cache protocol: 1833 * On the lookup side: 1834 * 1. Load the folio from i_pages 1835 * 2. Increment the refcount if it's not zero 1836 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1837 * 1838 * On the removal side: 1839 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1840 * B. Remove the page from i_pages 1841 * C. Return the page to the page allocator 1842 * 1843 * This means that any page may have its reference count temporarily 1844 * increased by a speculative page cache (or GUP-fast) lookup as it can 1845 * be allocated by another user before the RCU grace period expires. 1846 * Because the refcount temporarily acquired here may end up being the 1847 * last refcount on the page, any page allocation must be freeable by 1848 * folio_put(). 1849 */ 1850 1851 /* 1852 * filemap_get_entry - Get a page cache entry. 1853 * @mapping: the address_space to search 1854 * @index: The page cache index. 1855 * 1856 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1857 * it is returned with an increased refcount. If it is a shadow entry 1858 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1859 * it is returned without further action. 1860 * 1861 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1862 */ 1863 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1864 { 1865 XA_STATE(xas, &mapping->i_pages, index); 1866 struct folio *folio; 1867 1868 rcu_read_lock(); 1869 repeat: 1870 xas_reset(&xas); 1871 folio = xas_load(&xas); 1872 if (xas_retry(&xas, folio)) 1873 goto repeat; 1874 /* 1875 * A shadow entry of a recently evicted page, or a swap entry from 1876 * shmem/tmpfs. Return it without attempting to raise page count. 1877 */ 1878 if (!folio || xa_is_value(folio)) 1879 goto out; 1880 1881 if (!folio_try_get(folio)) 1882 goto repeat; 1883 1884 if (unlikely(folio != xas_reload(&xas))) { 1885 folio_put(folio); 1886 goto repeat; 1887 } 1888 out: 1889 rcu_read_unlock(); 1890 1891 return folio; 1892 } 1893 1894 /** 1895 * __filemap_get_folio - Find and get a reference to a folio. 1896 * @mapping: The address_space to search. 1897 * @index: The page index. 1898 * @fgp_flags: %FGP flags modify how the folio is returned. 1899 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1900 * 1901 * Looks up the page cache entry at @mapping & @index. 1902 * 1903 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1904 * if the %GFP flags specified for %FGP_CREAT are atomic. 1905 * 1906 * If this function returns a folio, it is returned with an increased refcount. 1907 * 1908 * Return: The found folio or an ERR_PTR() otherwise. 1909 */ 1910 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1911 fgf_t fgp_flags, gfp_t gfp) 1912 { 1913 struct folio *folio; 1914 1915 repeat: 1916 folio = filemap_get_entry(mapping, index); 1917 if (xa_is_value(folio)) 1918 folio = NULL; 1919 if (!folio) 1920 goto no_page; 1921 1922 if (fgp_flags & FGP_LOCK) { 1923 if (fgp_flags & FGP_NOWAIT) { 1924 if (!folio_trylock(folio)) { 1925 folio_put(folio); 1926 return ERR_PTR(-EAGAIN); 1927 } 1928 } else { 1929 folio_lock(folio); 1930 } 1931 1932 /* Has the page been truncated? */ 1933 if (unlikely(folio->mapping != mapping)) { 1934 folio_unlock(folio); 1935 folio_put(folio); 1936 goto repeat; 1937 } 1938 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1939 } 1940 1941 if (fgp_flags & FGP_ACCESSED) 1942 folio_mark_accessed(folio); 1943 else if (fgp_flags & FGP_WRITE) { 1944 /* Clear idle flag for buffer write */ 1945 if (folio_test_idle(folio)) 1946 folio_clear_idle(folio); 1947 } 1948 1949 if (fgp_flags & FGP_STABLE) 1950 folio_wait_stable(folio); 1951 no_page: 1952 if (!folio && (fgp_flags & FGP_CREAT)) { 1953 unsigned int min_order = mapping_min_folio_order(mapping); 1954 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1955 int err; 1956 index = mapping_align_index(mapping, index); 1957 1958 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1959 gfp |= __GFP_WRITE; 1960 if (fgp_flags & FGP_NOFS) 1961 gfp &= ~__GFP_FS; 1962 if (fgp_flags & FGP_NOWAIT) { 1963 gfp &= ~GFP_KERNEL; 1964 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1965 } 1966 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1967 fgp_flags |= FGP_LOCK; 1968 1969 if (order > mapping_max_folio_order(mapping)) 1970 order = mapping_max_folio_order(mapping); 1971 /* If we're not aligned, allocate a smaller folio */ 1972 if (index & ((1UL << order) - 1)) 1973 order = __ffs(index); 1974 1975 do { 1976 gfp_t alloc_gfp = gfp; 1977 1978 err = -ENOMEM; 1979 if (order > min_order) 1980 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1981 folio = filemap_alloc_folio(alloc_gfp, order); 1982 if (!folio) 1983 continue; 1984 1985 /* Init accessed so avoid atomic mark_page_accessed later */ 1986 if (fgp_flags & FGP_ACCESSED) 1987 __folio_set_referenced(folio); 1988 if (fgp_flags & FGP_DONTCACHE) 1989 __folio_set_dropbehind(folio); 1990 1991 err = filemap_add_folio(mapping, folio, index, gfp); 1992 if (!err) 1993 break; 1994 folio_put(folio); 1995 folio = NULL; 1996 } while (order-- > min_order); 1997 1998 if (err == -EEXIST) 1999 goto repeat; 2000 if (err) { 2001 /* 2002 * When NOWAIT I/O fails to allocate folios this could 2003 * be due to a nonblocking memory allocation and not 2004 * because the system actually is out of memory. 2005 * Return -EAGAIN so that there caller retries in a 2006 * blocking fashion instead of propagating -ENOMEM 2007 * to the application. 2008 */ 2009 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 2010 err = -EAGAIN; 2011 return ERR_PTR(err); 2012 } 2013 /* 2014 * filemap_add_folio locks the page, and for mmap 2015 * we expect an unlocked page. 2016 */ 2017 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2018 folio_unlock(folio); 2019 } 2020 2021 if (!folio) 2022 return ERR_PTR(-ENOENT); 2023 /* not an uncached lookup, clear uncached if set */ 2024 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2025 folio_clear_dropbehind(folio); 2026 return folio; 2027 } 2028 EXPORT_SYMBOL(__filemap_get_folio); 2029 2030 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2031 xa_mark_t mark) 2032 { 2033 struct folio *folio; 2034 2035 retry: 2036 if (mark == XA_PRESENT) 2037 folio = xas_find(xas, max); 2038 else 2039 folio = xas_find_marked(xas, max, mark); 2040 2041 if (xas_retry(xas, folio)) 2042 goto retry; 2043 /* 2044 * A shadow entry of a recently evicted page, a swap 2045 * entry from shmem/tmpfs or a DAX entry. Return it 2046 * without attempting to raise page count. 2047 */ 2048 if (!folio || xa_is_value(folio)) 2049 return folio; 2050 2051 if (!folio_try_get(folio)) 2052 goto reset; 2053 2054 if (unlikely(folio != xas_reload(xas))) { 2055 folio_put(folio); 2056 goto reset; 2057 } 2058 2059 return folio; 2060 reset: 2061 xas_reset(xas); 2062 goto retry; 2063 } 2064 2065 /** 2066 * find_get_entries - gang pagecache lookup 2067 * @mapping: The address_space to search 2068 * @start: The starting page cache index 2069 * @end: The final page index (inclusive). 2070 * @fbatch: Where the resulting entries are placed. 2071 * @indices: The cache indices corresponding to the entries in @entries 2072 * 2073 * find_get_entries() will search for and return a batch of entries in 2074 * the mapping. The entries are placed in @fbatch. find_get_entries() 2075 * takes a reference on any actual folios it returns. 2076 * 2077 * The entries have ascending indexes. The indices may not be consecutive 2078 * due to not-present entries or large folios. 2079 * 2080 * Any shadow entries of evicted folios, or swap entries from 2081 * shmem/tmpfs, are included in the returned array. 2082 * 2083 * Return: The number of entries which were found. 2084 */ 2085 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2086 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2087 { 2088 XA_STATE(xas, &mapping->i_pages, *start); 2089 struct folio *folio; 2090 2091 rcu_read_lock(); 2092 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2093 indices[fbatch->nr] = xas.xa_index; 2094 if (!folio_batch_add(fbatch, folio)) 2095 break; 2096 } 2097 2098 if (folio_batch_count(fbatch)) { 2099 unsigned long nr; 2100 int idx = folio_batch_count(fbatch) - 1; 2101 2102 folio = fbatch->folios[idx]; 2103 if (!xa_is_value(folio)) 2104 nr = folio_nr_pages(folio); 2105 else 2106 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2107 *start = round_down(indices[idx] + nr, nr); 2108 } 2109 rcu_read_unlock(); 2110 2111 return folio_batch_count(fbatch); 2112 } 2113 2114 /** 2115 * find_lock_entries - Find a batch of pagecache entries. 2116 * @mapping: The address_space to search. 2117 * @start: The starting page cache index. 2118 * @end: The final page index (inclusive). 2119 * @fbatch: Where the resulting entries are placed. 2120 * @indices: The cache indices of the entries in @fbatch. 2121 * 2122 * find_lock_entries() will return a batch of entries from @mapping. 2123 * Swap, shadow and DAX entries are included. Folios are returned 2124 * locked and with an incremented refcount. Folios which are locked 2125 * by somebody else or under writeback are skipped. Folios which are 2126 * partially outside the range are not returned. 2127 * 2128 * The entries have ascending indexes. The indices may not be consecutive 2129 * due to not-present entries, large folios, folios which could not be 2130 * locked or folios under writeback. 2131 * 2132 * Return: The number of entries which were found. 2133 */ 2134 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2135 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2136 { 2137 XA_STATE(xas, &mapping->i_pages, *start); 2138 struct folio *folio; 2139 2140 rcu_read_lock(); 2141 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2142 unsigned long base; 2143 unsigned long nr; 2144 2145 if (!xa_is_value(folio)) { 2146 nr = folio_nr_pages(folio); 2147 base = folio->index; 2148 /* Omit large folio which begins before the start */ 2149 if (base < *start) 2150 goto put; 2151 /* Omit large folio which extends beyond the end */ 2152 if (base + nr - 1 > end) 2153 goto put; 2154 if (!folio_trylock(folio)) 2155 goto put; 2156 if (folio->mapping != mapping || 2157 folio_test_writeback(folio)) 2158 goto unlock; 2159 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2160 folio); 2161 } else { 2162 nr = 1 << xas_get_order(&xas); 2163 base = xas.xa_index & ~(nr - 1); 2164 /* Omit order>0 value which begins before the start */ 2165 if (base < *start) 2166 continue; 2167 /* Omit order>0 value which extends beyond the end */ 2168 if (base + nr - 1 > end) 2169 break; 2170 } 2171 2172 /* Update start now so that last update is correct on return */ 2173 *start = base + nr; 2174 indices[fbatch->nr] = xas.xa_index; 2175 if (!folio_batch_add(fbatch, folio)) 2176 break; 2177 continue; 2178 unlock: 2179 folio_unlock(folio); 2180 put: 2181 folio_put(folio); 2182 } 2183 rcu_read_unlock(); 2184 2185 return folio_batch_count(fbatch); 2186 } 2187 2188 /** 2189 * filemap_get_folios - Get a batch of folios 2190 * @mapping: The address_space to search 2191 * @start: The starting page index 2192 * @end: The final page index (inclusive) 2193 * @fbatch: The batch to fill. 2194 * 2195 * Search for and return a batch of folios in the mapping starting at 2196 * index @start and up to index @end (inclusive). The folios are returned 2197 * in @fbatch with an elevated reference count. 2198 * 2199 * Return: The number of folios which were found. 2200 * We also update @start to index the next folio for the traversal. 2201 */ 2202 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2203 pgoff_t end, struct folio_batch *fbatch) 2204 { 2205 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2206 } 2207 EXPORT_SYMBOL(filemap_get_folios); 2208 2209 /** 2210 * filemap_get_folios_contig - Get a batch of contiguous folios 2211 * @mapping: The address_space to search 2212 * @start: The starting page index 2213 * @end: The final page index (inclusive) 2214 * @fbatch: The batch to fill 2215 * 2216 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2217 * except the returned folios are guaranteed to be contiguous. This may 2218 * not return all contiguous folios if the batch gets filled up. 2219 * 2220 * Return: The number of folios found. 2221 * Also update @start to be positioned for traversal of the next folio. 2222 */ 2223 2224 unsigned filemap_get_folios_contig(struct address_space *mapping, 2225 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2226 { 2227 XA_STATE(xas, &mapping->i_pages, *start); 2228 unsigned long nr; 2229 struct folio *folio; 2230 2231 rcu_read_lock(); 2232 2233 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2234 folio = xas_next(&xas)) { 2235 if (xas_retry(&xas, folio)) 2236 continue; 2237 /* 2238 * If the entry has been swapped out, we can stop looking. 2239 * No current caller is looking for DAX entries. 2240 */ 2241 if (xa_is_value(folio)) 2242 goto update_start; 2243 2244 /* If we landed in the middle of a THP, continue at its end. */ 2245 if (xa_is_sibling(folio)) 2246 goto update_start; 2247 2248 if (!folio_try_get(folio)) 2249 goto retry; 2250 2251 if (unlikely(folio != xas_reload(&xas))) 2252 goto put_folio; 2253 2254 if (!folio_batch_add(fbatch, folio)) { 2255 nr = folio_nr_pages(folio); 2256 *start = folio->index + nr; 2257 goto out; 2258 } 2259 continue; 2260 put_folio: 2261 folio_put(folio); 2262 2263 retry: 2264 xas_reset(&xas); 2265 } 2266 2267 update_start: 2268 nr = folio_batch_count(fbatch); 2269 2270 if (nr) { 2271 folio = fbatch->folios[nr - 1]; 2272 *start = folio_next_index(folio); 2273 } 2274 out: 2275 rcu_read_unlock(); 2276 return folio_batch_count(fbatch); 2277 } 2278 EXPORT_SYMBOL(filemap_get_folios_contig); 2279 2280 /** 2281 * filemap_get_folios_tag - Get a batch of folios matching @tag 2282 * @mapping: The address_space to search 2283 * @start: The starting page index 2284 * @end: The final page index (inclusive) 2285 * @tag: The tag index 2286 * @fbatch: The batch to fill 2287 * 2288 * The first folio may start before @start; if it does, it will contain 2289 * @start. The final folio may extend beyond @end; if it does, it will 2290 * contain @end. The folios have ascending indices. There may be gaps 2291 * between the folios if there are indices which have no folio in the 2292 * page cache. If folios are added to or removed from the page cache 2293 * while this is running, they may or may not be found by this call. 2294 * Only returns folios that are tagged with @tag. 2295 * 2296 * Return: The number of folios found. 2297 * Also update @start to index the next folio for traversal. 2298 */ 2299 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2300 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2301 { 2302 XA_STATE(xas, &mapping->i_pages, *start); 2303 struct folio *folio; 2304 2305 rcu_read_lock(); 2306 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2307 /* 2308 * Shadow entries should never be tagged, but this iteration 2309 * is lockless so there is a window for page reclaim to evict 2310 * a page we saw tagged. Skip over it. 2311 */ 2312 if (xa_is_value(folio)) 2313 continue; 2314 if (!folio_batch_add(fbatch, folio)) { 2315 unsigned long nr = folio_nr_pages(folio); 2316 *start = folio->index + nr; 2317 goto out; 2318 } 2319 } 2320 /* 2321 * We come here when there is no page beyond @end. We take care to not 2322 * overflow the index @start as it confuses some of the callers. This 2323 * breaks the iteration when there is a page at index -1 but that is 2324 * already broke anyway. 2325 */ 2326 if (end == (pgoff_t)-1) 2327 *start = (pgoff_t)-1; 2328 else 2329 *start = end + 1; 2330 out: 2331 rcu_read_unlock(); 2332 2333 return folio_batch_count(fbatch); 2334 } 2335 EXPORT_SYMBOL(filemap_get_folios_tag); 2336 2337 /* 2338 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2339 * a _large_ part of the i/o request. Imagine the worst scenario: 2340 * 2341 * ---R__________________________________________B__________ 2342 * ^ reading here ^ bad block(assume 4k) 2343 * 2344 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2345 * => failing the whole request => read(R) => read(R+1) => 2346 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2347 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2348 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2349 * 2350 * It is going insane. Fix it by quickly scaling down the readahead size. 2351 */ 2352 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2353 { 2354 ra->ra_pages /= 4; 2355 } 2356 2357 /* 2358 * filemap_get_read_batch - Get a batch of folios for read 2359 * 2360 * Get a batch of folios which represent a contiguous range of bytes in 2361 * the file. No exceptional entries will be returned. If @index is in 2362 * the middle of a folio, the entire folio will be returned. The last 2363 * folio in the batch may have the readahead flag set or the uptodate flag 2364 * clear so that the caller can take the appropriate action. 2365 */ 2366 static void filemap_get_read_batch(struct address_space *mapping, 2367 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2368 { 2369 XA_STATE(xas, &mapping->i_pages, index); 2370 struct folio *folio; 2371 2372 rcu_read_lock(); 2373 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2374 if (xas_retry(&xas, folio)) 2375 continue; 2376 if (xas.xa_index > max || xa_is_value(folio)) 2377 break; 2378 if (xa_is_sibling(folio)) 2379 break; 2380 if (!folio_try_get(folio)) 2381 goto retry; 2382 2383 if (unlikely(folio != xas_reload(&xas))) 2384 goto put_folio; 2385 2386 if (!folio_batch_add(fbatch, folio)) 2387 break; 2388 if (!folio_test_uptodate(folio)) 2389 break; 2390 if (folio_test_readahead(folio)) 2391 break; 2392 xas_advance(&xas, folio_next_index(folio) - 1); 2393 continue; 2394 put_folio: 2395 folio_put(folio); 2396 retry: 2397 xas_reset(&xas); 2398 } 2399 rcu_read_unlock(); 2400 } 2401 2402 static int filemap_read_folio(struct file *file, filler_t filler, 2403 struct folio *folio) 2404 { 2405 bool workingset = folio_test_workingset(folio); 2406 unsigned long pflags; 2407 int error; 2408 2409 /* Start the actual read. The read will unlock the page. */ 2410 if (unlikely(workingset)) 2411 psi_memstall_enter(&pflags); 2412 error = filler(file, folio); 2413 if (unlikely(workingset)) 2414 psi_memstall_leave(&pflags); 2415 if (error) 2416 return error; 2417 2418 error = folio_wait_locked_killable(folio); 2419 if (error) 2420 return error; 2421 if (folio_test_uptodate(folio)) 2422 return 0; 2423 if (file) 2424 shrink_readahead_size_eio(&file->f_ra); 2425 return -EIO; 2426 } 2427 2428 static bool filemap_range_uptodate(struct address_space *mapping, 2429 loff_t pos, size_t count, struct folio *folio, 2430 bool need_uptodate) 2431 { 2432 if (folio_test_uptodate(folio)) 2433 return true; 2434 /* pipes can't handle partially uptodate pages */ 2435 if (need_uptodate) 2436 return false; 2437 if (!mapping->a_ops->is_partially_uptodate) 2438 return false; 2439 if (mapping->host->i_blkbits >= folio_shift(folio)) 2440 return false; 2441 2442 if (folio_pos(folio) > pos) { 2443 count -= folio_pos(folio) - pos; 2444 pos = 0; 2445 } else { 2446 pos -= folio_pos(folio); 2447 } 2448 2449 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2450 } 2451 2452 static int filemap_update_page(struct kiocb *iocb, 2453 struct address_space *mapping, size_t count, 2454 struct folio *folio, bool need_uptodate) 2455 { 2456 int error; 2457 2458 if (iocb->ki_flags & IOCB_NOWAIT) { 2459 if (!filemap_invalidate_trylock_shared(mapping)) 2460 return -EAGAIN; 2461 } else { 2462 filemap_invalidate_lock_shared(mapping); 2463 } 2464 2465 if (!folio_trylock(folio)) { 2466 error = -EAGAIN; 2467 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2468 goto unlock_mapping; 2469 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2470 filemap_invalidate_unlock_shared(mapping); 2471 /* 2472 * This is where we usually end up waiting for a 2473 * previously submitted readahead to finish. 2474 */ 2475 folio_put_wait_locked(folio, TASK_KILLABLE); 2476 return AOP_TRUNCATED_PAGE; 2477 } 2478 error = __folio_lock_async(folio, iocb->ki_waitq); 2479 if (error) 2480 goto unlock_mapping; 2481 } 2482 2483 error = AOP_TRUNCATED_PAGE; 2484 if (!folio->mapping) 2485 goto unlock; 2486 2487 error = 0; 2488 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2489 need_uptodate)) 2490 goto unlock; 2491 2492 error = -EAGAIN; 2493 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2494 goto unlock; 2495 2496 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2497 folio); 2498 goto unlock_mapping; 2499 unlock: 2500 folio_unlock(folio); 2501 unlock_mapping: 2502 filemap_invalidate_unlock_shared(mapping); 2503 if (error == AOP_TRUNCATED_PAGE) 2504 folio_put(folio); 2505 return error; 2506 } 2507 2508 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2509 { 2510 struct address_space *mapping = iocb->ki_filp->f_mapping; 2511 struct folio *folio; 2512 int error; 2513 unsigned int min_order = mapping_min_folio_order(mapping); 2514 pgoff_t index; 2515 2516 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2517 return -EAGAIN; 2518 2519 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2520 if (!folio) 2521 return -ENOMEM; 2522 if (iocb->ki_flags & IOCB_DONTCACHE) 2523 __folio_set_dropbehind(folio); 2524 2525 /* 2526 * Protect against truncate / hole punch. Grabbing invalidate_lock 2527 * here assures we cannot instantiate and bring uptodate new 2528 * pagecache folios after evicting page cache during truncate 2529 * and before actually freeing blocks. Note that we could 2530 * release invalidate_lock after inserting the folio into 2531 * the page cache as the locked folio would then be enough to 2532 * synchronize with hole punching. But there are code paths 2533 * such as filemap_update_page() filling in partially uptodate 2534 * pages or ->readahead() that need to hold invalidate_lock 2535 * while mapping blocks for IO so let's hold the lock here as 2536 * well to keep locking rules simple. 2537 */ 2538 filemap_invalidate_lock_shared(mapping); 2539 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2540 error = filemap_add_folio(mapping, folio, index, 2541 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2542 if (error == -EEXIST) 2543 error = AOP_TRUNCATED_PAGE; 2544 if (error) 2545 goto error; 2546 2547 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2548 folio); 2549 if (error) 2550 goto error; 2551 2552 filemap_invalidate_unlock_shared(mapping); 2553 folio_batch_add(fbatch, folio); 2554 return 0; 2555 error: 2556 filemap_invalidate_unlock_shared(mapping); 2557 folio_put(folio); 2558 return error; 2559 } 2560 2561 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2562 struct address_space *mapping, struct folio *folio, 2563 pgoff_t last_index) 2564 { 2565 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2566 2567 if (iocb->ki_flags & IOCB_NOIO) 2568 return -EAGAIN; 2569 if (iocb->ki_flags & IOCB_DONTCACHE) 2570 ractl.dropbehind = 1; 2571 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2572 return 0; 2573 } 2574 2575 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2576 struct folio_batch *fbatch, bool need_uptodate) 2577 { 2578 struct file *filp = iocb->ki_filp; 2579 struct address_space *mapping = filp->f_mapping; 2580 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2581 pgoff_t last_index; 2582 struct folio *folio; 2583 unsigned int flags; 2584 int err = 0; 2585 2586 /* "last_index" is the index of the page beyond the end of the read */ 2587 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2588 retry: 2589 if (fatal_signal_pending(current)) 2590 return -EINTR; 2591 2592 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2593 if (!folio_batch_count(fbatch)) { 2594 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2595 2596 if (iocb->ki_flags & IOCB_NOIO) 2597 return -EAGAIN; 2598 if (iocb->ki_flags & IOCB_NOWAIT) 2599 flags = memalloc_noio_save(); 2600 if (iocb->ki_flags & IOCB_DONTCACHE) 2601 ractl.dropbehind = 1; 2602 page_cache_sync_ra(&ractl, last_index - index); 2603 if (iocb->ki_flags & IOCB_NOWAIT) 2604 memalloc_noio_restore(flags); 2605 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2606 } 2607 if (!folio_batch_count(fbatch)) { 2608 err = filemap_create_folio(iocb, fbatch); 2609 if (err == AOP_TRUNCATED_PAGE) 2610 goto retry; 2611 return err; 2612 } 2613 2614 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2615 if (folio_test_readahead(folio)) { 2616 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2617 if (err) 2618 goto err; 2619 } 2620 if (!folio_test_uptodate(folio)) { 2621 if ((iocb->ki_flags & IOCB_WAITQ) && 2622 folio_batch_count(fbatch) > 1) 2623 iocb->ki_flags |= IOCB_NOWAIT; 2624 err = filemap_update_page(iocb, mapping, count, folio, 2625 need_uptodate); 2626 if (err) 2627 goto err; 2628 } 2629 2630 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2631 return 0; 2632 err: 2633 if (err < 0) 2634 folio_put(folio); 2635 if (likely(--fbatch->nr)) 2636 return 0; 2637 if (err == AOP_TRUNCATED_PAGE) 2638 goto retry; 2639 return err; 2640 } 2641 2642 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2643 { 2644 unsigned int shift = folio_shift(folio); 2645 2646 return (pos1 >> shift == pos2 >> shift); 2647 } 2648 2649 static void filemap_end_dropbehind_read(struct address_space *mapping, 2650 struct folio *folio) 2651 { 2652 if (!folio_test_dropbehind(folio)) 2653 return; 2654 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2655 return; 2656 if (folio_trylock(folio)) { 2657 if (folio_test_clear_dropbehind(folio)) 2658 folio_unmap_invalidate(mapping, folio, 0); 2659 folio_unlock(folio); 2660 } 2661 } 2662 2663 /** 2664 * filemap_read - Read data from the page cache. 2665 * @iocb: The iocb to read. 2666 * @iter: Destination for the data. 2667 * @already_read: Number of bytes already read by the caller. 2668 * 2669 * Copies data from the page cache. If the data is not currently present, 2670 * uses the readahead and read_folio address_space operations to fetch it. 2671 * 2672 * Return: Total number of bytes copied, including those already read by 2673 * the caller. If an error happens before any bytes are copied, returns 2674 * a negative error number. 2675 */ 2676 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2677 ssize_t already_read) 2678 { 2679 struct file *filp = iocb->ki_filp; 2680 struct file_ra_state *ra = &filp->f_ra; 2681 struct address_space *mapping = filp->f_mapping; 2682 struct inode *inode = mapping->host; 2683 struct folio_batch fbatch; 2684 int i, error = 0; 2685 bool writably_mapped; 2686 loff_t isize, end_offset; 2687 loff_t last_pos = ra->prev_pos; 2688 2689 if (unlikely(iocb->ki_pos < 0)) 2690 return -EINVAL; 2691 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2692 return 0; 2693 if (unlikely(!iov_iter_count(iter))) 2694 return 0; 2695 2696 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2697 folio_batch_init(&fbatch); 2698 2699 do { 2700 cond_resched(); 2701 2702 /* 2703 * If we've already successfully copied some data, then we 2704 * can no longer safely return -EIOCBQUEUED. Hence mark 2705 * an async read NOWAIT at that point. 2706 */ 2707 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2708 iocb->ki_flags |= IOCB_NOWAIT; 2709 2710 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2711 break; 2712 2713 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2714 if (error < 0) 2715 break; 2716 2717 /* 2718 * i_size must be checked after we know the pages are Uptodate. 2719 * 2720 * Checking i_size after the check allows us to calculate 2721 * the correct value for "nr", which means the zero-filled 2722 * part of the page is not copied back to userspace (unless 2723 * another truncate extends the file - this is desired though). 2724 */ 2725 isize = i_size_read(inode); 2726 if (unlikely(iocb->ki_pos >= isize)) 2727 goto put_folios; 2728 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2729 2730 /* 2731 * Once we start copying data, we don't want to be touching any 2732 * cachelines that might be contended: 2733 */ 2734 writably_mapped = mapping_writably_mapped(mapping); 2735 2736 /* 2737 * When a read accesses the same folio several times, only 2738 * mark it as accessed the first time. 2739 */ 2740 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2741 fbatch.folios[0])) 2742 folio_mark_accessed(fbatch.folios[0]); 2743 2744 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2745 struct folio *folio = fbatch.folios[i]; 2746 size_t fsize = folio_size(folio); 2747 size_t offset = iocb->ki_pos & (fsize - 1); 2748 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2749 fsize - offset); 2750 size_t copied; 2751 2752 if (end_offset < folio_pos(folio)) 2753 break; 2754 if (i > 0) 2755 folio_mark_accessed(folio); 2756 /* 2757 * If users can be writing to this folio using arbitrary 2758 * virtual addresses, take care of potential aliasing 2759 * before reading the folio on the kernel side. 2760 */ 2761 if (writably_mapped) 2762 flush_dcache_folio(folio); 2763 2764 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2765 2766 already_read += copied; 2767 iocb->ki_pos += copied; 2768 last_pos = iocb->ki_pos; 2769 2770 if (copied < bytes) { 2771 error = -EFAULT; 2772 break; 2773 } 2774 } 2775 put_folios: 2776 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2777 struct folio *folio = fbatch.folios[i]; 2778 2779 filemap_end_dropbehind_read(mapping, folio); 2780 folio_put(folio); 2781 } 2782 folio_batch_init(&fbatch); 2783 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2784 2785 file_accessed(filp); 2786 ra->prev_pos = last_pos; 2787 return already_read ? already_read : error; 2788 } 2789 EXPORT_SYMBOL_GPL(filemap_read); 2790 2791 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2792 { 2793 struct address_space *mapping = iocb->ki_filp->f_mapping; 2794 loff_t pos = iocb->ki_pos; 2795 loff_t end = pos + count - 1; 2796 2797 if (iocb->ki_flags & IOCB_NOWAIT) { 2798 if (filemap_range_needs_writeback(mapping, pos, end)) 2799 return -EAGAIN; 2800 return 0; 2801 } 2802 2803 return filemap_write_and_wait_range(mapping, pos, end); 2804 } 2805 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2806 2807 int filemap_invalidate_pages(struct address_space *mapping, 2808 loff_t pos, loff_t end, bool nowait) 2809 { 2810 int ret; 2811 2812 if (nowait) { 2813 /* we could block if there are any pages in the range */ 2814 if (filemap_range_has_page(mapping, pos, end)) 2815 return -EAGAIN; 2816 } else { 2817 ret = filemap_write_and_wait_range(mapping, pos, end); 2818 if (ret) 2819 return ret; 2820 } 2821 2822 /* 2823 * After a write we want buffered reads to be sure to go to disk to get 2824 * the new data. We invalidate clean cached page from the region we're 2825 * about to write. We do this *before* the write so that we can return 2826 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2827 */ 2828 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2829 end >> PAGE_SHIFT); 2830 } 2831 2832 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2833 { 2834 struct address_space *mapping = iocb->ki_filp->f_mapping; 2835 2836 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2837 iocb->ki_pos + count - 1, 2838 iocb->ki_flags & IOCB_NOWAIT); 2839 } 2840 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2841 2842 /** 2843 * generic_file_read_iter - generic filesystem read routine 2844 * @iocb: kernel I/O control block 2845 * @iter: destination for the data read 2846 * 2847 * This is the "read_iter()" routine for all filesystems 2848 * that can use the page cache directly. 2849 * 2850 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2851 * be returned when no data can be read without waiting for I/O requests 2852 * to complete; it doesn't prevent readahead. 2853 * 2854 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2855 * requests shall be made for the read or for readahead. When no data 2856 * can be read, -EAGAIN shall be returned. When readahead would be 2857 * triggered, a partial, possibly empty read shall be returned. 2858 * 2859 * Return: 2860 * * number of bytes copied, even for partial reads 2861 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2862 */ 2863 ssize_t 2864 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2865 { 2866 size_t count = iov_iter_count(iter); 2867 ssize_t retval = 0; 2868 2869 if (!count) 2870 return 0; /* skip atime */ 2871 2872 if (iocb->ki_flags & IOCB_DIRECT) { 2873 struct file *file = iocb->ki_filp; 2874 struct address_space *mapping = file->f_mapping; 2875 struct inode *inode = mapping->host; 2876 2877 retval = kiocb_write_and_wait(iocb, count); 2878 if (retval < 0) 2879 return retval; 2880 file_accessed(file); 2881 2882 retval = mapping->a_ops->direct_IO(iocb, iter); 2883 if (retval >= 0) { 2884 iocb->ki_pos += retval; 2885 count -= retval; 2886 } 2887 if (retval != -EIOCBQUEUED) 2888 iov_iter_revert(iter, count - iov_iter_count(iter)); 2889 2890 /* 2891 * Btrfs can have a short DIO read if we encounter 2892 * compressed extents, so if there was an error, or if 2893 * we've already read everything we wanted to, or if 2894 * there was a short read because we hit EOF, go ahead 2895 * and return. Otherwise fallthrough to buffered io for 2896 * the rest of the read. Buffered reads will not work for 2897 * DAX files, so don't bother trying. 2898 */ 2899 if (retval < 0 || !count || IS_DAX(inode)) 2900 return retval; 2901 if (iocb->ki_pos >= i_size_read(inode)) 2902 return retval; 2903 } 2904 2905 return filemap_read(iocb, iter, retval); 2906 } 2907 EXPORT_SYMBOL(generic_file_read_iter); 2908 2909 /* 2910 * Splice subpages from a folio into a pipe. 2911 */ 2912 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2913 struct folio *folio, loff_t fpos, size_t size) 2914 { 2915 struct page *page; 2916 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2917 2918 page = folio_page(folio, offset / PAGE_SIZE); 2919 size = min(size, folio_size(folio) - offset); 2920 offset %= PAGE_SIZE; 2921 2922 while (spliced < size && !pipe_is_full(pipe)) { 2923 struct pipe_buffer *buf = pipe_head_buf(pipe); 2924 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2925 2926 *buf = (struct pipe_buffer) { 2927 .ops = &page_cache_pipe_buf_ops, 2928 .page = page, 2929 .offset = offset, 2930 .len = part, 2931 }; 2932 folio_get(folio); 2933 pipe->head++; 2934 page++; 2935 spliced += part; 2936 offset = 0; 2937 } 2938 2939 return spliced; 2940 } 2941 2942 /** 2943 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2944 * @in: The file to read from 2945 * @ppos: Pointer to the file position to read from 2946 * @pipe: The pipe to splice into 2947 * @len: The amount to splice 2948 * @flags: The SPLICE_F_* flags 2949 * 2950 * This function gets folios from a file's pagecache and splices them into the 2951 * pipe. Readahead will be called as necessary to fill more folios. This may 2952 * be used for blockdevs also. 2953 * 2954 * Return: On success, the number of bytes read will be returned and *@ppos 2955 * will be updated if appropriate; 0 will be returned if there is no more data 2956 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2957 * other negative error code will be returned on error. A short read may occur 2958 * if the pipe has insufficient space, we reach the end of the data or we hit a 2959 * hole. 2960 */ 2961 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2962 struct pipe_inode_info *pipe, 2963 size_t len, unsigned int flags) 2964 { 2965 struct folio_batch fbatch; 2966 struct kiocb iocb; 2967 size_t total_spliced = 0, used, npages; 2968 loff_t isize, end_offset; 2969 bool writably_mapped; 2970 int i, error = 0; 2971 2972 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2973 return 0; 2974 2975 init_sync_kiocb(&iocb, in); 2976 iocb.ki_pos = *ppos; 2977 2978 /* Work out how much data we can actually add into the pipe */ 2979 used = pipe_buf_usage(pipe); 2980 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2981 len = min_t(size_t, len, npages * PAGE_SIZE); 2982 2983 folio_batch_init(&fbatch); 2984 2985 do { 2986 cond_resched(); 2987 2988 if (*ppos >= i_size_read(in->f_mapping->host)) 2989 break; 2990 2991 iocb.ki_pos = *ppos; 2992 error = filemap_get_pages(&iocb, len, &fbatch, true); 2993 if (error < 0) 2994 break; 2995 2996 /* 2997 * i_size must be checked after we know the pages are Uptodate. 2998 * 2999 * Checking i_size after the check allows us to calculate 3000 * the correct value for "nr", which means the zero-filled 3001 * part of the page is not copied back to userspace (unless 3002 * another truncate extends the file - this is desired though). 3003 */ 3004 isize = i_size_read(in->f_mapping->host); 3005 if (unlikely(*ppos >= isize)) 3006 break; 3007 end_offset = min_t(loff_t, isize, *ppos + len); 3008 3009 /* 3010 * Once we start copying data, we don't want to be touching any 3011 * cachelines that might be contended: 3012 */ 3013 writably_mapped = mapping_writably_mapped(in->f_mapping); 3014 3015 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3016 struct folio *folio = fbatch.folios[i]; 3017 size_t n; 3018 3019 if (folio_pos(folio) >= end_offset) 3020 goto out; 3021 folio_mark_accessed(folio); 3022 3023 /* 3024 * If users can be writing to this folio using arbitrary 3025 * virtual addresses, take care of potential aliasing 3026 * before reading the folio on the kernel side. 3027 */ 3028 if (writably_mapped) 3029 flush_dcache_folio(folio); 3030 3031 n = min_t(loff_t, len, isize - *ppos); 3032 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3033 if (!n) 3034 goto out; 3035 len -= n; 3036 total_spliced += n; 3037 *ppos += n; 3038 in->f_ra.prev_pos = *ppos; 3039 if (pipe_is_full(pipe)) 3040 goto out; 3041 } 3042 3043 folio_batch_release(&fbatch); 3044 } while (len); 3045 3046 out: 3047 folio_batch_release(&fbatch); 3048 file_accessed(in); 3049 3050 return total_spliced ? total_spliced : error; 3051 } 3052 EXPORT_SYMBOL(filemap_splice_read); 3053 3054 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3055 struct address_space *mapping, struct folio *folio, 3056 loff_t start, loff_t end, bool seek_data) 3057 { 3058 const struct address_space_operations *ops = mapping->a_ops; 3059 size_t offset, bsz = i_blocksize(mapping->host); 3060 3061 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3062 return seek_data ? start : end; 3063 if (!ops->is_partially_uptodate) 3064 return seek_data ? end : start; 3065 3066 xas_pause(xas); 3067 rcu_read_unlock(); 3068 folio_lock(folio); 3069 if (unlikely(folio->mapping != mapping)) 3070 goto unlock; 3071 3072 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3073 3074 do { 3075 if (ops->is_partially_uptodate(folio, offset, bsz) == 3076 seek_data) 3077 break; 3078 start = (start + bsz) & ~((u64)bsz - 1); 3079 offset += bsz; 3080 } while (offset < folio_size(folio)); 3081 unlock: 3082 folio_unlock(folio); 3083 rcu_read_lock(); 3084 return start; 3085 } 3086 3087 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3088 { 3089 if (xa_is_value(folio)) 3090 return PAGE_SIZE << xas_get_order(xas); 3091 return folio_size(folio); 3092 } 3093 3094 /** 3095 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3096 * @mapping: Address space to search. 3097 * @start: First byte to consider. 3098 * @end: Limit of search (exclusive). 3099 * @whence: Either SEEK_HOLE or SEEK_DATA. 3100 * 3101 * If the page cache knows which blocks contain holes and which blocks 3102 * contain data, your filesystem can use this function to implement 3103 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3104 * entirely memory-based such as tmpfs, and filesystems which support 3105 * unwritten extents. 3106 * 3107 * Return: The requested offset on success, or -ENXIO if @whence specifies 3108 * SEEK_DATA and there is no data after @start. There is an implicit hole 3109 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3110 * and @end contain data. 3111 */ 3112 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3113 loff_t end, int whence) 3114 { 3115 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3116 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3117 bool seek_data = (whence == SEEK_DATA); 3118 struct folio *folio; 3119 3120 if (end <= start) 3121 return -ENXIO; 3122 3123 rcu_read_lock(); 3124 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3125 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3126 size_t seek_size; 3127 3128 if (start < pos) { 3129 if (!seek_data) 3130 goto unlock; 3131 start = pos; 3132 } 3133 3134 seek_size = seek_folio_size(&xas, folio); 3135 pos = round_up((u64)pos + 1, seek_size); 3136 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3137 seek_data); 3138 if (start < pos) 3139 goto unlock; 3140 if (start >= end) 3141 break; 3142 if (seek_size > PAGE_SIZE) 3143 xas_set(&xas, pos >> PAGE_SHIFT); 3144 if (!xa_is_value(folio)) 3145 folio_put(folio); 3146 } 3147 if (seek_data) 3148 start = -ENXIO; 3149 unlock: 3150 rcu_read_unlock(); 3151 if (folio && !xa_is_value(folio)) 3152 folio_put(folio); 3153 if (start > end) 3154 return end; 3155 return start; 3156 } 3157 3158 #ifdef CONFIG_MMU 3159 #define MMAP_LOTSAMISS (100) 3160 /* 3161 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3162 * @vmf - the vm_fault for this fault. 3163 * @folio - the folio to lock. 3164 * @fpin - the pointer to the file we may pin (or is already pinned). 3165 * 3166 * This works similar to lock_folio_or_retry in that it can drop the 3167 * mmap_lock. It differs in that it actually returns the folio locked 3168 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3169 * to drop the mmap_lock then fpin will point to the pinned file and 3170 * needs to be fput()'ed at a later point. 3171 */ 3172 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3173 struct file **fpin) 3174 { 3175 if (folio_trylock(folio)) 3176 return 1; 3177 3178 /* 3179 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3180 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3181 * is supposed to work. We have way too many special cases.. 3182 */ 3183 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3184 return 0; 3185 3186 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3187 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3188 if (__folio_lock_killable(folio)) { 3189 /* 3190 * We didn't have the right flags to drop the 3191 * fault lock, but all fault_handlers only check 3192 * for fatal signals if we return VM_FAULT_RETRY, 3193 * so we need to drop the fault lock here and 3194 * return 0 if we don't have a fpin. 3195 */ 3196 if (*fpin == NULL) 3197 release_fault_lock(vmf); 3198 return 0; 3199 } 3200 } else 3201 __folio_lock(folio); 3202 3203 return 1; 3204 } 3205 3206 /* 3207 * Synchronous readahead happens when we don't even find a page in the page 3208 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3209 * to drop the mmap sem we return the file that was pinned in order for us to do 3210 * that. If we didn't pin a file then we return NULL. The file that is 3211 * returned needs to be fput()'ed when we're done with it. 3212 */ 3213 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3214 { 3215 struct file *file = vmf->vma->vm_file; 3216 struct file_ra_state *ra = &file->f_ra; 3217 struct address_space *mapping = file->f_mapping; 3218 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3219 struct file *fpin = NULL; 3220 unsigned long vm_flags = vmf->vma->vm_flags; 3221 unsigned int mmap_miss; 3222 3223 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3224 /* Use the readahead code, even if readahead is disabled */ 3225 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3226 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3227 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3228 ra->size = HPAGE_PMD_NR; 3229 /* 3230 * Fetch two PMD folios, so we get the chance to actually 3231 * readahead, unless we've been told not to. 3232 */ 3233 if (!(vm_flags & VM_RAND_READ)) 3234 ra->size *= 2; 3235 ra->async_size = HPAGE_PMD_NR; 3236 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3237 return fpin; 3238 } 3239 #endif 3240 3241 /* If we don't want any read-ahead, don't bother */ 3242 if (vm_flags & VM_RAND_READ) 3243 return fpin; 3244 if (!ra->ra_pages) 3245 return fpin; 3246 3247 if (vm_flags & VM_SEQ_READ) { 3248 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3249 page_cache_sync_ra(&ractl, ra->ra_pages); 3250 return fpin; 3251 } 3252 3253 /* Avoid banging the cache line if not needed */ 3254 mmap_miss = READ_ONCE(ra->mmap_miss); 3255 if (mmap_miss < MMAP_LOTSAMISS * 10) 3256 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3257 3258 /* 3259 * Do we miss much more than hit in this file? If so, 3260 * stop bothering with read-ahead. It will only hurt. 3261 */ 3262 if (mmap_miss > MMAP_LOTSAMISS) 3263 return fpin; 3264 3265 /* 3266 * mmap read-around 3267 */ 3268 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3269 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3270 ra->size = ra->ra_pages; 3271 ra->async_size = ra->ra_pages / 4; 3272 ractl._index = ra->start; 3273 page_cache_ra_order(&ractl, ra, 0); 3274 return fpin; 3275 } 3276 3277 /* 3278 * Asynchronous readahead happens when we find the page and PG_readahead, 3279 * so we want to possibly extend the readahead further. We return the file that 3280 * was pinned if we have to drop the mmap_lock in order to do IO. 3281 */ 3282 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3283 struct folio *folio) 3284 { 3285 struct file *file = vmf->vma->vm_file; 3286 struct file_ra_state *ra = &file->f_ra; 3287 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3288 struct file *fpin = NULL; 3289 unsigned int mmap_miss; 3290 3291 /* If we don't want any read-ahead, don't bother */ 3292 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3293 return fpin; 3294 3295 mmap_miss = READ_ONCE(ra->mmap_miss); 3296 if (mmap_miss) 3297 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3298 3299 if (folio_test_readahead(folio)) { 3300 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3301 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3302 } 3303 return fpin; 3304 } 3305 3306 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3307 { 3308 struct vm_area_struct *vma = vmf->vma; 3309 vm_fault_t ret = 0; 3310 pte_t *ptep; 3311 3312 /* 3313 * We might have COW'ed a pagecache folio and might now have an mlocked 3314 * anon folio mapped. The original pagecache folio is not mlocked and 3315 * might have been evicted. During a read+clear/modify/write update of 3316 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3317 * temporarily clear the PTE under PT lock and might detect it here as 3318 * "none" when not holding the PT lock. 3319 * 3320 * Not rechecking the PTE under PT lock could result in an unexpected 3321 * major fault in an mlock'ed region. Recheck only for this special 3322 * scenario while holding the PT lock, to not degrade non-mlocked 3323 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3324 * the number of times we hold PT lock. 3325 */ 3326 if (!(vma->vm_flags & VM_LOCKED)) 3327 return 0; 3328 3329 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3330 return 0; 3331 3332 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3333 &vmf->ptl); 3334 if (unlikely(!ptep)) 3335 return VM_FAULT_NOPAGE; 3336 3337 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3338 ret = VM_FAULT_NOPAGE; 3339 } else { 3340 spin_lock(vmf->ptl); 3341 if (unlikely(!pte_none(ptep_get(ptep)))) 3342 ret = VM_FAULT_NOPAGE; 3343 spin_unlock(vmf->ptl); 3344 } 3345 pte_unmap(ptep); 3346 return ret; 3347 } 3348 3349 /** 3350 * filemap_fault - read in file data for page fault handling 3351 * @vmf: struct vm_fault containing details of the fault 3352 * 3353 * filemap_fault() is invoked via the vma operations vector for a 3354 * mapped memory region to read in file data during a page fault. 3355 * 3356 * The goto's are kind of ugly, but this streamlines the normal case of having 3357 * it in the page cache, and handles the special cases reasonably without 3358 * having a lot of duplicated code. 3359 * 3360 * vma->vm_mm->mmap_lock must be held on entry. 3361 * 3362 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3363 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3364 * 3365 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3366 * has not been released. 3367 * 3368 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3369 * 3370 * Return: bitwise-OR of %VM_FAULT_ codes. 3371 */ 3372 vm_fault_t filemap_fault(struct vm_fault *vmf) 3373 { 3374 int error; 3375 struct file *file = vmf->vma->vm_file; 3376 struct file *fpin = NULL; 3377 struct address_space *mapping = file->f_mapping; 3378 struct inode *inode = mapping->host; 3379 pgoff_t max_idx, index = vmf->pgoff; 3380 struct folio *folio; 3381 vm_fault_t ret = 0; 3382 bool mapping_locked = false; 3383 3384 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3385 if (unlikely(index >= max_idx)) 3386 return VM_FAULT_SIGBUS; 3387 3388 trace_mm_filemap_fault(mapping, index); 3389 3390 /* 3391 * Do we have something in the page cache already? 3392 */ 3393 folio = filemap_get_folio(mapping, index); 3394 if (likely(!IS_ERR(folio))) { 3395 /* 3396 * We found the page, so try async readahead before waiting for 3397 * the lock. 3398 */ 3399 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3400 fpin = do_async_mmap_readahead(vmf, folio); 3401 if (unlikely(!folio_test_uptodate(folio))) { 3402 filemap_invalidate_lock_shared(mapping); 3403 mapping_locked = true; 3404 } 3405 } else { 3406 ret = filemap_fault_recheck_pte_none(vmf); 3407 if (unlikely(ret)) 3408 return ret; 3409 3410 /* No page in the page cache at all */ 3411 count_vm_event(PGMAJFAULT); 3412 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3413 ret = VM_FAULT_MAJOR; 3414 fpin = do_sync_mmap_readahead(vmf); 3415 retry_find: 3416 /* 3417 * See comment in filemap_create_folio() why we need 3418 * invalidate_lock 3419 */ 3420 if (!mapping_locked) { 3421 filemap_invalidate_lock_shared(mapping); 3422 mapping_locked = true; 3423 } 3424 folio = __filemap_get_folio(mapping, index, 3425 FGP_CREAT|FGP_FOR_MMAP, 3426 vmf->gfp_mask); 3427 if (IS_ERR(folio)) { 3428 if (fpin) 3429 goto out_retry; 3430 filemap_invalidate_unlock_shared(mapping); 3431 return VM_FAULT_OOM; 3432 } 3433 } 3434 3435 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3436 goto out_retry; 3437 3438 /* Did it get truncated? */ 3439 if (unlikely(folio->mapping != mapping)) { 3440 folio_unlock(folio); 3441 folio_put(folio); 3442 goto retry_find; 3443 } 3444 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3445 3446 /* 3447 * We have a locked folio in the page cache, now we need to check 3448 * that it's up-to-date. If not, it is going to be due to an error, 3449 * or because readahead was otherwise unable to retrieve it. 3450 */ 3451 if (unlikely(!folio_test_uptodate(folio))) { 3452 /* 3453 * If the invalidate lock is not held, the folio was in cache 3454 * and uptodate and now it is not. Strange but possible since we 3455 * didn't hold the page lock all the time. Let's drop 3456 * everything, get the invalidate lock and try again. 3457 */ 3458 if (!mapping_locked) { 3459 folio_unlock(folio); 3460 folio_put(folio); 3461 goto retry_find; 3462 } 3463 3464 /* 3465 * OK, the folio is really not uptodate. This can be because the 3466 * VMA has the VM_RAND_READ flag set, or because an error 3467 * arose. Let's read it in directly. 3468 */ 3469 goto page_not_uptodate; 3470 } 3471 3472 /* 3473 * We've made it this far and we had to drop our mmap_lock, now is the 3474 * time to return to the upper layer and have it re-find the vma and 3475 * redo the fault. 3476 */ 3477 if (fpin) { 3478 folio_unlock(folio); 3479 goto out_retry; 3480 } 3481 if (mapping_locked) 3482 filemap_invalidate_unlock_shared(mapping); 3483 3484 /* 3485 * Found the page and have a reference on it. 3486 * We must recheck i_size under page lock. 3487 */ 3488 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3489 if (unlikely(index >= max_idx)) { 3490 folio_unlock(folio); 3491 folio_put(folio); 3492 return VM_FAULT_SIGBUS; 3493 } 3494 3495 vmf->page = folio_file_page(folio, index); 3496 return ret | VM_FAULT_LOCKED; 3497 3498 page_not_uptodate: 3499 /* 3500 * Umm, take care of errors if the page isn't up-to-date. 3501 * Try to re-read it _once_. We do this synchronously, 3502 * because there really aren't any performance issues here 3503 * and we need to check for errors. 3504 */ 3505 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3506 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3507 if (fpin) 3508 goto out_retry; 3509 folio_put(folio); 3510 3511 if (!error || error == AOP_TRUNCATED_PAGE) 3512 goto retry_find; 3513 filemap_invalidate_unlock_shared(mapping); 3514 3515 return VM_FAULT_SIGBUS; 3516 3517 out_retry: 3518 /* 3519 * We dropped the mmap_lock, we need to return to the fault handler to 3520 * re-find the vma and come back and find our hopefully still populated 3521 * page. 3522 */ 3523 if (!IS_ERR(folio)) 3524 folio_put(folio); 3525 if (mapping_locked) 3526 filemap_invalidate_unlock_shared(mapping); 3527 if (fpin) 3528 fput(fpin); 3529 return ret | VM_FAULT_RETRY; 3530 } 3531 EXPORT_SYMBOL(filemap_fault); 3532 3533 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3534 pgoff_t start) 3535 { 3536 struct mm_struct *mm = vmf->vma->vm_mm; 3537 3538 /* Huge page is mapped? No need to proceed. */ 3539 if (pmd_trans_huge(*vmf->pmd)) { 3540 folio_unlock(folio); 3541 folio_put(folio); 3542 return true; 3543 } 3544 3545 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3546 struct page *page = folio_file_page(folio, start); 3547 vm_fault_t ret = do_set_pmd(vmf, page); 3548 if (!ret) { 3549 /* The page is mapped successfully, reference consumed. */ 3550 folio_unlock(folio); 3551 return true; 3552 } 3553 } 3554 3555 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3556 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3557 3558 return false; 3559 } 3560 3561 static struct folio *next_uptodate_folio(struct xa_state *xas, 3562 struct address_space *mapping, pgoff_t end_pgoff) 3563 { 3564 struct folio *folio = xas_next_entry(xas, end_pgoff); 3565 unsigned long max_idx; 3566 3567 do { 3568 if (!folio) 3569 return NULL; 3570 if (xas_retry(xas, folio)) 3571 continue; 3572 if (xa_is_value(folio)) 3573 continue; 3574 if (!folio_try_get(folio)) 3575 continue; 3576 if (folio_test_locked(folio)) 3577 goto skip; 3578 /* Has the page moved or been split? */ 3579 if (unlikely(folio != xas_reload(xas))) 3580 goto skip; 3581 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3582 goto skip; 3583 if (!folio_trylock(folio)) 3584 goto skip; 3585 if (folio->mapping != mapping) 3586 goto unlock; 3587 if (!folio_test_uptodate(folio)) 3588 goto unlock; 3589 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3590 if (xas->xa_index >= max_idx) 3591 goto unlock; 3592 return folio; 3593 unlock: 3594 folio_unlock(folio); 3595 skip: 3596 folio_put(folio); 3597 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3598 3599 return NULL; 3600 } 3601 3602 /* 3603 * Map page range [start_page, start_page + nr_pages) of folio. 3604 * start_page is gotten from start by folio_page(folio, start) 3605 */ 3606 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3607 struct folio *folio, unsigned long start, 3608 unsigned long addr, unsigned int nr_pages, 3609 unsigned long *rss, unsigned int *mmap_miss) 3610 { 3611 vm_fault_t ret = 0; 3612 struct page *page = folio_page(folio, start); 3613 unsigned int count = 0; 3614 pte_t *old_ptep = vmf->pte; 3615 3616 do { 3617 if (PageHWPoison(page + count)) 3618 goto skip; 3619 3620 /* 3621 * If there are too many folios that are recently evicted 3622 * in a file, they will probably continue to be evicted. 3623 * In such situation, read-ahead is only a waste of IO. 3624 * Don't decrease mmap_miss in this scenario to make sure 3625 * we can stop read-ahead. 3626 */ 3627 if (!folio_test_workingset(folio)) 3628 (*mmap_miss)++; 3629 3630 /* 3631 * NOTE: If there're PTE markers, we'll leave them to be 3632 * handled in the specific fault path, and it'll prohibit the 3633 * fault-around logic. 3634 */ 3635 if (!pte_none(ptep_get(&vmf->pte[count]))) 3636 goto skip; 3637 3638 count++; 3639 continue; 3640 skip: 3641 if (count) { 3642 set_pte_range(vmf, folio, page, count, addr); 3643 *rss += count; 3644 folio_ref_add(folio, count); 3645 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3646 ret = VM_FAULT_NOPAGE; 3647 } 3648 3649 count++; 3650 page += count; 3651 vmf->pte += count; 3652 addr += count * PAGE_SIZE; 3653 count = 0; 3654 } while (--nr_pages > 0); 3655 3656 if (count) { 3657 set_pte_range(vmf, folio, page, count, addr); 3658 *rss += count; 3659 folio_ref_add(folio, count); 3660 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3661 ret = VM_FAULT_NOPAGE; 3662 } 3663 3664 vmf->pte = old_ptep; 3665 3666 return ret; 3667 } 3668 3669 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3670 struct folio *folio, unsigned long addr, 3671 unsigned long *rss, unsigned int *mmap_miss) 3672 { 3673 vm_fault_t ret = 0; 3674 struct page *page = &folio->page; 3675 3676 if (PageHWPoison(page)) 3677 return ret; 3678 3679 /* See comment of filemap_map_folio_range() */ 3680 if (!folio_test_workingset(folio)) 3681 (*mmap_miss)++; 3682 3683 /* 3684 * NOTE: If there're PTE markers, we'll leave them to be 3685 * handled in the specific fault path, and it'll prohibit 3686 * the fault-around logic. 3687 */ 3688 if (!pte_none(ptep_get(vmf->pte))) 3689 return ret; 3690 3691 if (vmf->address == addr) 3692 ret = VM_FAULT_NOPAGE; 3693 3694 set_pte_range(vmf, folio, page, 1, addr); 3695 (*rss)++; 3696 folio_ref_inc(folio); 3697 3698 return ret; 3699 } 3700 3701 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3702 pgoff_t start_pgoff, pgoff_t end_pgoff) 3703 { 3704 struct vm_area_struct *vma = vmf->vma; 3705 struct file *file = vma->vm_file; 3706 struct address_space *mapping = file->f_mapping; 3707 pgoff_t file_end, last_pgoff = start_pgoff; 3708 unsigned long addr; 3709 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3710 struct folio *folio; 3711 vm_fault_t ret = 0; 3712 unsigned long rss = 0; 3713 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3714 3715 rcu_read_lock(); 3716 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3717 if (!folio) 3718 goto out; 3719 3720 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3721 ret = VM_FAULT_NOPAGE; 3722 goto out; 3723 } 3724 3725 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3726 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3727 if (!vmf->pte) { 3728 folio_unlock(folio); 3729 folio_put(folio); 3730 goto out; 3731 } 3732 3733 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3734 if (end_pgoff > file_end) 3735 end_pgoff = file_end; 3736 3737 folio_type = mm_counter_file(folio); 3738 do { 3739 unsigned long end; 3740 3741 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3742 vmf->pte += xas.xa_index - last_pgoff; 3743 last_pgoff = xas.xa_index; 3744 end = folio_next_index(folio) - 1; 3745 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3746 3747 if (!folio_test_large(folio)) 3748 ret |= filemap_map_order0_folio(vmf, 3749 folio, addr, &rss, &mmap_miss); 3750 else 3751 ret |= filemap_map_folio_range(vmf, folio, 3752 xas.xa_index - folio->index, addr, 3753 nr_pages, &rss, &mmap_miss); 3754 3755 folio_unlock(folio); 3756 folio_put(folio); 3757 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3758 add_mm_counter(vma->vm_mm, folio_type, rss); 3759 pte_unmap_unlock(vmf->pte, vmf->ptl); 3760 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3761 out: 3762 rcu_read_unlock(); 3763 3764 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3765 if (mmap_miss >= mmap_miss_saved) 3766 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3767 else 3768 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3769 3770 return ret; 3771 } 3772 EXPORT_SYMBOL(filemap_map_pages); 3773 3774 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3775 { 3776 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3777 struct folio *folio = page_folio(vmf->page); 3778 vm_fault_t ret = VM_FAULT_LOCKED; 3779 3780 sb_start_pagefault(mapping->host->i_sb); 3781 file_update_time(vmf->vma->vm_file); 3782 folio_lock(folio); 3783 if (folio->mapping != mapping) { 3784 folio_unlock(folio); 3785 ret = VM_FAULT_NOPAGE; 3786 goto out; 3787 } 3788 /* 3789 * We mark the folio dirty already here so that when freeze is in 3790 * progress, we are guaranteed that writeback during freezing will 3791 * see the dirty folio and writeprotect it again. 3792 */ 3793 folio_mark_dirty(folio); 3794 folio_wait_stable(folio); 3795 out: 3796 sb_end_pagefault(mapping->host->i_sb); 3797 return ret; 3798 } 3799 3800 const struct vm_operations_struct generic_file_vm_ops = { 3801 .fault = filemap_fault, 3802 .map_pages = filemap_map_pages, 3803 .page_mkwrite = filemap_page_mkwrite, 3804 }; 3805 3806 /* This is used for a general mmap of a disk file */ 3807 3808 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3809 { 3810 struct address_space *mapping = file->f_mapping; 3811 3812 if (!mapping->a_ops->read_folio) 3813 return -ENOEXEC; 3814 file_accessed(file); 3815 vma->vm_ops = &generic_file_vm_ops; 3816 return 0; 3817 } 3818 3819 /* 3820 * This is for filesystems which do not implement ->writepage. 3821 */ 3822 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3823 { 3824 if (vma_is_shared_maywrite(vma)) 3825 return -EINVAL; 3826 return generic_file_mmap(file, vma); 3827 } 3828 #else 3829 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3830 { 3831 return VM_FAULT_SIGBUS; 3832 } 3833 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3834 { 3835 return -ENOSYS; 3836 } 3837 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3838 { 3839 return -ENOSYS; 3840 } 3841 #endif /* CONFIG_MMU */ 3842 3843 EXPORT_SYMBOL(filemap_page_mkwrite); 3844 EXPORT_SYMBOL(generic_file_mmap); 3845 EXPORT_SYMBOL(generic_file_readonly_mmap); 3846 3847 static struct folio *do_read_cache_folio(struct address_space *mapping, 3848 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3849 { 3850 struct folio *folio; 3851 int err; 3852 3853 if (!filler) 3854 filler = mapping->a_ops->read_folio; 3855 repeat: 3856 folio = filemap_get_folio(mapping, index); 3857 if (IS_ERR(folio)) { 3858 folio = filemap_alloc_folio(gfp, 3859 mapping_min_folio_order(mapping)); 3860 if (!folio) 3861 return ERR_PTR(-ENOMEM); 3862 index = mapping_align_index(mapping, index); 3863 err = filemap_add_folio(mapping, folio, index, gfp); 3864 if (unlikely(err)) { 3865 folio_put(folio); 3866 if (err == -EEXIST) 3867 goto repeat; 3868 /* Presumably ENOMEM for xarray node */ 3869 return ERR_PTR(err); 3870 } 3871 3872 goto filler; 3873 } 3874 if (folio_test_uptodate(folio)) 3875 goto out; 3876 3877 if (!folio_trylock(folio)) { 3878 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3879 goto repeat; 3880 } 3881 3882 /* Folio was truncated from mapping */ 3883 if (!folio->mapping) { 3884 folio_unlock(folio); 3885 folio_put(folio); 3886 goto repeat; 3887 } 3888 3889 /* Someone else locked and filled the page in a very small window */ 3890 if (folio_test_uptodate(folio)) { 3891 folio_unlock(folio); 3892 goto out; 3893 } 3894 3895 filler: 3896 err = filemap_read_folio(file, filler, folio); 3897 if (err) { 3898 folio_put(folio); 3899 if (err == AOP_TRUNCATED_PAGE) 3900 goto repeat; 3901 return ERR_PTR(err); 3902 } 3903 3904 out: 3905 folio_mark_accessed(folio); 3906 return folio; 3907 } 3908 3909 /** 3910 * read_cache_folio - Read into page cache, fill it if needed. 3911 * @mapping: The address_space to read from. 3912 * @index: The index to read. 3913 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3914 * @file: Passed to filler function, may be NULL if not required. 3915 * 3916 * Read one page into the page cache. If it succeeds, the folio returned 3917 * will contain @index, but it may not be the first page of the folio. 3918 * 3919 * If the filler function returns an error, it will be returned to the 3920 * caller. 3921 * 3922 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3923 * Return: An uptodate folio on success, ERR_PTR() on failure. 3924 */ 3925 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3926 filler_t filler, struct file *file) 3927 { 3928 return do_read_cache_folio(mapping, index, filler, file, 3929 mapping_gfp_mask(mapping)); 3930 } 3931 EXPORT_SYMBOL(read_cache_folio); 3932 3933 /** 3934 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3935 * @mapping: The address_space for the folio. 3936 * @index: The index that the allocated folio will contain. 3937 * @gfp: The page allocator flags to use if allocating. 3938 * 3939 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3940 * any new memory allocations done using the specified allocation flags. 3941 * 3942 * The most likely error from this function is EIO, but ENOMEM is 3943 * possible and so is EINTR. If ->read_folio returns another error, 3944 * that will be returned to the caller. 3945 * 3946 * The function expects mapping->invalidate_lock to be already held. 3947 * 3948 * Return: Uptodate folio on success, ERR_PTR() on failure. 3949 */ 3950 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3951 pgoff_t index, gfp_t gfp) 3952 { 3953 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3954 } 3955 EXPORT_SYMBOL(mapping_read_folio_gfp); 3956 3957 static struct page *do_read_cache_page(struct address_space *mapping, 3958 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3959 { 3960 struct folio *folio; 3961 3962 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3963 if (IS_ERR(folio)) 3964 return &folio->page; 3965 return folio_file_page(folio, index); 3966 } 3967 3968 struct page *read_cache_page(struct address_space *mapping, 3969 pgoff_t index, filler_t *filler, struct file *file) 3970 { 3971 return do_read_cache_page(mapping, index, filler, file, 3972 mapping_gfp_mask(mapping)); 3973 } 3974 EXPORT_SYMBOL(read_cache_page); 3975 3976 /** 3977 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3978 * @mapping: the page's address_space 3979 * @index: the page index 3980 * @gfp: the page allocator flags to use if allocating 3981 * 3982 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3983 * any new page allocations done using the specified allocation flags. 3984 * 3985 * If the page does not get brought uptodate, return -EIO. 3986 * 3987 * The function expects mapping->invalidate_lock to be already held. 3988 * 3989 * Return: up to date page on success, ERR_PTR() on failure. 3990 */ 3991 struct page *read_cache_page_gfp(struct address_space *mapping, 3992 pgoff_t index, 3993 gfp_t gfp) 3994 { 3995 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3996 } 3997 EXPORT_SYMBOL(read_cache_page_gfp); 3998 3999 /* 4000 * Warn about a page cache invalidation failure during a direct I/O write. 4001 */ 4002 static void dio_warn_stale_pagecache(struct file *filp) 4003 { 4004 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 4005 char pathname[128]; 4006 char *path; 4007 4008 errseq_set(&filp->f_mapping->wb_err, -EIO); 4009 if (__ratelimit(&_rs)) { 4010 path = file_path(filp, pathname, sizeof(pathname)); 4011 if (IS_ERR(path)) 4012 path = "(unknown)"; 4013 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4014 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4015 current->comm); 4016 } 4017 } 4018 4019 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4020 { 4021 struct address_space *mapping = iocb->ki_filp->f_mapping; 4022 4023 if (mapping->nrpages && 4024 invalidate_inode_pages2_range(mapping, 4025 iocb->ki_pos >> PAGE_SHIFT, 4026 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4027 dio_warn_stale_pagecache(iocb->ki_filp); 4028 } 4029 4030 ssize_t 4031 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4032 { 4033 struct address_space *mapping = iocb->ki_filp->f_mapping; 4034 size_t write_len = iov_iter_count(from); 4035 ssize_t written; 4036 4037 /* 4038 * If a page can not be invalidated, return 0 to fall back 4039 * to buffered write. 4040 */ 4041 written = kiocb_invalidate_pages(iocb, write_len); 4042 if (written) { 4043 if (written == -EBUSY) 4044 return 0; 4045 return written; 4046 } 4047 4048 written = mapping->a_ops->direct_IO(iocb, from); 4049 4050 /* 4051 * Finally, try again to invalidate clean pages which might have been 4052 * cached by non-direct readahead, or faulted in by get_user_pages() 4053 * if the source of the write was an mmap'ed region of the file 4054 * we're writing. Either one is a pretty crazy thing to do, 4055 * so we don't support it 100%. If this invalidation 4056 * fails, tough, the write still worked... 4057 * 4058 * Most of the time we do not need this since dio_complete() will do 4059 * the invalidation for us. However there are some file systems that 4060 * do not end up with dio_complete() being called, so let's not break 4061 * them by removing it completely. 4062 * 4063 * Noticeable example is a blkdev_direct_IO(). 4064 * 4065 * Skip invalidation for async writes or if mapping has no pages. 4066 */ 4067 if (written > 0) { 4068 struct inode *inode = mapping->host; 4069 loff_t pos = iocb->ki_pos; 4070 4071 kiocb_invalidate_post_direct_write(iocb, written); 4072 pos += written; 4073 write_len -= written; 4074 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4075 i_size_write(inode, pos); 4076 mark_inode_dirty(inode); 4077 } 4078 iocb->ki_pos = pos; 4079 } 4080 if (written != -EIOCBQUEUED) 4081 iov_iter_revert(from, write_len - iov_iter_count(from)); 4082 return written; 4083 } 4084 EXPORT_SYMBOL(generic_file_direct_write); 4085 4086 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4087 { 4088 struct file *file = iocb->ki_filp; 4089 loff_t pos = iocb->ki_pos; 4090 struct address_space *mapping = file->f_mapping; 4091 const struct address_space_operations *a_ops = mapping->a_ops; 4092 size_t chunk = mapping_max_folio_size(mapping); 4093 long status = 0; 4094 ssize_t written = 0; 4095 4096 do { 4097 struct folio *folio; 4098 size_t offset; /* Offset into folio */ 4099 size_t bytes; /* Bytes to write to folio */ 4100 size_t copied; /* Bytes copied from user */ 4101 void *fsdata = NULL; 4102 4103 bytes = iov_iter_count(i); 4104 retry: 4105 offset = pos & (chunk - 1); 4106 bytes = min(chunk - offset, bytes); 4107 balance_dirty_pages_ratelimited(mapping); 4108 4109 if (fatal_signal_pending(current)) { 4110 status = -EINTR; 4111 break; 4112 } 4113 4114 status = a_ops->write_begin(file, mapping, pos, bytes, 4115 &folio, &fsdata); 4116 if (unlikely(status < 0)) 4117 break; 4118 4119 offset = offset_in_folio(folio, pos); 4120 if (bytes > folio_size(folio) - offset) 4121 bytes = folio_size(folio) - offset; 4122 4123 if (mapping_writably_mapped(mapping)) 4124 flush_dcache_folio(folio); 4125 4126 /* 4127 * Faults here on mmap()s can recurse into arbitrary 4128 * filesystem code. Lots of locks are held that can 4129 * deadlock. Use an atomic copy to avoid deadlocking 4130 * in page fault handling. 4131 */ 4132 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4133 flush_dcache_folio(folio); 4134 4135 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4136 folio, fsdata); 4137 if (unlikely(status != copied)) { 4138 iov_iter_revert(i, copied - max(status, 0L)); 4139 if (unlikely(status < 0)) 4140 break; 4141 } 4142 cond_resched(); 4143 4144 if (unlikely(status == 0)) { 4145 /* 4146 * A short copy made ->write_end() reject the 4147 * thing entirely. Might be memory poisoning 4148 * halfway through, might be a race with munmap, 4149 * might be severe memory pressure. 4150 */ 4151 if (chunk > PAGE_SIZE) 4152 chunk /= 2; 4153 if (copied) { 4154 bytes = copied; 4155 goto retry; 4156 } 4157 4158 /* 4159 * 'folio' is now unlocked and faults on it can be 4160 * handled. Ensure forward progress by trying to 4161 * fault it in now. 4162 */ 4163 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4164 status = -EFAULT; 4165 break; 4166 } 4167 } else { 4168 pos += status; 4169 written += status; 4170 } 4171 } while (iov_iter_count(i)); 4172 4173 if (!written) 4174 return status; 4175 iocb->ki_pos += written; 4176 return written; 4177 } 4178 EXPORT_SYMBOL(generic_perform_write); 4179 4180 /** 4181 * __generic_file_write_iter - write data to a file 4182 * @iocb: IO state structure (file, offset, etc.) 4183 * @from: iov_iter with data to write 4184 * 4185 * This function does all the work needed for actually writing data to a 4186 * file. It does all basic checks, removes SUID from the file, updates 4187 * modification times and calls proper subroutines depending on whether we 4188 * do direct IO or a standard buffered write. 4189 * 4190 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4191 * object which does not need locking at all. 4192 * 4193 * This function does *not* take care of syncing data in case of O_SYNC write. 4194 * A caller has to handle it. This is mainly due to the fact that we want to 4195 * avoid syncing under i_rwsem. 4196 * 4197 * Return: 4198 * * number of bytes written, even for truncated writes 4199 * * negative error code if no data has been written at all 4200 */ 4201 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4202 { 4203 struct file *file = iocb->ki_filp; 4204 struct address_space *mapping = file->f_mapping; 4205 struct inode *inode = mapping->host; 4206 ssize_t ret; 4207 4208 ret = file_remove_privs(file); 4209 if (ret) 4210 return ret; 4211 4212 ret = file_update_time(file); 4213 if (ret) 4214 return ret; 4215 4216 if (iocb->ki_flags & IOCB_DIRECT) { 4217 ret = generic_file_direct_write(iocb, from); 4218 /* 4219 * If the write stopped short of completing, fall back to 4220 * buffered writes. Some filesystems do this for writes to 4221 * holes, for example. For DAX files, a buffered write will 4222 * not succeed (even if it did, DAX does not handle dirty 4223 * page-cache pages correctly). 4224 */ 4225 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4226 return ret; 4227 return direct_write_fallback(iocb, from, ret, 4228 generic_perform_write(iocb, from)); 4229 } 4230 4231 return generic_perform_write(iocb, from); 4232 } 4233 EXPORT_SYMBOL(__generic_file_write_iter); 4234 4235 /** 4236 * generic_file_write_iter - write data to a file 4237 * @iocb: IO state structure 4238 * @from: iov_iter with data to write 4239 * 4240 * This is a wrapper around __generic_file_write_iter() to be used by most 4241 * filesystems. It takes care of syncing the file in case of O_SYNC file 4242 * and acquires i_rwsem as needed. 4243 * Return: 4244 * * negative error code if no data has been written at all of 4245 * vfs_fsync_range() failed for a synchronous write 4246 * * number of bytes written, even for truncated writes 4247 */ 4248 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4249 { 4250 struct file *file = iocb->ki_filp; 4251 struct inode *inode = file->f_mapping->host; 4252 ssize_t ret; 4253 4254 inode_lock(inode); 4255 ret = generic_write_checks(iocb, from); 4256 if (ret > 0) 4257 ret = __generic_file_write_iter(iocb, from); 4258 inode_unlock(inode); 4259 4260 if (ret > 0) 4261 ret = generic_write_sync(iocb, ret); 4262 return ret; 4263 } 4264 EXPORT_SYMBOL(generic_file_write_iter); 4265 4266 /** 4267 * filemap_release_folio() - Release fs-specific metadata on a folio. 4268 * @folio: The folio which the kernel is trying to free. 4269 * @gfp: Memory allocation flags (and I/O mode). 4270 * 4271 * The address_space is trying to release any data attached to a folio 4272 * (presumably at folio->private). 4273 * 4274 * This will also be called if the private_2 flag is set on a page, 4275 * indicating that the folio has other metadata associated with it. 4276 * 4277 * The @gfp argument specifies whether I/O may be performed to release 4278 * this page (__GFP_IO), and whether the call may block 4279 * (__GFP_RECLAIM & __GFP_FS). 4280 * 4281 * Return: %true if the release was successful, otherwise %false. 4282 */ 4283 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4284 { 4285 struct address_space * const mapping = folio->mapping; 4286 4287 BUG_ON(!folio_test_locked(folio)); 4288 if (!folio_needs_release(folio)) 4289 return true; 4290 if (folio_test_writeback(folio)) 4291 return false; 4292 4293 if (mapping && mapping->a_ops->release_folio) 4294 return mapping->a_ops->release_folio(folio, gfp); 4295 return try_to_free_buffers(folio); 4296 } 4297 EXPORT_SYMBOL(filemap_release_folio); 4298 4299 /** 4300 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4301 * @inode: The inode to flush 4302 * @flush: Set to write back rather than simply invalidate. 4303 * @start: First byte to in range. 4304 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4305 * onwards. 4306 * 4307 * Invalidate all the folios on an inode that contribute to the specified 4308 * range, possibly writing them back first. Whilst the operation is 4309 * undertaken, the invalidate lock is held to prevent new folios from being 4310 * installed. 4311 */ 4312 int filemap_invalidate_inode(struct inode *inode, bool flush, 4313 loff_t start, loff_t end) 4314 { 4315 struct address_space *mapping = inode->i_mapping; 4316 pgoff_t first = start >> PAGE_SHIFT; 4317 pgoff_t last = end >> PAGE_SHIFT; 4318 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4319 4320 if (!mapping || !mapping->nrpages || end < start) 4321 goto out; 4322 4323 /* Prevent new folios from being added to the inode. */ 4324 filemap_invalidate_lock(mapping); 4325 4326 if (!mapping->nrpages) 4327 goto unlock; 4328 4329 unmap_mapping_pages(mapping, first, nr, false); 4330 4331 /* Write back the data if we're asked to. */ 4332 if (flush) { 4333 struct writeback_control wbc = { 4334 .sync_mode = WB_SYNC_ALL, 4335 .nr_to_write = LONG_MAX, 4336 .range_start = start, 4337 .range_end = end, 4338 }; 4339 4340 filemap_fdatawrite_wbc(mapping, &wbc); 4341 } 4342 4343 /* Wait for writeback to complete on all folios and discard. */ 4344 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4345 4346 unlock: 4347 filemap_invalidate_unlock(mapping); 4348 out: 4349 return filemap_check_errors(mapping); 4350 } 4351 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4352 4353 #ifdef CONFIG_CACHESTAT_SYSCALL 4354 /** 4355 * filemap_cachestat() - compute the page cache statistics of a mapping 4356 * @mapping: The mapping to compute the statistics for. 4357 * @first_index: The starting page cache index. 4358 * @last_index: The final page index (inclusive). 4359 * @cs: the cachestat struct to write the result to. 4360 * 4361 * This will query the page cache statistics of a mapping in the 4362 * page range of [first_index, last_index] (inclusive). The statistics 4363 * queried include: number of dirty pages, number of pages marked for 4364 * writeback, and the number of (recently) evicted pages. 4365 */ 4366 static void filemap_cachestat(struct address_space *mapping, 4367 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4368 { 4369 XA_STATE(xas, &mapping->i_pages, first_index); 4370 struct folio *folio; 4371 4372 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4373 mem_cgroup_flush_stats_ratelimited(NULL); 4374 4375 rcu_read_lock(); 4376 xas_for_each(&xas, folio, last_index) { 4377 int order; 4378 unsigned long nr_pages; 4379 pgoff_t folio_first_index, folio_last_index; 4380 4381 /* 4382 * Don't deref the folio. It is not pinned, and might 4383 * get freed (and reused) underneath us. 4384 * 4385 * We *could* pin it, but that would be expensive for 4386 * what should be a fast and lightweight syscall. 4387 * 4388 * Instead, derive all information of interest from 4389 * the rcu-protected xarray. 4390 */ 4391 4392 if (xas_retry(&xas, folio)) 4393 continue; 4394 4395 order = xas_get_order(&xas); 4396 nr_pages = 1 << order; 4397 folio_first_index = round_down(xas.xa_index, 1 << order); 4398 folio_last_index = folio_first_index + nr_pages - 1; 4399 4400 /* Folios might straddle the range boundaries, only count covered pages */ 4401 if (folio_first_index < first_index) 4402 nr_pages -= first_index - folio_first_index; 4403 4404 if (folio_last_index > last_index) 4405 nr_pages -= folio_last_index - last_index; 4406 4407 if (xa_is_value(folio)) { 4408 /* page is evicted */ 4409 void *shadow = (void *)folio; 4410 bool workingset; /* not used */ 4411 4412 cs->nr_evicted += nr_pages; 4413 4414 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4415 if (shmem_mapping(mapping)) { 4416 /* shmem file - in swap cache */ 4417 swp_entry_t swp = radix_to_swp_entry(folio); 4418 4419 /* swapin error results in poisoned entry */ 4420 if (non_swap_entry(swp)) 4421 goto resched; 4422 4423 /* 4424 * Getting a swap entry from the shmem 4425 * inode means we beat 4426 * shmem_unuse(). rcu_read_lock() 4427 * ensures swapoff waits for us before 4428 * freeing the swapper space. However, 4429 * we can race with swapping and 4430 * invalidation, so there might not be 4431 * a shadow in the swapcache (yet). 4432 */ 4433 shadow = get_shadow_from_swap_cache(swp); 4434 if (!shadow) 4435 goto resched; 4436 } 4437 #endif 4438 if (workingset_test_recent(shadow, true, &workingset, false)) 4439 cs->nr_recently_evicted += nr_pages; 4440 4441 goto resched; 4442 } 4443 4444 /* page is in cache */ 4445 cs->nr_cache += nr_pages; 4446 4447 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4448 cs->nr_dirty += nr_pages; 4449 4450 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4451 cs->nr_writeback += nr_pages; 4452 4453 resched: 4454 if (need_resched()) { 4455 xas_pause(&xas); 4456 cond_resched_rcu(); 4457 } 4458 } 4459 rcu_read_unlock(); 4460 } 4461 4462 /* 4463 * See mincore: reveal pagecache information only for files 4464 * that the calling process has write access to, or could (if 4465 * tried) open for writing. 4466 */ 4467 static inline bool can_do_cachestat(struct file *f) 4468 { 4469 if (f->f_mode & FMODE_WRITE) 4470 return true; 4471 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4472 return true; 4473 return file_permission(f, MAY_WRITE) == 0; 4474 } 4475 4476 /* 4477 * The cachestat(2) system call. 4478 * 4479 * cachestat() returns the page cache statistics of a file in the 4480 * bytes range specified by `off` and `len`: number of cached pages, 4481 * number of dirty pages, number of pages marked for writeback, 4482 * number of evicted pages, and number of recently evicted pages. 4483 * 4484 * An evicted page is a page that is previously in the page cache 4485 * but has been evicted since. A page is recently evicted if its last 4486 * eviction was recent enough that its reentry to the cache would 4487 * indicate that it is actively being used by the system, and that 4488 * there is memory pressure on the system. 4489 * 4490 * `off` and `len` must be non-negative integers. If `len` > 0, 4491 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4492 * we will query in the range from `off` to the end of the file. 4493 * 4494 * The `flags` argument is unused for now, but is included for future 4495 * extensibility. User should pass 0 (i.e no flag specified). 4496 * 4497 * Currently, hugetlbfs is not supported. 4498 * 4499 * Because the status of a page can change after cachestat() checks it 4500 * but before it returns to the application, the returned values may 4501 * contain stale information. 4502 * 4503 * return values: 4504 * zero - success 4505 * -EFAULT - cstat or cstat_range points to an illegal address 4506 * -EINVAL - invalid flags 4507 * -EBADF - invalid file descriptor 4508 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4509 */ 4510 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4511 struct cachestat_range __user *, cstat_range, 4512 struct cachestat __user *, cstat, unsigned int, flags) 4513 { 4514 CLASS(fd, f)(fd); 4515 struct address_space *mapping; 4516 struct cachestat_range csr; 4517 struct cachestat cs; 4518 pgoff_t first_index, last_index; 4519 4520 if (fd_empty(f)) 4521 return -EBADF; 4522 4523 if (copy_from_user(&csr, cstat_range, 4524 sizeof(struct cachestat_range))) 4525 return -EFAULT; 4526 4527 /* hugetlbfs is not supported */ 4528 if (is_file_hugepages(fd_file(f))) 4529 return -EOPNOTSUPP; 4530 4531 if (!can_do_cachestat(fd_file(f))) 4532 return -EPERM; 4533 4534 if (flags != 0) 4535 return -EINVAL; 4536 4537 first_index = csr.off >> PAGE_SHIFT; 4538 last_index = 4539 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4540 memset(&cs, 0, sizeof(struct cachestat)); 4541 mapping = fd_file(f)->f_mapping; 4542 filemap_cachestat(mapping, first_index, last_index, &cs); 4543 4544 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4545 return -EFAULT; 4546 4547 return 0; 4548 } 4549 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4550