1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <linux/sysctl.h> 51 #include <asm/pgalloc.h> 52 #include <asm/tlbflush.h> 53 #include "internal.h" 54 55 #define CREATE_TRACE_POINTS 56 #include <trace/events/filemap.h> 57 58 /* 59 * FIXME: remove all knowledge of the buffer layer from the core VM 60 */ 61 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 62 63 #include <asm/mman.h> 64 65 #include "swap.h" 66 67 /* 68 * Shared mappings implemented 30.11.1994. It's not fully working yet, 69 * though. 70 * 71 * Shared mappings now work. 15.8.1995 Bruno. 72 * 73 * finished 'unifying' the page and buffer cache and SMP-threaded the 74 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 75 * 76 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 77 */ 78 79 /* 80 * Lock ordering: 81 * 82 * ->i_mmap_rwsem (truncate_pagecache) 83 * ->private_lock (__free_pte->block_dirty_folio) 84 * ->swap_lock (exclusive_swap_page, others) 85 * ->i_pages lock 86 * 87 * ->i_rwsem 88 * ->invalidate_lock (acquired by fs in truncate path) 89 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 90 * 91 * ->mmap_lock 92 * ->i_mmap_rwsem 93 * ->page_table_lock or pte_lock (various, mainly in memory.c) 94 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 95 * 96 * ->mmap_lock 97 * ->invalidate_lock (filemap_fault) 98 * ->lock_page (filemap_fault, access_process_vm) 99 * 100 * ->i_rwsem (generic_perform_write) 101 * ->mmap_lock (fault_in_readable->do_page_fault) 102 * 103 * bdi->wb.list_lock 104 * sb_lock (fs/fs-writeback.c) 105 * ->i_pages lock (__sync_single_inode) 106 * 107 * ->i_mmap_rwsem 108 * ->anon_vma.lock (vma_merge) 109 * 110 * ->anon_vma.lock 111 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 112 * 113 * ->page_table_lock or pte_lock 114 * ->swap_lock (try_to_unmap_one) 115 * ->private_lock (try_to_unmap_one) 116 * ->i_pages lock (try_to_unmap_one) 117 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 118 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 119 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 120 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 121 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 122 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 123 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 124 * ->inode->i_lock (zap_pte_range->set_page_dirty) 125 * ->private_lock (zap_pte_range->block_dirty_folio) 126 */ 127 128 static void page_cache_delete(struct address_space *mapping, 129 struct folio *folio, void *shadow) 130 { 131 XA_STATE(xas, &mapping->i_pages, folio->index); 132 long nr = 1; 133 134 mapping_set_update(&xas, mapping); 135 136 xas_set_order(&xas, folio->index, folio_order(folio)); 137 nr = folio_nr_pages(folio); 138 139 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 140 141 xas_store(&xas, shadow); 142 xas_init_marks(&xas); 143 144 folio->mapping = NULL; 145 /* Leave page->index set: truncation lookup relies upon it */ 146 mapping->nrpages -= nr; 147 } 148 149 static void filemap_unaccount_folio(struct address_space *mapping, 150 struct folio *folio) 151 { 152 long nr; 153 154 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 155 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 156 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 157 current->comm, folio_pfn(folio)); 158 dump_page(&folio->page, "still mapped when deleted"); 159 dump_stack(); 160 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 161 162 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 163 int mapcount = folio_mapcount(folio); 164 165 if (folio_ref_count(folio) >= mapcount + 2) { 166 /* 167 * All vmas have already been torn down, so it's 168 * a good bet that actually the page is unmapped 169 * and we'd rather not leak it: if we're wrong, 170 * another bad page check should catch it later. 171 */ 172 atomic_set(&folio->_mapcount, -1); 173 folio_ref_sub(folio, mapcount); 174 } 175 } 176 } 177 178 /* hugetlb folios do not participate in page cache accounting. */ 179 if (folio_test_hugetlb(folio)) 180 return; 181 182 nr = folio_nr_pages(folio); 183 184 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 185 if (folio_test_swapbacked(folio)) { 186 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 187 if (folio_test_pmd_mappable(folio)) 188 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 189 } else if (folio_test_pmd_mappable(folio)) { 190 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 191 filemap_nr_thps_dec(mapping); 192 } 193 194 /* 195 * At this point folio must be either written or cleaned by 196 * truncate. Dirty folio here signals a bug and loss of 197 * unwritten data - on ordinary filesystems. 198 * 199 * But it's harmless on in-memory filesystems like tmpfs; and can 200 * occur when a driver which did get_user_pages() sets page dirty 201 * before putting it, while the inode is being finally evicted. 202 * 203 * Below fixes dirty accounting after removing the folio entirely 204 * but leaves the dirty flag set: it has no effect for truncated 205 * folio and anyway will be cleared before returning folio to 206 * buddy allocator. 207 */ 208 if (WARN_ON_ONCE(folio_test_dirty(folio) && 209 mapping_can_writeback(mapping))) 210 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 211 } 212 213 /* 214 * Delete a page from the page cache and free it. Caller has to make 215 * sure the page is locked and that nobody else uses it - or that usage 216 * is safe. The caller must hold the i_pages lock. 217 */ 218 void __filemap_remove_folio(struct folio *folio, void *shadow) 219 { 220 struct address_space *mapping = folio->mapping; 221 222 trace_mm_filemap_delete_from_page_cache(folio); 223 filemap_unaccount_folio(mapping, folio); 224 page_cache_delete(mapping, folio, shadow); 225 } 226 227 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 228 { 229 void (*free_folio)(struct folio *); 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 folio_put_refs(folio, folio_nr_pages(folio)); 236 } 237 238 /** 239 * filemap_remove_folio - Remove folio from page cache. 240 * @folio: The folio. 241 * 242 * This must be called only on folios that are locked and have been 243 * verified to be in the page cache. It will never put the folio into 244 * the free list because the caller has a reference on the page. 245 */ 246 void filemap_remove_folio(struct folio *folio) 247 { 248 struct address_space *mapping = folio->mapping; 249 250 BUG_ON(!folio_test_locked(folio)); 251 spin_lock(&mapping->host->i_lock); 252 xa_lock_irq(&mapping->i_pages); 253 __filemap_remove_folio(folio, NULL); 254 xa_unlock_irq(&mapping->i_pages); 255 if (mapping_shrinkable(mapping)) 256 inode_add_lru(mapping->host); 257 spin_unlock(&mapping->host->i_lock); 258 259 filemap_free_folio(mapping, folio); 260 } 261 262 /* 263 * page_cache_delete_batch - delete several folios from page cache 264 * @mapping: the mapping to which folios belong 265 * @fbatch: batch of folios to delete 266 * 267 * The function walks over mapping->i_pages and removes folios passed in 268 * @fbatch from the mapping. The function expects @fbatch to be sorted 269 * by page index and is optimised for it to be dense. 270 * It tolerates holes in @fbatch (mapping entries at those indices are not 271 * modified). 272 * 273 * The function expects the i_pages lock to be held. 274 */ 275 static void page_cache_delete_batch(struct address_space *mapping, 276 struct folio_batch *fbatch) 277 { 278 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 279 long total_pages = 0; 280 int i = 0; 281 struct folio *folio; 282 283 mapping_set_update(&xas, mapping); 284 xas_for_each(&xas, folio, ULONG_MAX) { 285 if (i >= folio_batch_count(fbatch)) 286 break; 287 288 /* A swap/dax/shadow entry got inserted? Skip it. */ 289 if (xa_is_value(folio)) 290 continue; 291 /* 292 * A page got inserted in our range? Skip it. We have our 293 * pages locked so they are protected from being removed. 294 * If we see a page whose index is higher than ours, it 295 * means our page has been removed, which shouldn't be 296 * possible because we're holding the PageLock. 297 */ 298 if (folio != fbatch->folios[i]) { 299 VM_BUG_ON_FOLIO(folio->index > 300 fbatch->folios[i]->index, folio); 301 continue; 302 } 303 304 WARN_ON_ONCE(!folio_test_locked(folio)); 305 306 folio->mapping = NULL; 307 /* Leave folio->index set: truncation lookup relies on it */ 308 309 i++; 310 xas_store(&xas, NULL); 311 total_pages += folio_nr_pages(folio); 312 } 313 mapping->nrpages -= total_pages; 314 } 315 316 void delete_from_page_cache_batch(struct address_space *mapping, 317 struct folio_batch *fbatch) 318 { 319 int i; 320 321 if (!folio_batch_count(fbatch)) 322 return; 323 324 spin_lock(&mapping->host->i_lock); 325 xa_lock_irq(&mapping->i_pages); 326 for (i = 0; i < folio_batch_count(fbatch); i++) { 327 struct folio *folio = fbatch->folios[i]; 328 329 trace_mm_filemap_delete_from_page_cache(folio); 330 filemap_unaccount_folio(mapping, folio); 331 } 332 page_cache_delete_batch(mapping, fbatch); 333 xa_unlock_irq(&mapping->i_pages); 334 if (mapping_shrinkable(mapping)) 335 inode_add_lru(mapping->host); 336 spin_unlock(&mapping->host->i_lock); 337 338 for (i = 0; i < folio_batch_count(fbatch); i++) 339 filemap_free_folio(mapping, fbatch->folios[i]); 340 } 341 342 int filemap_check_errors(struct address_space *mapping) 343 { 344 int ret = 0; 345 /* Check for outstanding write errors */ 346 if (test_bit(AS_ENOSPC, &mapping->flags) && 347 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 348 ret = -ENOSPC; 349 if (test_bit(AS_EIO, &mapping->flags) && 350 test_and_clear_bit(AS_EIO, &mapping->flags)) 351 ret = -EIO; 352 return ret; 353 } 354 EXPORT_SYMBOL(filemap_check_errors); 355 356 static int filemap_check_and_keep_errors(struct address_space *mapping) 357 { 358 /* Check for outstanding write errors */ 359 if (test_bit(AS_EIO, &mapping->flags)) 360 return -EIO; 361 if (test_bit(AS_ENOSPC, &mapping->flags)) 362 return -ENOSPC; 363 return 0; 364 } 365 366 /** 367 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 368 * @mapping: address space structure to write 369 * @wbc: the writeback_control controlling the writeout 370 * 371 * Call writepages on the mapping using the provided wbc to control the 372 * writeout. 373 * 374 * Return: %0 on success, negative error code otherwise. 375 */ 376 int filemap_fdatawrite_wbc(struct address_space *mapping, 377 struct writeback_control *wbc) 378 { 379 int ret; 380 381 if (!mapping_can_writeback(mapping) || 382 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 383 return 0; 384 385 wbc_attach_fdatawrite_inode(wbc, mapping->host); 386 ret = do_writepages(mapping, wbc); 387 wbc_detach_inode(wbc); 388 return ret; 389 } 390 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 391 392 /** 393 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 394 * @mapping: address space structure to write 395 * @start: offset in bytes where the range starts 396 * @end: offset in bytes where the range ends (inclusive) 397 * @sync_mode: enable synchronous operation 398 * 399 * Start writeback against all of a mapping's dirty pages that lie 400 * within the byte offsets <start, end> inclusive. 401 * 402 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 403 * opposed to a regular memory cleansing writeback. The difference between 404 * these two operations is that if a dirty page/buffer is encountered, it must 405 * be waited upon, and not just skipped over. 406 * 407 * Return: %0 on success, negative error code otherwise. 408 */ 409 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 410 loff_t end, int sync_mode) 411 { 412 struct writeback_control wbc = { 413 .sync_mode = sync_mode, 414 .nr_to_write = LONG_MAX, 415 .range_start = start, 416 .range_end = end, 417 }; 418 419 return filemap_fdatawrite_wbc(mapping, &wbc); 420 } 421 422 static inline int __filemap_fdatawrite(struct address_space *mapping, 423 int sync_mode) 424 { 425 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 426 } 427 428 int filemap_fdatawrite(struct address_space *mapping) 429 { 430 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 431 } 432 EXPORT_SYMBOL(filemap_fdatawrite); 433 434 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 435 loff_t end) 436 { 437 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 438 } 439 EXPORT_SYMBOL(filemap_fdatawrite_range); 440 441 /** 442 * filemap_fdatawrite_range_kick - start writeback on a range 443 * @mapping: target address_space 444 * @start: index to start writeback on 445 * @end: last (inclusive) index for writeback 446 * 447 * This is a non-integrity writeback helper, to start writing back folios 448 * for the indicated range. 449 * 450 * Return: %0 on success, negative error code otherwise. 451 */ 452 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 453 loff_t end) 454 { 455 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 456 } 457 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 458 459 /** 460 * filemap_flush - mostly a non-blocking flush 461 * @mapping: target address_space 462 * 463 * This is a mostly non-blocking flush. Not suitable for data-integrity 464 * purposes - I/O may not be started against all dirty pages. 465 * 466 * Return: %0 on success, negative error code otherwise. 467 */ 468 int filemap_flush(struct address_space *mapping) 469 { 470 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 471 } 472 EXPORT_SYMBOL(filemap_flush); 473 474 /** 475 * filemap_range_has_page - check if a page exists in range. 476 * @mapping: address space within which to check 477 * @start_byte: offset in bytes where the range starts 478 * @end_byte: offset in bytes where the range ends (inclusive) 479 * 480 * Find at least one page in the range supplied, usually used to check if 481 * direct writing in this range will trigger a writeback. 482 * 483 * Return: %true if at least one page exists in the specified range, 484 * %false otherwise. 485 */ 486 bool filemap_range_has_page(struct address_space *mapping, 487 loff_t start_byte, loff_t end_byte) 488 { 489 struct folio *folio; 490 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 491 pgoff_t max = end_byte >> PAGE_SHIFT; 492 493 if (end_byte < start_byte) 494 return false; 495 496 rcu_read_lock(); 497 for (;;) { 498 folio = xas_find(&xas, max); 499 if (xas_retry(&xas, folio)) 500 continue; 501 /* Shadow entries don't count */ 502 if (xa_is_value(folio)) 503 continue; 504 /* 505 * We don't need to try to pin this page; we're about to 506 * release the RCU lock anyway. It is enough to know that 507 * there was a page here recently. 508 */ 509 break; 510 } 511 rcu_read_unlock(); 512 513 return folio != NULL; 514 } 515 EXPORT_SYMBOL(filemap_range_has_page); 516 517 static void __filemap_fdatawait_range(struct address_space *mapping, 518 loff_t start_byte, loff_t end_byte) 519 { 520 pgoff_t index = start_byte >> PAGE_SHIFT; 521 pgoff_t end = end_byte >> PAGE_SHIFT; 522 struct folio_batch fbatch; 523 unsigned nr_folios; 524 525 folio_batch_init(&fbatch); 526 527 while (index <= end) { 528 unsigned i; 529 530 nr_folios = filemap_get_folios_tag(mapping, &index, end, 531 PAGECACHE_TAG_WRITEBACK, &fbatch); 532 533 if (!nr_folios) 534 break; 535 536 for (i = 0; i < nr_folios; i++) { 537 struct folio *folio = fbatch.folios[i]; 538 539 folio_wait_writeback(folio); 540 } 541 folio_batch_release(&fbatch); 542 cond_resched(); 543 } 544 } 545 546 /** 547 * filemap_fdatawait_range - wait for writeback to complete 548 * @mapping: address space structure to wait for 549 * @start_byte: offset in bytes where the range starts 550 * @end_byte: offset in bytes where the range ends (inclusive) 551 * 552 * Walk the list of under-writeback pages of the given address space 553 * in the given range and wait for all of them. Check error status of 554 * the address space and return it. 555 * 556 * Since the error status of the address space is cleared by this function, 557 * callers are responsible for checking the return value and handling and/or 558 * reporting the error. 559 * 560 * Return: error status of the address space. 561 */ 562 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 563 loff_t end_byte) 564 { 565 __filemap_fdatawait_range(mapping, start_byte, end_byte); 566 return filemap_check_errors(mapping); 567 } 568 EXPORT_SYMBOL(filemap_fdatawait_range); 569 570 /** 571 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 572 * @mapping: address space structure to wait for 573 * @start_byte: offset in bytes where the range starts 574 * @end_byte: offset in bytes where the range ends (inclusive) 575 * 576 * Walk the list of under-writeback pages of the given address space in the 577 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 578 * this function does not clear error status of the address space. 579 * 580 * Use this function if callers don't handle errors themselves. Expected 581 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 582 * fsfreeze(8) 583 */ 584 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 585 loff_t start_byte, loff_t end_byte) 586 { 587 __filemap_fdatawait_range(mapping, start_byte, end_byte); 588 return filemap_check_and_keep_errors(mapping); 589 } 590 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 591 592 /** 593 * file_fdatawait_range - wait for writeback to complete 594 * @file: file pointing to address space structure to wait for 595 * @start_byte: offset in bytes where the range starts 596 * @end_byte: offset in bytes where the range ends (inclusive) 597 * 598 * Walk the list of under-writeback pages of the address space that file 599 * refers to, in the given range and wait for all of them. Check error 600 * status of the address space vs. the file->f_wb_err cursor and return it. 601 * 602 * Since the error status of the file is advanced by this function, 603 * callers are responsible for checking the return value and handling and/or 604 * reporting the error. 605 * 606 * Return: error status of the address space vs. the file->f_wb_err cursor. 607 */ 608 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 609 { 610 struct address_space *mapping = file->f_mapping; 611 612 __filemap_fdatawait_range(mapping, start_byte, end_byte); 613 return file_check_and_advance_wb_err(file); 614 } 615 EXPORT_SYMBOL(file_fdatawait_range); 616 617 /** 618 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 619 * @mapping: address space structure to wait for 620 * 621 * Walk the list of under-writeback pages of the given address space 622 * and wait for all of them. Unlike filemap_fdatawait(), this function 623 * does not clear error status of the address space. 624 * 625 * Use this function if callers don't handle errors themselves. Expected 626 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 627 * fsfreeze(8) 628 * 629 * Return: error status of the address space. 630 */ 631 int filemap_fdatawait_keep_errors(struct address_space *mapping) 632 { 633 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 634 return filemap_check_and_keep_errors(mapping); 635 } 636 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 637 638 /* Returns true if writeback might be needed or already in progress. */ 639 static bool mapping_needs_writeback(struct address_space *mapping) 640 { 641 return mapping->nrpages; 642 } 643 644 bool filemap_range_has_writeback(struct address_space *mapping, 645 loff_t start_byte, loff_t end_byte) 646 { 647 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 648 pgoff_t max = end_byte >> PAGE_SHIFT; 649 struct folio *folio; 650 651 if (end_byte < start_byte) 652 return false; 653 654 rcu_read_lock(); 655 xas_for_each(&xas, folio, max) { 656 if (xas_retry(&xas, folio)) 657 continue; 658 if (xa_is_value(folio)) 659 continue; 660 if (folio_test_dirty(folio) || folio_test_locked(folio) || 661 folio_test_writeback(folio)) 662 break; 663 } 664 rcu_read_unlock(); 665 return folio != NULL; 666 } 667 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 668 669 /** 670 * filemap_write_and_wait_range - write out & wait on a file range 671 * @mapping: the address_space for the pages 672 * @lstart: offset in bytes where the range starts 673 * @lend: offset in bytes where the range ends (inclusive) 674 * 675 * Write out and wait upon file offsets lstart->lend, inclusive. 676 * 677 * Note that @lend is inclusive (describes the last byte to be written) so 678 * that this function can be used to write to the very end-of-file (end = -1). 679 * 680 * Return: error status of the address space. 681 */ 682 int filemap_write_and_wait_range(struct address_space *mapping, 683 loff_t lstart, loff_t lend) 684 { 685 int err = 0, err2; 686 687 if (lend < lstart) 688 return 0; 689 690 if (mapping_needs_writeback(mapping)) { 691 err = __filemap_fdatawrite_range(mapping, lstart, lend, 692 WB_SYNC_ALL); 693 /* 694 * Even if the above returned error, the pages may be 695 * written partially (e.g. -ENOSPC), so we wait for it. 696 * But the -EIO is special case, it may indicate the worst 697 * thing (e.g. bug) happened, so we avoid waiting for it. 698 */ 699 if (err != -EIO) 700 __filemap_fdatawait_range(mapping, lstart, lend); 701 } 702 err2 = filemap_check_errors(mapping); 703 if (!err) 704 err = err2; 705 return err; 706 } 707 EXPORT_SYMBOL(filemap_write_and_wait_range); 708 709 void __filemap_set_wb_err(struct address_space *mapping, int err) 710 { 711 errseq_t eseq = errseq_set(&mapping->wb_err, err); 712 713 trace_filemap_set_wb_err(mapping, eseq); 714 } 715 EXPORT_SYMBOL(__filemap_set_wb_err); 716 717 /** 718 * file_check_and_advance_wb_err - report wb error (if any) that was previously 719 * and advance wb_err to current one 720 * @file: struct file on which the error is being reported 721 * 722 * When userland calls fsync (or something like nfsd does the equivalent), we 723 * want to report any writeback errors that occurred since the last fsync (or 724 * since the file was opened if there haven't been any). 725 * 726 * Grab the wb_err from the mapping. If it matches what we have in the file, 727 * then just quickly return 0. The file is all caught up. 728 * 729 * If it doesn't match, then take the mapping value, set the "seen" flag in 730 * it and try to swap it into place. If it works, or another task beat us 731 * to it with the new value, then update the f_wb_err and return the error 732 * portion. The error at this point must be reported via proper channels 733 * (a'la fsync, or NFS COMMIT operation, etc.). 734 * 735 * While we handle mapping->wb_err with atomic operations, the f_wb_err 736 * value is protected by the f_lock since we must ensure that it reflects 737 * the latest value swapped in for this file descriptor. 738 * 739 * Return: %0 on success, negative error code otherwise. 740 */ 741 int file_check_and_advance_wb_err(struct file *file) 742 { 743 int err = 0; 744 errseq_t old = READ_ONCE(file->f_wb_err); 745 struct address_space *mapping = file->f_mapping; 746 747 /* Locklessly handle the common case where nothing has changed */ 748 if (errseq_check(&mapping->wb_err, old)) { 749 /* Something changed, must use slow path */ 750 spin_lock(&file->f_lock); 751 old = file->f_wb_err; 752 err = errseq_check_and_advance(&mapping->wb_err, 753 &file->f_wb_err); 754 trace_file_check_and_advance_wb_err(file, old); 755 spin_unlock(&file->f_lock); 756 } 757 758 /* 759 * We're mostly using this function as a drop in replacement for 760 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 761 * that the legacy code would have had on these flags. 762 */ 763 clear_bit(AS_EIO, &mapping->flags); 764 clear_bit(AS_ENOSPC, &mapping->flags); 765 return err; 766 } 767 EXPORT_SYMBOL(file_check_and_advance_wb_err); 768 769 /** 770 * file_write_and_wait_range - write out & wait on a file range 771 * @file: file pointing to address_space with pages 772 * @lstart: offset in bytes where the range starts 773 * @lend: offset in bytes where the range ends (inclusive) 774 * 775 * Write out and wait upon file offsets lstart->lend, inclusive. 776 * 777 * Note that @lend is inclusive (describes the last byte to be written) so 778 * that this function can be used to write to the very end-of-file (end = -1). 779 * 780 * After writing out and waiting on the data, we check and advance the 781 * f_wb_err cursor to the latest value, and return any errors detected there. 782 * 783 * Return: %0 on success, negative error code otherwise. 784 */ 785 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 786 { 787 int err = 0, err2; 788 struct address_space *mapping = file->f_mapping; 789 790 if (lend < lstart) 791 return 0; 792 793 if (mapping_needs_writeback(mapping)) { 794 err = __filemap_fdatawrite_range(mapping, lstart, lend, 795 WB_SYNC_ALL); 796 /* See comment of filemap_write_and_wait() */ 797 if (err != -EIO) 798 __filemap_fdatawait_range(mapping, lstart, lend); 799 } 800 err2 = file_check_and_advance_wb_err(file); 801 if (!err) 802 err = err2; 803 return err; 804 } 805 EXPORT_SYMBOL(file_write_and_wait_range); 806 807 /** 808 * replace_page_cache_folio - replace a pagecache folio with a new one 809 * @old: folio to be replaced 810 * @new: folio to replace with 811 * 812 * This function replaces a folio in the pagecache with a new one. On 813 * success it acquires the pagecache reference for the new folio and 814 * drops it for the old folio. Both the old and new folios must be 815 * locked. This function does not add the new folio to the LRU, the 816 * caller must do that. 817 * 818 * The remove + add is atomic. This function cannot fail. 819 */ 820 void replace_page_cache_folio(struct folio *old, struct folio *new) 821 { 822 struct address_space *mapping = old->mapping; 823 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 824 pgoff_t offset = old->index; 825 XA_STATE(xas, &mapping->i_pages, offset); 826 827 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 828 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 829 VM_BUG_ON_FOLIO(new->mapping, new); 830 831 folio_get(new); 832 new->mapping = mapping; 833 new->index = offset; 834 835 mem_cgroup_replace_folio(old, new); 836 837 xas_lock_irq(&xas); 838 xas_store(&xas, new); 839 840 old->mapping = NULL; 841 /* hugetlb pages do not participate in page cache accounting. */ 842 if (!folio_test_hugetlb(old)) 843 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 844 if (!folio_test_hugetlb(new)) 845 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 846 if (folio_test_swapbacked(old)) 847 __lruvec_stat_sub_folio(old, NR_SHMEM); 848 if (folio_test_swapbacked(new)) 849 __lruvec_stat_add_folio(new, NR_SHMEM); 850 xas_unlock_irq(&xas); 851 if (free_folio) 852 free_folio(old); 853 folio_put(old); 854 } 855 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 856 857 noinline int __filemap_add_folio(struct address_space *mapping, 858 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 859 { 860 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio)); 861 bool huge; 862 long nr; 863 unsigned int forder = folio_order(folio); 864 865 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 866 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 867 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 868 folio); 869 mapping_set_update(&xas, mapping); 870 871 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 872 huge = folio_test_hugetlb(folio); 873 nr = folio_nr_pages(folio); 874 875 gfp &= GFP_RECLAIM_MASK; 876 folio_ref_add(folio, nr); 877 folio->mapping = mapping; 878 folio->index = xas.xa_index; 879 880 for (;;) { 881 int order = -1; 882 void *entry, *old = NULL; 883 884 xas_lock_irq(&xas); 885 xas_for_each_conflict(&xas, entry) { 886 old = entry; 887 if (!xa_is_value(entry)) { 888 xas_set_err(&xas, -EEXIST); 889 goto unlock; 890 } 891 /* 892 * If a larger entry exists, 893 * it will be the first and only entry iterated. 894 */ 895 if (order == -1) 896 order = xas_get_order(&xas); 897 } 898 899 if (old) { 900 if (order > 0 && order > forder) { 901 unsigned int split_order = max(forder, 902 xas_try_split_min_order(order)); 903 904 /* How to handle large swap entries? */ 905 BUG_ON(shmem_mapping(mapping)); 906 907 while (order > forder) { 908 xas_set_order(&xas, index, split_order); 909 xas_try_split(&xas, old, order); 910 if (xas_error(&xas)) 911 goto unlock; 912 order = split_order; 913 split_order = 914 max(xas_try_split_min_order( 915 split_order), 916 forder); 917 } 918 xas_reset(&xas); 919 } 920 if (shadowp) 921 *shadowp = old; 922 } 923 924 xas_store(&xas, folio); 925 if (xas_error(&xas)) 926 goto unlock; 927 928 mapping->nrpages += nr; 929 930 /* hugetlb pages do not participate in page cache accounting */ 931 if (!huge) { 932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 933 if (folio_test_pmd_mappable(folio)) 934 __lruvec_stat_mod_folio(folio, 935 NR_FILE_THPS, nr); 936 } 937 938 unlock: 939 xas_unlock_irq(&xas); 940 941 if (!xas_nomem(&xas, gfp)) 942 break; 943 } 944 945 if (xas_error(&xas)) 946 goto error; 947 948 trace_mm_filemap_add_to_page_cache(folio); 949 return 0; 950 error: 951 folio->mapping = NULL; 952 /* Leave page->index set: truncation relies upon it */ 953 folio_put_refs(folio, nr); 954 return xas_error(&xas); 955 } 956 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 957 958 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 959 pgoff_t index, gfp_t gfp) 960 { 961 void *shadow = NULL; 962 int ret; 963 964 ret = mem_cgroup_charge(folio, NULL, gfp); 965 if (ret) 966 return ret; 967 968 __folio_set_locked(folio); 969 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 970 if (unlikely(ret)) { 971 mem_cgroup_uncharge(folio); 972 __folio_clear_locked(folio); 973 } else { 974 /* 975 * The folio might have been evicted from cache only 976 * recently, in which case it should be activated like 977 * any other repeatedly accessed folio. 978 * The exception is folios getting rewritten; evicting other 979 * data from the working set, only to cache data that will 980 * get overwritten with something else, is a waste of memory. 981 */ 982 WARN_ON_ONCE(folio_test_active(folio)); 983 if (!(gfp & __GFP_WRITE) && shadow) 984 workingset_refault(folio, shadow); 985 folio_add_lru(folio); 986 } 987 return ret; 988 } 989 EXPORT_SYMBOL_GPL(filemap_add_folio); 990 991 #ifdef CONFIG_NUMA 992 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 993 { 994 int n; 995 struct folio *folio; 996 997 if (cpuset_do_page_mem_spread()) { 998 unsigned int cpuset_mems_cookie; 999 do { 1000 cpuset_mems_cookie = read_mems_allowed_begin(); 1001 n = cpuset_mem_spread_node(); 1002 folio = __folio_alloc_node_noprof(gfp, order, n); 1003 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1004 1005 return folio; 1006 } 1007 return folio_alloc_noprof(gfp, order); 1008 } 1009 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1010 #endif 1011 1012 /* 1013 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1014 * 1015 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1016 * 1017 * @mapping1: the first mapping to lock 1018 * @mapping2: the second mapping to lock 1019 */ 1020 void filemap_invalidate_lock_two(struct address_space *mapping1, 1021 struct address_space *mapping2) 1022 { 1023 if (mapping1 > mapping2) 1024 swap(mapping1, mapping2); 1025 if (mapping1) 1026 down_write(&mapping1->invalidate_lock); 1027 if (mapping2 && mapping1 != mapping2) 1028 down_write_nested(&mapping2->invalidate_lock, 1); 1029 } 1030 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1031 1032 /* 1033 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1034 * 1035 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1036 * 1037 * @mapping1: the first mapping to unlock 1038 * @mapping2: the second mapping to unlock 1039 */ 1040 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1041 struct address_space *mapping2) 1042 { 1043 if (mapping1) 1044 up_write(&mapping1->invalidate_lock); 1045 if (mapping2 && mapping1 != mapping2) 1046 up_write(&mapping2->invalidate_lock); 1047 } 1048 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1049 1050 /* 1051 * In order to wait for pages to become available there must be 1052 * waitqueues associated with pages. By using a hash table of 1053 * waitqueues where the bucket discipline is to maintain all 1054 * waiters on the same queue and wake all when any of the pages 1055 * become available, and for the woken contexts to check to be 1056 * sure the appropriate page became available, this saves space 1057 * at a cost of "thundering herd" phenomena during rare hash 1058 * collisions. 1059 */ 1060 #define PAGE_WAIT_TABLE_BITS 8 1061 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1062 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1063 1064 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1065 { 1066 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1067 } 1068 1069 /* How many times do we accept lock stealing from under a waiter? */ 1070 static int sysctl_page_lock_unfairness = 5; 1071 static const struct ctl_table filemap_sysctl_table[] = { 1072 { 1073 .procname = "page_lock_unfairness", 1074 .data = &sysctl_page_lock_unfairness, 1075 .maxlen = sizeof(sysctl_page_lock_unfairness), 1076 .mode = 0644, 1077 .proc_handler = proc_dointvec_minmax, 1078 .extra1 = SYSCTL_ZERO, 1079 } 1080 }; 1081 1082 void __init pagecache_init(void) 1083 { 1084 int i; 1085 1086 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1087 init_waitqueue_head(&folio_wait_table[i]); 1088 1089 page_writeback_init(); 1090 register_sysctl_init("vm", filemap_sysctl_table); 1091 } 1092 1093 /* 1094 * The page wait code treats the "wait->flags" somewhat unusually, because 1095 * we have multiple different kinds of waits, not just the usual "exclusive" 1096 * one. 1097 * 1098 * We have: 1099 * 1100 * (a) no special bits set: 1101 * 1102 * We're just waiting for the bit to be released, and when a waker 1103 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1104 * and remove it from the wait queue. 1105 * 1106 * Simple and straightforward. 1107 * 1108 * (b) WQ_FLAG_EXCLUSIVE: 1109 * 1110 * The waiter is waiting to get the lock, and only one waiter should 1111 * be woken up to avoid any thundering herd behavior. We'll set the 1112 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1113 * 1114 * This is the traditional exclusive wait. 1115 * 1116 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1117 * 1118 * The waiter is waiting to get the bit, and additionally wants the 1119 * lock to be transferred to it for fair lock behavior. If the lock 1120 * cannot be taken, we stop walking the wait queue without waking 1121 * the waiter. 1122 * 1123 * This is the "fair lock handoff" case, and in addition to setting 1124 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1125 * that it now has the lock. 1126 */ 1127 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1128 { 1129 unsigned int flags; 1130 struct wait_page_key *key = arg; 1131 struct wait_page_queue *wait_page 1132 = container_of(wait, struct wait_page_queue, wait); 1133 1134 if (!wake_page_match(wait_page, key)) 1135 return 0; 1136 1137 /* 1138 * If it's a lock handoff wait, we get the bit for it, and 1139 * stop walking (and do not wake it up) if we can't. 1140 */ 1141 flags = wait->flags; 1142 if (flags & WQ_FLAG_EXCLUSIVE) { 1143 if (test_bit(key->bit_nr, &key->folio->flags)) 1144 return -1; 1145 if (flags & WQ_FLAG_CUSTOM) { 1146 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1147 return -1; 1148 flags |= WQ_FLAG_DONE; 1149 } 1150 } 1151 1152 /* 1153 * We are holding the wait-queue lock, but the waiter that 1154 * is waiting for this will be checking the flags without 1155 * any locking. 1156 * 1157 * So update the flags atomically, and wake up the waiter 1158 * afterwards to avoid any races. This store-release pairs 1159 * with the load-acquire in folio_wait_bit_common(). 1160 */ 1161 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1162 wake_up_state(wait->private, mode); 1163 1164 /* 1165 * Ok, we have successfully done what we're waiting for, 1166 * and we can unconditionally remove the wait entry. 1167 * 1168 * Note that this pairs with the "finish_wait()" in the 1169 * waiter, and has to be the absolute last thing we do. 1170 * After this list_del_init(&wait->entry) the wait entry 1171 * might be de-allocated and the process might even have 1172 * exited. 1173 */ 1174 list_del_init_careful(&wait->entry); 1175 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1176 } 1177 1178 static void folio_wake_bit(struct folio *folio, int bit_nr) 1179 { 1180 wait_queue_head_t *q = folio_waitqueue(folio); 1181 struct wait_page_key key; 1182 unsigned long flags; 1183 1184 key.folio = folio; 1185 key.bit_nr = bit_nr; 1186 key.page_match = 0; 1187 1188 spin_lock_irqsave(&q->lock, flags); 1189 __wake_up_locked_key(q, TASK_NORMAL, &key); 1190 1191 /* 1192 * It's possible to miss clearing waiters here, when we woke our page 1193 * waiters, but the hashed waitqueue has waiters for other pages on it. 1194 * That's okay, it's a rare case. The next waker will clear it. 1195 * 1196 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1197 * other), the flag may be cleared in the course of freeing the page; 1198 * but that is not required for correctness. 1199 */ 1200 if (!waitqueue_active(q) || !key.page_match) 1201 folio_clear_waiters(folio); 1202 1203 spin_unlock_irqrestore(&q->lock, flags); 1204 } 1205 1206 /* 1207 * A choice of three behaviors for folio_wait_bit_common(): 1208 */ 1209 enum behavior { 1210 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1211 * __folio_lock() waiting on then setting PG_locked. 1212 */ 1213 SHARED, /* Hold ref to page and check the bit when woken, like 1214 * folio_wait_writeback() waiting on PG_writeback. 1215 */ 1216 DROP, /* Drop ref to page before wait, no check when woken, 1217 * like folio_put_wait_locked() on PG_locked. 1218 */ 1219 }; 1220 1221 /* 1222 * Attempt to check (or get) the folio flag, and mark us done 1223 * if successful. 1224 */ 1225 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1226 struct wait_queue_entry *wait) 1227 { 1228 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1229 if (test_and_set_bit(bit_nr, &folio->flags)) 1230 return false; 1231 } else if (test_bit(bit_nr, &folio->flags)) 1232 return false; 1233 1234 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1235 return true; 1236 } 1237 1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1239 int state, enum behavior behavior) 1240 { 1241 wait_queue_head_t *q = folio_waitqueue(folio); 1242 int unfairness = sysctl_page_lock_unfairness; 1243 struct wait_page_queue wait_page; 1244 wait_queue_entry_t *wait = &wait_page.wait; 1245 bool thrashing = false; 1246 unsigned long pflags; 1247 bool in_thrashing; 1248 1249 if (bit_nr == PG_locked && 1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1251 delayacct_thrashing_start(&in_thrashing); 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.folio = folio; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the folio_set_waiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 folio_set_waiters(folio); 1285 if (!folio_trylock_flag(folio, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the folio. 1296 */ 1297 if (behavior == DROP) 1298 folio_put(folio); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the folio waiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 delayacct_thrashing_end(&in_thrashing); 1352 psi_memstall_leave(&pflags); 1353 } 1354 1355 /* 1356 * NOTE! The wait->flags weren't stable until we've done the 1357 * 'finish_wait()', and we could have exited the loop above due 1358 * to a signal, and had a wakeup event happen after the signal 1359 * test but before the 'finish_wait()'. 1360 * 1361 * So only after the finish_wait() can we reliably determine 1362 * if we got woken up or not, so we can now figure out the final 1363 * return value based on that state without races. 1364 * 1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1366 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1367 */ 1368 if (behavior == EXCLUSIVE) 1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1370 1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1372 } 1373 1374 #ifdef CONFIG_MIGRATION 1375 /** 1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1377 * @entry: migration swap entry. 1378 * @ptl: already locked ptl. This function will drop the lock. 1379 * 1380 * Wait for a migration entry referencing the given page to be removed. This is 1381 * equivalent to folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE) except 1382 * this can be called without taking a reference on the page. Instead this 1383 * should be called while holding the ptl for the migration entry referencing 1384 * the page. 1385 * 1386 * Returns after unlocking the ptl. 1387 * 1388 * This follows the same logic as folio_wait_bit_common() so see the comments 1389 * there. 1390 */ 1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1392 __releases(ptl) 1393 { 1394 struct wait_page_queue wait_page; 1395 wait_queue_entry_t *wait = &wait_page.wait; 1396 bool thrashing = false; 1397 unsigned long pflags; 1398 bool in_thrashing; 1399 wait_queue_head_t *q; 1400 struct folio *folio = pfn_swap_entry_folio(entry); 1401 1402 q = folio_waitqueue(folio); 1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1404 delayacct_thrashing_start(&in_thrashing); 1405 psi_memstall_enter(&pflags); 1406 thrashing = true; 1407 } 1408 1409 init_wait(wait); 1410 wait->func = wake_page_function; 1411 wait_page.folio = folio; 1412 wait_page.bit_nr = PG_locked; 1413 wait->flags = 0; 1414 1415 spin_lock_irq(&q->lock); 1416 folio_set_waiters(folio); 1417 if (!folio_trylock_flag(folio, PG_locked, wait)) 1418 __add_wait_queue_entry_tail(q, wait); 1419 spin_unlock_irq(&q->lock); 1420 1421 /* 1422 * If a migration entry exists for the page the migration path must hold 1423 * a valid reference to the page, and it must take the ptl to remove the 1424 * migration entry. So the page is valid until the ptl is dropped. 1425 */ 1426 spin_unlock(ptl); 1427 1428 for (;;) { 1429 unsigned int flags; 1430 1431 set_current_state(TASK_UNINTERRUPTIBLE); 1432 1433 /* Loop until we've been woken or interrupted */ 1434 flags = smp_load_acquire(&wait->flags); 1435 if (!(flags & WQ_FLAG_WOKEN)) { 1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1437 break; 1438 1439 io_schedule(); 1440 continue; 1441 } 1442 break; 1443 } 1444 1445 finish_wait(q, wait); 1446 1447 if (thrashing) { 1448 delayacct_thrashing_end(&in_thrashing); 1449 psi_memstall_leave(&pflags); 1450 } 1451 } 1452 #endif 1453 1454 void folio_wait_bit(struct folio *folio, int bit_nr) 1455 { 1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1457 } 1458 EXPORT_SYMBOL(folio_wait_bit); 1459 1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1461 { 1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit_killable); 1465 1466 /** 1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1468 * @folio: The folio to wait for. 1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1470 * 1471 * The caller should hold a reference on @folio. They expect the page to 1472 * become unlocked relatively soon, but do not wish to hold up migration 1473 * (for example) by holding the reference while waiting for the folio to 1474 * come unlocked. After this function returns, the caller should not 1475 * dereference @folio. 1476 * 1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1478 */ 1479 static int folio_put_wait_locked(struct folio *folio, int state) 1480 { 1481 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1482 } 1483 1484 /** 1485 * folio_unlock - Unlock a locked folio. 1486 * @folio: The folio. 1487 * 1488 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_unlock(struct folio *folio) 1494 { 1495 /* Bit 7 allows x86 to check the byte's sign bit */ 1496 BUILD_BUG_ON(PG_waiters != 7); 1497 BUILD_BUG_ON(PG_locked > 7); 1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1500 folio_wake_bit(folio, PG_locked); 1501 } 1502 EXPORT_SYMBOL(folio_unlock); 1503 1504 /** 1505 * folio_end_read - End read on a folio. 1506 * @folio: The folio. 1507 * @success: True if all reads completed successfully. 1508 * 1509 * When all reads against a folio have completed, filesystems should 1510 * call this function to let the pagecache know that no more reads 1511 * are outstanding. This will unlock the folio and wake up any thread 1512 * sleeping on the lock. The folio will also be marked uptodate if all 1513 * reads succeeded. 1514 * 1515 * Context: May be called from interrupt or process context. May not be 1516 * called from NMI context. 1517 */ 1518 void folio_end_read(struct folio *folio, bool success) 1519 { 1520 unsigned long mask = 1 << PG_locked; 1521 1522 /* Must be in bottom byte for x86 to work */ 1523 BUILD_BUG_ON(PG_uptodate > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1526 1527 if (likely(success)) 1528 mask |= 1 << PG_uptodate; 1529 if (folio_xor_flags_has_waiters(folio, mask)) 1530 folio_wake_bit(folio, PG_locked); 1531 } 1532 EXPORT_SYMBOL(folio_end_read); 1533 1534 /** 1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1536 * @folio: The folio. 1537 * 1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1539 * it. The folio reference held for PG_private_2 being set is released. 1540 * 1541 * This is, for example, used when a netfs folio is being written to a local 1542 * disk cache, thereby allowing writes to the cache for the same folio to be 1543 * serialised. 1544 */ 1545 void folio_end_private_2(struct folio *folio) 1546 { 1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1549 folio_wake_bit(folio, PG_private_2); 1550 folio_put(folio); 1551 } 1552 EXPORT_SYMBOL(folio_end_private_2); 1553 1554 /** 1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1556 * @folio: The folio to wait on. 1557 * 1558 * Wait for PG_private_2 to be cleared on a folio. 1559 */ 1560 void folio_wait_private_2(struct folio *folio) 1561 { 1562 while (folio_test_private_2(folio)) 1563 folio_wait_bit(folio, PG_private_2); 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2); 1566 1567 /** 1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1572 * received by the calling task. 1573 * 1574 * Return: 1575 * - 0 if successful. 1576 * - -EINTR if a fatal signal was encountered. 1577 */ 1578 int folio_wait_private_2_killable(struct folio *folio) 1579 { 1580 int ret = 0; 1581 1582 while (folio_test_private_2(folio)) { 1583 ret = folio_wait_bit_killable(folio, PG_private_2); 1584 if (ret < 0) 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(folio_wait_private_2_killable); 1591 1592 /* 1593 * If folio was marked as dropbehind, then pages should be dropped when writeback 1594 * completes. Do that now. If we fail, it's likely because of a big folio - 1595 * just reset dropbehind for that case and latter completions should invalidate. 1596 */ 1597 static void folio_end_dropbehind_write(struct folio *folio) 1598 { 1599 /* 1600 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1601 * but can happen if normal writeback just happens to find dirty folios 1602 * that were created as part of uncached writeback, and that writeback 1603 * would otherwise not need non-IRQ handling. Just skip the 1604 * invalidation in that case. 1605 */ 1606 if (in_task() && folio_trylock(folio)) { 1607 if (folio->mapping) 1608 folio_unmap_invalidate(folio->mapping, folio, 0); 1609 folio_unlock(folio); 1610 } 1611 } 1612 1613 /** 1614 * folio_end_writeback - End writeback against a folio. 1615 * @folio: The folio. 1616 * 1617 * The folio must actually be under writeback. 1618 * 1619 * Context: May be called from process or interrupt context. 1620 */ 1621 void folio_end_writeback(struct folio *folio) 1622 { 1623 bool folio_dropbehind = false; 1624 1625 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1626 1627 /* 1628 * folio_test_clear_reclaim() could be used here but it is an 1629 * atomic operation and overkill in this particular case. Failing 1630 * to shuffle a folio marked for immediate reclaim is too mild 1631 * a gain to justify taking an atomic operation penalty at the 1632 * end of every folio writeback. 1633 */ 1634 if (folio_test_reclaim(folio)) { 1635 folio_clear_reclaim(folio); 1636 folio_rotate_reclaimable(folio); 1637 } 1638 1639 /* 1640 * Writeback does not hold a folio reference of its own, relying 1641 * on truncation to wait for the clearing of PG_writeback. 1642 * But here we must make sure that the folio is not freed and 1643 * reused before the folio_wake_bit(). 1644 */ 1645 folio_get(folio); 1646 if (!folio_test_dirty(folio)) 1647 folio_dropbehind = folio_test_clear_dropbehind(folio); 1648 if (__folio_end_writeback(folio)) 1649 folio_wake_bit(folio, PG_writeback); 1650 acct_reclaim_writeback(folio); 1651 1652 if (folio_dropbehind) 1653 folio_end_dropbehind_write(folio); 1654 folio_put(folio); 1655 } 1656 EXPORT_SYMBOL(folio_end_writeback); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * 0 - folio is locked. 1705 * non-zero - folio is not locked. 1706 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1707 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1708 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1711 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1712 */ 1713 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1714 { 1715 unsigned int flags = vmf->flags; 1716 1717 if (fault_flag_allow_retry_first(flags)) { 1718 /* 1719 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1720 * released even though returning VM_FAULT_RETRY. 1721 */ 1722 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1723 return VM_FAULT_RETRY; 1724 1725 release_fault_lock(vmf); 1726 if (flags & FAULT_FLAG_KILLABLE) 1727 folio_wait_locked_killable(folio); 1728 else 1729 folio_wait_locked(folio); 1730 return VM_FAULT_RETRY; 1731 } 1732 if (flags & FAULT_FLAG_KILLABLE) { 1733 bool ret; 1734 1735 ret = __folio_lock_killable(folio); 1736 if (ret) { 1737 release_fault_lock(vmf); 1738 return VM_FAULT_RETRY; 1739 } 1740 } else { 1741 __folio_lock(folio); 1742 } 1743 1744 return 0; 1745 } 1746 1747 /** 1748 * page_cache_next_miss() - Find the next gap in the page cache. 1749 * @mapping: Mapping. 1750 * @index: Index. 1751 * @max_scan: Maximum range to search. 1752 * 1753 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1754 * gap with the lowest index. 1755 * 1756 * This function may be called under the rcu_read_lock. However, this will 1757 * not atomically search a snapshot of the cache at a single point in time. 1758 * For example, if a gap is created at index 5, then subsequently a gap is 1759 * created at index 10, page_cache_next_miss covering both indices may 1760 * return 10 if called under the rcu_read_lock. 1761 * 1762 * Return: The index of the gap if found, otherwise an index outside the 1763 * range specified (in which case 'return - index >= max_scan' will be true). 1764 * In the rare case of index wrap-around, 0 will be returned. 1765 */ 1766 pgoff_t page_cache_next_miss(struct address_space *mapping, 1767 pgoff_t index, unsigned long max_scan) 1768 { 1769 XA_STATE(xas, &mapping->i_pages, index); 1770 1771 while (max_scan--) { 1772 void *entry = xas_next(&xas); 1773 if (!entry || xa_is_value(entry)) 1774 return xas.xa_index; 1775 if (xas.xa_index == 0) 1776 return 0; 1777 } 1778 1779 return index + max_scan; 1780 } 1781 EXPORT_SYMBOL(page_cache_next_miss); 1782 1783 /** 1784 * page_cache_prev_miss() - Find the previous gap in the page cache. 1785 * @mapping: Mapping. 1786 * @index: Index. 1787 * @max_scan: Maximum range to search. 1788 * 1789 * Search the range [max(index - max_scan + 1, 0), index] for the 1790 * gap with the highest index. 1791 * 1792 * This function may be called under the rcu_read_lock. However, this will 1793 * not atomically search a snapshot of the cache at a single point in time. 1794 * For example, if a gap is created at index 10, then subsequently a gap is 1795 * created at index 5, page_cache_prev_miss() covering both indices may 1796 * return 5 if called under the rcu_read_lock. 1797 * 1798 * Return: The index of the gap if found, otherwise an index outside the 1799 * range specified (in which case 'index - return >= max_scan' will be true). 1800 * In the rare case of wrap-around, ULONG_MAX will be returned. 1801 */ 1802 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1803 pgoff_t index, unsigned long max_scan) 1804 { 1805 XA_STATE(xas, &mapping->i_pages, index); 1806 1807 while (max_scan--) { 1808 void *entry = xas_prev(&xas); 1809 if (!entry || xa_is_value(entry)) 1810 break; 1811 if (xas.xa_index == ULONG_MAX) 1812 break; 1813 } 1814 1815 return xas.xa_index; 1816 } 1817 EXPORT_SYMBOL(page_cache_prev_miss); 1818 1819 /* 1820 * Lockless page cache protocol: 1821 * On the lookup side: 1822 * 1. Load the folio from i_pages 1823 * 2. Increment the refcount if it's not zero 1824 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1825 * 1826 * On the removal side: 1827 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1828 * B. Remove the page from i_pages 1829 * C. Return the page to the page allocator 1830 * 1831 * This means that any page may have its reference count temporarily 1832 * increased by a speculative page cache (or GUP-fast) lookup as it can 1833 * be allocated by another user before the RCU grace period expires. 1834 * Because the refcount temporarily acquired here may end up being the 1835 * last refcount on the page, any page allocation must be freeable by 1836 * folio_put(). 1837 */ 1838 1839 /* 1840 * filemap_get_entry - Get a page cache entry. 1841 * @mapping: the address_space to search 1842 * @index: The page cache index. 1843 * 1844 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1845 * it is returned with an increased refcount. If it is a shadow entry 1846 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1847 * it is returned without further action. 1848 * 1849 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1850 */ 1851 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1852 { 1853 XA_STATE(xas, &mapping->i_pages, index); 1854 struct folio *folio; 1855 1856 rcu_read_lock(); 1857 repeat: 1858 xas_reset(&xas); 1859 folio = xas_load(&xas); 1860 if (xas_retry(&xas, folio)) 1861 goto repeat; 1862 /* 1863 * A shadow entry of a recently evicted page, or a swap entry from 1864 * shmem/tmpfs. Return it without attempting to raise page count. 1865 */ 1866 if (!folio || xa_is_value(folio)) 1867 goto out; 1868 1869 if (!folio_try_get(folio)) 1870 goto repeat; 1871 1872 if (unlikely(folio != xas_reload(&xas))) { 1873 folio_put(folio); 1874 goto repeat; 1875 } 1876 out: 1877 rcu_read_unlock(); 1878 1879 return folio; 1880 } 1881 1882 /** 1883 * __filemap_get_folio - Find and get a reference to a folio. 1884 * @mapping: The address_space to search. 1885 * @index: The page index. 1886 * @fgp_flags: %FGP flags modify how the folio is returned. 1887 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1888 * 1889 * Looks up the page cache entry at @mapping & @index. 1890 * 1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1892 * if the %GFP flags specified for %FGP_CREAT are atomic. 1893 * 1894 * If this function returns a folio, it is returned with an increased refcount. 1895 * 1896 * Return: The found folio or an ERR_PTR() otherwise. 1897 */ 1898 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1899 fgf_t fgp_flags, gfp_t gfp) 1900 { 1901 struct folio *folio; 1902 1903 repeat: 1904 folio = filemap_get_entry(mapping, index); 1905 if (xa_is_value(folio)) 1906 folio = NULL; 1907 if (!folio) 1908 goto no_page; 1909 1910 if (fgp_flags & FGP_LOCK) { 1911 if (fgp_flags & FGP_NOWAIT) { 1912 if (!folio_trylock(folio)) { 1913 folio_put(folio); 1914 return ERR_PTR(-EAGAIN); 1915 } 1916 } else { 1917 folio_lock(folio); 1918 } 1919 1920 /* Has the page been truncated? */ 1921 if (unlikely(folio->mapping != mapping)) { 1922 folio_unlock(folio); 1923 folio_put(folio); 1924 goto repeat; 1925 } 1926 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1927 } 1928 1929 if (fgp_flags & FGP_ACCESSED) 1930 folio_mark_accessed(folio); 1931 else if (fgp_flags & FGP_WRITE) { 1932 /* Clear idle flag for buffer write */ 1933 if (folio_test_idle(folio)) 1934 folio_clear_idle(folio); 1935 } 1936 1937 if (fgp_flags & FGP_STABLE) 1938 folio_wait_stable(folio); 1939 no_page: 1940 if (!folio && (fgp_flags & FGP_CREAT)) { 1941 unsigned int min_order = mapping_min_folio_order(mapping); 1942 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1943 int err; 1944 index = mapping_align_index(mapping, index); 1945 1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1947 gfp |= __GFP_WRITE; 1948 if (fgp_flags & FGP_NOFS) 1949 gfp &= ~__GFP_FS; 1950 if (fgp_flags & FGP_NOWAIT) { 1951 gfp &= ~GFP_KERNEL; 1952 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1953 } 1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1955 fgp_flags |= FGP_LOCK; 1956 1957 if (order > mapping_max_folio_order(mapping)) 1958 order = mapping_max_folio_order(mapping); 1959 /* If we're not aligned, allocate a smaller folio */ 1960 if (index & ((1UL << order) - 1)) 1961 order = __ffs(index); 1962 1963 do { 1964 gfp_t alloc_gfp = gfp; 1965 1966 err = -ENOMEM; 1967 if (order > min_order) 1968 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1969 folio = filemap_alloc_folio(alloc_gfp, order); 1970 if (!folio) 1971 continue; 1972 1973 /* Init accessed so avoid atomic mark_page_accessed later */ 1974 if (fgp_flags & FGP_ACCESSED) 1975 __folio_set_referenced(folio); 1976 if (fgp_flags & FGP_DONTCACHE) 1977 __folio_set_dropbehind(folio); 1978 1979 err = filemap_add_folio(mapping, folio, index, gfp); 1980 if (!err) 1981 break; 1982 folio_put(folio); 1983 folio = NULL; 1984 } while (order-- > min_order); 1985 1986 if (err == -EEXIST) 1987 goto repeat; 1988 if (err) { 1989 /* 1990 * When NOWAIT I/O fails to allocate folios this could 1991 * be due to a nonblocking memory allocation and not 1992 * because the system actually is out of memory. 1993 * Return -EAGAIN so that there caller retries in a 1994 * blocking fashion instead of propagating -ENOMEM 1995 * to the application. 1996 */ 1997 if ((fgp_flags & FGP_NOWAIT) && err == -ENOMEM) 1998 err = -EAGAIN; 1999 return ERR_PTR(err); 2000 } 2001 /* 2002 * filemap_add_folio locks the page, and for mmap 2003 * we expect an unlocked page. 2004 */ 2005 if (folio && (fgp_flags & FGP_FOR_MMAP)) 2006 folio_unlock(folio); 2007 } 2008 2009 if (!folio) 2010 return ERR_PTR(-ENOENT); 2011 /* not an uncached lookup, clear uncached if set */ 2012 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2013 folio_clear_dropbehind(folio); 2014 return folio; 2015 } 2016 EXPORT_SYMBOL(__filemap_get_folio); 2017 2018 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2019 xa_mark_t mark) 2020 { 2021 struct folio *folio; 2022 2023 retry: 2024 if (mark == XA_PRESENT) 2025 folio = xas_find(xas, max); 2026 else 2027 folio = xas_find_marked(xas, max, mark); 2028 2029 if (xas_retry(xas, folio)) 2030 goto retry; 2031 /* 2032 * A shadow entry of a recently evicted page, a swap 2033 * entry from shmem/tmpfs or a DAX entry. Return it 2034 * without attempting to raise page count. 2035 */ 2036 if (!folio || xa_is_value(folio)) 2037 return folio; 2038 2039 if (!folio_try_get(folio)) 2040 goto reset; 2041 2042 if (unlikely(folio != xas_reload(xas))) { 2043 folio_put(folio); 2044 goto reset; 2045 } 2046 2047 return folio; 2048 reset: 2049 xas_reset(xas); 2050 goto retry; 2051 } 2052 2053 /** 2054 * find_get_entries - gang pagecache lookup 2055 * @mapping: The address_space to search 2056 * @start: The starting page cache index 2057 * @end: The final page index (inclusive). 2058 * @fbatch: Where the resulting entries are placed. 2059 * @indices: The cache indices corresponding to the entries in @entries 2060 * 2061 * find_get_entries() will search for and return a batch of entries in 2062 * the mapping. The entries are placed in @fbatch. find_get_entries() 2063 * takes a reference on any actual folios it returns. 2064 * 2065 * The entries have ascending indexes. The indices may not be consecutive 2066 * due to not-present entries or large folios. 2067 * 2068 * Any shadow entries of evicted folios, or swap entries from 2069 * shmem/tmpfs, are included in the returned array. 2070 * 2071 * Return: The number of entries which were found. 2072 */ 2073 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2074 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2075 { 2076 XA_STATE(xas, &mapping->i_pages, *start); 2077 struct folio *folio; 2078 2079 rcu_read_lock(); 2080 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2081 indices[fbatch->nr] = xas.xa_index; 2082 if (!folio_batch_add(fbatch, folio)) 2083 break; 2084 } 2085 2086 if (folio_batch_count(fbatch)) { 2087 unsigned long nr; 2088 int idx = folio_batch_count(fbatch) - 1; 2089 2090 folio = fbatch->folios[idx]; 2091 if (!xa_is_value(folio)) 2092 nr = folio_nr_pages(folio); 2093 else 2094 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2095 *start = round_down(indices[idx] + nr, nr); 2096 } 2097 rcu_read_unlock(); 2098 2099 return folio_batch_count(fbatch); 2100 } 2101 2102 /** 2103 * find_lock_entries - Find a batch of pagecache entries. 2104 * @mapping: The address_space to search. 2105 * @start: The starting page cache index. 2106 * @end: The final page index (inclusive). 2107 * @fbatch: Where the resulting entries are placed. 2108 * @indices: The cache indices of the entries in @fbatch. 2109 * 2110 * find_lock_entries() will return a batch of entries from @mapping. 2111 * Swap, shadow and DAX entries are included. Folios are returned 2112 * locked and with an incremented refcount. Folios which are locked 2113 * by somebody else or under writeback are skipped. Folios which are 2114 * partially outside the range are not returned. 2115 * 2116 * The entries have ascending indexes. The indices may not be consecutive 2117 * due to not-present entries, large folios, folios which could not be 2118 * locked or folios under writeback. 2119 * 2120 * Return: The number of entries which were found. 2121 */ 2122 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2123 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2124 { 2125 XA_STATE(xas, &mapping->i_pages, *start); 2126 struct folio *folio; 2127 2128 rcu_read_lock(); 2129 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2130 unsigned long base; 2131 unsigned long nr; 2132 2133 if (!xa_is_value(folio)) { 2134 nr = folio_nr_pages(folio); 2135 base = folio->index; 2136 /* Omit large folio which begins before the start */ 2137 if (base < *start) 2138 goto put; 2139 /* Omit large folio which extends beyond the end */ 2140 if (base + nr - 1 > end) 2141 goto put; 2142 if (!folio_trylock(folio)) 2143 goto put; 2144 if (folio->mapping != mapping || 2145 folio_test_writeback(folio)) 2146 goto unlock; 2147 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2148 folio); 2149 } else { 2150 nr = 1 << xas_get_order(&xas); 2151 base = xas.xa_index & ~(nr - 1); 2152 /* Omit order>0 value which begins before the start */ 2153 if (base < *start) 2154 continue; 2155 /* Omit order>0 value which extends beyond the end */ 2156 if (base + nr - 1 > end) 2157 break; 2158 } 2159 2160 /* Update start now so that last update is correct on return */ 2161 *start = base + nr; 2162 indices[fbatch->nr] = xas.xa_index; 2163 if (!folio_batch_add(fbatch, folio)) 2164 break; 2165 continue; 2166 unlock: 2167 folio_unlock(folio); 2168 put: 2169 folio_put(folio); 2170 } 2171 rcu_read_unlock(); 2172 2173 return folio_batch_count(fbatch); 2174 } 2175 2176 /** 2177 * filemap_get_folios - Get a batch of folios 2178 * @mapping: The address_space to search 2179 * @start: The starting page index 2180 * @end: The final page index (inclusive) 2181 * @fbatch: The batch to fill. 2182 * 2183 * Search for and return a batch of folios in the mapping starting at 2184 * index @start and up to index @end (inclusive). The folios are returned 2185 * in @fbatch with an elevated reference count. 2186 * 2187 * Return: The number of folios which were found. 2188 * We also update @start to index the next folio for the traversal. 2189 */ 2190 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2191 pgoff_t end, struct folio_batch *fbatch) 2192 { 2193 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2194 } 2195 EXPORT_SYMBOL(filemap_get_folios); 2196 2197 /** 2198 * filemap_get_folios_contig - Get a batch of contiguous folios 2199 * @mapping: The address_space to search 2200 * @start: The starting page index 2201 * @end: The final page index (inclusive) 2202 * @fbatch: The batch to fill 2203 * 2204 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2205 * except the returned folios are guaranteed to be contiguous. This may 2206 * not return all contiguous folios if the batch gets filled up. 2207 * 2208 * Return: The number of folios found. 2209 * Also update @start to be positioned for traversal of the next folio. 2210 */ 2211 2212 unsigned filemap_get_folios_contig(struct address_space *mapping, 2213 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2214 { 2215 XA_STATE(xas, &mapping->i_pages, *start); 2216 unsigned long nr; 2217 struct folio *folio; 2218 2219 rcu_read_lock(); 2220 2221 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2222 folio = xas_next(&xas)) { 2223 if (xas_retry(&xas, folio)) 2224 continue; 2225 /* 2226 * If the entry has been swapped out, we can stop looking. 2227 * No current caller is looking for DAX entries. 2228 */ 2229 if (xa_is_value(folio)) 2230 goto update_start; 2231 2232 /* If we landed in the middle of a THP, continue at its end. */ 2233 if (xa_is_sibling(folio)) 2234 goto update_start; 2235 2236 if (!folio_try_get(folio)) 2237 goto retry; 2238 2239 if (unlikely(folio != xas_reload(&xas))) 2240 goto put_folio; 2241 2242 if (!folio_batch_add(fbatch, folio)) { 2243 nr = folio_nr_pages(folio); 2244 *start = folio->index + nr; 2245 goto out; 2246 } 2247 xas_advance(&xas, folio_next_index(folio) - 1); 2248 continue; 2249 put_folio: 2250 folio_put(folio); 2251 2252 retry: 2253 xas_reset(&xas); 2254 } 2255 2256 update_start: 2257 nr = folio_batch_count(fbatch); 2258 2259 if (nr) { 2260 folio = fbatch->folios[nr - 1]; 2261 *start = folio_next_index(folio); 2262 } 2263 out: 2264 rcu_read_unlock(); 2265 return folio_batch_count(fbatch); 2266 } 2267 EXPORT_SYMBOL(filemap_get_folios_contig); 2268 2269 /** 2270 * filemap_get_folios_tag - Get a batch of folios matching @tag 2271 * @mapping: The address_space to search 2272 * @start: The starting page index 2273 * @end: The final page index (inclusive) 2274 * @tag: The tag index 2275 * @fbatch: The batch to fill 2276 * 2277 * The first folio may start before @start; if it does, it will contain 2278 * @start. The final folio may extend beyond @end; if it does, it will 2279 * contain @end. The folios have ascending indices. There may be gaps 2280 * between the folios if there are indices which have no folio in the 2281 * page cache. If folios are added to or removed from the page cache 2282 * while this is running, they may or may not be found by this call. 2283 * Only returns folios that are tagged with @tag. 2284 * 2285 * Return: The number of folios found. 2286 * Also update @start to index the next folio for traversal. 2287 */ 2288 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2289 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2290 { 2291 XA_STATE(xas, &mapping->i_pages, *start); 2292 struct folio *folio; 2293 2294 rcu_read_lock(); 2295 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2296 /* 2297 * Shadow entries should never be tagged, but this iteration 2298 * is lockless so there is a window for page reclaim to evict 2299 * a page we saw tagged. Skip over it. 2300 */ 2301 if (xa_is_value(folio)) 2302 continue; 2303 if (!folio_batch_add(fbatch, folio)) { 2304 unsigned long nr = folio_nr_pages(folio); 2305 *start = folio->index + nr; 2306 goto out; 2307 } 2308 } 2309 /* 2310 * We come here when there is no page beyond @end. We take care to not 2311 * overflow the index @start as it confuses some of the callers. This 2312 * breaks the iteration when there is a page at index -1 but that is 2313 * already broke anyway. 2314 */ 2315 if (end == (pgoff_t)-1) 2316 *start = (pgoff_t)-1; 2317 else 2318 *start = end + 1; 2319 out: 2320 rcu_read_unlock(); 2321 2322 return folio_batch_count(fbatch); 2323 } 2324 EXPORT_SYMBOL(filemap_get_folios_tag); 2325 2326 /* 2327 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2328 * a _large_ part of the i/o request. Imagine the worst scenario: 2329 * 2330 * ---R__________________________________________B__________ 2331 * ^ reading here ^ bad block(assume 4k) 2332 * 2333 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2334 * => failing the whole request => read(R) => read(R+1) => 2335 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2336 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2337 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2338 * 2339 * It is going insane. Fix it by quickly scaling down the readahead size. 2340 */ 2341 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2342 { 2343 ra->ra_pages /= 4; 2344 } 2345 2346 /* 2347 * filemap_get_read_batch - Get a batch of folios for read 2348 * 2349 * Get a batch of folios which represent a contiguous range of bytes in 2350 * the file. No exceptional entries will be returned. If @index is in 2351 * the middle of a folio, the entire folio will be returned. The last 2352 * folio in the batch may have the readahead flag set or the uptodate flag 2353 * clear so that the caller can take the appropriate action. 2354 */ 2355 static void filemap_get_read_batch(struct address_space *mapping, 2356 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2357 { 2358 XA_STATE(xas, &mapping->i_pages, index); 2359 struct folio *folio; 2360 2361 rcu_read_lock(); 2362 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2363 if (xas_retry(&xas, folio)) 2364 continue; 2365 if (xas.xa_index > max || xa_is_value(folio)) 2366 break; 2367 if (xa_is_sibling(folio)) 2368 break; 2369 if (!folio_try_get(folio)) 2370 goto retry; 2371 2372 if (unlikely(folio != xas_reload(&xas))) 2373 goto put_folio; 2374 2375 if (!folio_batch_add(fbatch, folio)) 2376 break; 2377 if (!folio_test_uptodate(folio)) 2378 break; 2379 if (folio_test_readahead(folio)) 2380 break; 2381 xas_advance(&xas, folio_next_index(folio) - 1); 2382 continue; 2383 put_folio: 2384 folio_put(folio); 2385 retry: 2386 xas_reset(&xas); 2387 } 2388 rcu_read_unlock(); 2389 } 2390 2391 static int filemap_read_folio(struct file *file, filler_t filler, 2392 struct folio *folio) 2393 { 2394 bool workingset = folio_test_workingset(folio); 2395 unsigned long pflags; 2396 int error; 2397 2398 /* Start the actual read. The read will unlock the page. */ 2399 if (unlikely(workingset)) 2400 psi_memstall_enter(&pflags); 2401 error = filler(file, folio); 2402 if (unlikely(workingset)) 2403 psi_memstall_leave(&pflags); 2404 if (error) 2405 return error; 2406 2407 error = folio_wait_locked_killable(folio); 2408 if (error) 2409 return error; 2410 if (folio_test_uptodate(folio)) 2411 return 0; 2412 if (file) 2413 shrink_readahead_size_eio(&file->f_ra); 2414 return -EIO; 2415 } 2416 2417 static bool filemap_range_uptodate(struct address_space *mapping, 2418 loff_t pos, size_t count, struct folio *folio, 2419 bool need_uptodate) 2420 { 2421 if (folio_test_uptodate(folio)) 2422 return true; 2423 /* pipes can't handle partially uptodate pages */ 2424 if (need_uptodate) 2425 return false; 2426 if (!mapping->a_ops->is_partially_uptodate) 2427 return false; 2428 if (mapping->host->i_blkbits >= folio_shift(folio)) 2429 return false; 2430 2431 if (folio_pos(folio) > pos) { 2432 count -= folio_pos(folio) - pos; 2433 pos = 0; 2434 } else { 2435 pos -= folio_pos(folio); 2436 } 2437 2438 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2439 } 2440 2441 static int filemap_update_page(struct kiocb *iocb, 2442 struct address_space *mapping, size_t count, 2443 struct folio *folio, bool need_uptodate) 2444 { 2445 int error; 2446 2447 if (iocb->ki_flags & IOCB_NOWAIT) { 2448 if (!filemap_invalidate_trylock_shared(mapping)) 2449 return -EAGAIN; 2450 } else { 2451 filemap_invalidate_lock_shared(mapping); 2452 } 2453 2454 if (!folio_trylock(folio)) { 2455 error = -EAGAIN; 2456 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2457 goto unlock_mapping; 2458 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2459 filemap_invalidate_unlock_shared(mapping); 2460 /* 2461 * This is where we usually end up waiting for a 2462 * previously submitted readahead to finish. 2463 */ 2464 folio_put_wait_locked(folio, TASK_KILLABLE); 2465 return AOP_TRUNCATED_PAGE; 2466 } 2467 error = __folio_lock_async(folio, iocb->ki_waitq); 2468 if (error) 2469 goto unlock_mapping; 2470 } 2471 2472 error = AOP_TRUNCATED_PAGE; 2473 if (!folio->mapping) 2474 goto unlock; 2475 2476 error = 0; 2477 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2478 need_uptodate)) 2479 goto unlock; 2480 2481 error = -EAGAIN; 2482 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2483 goto unlock; 2484 2485 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2486 folio); 2487 goto unlock_mapping; 2488 unlock: 2489 folio_unlock(folio); 2490 unlock_mapping: 2491 filemap_invalidate_unlock_shared(mapping); 2492 if (error == AOP_TRUNCATED_PAGE) 2493 folio_put(folio); 2494 return error; 2495 } 2496 2497 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2498 { 2499 struct address_space *mapping = iocb->ki_filp->f_mapping; 2500 struct folio *folio; 2501 int error; 2502 unsigned int min_order = mapping_min_folio_order(mapping); 2503 pgoff_t index; 2504 2505 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2506 return -EAGAIN; 2507 2508 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2509 if (!folio) 2510 return -ENOMEM; 2511 if (iocb->ki_flags & IOCB_DONTCACHE) 2512 __folio_set_dropbehind(folio); 2513 2514 /* 2515 * Protect against truncate / hole punch. Grabbing invalidate_lock 2516 * here assures we cannot instantiate and bring uptodate new 2517 * pagecache folios after evicting page cache during truncate 2518 * and before actually freeing blocks. Note that we could 2519 * release invalidate_lock after inserting the folio into 2520 * the page cache as the locked folio would then be enough to 2521 * synchronize with hole punching. But there are code paths 2522 * such as filemap_update_page() filling in partially uptodate 2523 * pages or ->readahead() that need to hold invalidate_lock 2524 * while mapping blocks for IO so let's hold the lock here as 2525 * well to keep locking rules simple. 2526 */ 2527 filemap_invalidate_lock_shared(mapping); 2528 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2529 error = filemap_add_folio(mapping, folio, index, 2530 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2531 if (error == -EEXIST) 2532 error = AOP_TRUNCATED_PAGE; 2533 if (error) 2534 goto error; 2535 2536 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2537 folio); 2538 if (error) 2539 goto error; 2540 2541 filemap_invalidate_unlock_shared(mapping); 2542 folio_batch_add(fbatch, folio); 2543 return 0; 2544 error: 2545 filemap_invalidate_unlock_shared(mapping); 2546 folio_put(folio); 2547 return error; 2548 } 2549 2550 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2551 struct address_space *mapping, struct folio *folio, 2552 pgoff_t last_index) 2553 { 2554 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2555 2556 if (iocb->ki_flags & IOCB_NOIO) 2557 return -EAGAIN; 2558 if (iocb->ki_flags & IOCB_DONTCACHE) 2559 ractl.dropbehind = 1; 2560 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2561 return 0; 2562 } 2563 2564 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2565 struct folio_batch *fbatch, bool need_uptodate) 2566 { 2567 struct file *filp = iocb->ki_filp; 2568 struct address_space *mapping = filp->f_mapping; 2569 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2570 pgoff_t last_index; 2571 struct folio *folio; 2572 unsigned int flags; 2573 int err = 0; 2574 2575 /* "last_index" is the index of the page beyond the end of the read */ 2576 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2577 retry: 2578 if (fatal_signal_pending(current)) 2579 return -EINTR; 2580 2581 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2582 if (!folio_batch_count(fbatch)) { 2583 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2584 2585 if (iocb->ki_flags & IOCB_NOIO) 2586 return -EAGAIN; 2587 if (iocb->ki_flags & IOCB_NOWAIT) 2588 flags = memalloc_noio_save(); 2589 if (iocb->ki_flags & IOCB_DONTCACHE) 2590 ractl.dropbehind = 1; 2591 page_cache_sync_ra(&ractl, last_index - index); 2592 if (iocb->ki_flags & IOCB_NOWAIT) 2593 memalloc_noio_restore(flags); 2594 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2595 } 2596 if (!folio_batch_count(fbatch)) { 2597 err = filemap_create_folio(iocb, fbatch); 2598 if (err == AOP_TRUNCATED_PAGE) 2599 goto retry; 2600 return err; 2601 } 2602 2603 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2604 if (folio_test_readahead(folio)) { 2605 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2606 if (err) 2607 goto err; 2608 } 2609 if (!folio_test_uptodate(folio)) { 2610 if ((iocb->ki_flags & IOCB_WAITQ) && 2611 folio_batch_count(fbatch) > 1) 2612 iocb->ki_flags |= IOCB_NOWAIT; 2613 err = filemap_update_page(iocb, mapping, count, folio, 2614 need_uptodate); 2615 if (err) 2616 goto err; 2617 } 2618 2619 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2620 return 0; 2621 err: 2622 if (err < 0) 2623 folio_put(folio); 2624 if (likely(--fbatch->nr)) 2625 return 0; 2626 if (err == AOP_TRUNCATED_PAGE) 2627 goto retry; 2628 return err; 2629 } 2630 2631 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2632 { 2633 unsigned int shift = folio_shift(folio); 2634 2635 return (pos1 >> shift == pos2 >> shift); 2636 } 2637 2638 static void filemap_end_dropbehind_read(struct address_space *mapping, 2639 struct folio *folio) 2640 { 2641 if (!folio_test_dropbehind(folio)) 2642 return; 2643 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2644 return; 2645 if (folio_trylock(folio)) { 2646 if (folio_test_clear_dropbehind(folio)) 2647 folio_unmap_invalidate(mapping, folio, 0); 2648 folio_unlock(folio); 2649 } 2650 } 2651 2652 /** 2653 * filemap_read - Read data from the page cache. 2654 * @iocb: The iocb to read. 2655 * @iter: Destination for the data. 2656 * @already_read: Number of bytes already read by the caller. 2657 * 2658 * Copies data from the page cache. If the data is not currently present, 2659 * uses the readahead and read_folio address_space operations to fetch it. 2660 * 2661 * Return: Total number of bytes copied, including those already read by 2662 * the caller. If an error happens before any bytes are copied, returns 2663 * a negative error number. 2664 */ 2665 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2666 ssize_t already_read) 2667 { 2668 struct file *filp = iocb->ki_filp; 2669 struct file_ra_state *ra = &filp->f_ra; 2670 struct address_space *mapping = filp->f_mapping; 2671 struct inode *inode = mapping->host; 2672 struct folio_batch fbatch; 2673 int i, error = 0; 2674 bool writably_mapped; 2675 loff_t isize, end_offset; 2676 loff_t last_pos = ra->prev_pos; 2677 2678 if (unlikely(iocb->ki_pos < 0)) 2679 return -EINVAL; 2680 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2681 return 0; 2682 if (unlikely(!iov_iter_count(iter))) 2683 return 0; 2684 2685 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2686 folio_batch_init(&fbatch); 2687 2688 do { 2689 cond_resched(); 2690 2691 /* 2692 * If we've already successfully copied some data, then we 2693 * can no longer safely return -EIOCBQUEUED. Hence mark 2694 * an async read NOWAIT at that point. 2695 */ 2696 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2697 iocb->ki_flags |= IOCB_NOWAIT; 2698 2699 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2700 break; 2701 2702 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2703 if (error < 0) 2704 break; 2705 2706 /* 2707 * i_size must be checked after we know the pages are Uptodate. 2708 * 2709 * Checking i_size after the check allows us to calculate 2710 * the correct value for "nr", which means the zero-filled 2711 * part of the page is not copied back to userspace (unless 2712 * another truncate extends the file - this is desired though). 2713 */ 2714 isize = i_size_read(inode); 2715 if (unlikely(iocb->ki_pos >= isize)) 2716 goto put_folios; 2717 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2718 2719 /* 2720 * Once we start copying data, we don't want to be touching any 2721 * cachelines that might be contended: 2722 */ 2723 writably_mapped = mapping_writably_mapped(mapping); 2724 2725 /* 2726 * When a read accesses the same folio several times, only 2727 * mark it as accessed the first time. 2728 */ 2729 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2730 fbatch.folios[0])) 2731 folio_mark_accessed(fbatch.folios[0]); 2732 2733 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2734 struct folio *folio = fbatch.folios[i]; 2735 size_t fsize = folio_size(folio); 2736 size_t offset = iocb->ki_pos & (fsize - 1); 2737 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2738 fsize - offset); 2739 size_t copied; 2740 2741 if (end_offset < folio_pos(folio)) 2742 break; 2743 if (i > 0) 2744 folio_mark_accessed(folio); 2745 /* 2746 * If users can be writing to this folio using arbitrary 2747 * virtual addresses, take care of potential aliasing 2748 * before reading the folio on the kernel side. 2749 */ 2750 if (writably_mapped) 2751 flush_dcache_folio(folio); 2752 2753 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2754 2755 already_read += copied; 2756 iocb->ki_pos += copied; 2757 last_pos = iocb->ki_pos; 2758 2759 if (copied < bytes) { 2760 error = -EFAULT; 2761 break; 2762 } 2763 } 2764 put_folios: 2765 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2766 struct folio *folio = fbatch.folios[i]; 2767 2768 filemap_end_dropbehind_read(mapping, folio); 2769 folio_put(folio); 2770 } 2771 folio_batch_init(&fbatch); 2772 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2773 2774 file_accessed(filp); 2775 ra->prev_pos = last_pos; 2776 return already_read ? already_read : error; 2777 } 2778 EXPORT_SYMBOL_GPL(filemap_read); 2779 2780 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2781 { 2782 struct address_space *mapping = iocb->ki_filp->f_mapping; 2783 loff_t pos = iocb->ki_pos; 2784 loff_t end = pos + count - 1; 2785 2786 if (iocb->ki_flags & IOCB_NOWAIT) { 2787 if (filemap_range_needs_writeback(mapping, pos, end)) 2788 return -EAGAIN; 2789 return 0; 2790 } 2791 2792 return filemap_write_and_wait_range(mapping, pos, end); 2793 } 2794 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2795 2796 int filemap_invalidate_pages(struct address_space *mapping, 2797 loff_t pos, loff_t end, bool nowait) 2798 { 2799 int ret; 2800 2801 if (nowait) { 2802 /* we could block if there are any pages in the range */ 2803 if (filemap_range_has_page(mapping, pos, end)) 2804 return -EAGAIN; 2805 } else { 2806 ret = filemap_write_and_wait_range(mapping, pos, end); 2807 if (ret) 2808 return ret; 2809 } 2810 2811 /* 2812 * After a write we want buffered reads to be sure to go to disk to get 2813 * the new data. We invalidate clean cached page from the region we're 2814 * about to write. We do this *before* the write so that we can return 2815 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2816 */ 2817 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2818 end >> PAGE_SHIFT); 2819 } 2820 2821 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2822 { 2823 struct address_space *mapping = iocb->ki_filp->f_mapping; 2824 2825 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2826 iocb->ki_pos + count - 1, 2827 iocb->ki_flags & IOCB_NOWAIT); 2828 } 2829 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2830 2831 /** 2832 * generic_file_read_iter - generic filesystem read routine 2833 * @iocb: kernel I/O control block 2834 * @iter: destination for the data read 2835 * 2836 * This is the "read_iter()" routine for all filesystems 2837 * that can use the page cache directly. 2838 * 2839 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2840 * be returned when no data can be read without waiting for I/O requests 2841 * to complete; it doesn't prevent readahead. 2842 * 2843 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2844 * requests shall be made for the read or for readahead. When no data 2845 * can be read, -EAGAIN shall be returned. When readahead would be 2846 * triggered, a partial, possibly empty read shall be returned. 2847 * 2848 * Return: 2849 * * number of bytes copied, even for partial reads 2850 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2851 */ 2852 ssize_t 2853 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2854 { 2855 size_t count = iov_iter_count(iter); 2856 ssize_t retval = 0; 2857 2858 if (!count) 2859 return 0; /* skip atime */ 2860 2861 if (iocb->ki_flags & IOCB_DIRECT) { 2862 struct file *file = iocb->ki_filp; 2863 struct address_space *mapping = file->f_mapping; 2864 struct inode *inode = mapping->host; 2865 2866 retval = kiocb_write_and_wait(iocb, count); 2867 if (retval < 0) 2868 return retval; 2869 file_accessed(file); 2870 2871 retval = mapping->a_ops->direct_IO(iocb, iter); 2872 if (retval >= 0) { 2873 iocb->ki_pos += retval; 2874 count -= retval; 2875 } 2876 if (retval != -EIOCBQUEUED) 2877 iov_iter_revert(iter, count - iov_iter_count(iter)); 2878 2879 /* 2880 * Btrfs can have a short DIO read if we encounter 2881 * compressed extents, so if there was an error, or if 2882 * we've already read everything we wanted to, or if 2883 * there was a short read because we hit EOF, go ahead 2884 * and return. Otherwise fallthrough to buffered io for 2885 * the rest of the read. Buffered reads will not work for 2886 * DAX files, so don't bother trying. 2887 */ 2888 if (retval < 0 || !count || IS_DAX(inode)) 2889 return retval; 2890 if (iocb->ki_pos >= i_size_read(inode)) 2891 return retval; 2892 } 2893 2894 return filemap_read(iocb, iter, retval); 2895 } 2896 EXPORT_SYMBOL(generic_file_read_iter); 2897 2898 /* 2899 * Splice subpages from a folio into a pipe. 2900 */ 2901 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2902 struct folio *folio, loff_t fpos, size_t size) 2903 { 2904 struct page *page; 2905 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2906 2907 page = folio_page(folio, offset / PAGE_SIZE); 2908 size = min(size, folio_size(folio) - offset); 2909 offset %= PAGE_SIZE; 2910 2911 while (spliced < size && !pipe_is_full(pipe)) { 2912 struct pipe_buffer *buf = pipe_head_buf(pipe); 2913 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2914 2915 *buf = (struct pipe_buffer) { 2916 .ops = &page_cache_pipe_buf_ops, 2917 .page = page, 2918 .offset = offset, 2919 .len = part, 2920 }; 2921 folio_get(folio); 2922 pipe->head++; 2923 page++; 2924 spliced += part; 2925 offset = 0; 2926 } 2927 2928 return spliced; 2929 } 2930 2931 /** 2932 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2933 * @in: The file to read from 2934 * @ppos: Pointer to the file position to read from 2935 * @pipe: The pipe to splice into 2936 * @len: The amount to splice 2937 * @flags: The SPLICE_F_* flags 2938 * 2939 * This function gets folios from a file's pagecache and splices them into the 2940 * pipe. Readahead will be called as necessary to fill more folios. This may 2941 * be used for blockdevs also. 2942 * 2943 * Return: On success, the number of bytes read will be returned and *@ppos 2944 * will be updated if appropriate; 0 will be returned if there is no more data 2945 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2946 * other negative error code will be returned on error. A short read may occur 2947 * if the pipe has insufficient space, we reach the end of the data or we hit a 2948 * hole. 2949 */ 2950 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2951 struct pipe_inode_info *pipe, 2952 size_t len, unsigned int flags) 2953 { 2954 struct folio_batch fbatch; 2955 struct kiocb iocb; 2956 size_t total_spliced = 0, used, npages; 2957 loff_t isize, end_offset; 2958 bool writably_mapped; 2959 int i, error = 0; 2960 2961 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2962 return 0; 2963 2964 init_sync_kiocb(&iocb, in); 2965 iocb.ki_pos = *ppos; 2966 2967 /* Work out how much data we can actually add into the pipe */ 2968 used = pipe_buf_usage(pipe); 2969 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2970 len = min_t(size_t, len, npages * PAGE_SIZE); 2971 2972 folio_batch_init(&fbatch); 2973 2974 do { 2975 cond_resched(); 2976 2977 if (*ppos >= i_size_read(in->f_mapping->host)) 2978 break; 2979 2980 iocb.ki_pos = *ppos; 2981 error = filemap_get_pages(&iocb, len, &fbatch, true); 2982 if (error < 0) 2983 break; 2984 2985 /* 2986 * i_size must be checked after we know the pages are Uptodate. 2987 * 2988 * Checking i_size after the check allows us to calculate 2989 * the correct value for "nr", which means the zero-filled 2990 * part of the page is not copied back to userspace (unless 2991 * another truncate extends the file - this is desired though). 2992 */ 2993 isize = i_size_read(in->f_mapping->host); 2994 if (unlikely(*ppos >= isize)) 2995 break; 2996 end_offset = min_t(loff_t, isize, *ppos + len); 2997 2998 /* 2999 * Once we start copying data, we don't want to be touching any 3000 * cachelines that might be contended: 3001 */ 3002 writably_mapped = mapping_writably_mapped(in->f_mapping); 3003 3004 for (i = 0; i < folio_batch_count(&fbatch); i++) { 3005 struct folio *folio = fbatch.folios[i]; 3006 size_t n; 3007 3008 if (folio_pos(folio) >= end_offset) 3009 goto out; 3010 folio_mark_accessed(folio); 3011 3012 /* 3013 * If users can be writing to this folio using arbitrary 3014 * virtual addresses, take care of potential aliasing 3015 * before reading the folio on the kernel side. 3016 */ 3017 if (writably_mapped) 3018 flush_dcache_folio(folio); 3019 3020 n = min_t(loff_t, len, isize - *ppos); 3021 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3022 if (!n) 3023 goto out; 3024 len -= n; 3025 total_spliced += n; 3026 *ppos += n; 3027 in->f_ra.prev_pos = *ppos; 3028 if (pipe_is_full(pipe)) 3029 goto out; 3030 } 3031 3032 folio_batch_release(&fbatch); 3033 } while (len); 3034 3035 out: 3036 folio_batch_release(&fbatch); 3037 file_accessed(in); 3038 3039 return total_spliced ? total_spliced : error; 3040 } 3041 EXPORT_SYMBOL(filemap_splice_read); 3042 3043 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3044 struct address_space *mapping, struct folio *folio, 3045 loff_t start, loff_t end, bool seek_data) 3046 { 3047 const struct address_space_operations *ops = mapping->a_ops; 3048 size_t offset, bsz = i_blocksize(mapping->host); 3049 3050 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3051 return seek_data ? start : end; 3052 if (!ops->is_partially_uptodate) 3053 return seek_data ? end : start; 3054 3055 xas_pause(xas); 3056 rcu_read_unlock(); 3057 folio_lock(folio); 3058 if (unlikely(folio->mapping != mapping)) 3059 goto unlock; 3060 3061 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3062 3063 do { 3064 if (ops->is_partially_uptodate(folio, offset, bsz) == 3065 seek_data) 3066 break; 3067 start = (start + bsz) & ~((u64)bsz - 1); 3068 offset += bsz; 3069 } while (offset < folio_size(folio)); 3070 unlock: 3071 folio_unlock(folio); 3072 rcu_read_lock(); 3073 return start; 3074 } 3075 3076 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3077 { 3078 if (xa_is_value(folio)) 3079 return PAGE_SIZE << xas_get_order(xas); 3080 return folio_size(folio); 3081 } 3082 3083 /** 3084 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3085 * @mapping: Address space to search. 3086 * @start: First byte to consider. 3087 * @end: Limit of search (exclusive). 3088 * @whence: Either SEEK_HOLE or SEEK_DATA. 3089 * 3090 * If the page cache knows which blocks contain holes and which blocks 3091 * contain data, your filesystem can use this function to implement 3092 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3093 * entirely memory-based such as tmpfs, and filesystems which support 3094 * unwritten extents. 3095 * 3096 * Return: The requested offset on success, or -ENXIO if @whence specifies 3097 * SEEK_DATA and there is no data after @start. There is an implicit hole 3098 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3099 * and @end contain data. 3100 */ 3101 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3102 loff_t end, int whence) 3103 { 3104 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3105 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3106 bool seek_data = (whence == SEEK_DATA); 3107 struct folio *folio; 3108 3109 if (end <= start) 3110 return -ENXIO; 3111 3112 rcu_read_lock(); 3113 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3114 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3115 size_t seek_size; 3116 3117 if (start < pos) { 3118 if (!seek_data) 3119 goto unlock; 3120 start = pos; 3121 } 3122 3123 seek_size = seek_folio_size(&xas, folio); 3124 pos = round_up((u64)pos + 1, seek_size); 3125 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3126 seek_data); 3127 if (start < pos) 3128 goto unlock; 3129 if (start >= end) 3130 break; 3131 if (seek_size > PAGE_SIZE) 3132 xas_set(&xas, pos >> PAGE_SHIFT); 3133 if (!xa_is_value(folio)) 3134 folio_put(folio); 3135 } 3136 if (seek_data) 3137 start = -ENXIO; 3138 unlock: 3139 rcu_read_unlock(); 3140 if (folio && !xa_is_value(folio)) 3141 folio_put(folio); 3142 if (start > end) 3143 return end; 3144 return start; 3145 } 3146 3147 #ifdef CONFIG_MMU 3148 #define MMAP_LOTSAMISS (100) 3149 /* 3150 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3151 * @vmf - the vm_fault for this fault. 3152 * @folio - the folio to lock. 3153 * @fpin - the pointer to the file we may pin (or is already pinned). 3154 * 3155 * This works similar to lock_folio_or_retry in that it can drop the 3156 * mmap_lock. It differs in that it actually returns the folio locked 3157 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3158 * to drop the mmap_lock then fpin will point to the pinned file and 3159 * needs to be fput()'ed at a later point. 3160 */ 3161 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3162 struct file **fpin) 3163 { 3164 if (folio_trylock(folio)) 3165 return 1; 3166 3167 /* 3168 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3169 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3170 * is supposed to work. We have way too many special cases.. 3171 */ 3172 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3173 return 0; 3174 3175 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3176 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3177 if (__folio_lock_killable(folio)) { 3178 /* 3179 * We didn't have the right flags to drop the 3180 * fault lock, but all fault_handlers only check 3181 * for fatal signals if we return VM_FAULT_RETRY, 3182 * so we need to drop the fault lock here and 3183 * return 0 if we don't have a fpin. 3184 */ 3185 if (*fpin == NULL) 3186 release_fault_lock(vmf); 3187 return 0; 3188 } 3189 } else 3190 __folio_lock(folio); 3191 3192 return 1; 3193 } 3194 3195 /* 3196 * Synchronous readahead happens when we don't even find a page in the page 3197 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3198 * to drop the mmap sem we return the file that was pinned in order for us to do 3199 * that. If we didn't pin a file then we return NULL. The file that is 3200 * returned needs to be fput()'ed when we're done with it. 3201 */ 3202 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3203 { 3204 struct file *file = vmf->vma->vm_file; 3205 struct file_ra_state *ra = &file->f_ra; 3206 struct address_space *mapping = file->f_mapping; 3207 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3208 struct file *fpin = NULL; 3209 unsigned long vm_flags = vmf->vma->vm_flags; 3210 unsigned int mmap_miss; 3211 3212 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3213 /* Use the readahead code, even if readahead is disabled */ 3214 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3215 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3216 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3217 ra->size = HPAGE_PMD_NR; 3218 /* 3219 * Fetch two PMD folios, so we get the chance to actually 3220 * readahead, unless we've been told not to. 3221 */ 3222 if (!(vm_flags & VM_RAND_READ)) 3223 ra->size *= 2; 3224 ra->async_size = HPAGE_PMD_NR; 3225 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3226 return fpin; 3227 } 3228 #endif 3229 3230 /* If we don't want any read-ahead, don't bother */ 3231 if (vm_flags & VM_RAND_READ) 3232 return fpin; 3233 if (!ra->ra_pages) 3234 return fpin; 3235 3236 if (vm_flags & VM_SEQ_READ) { 3237 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3238 page_cache_sync_ra(&ractl, ra->ra_pages); 3239 return fpin; 3240 } 3241 3242 /* Avoid banging the cache line if not needed */ 3243 mmap_miss = READ_ONCE(ra->mmap_miss); 3244 if (mmap_miss < MMAP_LOTSAMISS * 10) 3245 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3246 3247 /* 3248 * Do we miss much more than hit in this file? If so, 3249 * stop bothering with read-ahead. It will only hurt. 3250 */ 3251 if (mmap_miss > MMAP_LOTSAMISS) 3252 return fpin; 3253 3254 /* 3255 * mmap read-around 3256 */ 3257 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3258 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3259 ra->size = ra->ra_pages; 3260 ra->async_size = ra->ra_pages / 4; 3261 ractl._index = ra->start; 3262 page_cache_ra_order(&ractl, ra, 0); 3263 return fpin; 3264 } 3265 3266 /* 3267 * Asynchronous readahead happens when we find the page and PG_readahead, 3268 * so we want to possibly extend the readahead further. We return the file that 3269 * was pinned if we have to drop the mmap_lock in order to do IO. 3270 */ 3271 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3272 struct folio *folio) 3273 { 3274 struct file *file = vmf->vma->vm_file; 3275 struct file_ra_state *ra = &file->f_ra; 3276 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3277 struct file *fpin = NULL; 3278 unsigned int mmap_miss; 3279 3280 /* If we don't want any read-ahead, don't bother */ 3281 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3282 return fpin; 3283 3284 mmap_miss = READ_ONCE(ra->mmap_miss); 3285 if (mmap_miss) 3286 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3287 3288 if (folio_test_readahead(folio)) { 3289 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3290 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3291 } 3292 return fpin; 3293 } 3294 3295 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3296 { 3297 struct vm_area_struct *vma = vmf->vma; 3298 vm_fault_t ret = 0; 3299 pte_t *ptep; 3300 3301 /* 3302 * We might have COW'ed a pagecache folio and might now have an mlocked 3303 * anon folio mapped. The original pagecache folio is not mlocked and 3304 * might have been evicted. During a read+clear/modify/write update of 3305 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3306 * temporarily clear the PTE under PT lock and might detect it here as 3307 * "none" when not holding the PT lock. 3308 * 3309 * Not rechecking the PTE under PT lock could result in an unexpected 3310 * major fault in an mlock'ed region. Recheck only for this special 3311 * scenario while holding the PT lock, to not degrade non-mlocked 3312 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3313 * the number of times we hold PT lock. 3314 */ 3315 if (!(vma->vm_flags & VM_LOCKED)) 3316 return 0; 3317 3318 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3319 return 0; 3320 3321 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3322 &vmf->ptl); 3323 if (unlikely(!ptep)) 3324 return VM_FAULT_NOPAGE; 3325 3326 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3327 ret = VM_FAULT_NOPAGE; 3328 } else { 3329 spin_lock(vmf->ptl); 3330 if (unlikely(!pte_none(ptep_get(ptep)))) 3331 ret = VM_FAULT_NOPAGE; 3332 spin_unlock(vmf->ptl); 3333 } 3334 pte_unmap(ptep); 3335 return ret; 3336 } 3337 3338 /** 3339 * filemap_fault - read in file data for page fault handling 3340 * @vmf: struct vm_fault containing details of the fault 3341 * 3342 * filemap_fault() is invoked via the vma operations vector for a 3343 * mapped memory region to read in file data during a page fault. 3344 * 3345 * The goto's are kind of ugly, but this streamlines the normal case of having 3346 * it in the page cache, and handles the special cases reasonably without 3347 * having a lot of duplicated code. 3348 * 3349 * vma->vm_mm->mmap_lock must be held on entry. 3350 * 3351 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3352 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3353 * 3354 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3355 * has not been released. 3356 * 3357 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3358 * 3359 * Return: bitwise-OR of %VM_FAULT_ codes. 3360 */ 3361 vm_fault_t filemap_fault(struct vm_fault *vmf) 3362 { 3363 int error; 3364 struct file *file = vmf->vma->vm_file; 3365 struct file *fpin = NULL; 3366 struct address_space *mapping = file->f_mapping; 3367 struct inode *inode = mapping->host; 3368 pgoff_t max_idx, index = vmf->pgoff; 3369 struct folio *folio; 3370 vm_fault_t ret = 0; 3371 bool mapping_locked = false; 3372 3373 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3374 if (unlikely(index >= max_idx)) 3375 return VM_FAULT_SIGBUS; 3376 3377 trace_mm_filemap_fault(mapping, index); 3378 3379 /* 3380 * Do we have something in the page cache already? 3381 */ 3382 folio = filemap_get_folio(mapping, index); 3383 if (likely(!IS_ERR(folio))) { 3384 /* 3385 * We found the page, so try async readahead before waiting for 3386 * the lock. 3387 */ 3388 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3389 fpin = do_async_mmap_readahead(vmf, folio); 3390 if (unlikely(!folio_test_uptodate(folio))) { 3391 filemap_invalidate_lock_shared(mapping); 3392 mapping_locked = true; 3393 } 3394 } else { 3395 ret = filemap_fault_recheck_pte_none(vmf); 3396 if (unlikely(ret)) 3397 return ret; 3398 3399 /* No page in the page cache at all */ 3400 count_vm_event(PGMAJFAULT); 3401 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3402 ret = VM_FAULT_MAJOR; 3403 fpin = do_sync_mmap_readahead(vmf); 3404 retry_find: 3405 /* 3406 * See comment in filemap_create_folio() why we need 3407 * invalidate_lock 3408 */ 3409 if (!mapping_locked) { 3410 filemap_invalidate_lock_shared(mapping); 3411 mapping_locked = true; 3412 } 3413 folio = __filemap_get_folio(mapping, index, 3414 FGP_CREAT|FGP_FOR_MMAP, 3415 vmf->gfp_mask); 3416 if (IS_ERR(folio)) { 3417 if (fpin) 3418 goto out_retry; 3419 filemap_invalidate_unlock_shared(mapping); 3420 return VM_FAULT_OOM; 3421 } 3422 } 3423 3424 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3425 goto out_retry; 3426 3427 /* Did it get truncated? */ 3428 if (unlikely(folio->mapping != mapping)) { 3429 folio_unlock(folio); 3430 folio_put(folio); 3431 goto retry_find; 3432 } 3433 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3434 3435 /* 3436 * We have a locked folio in the page cache, now we need to check 3437 * that it's up-to-date. If not, it is going to be due to an error, 3438 * or because readahead was otherwise unable to retrieve it. 3439 */ 3440 if (unlikely(!folio_test_uptodate(folio))) { 3441 /* 3442 * If the invalidate lock is not held, the folio was in cache 3443 * and uptodate and now it is not. Strange but possible since we 3444 * didn't hold the page lock all the time. Let's drop 3445 * everything, get the invalidate lock and try again. 3446 */ 3447 if (!mapping_locked) { 3448 folio_unlock(folio); 3449 folio_put(folio); 3450 goto retry_find; 3451 } 3452 3453 /* 3454 * OK, the folio is really not uptodate. This can be because the 3455 * VMA has the VM_RAND_READ flag set, or because an error 3456 * arose. Let's read it in directly. 3457 */ 3458 goto page_not_uptodate; 3459 } 3460 3461 /* 3462 * We've made it this far and we had to drop our mmap_lock, now is the 3463 * time to return to the upper layer and have it re-find the vma and 3464 * redo the fault. 3465 */ 3466 if (fpin) { 3467 folio_unlock(folio); 3468 goto out_retry; 3469 } 3470 if (mapping_locked) 3471 filemap_invalidate_unlock_shared(mapping); 3472 3473 /* 3474 * Found the page and have a reference on it. 3475 * We must recheck i_size under page lock. 3476 */ 3477 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3478 if (unlikely(index >= max_idx)) { 3479 folio_unlock(folio); 3480 folio_put(folio); 3481 return VM_FAULT_SIGBUS; 3482 } 3483 3484 vmf->page = folio_file_page(folio, index); 3485 return ret | VM_FAULT_LOCKED; 3486 3487 page_not_uptodate: 3488 /* 3489 * Umm, take care of errors if the page isn't up-to-date. 3490 * Try to re-read it _once_. We do this synchronously, 3491 * because there really aren't any performance issues here 3492 * and we need to check for errors. 3493 */ 3494 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3495 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3496 if (fpin) 3497 goto out_retry; 3498 folio_put(folio); 3499 3500 if (!error || error == AOP_TRUNCATED_PAGE) 3501 goto retry_find; 3502 filemap_invalidate_unlock_shared(mapping); 3503 3504 return VM_FAULT_SIGBUS; 3505 3506 out_retry: 3507 /* 3508 * We dropped the mmap_lock, we need to return to the fault handler to 3509 * re-find the vma and come back and find our hopefully still populated 3510 * page. 3511 */ 3512 if (!IS_ERR(folio)) 3513 folio_put(folio); 3514 if (mapping_locked) 3515 filemap_invalidate_unlock_shared(mapping); 3516 if (fpin) 3517 fput(fpin); 3518 return ret | VM_FAULT_RETRY; 3519 } 3520 EXPORT_SYMBOL(filemap_fault); 3521 3522 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3523 pgoff_t start) 3524 { 3525 struct mm_struct *mm = vmf->vma->vm_mm; 3526 3527 /* Huge page is mapped? No need to proceed. */ 3528 if (pmd_trans_huge(*vmf->pmd)) { 3529 folio_unlock(folio); 3530 folio_put(folio); 3531 return true; 3532 } 3533 3534 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3535 struct page *page = folio_file_page(folio, start); 3536 vm_fault_t ret = do_set_pmd(vmf, page); 3537 if (!ret) { 3538 /* The page is mapped successfully, reference consumed. */ 3539 folio_unlock(folio); 3540 return true; 3541 } 3542 } 3543 3544 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3545 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3546 3547 return false; 3548 } 3549 3550 static struct folio *next_uptodate_folio(struct xa_state *xas, 3551 struct address_space *mapping, pgoff_t end_pgoff) 3552 { 3553 struct folio *folio = xas_next_entry(xas, end_pgoff); 3554 unsigned long max_idx; 3555 3556 do { 3557 if (!folio) 3558 return NULL; 3559 if (xas_retry(xas, folio)) 3560 continue; 3561 if (xa_is_value(folio)) 3562 continue; 3563 if (!folio_try_get(folio)) 3564 continue; 3565 if (folio_test_locked(folio)) 3566 goto skip; 3567 /* Has the page moved or been split? */ 3568 if (unlikely(folio != xas_reload(xas))) 3569 goto skip; 3570 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3571 goto skip; 3572 if (!folio_trylock(folio)) 3573 goto skip; 3574 if (folio->mapping != mapping) 3575 goto unlock; 3576 if (!folio_test_uptodate(folio)) 3577 goto unlock; 3578 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3579 if (xas->xa_index >= max_idx) 3580 goto unlock; 3581 return folio; 3582 unlock: 3583 folio_unlock(folio); 3584 skip: 3585 folio_put(folio); 3586 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3587 3588 return NULL; 3589 } 3590 3591 /* 3592 * Map page range [start_page, start_page + nr_pages) of folio. 3593 * start_page is gotten from start by folio_page(folio, start) 3594 */ 3595 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3596 struct folio *folio, unsigned long start, 3597 unsigned long addr, unsigned int nr_pages, 3598 unsigned long *rss, unsigned int *mmap_miss) 3599 { 3600 vm_fault_t ret = 0; 3601 struct page *page = folio_page(folio, start); 3602 unsigned int count = 0; 3603 pte_t *old_ptep = vmf->pte; 3604 3605 do { 3606 if (PageHWPoison(page + count)) 3607 goto skip; 3608 3609 /* 3610 * If there are too many folios that are recently evicted 3611 * in a file, they will probably continue to be evicted. 3612 * In such situation, read-ahead is only a waste of IO. 3613 * Don't decrease mmap_miss in this scenario to make sure 3614 * we can stop read-ahead. 3615 */ 3616 if (!folio_test_workingset(folio)) 3617 (*mmap_miss)++; 3618 3619 /* 3620 * NOTE: If there're PTE markers, we'll leave them to be 3621 * handled in the specific fault path, and it'll prohibit the 3622 * fault-around logic. 3623 */ 3624 if (!pte_none(ptep_get(&vmf->pte[count]))) 3625 goto skip; 3626 3627 count++; 3628 continue; 3629 skip: 3630 if (count) { 3631 set_pte_range(vmf, folio, page, count, addr); 3632 *rss += count; 3633 folio_ref_add(folio, count); 3634 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3635 ret = VM_FAULT_NOPAGE; 3636 } 3637 3638 count++; 3639 page += count; 3640 vmf->pte += count; 3641 addr += count * PAGE_SIZE; 3642 count = 0; 3643 } while (--nr_pages > 0); 3644 3645 if (count) { 3646 set_pte_range(vmf, folio, page, count, addr); 3647 *rss += count; 3648 folio_ref_add(folio, count); 3649 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3650 ret = VM_FAULT_NOPAGE; 3651 } 3652 3653 vmf->pte = old_ptep; 3654 3655 return ret; 3656 } 3657 3658 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3659 struct folio *folio, unsigned long addr, 3660 unsigned long *rss, unsigned int *mmap_miss) 3661 { 3662 vm_fault_t ret = 0; 3663 struct page *page = &folio->page; 3664 3665 if (PageHWPoison(page)) 3666 return ret; 3667 3668 /* See comment of filemap_map_folio_range() */ 3669 if (!folio_test_workingset(folio)) 3670 (*mmap_miss)++; 3671 3672 /* 3673 * NOTE: If there're PTE markers, we'll leave them to be 3674 * handled in the specific fault path, and it'll prohibit 3675 * the fault-around logic. 3676 */ 3677 if (!pte_none(ptep_get(vmf->pte))) 3678 return ret; 3679 3680 if (vmf->address == addr) 3681 ret = VM_FAULT_NOPAGE; 3682 3683 set_pte_range(vmf, folio, page, 1, addr); 3684 (*rss)++; 3685 folio_ref_inc(folio); 3686 3687 return ret; 3688 } 3689 3690 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3691 pgoff_t start_pgoff, pgoff_t end_pgoff) 3692 { 3693 struct vm_area_struct *vma = vmf->vma; 3694 struct file *file = vma->vm_file; 3695 struct address_space *mapping = file->f_mapping; 3696 pgoff_t file_end, last_pgoff = start_pgoff; 3697 unsigned long addr; 3698 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3699 struct folio *folio; 3700 vm_fault_t ret = 0; 3701 unsigned long rss = 0; 3702 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3703 3704 rcu_read_lock(); 3705 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3706 if (!folio) 3707 goto out; 3708 3709 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3710 ret = VM_FAULT_NOPAGE; 3711 goto out; 3712 } 3713 3714 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3715 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3716 if (!vmf->pte) { 3717 folio_unlock(folio); 3718 folio_put(folio); 3719 goto out; 3720 } 3721 3722 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3723 if (end_pgoff > file_end) 3724 end_pgoff = file_end; 3725 3726 folio_type = mm_counter_file(folio); 3727 do { 3728 unsigned long end; 3729 3730 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3731 vmf->pte += xas.xa_index - last_pgoff; 3732 last_pgoff = xas.xa_index; 3733 end = folio_next_index(folio) - 1; 3734 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3735 3736 if (!folio_test_large(folio)) 3737 ret |= filemap_map_order0_folio(vmf, 3738 folio, addr, &rss, &mmap_miss); 3739 else 3740 ret |= filemap_map_folio_range(vmf, folio, 3741 xas.xa_index - folio->index, addr, 3742 nr_pages, &rss, &mmap_miss); 3743 3744 folio_unlock(folio); 3745 folio_put(folio); 3746 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3747 add_mm_counter(vma->vm_mm, folio_type, rss); 3748 pte_unmap_unlock(vmf->pte, vmf->ptl); 3749 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3750 out: 3751 rcu_read_unlock(); 3752 3753 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3754 if (mmap_miss >= mmap_miss_saved) 3755 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3756 else 3757 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3758 3759 return ret; 3760 } 3761 EXPORT_SYMBOL(filemap_map_pages); 3762 3763 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3764 { 3765 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3766 struct folio *folio = page_folio(vmf->page); 3767 vm_fault_t ret = VM_FAULT_LOCKED; 3768 3769 sb_start_pagefault(mapping->host->i_sb); 3770 file_update_time(vmf->vma->vm_file); 3771 folio_lock(folio); 3772 if (folio->mapping != mapping) { 3773 folio_unlock(folio); 3774 ret = VM_FAULT_NOPAGE; 3775 goto out; 3776 } 3777 /* 3778 * We mark the folio dirty already here so that when freeze is in 3779 * progress, we are guaranteed that writeback during freezing will 3780 * see the dirty folio and writeprotect it again. 3781 */ 3782 folio_mark_dirty(folio); 3783 folio_wait_stable(folio); 3784 out: 3785 sb_end_pagefault(mapping->host->i_sb); 3786 return ret; 3787 } 3788 3789 const struct vm_operations_struct generic_file_vm_ops = { 3790 .fault = filemap_fault, 3791 .map_pages = filemap_map_pages, 3792 .page_mkwrite = filemap_page_mkwrite, 3793 }; 3794 3795 /* This is used for a general mmap of a disk file */ 3796 3797 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3798 { 3799 struct address_space *mapping = file->f_mapping; 3800 3801 if (!mapping->a_ops->read_folio) 3802 return -ENOEXEC; 3803 file_accessed(file); 3804 vma->vm_ops = &generic_file_vm_ops; 3805 return 0; 3806 } 3807 3808 /* 3809 * This is for filesystems which do not implement ->writepage. 3810 */ 3811 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3812 { 3813 if (vma_is_shared_maywrite(vma)) 3814 return -EINVAL; 3815 return generic_file_mmap(file, vma); 3816 } 3817 #else 3818 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3819 { 3820 return VM_FAULT_SIGBUS; 3821 } 3822 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3823 { 3824 return -ENOSYS; 3825 } 3826 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3827 { 3828 return -ENOSYS; 3829 } 3830 #endif /* CONFIG_MMU */ 3831 3832 EXPORT_SYMBOL(filemap_page_mkwrite); 3833 EXPORT_SYMBOL(generic_file_mmap); 3834 EXPORT_SYMBOL(generic_file_readonly_mmap); 3835 3836 static struct folio *do_read_cache_folio(struct address_space *mapping, 3837 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3838 { 3839 struct folio *folio; 3840 int err; 3841 3842 if (!filler) 3843 filler = mapping->a_ops->read_folio; 3844 repeat: 3845 folio = filemap_get_folio(mapping, index); 3846 if (IS_ERR(folio)) { 3847 folio = filemap_alloc_folio(gfp, 3848 mapping_min_folio_order(mapping)); 3849 if (!folio) 3850 return ERR_PTR(-ENOMEM); 3851 index = mapping_align_index(mapping, index); 3852 err = filemap_add_folio(mapping, folio, index, gfp); 3853 if (unlikely(err)) { 3854 folio_put(folio); 3855 if (err == -EEXIST) 3856 goto repeat; 3857 /* Presumably ENOMEM for xarray node */ 3858 return ERR_PTR(err); 3859 } 3860 3861 goto filler; 3862 } 3863 if (folio_test_uptodate(folio)) 3864 goto out; 3865 3866 if (!folio_trylock(folio)) { 3867 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3868 goto repeat; 3869 } 3870 3871 /* Folio was truncated from mapping */ 3872 if (!folio->mapping) { 3873 folio_unlock(folio); 3874 folio_put(folio); 3875 goto repeat; 3876 } 3877 3878 /* Someone else locked and filled the page in a very small window */ 3879 if (folio_test_uptodate(folio)) { 3880 folio_unlock(folio); 3881 goto out; 3882 } 3883 3884 filler: 3885 err = filemap_read_folio(file, filler, folio); 3886 if (err) { 3887 folio_put(folio); 3888 if (err == AOP_TRUNCATED_PAGE) 3889 goto repeat; 3890 return ERR_PTR(err); 3891 } 3892 3893 out: 3894 folio_mark_accessed(folio); 3895 return folio; 3896 } 3897 3898 /** 3899 * read_cache_folio - Read into page cache, fill it if needed. 3900 * @mapping: The address_space to read from. 3901 * @index: The index to read. 3902 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3903 * @file: Passed to filler function, may be NULL if not required. 3904 * 3905 * Read one page into the page cache. If it succeeds, the folio returned 3906 * will contain @index, but it may not be the first page of the folio. 3907 * 3908 * If the filler function returns an error, it will be returned to the 3909 * caller. 3910 * 3911 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3912 * Return: An uptodate folio on success, ERR_PTR() on failure. 3913 */ 3914 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3915 filler_t filler, struct file *file) 3916 { 3917 return do_read_cache_folio(mapping, index, filler, file, 3918 mapping_gfp_mask(mapping)); 3919 } 3920 EXPORT_SYMBOL(read_cache_folio); 3921 3922 /** 3923 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3924 * @mapping: The address_space for the folio. 3925 * @index: The index that the allocated folio will contain. 3926 * @gfp: The page allocator flags to use if allocating. 3927 * 3928 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3929 * any new memory allocations done using the specified allocation flags. 3930 * 3931 * The most likely error from this function is EIO, but ENOMEM is 3932 * possible and so is EINTR. If ->read_folio returns another error, 3933 * that will be returned to the caller. 3934 * 3935 * The function expects mapping->invalidate_lock to be already held. 3936 * 3937 * Return: Uptodate folio on success, ERR_PTR() on failure. 3938 */ 3939 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3940 pgoff_t index, gfp_t gfp) 3941 { 3942 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3943 } 3944 EXPORT_SYMBOL(mapping_read_folio_gfp); 3945 3946 static struct page *do_read_cache_page(struct address_space *mapping, 3947 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3948 { 3949 struct folio *folio; 3950 3951 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3952 if (IS_ERR(folio)) 3953 return &folio->page; 3954 return folio_file_page(folio, index); 3955 } 3956 3957 struct page *read_cache_page(struct address_space *mapping, 3958 pgoff_t index, filler_t *filler, struct file *file) 3959 { 3960 return do_read_cache_page(mapping, index, filler, file, 3961 mapping_gfp_mask(mapping)); 3962 } 3963 EXPORT_SYMBOL(read_cache_page); 3964 3965 /** 3966 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3967 * @mapping: the page's address_space 3968 * @index: the page index 3969 * @gfp: the page allocator flags to use if allocating 3970 * 3971 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3972 * any new page allocations done using the specified allocation flags. 3973 * 3974 * If the page does not get brought uptodate, return -EIO. 3975 * 3976 * The function expects mapping->invalidate_lock to be already held. 3977 * 3978 * Return: up to date page on success, ERR_PTR() on failure. 3979 */ 3980 struct page *read_cache_page_gfp(struct address_space *mapping, 3981 pgoff_t index, 3982 gfp_t gfp) 3983 { 3984 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3985 } 3986 EXPORT_SYMBOL(read_cache_page_gfp); 3987 3988 /* 3989 * Warn about a page cache invalidation failure during a direct I/O write. 3990 */ 3991 static void dio_warn_stale_pagecache(struct file *filp) 3992 { 3993 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3994 char pathname[128]; 3995 char *path; 3996 3997 errseq_set(&filp->f_mapping->wb_err, -EIO); 3998 if (__ratelimit(&_rs)) { 3999 path = file_path(filp, pathname, sizeof(pathname)); 4000 if (IS_ERR(path)) 4001 path = "(unknown)"; 4002 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 4003 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 4004 current->comm); 4005 } 4006 } 4007 4008 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 4009 { 4010 struct address_space *mapping = iocb->ki_filp->f_mapping; 4011 4012 if (mapping->nrpages && 4013 invalidate_inode_pages2_range(mapping, 4014 iocb->ki_pos >> PAGE_SHIFT, 4015 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4016 dio_warn_stale_pagecache(iocb->ki_filp); 4017 } 4018 4019 ssize_t 4020 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4021 { 4022 struct address_space *mapping = iocb->ki_filp->f_mapping; 4023 size_t write_len = iov_iter_count(from); 4024 ssize_t written; 4025 4026 /* 4027 * If a page can not be invalidated, return 0 to fall back 4028 * to buffered write. 4029 */ 4030 written = kiocb_invalidate_pages(iocb, write_len); 4031 if (written) { 4032 if (written == -EBUSY) 4033 return 0; 4034 return written; 4035 } 4036 4037 written = mapping->a_ops->direct_IO(iocb, from); 4038 4039 /* 4040 * Finally, try again to invalidate clean pages which might have been 4041 * cached by non-direct readahead, or faulted in by get_user_pages() 4042 * if the source of the write was an mmap'ed region of the file 4043 * we're writing. Either one is a pretty crazy thing to do, 4044 * so we don't support it 100%. If this invalidation 4045 * fails, tough, the write still worked... 4046 * 4047 * Most of the time we do not need this since dio_complete() will do 4048 * the invalidation for us. However there are some file systems that 4049 * do not end up with dio_complete() being called, so let's not break 4050 * them by removing it completely. 4051 * 4052 * Noticeable example is a blkdev_direct_IO(). 4053 * 4054 * Skip invalidation for async writes or if mapping has no pages. 4055 */ 4056 if (written > 0) { 4057 struct inode *inode = mapping->host; 4058 loff_t pos = iocb->ki_pos; 4059 4060 kiocb_invalidate_post_direct_write(iocb, written); 4061 pos += written; 4062 write_len -= written; 4063 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4064 i_size_write(inode, pos); 4065 mark_inode_dirty(inode); 4066 } 4067 iocb->ki_pos = pos; 4068 } 4069 if (written != -EIOCBQUEUED) 4070 iov_iter_revert(from, write_len - iov_iter_count(from)); 4071 return written; 4072 } 4073 EXPORT_SYMBOL(generic_file_direct_write); 4074 4075 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4076 { 4077 struct file *file = iocb->ki_filp; 4078 loff_t pos = iocb->ki_pos; 4079 struct address_space *mapping = file->f_mapping; 4080 const struct address_space_operations *a_ops = mapping->a_ops; 4081 size_t chunk = mapping_max_folio_size(mapping); 4082 long status = 0; 4083 ssize_t written = 0; 4084 4085 do { 4086 struct folio *folio; 4087 size_t offset; /* Offset into folio */ 4088 size_t bytes; /* Bytes to write to folio */ 4089 size_t copied; /* Bytes copied from user */ 4090 void *fsdata = NULL; 4091 4092 bytes = iov_iter_count(i); 4093 retry: 4094 offset = pos & (chunk - 1); 4095 bytes = min(chunk - offset, bytes); 4096 balance_dirty_pages_ratelimited(mapping); 4097 4098 if (fatal_signal_pending(current)) { 4099 status = -EINTR; 4100 break; 4101 } 4102 4103 status = a_ops->write_begin(file, mapping, pos, bytes, 4104 &folio, &fsdata); 4105 if (unlikely(status < 0)) 4106 break; 4107 4108 offset = offset_in_folio(folio, pos); 4109 if (bytes > folio_size(folio) - offset) 4110 bytes = folio_size(folio) - offset; 4111 4112 if (mapping_writably_mapped(mapping)) 4113 flush_dcache_folio(folio); 4114 4115 /* 4116 * Faults here on mmap()s can recurse into arbitrary 4117 * filesystem code. Lots of locks are held that can 4118 * deadlock. Use an atomic copy to avoid deadlocking 4119 * in page fault handling. 4120 */ 4121 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4122 flush_dcache_folio(folio); 4123 4124 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4125 folio, fsdata); 4126 if (unlikely(status != copied)) { 4127 iov_iter_revert(i, copied - max(status, 0L)); 4128 if (unlikely(status < 0)) 4129 break; 4130 } 4131 cond_resched(); 4132 4133 if (unlikely(status == 0)) { 4134 /* 4135 * A short copy made ->write_end() reject the 4136 * thing entirely. Might be memory poisoning 4137 * halfway through, might be a race with munmap, 4138 * might be severe memory pressure. 4139 */ 4140 if (chunk > PAGE_SIZE) 4141 chunk /= 2; 4142 if (copied) { 4143 bytes = copied; 4144 goto retry; 4145 } 4146 4147 /* 4148 * 'folio' is now unlocked and faults on it can be 4149 * handled. Ensure forward progress by trying to 4150 * fault it in now. 4151 */ 4152 if (fault_in_iov_iter_readable(i, bytes) == bytes) { 4153 status = -EFAULT; 4154 break; 4155 } 4156 } else { 4157 pos += status; 4158 written += status; 4159 } 4160 } while (iov_iter_count(i)); 4161 4162 if (!written) 4163 return status; 4164 iocb->ki_pos += written; 4165 return written; 4166 } 4167 EXPORT_SYMBOL(generic_perform_write); 4168 4169 /** 4170 * __generic_file_write_iter - write data to a file 4171 * @iocb: IO state structure (file, offset, etc.) 4172 * @from: iov_iter with data to write 4173 * 4174 * This function does all the work needed for actually writing data to a 4175 * file. It does all basic checks, removes SUID from the file, updates 4176 * modification times and calls proper subroutines depending on whether we 4177 * do direct IO or a standard buffered write. 4178 * 4179 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4180 * object which does not need locking at all. 4181 * 4182 * This function does *not* take care of syncing data in case of O_SYNC write. 4183 * A caller has to handle it. This is mainly due to the fact that we want to 4184 * avoid syncing under i_rwsem. 4185 * 4186 * Return: 4187 * * number of bytes written, even for truncated writes 4188 * * negative error code if no data has been written at all 4189 */ 4190 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4191 { 4192 struct file *file = iocb->ki_filp; 4193 struct address_space *mapping = file->f_mapping; 4194 struct inode *inode = mapping->host; 4195 ssize_t ret; 4196 4197 ret = file_remove_privs(file); 4198 if (ret) 4199 return ret; 4200 4201 ret = file_update_time(file); 4202 if (ret) 4203 return ret; 4204 4205 if (iocb->ki_flags & IOCB_DIRECT) { 4206 ret = generic_file_direct_write(iocb, from); 4207 /* 4208 * If the write stopped short of completing, fall back to 4209 * buffered writes. Some filesystems do this for writes to 4210 * holes, for example. For DAX files, a buffered write will 4211 * not succeed (even if it did, DAX does not handle dirty 4212 * page-cache pages correctly). 4213 */ 4214 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4215 return ret; 4216 return direct_write_fallback(iocb, from, ret, 4217 generic_perform_write(iocb, from)); 4218 } 4219 4220 return generic_perform_write(iocb, from); 4221 } 4222 EXPORT_SYMBOL(__generic_file_write_iter); 4223 4224 /** 4225 * generic_file_write_iter - write data to a file 4226 * @iocb: IO state structure 4227 * @from: iov_iter with data to write 4228 * 4229 * This is a wrapper around __generic_file_write_iter() to be used by most 4230 * filesystems. It takes care of syncing the file in case of O_SYNC file 4231 * and acquires i_rwsem as needed. 4232 * Return: 4233 * * negative error code if no data has been written at all of 4234 * vfs_fsync_range() failed for a synchronous write 4235 * * number of bytes written, even for truncated writes 4236 */ 4237 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4238 { 4239 struct file *file = iocb->ki_filp; 4240 struct inode *inode = file->f_mapping->host; 4241 ssize_t ret; 4242 4243 inode_lock(inode); 4244 ret = generic_write_checks(iocb, from); 4245 if (ret > 0) 4246 ret = __generic_file_write_iter(iocb, from); 4247 inode_unlock(inode); 4248 4249 if (ret > 0) 4250 ret = generic_write_sync(iocb, ret); 4251 return ret; 4252 } 4253 EXPORT_SYMBOL(generic_file_write_iter); 4254 4255 /** 4256 * filemap_release_folio() - Release fs-specific metadata on a folio. 4257 * @folio: The folio which the kernel is trying to free. 4258 * @gfp: Memory allocation flags (and I/O mode). 4259 * 4260 * The address_space is trying to release any data attached to a folio 4261 * (presumably at folio->private). 4262 * 4263 * This will also be called if the private_2 flag is set on a page, 4264 * indicating that the folio has other metadata associated with it. 4265 * 4266 * The @gfp argument specifies whether I/O may be performed to release 4267 * this page (__GFP_IO), and whether the call may block 4268 * (__GFP_RECLAIM & __GFP_FS). 4269 * 4270 * Return: %true if the release was successful, otherwise %false. 4271 */ 4272 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4273 { 4274 struct address_space * const mapping = folio->mapping; 4275 4276 BUG_ON(!folio_test_locked(folio)); 4277 if (!folio_needs_release(folio)) 4278 return true; 4279 if (folio_test_writeback(folio)) 4280 return false; 4281 4282 if (mapping && mapping->a_ops->release_folio) 4283 return mapping->a_ops->release_folio(folio, gfp); 4284 return try_to_free_buffers(folio); 4285 } 4286 EXPORT_SYMBOL(filemap_release_folio); 4287 4288 /** 4289 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4290 * @inode: The inode to flush 4291 * @flush: Set to write back rather than simply invalidate. 4292 * @start: First byte to in range. 4293 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4294 * onwards. 4295 * 4296 * Invalidate all the folios on an inode that contribute to the specified 4297 * range, possibly writing them back first. Whilst the operation is 4298 * undertaken, the invalidate lock is held to prevent new folios from being 4299 * installed. 4300 */ 4301 int filemap_invalidate_inode(struct inode *inode, bool flush, 4302 loff_t start, loff_t end) 4303 { 4304 struct address_space *mapping = inode->i_mapping; 4305 pgoff_t first = start >> PAGE_SHIFT; 4306 pgoff_t last = end >> PAGE_SHIFT; 4307 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4308 4309 if (!mapping || !mapping->nrpages || end < start) 4310 goto out; 4311 4312 /* Prevent new folios from being added to the inode. */ 4313 filemap_invalidate_lock(mapping); 4314 4315 if (!mapping->nrpages) 4316 goto unlock; 4317 4318 unmap_mapping_pages(mapping, first, nr, false); 4319 4320 /* Write back the data if we're asked to. */ 4321 if (flush) { 4322 struct writeback_control wbc = { 4323 .sync_mode = WB_SYNC_ALL, 4324 .nr_to_write = LONG_MAX, 4325 .range_start = start, 4326 .range_end = end, 4327 }; 4328 4329 filemap_fdatawrite_wbc(mapping, &wbc); 4330 } 4331 4332 /* Wait for writeback to complete on all folios and discard. */ 4333 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4334 4335 unlock: 4336 filemap_invalidate_unlock(mapping); 4337 out: 4338 return filemap_check_errors(mapping); 4339 } 4340 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4341 4342 #ifdef CONFIG_CACHESTAT_SYSCALL 4343 /** 4344 * filemap_cachestat() - compute the page cache statistics of a mapping 4345 * @mapping: The mapping to compute the statistics for. 4346 * @first_index: The starting page cache index. 4347 * @last_index: The final page index (inclusive). 4348 * @cs: the cachestat struct to write the result to. 4349 * 4350 * This will query the page cache statistics of a mapping in the 4351 * page range of [first_index, last_index] (inclusive). The statistics 4352 * queried include: number of dirty pages, number of pages marked for 4353 * writeback, and the number of (recently) evicted pages. 4354 */ 4355 static void filemap_cachestat(struct address_space *mapping, 4356 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4357 { 4358 XA_STATE(xas, &mapping->i_pages, first_index); 4359 struct folio *folio; 4360 4361 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4362 mem_cgroup_flush_stats_ratelimited(NULL); 4363 4364 rcu_read_lock(); 4365 xas_for_each(&xas, folio, last_index) { 4366 int order; 4367 unsigned long nr_pages; 4368 pgoff_t folio_first_index, folio_last_index; 4369 4370 /* 4371 * Don't deref the folio. It is not pinned, and might 4372 * get freed (and reused) underneath us. 4373 * 4374 * We *could* pin it, but that would be expensive for 4375 * what should be a fast and lightweight syscall. 4376 * 4377 * Instead, derive all information of interest from 4378 * the rcu-protected xarray. 4379 */ 4380 4381 if (xas_retry(&xas, folio)) 4382 continue; 4383 4384 order = xas_get_order(&xas); 4385 nr_pages = 1 << order; 4386 folio_first_index = round_down(xas.xa_index, 1 << order); 4387 folio_last_index = folio_first_index + nr_pages - 1; 4388 4389 /* Folios might straddle the range boundaries, only count covered pages */ 4390 if (folio_first_index < first_index) 4391 nr_pages -= first_index - folio_first_index; 4392 4393 if (folio_last_index > last_index) 4394 nr_pages -= folio_last_index - last_index; 4395 4396 if (xa_is_value(folio)) { 4397 /* page is evicted */ 4398 void *shadow = (void *)folio; 4399 bool workingset; /* not used */ 4400 4401 cs->nr_evicted += nr_pages; 4402 4403 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4404 if (shmem_mapping(mapping)) { 4405 /* shmem file - in swap cache */ 4406 swp_entry_t swp = radix_to_swp_entry(folio); 4407 4408 /* swapin error results in poisoned entry */ 4409 if (non_swap_entry(swp)) 4410 goto resched; 4411 4412 /* 4413 * Getting a swap entry from the shmem 4414 * inode means we beat 4415 * shmem_unuse(). rcu_read_lock() 4416 * ensures swapoff waits for us before 4417 * freeing the swapper space. However, 4418 * we can race with swapping and 4419 * invalidation, so there might not be 4420 * a shadow in the swapcache (yet). 4421 */ 4422 shadow = get_shadow_from_swap_cache(swp); 4423 if (!shadow) 4424 goto resched; 4425 } 4426 #endif 4427 if (workingset_test_recent(shadow, true, &workingset, false)) 4428 cs->nr_recently_evicted += nr_pages; 4429 4430 goto resched; 4431 } 4432 4433 /* page is in cache */ 4434 cs->nr_cache += nr_pages; 4435 4436 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4437 cs->nr_dirty += nr_pages; 4438 4439 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4440 cs->nr_writeback += nr_pages; 4441 4442 resched: 4443 if (need_resched()) { 4444 xas_pause(&xas); 4445 cond_resched_rcu(); 4446 } 4447 } 4448 rcu_read_unlock(); 4449 } 4450 4451 /* 4452 * See mincore: reveal pagecache information only for files 4453 * that the calling process has write access to, or could (if 4454 * tried) open for writing. 4455 */ 4456 static inline bool can_do_cachestat(struct file *f) 4457 { 4458 if (f->f_mode & FMODE_WRITE) 4459 return true; 4460 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4461 return true; 4462 return file_permission(f, MAY_WRITE) == 0; 4463 } 4464 4465 /* 4466 * The cachestat(2) system call. 4467 * 4468 * cachestat() returns the page cache statistics of a file in the 4469 * bytes range specified by `off` and `len`: number of cached pages, 4470 * number of dirty pages, number of pages marked for writeback, 4471 * number of evicted pages, and number of recently evicted pages. 4472 * 4473 * An evicted page is a page that is previously in the page cache 4474 * but has been evicted since. A page is recently evicted if its last 4475 * eviction was recent enough that its reentry to the cache would 4476 * indicate that it is actively being used by the system, and that 4477 * there is memory pressure on the system. 4478 * 4479 * `off` and `len` must be non-negative integers. If `len` > 0, 4480 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4481 * we will query in the range from `off` to the end of the file. 4482 * 4483 * The `flags` argument is unused for now, but is included for future 4484 * extensibility. User should pass 0 (i.e no flag specified). 4485 * 4486 * Currently, hugetlbfs is not supported. 4487 * 4488 * Because the status of a page can change after cachestat() checks it 4489 * but before it returns to the application, the returned values may 4490 * contain stale information. 4491 * 4492 * return values: 4493 * zero - success 4494 * -EFAULT - cstat or cstat_range points to an illegal address 4495 * -EINVAL - invalid flags 4496 * -EBADF - invalid file descriptor 4497 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4498 */ 4499 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4500 struct cachestat_range __user *, cstat_range, 4501 struct cachestat __user *, cstat, unsigned int, flags) 4502 { 4503 CLASS(fd, f)(fd); 4504 struct address_space *mapping; 4505 struct cachestat_range csr; 4506 struct cachestat cs; 4507 pgoff_t first_index, last_index; 4508 4509 if (fd_empty(f)) 4510 return -EBADF; 4511 4512 if (copy_from_user(&csr, cstat_range, 4513 sizeof(struct cachestat_range))) 4514 return -EFAULT; 4515 4516 /* hugetlbfs is not supported */ 4517 if (is_file_hugepages(fd_file(f))) 4518 return -EOPNOTSUPP; 4519 4520 if (!can_do_cachestat(fd_file(f))) 4521 return -EPERM; 4522 4523 if (flags != 0) 4524 return -EINVAL; 4525 4526 first_index = csr.off >> PAGE_SHIFT; 4527 last_index = 4528 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4529 memset(&cs, 0, sizeof(struct cachestat)); 4530 mapping = fd_file(f)->f_mapping; 4531 filemap_cachestat(mapping, first_index, last_index, &cs); 4532 4533 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4534 return -EFAULT; 4535 4536 return 0; 4537 } 4538 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4539