1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/filemap.c 4 * 5 * Copyright (C) 1994-1999 Linus Torvalds 6 */ 7 8 /* 9 * This file handles the generic file mmap semantics used by 10 * most "normal" filesystems (but you don't /have/ to use this: 11 * the NFS filesystem used to do this differently, for example) 12 */ 13 #include <linux/export.h> 14 #include <linux/compiler.h> 15 #include <linux/dax.h> 16 #include <linux/fs.h> 17 #include <linux/sched/signal.h> 18 #include <linux/uaccess.h> 19 #include <linux/capability.h> 20 #include <linux/kernel_stat.h> 21 #include <linux/gfp.h> 22 #include <linux/mm.h> 23 #include <linux/swap.h> 24 #include <linux/swapops.h> 25 #include <linux/syscalls.h> 26 #include <linux/mman.h> 27 #include <linux/pagemap.h> 28 #include <linux/file.h> 29 #include <linux/uio.h> 30 #include <linux/error-injection.h> 31 #include <linux/hash.h> 32 #include <linux/writeback.h> 33 #include <linux/backing-dev.h> 34 #include <linux/pagevec.h> 35 #include <linux/security.h> 36 #include <linux/cpuset.h> 37 #include <linux/hugetlb.h> 38 #include <linux/memcontrol.h> 39 #include <linux/shmem_fs.h> 40 #include <linux/rmap.h> 41 #include <linux/delayacct.h> 42 #include <linux/psi.h> 43 #include <linux/ramfs.h> 44 #include <linux/page_idle.h> 45 #include <linux/migrate.h> 46 #include <linux/pipe_fs_i.h> 47 #include <linux/splice.h> 48 #include <linux/rcupdate_wait.h> 49 #include <linux/sched/mm.h> 50 #include <asm/pgalloc.h> 51 #include <asm/tlbflush.h> 52 #include "internal.h" 53 54 #define CREATE_TRACE_POINTS 55 #include <trace/events/filemap.h> 56 57 /* 58 * FIXME: remove all knowledge of the buffer layer from the core VM 59 */ 60 #include <linux/buffer_head.h> /* for try_to_free_buffers */ 61 62 #include <asm/mman.h> 63 64 #include "swap.h" 65 66 /* 67 * Shared mappings implemented 30.11.1994. It's not fully working yet, 68 * though. 69 * 70 * Shared mappings now work. 15.8.1995 Bruno. 71 * 72 * finished 'unifying' the page and buffer cache and SMP-threaded the 73 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com> 74 * 75 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de> 76 */ 77 78 /* 79 * Lock ordering: 80 * 81 * ->i_mmap_rwsem (truncate_pagecache) 82 * ->private_lock (__free_pte->block_dirty_folio) 83 * ->swap_lock (exclusive_swap_page, others) 84 * ->i_pages lock 85 * 86 * ->i_rwsem 87 * ->invalidate_lock (acquired by fs in truncate path) 88 * ->i_mmap_rwsem (truncate->unmap_mapping_range) 89 * 90 * ->mmap_lock 91 * ->i_mmap_rwsem 92 * ->page_table_lock or pte_lock (various, mainly in memory.c) 93 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock) 94 * 95 * ->mmap_lock 96 * ->invalidate_lock (filemap_fault) 97 * ->lock_page (filemap_fault, access_process_vm) 98 * 99 * ->i_rwsem (generic_perform_write) 100 * ->mmap_lock (fault_in_readable->do_page_fault) 101 * 102 * bdi->wb.list_lock 103 * sb_lock (fs/fs-writeback.c) 104 * ->i_pages lock (__sync_single_inode) 105 * 106 * ->i_mmap_rwsem 107 * ->anon_vma.lock (vma_merge) 108 * 109 * ->anon_vma.lock 110 * ->page_table_lock or pte_lock (anon_vma_prepare and various) 111 * 112 * ->page_table_lock or pte_lock 113 * ->swap_lock (try_to_unmap_one) 114 * ->private_lock (try_to_unmap_one) 115 * ->i_pages lock (try_to_unmap_one) 116 * ->lruvec->lru_lock (follow_page_mask->mark_page_accessed) 117 * ->lruvec->lru_lock (check_pte_range->folio_isolate_lru) 118 * ->private_lock (folio_remove_rmap_pte->set_page_dirty) 119 * ->i_pages lock (folio_remove_rmap_pte->set_page_dirty) 120 * bdi.wb->list_lock (folio_remove_rmap_pte->set_page_dirty) 121 * ->inode->i_lock (folio_remove_rmap_pte->set_page_dirty) 122 * bdi.wb->list_lock (zap_pte_range->set_page_dirty) 123 * ->inode->i_lock (zap_pte_range->set_page_dirty) 124 * ->private_lock (zap_pte_range->block_dirty_folio) 125 */ 126 127 static void page_cache_delete(struct address_space *mapping, 128 struct folio *folio, void *shadow) 129 { 130 XA_STATE(xas, &mapping->i_pages, folio->index); 131 long nr = 1; 132 133 mapping_set_update(&xas, mapping); 134 135 xas_set_order(&xas, folio->index, folio_order(folio)); 136 nr = folio_nr_pages(folio); 137 138 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 139 140 xas_store(&xas, shadow); 141 xas_init_marks(&xas); 142 143 folio->mapping = NULL; 144 /* Leave page->index set: truncation lookup relies upon it */ 145 mapping->nrpages -= nr; 146 } 147 148 static void filemap_unaccount_folio(struct address_space *mapping, 149 struct folio *folio) 150 { 151 long nr; 152 153 VM_BUG_ON_FOLIO(folio_mapped(folio), folio); 154 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) { 155 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n", 156 current->comm, folio_pfn(folio)); 157 dump_page(&folio->page, "still mapped when deleted"); 158 dump_stack(); 159 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 160 161 if (mapping_exiting(mapping) && !folio_test_large(folio)) { 162 int mapcount = folio_mapcount(folio); 163 164 if (folio_ref_count(folio) >= mapcount + 2) { 165 /* 166 * All vmas have already been torn down, so it's 167 * a good bet that actually the page is unmapped 168 * and we'd rather not leak it: if we're wrong, 169 * another bad page check should catch it later. 170 */ 171 atomic_set(&folio->_mapcount, -1); 172 folio_ref_sub(folio, mapcount); 173 } 174 } 175 } 176 177 /* hugetlb folios do not participate in page cache accounting. */ 178 if (folio_test_hugetlb(folio)) 179 return; 180 181 nr = folio_nr_pages(folio); 182 183 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr); 184 if (folio_test_swapbacked(folio)) { 185 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr); 186 if (folio_test_pmd_mappable(folio)) 187 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr); 188 } else if (folio_test_pmd_mappable(folio)) { 189 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr); 190 filemap_nr_thps_dec(mapping); 191 } 192 193 /* 194 * At this point folio must be either written or cleaned by 195 * truncate. Dirty folio here signals a bug and loss of 196 * unwritten data - on ordinary filesystems. 197 * 198 * But it's harmless on in-memory filesystems like tmpfs; and can 199 * occur when a driver which did get_user_pages() sets page dirty 200 * before putting it, while the inode is being finally evicted. 201 * 202 * Below fixes dirty accounting after removing the folio entirely 203 * but leaves the dirty flag set: it has no effect for truncated 204 * folio and anyway will be cleared before returning folio to 205 * buddy allocator. 206 */ 207 if (WARN_ON_ONCE(folio_test_dirty(folio) && 208 mapping_can_writeback(mapping))) 209 folio_account_cleaned(folio, inode_to_wb(mapping->host)); 210 } 211 212 /* 213 * Delete a page from the page cache and free it. Caller has to make 214 * sure the page is locked and that nobody else uses it - or that usage 215 * is safe. The caller must hold the i_pages lock. 216 */ 217 void __filemap_remove_folio(struct folio *folio, void *shadow) 218 { 219 struct address_space *mapping = folio->mapping; 220 221 trace_mm_filemap_delete_from_page_cache(folio); 222 filemap_unaccount_folio(mapping, folio); 223 page_cache_delete(mapping, folio, shadow); 224 } 225 226 void filemap_free_folio(struct address_space *mapping, struct folio *folio) 227 { 228 void (*free_folio)(struct folio *); 229 int refs = 1; 230 231 free_folio = mapping->a_ops->free_folio; 232 if (free_folio) 233 free_folio(folio); 234 235 if (folio_test_large(folio)) 236 refs = folio_nr_pages(folio); 237 folio_put_refs(folio, refs); 238 } 239 240 /** 241 * filemap_remove_folio - Remove folio from page cache. 242 * @folio: The folio. 243 * 244 * This must be called only on folios that are locked and have been 245 * verified to be in the page cache. It will never put the folio into 246 * the free list because the caller has a reference on the page. 247 */ 248 void filemap_remove_folio(struct folio *folio) 249 { 250 struct address_space *mapping = folio->mapping; 251 252 BUG_ON(!folio_test_locked(folio)); 253 spin_lock(&mapping->host->i_lock); 254 xa_lock_irq(&mapping->i_pages); 255 __filemap_remove_folio(folio, NULL); 256 xa_unlock_irq(&mapping->i_pages); 257 if (mapping_shrinkable(mapping)) 258 inode_add_lru(mapping->host); 259 spin_unlock(&mapping->host->i_lock); 260 261 filemap_free_folio(mapping, folio); 262 } 263 264 /* 265 * page_cache_delete_batch - delete several folios from page cache 266 * @mapping: the mapping to which folios belong 267 * @fbatch: batch of folios to delete 268 * 269 * The function walks over mapping->i_pages and removes folios passed in 270 * @fbatch from the mapping. The function expects @fbatch to be sorted 271 * by page index and is optimised for it to be dense. 272 * It tolerates holes in @fbatch (mapping entries at those indices are not 273 * modified). 274 * 275 * The function expects the i_pages lock to be held. 276 */ 277 static void page_cache_delete_batch(struct address_space *mapping, 278 struct folio_batch *fbatch) 279 { 280 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index); 281 long total_pages = 0; 282 int i = 0; 283 struct folio *folio; 284 285 mapping_set_update(&xas, mapping); 286 xas_for_each(&xas, folio, ULONG_MAX) { 287 if (i >= folio_batch_count(fbatch)) 288 break; 289 290 /* A swap/dax/shadow entry got inserted? Skip it. */ 291 if (xa_is_value(folio)) 292 continue; 293 /* 294 * A page got inserted in our range? Skip it. We have our 295 * pages locked so they are protected from being removed. 296 * If we see a page whose index is higher than ours, it 297 * means our page has been removed, which shouldn't be 298 * possible because we're holding the PageLock. 299 */ 300 if (folio != fbatch->folios[i]) { 301 VM_BUG_ON_FOLIO(folio->index > 302 fbatch->folios[i]->index, folio); 303 continue; 304 } 305 306 WARN_ON_ONCE(!folio_test_locked(folio)); 307 308 folio->mapping = NULL; 309 /* Leave folio->index set: truncation lookup relies on it */ 310 311 i++; 312 xas_store(&xas, NULL); 313 total_pages += folio_nr_pages(folio); 314 } 315 mapping->nrpages -= total_pages; 316 } 317 318 void delete_from_page_cache_batch(struct address_space *mapping, 319 struct folio_batch *fbatch) 320 { 321 int i; 322 323 if (!folio_batch_count(fbatch)) 324 return; 325 326 spin_lock(&mapping->host->i_lock); 327 xa_lock_irq(&mapping->i_pages); 328 for (i = 0; i < folio_batch_count(fbatch); i++) { 329 struct folio *folio = fbatch->folios[i]; 330 331 trace_mm_filemap_delete_from_page_cache(folio); 332 filemap_unaccount_folio(mapping, folio); 333 } 334 page_cache_delete_batch(mapping, fbatch); 335 xa_unlock_irq(&mapping->i_pages); 336 if (mapping_shrinkable(mapping)) 337 inode_add_lru(mapping->host); 338 spin_unlock(&mapping->host->i_lock); 339 340 for (i = 0; i < folio_batch_count(fbatch); i++) 341 filemap_free_folio(mapping, fbatch->folios[i]); 342 } 343 344 int filemap_check_errors(struct address_space *mapping) 345 { 346 int ret = 0; 347 /* Check for outstanding write errors */ 348 if (test_bit(AS_ENOSPC, &mapping->flags) && 349 test_and_clear_bit(AS_ENOSPC, &mapping->flags)) 350 ret = -ENOSPC; 351 if (test_bit(AS_EIO, &mapping->flags) && 352 test_and_clear_bit(AS_EIO, &mapping->flags)) 353 ret = -EIO; 354 return ret; 355 } 356 EXPORT_SYMBOL(filemap_check_errors); 357 358 static int filemap_check_and_keep_errors(struct address_space *mapping) 359 { 360 /* Check for outstanding write errors */ 361 if (test_bit(AS_EIO, &mapping->flags)) 362 return -EIO; 363 if (test_bit(AS_ENOSPC, &mapping->flags)) 364 return -ENOSPC; 365 return 0; 366 } 367 368 /** 369 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range 370 * @mapping: address space structure to write 371 * @wbc: the writeback_control controlling the writeout 372 * 373 * Call writepages on the mapping using the provided wbc to control the 374 * writeout. 375 * 376 * Return: %0 on success, negative error code otherwise. 377 */ 378 int filemap_fdatawrite_wbc(struct address_space *mapping, 379 struct writeback_control *wbc) 380 { 381 int ret; 382 383 if (!mapping_can_writeback(mapping) || 384 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 385 return 0; 386 387 wbc_attach_fdatawrite_inode(wbc, mapping->host); 388 ret = do_writepages(mapping, wbc); 389 wbc_detach_inode(wbc); 390 return ret; 391 } 392 EXPORT_SYMBOL(filemap_fdatawrite_wbc); 393 394 /** 395 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range 396 * @mapping: address space structure to write 397 * @start: offset in bytes where the range starts 398 * @end: offset in bytes where the range ends (inclusive) 399 * @sync_mode: enable synchronous operation 400 * 401 * Start writeback against all of a mapping's dirty pages that lie 402 * within the byte offsets <start, end> inclusive. 403 * 404 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as 405 * opposed to a regular memory cleansing writeback. The difference between 406 * these two operations is that if a dirty page/buffer is encountered, it must 407 * be waited upon, and not just skipped over. 408 * 409 * Return: %0 on success, negative error code otherwise. 410 */ 411 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 412 loff_t end, int sync_mode) 413 { 414 struct writeback_control wbc = { 415 .sync_mode = sync_mode, 416 .nr_to_write = LONG_MAX, 417 .range_start = start, 418 .range_end = end, 419 }; 420 421 return filemap_fdatawrite_wbc(mapping, &wbc); 422 } 423 424 static inline int __filemap_fdatawrite(struct address_space *mapping, 425 int sync_mode) 426 { 427 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode); 428 } 429 430 int filemap_fdatawrite(struct address_space *mapping) 431 { 432 return __filemap_fdatawrite(mapping, WB_SYNC_ALL); 433 } 434 EXPORT_SYMBOL(filemap_fdatawrite); 435 436 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start, 437 loff_t end) 438 { 439 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL); 440 } 441 EXPORT_SYMBOL(filemap_fdatawrite_range); 442 443 /** 444 * filemap_fdatawrite_range_kick - start writeback on a range 445 * @mapping: target address_space 446 * @start: index to start writeback on 447 * @end: last (inclusive) index for writeback 448 * 449 * This is a non-integrity writeback helper, to start writing back folios 450 * for the indicated range. 451 * 452 * Return: %0 on success, negative error code otherwise. 453 */ 454 int filemap_fdatawrite_range_kick(struct address_space *mapping, loff_t start, 455 loff_t end) 456 { 457 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_NONE); 458 } 459 EXPORT_SYMBOL_GPL(filemap_fdatawrite_range_kick); 460 461 /** 462 * filemap_flush - mostly a non-blocking flush 463 * @mapping: target address_space 464 * 465 * This is a mostly non-blocking flush. Not suitable for data-integrity 466 * purposes - I/O may not be started against all dirty pages. 467 * 468 * Return: %0 on success, negative error code otherwise. 469 */ 470 int filemap_flush(struct address_space *mapping) 471 { 472 return __filemap_fdatawrite(mapping, WB_SYNC_NONE); 473 } 474 EXPORT_SYMBOL(filemap_flush); 475 476 /** 477 * filemap_range_has_page - check if a page exists in range. 478 * @mapping: address space within which to check 479 * @start_byte: offset in bytes where the range starts 480 * @end_byte: offset in bytes where the range ends (inclusive) 481 * 482 * Find at least one page in the range supplied, usually used to check if 483 * direct writing in this range will trigger a writeback. 484 * 485 * Return: %true if at least one page exists in the specified range, 486 * %false otherwise. 487 */ 488 bool filemap_range_has_page(struct address_space *mapping, 489 loff_t start_byte, loff_t end_byte) 490 { 491 struct folio *folio; 492 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 493 pgoff_t max = end_byte >> PAGE_SHIFT; 494 495 if (end_byte < start_byte) 496 return false; 497 498 rcu_read_lock(); 499 for (;;) { 500 folio = xas_find(&xas, max); 501 if (xas_retry(&xas, folio)) 502 continue; 503 /* Shadow entries don't count */ 504 if (xa_is_value(folio)) 505 continue; 506 /* 507 * We don't need to try to pin this page; we're about to 508 * release the RCU lock anyway. It is enough to know that 509 * there was a page here recently. 510 */ 511 break; 512 } 513 rcu_read_unlock(); 514 515 return folio != NULL; 516 } 517 EXPORT_SYMBOL(filemap_range_has_page); 518 519 static void __filemap_fdatawait_range(struct address_space *mapping, 520 loff_t start_byte, loff_t end_byte) 521 { 522 pgoff_t index = start_byte >> PAGE_SHIFT; 523 pgoff_t end = end_byte >> PAGE_SHIFT; 524 struct folio_batch fbatch; 525 unsigned nr_folios; 526 527 folio_batch_init(&fbatch); 528 529 while (index <= end) { 530 unsigned i; 531 532 nr_folios = filemap_get_folios_tag(mapping, &index, end, 533 PAGECACHE_TAG_WRITEBACK, &fbatch); 534 535 if (!nr_folios) 536 break; 537 538 for (i = 0; i < nr_folios; i++) { 539 struct folio *folio = fbatch.folios[i]; 540 541 folio_wait_writeback(folio); 542 } 543 folio_batch_release(&fbatch); 544 cond_resched(); 545 } 546 } 547 548 /** 549 * filemap_fdatawait_range - wait for writeback to complete 550 * @mapping: address space structure to wait for 551 * @start_byte: offset in bytes where the range starts 552 * @end_byte: offset in bytes where the range ends (inclusive) 553 * 554 * Walk the list of under-writeback pages of the given address space 555 * in the given range and wait for all of them. Check error status of 556 * the address space and return it. 557 * 558 * Since the error status of the address space is cleared by this function, 559 * callers are responsible for checking the return value and handling and/or 560 * reporting the error. 561 * 562 * Return: error status of the address space. 563 */ 564 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte, 565 loff_t end_byte) 566 { 567 __filemap_fdatawait_range(mapping, start_byte, end_byte); 568 return filemap_check_errors(mapping); 569 } 570 EXPORT_SYMBOL(filemap_fdatawait_range); 571 572 /** 573 * filemap_fdatawait_range_keep_errors - wait for writeback to complete 574 * @mapping: address space structure to wait for 575 * @start_byte: offset in bytes where the range starts 576 * @end_byte: offset in bytes where the range ends (inclusive) 577 * 578 * Walk the list of under-writeback pages of the given address space in the 579 * given range and wait for all of them. Unlike filemap_fdatawait_range(), 580 * this function does not clear error status of the address space. 581 * 582 * Use this function if callers don't handle errors themselves. Expected 583 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 584 * fsfreeze(8) 585 */ 586 int filemap_fdatawait_range_keep_errors(struct address_space *mapping, 587 loff_t start_byte, loff_t end_byte) 588 { 589 __filemap_fdatawait_range(mapping, start_byte, end_byte); 590 return filemap_check_and_keep_errors(mapping); 591 } 592 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors); 593 594 /** 595 * file_fdatawait_range - wait for writeback to complete 596 * @file: file pointing to address space structure to wait for 597 * @start_byte: offset in bytes where the range starts 598 * @end_byte: offset in bytes where the range ends (inclusive) 599 * 600 * Walk the list of under-writeback pages of the address space that file 601 * refers to, in the given range and wait for all of them. Check error 602 * status of the address space vs. the file->f_wb_err cursor and return it. 603 * 604 * Since the error status of the file is advanced by this function, 605 * callers are responsible for checking the return value and handling and/or 606 * reporting the error. 607 * 608 * Return: error status of the address space vs. the file->f_wb_err cursor. 609 */ 610 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte) 611 { 612 struct address_space *mapping = file->f_mapping; 613 614 __filemap_fdatawait_range(mapping, start_byte, end_byte); 615 return file_check_and_advance_wb_err(file); 616 } 617 EXPORT_SYMBOL(file_fdatawait_range); 618 619 /** 620 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors 621 * @mapping: address space structure to wait for 622 * 623 * Walk the list of under-writeback pages of the given address space 624 * and wait for all of them. Unlike filemap_fdatawait(), this function 625 * does not clear error status of the address space. 626 * 627 * Use this function if callers don't handle errors themselves. Expected 628 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2), 629 * fsfreeze(8) 630 * 631 * Return: error status of the address space. 632 */ 633 int filemap_fdatawait_keep_errors(struct address_space *mapping) 634 { 635 __filemap_fdatawait_range(mapping, 0, LLONG_MAX); 636 return filemap_check_and_keep_errors(mapping); 637 } 638 EXPORT_SYMBOL(filemap_fdatawait_keep_errors); 639 640 /* Returns true if writeback might be needed or already in progress. */ 641 static bool mapping_needs_writeback(struct address_space *mapping) 642 { 643 return mapping->nrpages; 644 } 645 646 bool filemap_range_has_writeback(struct address_space *mapping, 647 loff_t start_byte, loff_t end_byte) 648 { 649 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT); 650 pgoff_t max = end_byte >> PAGE_SHIFT; 651 struct folio *folio; 652 653 if (end_byte < start_byte) 654 return false; 655 656 rcu_read_lock(); 657 xas_for_each(&xas, folio, max) { 658 if (xas_retry(&xas, folio)) 659 continue; 660 if (xa_is_value(folio)) 661 continue; 662 if (folio_test_dirty(folio) || folio_test_locked(folio) || 663 folio_test_writeback(folio)) 664 break; 665 } 666 rcu_read_unlock(); 667 return folio != NULL; 668 } 669 EXPORT_SYMBOL_GPL(filemap_range_has_writeback); 670 671 /** 672 * filemap_write_and_wait_range - write out & wait on a file range 673 * @mapping: the address_space for the pages 674 * @lstart: offset in bytes where the range starts 675 * @lend: offset in bytes where the range ends (inclusive) 676 * 677 * Write out and wait upon file offsets lstart->lend, inclusive. 678 * 679 * Note that @lend is inclusive (describes the last byte to be written) so 680 * that this function can be used to write to the very end-of-file (end = -1). 681 * 682 * Return: error status of the address space. 683 */ 684 int filemap_write_and_wait_range(struct address_space *mapping, 685 loff_t lstart, loff_t lend) 686 { 687 int err = 0, err2; 688 689 if (lend < lstart) 690 return 0; 691 692 if (mapping_needs_writeback(mapping)) { 693 err = __filemap_fdatawrite_range(mapping, lstart, lend, 694 WB_SYNC_ALL); 695 /* 696 * Even if the above returned error, the pages may be 697 * written partially (e.g. -ENOSPC), so we wait for it. 698 * But the -EIO is special case, it may indicate the worst 699 * thing (e.g. bug) happened, so we avoid waiting for it. 700 */ 701 if (err != -EIO) 702 __filemap_fdatawait_range(mapping, lstart, lend); 703 } 704 err2 = filemap_check_errors(mapping); 705 if (!err) 706 err = err2; 707 return err; 708 } 709 EXPORT_SYMBOL(filemap_write_and_wait_range); 710 711 void __filemap_set_wb_err(struct address_space *mapping, int err) 712 { 713 errseq_t eseq = errseq_set(&mapping->wb_err, err); 714 715 trace_filemap_set_wb_err(mapping, eseq); 716 } 717 EXPORT_SYMBOL(__filemap_set_wb_err); 718 719 /** 720 * file_check_and_advance_wb_err - report wb error (if any) that was previously 721 * and advance wb_err to current one 722 * @file: struct file on which the error is being reported 723 * 724 * When userland calls fsync (or something like nfsd does the equivalent), we 725 * want to report any writeback errors that occurred since the last fsync (or 726 * since the file was opened if there haven't been any). 727 * 728 * Grab the wb_err from the mapping. If it matches what we have in the file, 729 * then just quickly return 0. The file is all caught up. 730 * 731 * If it doesn't match, then take the mapping value, set the "seen" flag in 732 * it and try to swap it into place. If it works, or another task beat us 733 * to it with the new value, then update the f_wb_err and return the error 734 * portion. The error at this point must be reported via proper channels 735 * (a'la fsync, or NFS COMMIT operation, etc.). 736 * 737 * While we handle mapping->wb_err with atomic operations, the f_wb_err 738 * value is protected by the f_lock since we must ensure that it reflects 739 * the latest value swapped in for this file descriptor. 740 * 741 * Return: %0 on success, negative error code otherwise. 742 */ 743 int file_check_and_advance_wb_err(struct file *file) 744 { 745 int err = 0; 746 errseq_t old = READ_ONCE(file->f_wb_err); 747 struct address_space *mapping = file->f_mapping; 748 749 /* Locklessly handle the common case where nothing has changed */ 750 if (errseq_check(&mapping->wb_err, old)) { 751 /* Something changed, must use slow path */ 752 spin_lock(&file->f_lock); 753 old = file->f_wb_err; 754 err = errseq_check_and_advance(&mapping->wb_err, 755 &file->f_wb_err); 756 trace_file_check_and_advance_wb_err(file, old); 757 spin_unlock(&file->f_lock); 758 } 759 760 /* 761 * We're mostly using this function as a drop in replacement for 762 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect 763 * that the legacy code would have had on these flags. 764 */ 765 clear_bit(AS_EIO, &mapping->flags); 766 clear_bit(AS_ENOSPC, &mapping->flags); 767 return err; 768 } 769 EXPORT_SYMBOL(file_check_and_advance_wb_err); 770 771 /** 772 * file_write_and_wait_range - write out & wait on a file range 773 * @file: file pointing to address_space with pages 774 * @lstart: offset in bytes where the range starts 775 * @lend: offset in bytes where the range ends (inclusive) 776 * 777 * Write out and wait upon file offsets lstart->lend, inclusive. 778 * 779 * Note that @lend is inclusive (describes the last byte to be written) so 780 * that this function can be used to write to the very end-of-file (end = -1). 781 * 782 * After writing out and waiting on the data, we check and advance the 783 * f_wb_err cursor to the latest value, and return any errors detected there. 784 * 785 * Return: %0 on success, negative error code otherwise. 786 */ 787 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend) 788 { 789 int err = 0, err2; 790 struct address_space *mapping = file->f_mapping; 791 792 if (lend < lstart) 793 return 0; 794 795 if (mapping_needs_writeback(mapping)) { 796 err = __filemap_fdatawrite_range(mapping, lstart, lend, 797 WB_SYNC_ALL); 798 /* See comment of filemap_write_and_wait() */ 799 if (err != -EIO) 800 __filemap_fdatawait_range(mapping, lstart, lend); 801 } 802 err2 = file_check_and_advance_wb_err(file); 803 if (!err) 804 err = err2; 805 return err; 806 } 807 EXPORT_SYMBOL(file_write_and_wait_range); 808 809 /** 810 * replace_page_cache_folio - replace a pagecache folio with a new one 811 * @old: folio to be replaced 812 * @new: folio to replace with 813 * 814 * This function replaces a folio in the pagecache with a new one. On 815 * success it acquires the pagecache reference for the new folio and 816 * drops it for the old folio. Both the old and new folios must be 817 * locked. This function does not add the new folio to the LRU, the 818 * caller must do that. 819 * 820 * The remove + add is atomic. This function cannot fail. 821 */ 822 void replace_page_cache_folio(struct folio *old, struct folio *new) 823 { 824 struct address_space *mapping = old->mapping; 825 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio; 826 pgoff_t offset = old->index; 827 XA_STATE(xas, &mapping->i_pages, offset); 828 829 VM_BUG_ON_FOLIO(!folio_test_locked(old), old); 830 VM_BUG_ON_FOLIO(!folio_test_locked(new), new); 831 VM_BUG_ON_FOLIO(new->mapping, new); 832 833 folio_get(new); 834 new->mapping = mapping; 835 new->index = offset; 836 837 mem_cgroup_replace_folio(old, new); 838 839 xas_lock_irq(&xas); 840 xas_store(&xas, new); 841 842 old->mapping = NULL; 843 /* hugetlb pages do not participate in page cache accounting. */ 844 if (!folio_test_hugetlb(old)) 845 __lruvec_stat_sub_folio(old, NR_FILE_PAGES); 846 if (!folio_test_hugetlb(new)) 847 __lruvec_stat_add_folio(new, NR_FILE_PAGES); 848 if (folio_test_swapbacked(old)) 849 __lruvec_stat_sub_folio(old, NR_SHMEM); 850 if (folio_test_swapbacked(new)) 851 __lruvec_stat_add_folio(new, NR_SHMEM); 852 xas_unlock_irq(&xas); 853 if (free_folio) 854 free_folio(old); 855 folio_put(old); 856 } 857 EXPORT_SYMBOL_GPL(replace_page_cache_folio); 858 859 noinline int __filemap_add_folio(struct address_space *mapping, 860 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp) 861 { 862 XA_STATE(xas, &mapping->i_pages, index); 863 void *alloced_shadow = NULL; 864 int alloced_order = 0; 865 bool huge; 866 long nr; 867 868 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 869 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio); 870 VM_BUG_ON_FOLIO(folio_order(folio) < mapping_min_folio_order(mapping), 871 folio); 872 mapping_set_update(&xas, mapping); 873 874 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio); 875 xas_set_order(&xas, index, folio_order(folio)); 876 huge = folio_test_hugetlb(folio); 877 nr = folio_nr_pages(folio); 878 879 gfp &= GFP_RECLAIM_MASK; 880 folio_ref_add(folio, nr); 881 folio->mapping = mapping; 882 folio->index = xas.xa_index; 883 884 for (;;) { 885 int order = -1, split_order = 0; 886 void *entry, *old = NULL; 887 888 xas_lock_irq(&xas); 889 xas_for_each_conflict(&xas, entry) { 890 old = entry; 891 if (!xa_is_value(entry)) { 892 xas_set_err(&xas, -EEXIST); 893 goto unlock; 894 } 895 /* 896 * If a larger entry exists, 897 * it will be the first and only entry iterated. 898 */ 899 if (order == -1) 900 order = xas_get_order(&xas); 901 } 902 903 /* entry may have changed before we re-acquire the lock */ 904 if (alloced_order && (old != alloced_shadow || order != alloced_order)) { 905 xas_destroy(&xas); 906 alloced_order = 0; 907 } 908 909 if (old) { 910 if (order > 0 && order > folio_order(folio)) { 911 /* How to handle large swap entries? */ 912 BUG_ON(shmem_mapping(mapping)); 913 if (!alloced_order) { 914 split_order = order; 915 goto unlock; 916 } 917 xas_split(&xas, old, order); 918 xas_reset(&xas); 919 } 920 if (shadowp) 921 *shadowp = old; 922 } 923 924 xas_store(&xas, folio); 925 if (xas_error(&xas)) 926 goto unlock; 927 928 mapping->nrpages += nr; 929 930 /* hugetlb pages do not participate in page cache accounting */ 931 if (!huge) { 932 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr); 933 if (folio_test_pmd_mappable(folio)) 934 __lruvec_stat_mod_folio(folio, 935 NR_FILE_THPS, nr); 936 } 937 938 unlock: 939 xas_unlock_irq(&xas); 940 941 /* split needed, alloc here and retry. */ 942 if (split_order) { 943 xas_split_alloc(&xas, old, split_order, gfp); 944 if (xas_error(&xas)) 945 goto error; 946 alloced_shadow = old; 947 alloced_order = split_order; 948 xas_reset(&xas); 949 continue; 950 } 951 952 if (!xas_nomem(&xas, gfp)) 953 break; 954 } 955 956 if (xas_error(&xas)) 957 goto error; 958 959 trace_mm_filemap_add_to_page_cache(folio); 960 return 0; 961 error: 962 folio->mapping = NULL; 963 /* Leave page->index set: truncation relies upon it */ 964 folio_put_refs(folio, nr); 965 return xas_error(&xas); 966 } 967 ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO); 968 969 int filemap_add_folio(struct address_space *mapping, struct folio *folio, 970 pgoff_t index, gfp_t gfp) 971 { 972 void *shadow = NULL; 973 int ret; 974 975 ret = mem_cgroup_charge(folio, NULL, gfp); 976 if (ret) 977 return ret; 978 979 __folio_set_locked(folio); 980 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow); 981 if (unlikely(ret)) { 982 mem_cgroup_uncharge(folio); 983 __folio_clear_locked(folio); 984 } else { 985 /* 986 * The folio might have been evicted from cache only 987 * recently, in which case it should be activated like 988 * any other repeatedly accessed folio. 989 * The exception is folios getting rewritten; evicting other 990 * data from the working set, only to cache data that will 991 * get overwritten with something else, is a waste of memory. 992 */ 993 WARN_ON_ONCE(folio_test_active(folio)); 994 if (!(gfp & __GFP_WRITE) && shadow) 995 workingset_refault(folio, shadow); 996 folio_add_lru(folio); 997 } 998 return ret; 999 } 1000 EXPORT_SYMBOL_GPL(filemap_add_folio); 1001 1002 #ifdef CONFIG_NUMA 1003 struct folio *filemap_alloc_folio_noprof(gfp_t gfp, unsigned int order) 1004 { 1005 int n; 1006 struct folio *folio; 1007 1008 if (cpuset_do_page_mem_spread()) { 1009 unsigned int cpuset_mems_cookie; 1010 do { 1011 cpuset_mems_cookie = read_mems_allowed_begin(); 1012 n = cpuset_mem_spread_node(); 1013 folio = __folio_alloc_node_noprof(gfp, order, n); 1014 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie)); 1015 1016 return folio; 1017 } 1018 return folio_alloc_noprof(gfp, order); 1019 } 1020 EXPORT_SYMBOL(filemap_alloc_folio_noprof); 1021 #endif 1022 1023 /* 1024 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings 1025 * 1026 * Lock exclusively invalidate_lock of any passed mapping that is not NULL. 1027 * 1028 * @mapping1: the first mapping to lock 1029 * @mapping2: the second mapping to lock 1030 */ 1031 void filemap_invalidate_lock_two(struct address_space *mapping1, 1032 struct address_space *mapping2) 1033 { 1034 if (mapping1 > mapping2) 1035 swap(mapping1, mapping2); 1036 if (mapping1) 1037 down_write(&mapping1->invalidate_lock); 1038 if (mapping2 && mapping1 != mapping2) 1039 down_write_nested(&mapping2->invalidate_lock, 1); 1040 } 1041 EXPORT_SYMBOL(filemap_invalidate_lock_two); 1042 1043 /* 1044 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings 1045 * 1046 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL. 1047 * 1048 * @mapping1: the first mapping to unlock 1049 * @mapping2: the second mapping to unlock 1050 */ 1051 void filemap_invalidate_unlock_two(struct address_space *mapping1, 1052 struct address_space *mapping2) 1053 { 1054 if (mapping1) 1055 up_write(&mapping1->invalidate_lock); 1056 if (mapping2 && mapping1 != mapping2) 1057 up_write(&mapping2->invalidate_lock); 1058 } 1059 EXPORT_SYMBOL(filemap_invalidate_unlock_two); 1060 1061 /* 1062 * In order to wait for pages to become available there must be 1063 * waitqueues associated with pages. By using a hash table of 1064 * waitqueues where the bucket discipline is to maintain all 1065 * waiters on the same queue and wake all when any of the pages 1066 * become available, and for the woken contexts to check to be 1067 * sure the appropriate page became available, this saves space 1068 * at a cost of "thundering herd" phenomena during rare hash 1069 * collisions. 1070 */ 1071 #define PAGE_WAIT_TABLE_BITS 8 1072 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS) 1073 static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned; 1074 1075 static wait_queue_head_t *folio_waitqueue(struct folio *folio) 1076 { 1077 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)]; 1078 } 1079 1080 void __init pagecache_init(void) 1081 { 1082 int i; 1083 1084 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++) 1085 init_waitqueue_head(&folio_wait_table[i]); 1086 1087 page_writeback_init(); 1088 } 1089 1090 /* 1091 * The page wait code treats the "wait->flags" somewhat unusually, because 1092 * we have multiple different kinds of waits, not just the usual "exclusive" 1093 * one. 1094 * 1095 * We have: 1096 * 1097 * (a) no special bits set: 1098 * 1099 * We're just waiting for the bit to be released, and when a waker 1100 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up, 1101 * and remove it from the wait queue. 1102 * 1103 * Simple and straightforward. 1104 * 1105 * (b) WQ_FLAG_EXCLUSIVE: 1106 * 1107 * The waiter is waiting to get the lock, and only one waiter should 1108 * be woken up to avoid any thundering herd behavior. We'll set the 1109 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue. 1110 * 1111 * This is the traditional exclusive wait. 1112 * 1113 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM: 1114 * 1115 * The waiter is waiting to get the bit, and additionally wants the 1116 * lock to be transferred to it for fair lock behavior. If the lock 1117 * cannot be taken, we stop walking the wait queue without waking 1118 * the waiter. 1119 * 1120 * This is the "fair lock handoff" case, and in addition to setting 1121 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see 1122 * that it now has the lock. 1123 */ 1124 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg) 1125 { 1126 unsigned int flags; 1127 struct wait_page_key *key = arg; 1128 struct wait_page_queue *wait_page 1129 = container_of(wait, struct wait_page_queue, wait); 1130 1131 if (!wake_page_match(wait_page, key)) 1132 return 0; 1133 1134 /* 1135 * If it's a lock handoff wait, we get the bit for it, and 1136 * stop walking (and do not wake it up) if we can't. 1137 */ 1138 flags = wait->flags; 1139 if (flags & WQ_FLAG_EXCLUSIVE) { 1140 if (test_bit(key->bit_nr, &key->folio->flags)) 1141 return -1; 1142 if (flags & WQ_FLAG_CUSTOM) { 1143 if (test_and_set_bit(key->bit_nr, &key->folio->flags)) 1144 return -1; 1145 flags |= WQ_FLAG_DONE; 1146 } 1147 } 1148 1149 /* 1150 * We are holding the wait-queue lock, but the waiter that 1151 * is waiting for this will be checking the flags without 1152 * any locking. 1153 * 1154 * So update the flags atomically, and wake up the waiter 1155 * afterwards to avoid any races. This store-release pairs 1156 * with the load-acquire in folio_wait_bit_common(). 1157 */ 1158 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN); 1159 wake_up_state(wait->private, mode); 1160 1161 /* 1162 * Ok, we have successfully done what we're waiting for, 1163 * and we can unconditionally remove the wait entry. 1164 * 1165 * Note that this pairs with the "finish_wait()" in the 1166 * waiter, and has to be the absolute last thing we do. 1167 * After this list_del_init(&wait->entry) the wait entry 1168 * might be de-allocated and the process might even have 1169 * exited. 1170 */ 1171 list_del_init_careful(&wait->entry); 1172 return (flags & WQ_FLAG_EXCLUSIVE) != 0; 1173 } 1174 1175 static void folio_wake_bit(struct folio *folio, int bit_nr) 1176 { 1177 wait_queue_head_t *q = folio_waitqueue(folio); 1178 struct wait_page_key key; 1179 unsigned long flags; 1180 1181 key.folio = folio; 1182 key.bit_nr = bit_nr; 1183 key.page_match = 0; 1184 1185 spin_lock_irqsave(&q->lock, flags); 1186 __wake_up_locked_key(q, TASK_NORMAL, &key); 1187 1188 /* 1189 * It's possible to miss clearing waiters here, when we woke our page 1190 * waiters, but the hashed waitqueue has waiters for other pages on it. 1191 * That's okay, it's a rare case. The next waker will clear it. 1192 * 1193 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE, 1194 * other), the flag may be cleared in the course of freeing the page; 1195 * but that is not required for correctness. 1196 */ 1197 if (!waitqueue_active(q) || !key.page_match) 1198 folio_clear_waiters(folio); 1199 1200 spin_unlock_irqrestore(&q->lock, flags); 1201 } 1202 1203 /* 1204 * A choice of three behaviors for folio_wait_bit_common(): 1205 */ 1206 enum behavior { 1207 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like 1208 * __folio_lock() waiting on then setting PG_locked. 1209 */ 1210 SHARED, /* Hold ref to page and check the bit when woken, like 1211 * folio_wait_writeback() waiting on PG_writeback. 1212 */ 1213 DROP, /* Drop ref to page before wait, no check when woken, 1214 * like folio_put_wait_locked() on PG_locked. 1215 */ 1216 }; 1217 1218 /* 1219 * Attempt to check (or get) the folio flag, and mark us done 1220 * if successful. 1221 */ 1222 static inline bool folio_trylock_flag(struct folio *folio, int bit_nr, 1223 struct wait_queue_entry *wait) 1224 { 1225 if (wait->flags & WQ_FLAG_EXCLUSIVE) { 1226 if (test_and_set_bit(bit_nr, &folio->flags)) 1227 return false; 1228 } else if (test_bit(bit_nr, &folio->flags)) 1229 return false; 1230 1231 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE; 1232 return true; 1233 } 1234 1235 /* How many times do we accept lock stealing from under a waiter? */ 1236 int sysctl_page_lock_unfairness = 5; 1237 1238 static inline int folio_wait_bit_common(struct folio *folio, int bit_nr, 1239 int state, enum behavior behavior) 1240 { 1241 wait_queue_head_t *q = folio_waitqueue(folio); 1242 int unfairness = sysctl_page_lock_unfairness; 1243 struct wait_page_queue wait_page; 1244 wait_queue_entry_t *wait = &wait_page.wait; 1245 bool thrashing = false; 1246 unsigned long pflags; 1247 bool in_thrashing; 1248 1249 if (bit_nr == PG_locked && 1250 !folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1251 delayacct_thrashing_start(&in_thrashing); 1252 psi_memstall_enter(&pflags); 1253 thrashing = true; 1254 } 1255 1256 init_wait(wait); 1257 wait->func = wake_page_function; 1258 wait_page.folio = folio; 1259 wait_page.bit_nr = bit_nr; 1260 1261 repeat: 1262 wait->flags = 0; 1263 if (behavior == EXCLUSIVE) { 1264 wait->flags = WQ_FLAG_EXCLUSIVE; 1265 if (--unfairness < 0) 1266 wait->flags |= WQ_FLAG_CUSTOM; 1267 } 1268 1269 /* 1270 * Do one last check whether we can get the 1271 * page bit synchronously. 1272 * 1273 * Do the folio_set_waiters() marking before that 1274 * to let any waker we _just_ missed know they 1275 * need to wake us up (otherwise they'll never 1276 * even go to the slow case that looks at the 1277 * page queue), and add ourselves to the wait 1278 * queue if we need to sleep. 1279 * 1280 * This part needs to be done under the queue 1281 * lock to avoid races. 1282 */ 1283 spin_lock_irq(&q->lock); 1284 folio_set_waiters(folio); 1285 if (!folio_trylock_flag(folio, bit_nr, wait)) 1286 __add_wait_queue_entry_tail(q, wait); 1287 spin_unlock_irq(&q->lock); 1288 1289 /* 1290 * From now on, all the logic will be based on 1291 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to 1292 * see whether the page bit testing has already 1293 * been done by the wake function. 1294 * 1295 * We can drop our reference to the folio. 1296 */ 1297 if (behavior == DROP) 1298 folio_put(folio); 1299 1300 /* 1301 * Note that until the "finish_wait()", or until 1302 * we see the WQ_FLAG_WOKEN flag, we need to 1303 * be very careful with the 'wait->flags', because 1304 * we may race with a waker that sets them. 1305 */ 1306 for (;;) { 1307 unsigned int flags; 1308 1309 set_current_state(state); 1310 1311 /* Loop until we've been woken or interrupted */ 1312 flags = smp_load_acquire(&wait->flags); 1313 if (!(flags & WQ_FLAG_WOKEN)) { 1314 if (signal_pending_state(state, current)) 1315 break; 1316 1317 io_schedule(); 1318 continue; 1319 } 1320 1321 /* If we were non-exclusive, we're done */ 1322 if (behavior != EXCLUSIVE) 1323 break; 1324 1325 /* If the waker got the lock for us, we're done */ 1326 if (flags & WQ_FLAG_DONE) 1327 break; 1328 1329 /* 1330 * Otherwise, if we're getting the lock, we need to 1331 * try to get it ourselves. 1332 * 1333 * And if that fails, we'll have to retry this all. 1334 */ 1335 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0)))) 1336 goto repeat; 1337 1338 wait->flags |= WQ_FLAG_DONE; 1339 break; 1340 } 1341 1342 /* 1343 * If a signal happened, this 'finish_wait()' may remove the last 1344 * waiter from the wait-queues, but the folio waiters bit will remain 1345 * set. That's ok. The next wakeup will take care of it, and trying 1346 * to do it here would be difficult and prone to races. 1347 */ 1348 finish_wait(q, wait); 1349 1350 if (thrashing) { 1351 delayacct_thrashing_end(&in_thrashing); 1352 psi_memstall_leave(&pflags); 1353 } 1354 1355 /* 1356 * NOTE! The wait->flags weren't stable until we've done the 1357 * 'finish_wait()', and we could have exited the loop above due 1358 * to a signal, and had a wakeup event happen after the signal 1359 * test but before the 'finish_wait()'. 1360 * 1361 * So only after the finish_wait() can we reliably determine 1362 * if we got woken up or not, so we can now figure out the final 1363 * return value based on that state without races. 1364 * 1365 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive 1366 * waiter, but an exclusive one requires WQ_FLAG_DONE. 1367 */ 1368 if (behavior == EXCLUSIVE) 1369 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR; 1370 1371 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR; 1372 } 1373 1374 #ifdef CONFIG_MIGRATION 1375 /** 1376 * migration_entry_wait_on_locked - Wait for a migration entry to be removed 1377 * @entry: migration swap entry. 1378 * @ptl: already locked ptl. This function will drop the lock. 1379 * 1380 * Wait for a migration entry referencing the given page to be removed. This is 1381 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except 1382 * this can be called without taking a reference on the page. Instead this 1383 * should be called while holding the ptl for the migration entry referencing 1384 * the page. 1385 * 1386 * Returns after unlocking the ptl. 1387 * 1388 * This follows the same logic as folio_wait_bit_common() so see the comments 1389 * there. 1390 */ 1391 void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl) 1392 __releases(ptl) 1393 { 1394 struct wait_page_queue wait_page; 1395 wait_queue_entry_t *wait = &wait_page.wait; 1396 bool thrashing = false; 1397 unsigned long pflags; 1398 bool in_thrashing; 1399 wait_queue_head_t *q; 1400 struct folio *folio = pfn_swap_entry_folio(entry); 1401 1402 q = folio_waitqueue(folio); 1403 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) { 1404 delayacct_thrashing_start(&in_thrashing); 1405 psi_memstall_enter(&pflags); 1406 thrashing = true; 1407 } 1408 1409 init_wait(wait); 1410 wait->func = wake_page_function; 1411 wait_page.folio = folio; 1412 wait_page.bit_nr = PG_locked; 1413 wait->flags = 0; 1414 1415 spin_lock_irq(&q->lock); 1416 folio_set_waiters(folio); 1417 if (!folio_trylock_flag(folio, PG_locked, wait)) 1418 __add_wait_queue_entry_tail(q, wait); 1419 spin_unlock_irq(&q->lock); 1420 1421 /* 1422 * If a migration entry exists for the page the migration path must hold 1423 * a valid reference to the page, and it must take the ptl to remove the 1424 * migration entry. So the page is valid until the ptl is dropped. 1425 */ 1426 spin_unlock(ptl); 1427 1428 for (;;) { 1429 unsigned int flags; 1430 1431 set_current_state(TASK_UNINTERRUPTIBLE); 1432 1433 /* Loop until we've been woken or interrupted */ 1434 flags = smp_load_acquire(&wait->flags); 1435 if (!(flags & WQ_FLAG_WOKEN)) { 1436 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current)) 1437 break; 1438 1439 io_schedule(); 1440 continue; 1441 } 1442 break; 1443 } 1444 1445 finish_wait(q, wait); 1446 1447 if (thrashing) { 1448 delayacct_thrashing_end(&in_thrashing); 1449 psi_memstall_leave(&pflags); 1450 } 1451 } 1452 #endif 1453 1454 void folio_wait_bit(struct folio *folio, int bit_nr) 1455 { 1456 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED); 1457 } 1458 EXPORT_SYMBOL(folio_wait_bit); 1459 1460 int folio_wait_bit_killable(struct folio *folio, int bit_nr) 1461 { 1462 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED); 1463 } 1464 EXPORT_SYMBOL(folio_wait_bit_killable); 1465 1466 /** 1467 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked 1468 * @folio: The folio to wait for. 1469 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc). 1470 * 1471 * The caller should hold a reference on @folio. They expect the page to 1472 * become unlocked relatively soon, but do not wish to hold up migration 1473 * (for example) by holding the reference while waiting for the folio to 1474 * come unlocked. After this function returns, the caller should not 1475 * dereference @folio. 1476 * 1477 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal. 1478 */ 1479 static int folio_put_wait_locked(struct folio *folio, int state) 1480 { 1481 return folio_wait_bit_common(folio, PG_locked, state, DROP); 1482 } 1483 1484 /** 1485 * folio_unlock - Unlock a locked folio. 1486 * @folio: The folio. 1487 * 1488 * Unlocks the folio and wakes up any thread sleeping on the page lock. 1489 * 1490 * Context: May be called from interrupt or process context. May not be 1491 * called from NMI context. 1492 */ 1493 void folio_unlock(struct folio *folio) 1494 { 1495 /* Bit 7 allows x86 to check the byte's sign bit */ 1496 BUILD_BUG_ON(PG_waiters != 7); 1497 BUILD_BUG_ON(PG_locked > 7); 1498 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1499 if (folio_xor_flags_has_waiters(folio, 1 << PG_locked)) 1500 folio_wake_bit(folio, PG_locked); 1501 } 1502 EXPORT_SYMBOL(folio_unlock); 1503 1504 /** 1505 * folio_end_read - End read on a folio. 1506 * @folio: The folio. 1507 * @success: True if all reads completed successfully. 1508 * 1509 * When all reads against a folio have completed, filesystems should 1510 * call this function to let the pagecache know that no more reads 1511 * are outstanding. This will unlock the folio and wake up any thread 1512 * sleeping on the lock. The folio will also be marked uptodate if all 1513 * reads succeeded. 1514 * 1515 * Context: May be called from interrupt or process context. May not be 1516 * called from NMI context. 1517 */ 1518 void folio_end_read(struct folio *folio, bool success) 1519 { 1520 unsigned long mask = 1 << PG_locked; 1521 1522 /* Must be in bottom byte for x86 to work */ 1523 BUILD_BUG_ON(PG_uptodate > 7); 1524 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 1525 VM_BUG_ON_FOLIO(success && folio_test_uptodate(folio), folio); 1526 1527 if (likely(success)) 1528 mask |= 1 << PG_uptodate; 1529 if (folio_xor_flags_has_waiters(folio, mask)) 1530 folio_wake_bit(folio, PG_locked); 1531 } 1532 EXPORT_SYMBOL(folio_end_read); 1533 1534 /** 1535 * folio_end_private_2 - Clear PG_private_2 and wake any waiters. 1536 * @folio: The folio. 1537 * 1538 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for 1539 * it. The folio reference held for PG_private_2 being set is released. 1540 * 1541 * This is, for example, used when a netfs folio is being written to a local 1542 * disk cache, thereby allowing writes to the cache for the same folio to be 1543 * serialised. 1544 */ 1545 void folio_end_private_2(struct folio *folio) 1546 { 1547 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio); 1548 clear_bit_unlock(PG_private_2, folio_flags(folio, 0)); 1549 folio_wake_bit(folio, PG_private_2); 1550 folio_put(folio); 1551 } 1552 EXPORT_SYMBOL(folio_end_private_2); 1553 1554 /** 1555 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio. 1556 * @folio: The folio to wait on. 1557 * 1558 * Wait for PG_private_2 to be cleared on a folio. 1559 */ 1560 void folio_wait_private_2(struct folio *folio) 1561 { 1562 while (folio_test_private_2(folio)) 1563 folio_wait_bit(folio, PG_private_2); 1564 } 1565 EXPORT_SYMBOL(folio_wait_private_2); 1566 1567 /** 1568 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio. 1569 * @folio: The folio to wait on. 1570 * 1571 * Wait for PG_private_2 to be cleared on a folio or until a fatal signal is 1572 * received by the calling task. 1573 * 1574 * Return: 1575 * - 0 if successful. 1576 * - -EINTR if a fatal signal was encountered. 1577 */ 1578 int folio_wait_private_2_killable(struct folio *folio) 1579 { 1580 int ret = 0; 1581 1582 while (folio_test_private_2(folio)) { 1583 ret = folio_wait_bit_killable(folio, PG_private_2); 1584 if (ret < 0) 1585 break; 1586 } 1587 1588 return ret; 1589 } 1590 EXPORT_SYMBOL(folio_wait_private_2_killable); 1591 1592 /* 1593 * If folio was marked as dropbehind, then pages should be dropped when writeback 1594 * completes. Do that now. If we fail, it's likely because of a big folio - 1595 * just reset dropbehind for that case and latter completions should invalidate. 1596 */ 1597 static void folio_end_dropbehind_write(struct folio *folio) 1598 { 1599 /* 1600 * Hitting !in_task() should not happen off RWF_DONTCACHE writeback, 1601 * but can happen if normal writeback just happens to find dirty folios 1602 * that were created as part of uncached writeback, and that writeback 1603 * would otherwise not need non-IRQ handling. Just skip the 1604 * invalidation in that case. 1605 */ 1606 if (in_task() && folio_trylock(folio)) { 1607 if (folio->mapping) 1608 folio_unmap_invalidate(folio->mapping, folio, 0); 1609 folio_unlock(folio); 1610 } 1611 } 1612 1613 /** 1614 * folio_end_writeback - End writeback against a folio. 1615 * @folio: The folio. 1616 * 1617 * The folio must actually be under writeback. 1618 * 1619 * Context: May be called from process or interrupt context. 1620 */ 1621 void folio_end_writeback(struct folio *folio) 1622 { 1623 bool folio_dropbehind = false; 1624 1625 VM_BUG_ON_FOLIO(!folio_test_writeback(folio), folio); 1626 1627 /* 1628 * folio_test_clear_reclaim() could be used here but it is an 1629 * atomic operation and overkill in this particular case. Failing 1630 * to shuffle a folio marked for immediate reclaim is too mild 1631 * a gain to justify taking an atomic operation penalty at the 1632 * end of every folio writeback. 1633 */ 1634 if (folio_test_reclaim(folio)) { 1635 folio_clear_reclaim(folio); 1636 folio_rotate_reclaimable(folio); 1637 } 1638 1639 /* 1640 * Writeback does not hold a folio reference of its own, relying 1641 * on truncation to wait for the clearing of PG_writeback. 1642 * But here we must make sure that the folio is not freed and 1643 * reused before the folio_wake_bit(). 1644 */ 1645 folio_get(folio); 1646 if (!folio_test_dirty(folio)) 1647 folio_dropbehind = folio_test_clear_dropbehind(folio); 1648 if (__folio_end_writeback(folio)) 1649 folio_wake_bit(folio, PG_writeback); 1650 acct_reclaim_writeback(folio); 1651 1652 if (folio_dropbehind) 1653 folio_end_dropbehind_write(folio); 1654 folio_put(folio); 1655 } 1656 EXPORT_SYMBOL(folio_end_writeback); 1657 1658 /** 1659 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it. 1660 * @folio: The folio to lock 1661 */ 1662 void __folio_lock(struct folio *folio) 1663 { 1664 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE, 1665 EXCLUSIVE); 1666 } 1667 EXPORT_SYMBOL(__folio_lock); 1668 1669 int __folio_lock_killable(struct folio *folio) 1670 { 1671 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE, 1672 EXCLUSIVE); 1673 } 1674 EXPORT_SYMBOL_GPL(__folio_lock_killable); 1675 1676 static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait) 1677 { 1678 struct wait_queue_head *q = folio_waitqueue(folio); 1679 int ret; 1680 1681 wait->folio = folio; 1682 wait->bit_nr = PG_locked; 1683 1684 spin_lock_irq(&q->lock); 1685 __add_wait_queue_entry_tail(q, &wait->wait); 1686 folio_set_waiters(folio); 1687 ret = !folio_trylock(folio); 1688 /* 1689 * If we were successful now, we know we're still on the 1690 * waitqueue as we're still under the lock. This means it's 1691 * safe to remove and return success, we know the callback 1692 * isn't going to trigger. 1693 */ 1694 if (!ret) 1695 __remove_wait_queue(q, &wait->wait); 1696 else 1697 ret = -EIOCBQUEUED; 1698 spin_unlock_irq(&q->lock); 1699 return ret; 1700 } 1701 1702 /* 1703 * Return values: 1704 * 0 - folio is locked. 1705 * non-zero - folio is not locked. 1706 * mmap_lock or per-VMA lock has been released (mmap_read_unlock() or 1707 * vma_end_read()), unless flags had both FAULT_FLAG_ALLOW_RETRY and 1708 * FAULT_FLAG_RETRY_NOWAIT set, in which case the lock is still held. 1709 * 1710 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 0 1711 * with the folio locked and the mmap_lock/per-VMA lock is left unperturbed. 1712 */ 1713 vm_fault_t __folio_lock_or_retry(struct folio *folio, struct vm_fault *vmf) 1714 { 1715 unsigned int flags = vmf->flags; 1716 1717 if (fault_flag_allow_retry_first(flags)) { 1718 /* 1719 * CAUTION! In this case, mmap_lock/per-VMA lock is not 1720 * released even though returning VM_FAULT_RETRY. 1721 */ 1722 if (flags & FAULT_FLAG_RETRY_NOWAIT) 1723 return VM_FAULT_RETRY; 1724 1725 release_fault_lock(vmf); 1726 if (flags & FAULT_FLAG_KILLABLE) 1727 folio_wait_locked_killable(folio); 1728 else 1729 folio_wait_locked(folio); 1730 return VM_FAULT_RETRY; 1731 } 1732 if (flags & FAULT_FLAG_KILLABLE) { 1733 bool ret; 1734 1735 ret = __folio_lock_killable(folio); 1736 if (ret) { 1737 release_fault_lock(vmf); 1738 return VM_FAULT_RETRY; 1739 } 1740 } else { 1741 __folio_lock(folio); 1742 } 1743 1744 return 0; 1745 } 1746 1747 /** 1748 * page_cache_next_miss() - Find the next gap in the page cache. 1749 * @mapping: Mapping. 1750 * @index: Index. 1751 * @max_scan: Maximum range to search. 1752 * 1753 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the 1754 * gap with the lowest index. 1755 * 1756 * This function may be called under the rcu_read_lock. However, this will 1757 * not atomically search a snapshot of the cache at a single point in time. 1758 * For example, if a gap is created at index 5, then subsequently a gap is 1759 * created at index 10, page_cache_next_miss covering both indices may 1760 * return 10 if called under the rcu_read_lock. 1761 * 1762 * Return: The index of the gap if found, otherwise an index outside the 1763 * range specified (in which case 'return - index >= max_scan' will be true). 1764 * In the rare case of index wrap-around, 0 will be returned. 1765 */ 1766 pgoff_t page_cache_next_miss(struct address_space *mapping, 1767 pgoff_t index, unsigned long max_scan) 1768 { 1769 XA_STATE(xas, &mapping->i_pages, index); 1770 1771 while (max_scan--) { 1772 void *entry = xas_next(&xas); 1773 if (!entry || xa_is_value(entry)) 1774 return xas.xa_index; 1775 if (xas.xa_index == 0) 1776 return 0; 1777 } 1778 1779 return index + max_scan; 1780 } 1781 EXPORT_SYMBOL(page_cache_next_miss); 1782 1783 /** 1784 * page_cache_prev_miss() - Find the previous gap in the page cache. 1785 * @mapping: Mapping. 1786 * @index: Index. 1787 * @max_scan: Maximum range to search. 1788 * 1789 * Search the range [max(index - max_scan + 1, 0), index] for the 1790 * gap with the highest index. 1791 * 1792 * This function may be called under the rcu_read_lock. However, this will 1793 * not atomically search a snapshot of the cache at a single point in time. 1794 * For example, if a gap is created at index 10, then subsequently a gap is 1795 * created at index 5, page_cache_prev_miss() covering both indices may 1796 * return 5 if called under the rcu_read_lock. 1797 * 1798 * Return: The index of the gap if found, otherwise an index outside the 1799 * range specified (in which case 'index - return >= max_scan' will be true). 1800 * In the rare case of wrap-around, ULONG_MAX will be returned. 1801 */ 1802 pgoff_t page_cache_prev_miss(struct address_space *mapping, 1803 pgoff_t index, unsigned long max_scan) 1804 { 1805 XA_STATE(xas, &mapping->i_pages, index); 1806 1807 while (max_scan--) { 1808 void *entry = xas_prev(&xas); 1809 if (!entry || xa_is_value(entry)) 1810 break; 1811 if (xas.xa_index == ULONG_MAX) 1812 break; 1813 } 1814 1815 return xas.xa_index; 1816 } 1817 EXPORT_SYMBOL(page_cache_prev_miss); 1818 1819 /* 1820 * Lockless page cache protocol: 1821 * On the lookup side: 1822 * 1. Load the folio from i_pages 1823 * 2. Increment the refcount if it's not zero 1824 * 3. If the folio is not found by xas_reload(), put the refcount and retry 1825 * 1826 * On the removal side: 1827 * A. Freeze the page (by zeroing the refcount if nobody else has a reference) 1828 * B. Remove the page from i_pages 1829 * C. Return the page to the page allocator 1830 * 1831 * This means that any page may have its reference count temporarily 1832 * increased by a speculative page cache (or GUP-fast) lookup as it can 1833 * be allocated by another user before the RCU grace period expires. 1834 * Because the refcount temporarily acquired here may end up being the 1835 * last refcount on the page, any page allocation must be freeable by 1836 * folio_put(). 1837 */ 1838 1839 /* 1840 * filemap_get_entry - Get a page cache entry. 1841 * @mapping: the address_space to search 1842 * @index: The page cache index. 1843 * 1844 * Looks up the page cache entry at @mapping & @index. If it is a folio, 1845 * it is returned with an increased refcount. If it is a shadow entry 1846 * of a previously evicted folio, or a swap entry from shmem/tmpfs, 1847 * it is returned without further action. 1848 * 1849 * Return: The folio, swap or shadow entry, %NULL if nothing is found. 1850 */ 1851 void *filemap_get_entry(struct address_space *mapping, pgoff_t index) 1852 { 1853 XA_STATE(xas, &mapping->i_pages, index); 1854 struct folio *folio; 1855 1856 rcu_read_lock(); 1857 repeat: 1858 xas_reset(&xas); 1859 folio = xas_load(&xas); 1860 if (xas_retry(&xas, folio)) 1861 goto repeat; 1862 /* 1863 * A shadow entry of a recently evicted page, or a swap entry from 1864 * shmem/tmpfs. Return it without attempting to raise page count. 1865 */ 1866 if (!folio || xa_is_value(folio)) 1867 goto out; 1868 1869 if (!folio_try_get(folio)) 1870 goto repeat; 1871 1872 if (unlikely(folio != xas_reload(&xas))) { 1873 folio_put(folio); 1874 goto repeat; 1875 } 1876 out: 1877 rcu_read_unlock(); 1878 1879 return folio; 1880 } 1881 1882 /** 1883 * __filemap_get_folio - Find and get a reference to a folio. 1884 * @mapping: The address_space to search. 1885 * @index: The page index. 1886 * @fgp_flags: %FGP flags modify how the folio is returned. 1887 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified. 1888 * 1889 * Looks up the page cache entry at @mapping & @index. 1890 * 1891 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even 1892 * if the %GFP flags specified for %FGP_CREAT are atomic. 1893 * 1894 * If this function returns a folio, it is returned with an increased refcount. 1895 * 1896 * Return: The found folio or an ERR_PTR() otherwise. 1897 */ 1898 struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index, 1899 fgf_t fgp_flags, gfp_t gfp) 1900 { 1901 struct folio *folio; 1902 1903 repeat: 1904 folio = filemap_get_entry(mapping, index); 1905 if (xa_is_value(folio)) 1906 folio = NULL; 1907 if (!folio) 1908 goto no_page; 1909 1910 if (fgp_flags & FGP_LOCK) { 1911 if (fgp_flags & FGP_NOWAIT) { 1912 if (!folio_trylock(folio)) { 1913 folio_put(folio); 1914 return ERR_PTR(-EAGAIN); 1915 } 1916 } else { 1917 folio_lock(folio); 1918 } 1919 1920 /* Has the page been truncated? */ 1921 if (unlikely(folio->mapping != mapping)) { 1922 folio_unlock(folio); 1923 folio_put(folio); 1924 goto repeat; 1925 } 1926 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 1927 } 1928 1929 if (fgp_flags & FGP_ACCESSED) 1930 folio_mark_accessed(folio); 1931 else if (fgp_flags & FGP_WRITE) { 1932 /* Clear idle flag for buffer write */ 1933 if (folio_test_idle(folio)) 1934 folio_clear_idle(folio); 1935 } 1936 1937 if (fgp_flags & FGP_STABLE) 1938 folio_wait_stable(folio); 1939 no_page: 1940 if (!folio && (fgp_flags & FGP_CREAT)) { 1941 unsigned int min_order = mapping_min_folio_order(mapping); 1942 unsigned int order = max(min_order, FGF_GET_ORDER(fgp_flags)); 1943 int err; 1944 index = mapping_align_index(mapping, index); 1945 1946 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping)) 1947 gfp |= __GFP_WRITE; 1948 if (fgp_flags & FGP_NOFS) 1949 gfp &= ~__GFP_FS; 1950 if (fgp_flags & FGP_NOWAIT) { 1951 gfp &= ~GFP_KERNEL; 1952 gfp |= GFP_NOWAIT | __GFP_NOWARN; 1953 } 1954 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP)))) 1955 fgp_flags |= FGP_LOCK; 1956 1957 if (order > mapping_max_folio_order(mapping)) 1958 order = mapping_max_folio_order(mapping); 1959 /* If we're not aligned, allocate a smaller folio */ 1960 if (index & ((1UL << order) - 1)) 1961 order = __ffs(index); 1962 1963 do { 1964 gfp_t alloc_gfp = gfp; 1965 1966 err = -ENOMEM; 1967 if (order > min_order) 1968 alloc_gfp |= __GFP_NORETRY | __GFP_NOWARN; 1969 folio = filemap_alloc_folio(alloc_gfp, order); 1970 if (!folio) 1971 continue; 1972 1973 /* Init accessed so avoid atomic mark_page_accessed later */ 1974 if (fgp_flags & FGP_ACCESSED) 1975 __folio_set_referenced(folio); 1976 if (fgp_flags & FGP_DONTCACHE) 1977 __folio_set_dropbehind(folio); 1978 1979 err = filemap_add_folio(mapping, folio, index, gfp); 1980 if (!err) 1981 break; 1982 folio_put(folio); 1983 folio = NULL; 1984 } while (order-- > min_order); 1985 1986 if (err == -EEXIST) 1987 goto repeat; 1988 if (err) 1989 return ERR_PTR(err); 1990 /* 1991 * filemap_add_folio locks the page, and for mmap 1992 * we expect an unlocked page. 1993 */ 1994 if (folio && (fgp_flags & FGP_FOR_MMAP)) 1995 folio_unlock(folio); 1996 } 1997 1998 if (!folio) 1999 return ERR_PTR(-ENOENT); 2000 /* not an uncached lookup, clear uncached if set */ 2001 if (folio_test_dropbehind(folio) && !(fgp_flags & FGP_DONTCACHE)) 2002 folio_clear_dropbehind(folio); 2003 return folio; 2004 } 2005 EXPORT_SYMBOL(__filemap_get_folio); 2006 2007 static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max, 2008 xa_mark_t mark) 2009 { 2010 struct folio *folio; 2011 2012 retry: 2013 if (mark == XA_PRESENT) 2014 folio = xas_find(xas, max); 2015 else 2016 folio = xas_find_marked(xas, max, mark); 2017 2018 if (xas_retry(xas, folio)) 2019 goto retry; 2020 /* 2021 * A shadow entry of a recently evicted page, a swap 2022 * entry from shmem/tmpfs or a DAX entry. Return it 2023 * without attempting to raise page count. 2024 */ 2025 if (!folio || xa_is_value(folio)) 2026 return folio; 2027 2028 if (!folio_try_get(folio)) 2029 goto reset; 2030 2031 if (unlikely(folio != xas_reload(xas))) { 2032 folio_put(folio); 2033 goto reset; 2034 } 2035 2036 return folio; 2037 reset: 2038 xas_reset(xas); 2039 goto retry; 2040 } 2041 2042 /** 2043 * find_get_entries - gang pagecache lookup 2044 * @mapping: The address_space to search 2045 * @start: The starting page cache index 2046 * @end: The final page index (inclusive). 2047 * @fbatch: Where the resulting entries are placed. 2048 * @indices: The cache indices corresponding to the entries in @entries 2049 * 2050 * find_get_entries() will search for and return a batch of entries in 2051 * the mapping. The entries are placed in @fbatch. find_get_entries() 2052 * takes a reference on any actual folios it returns. 2053 * 2054 * The entries have ascending indexes. The indices may not be consecutive 2055 * due to not-present entries or large folios. 2056 * 2057 * Any shadow entries of evicted folios, or swap entries from 2058 * shmem/tmpfs, are included in the returned array. 2059 * 2060 * Return: The number of entries which were found. 2061 */ 2062 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start, 2063 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2064 { 2065 XA_STATE(xas, &mapping->i_pages, *start); 2066 struct folio *folio; 2067 2068 rcu_read_lock(); 2069 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) { 2070 indices[fbatch->nr] = xas.xa_index; 2071 if (!folio_batch_add(fbatch, folio)) 2072 break; 2073 } 2074 2075 if (folio_batch_count(fbatch)) { 2076 unsigned long nr; 2077 int idx = folio_batch_count(fbatch) - 1; 2078 2079 folio = fbatch->folios[idx]; 2080 if (!xa_is_value(folio)) 2081 nr = folio_nr_pages(folio); 2082 else 2083 nr = 1 << xa_get_order(&mapping->i_pages, indices[idx]); 2084 *start = round_down(indices[idx] + nr, nr); 2085 } 2086 rcu_read_unlock(); 2087 2088 return folio_batch_count(fbatch); 2089 } 2090 2091 /** 2092 * find_lock_entries - Find a batch of pagecache entries. 2093 * @mapping: The address_space to search. 2094 * @start: The starting page cache index. 2095 * @end: The final page index (inclusive). 2096 * @fbatch: Where the resulting entries are placed. 2097 * @indices: The cache indices of the entries in @fbatch. 2098 * 2099 * find_lock_entries() will return a batch of entries from @mapping. 2100 * Swap, shadow and DAX entries are included. Folios are returned 2101 * locked and with an incremented refcount. Folios which are locked 2102 * by somebody else or under writeback are skipped. Folios which are 2103 * partially outside the range are not returned. 2104 * 2105 * The entries have ascending indexes. The indices may not be consecutive 2106 * due to not-present entries, large folios, folios which could not be 2107 * locked or folios under writeback. 2108 * 2109 * Return: The number of entries which were found. 2110 */ 2111 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start, 2112 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices) 2113 { 2114 XA_STATE(xas, &mapping->i_pages, *start); 2115 struct folio *folio; 2116 2117 rcu_read_lock(); 2118 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) { 2119 unsigned long base; 2120 unsigned long nr; 2121 2122 if (!xa_is_value(folio)) { 2123 nr = folio_nr_pages(folio); 2124 base = folio->index; 2125 /* Omit large folio which begins before the start */ 2126 if (base < *start) 2127 goto put; 2128 /* Omit large folio which extends beyond the end */ 2129 if (base + nr - 1 > end) 2130 goto put; 2131 if (!folio_trylock(folio)) 2132 goto put; 2133 if (folio->mapping != mapping || 2134 folio_test_writeback(folio)) 2135 goto unlock; 2136 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index), 2137 folio); 2138 } else { 2139 nr = 1 << xas_get_order(&xas); 2140 base = xas.xa_index & ~(nr - 1); 2141 /* Omit order>0 value which begins before the start */ 2142 if (base < *start) 2143 continue; 2144 /* Omit order>0 value which extends beyond the end */ 2145 if (base + nr - 1 > end) 2146 break; 2147 } 2148 2149 /* Update start now so that last update is correct on return */ 2150 *start = base + nr; 2151 indices[fbatch->nr] = xas.xa_index; 2152 if (!folio_batch_add(fbatch, folio)) 2153 break; 2154 continue; 2155 unlock: 2156 folio_unlock(folio); 2157 put: 2158 folio_put(folio); 2159 } 2160 rcu_read_unlock(); 2161 2162 return folio_batch_count(fbatch); 2163 } 2164 2165 /** 2166 * filemap_get_folios - Get a batch of folios 2167 * @mapping: The address_space to search 2168 * @start: The starting page index 2169 * @end: The final page index (inclusive) 2170 * @fbatch: The batch to fill. 2171 * 2172 * Search for and return a batch of folios in the mapping starting at 2173 * index @start and up to index @end (inclusive). The folios are returned 2174 * in @fbatch with an elevated reference count. 2175 * 2176 * Return: The number of folios which were found. 2177 * We also update @start to index the next folio for the traversal. 2178 */ 2179 unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start, 2180 pgoff_t end, struct folio_batch *fbatch) 2181 { 2182 return filemap_get_folios_tag(mapping, start, end, XA_PRESENT, fbatch); 2183 } 2184 EXPORT_SYMBOL(filemap_get_folios); 2185 2186 /** 2187 * filemap_get_folios_contig - Get a batch of contiguous folios 2188 * @mapping: The address_space to search 2189 * @start: The starting page index 2190 * @end: The final page index (inclusive) 2191 * @fbatch: The batch to fill 2192 * 2193 * filemap_get_folios_contig() works exactly like filemap_get_folios(), 2194 * except the returned folios are guaranteed to be contiguous. This may 2195 * not return all contiguous folios if the batch gets filled up. 2196 * 2197 * Return: The number of folios found. 2198 * Also update @start to be positioned for traversal of the next folio. 2199 */ 2200 2201 unsigned filemap_get_folios_contig(struct address_space *mapping, 2202 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch) 2203 { 2204 XA_STATE(xas, &mapping->i_pages, *start); 2205 unsigned long nr; 2206 struct folio *folio; 2207 2208 rcu_read_lock(); 2209 2210 for (folio = xas_load(&xas); folio && xas.xa_index <= end; 2211 folio = xas_next(&xas)) { 2212 if (xas_retry(&xas, folio)) 2213 continue; 2214 /* 2215 * If the entry has been swapped out, we can stop looking. 2216 * No current caller is looking for DAX entries. 2217 */ 2218 if (xa_is_value(folio)) 2219 goto update_start; 2220 2221 /* If we landed in the middle of a THP, continue at its end. */ 2222 if (xa_is_sibling(folio)) 2223 goto update_start; 2224 2225 if (!folio_try_get(folio)) 2226 goto retry; 2227 2228 if (unlikely(folio != xas_reload(&xas))) 2229 goto put_folio; 2230 2231 if (!folio_batch_add(fbatch, folio)) { 2232 nr = folio_nr_pages(folio); 2233 *start = folio->index + nr; 2234 goto out; 2235 } 2236 continue; 2237 put_folio: 2238 folio_put(folio); 2239 2240 retry: 2241 xas_reset(&xas); 2242 } 2243 2244 update_start: 2245 nr = folio_batch_count(fbatch); 2246 2247 if (nr) { 2248 folio = fbatch->folios[nr - 1]; 2249 *start = folio_next_index(folio); 2250 } 2251 out: 2252 rcu_read_unlock(); 2253 return folio_batch_count(fbatch); 2254 } 2255 EXPORT_SYMBOL(filemap_get_folios_contig); 2256 2257 /** 2258 * filemap_get_folios_tag - Get a batch of folios matching @tag 2259 * @mapping: The address_space to search 2260 * @start: The starting page index 2261 * @end: The final page index (inclusive) 2262 * @tag: The tag index 2263 * @fbatch: The batch to fill 2264 * 2265 * The first folio may start before @start; if it does, it will contain 2266 * @start. The final folio may extend beyond @end; if it does, it will 2267 * contain @end. The folios have ascending indices. There may be gaps 2268 * between the folios if there are indices which have no folio in the 2269 * page cache. If folios are added to or removed from the page cache 2270 * while this is running, they may or may not be found by this call. 2271 * Only returns folios that are tagged with @tag. 2272 * 2273 * Return: The number of folios found. 2274 * Also update @start to index the next folio for traversal. 2275 */ 2276 unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start, 2277 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch) 2278 { 2279 XA_STATE(xas, &mapping->i_pages, *start); 2280 struct folio *folio; 2281 2282 rcu_read_lock(); 2283 while ((folio = find_get_entry(&xas, end, tag)) != NULL) { 2284 /* 2285 * Shadow entries should never be tagged, but this iteration 2286 * is lockless so there is a window for page reclaim to evict 2287 * a page we saw tagged. Skip over it. 2288 */ 2289 if (xa_is_value(folio)) 2290 continue; 2291 if (!folio_batch_add(fbatch, folio)) { 2292 unsigned long nr = folio_nr_pages(folio); 2293 *start = folio->index + nr; 2294 goto out; 2295 } 2296 } 2297 /* 2298 * We come here when there is no page beyond @end. We take care to not 2299 * overflow the index @start as it confuses some of the callers. This 2300 * breaks the iteration when there is a page at index -1 but that is 2301 * already broke anyway. 2302 */ 2303 if (end == (pgoff_t)-1) 2304 *start = (pgoff_t)-1; 2305 else 2306 *start = end + 1; 2307 out: 2308 rcu_read_unlock(); 2309 2310 return folio_batch_count(fbatch); 2311 } 2312 EXPORT_SYMBOL(filemap_get_folios_tag); 2313 2314 /* 2315 * CD/DVDs are error prone. When a medium error occurs, the driver may fail 2316 * a _large_ part of the i/o request. Imagine the worst scenario: 2317 * 2318 * ---R__________________________________________B__________ 2319 * ^ reading here ^ bad block(assume 4k) 2320 * 2321 * read(R) => miss => readahead(R...B) => media error => frustrating retries 2322 * => failing the whole request => read(R) => read(R+1) => 2323 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) => 2324 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) => 2325 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ...... 2326 * 2327 * It is going insane. Fix it by quickly scaling down the readahead size. 2328 */ 2329 static void shrink_readahead_size_eio(struct file_ra_state *ra) 2330 { 2331 ra->ra_pages /= 4; 2332 } 2333 2334 /* 2335 * filemap_get_read_batch - Get a batch of folios for read 2336 * 2337 * Get a batch of folios which represent a contiguous range of bytes in 2338 * the file. No exceptional entries will be returned. If @index is in 2339 * the middle of a folio, the entire folio will be returned. The last 2340 * folio in the batch may have the readahead flag set or the uptodate flag 2341 * clear so that the caller can take the appropriate action. 2342 */ 2343 static void filemap_get_read_batch(struct address_space *mapping, 2344 pgoff_t index, pgoff_t max, struct folio_batch *fbatch) 2345 { 2346 XA_STATE(xas, &mapping->i_pages, index); 2347 struct folio *folio; 2348 2349 rcu_read_lock(); 2350 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) { 2351 if (xas_retry(&xas, folio)) 2352 continue; 2353 if (xas.xa_index > max || xa_is_value(folio)) 2354 break; 2355 if (xa_is_sibling(folio)) 2356 break; 2357 if (!folio_try_get(folio)) 2358 goto retry; 2359 2360 if (unlikely(folio != xas_reload(&xas))) 2361 goto put_folio; 2362 2363 if (!folio_batch_add(fbatch, folio)) 2364 break; 2365 if (!folio_test_uptodate(folio)) 2366 break; 2367 if (folio_test_readahead(folio)) 2368 break; 2369 xas_advance(&xas, folio_next_index(folio) - 1); 2370 continue; 2371 put_folio: 2372 folio_put(folio); 2373 retry: 2374 xas_reset(&xas); 2375 } 2376 rcu_read_unlock(); 2377 } 2378 2379 static int filemap_read_folio(struct file *file, filler_t filler, 2380 struct folio *folio) 2381 { 2382 bool workingset = folio_test_workingset(folio); 2383 unsigned long pflags; 2384 int error; 2385 2386 /* Start the actual read. The read will unlock the page. */ 2387 if (unlikely(workingset)) 2388 psi_memstall_enter(&pflags); 2389 error = filler(file, folio); 2390 if (unlikely(workingset)) 2391 psi_memstall_leave(&pflags); 2392 if (error) 2393 return error; 2394 2395 error = folio_wait_locked_killable(folio); 2396 if (error) 2397 return error; 2398 if (folio_test_uptodate(folio)) 2399 return 0; 2400 if (file) 2401 shrink_readahead_size_eio(&file->f_ra); 2402 return -EIO; 2403 } 2404 2405 static bool filemap_range_uptodate(struct address_space *mapping, 2406 loff_t pos, size_t count, struct folio *folio, 2407 bool need_uptodate) 2408 { 2409 if (folio_test_uptodate(folio)) 2410 return true; 2411 /* pipes can't handle partially uptodate pages */ 2412 if (need_uptodate) 2413 return false; 2414 if (!mapping->a_ops->is_partially_uptodate) 2415 return false; 2416 if (mapping->host->i_blkbits >= folio_shift(folio)) 2417 return false; 2418 2419 if (folio_pos(folio) > pos) { 2420 count -= folio_pos(folio) - pos; 2421 pos = 0; 2422 } else { 2423 pos -= folio_pos(folio); 2424 } 2425 2426 return mapping->a_ops->is_partially_uptodate(folio, pos, count); 2427 } 2428 2429 static int filemap_update_page(struct kiocb *iocb, 2430 struct address_space *mapping, size_t count, 2431 struct folio *folio, bool need_uptodate) 2432 { 2433 int error; 2434 2435 if (iocb->ki_flags & IOCB_NOWAIT) { 2436 if (!filemap_invalidate_trylock_shared(mapping)) 2437 return -EAGAIN; 2438 } else { 2439 filemap_invalidate_lock_shared(mapping); 2440 } 2441 2442 if (!folio_trylock(folio)) { 2443 error = -EAGAIN; 2444 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO)) 2445 goto unlock_mapping; 2446 if (!(iocb->ki_flags & IOCB_WAITQ)) { 2447 filemap_invalidate_unlock_shared(mapping); 2448 /* 2449 * This is where we usually end up waiting for a 2450 * previously submitted readahead to finish. 2451 */ 2452 folio_put_wait_locked(folio, TASK_KILLABLE); 2453 return AOP_TRUNCATED_PAGE; 2454 } 2455 error = __folio_lock_async(folio, iocb->ki_waitq); 2456 if (error) 2457 goto unlock_mapping; 2458 } 2459 2460 error = AOP_TRUNCATED_PAGE; 2461 if (!folio->mapping) 2462 goto unlock; 2463 2464 error = 0; 2465 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio, 2466 need_uptodate)) 2467 goto unlock; 2468 2469 error = -EAGAIN; 2470 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ)) 2471 goto unlock; 2472 2473 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2474 folio); 2475 goto unlock_mapping; 2476 unlock: 2477 folio_unlock(folio); 2478 unlock_mapping: 2479 filemap_invalidate_unlock_shared(mapping); 2480 if (error == AOP_TRUNCATED_PAGE) 2481 folio_put(folio); 2482 return error; 2483 } 2484 2485 static int filemap_create_folio(struct kiocb *iocb, struct folio_batch *fbatch) 2486 { 2487 struct address_space *mapping = iocb->ki_filp->f_mapping; 2488 struct folio *folio; 2489 int error; 2490 unsigned int min_order = mapping_min_folio_order(mapping); 2491 pgoff_t index; 2492 2493 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ)) 2494 return -EAGAIN; 2495 2496 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), min_order); 2497 if (!folio) 2498 return -ENOMEM; 2499 if (iocb->ki_flags & IOCB_DONTCACHE) 2500 __folio_set_dropbehind(folio); 2501 2502 /* 2503 * Protect against truncate / hole punch. Grabbing invalidate_lock 2504 * here assures we cannot instantiate and bring uptodate new 2505 * pagecache folios after evicting page cache during truncate 2506 * and before actually freeing blocks. Note that we could 2507 * release invalidate_lock after inserting the folio into 2508 * the page cache as the locked folio would then be enough to 2509 * synchronize with hole punching. But there are code paths 2510 * such as filemap_update_page() filling in partially uptodate 2511 * pages or ->readahead() that need to hold invalidate_lock 2512 * while mapping blocks for IO so let's hold the lock here as 2513 * well to keep locking rules simple. 2514 */ 2515 filemap_invalidate_lock_shared(mapping); 2516 index = (iocb->ki_pos >> (PAGE_SHIFT + min_order)) << min_order; 2517 error = filemap_add_folio(mapping, folio, index, 2518 mapping_gfp_constraint(mapping, GFP_KERNEL)); 2519 if (error == -EEXIST) 2520 error = AOP_TRUNCATED_PAGE; 2521 if (error) 2522 goto error; 2523 2524 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio, 2525 folio); 2526 if (error) 2527 goto error; 2528 2529 filemap_invalidate_unlock_shared(mapping); 2530 folio_batch_add(fbatch, folio); 2531 return 0; 2532 error: 2533 filemap_invalidate_unlock_shared(mapping); 2534 folio_put(folio); 2535 return error; 2536 } 2537 2538 static int filemap_readahead(struct kiocb *iocb, struct file *file, 2539 struct address_space *mapping, struct folio *folio, 2540 pgoff_t last_index) 2541 { 2542 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index); 2543 2544 if (iocb->ki_flags & IOCB_NOIO) 2545 return -EAGAIN; 2546 if (iocb->ki_flags & IOCB_DONTCACHE) 2547 ractl.dropbehind = 1; 2548 page_cache_async_ra(&ractl, folio, last_index - folio->index); 2549 return 0; 2550 } 2551 2552 static int filemap_get_pages(struct kiocb *iocb, size_t count, 2553 struct folio_batch *fbatch, bool need_uptodate) 2554 { 2555 struct file *filp = iocb->ki_filp; 2556 struct address_space *mapping = filp->f_mapping; 2557 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT; 2558 pgoff_t last_index; 2559 struct folio *folio; 2560 unsigned int flags; 2561 int err = 0; 2562 2563 /* "last_index" is the index of the page beyond the end of the read */ 2564 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE); 2565 retry: 2566 if (fatal_signal_pending(current)) 2567 return -EINTR; 2568 2569 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2570 if (!folio_batch_count(fbatch)) { 2571 DEFINE_READAHEAD(ractl, filp, &filp->f_ra, mapping, index); 2572 2573 if (iocb->ki_flags & IOCB_NOIO) 2574 return -EAGAIN; 2575 if (iocb->ki_flags & IOCB_NOWAIT) 2576 flags = memalloc_noio_save(); 2577 if (iocb->ki_flags & IOCB_DONTCACHE) 2578 ractl.dropbehind = 1; 2579 page_cache_sync_ra(&ractl, last_index - index); 2580 if (iocb->ki_flags & IOCB_NOWAIT) 2581 memalloc_noio_restore(flags); 2582 filemap_get_read_batch(mapping, index, last_index - 1, fbatch); 2583 } 2584 if (!folio_batch_count(fbatch)) { 2585 err = filemap_create_folio(iocb, fbatch); 2586 if (err == AOP_TRUNCATED_PAGE) 2587 goto retry; 2588 return err; 2589 } 2590 2591 folio = fbatch->folios[folio_batch_count(fbatch) - 1]; 2592 if (folio_test_readahead(folio)) { 2593 err = filemap_readahead(iocb, filp, mapping, folio, last_index); 2594 if (err) 2595 goto err; 2596 } 2597 if (!folio_test_uptodate(folio)) { 2598 if ((iocb->ki_flags & IOCB_WAITQ) && 2599 folio_batch_count(fbatch) > 1) 2600 iocb->ki_flags |= IOCB_NOWAIT; 2601 err = filemap_update_page(iocb, mapping, count, folio, 2602 need_uptodate); 2603 if (err) 2604 goto err; 2605 } 2606 2607 trace_mm_filemap_get_pages(mapping, index, last_index - 1); 2608 return 0; 2609 err: 2610 if (err < 0) 2611 folio_put(folio); 2612 if (likely(--fbatch->nr)) 2613 return 0; 2614 if (err == AOP_TRUNCATED_PAGE) 2615 goto retry; 2616 return err; 2617 } 2618 2619 static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio) 2620 { 2621 unsigned int shift = folio_shift(folio); 2622 2623 return (pos1 >> shift == pos2 >> shift); 2624 } 2625 2626 static void filemap_end_dropbehind_read(struct address_space *mapping, 2627 struct folio *folio) 2628 { 2629 if (!folio_test_dropbehind(folio)) 2630 return; 2631 if (folio_test_writeback(folio) || folio_test_dirty(folio)) 2632 return; 2633 if (folio_trylock(folio)) { 2634 if (folio_test_clear_dropbehind(folio)) 2635 folio_unmap_invalidate(mapping, folio, 0); 2636 folio_unlock(folio); 2637 } 2638 } 2639 2640 /** 2641 * filemap_read - Read data from the page cache. 2642 * @iocb: The iocb to read. 2643 * @iter: Destination for the data. 2644 * @already_read: Number of bytes already read by the caller. 2645 * 2646 * Copies data from the page cache. If the data is not currently present, 2647 * uses the readahead and read_folio address_space operations to fetch it. 2648 * 2649 * Return: Total number of bytes copied, including those already read by 2650 * the caller. If an error happens before any bytes are copied, returns 2651 * a negative error number. 2652 */ 2653 ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter, 2654 ssize_t already_read) 2655 { 2656 struct file *filp = iocb->ki_filp; 2657 struct file_ra_state *ra = &filp->f_ra; 2658 struct address_space *mapping = filp->f_mapping; 2659 struct inode *inode = mapping->host; 2660 struct folio_batch fbatch; 2661 int i, error = 0; 2662 bool writably_mapped; 2663 loff_t isize, end_offset; 2664 loff_t last_pos = ra->prev_pos; 2665 2666 if (unlikely(iocb->ki_pos < 0)) 2667 return -EINVAL; 2668 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes)) 2669 return 0; 2670 if (unlikely(!iov_iter_count(iter))) 2671 return 0; 2672 2673 iov_iter_truncate(iter, inode->i_sb->s_maxbytes - iocb->ki_pos); 2674 folio_batch_init(&fbatch); 2675 2676 do { 2677 cond_resched(); 2678 2679 /* 2680 * If we've already successfully copied some data, then we 2681 * can no longer safely return -EIOCBQUEUED. Hence mark 2682 * an async read NOWAIT at that point. 2683 */ 2684 if ((iocb->ki_flags & IOCB_WAITQ) && already_read) 2685 iocb->ki_flags |= IOCB_NOWAIT; 2686 2687 if (unlikely(iocb->ki_pos >= i_size_read(inode))) 2688 break; 2689 2690 error = filemap_get_pages(iocb, iter->count, &fbatch, false); 2691 if (error < 0) 2692 break; 2693 2694 /* 2695 * i_size must be checked after we know the pages are Uptodate. 2696 * 2697 * Checking i_size after the check allows us to calculate 2698 * the correct value for "nr", which means the zero-filled 2699 * part of the page is not copied back to userspace (unless 2700 * another truncate extends the file - this is desired though). 2701 */ 2702 isize = i_size_read(inode); 2703 if (unlikely(iocb->ki_pos >= isize)) 2704 goto put_folios; 2705 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count); 2706 2707 /* 2708 * Once we start copying data, we don't want to be touching any 2709 * cachelines that might be contended: 2710 */ 2711 writably_mapped = mapping_writably_mapped(mapping); 2712 2713 /* 2714 * When a read accesses the same folio several times, only 2715 * mark it as accessed the first time. 2716 */ 2717 if (!pos_same_folio(iocb->ki_pos, last_pos - 1, 2718 fbatch.folios[0])) 2719 folio_mark_accessed(fbatch.folios[0]); 2720 2721 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2722 struct folio *folio = fbatch.folios[i]; 2723 size_t fsize = folio_size(folio); 2724 size_t offset = iocb->ki_pos & (fsize - 1); 2725 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos, 2726 fsize - offset); 2727 size_t copied; 2728 2729 if (end_offset < folio_pos(folio)) 2730 break; 2731 if (i > 0) 2732 folio_mark_accessed(folio); 2733 /* 2734 * If users can be writing to this folio using arbitrary 2735 * virtual addresses, take care of potential aliasing 2736 * before reading the folio on the kernel side. 2737 */ 2738 if (writably_mapped) 2739 flush_dcache_folio(folio); 2740 2741 copied = copy_folio_to_iter(folio, offset, bytes, iter); 2742 2743 already_read += copied; 2744 iocb->ki_pos += copied; 2745 last_pos = iocb->ki_pos; 2746 2747 if (copied < bytes) { 2748 error = -EFAULT; 2749 break; 2750 } 2751 } 2752 put_folios: 2753 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2754 struct folio *folio = fbatch.folios[i]; 2755 2756 filemap_end_dropbehind_read(mapping, folio); 2757 folio_put(folio); 2758 } 2759 folio_batch_init(&fbatch); 2760 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error); 2761 2762 file_accessed(filp); 2763 ra->prev_pos = last_pos; 2764 return already_read ? already_read : error; 2765 } 2766 EXPORT_SYMBOL_GPL(filemap_read); 2767 2768 int kiocb_write_and_wait(struct kiocb *iocb, size_t count) 2769 { 2770 struct address_space *mapping = iocb->ki_filp->f_mapping; 2771 loff_t pos = iocb->ki_pos; 2772 loff_t end = pos + count - 1; 2773 2774 if (iocb->ki_flags & IOCB_NOWAIT) { 2775 if (filemap_range_needs_writeback(mapping, pos, end)) 2776 return -EAGAIN; 2777 return 0; 2778 } 2779 2780 return filemap_write_and_wait_range(mapping, pos, end); 2781 } 2782 EXPORT_SYMBOL_GPL(kiocb_write_and_wait); 2783 2784 int filemap_invalidate_pages(struct address_space *mapping, 2785 loff_t pos, loff_t end, bool nowait) 2786 { 2787 int ret; 2788 2789 if (nowait) { 2790 /* we could block if there are any pages in the range */ 2791 if (filemap_range_has_page(mapping, pos, end)) 2792 return -EAGAIN; 2793 } else { 2794 ret = filemap_write_and_wait_range(mapping, pos, end); 2795 if (ret) 2796 return ret; 2797 } 2798 2799 /* 2800 * After a write we want buffered reads to be sure to go to disk to get 2801 * the new data. We invalidate clean cached page from the region we're 2802 * about to write. We do this *before* the write so that we can return 2803 * without clobbering -EIOCBQUEUED from ->direct_IO(). 2804 */ 2805 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, 2806 end >> PAGE_SHIFT); 2807 } 2808 2809 int kiocb_invalidate_pages(struct kiocb *iocb, size_t count) 2810 { 2811 struct address_space *mapping = iocb->ki_filp->f_mapping; 2812 2813 return filemap_invalidate_pages(mapping, iocb->ki_pos, 2814 iocb->ki_pos + count - 1, 2815 iocb->ki_flags & IOCB_NOWAIT); 2816 } 2817 EXPORT_SYMBOL_GPL(kiocb_invalidate_pages); 2818 2819 /** 2820 * generic_file_read_iter - generic filesystem read routine 2821 * @iocb: kernel I/O control block 2822 * @iter: destination for the data read 2823 * 2824 * This is the "read_iter()" routine for all filesystems 2825 * that can use the page cache directly. 2826 * 2827 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall 2828 * be returned when no data can be read without waiting for I/O requests 2829 * to complete; it doesn't prevent readahead. 2830 * 2831 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O 2832 * requests shall be made for the read or for readahead. When no data 2833 * can be read, -EAGAIN shall be returned. When readahead would be 2834 * triggered, a partial, possibly empty read shall be returned. 2835 * 2836 * Return: 2837 * * number of bytes copied, even for partial reads 2838 * * negative error code (or 0 if IOCB_NOIO) if nothing was read 2839 */ 2840 ssize_t 2841 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter) 2842 { 2843 size_t count = iov_iter_count(iter); 2844 ssize_t retval = 0; 2845 2846 if (!count) 2847 return 0; /* skip atime */ 2848 2849 if (iocb->ki_flags & IOCB_DIRECT) { 2850 struct file *file = iocb->ki_filp; 2851 struct address_space *mapping = file->f_mapping; 2852 struct inode *inode = mapping->host; 2853 2854 retval = kiocb_write_and_wait(iocb, count); 2855 if (retval < 0) 2856 return retval; 2857 file_accessed(file); 2858 2859 retval = mapping->a_ops->direct_IO(iocb, iter); 2860 if (retval >= 0) { 2861 iocb->ki_pos += retval; 2862 count -= retval; 2863 } 2864 if (retval != -EIOCBQUEUED) 2865 iov_iter_revert(iter, count - iov_iter_count(iter)); 2866 2867 /* 2868 * Btrfs can have a short DIO read if we encounter 2869 * compressed extents, so if there was an error, or if 2870 * we've already read everything we wanted to, or if 2871 * there was a short read because we hit EOF, go ahead 2872 * and return. Otherwise fallthrough to buffered io for 2873 * the rest of the read. Buffered reads will not work for 2874 * DAX files, so don't bother trying. 2875 */ 2876 if (retval < 0 || !count || IS_DAX(inode)) 2877 return retval; 2878 if (iocb->ki_pos >= i_size_read(inode)) 2879 return retval; 2880 } 2881 2882 return filemap_read(iocb, iter, retval); 2883 } 2884 EXPORT_SYMBOL(generic_file_read_iter); 2885 2886 /* 2887 * Splice subpages from a folio into a pipe. 2888 */ 2889 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe, 2890 struct folio *folio, loff_t fpos, size_t size) 2891 { 2892 struct page *page; 2893 size_t spliced = 0, offset = offset_in_folio(folio, fpos); 2894 2895 page = folio_page(folio, offset / PAGE_SIZE); 2896 size = min(size, folio_size(folio) - offset); 2897 offset %= PAGE_SIZE; 2898 2899 while (spliced < size && !pipe_is_full(pipe)) { 2900 struct pipe_buffer *buf = pipe_head_buf(pipe); 2901 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced); 2902 2903 *buf = (struct pipe_buffer) { 2904 .ops = &page_cache_pipe_buf_ops, 2905 .page = page, 2906 .offset = offset, 2907 .len = part, 2908 }; 2909 folio_get(folio); 2910 pipe->head++; 2911 page++; 2912 spliced += part; 2913 offset = 0; 2914 } 2915 2916 return spliced; 2917 } 2918 2919 /** 2920 * filemap_splice_read - Splice data from a file's pagecache into a pipe 2921 * @in: The file to read from 2922 * @ppos: Pointer to the file position to read from 2923 * @pipe: The pipe to splice into 2924 * @len: The amount to splice 2925 * @flags: The SPLICE_F_* flags 2926 * 2927 * This function gets folios from a file's pagecache and splices them into the 2928 * pipe. Readahead will be called as necessary to fill more folios. This may 2929 * be used for blockdevs also. 2930 * 2931 * Return: On success, the number of bytes read will be returned and *@ppos 2932 * will be updated if appropriate; 0 will be returned if there is no more data 2933 * to be read; -EAGAIN will be returned if the pipe had no space, and some 2934 * other negative error code will be returned on error. A short read may occur 2935 * if the pipe has insufficient space, we reach the end of the data or we hit a 2936 * hole. 2937 */ 2938 ssize_t filemap_splice_read(struct file *in, loff_t *ppos, 2939 struct pipe_inode_info *pipe, 2940 size_t len, unsigned int flags) 2941 { 2942 struct folio_batch fbatch; 2943 struct kiocb iocb; 2944 size_t total_spliced = 0, used, npages; 2945 loff_t isize, end_offset; 2946 bool writably_mapped; 2947 int i, error = 0; 2948 2949 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes)) 2950 return 0; 2951 2952 init_sync_kiocb(&iocb, in); 2953 iocb.ki_pos = *ppos; 2954 2955 /* Work out how much data we can actually add into the pipe */ 2956 used = pipe_buf_usage(pipe); 2957 npages = max_t(ssize_t, pipe->max_usage - used, 0); 2958 len = min_t(size_t, len, npages * PAGE_SIZE); 2959 2960 folio_batch_init(&fbatch); 2961 2962 do { 2963 cond_resched(); 2964 2965 if (*ppos >= i_size_read(in->f_mapping->host)) 2966 break; 2967 2968 iocb.ki_pos = *ppos; 2969 error = filemap_get_pages(&iocb, len, &fbatch, true); 2970 if (error < 0) 2971 break; 2972 2973 /* 2974 * i_size must be checked after we know the pages are Uptodate. 2975 * 2976 * Checking i_size after the check allows us to calculate 2977 * the correct value for "nr", which means the zero-filled 2978 * part of the page is not copied back to userspace (unless 2979 * another truncate extends the file - this is desired though). 2980 */ 2981 isize = i_size_read(in->f_mapping->host); 2982 if (unlikely(*ppos >= isize)) 2983 break; 2984 end_offset = min_t(loff_t, isize, *ppos + len); 2985 2986 /* 2987 * Once we start copying data, we don't want to be touching any 2988 * cachelines that might be contended: 2989 */ 2990 writably_mapped = mapping_writably_mapped(in->f_mapping); 2991 2992 for (i = 0; i < folio_batch_count(&fbatch); i++) { 2993 struct folio *folio = fbatch.folios[i]; 2994 size_t n; 2995 2996 if (folio_pos(folio) >= end_offset) 2997 goto out; 2998 folio_mark_accessed(folio); 2999 3000 /* 3001 * If users can be writing to this folio using arbitrary 3002 * virtual addresses, take care of potential aliasing 3003 * before reading the folio on the kernel side. 3004 */ 3005 if (writably_mapped) 3006 flush_dcache_folio(folio); 3007 3008 n = min_t(loff_t, len, isize - *ppos); 3009 n = splice_folio_into_pipe(pipe, folio, *ppos, n); 3010 if (!n) 3011 goto out; 3012 len -= n; 3013 total_spliced += n; 3014 *ppos += n; 3015 in->f_ra.prev_pos = *ppos; 3016 if (pipe_is_full(pipe)) 3017 goto out; 3018 } 3019 3020 folio_batch_release(&fbatch); 3021 } while (len); 3022 3023 out: 3024 folio_batch_release(&fbatch); 3025 file_accessed(in); 3026 3027 return total_spliced ? total_spliced : error; 3028 } 3029 EXPORT_SYMBOL(filemap_splice_read); 3030 3031 static inline loff_t folio_seek_hole_data(struct xa_state *xas, 3032 struct address_space *mapping, struct folio *folio, 3033 loff_t start, loff_t end, bool seek_data) 3034 { 3035 const struct address_space_operations *ops = mapping->a_ops; 3036 size_t offset, bsz = i_blocksize(mapping->host); 3037 3038 if (xa_is_value(folio) || folio_test_uptodate(folio)) 3039 return seek_data ? start : end; 3040 if (!ops->is_partially_uptodate) 3041 return seek_data ? end : start; 3042 3043 xas_pause(xas); 3044 rcu_read_unlock(); 3045 folio_lock(folio); 3046 if (unlikely(folio->mapping != mapping)) 3047 goto unlock; 3048 3049 offset = offset_in_folio(folio, start) & ~(bsz - 1); 3050 3051 do { 3052 if (ops->is_partially_uptodate(folio, offset, bsz) == 3053 seek_data) 3054 break; 3055 start = (start + bsz) & ~((u64)bsz - 1); 3056 offset += bsz; 3057 } while (offset < folio_size(folio)); 3058 unlock: 3059 folio_unlock(folio); 3060 rcu_read_lock(); 3061 return start; 3062 } 3063 3064 static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio) 3065 { 3066 if (xa_is_value(folio)) 3067 return PAGE_SIZE << xas_get_order(xas); 3068 return folio_size(folio); 3069 } 3070 3071 /** 3072 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache. 3073 * @mapping: Address space to search. 3074 * @start: First byte to consider. 3075 * @end: Limit of search (exclusive). 3076 * @whence: Either SEEK_HOLE or SEEK_DATA. 3077 * 3078 * If the page cache knows which blocks contain holes and which blocks 3079 * contain data, your filesystem can use this function to implement 3080 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are 3081 * entirely memory-based such as tmpfs, and filesystems which support 3082 * unwritten extents. 3083 * 3084 * Return: The requested offset on success, or -ENXIO if @whence specifies 3085 * SEEK_DATA and there is no data after @start. There is an implicit hole 3086 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start 3087 * and @end contain data. 3088 */ 3089 loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start, 3090 loff_t end, int whence) 3091 { 3092 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT); 3093 pgoff_t max = (end - 1) >> PAGE_SHIFT; 3094 bool seek_data = (whence == SEEK_DATA); 3095 struct folio *folio; 3096 3097 if (end <= start) 3098 return -ENXIO; 3099 3100 rcu_read_lock(); 3101 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) { 3102 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT; 3103 size_t seek_size; 3104 3105 if (start < pos) { 3106 if (!seek_data) 3107 goto unlock; 3108 start = pos; 3109 } 3110 3111 seek_size = seek_folio_size(&xas, folio); 3112 pos = round_up((u64)pos + 1, seek_size); 3113 start = folio_seek_hole_data(&xas, mapping, folio, start, pos, 3114 seek_data); 3115 if (start < pos) 3116 goto unlock; 3117 if (start >= end) 3118 break; 3119 if (seek_size > PAGE_SIZE) 3120 xas_set(&xas, pos >> PAGE_SHIFT); 3121 if (!xa_is_value(folio)) 3122 folio_put(folio); 3123 } 3124 if (seek_data) 3125 start = -ENXIO; 3126 unlock: 3127 rcu_read_unlock(); 3128 if (folio && !xa_is_value(folio)) 3129 folio_put(folio); 3130 if (start > end) 3131 return end; 3132 return start; 3133 } 3134 3135 #ifdef CONFIG_MMU 3136 #define MMAP_LOTSAMISS (100) 3137 /* 3138 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock 3139 * @vmf - the vm_fault for this fault. 3140 * @folio - the folio to lock. 3141 * @fpin - the pointer to the file we may pin (or is already pinned). 3142 * 3143 * This works similar to lock_folio_or_retry in that it can drop the 3144 * mmap_lock. It differs in that it actually returns the folio locked 3145 * if it returns 1 and 0 if it couldn't lock the folio. If we did have 3146 * to drop the mmap_lock then fpin will point to the pinned file and 3147 * needs to be fput()'ed at a later point. 3148 */ 3149 static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio, 3150 struct file **fpin) 3151 { 3152 if (folio_trylock(folio)) 3153 return 1; 3154 3155 /* 3156 * NOTE! This will make us return with VM_FAULT_RETRY, but with 3157 * the fault lock still held. That's how FAULT_FLAG_RETRY_NOWAIT 3158 * is supposed to work. We have way too many special cases.. 3159 */ 3160 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT) 3161 return 0; 3162 3163 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin); 3164 if (vmf->flags & FAULT_FLAG_KILLABLE) { 3165 if (__folio_lock_killable(folio)) { 3166 /* 3167 * We didn't have the right flags to drop the 3168 * fault lock, but all fault_handlers only check 3169 * for fatal signals if we return VM_FAULT_RETRY, 3170 * so we need to drop the fault lock here and 3171 * return 0 if we don't have a fpin. 3172 */ 3173 if (*fpin == NULL) 3174 release_fault_lock(vmf); 3175 return 0; 3176 } 3177 } else 3178 __folio_lock(folio); 3179 3180 return 1; 3181 } 3182 3183 /* 3184 * Synchronous readahead happens when we don't even find a page in the page 3185 * cache at all. We don't want to perform IO under the mmap sem, so if we have 3186 * to drop the mmap sem we return the file that was pinned in order for us to do 3187 * that. If we didn't pin a file then we return NULL. The file that is 3188 * returned needs to be fput()'ed when we're done with it. 3189 */ 3190 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf) 3191 { 3192 struct file *file = vmf->vma->vm_file; 3193 struct file_ra_state *ra = &file->f_ra; 3194 struct address_space *mapping = file->f_mapping; 3195 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff); 3196 struct file *fpin = NULL; 3197 unsigned long vm_flags = vmf->vma->vm_flags; 3198 unsigned int mmap_miss; 3199 3200 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 3201 /* Use the readahead code, even if readahead is disabled */ 3202 if ((vm_flags & VM_HUGEPAGE) && HPAGE_PMD_ORDER <= MAX_PAGECACHE_ORDER) { 3203 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3204 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1); 3205 ra->size = HPAGE_PMD_NR; 3206 /* 3207 * Fetch two PMD folios, so we get the chance to actually 3208 * readahead, unless we've been told not to. 3209 */ 3210 if (!(vm_flags & VM_RAND_READ)) 3211 ra->size *= 2; 3212 ra->async_size = HPAGE_PMD_NR; 3213 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER); 3214 return fpin; 3215 } 3216 #endif 3217 3218 /* If we don't want any read-ahead, don't bother */ 3219 if (vm_flags & VM_RAND_READ) 3220 return fpin; 3221 if (!ra->ra_pages) 3222 return fpin; 3223 3224 if (vm_flags & VM_SEQ_READ) { 3225 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3226 page_cache_sync_ra(&ractl, ra->ra_pages); 3227 return fpin; 3228 } 3229 3230 /* Avoid banging the cache line if not needed */ 3231 mmap_miss = READ_ONCE(ra->mmap_miss); 3232 if (mmap_miss < MMAP_LOTSAMISS * 10) 3233 WRITE_ONCE(ra->mmap_miss, ++mmap_miss); 3234 3235 /* 3236 * Do we miss much more than hit in this file? If so, 3237 * stop bothering with read-ahead. It will only hurt. 3238 */ 3239 if (mmap_miss > MMAP_LOTSAMISS) 3240 return fpin; 3241 3242 /* 3243 * mmap read-around 3244 */ 3245 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3246 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2); 3247 ra->size = ra->ra_pages; 3248 ra->async_size = ra->ra_pages / 4; 3249 ractl._index = ra->start; 3250 page_cache_ra_order(&ractl, ra, 0); 3251 return fpin; 3252 } 3253 3254 /* 3255 * Asynchronous readahead happens when we find the page and PG_readahead, 3256 * so we want to possibly extend the readahead further. We return the file that 3257 * was pinned if we have to drop the mmap_lock in order to do IO. 3258 */ 3259 static struct file *do_async_mmap_readahead(struct vm_fault *vmf, 3260 struct folio *folio) 3261 { 3262 struct file *file = vmf->vma->vm_file; 3263 struct file_ra_state *ra = &file->f_ra; 3264 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff); 3265 struct file *fpin = NULL; 3266 unsigned int mmap_miss; 3267 3268 /* If we don't want any read-ahead, don't bother */ 3269 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages) 3270 return fpin; 3271 3272 mmap_miss = READ_ONCE(ra->mmap_miss); 3273 if (mmap_miss) 3274 WRITE_ONCE(ra->mmap_miss, --mmap_miss); 3275 3276 if (folio_test_readahead(folio)) { 3277 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3278 page_cache_async_ra(&ractl, folio, ra->ra_pages); 3279 } 3280 return fpin; 3281 } 3282 3283 static vm_fault_t filemap_fault_recheck_pte_none(struct vm_fault *vmf) 3284 { 3285 struct vm_area_struct *vma = vmf->vma; 3286 vm_fault_t ret = 0; 3287 pte_t *ptep; 3288 3289 /* 3290 * We might have COW'ed a pagecache folio and might now have an mlocked 3291 * anon folio mapped. The original pagecache folio is not mlocked and 3292 * might have been evicted. During a read+clear/modify/write update of 3293 * the PTE, such as done in do_numa_page()/change_pte_range(), we 3294 * temporarily clear the PTE under PT lock and might detect it here as 3295 * "none" when not holding the PT lock. 3296 * 3297 * Not rechecking the PTE under PT lock could result in an unexpected 3298 * major fault in an mlock'ed region. Recheck only for this special 3299 * scenario while holding the PT lock, to not degrade non-mlocked 3300 * scenarios. Recheck the PTE without PT lock firstly, thereby reducing 3301 * the number of times we hold PT lock. 3302 */ 3303 if (!(vma->vm_flags & VM_LOCKED)) 3304 return 0; 3305 3306 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)) 3307 return 0; 3308 3309 ptep = pte_offset_map_ro_nolock(vma->vm_mm, vmf->pmd, vmf->address, 3310 &vmf->ptl); 3311 if (unlikely(!ptep)) 3312 return VM_FAULT_NOPAGE; 3313 3314 if (unlikely(!pte_none(ptep_get_lockless(ptep)))) { 3315 ret = VM_FAULT_NOPAGE; 3316 } else { 3317 spin_lock(vmf->ptl); 3318 if (unlikely(!pte_none(ptep_get(ptep)))) 3319 ret = VM_FAULT_NOPAGE; 3320 spin_unlock(vmf->ptl); 3321 } 3322 pte_unmap(ptep); 3323 return ret; 3324 } 3325 3326 /** 3327 * filemap_fault - read in file data for page fault handling 3328 * @vmf: struct vm_fault containing details of the fault 3329 * 3330 * filemap_fault() is invoked via the vma operations vector for a 3331 * mapped memory region to read in file data during a page fault. 3332 * 3333 * The goto's are kind of ugly, but this streamlines the normal case of having 3334 * it in the page cache, and handles the special cases reasonably without 3335 * having a lot of duplicated code. 3336 * 3337 * vma->vm_mm->mmap_lock must be held on entry. 3338 * 3339 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock 3340 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap(). 3341 * 3342 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock 3343 * has not been released. 3344 * 3345 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set. 3346 * 3347 * Return: bitwise-OR of %VM_FAULT_ codes. 3348 */ 3349 vm_fault_t filemap_fault(struct vm_fault *vmf) 3350 { 3351 int error; 3352 struct file *file = vmf->vma->vm_file; 3353 struct file *fpin = NULL; 3354 struct address_space *mapping = file->f_mapping; 3355 struct inode *inode = mapping->host; 3356 pgoff_t max_idx, index = vmf->pgoff; 3357 struct folio *folio; 3358 vm_fault_t ret = 0; 3359 bool mapping_locked = false; 3360 3361 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3362 if (unlikely(index >= max_idx)) 3363 return VM_FAULT_SIGBUS; 3364 3365 trace_mm_filemap_fault(mapping, index); 3366 3367 /* 3368 * Do we have something in the page cache already? 3369 */ 3370 folio = filemap_get_folio(mapping, index); 3371 if (likely(!IS_ERR(folio))) { 3372 /* 3373 * We found the page, so try async readahead before waiting for 3374 * the lock. 3375 */ 3376 if (!(vmf->flags & FAULT_FLAG_TRIED)) 3377 fpin = do_async_mmap_readahead(vmf, folio); 3378 if (unlikely(!folio_test_uptodate(folio))) { 3379 filemap_invalidate_lock_shared(mapping); 3380 mapping_locked = true; 3381 } 3382 } else { 3383 ret = filemap_fault_recheck_pte_none(vmf); 3384 if (unlikely(ret)) 3385 return ret; 3386 3387 /* No page in the page cache at all */ 3388 count_vm_event(PGMAJFAULT); 3389 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT); 3390 ret = VM_FAULT_MAJOR; 3391 fpin = do_sync_mmap_readahead(vmf); 3392 retry_find: 3393 /* 3394 * See comment in filemap_create_folio() why we need 3395 * invalidate_lock 3396 */ 3397 if (!mapping_locked) { 3398 filemap_invalidate_lock_shared(mapping); 3399 mapping_locked = true; 3400 } 3401 folio = __filemap_get_folio(mapping, index, 3402 FGP_CREAT|FGP_FOR_MMAP, 3403 vmf->gfp_mask); 3404 if (IS_ERR(folio)) { 3405 if (fpin) 3406 goto out_retry; 3407 filemap_invalidate_unlock_shared(mapping); 3408 return VM_FAULT_OOM; 3409 } 3410 } 3411 3412 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin)) 3413 goto out_retry; 3414 3415 /* Did it get truncated? */ 3416 if (unlikely(folio->mapping != mapping)) { 3417 folio_unlock(folio); 3418 folio_put(folio); 3419 goto retry_find; 3420 } 3421 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio); 3422 3423 /* 3424 * We have a locked folio in the page cache, now we need to check 3425 * that it's up-to-date. If not, it is going to be due to an error, 3426 * or because readahead was otherwise unable to retrieve it. 3427 */ 3428 if (unlikely(!folio_test_uptodate(folio))) { 3429 /* 3430 * If the invalidate lock is not held, the folio was in cache 3431 * and uptodate and now it is not. Strange but possible since we 3432 * didn't hold the page lock all the time. Let's drop 3433 * everything, get the invalidate lock and try again. 3434 */ 3435 if (!mapping_locked) { 3436 folio_unlock(folio); 3437 folio_put(folio); 3438 goto retry_find; 3439 } 3440 3441 /* 3442 * OK, the folio is really not uptodate. This can be because the 3443 * VMA has the VM_RAND_READ flag set, or because an error 3444 * arose. Let's read it in directly. 3445 */ 3446 goto page_not_uptodate; 3447 } 3448 3449 /* 3450 * We've made it this far and we had to drop our mmap_lock, now is the 3451 * time to return to the upper layer and have it re-find the vma and 3452 * redo the fault. 3453 */ 3454 if (fpin) { 3455 folio_unlock(folio); 3456 goto out_retry; 3457 } 3458 if (mapping_locked) 3459 filemap_invalidate_unlock_shared(mapping); 3460 3461 /* 3462 * Found the page and have a reference on it. 3463 * We must recheck i_size under page lock. 3464 */ 3465 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE); 3466 if (unlikely(index >= max_idx)) { 3467 folio_unlock(folio); 3468 folio_put(folio); 3469 return VM_FAULT_SIGBUS; 3470 } 3471 3472 vmf->page = folio_file_page(folio, index); 3473 return ret | VM_FAULT_LOCKED; 3474 3475 page_not_uptodate: 3476 /* 3477 * Umm, take care of errors if the page isn't up-to-date. 3478 * Try to re-read it _once_. We do this synchronously, 3479 * because there really aren't any performance issues here 3480 * and we need to check for errors. 3481 */ 3482 fpin = maybe_unlock_mmap_for_io(vmf, fpin); 3483 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio); 3484 if (fpin) 3485 goto out_retry; 3486 folio_put(folio); 3487 3488 if (!error || error == AOP_TRUNCATED_PAGE) 3489 goto retry_find; 3490 filemap_invalidate_unlock_shared(mapping); 3491 3492 return VM_FAULT_SIGBUS; 3493 3494 out_retry: 3495 /* 3496 * We dropped the mmap_lock, we need to return to the fault handler to 3497 * re-find the vma and come back and find our hopefully still populated 3498 * page. 3499 */ 3500 if (!IS_ERR(folio)) 3501 folio_put(folio); 3502 if (mapping_locked) 3503 filemap_invalidate_unlock_shared(mapping); 3504 if (fpin) 3505 fput(fpin); 3506 return ret | VM_FAULT_RETRY; 3507 } 3508 EXPORT_SYMBOL(filemap_fault); 3509 3510 static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio, 3511 pgoff_t start) 3512 { 3513 struct mm_struct *mm = vmf->vma->vm_mm; 3514 3515 /* Huge page is mapped? No need to proceed. */ 3516 if (pmd_trans_huge(*vmf->pmd)) { 3517 folio_unlock(folio); 3518 folio_put(folio); 3519 return true; 3520 } 3521 3522 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) { 3523 struct page *page = folio_file_page(folio, start); 3524 vm_fault_t ret = do_set_pmd(vmf, page); 3525 if (!ret) { 3526 /* The page is mapped successfully, reference consumed. */ 3527 folio_unlock(folio); 3528 return true; 3529 } 3530 } 3531 3532 if (pmd_none(*vmf->pmd) && vmf->prealloc_pte) 3533 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte); 3534 3535 return false; 3536 } 3537 3538 static struct folio *next_uptodate_folio(struct xa_state *xas, 3539 struct address_space *mapping, pgoff_t end_pgoff) 3540 { 3541 struct folio *folio = xas_next_entry(xas, end_pgoff); 3542 unsigned long max_idx; 3543 3544 do { 3545 if (!folio) 3546 return NULL; 3547 if (xas_retry(xas, folio)) 3548 continue; 3549 if (xa_is_value(folio)) 3550 continue; 3551 if (!folio_try_get(folio)) 3552 continue; 3553 if (folio_test_locked(folio)) 3554 goto skip; 3555 /* Has the page moved or been split? */ 3556 if (unlikely(folio != xas_reload(xas))) 3557 goto skip; 3558 if (!folio_test_uptodate(folio) || folio_test_readahead(folio)) 3559 goto skip; 3560 if (!folio_trylock(folio)) 3561 goto skip; 3562 if (folio->mapping != mapping) 3563 goto unlock; 3564 if (!folio_test_uptodate(folio)) 3565 goto unlock; 3566 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE); 3567 if (xas->xa_index >= max_idx) 3568 goto unlock; 3569 return folio; 3570 unlock: 3571 folio_unlock(folio); 3572 skip: 3573 folio_put(folio); 3574 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL); 3575 3576 return NULL; 3577 } 3578 3579 /* 3580 * Map page range [start_page, start_page + nr_pages) of folio. 3581 * start_page is gotten from start by folio_page(folio, start) 3582 */ 3583 static vm_fault_t filemap_map_folio_range(struct vm_fault *vmf, 3584 struct folio *folio, unsigned long start, 3585 unsigned long addr, unsigned int nr_pages, 3586 unsigned long *rss, unsigned int *mmap_miss) 3587 { 3588 vm_fault_t ret = 0; 3589 struct page *page = folio_page(folio, start); 3590 unsigned int count = 0; 3591 pte_t *old_ptep = vmf->pte; 3592 3593 do { 3594 if (PageHWPoison(page + count)) 3595 goto skip; 3596 3597 /* 3598 * If there are too many folios that are recently evicted 3599 * in a file, they will probably continue to be evicted. 3600 * In such situation, read-ahead is only a waste of IO. 3601 * Don't decrease mmap_miss in this scenario to make sure 3602 * we can stop read-ahead. 3603 */ 3604 if (!folio_test_workingset(folio)) 3605 (*mmap_miss)++; 3606 3607 /* 3608 * NOTE: If there're PTE markers, we'll leave them to be 3609 * handled in the specific fault path, and it'll prohibit the 3610 * fault-around logic. 3611 */ 3612 if (!pte_none(ptep_get(&vmf->pte[count]))) 3613 goto skip; 3614 3615 count++; 3616 continue; 3617 skip: 3618 if (count) { 3619 set_pte_range(vmf, folio, page, count, addr); 3620 *rss += count; 3621 folio_ref_add(folio, count); 3622 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3623 ret = VM_FAULT_NOPAGE; 3624 } 3625 3626 count++; 3627 page += count; 3628 vmf->pte += count; 3629 addr += count * PAGE_SIZE; 3630 count = 0; 3631 } while (--nr_pages > 0); 3632 3633 if (count) { 3634 set_pte_range(vmf, folio, page, count, addr); 3635 *rss += count; 3636 folio_ref_add(folio, count); 3637 if (in_range(vmf->address, addr, count * PAGE_SIZE)) 3638 ret = VM_FAULT_NOPAGE; 3639 } 3640 3641 vmf->pte = old_ptep; 3642 3643 return ret; 3644 } 3645 3646 static vm_fault_t filemap_map_order0_folio(struct vm_fault *vmf, 3647 struct folio *folio, unsigned long addr, 3648 unsigned long *rss, unsigned int *mmap_miss) 3649 { 3650 vm_fault_t ret = 0; 3651 struct page *page = &folio->page; 3652 3653 if (PageHWPoison(page)) 3654 return ret; 3655 3656 /* See comment of filemap_map_folio_range() */ 3657 if (!folio_test_workingset(folio)) 3658 (*mmap_miss)++; 3659 3660 /* 3661 * NOTE: If there're PTE markers, we'll leave them to be 3662 * handled in the specific fault path, and it'll prohibit 3663 * the fault-around logic. 3664 */ 3665 if (!pte_none(ptep_get(vmf->pte))) 3666 return ret; 3667 3668 if (vmf->address == addr) 3669 ret = VM_FAULT_NOPAGE; 3670 3671 set_pte_range(vmf, folio, page, 1, addr); 3672 (*rss)++; 3673 folio_ref_inc(folio); 3674 3675 return ret; 3676 } 3677 3678 vm_fault_t filemap_map_pages(struct vm_fault *vmf, 3679 pgoff_t start_pgoff, pgoff_t end_pgoff) 3680 { 3681 struct vm_area_struct *vma = vmf->vma; 3682 struct file *file = vma->vm_file; 3683 struct address_space *mapping = file->f_mapping; 3684 pgoff_t file_end, last_pgoff = start_pgoff; 3685 unsigned long addr; 3686 XA_STATE(xas, &mapping->i_pages, start_pgoff); 3687 struct folio *folio; 3688 vm_fault_t ret = 0; 3689 unsigned long rss = 0; 3690 unsigned int nr_pages = 0, mmap_miss = 0, mmap_miss_saved, folio_type; 3691 3692 rcu_read_lock(); 3693 folio = next_uptodate_folio(&xas, mapping, end_pgoff); 3694 if (!folio) 3695 goto out; 3696 3697 if (filemap_map_pmd(vmf, folio, start_pgoff)) { 3698 ret = VM_FAULT_NOPAGE; 3699 goto out; 3700 } 3701 3702 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT); 3703 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl); 3704 if (!vmf->pte) { 3705 folio_unlock(folio); 3706 folio_put(folio); 3707 goto out; 3708 } 3709 3710 file_end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE) - 1; 3711 if (end_pgoff > file_end) 3712 end_pgoff = file_end; 3713 3714 folio_type = mm_counter_file(folio); 3715 do { 3716 unsigned long end; 3717 3718 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT; 3719 vmf->pte += xas.xa_index - last_pgoff; 3720 last_pgoff = xas.xa_index; 3721 end = folio_next_index(folio) - 1; 3722 nr_pages = min(end, end_pgoff) - xas.xa_index + 1; 3723 3724 if (!folio_test_large(folio)) 3725 ret |= filemap_map_order0_folio(vmf, 3726 folio, addr, &rss, &mmap_miss); 3727 else 3728 ret |= filemap_map_folio_range(vmf, folio, 3729 xas.xa_index - folio->index, addr, 3730 nr_pages, &rss, &mmap_miss); 3731 3732 folio_unlock(folio); 3733 folio_put(folio); 3734 } while ((folio = next_uptodate_folio(&xas, mapping, end_pgoff)) != NULL); 3735 add_mm_counter(vma->vm_mm, folio_type, rss); 3736 pte_unmap_unlock(vmf->pte, vmf->ptl); 3737 trace_mm_filemap_map_pages(mapping, start_pgoff, end_pgoff); 3738 out: 3739 rcu_read_unlock(); 3740 3741 mmap_miss_saved = READ_ONCE(file->f_ra.mmap_miss); 3742 if (mmap_miss >= mmap_miss_saved) 3743 WRITE_ONCE(file->f_ra.mmap_miss, 0); 3744 else 3745 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss_saved - mmap_miss); 3746 3747 return ret; 3748 } 3749 EXPORT_SYMBOL(filemap_map_pages); 3750 3751 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3752 { 3753 struct address_space *mapping = vmf->vma->vm_file->f_mapping; 3754 struct folio *folio = page_folio(vmf->page); 3755 vm_fault_t ret = VM_FAULT_LOCKED; 3756 3757 sb_start_pagefault(mapping->host->i_sb); 3758 file_update_time(vmf->vma->vm_file); 3759 folio_lock(folio); 3760 if (folio->mapping != mapping) { 3761 folio_unlock(folio); 3762 ret = VM_FAULT_NOPAGE; 3763 goto out; 3764 } 3765 /* 3766 * We mark the folio dirty already here so that when freeze is in 3767 * progress, we are guaranteed that writeback during freezing will 3768 * see the dirty folio and writeprotect it again. 3769 */ 3770 folio_mark_dirty(folio); 3771 folio_wait_stable(folio); 3772 out: 3773 sb_end_pagefault(mapping->host->i_sb); 3774 return ret; 3775 } 3776 3777 const struct vm_operations_struct generic_file_vm_ops = { 3778 .fault = filemap_fault, 3779 .map_pages = filemap_map_pages, 3780 .page_mkwrite = filemap_page_mkwrite, 3781 }; 3782 3783 /* This is used for a general mmap of a disk file */ 3784 3785 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3786 { 3787 struct address_space *mapping = file->f_mapping; 3788 3789 if (!mapping->a_ops->read_folio) 3790 return -ENOEXEC; 3791 file_accessed(file); 3792 vma->vm_ops = &generic_file_vm_ops; 3793 return 0; 3794 } 3795 3796 /* 3797 * This is for filesystems which do not implement ->writepage. 3798 */ 3799 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3800 { 3801 if (vma_is_shared_maywrite(vma)) 3802 return -EINVAL; 3803 return generic_file_mmap(file, vma); 3804 } 3805 #else 3806 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf) 3807 { 3808 return VM_FAULT_SIGBUS; 3809 } 3810 int generic_file_mmap(struct file *file, struct vm_area_struct *vma) 3811 { 3812 return -ENOSYS; 3813 } 3814 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma) 3815 { 3816 return -ENOSYS; 3817 } 3818 #endif /* CONFIG_MMU */ 3819 3820 EXPORT_SYMBOL(filemap_page_mkwrite); 3821 EXPORT_SYMBOL(generic_file_mmap); 3822 EXPORT_SYMBOL(generic_file_readonly_mmap); 3823 3824 static struct folio *do_read_cache_folio(struct address_space *mapping, 3825 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp) 3826 { 3827 struct folio *folio; 3828 int err; 3829 3830 if (!filler) 3831 filler = mapping->a_ops->read_folio; 3832 repeat: 3833 folio = filemap_get_folio(mapping, index); 3834 if (IS_ERR(folio)) { 3835 folio = filemap_alloc_folio(gfp, 3836 mapping_min_folio_order(mapping)); 3837 if (!folio) 3838 return ERR_PTR(-ENOMEM); 3839 index = mapping_align_index(mapping, index); 3840 err = filemap_add_folio(mapping, folio, index, gfp); 3841 if (unlikely(err)) { 3842 folio_put(folio); 3843 if (err == -EEXIST) 3844 goto repeat; 3845 /* Presumably ENOMEM for xarray node */ 3846 return ERR_PTR(err); 3847 } 3848 3849 goto filler; 3850 } 3851 if (folio_test_uptodate(folio)) 3852 goto out; 3853 3854 if (!folio_trylock(folio)) { 3855 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE); 3856 goto repeat; 3857 } 3858 3859 /* Folio was truncated from mapping */ 3860 if (!folio->mapping) { 3861 folio_unlock(folio); 3862 folio_put(folio); 3863 goto repeat; 3864 } 3865 3866 /* Someone else locked and filled the page in a very small window */ 3867 if (folio_test_uptodate(folio)) { 3868 folio_unlock(folio); 3869 goto out; 3870 } 3871 3872 filler: 3873 err = filemap_read_folio(file, filler, folio); 3874 if (err) { 3875 folio_put(folio); 3876 if (err == AOP_TRUNCATED_PAGE) 3877 goto repeat; 3878 return ERR_PTR(err); 3879 } 3880 3881 out: 3882 folio_mark_accessed(folio); 3883 return folio; 3884 } 3885 3886 /** 3887 * read_cache_folio - Read into page cache, fill it if needed. 3888 * @mapping: The address_space to read from. 3889 * @index: The index to read. 3890 * @filler: Function to perform the read, or NULL to use aops->read_folio(). 3891 * @file: Passed to filler function, may be NULL if not required. 3892 * 3893 * Read one page into the page cache. If it succeeds, the folio returned 3894 * will contain @index, but it may not be the first page of the folio. 3895 * 3896 * If the filler function returns an error, it will be returned to the 3897 * caller. 3898 * 3899 * Context: May sleep. Expects mapping->invalidate_lock to be held. 3900 * Return: An uptodate folio on success, ERR_PTR() on failure. 3901 */ 3902 struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index, 3903 filler_t filler, struct file *file) 3904 { 3905 return do_read_cache_folio(mapping, index, filler, file, 3906 mapping_gfp_mask(mapping)); 3907 } 3908 EXPORT_SYMBOL(read_cache_folio); 3909 3910 /** 3911 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags. 3912 * @mapping: The address_space for the folio. 3913 * @index: The index that the allocated folio will contain. 3914 * @gfp: The page allocator flags to use if allocating. 3915 * 3916 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with 3917 * any new memory allocations done using the specified allocation flags. 3918 * 3919 * The most likely error from this function is EIO, but ENOMEM is 3920 * possible and so is EINTR. If ->read_folio returns another error, 3921 * that will be returned to the caller. 3922 * 3923 * The function expects mapping->invalidate_lock to be already held. 3924 * 3925 * Return: Uptodate folio on success, ERR_PTR() on failure. 3926 */ 3927 struct folio *mapping_read_folio_gfp(struct address_space *mapping, 3928 pgoff_t index, gfp_t gfp) 3929 { 3930 return do_read_cache_folio(mapping, index, NULL, NULL, gfp); 3931 } 3932 EXPORT_SYMBOL(mapping_read_folio_gfp); 3933 3934 static struct page *do_read_cache_page(struct address_space *mapping, 3935 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp) 3936 { 3937 struct folio *folio; 3938 3939 folio = do_read_cache_folio(mapping, index, filler, file, gfp); 3940 if (IS_ERR(folio)) 3941 return &folio->page; 3942 return folio_file_page(folio, index); 3943 } 3944 3945 struct page *read_cache_page(struct address_space *mapping, 3946 pgoff_t index, filler_t *filler, struct file *file) 3947 { 3948 return do_read_cache_page(mapping, index, filler, file, 3949 mapping_gfp_mask(mapping)); 3950 } 3951 EXPORT_SYMBOL(read_cache_page); 3952 3953 /** 3954 * read_cache_page_gfp - read into page cache, using specified page allocation flags. 3955 * @mapping: the page's address_space 3956 * @index: the page index 3957 * @gfp: the page allocator flags to use if allocating 3958 * 3959 * This is the same as "read_mapping_page(mapping, index, NULL)", but with 3960 * any new page allocations done using the specified allocation flags. 3961 * 3962 * If the page does not get brought uptodate, return -EIO. 3963 * 3964 * The function expects mapping->invalidate_lock to be already held. 3965 * 3966 * Return: up to date page on success, ERR_PTR() on failure. 3967 */ 3968 struct page *read_cache_page_gfp(struct address_space *mapping, 3969 pgoff_t index, 3970 gfp_t gfp) 3971 { 3972 return do_read_cache_page(mapping, index, NULL, NULL, gfp); 3973 } 3974 EXPORT_SYMBOL(read_cache_page_gfp); 3975 3976 /* 3977 * Warn about a page cache invalidation failure during a direct I/O write. 3978 */ 3979 static void dio_warn_stale_pagecache(struct file *filp) 3980 { 3981 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST); 3982 char pathname[128]; 3983 char *path; 3984 3985 errseq_set(&filp->f_mapping->wb_err, -EIO); 3986 if (__ratelimit(&_rs)) { 3987 path = file_path(filp, pathname, sizeof(pathname)); 3988 if (IS_ERR(path)) 3989 path = "(unknown)"; 3990 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n"); 3991 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid, 3992 current->comm); 3993 } 3994 } 3995 3996 void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count) 3997 { 3998 struct address_space *mapping = iocb->ki_filp->f_mapping; 3999 4000 if (mapping->nrpages && 4001 invalidate_inode_pages2_range(mapping, 4002 iocb->ki_pos >> PAGE_SHIFT, 4003 (iocb->ki_pos + count - 1) >> PAGE_SHIFT)) 4004 dio_warn_stale_pagecache(iocb->ki_filp); 4005 } 4006 4007 ssize_t 4008 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from) 4009 { 4010 struct address_space *mapping = iocb->ki_filp->f_mapping; 4011 size_t write_len = iov_iter_count(from); 4012 ssize_t written; 4013 4014 /* 4015 * If a page can not be invalidated, return 0 to fall back 4016 * to buffered write. 4017 */ 4018 written = kiocb_invalidate_pages(iocb, write_len); 4019 if (written) { 4020 if (written == -EBUSY) 4021 return 0; 4022 return written; 4023 } 4024 4025 written = mapping->a_ops->direct_IO(iocb, from); 4026 4027 /* 4028 * Finally, try again to invalidate clean pages which might have been 4029 * cached by non-direct readahead, or faulted in by get_user_pages() 4030 * if the source of the write was an mmap'ed region of the file 4031 * we're writing. Either one is a pretty crazy thing to do, 4032 * so we don't support it 100%. If this invalidation 4033 * fails, tough, the write still worked... 4034 * 4035 * Most of the time we do not need this since dio_complete() will do 4036 * the invalidation for us. However there are some file systems that 4037 * do not end up with dio_complete() being called, so let's not break 4038 * them by removing it completely. 4039 * 4040 * Noticeable example is a blkdev_direct_IO(). 4041 * 4042 * Skip invalidation for async writes or if mapping has no pages. 4043 */ 4044 if (written > 0) { 4045 struct inode *inode = mapping->host; 4046 loff_t pos = iocb->ki_pos; 4047 4048 kiocb_invalidate_post_direct_write(iocb, written); 4049 pos += written; 4050 write_len -= written; 4051 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) { 4052 i_size_write(inode, pos); 4053 mark_inode_dirty(inode); 4054 } 4055 iocb->ki_pos = pos; 4056 } 4057 if (written != -EIOCBQUEUED) 4058 iov_iter_revert(from, write_len - iov_iter_count(from)); 4059 return written; 4060 } 4061 EXPORT_SYMBOL(generic_file_direct_write); 4062 4063 ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i) 4064 { 4065 struct file *file = iocb->ki_filp; 4066 loff_t pos = iocb->ki_pos; 4067 struct address_space *mapping = file->f_mapping; 4068 const struct address_space_operations *a_ops = mapping->a_ops; 4069 size_t chunk = mapping_max_folio_size(mapping); 4070 long status = 0; 4071 ssize_t written = 0; 4072 4073 do { 4074 struct folio *folio; 4075 size_t offset; /* Offset into folio */ 4076 size_t bytes; /* Bytes to write to folio */ 4077 size_t copied; /* Bytes copied from user */ 4078 void *fsdata = NULL; 4079 4080 bytes = iov_iter_count(i); 4081 retry: 4082 offset = pos & (chunk - 1); 4083 bytes = min(chunk - offset, bytes); 4084 balance_dirty_pages_ratelimited(mapping); 4085 4086 /* 4087 * Bring in the user page that we will copy from _first_. 4088 * Otherwise there's a nasty deadlock on copying from the 4089 * same page as we're writing to, without it being marked 4090 * up-to-date. 4091 */ 4092 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) { 4093 status = -EFAULT; 4094 break; 4095 } 4096 4097 if (fatal_signal_pending(current)) { 4098 status = -EINTR; 4099 break; 4100 } 4101 4102 status = a_ops->write_begin(file, mapping, pos, bytes, 4103 &folio, &fsdata); 4104 if (unlikely(status < 0)) 4105 break; 4106 4107 offset = offset_in_folio(folio, pos); 4108 if (bytes > folio_size(folio) - offset) 4109 bytes = folio_size(folio) - offset; 4110 4111 if (mapping_writably_mapped(mapping)) 4112 flush_dcache_folio(folio); 4113 4114 copied = copy_folio_from_iter_atomic(folio, offset, bytes, i); 4115 flush_dcache_folio(folio); 4116 4117 status = a_ops->write_end(file, mapping, pos, bytes, copied, 4118 folio, fsdata); 4119 if (unlikely(status != copied)) { 4120 iov_iter_revert(i, copied - max(status, 0L)); 4121 if (unlikely(status < 0)) 4122 break; 4123 } 4124 cond_resched(); 4125 4126 if (unlikely(status == 0)) { 4127 /* 4128 * A short copy made ->write_end() reject the 4129 * thing entirely. Might be memory poisoning 4130 * halfway through, might be a race with munmap, 4131 * might be severe memory pressure. 4132 */ 4133 if (chunk > PAGE_SIZE) 4134 chunk /= 2; 4135 if (copied) { 4136 bytes = copied; 4137 goto retry; 4138 } 4139 } else { 4140 pos += status; 4141 written += status; 4142 } 4143 } while (iov_iter_count(i)); 4144 4145 if (!written) 4146 return status; 4147 iocb->ki_pos += written; 4148 return written; 4149 } 4150 EXPORT_SYMBOL(generic_perform_write); 4151 4152 /** 4153 * __generic_file_write_iter - write data to a file 4154 * @iocb: IO state structure (file, offset, etc.) 4155 * @from: iov_iter with data to write 4156 * 4157 * This function does all the work needed for actually writing data to a 4158 * file. It does all basic checks, removes SUID from the file, updates 4159 * modification times and calls proper subroutines depending on whether we 4160 * do direct IO or a standard buffered write. 4161 * 4162 * It expects i_rwsem to be grabbed unless we work on a block device or similar 4163 * object which does not need locking at all. 4164 * 4165 * This function does *not* take care of syncing data in case of O_SYNC write. 4166 * A caller has to handle it. This is mainly due to the fact that we want to 4167 * avoid syncing under i_rwsem. 4168 * 4169 * Return: 4170 * * number of bytes written, even for truncated writes 4171 * * negative error code if no data has been written at all 4172 */ 4173 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4174 { 4175 struct file *file = iocb->ki_filp; 4176 struct address_space *mapping = file->f_mapping; 4177 struct inode *inode = mapping->host; 4178 ssize_t ret; 4179 4180 ret = file_remove_privs(file); 4181 if (ret) 4182 return ret; 4183 4184 ret = file_update_time(file); 4185 if (ret) 4186 return ret; 4187 4188 if (iocb->ki_flags & IOCB_DIRECT) { 4189 ret = generic_file_direct_write(iocb, from); 4190 /* 4191 * If the write stopped short of completing, fall back to 4192 * buffered writes. Some filesystems do this for writes to 4193 * holes, for example. For DAX files, a buffered write will 4194 * not succeed (even if it did, DAX does not handle dirty 4195 * page-cache pages correctly). 4196 */ 4197 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode)) 4198 return ret; 4199 return direct_write_fallback(iocb, from, ret, 4200 generic_perform_write(iocb, from)); 4201 } 4202 4203 return generic_perform_write(iocb, from); 4204 } 4205 EXPORT_SYMBOL(__generic_file_write_iter); 4206 4207 /** 4208 * generic_file_write_iter - write data to a file 4209 * @iocb: IO state structure 4210 * @from: iov_iter with data to write 4211 * 4212 * This is a wrapper around __generic_file_write_iter() to be used by most 4213 * filesystems. It takes care of syncing the file in case of O_SYNC file 4214 * and acquires i_rwsem as needed. 4215 * Return: 4216 * * negative error code if no data has been written at all of 4217 * vfs_fsync_range() failed for a synchronous write 4218 * * number of bytes written, even for truncated writes 4219 */ 4220 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from) 4221 { 4222 struct file *file = iocb->ki_filp; 4223 struct inode *inode = file->f_mapping->host; 4224 ssize_t ret; 4225 4226 inode_lock(inode); 4227 ret = generic_write_checks(iocb, from); 4228 if (ret > 0) 4229 ret = __generic_file_write_iter(iocb, from); 4230 inode_unlock(inode); 4231 4232 if (ret > 0) 4233 ret = generic_write_sync(iocb, ret); 4234 return ret; 4235 } 4236 EXPORT_SYMBOL(generic_file_write_iter); 4237 4238 /** 4239 * filemap_release_folio() - Release fs-specific metadata on a folio. 4240 * @folio: The folio which the kernel is trying to free. 4241 * @gfp: Memory allocation flags (and I/O mode). 4242 * 4243 * The address_space is trying to release any data attached to a folio 4244 * (presumably at folio->private). 4245 * 4246 * This will also be called if the private_2 flag is set on a page, 4247 * indicating that the folio has other metadata associated with it. 4248 * 4249 * The @gfp argument specifies whether I/O may be performed to release 4250 * this page (__GFP_IO), and whether the call may block 4251 * (__GFP_RECLAIM & __GFP_FS). 4252 * 4253 * Return: %true if the release was successful, otherwise %false. 4254 */ 4255 bool filemap_release_folio(struct folio *folio, gfp_t gfp) 4256 { 4257 struct address_space * const mapping = folio->mapping; 4258 4259 BUG_ON(!folio_test_locked(folio)); 4260 if (!folio_needs_release(folio)) 4261 return true; 4262 if (folio_test_writeback(folio)) 4263 return false; 4264 4265 if (mapping && mapping->a_ops->release_folio) 4266 return mapping->a_ops->release_folio(folio, gfp); 4267 return try_to_free_buffers(folio); 4268 } 4269 EXPORT_SYMBOL(filemap_release_folio); 4270 4271 /** 4272 * filemap_invalidate_inode - Invalidate/forcibly write back a range of an inode's pagecache 4273 * @inode: The inode to flush 4274 * @flush: Set to write back rather than simply invalidate. 4275 * @start: First byte to in range. 4276 * @end: Last byte in range (inclusive), or LLONG_MAX for everything from start 4277 * onwards. 4278 * 4279 * Invalidate all the folios on an inode that contribute to the specified 4280 * range, possibly writing them back first. Whilst the operation is 4281 * undertaken, the invalidate lock is held to prevent new folios from being 4282 * installed. 4283 */ 4284 int filemap_invalidate_inode(struct inode *inode, bool flush, 4285 loff_t start, loff_t end) 4286 { 4287 struct address_space *mapping = inode->i_mapping; 4288 pgoff_t first = start >> PAGE_SHIFT; 4289 pgoff_t last = end >> PAGE_SHIFT; 4290 pgoff_t nr = end == LLONG_MAX ? ULONG_MAX : last - first + 1; 4291 4292 if (!mapping || !mapping->nrpages || end < start) 4293 goto out; 4294 4295 /* Prevent new folios from being added to the inode. */ 4296 filemap_invalidate_lock(mapping); 4297 4298 if (!mapping->nrpages) 4299 goto unlock; 4300 4301 unmap_mapping_pages(mapping, first, nr, false); 4302 4303 /* Write back the data if we're asked to. */ 4304 if (flush) { 4305 struct writeback_control wbc = { 4306 .sync_mode = WB_SYNC_ALL, 4307 .nr_to_write = LONG_MAX, 4308 .range_start = start, 4309 .range_end = end, 4310 }; 4311 4312 filemap_fdatawrite_wbc(mapping, &wbc); 4313 } 4314 4315 /* Wait for writeback to complete on all folios and discard. */ 4316 invalidate_inode_pages2_range(mapping, start / PAGE_SIZE, end / PAGE_SIZE); 4317 4318 unlock: 4319 filemap_invalidate_unlock(mapping); 4320 out: 4321 return filemap_check_errors(mapping); 4322 } 4323 EXPORT_SYMBOL_GPL(filemap_invalidate_inode); 4324 4325 #ifdef CONFIG_CACHESTAT_SYSCALL 4326 /** 4327 * filemap_cachestat() - compute the page cache statistics of a mapping 4328 * @mapping: The mapping to compute the statistics for. 4329 * @first_index: The starting page cache index. 4330 * @last_index: The final page index (inclusive). 4331 * @cs: the cachestat struct to write the result to. 4332 * 4333 * This will query the page cache statistics of a mapping in the 4334 * page range of [first_index, last_index] (inclusive). The statistics 4335 * queried include: number of dirty pages, number of pages marked for 4336 * writeback, and the number of (recently) evicted pages. 4337 */ 4338 static void filemap_cachestat(struct address_space *mapping, 4339 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs) 4340 { 4341 XA_STATE(xas, &mapping->i_pages, first_index); 4342 struct folio *folio; 4343 4344 /* Flush stats (and potentially sleep) outside the RCU read section. */ 4345 mem_cgroup_flush_stats_ratelimited(NULL); 4346 4347 rcu_read_lock(); 4348 xas_for_each(&xas, folio, last_index) { 4349 int order; 4350 unsigned long nr_pages; 4351 pgoff_t folio_first_index, folio_last_index; 4352 4353 /* 4354 * Don't deref the folio. It is not pinned, and might 4355 * get freed (and reused) underneath us. 4356 * 4357 * We *could* pin it, but that would be expensive for 4358 * what should be a fast and lightweight syscall. 4359 * 4360 * Instead, derive all information of interest from 4361 * the rcu-protected xarray. 4362 */ 4363 4364 if (xas_retry(&xas, folio)) 4365 continue; 4366 4367 order = xas_get_order(&xas); 4368 nr_pages = 1 << order; 4369 folio_first_index = round_down(xas.xa_index, 1 << order); 4370 folio_last_index = folio_first_index + nr_pages - 1; 4371 4372 /* Folios might straddle the range boundaries, only count covered pages */ 4373 if (folio_first_index < first_index) 4374 nr_pages -= first_index - folio_first_index; 4375 4376 if (folio_last_index > last_index) 4377 nr_pages -= folio_last_index - last_index; 4378 4379 if (xa_is_value(folio)) { 4380 /* page is evicted */ 4381 void *shadow = (void *)folio; 4382 bool workingset; /* not used */ 4383 4384 cs->nr_evicted += nr_pages; 4385 4386 #ifdef CONFIG_SWAP /* implies CONFIG_MMU */ 4387 if (shmem_mapping(mapping)) { 4388 /* shmem file - in swap cache */ 4389 swp_entry_t swp = radix_to_swp_entry(folio); 4390 4391 /* swapin error results in poisoned entry */ 4392 if (non_swap_entry(swp)) 4393 goto resched; 4394 4395 /* 4396 * Getting a swap entry from the shmem 4397 * inode means we beat 4398 * shmem_unuse(). rcu_read_lock() 4399 * ensures swapoff waits for us before 4400 * freeing the swapper space. However, 4401 * we can race with swapping and 4402 * invalidation, so there might not be 4403 * a shadow in the swapcache (yet). 4404 */ 4405 shadow = get_shadow_from_swap_cache(swp); 4406 if (!shadow) 4407 goto resched; 4408 } 4409 #endif 4410 if (workingset_test_recent(shadow, true, &workingset, false)) 4411 cs->nr_recently_evicted += nr_pages; 4412 4413 goto resched; 4414 } 4415 4416 /* page is in cache */ 4417 cs->nr_cache += nr_pages; 4418 4419 if (xas_get_mark(&xas, PAGECACHE_TAG_DIRTY)) 4420 cs->nr_dirty += nr_pages; 4421 4422 if (xas_get_mark(&xas, PAGECACHE_TAG_WRITEBACK)) 4423 cs->nr_writeback += nr_pages; 4424 4425 resched: 4426 if (need_resched()) { 4427 xas_pause(&xas); 4428 cond_resched_rcu(); 4429 } 4430 } 4431 rcu_read_unlock(); 4432 } 4433 4434 /* 4435 * See mincore: reveal pagecache information only for files 4436 * that the calling process has write access to, or could (if 4437 * tried) open for writing. 4438 */ 4439 static inline bool can_do_cachestat(struct file *f) 4440 { 4441 if (f->f_mode & FMODE_WRITE) 4442 return true; 4443 if (inode_owner_or_capable(file_mnt_idmap(f), file_inode(f))) 4444 return true; 4445 return file_permission(f, MAY_WRITE) == 0; 4446 } 4447 4448 /* 4449 * The cachestat(2) system call. 4450 * 4451 * cachestat() returns the page cache statistics of a file in the 4452 * bytes range specified by `off` and `len`: number of cached pages, 4453 * number of dirty pages, number of pages marked for writeback, 4454 * number of evicted pages, and number of recently evicted pages. 4455 * 4456 * An evicted page is a page that is previously in the page cache 4457 * but has been evicted since. A page is recently evicted if its last 4458 * eviction was recent enough that its reentry to the cache would 4459 * indicate that it is actively being used by the system, and that 4460 * there is memory pressure on the system. 4461 * 4462 * `off` and `len` must be non-negative integers. If `len` > 0, 4463 * the queried range is [`off`, `off` + `len`]. If `len` == 0, 4464 * we will query in the range from `off` to the end of the file. 4465 * 4466 * The `flags` argument is unused for now, but is included for future 4467 * extensibility. User should pass 0 (i.e no flag specified). 4468 * 4469 * Currently, hugetlbfs is not supported. 4470 * 4471 * Because the status of a page can change after cachestat() checks it 4472 * but before it returns to the application, the returned values may 4473 * contain stale information. 4474 * 4475 * return values: 4476 * zero - success 4477 * -EFAULT - cstat or cstat_range points to an illegal address 4478 * -EINVAL - invalid flags 4479 * -EBADF - invalid file descriptor 4480 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file 4481 */ 4482 SYSCALL_DEFINE4(cachestat, unsigned int, fd, 4483 struct cachestat_range __user *, cstat_range, 4484 struct cachestat __user *, cstat, unsigned int, flags) 4485 { 4486 CLASS(fd, f)(fd); 4487 struct address_space *mapping; 4488 struct cachestat_range csr; 4489 struct cachestat cs; 4490 pgoff_t first_index, last_index; 4491 4492 if (fd_empty(f)) 4493 return -EBADF; 4494 4495 if (copy_from_user(&csr, cstat_range, 4496 sizeof(struct cachestat_range))) 4497 return -EFAULT; 4498 4499 /* hugetlbfs is not supported */ 4500 if (is_file_hugepages(fd_file(f))) 4501 return -EOPNOTSUPP; 4502 4503 if (!can_do_cachestat(fd_file(f))) 4504 return -EPERM; 4505 4506 if (flags != 0) 4507 return -EINVAL; 4508 4509 first_index = csr.off >> PAGE_SHIFT; 4510 last_index = 4511 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT; 4512 memset(&cs, 0, sizeof(struct cachestat)); 4513 mapping = fd_file(f)->f_mapping; 4514 filemap_cachestat(mapping, first_index, last_index, &cs); 4515 4516 if (copy_to_user(cstat, &cs, sizeof(struct cachestat))) 4517 return -EFAULT; 4518 4519 return 0; 4520 } 4521 #endif /* CONFIG_CACHESTAT_SYSCALL */ 4522