xref: /linux/mm/dmapool.c (revision c717993dd76a1049093af5c262e751d901b8da10)
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   * DMA Pool allocator
4   *
5   * Copyright 2001 David Brownell
6   * Copyright 2007 Intel Corporation
7   *   Author: Matthew Wilcox <willy@linux.intel.com>
8   *
9   * This allocator returns small blocks of a given size which are DMA-able by
10   * the given device.  It uses the dma_alloc_coherent page allocator to get
11   * new pages, then splits them up into blocks of the required size.
12   * Many older drivers still have their own code to do this.
13   *
14   * The current design of this allocator is fairly simple.  The pool is
15   * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16   * allocated pages.  Each page in the page_list is split into blocks of at
17   * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
18   * list of free blocks within the page.  Used blocks aren't tracked, but we
19   * keep a count of how many are currently allocated from each page.
20   */
21  
22  #include <linux/device.h>
23  #include <linux/dma-mapping.h>
24  #include <linux/dmapool.h>
25  #include <linux/kernel.h>
26  #include <linux/list.h>
27  #include <linux/export.h>
28  #include <linux/mutex.h>
29  #include <linux/poison.h>
30  #include <linux/sched.h>
31  #include <linux/sched/mm.h>
32  #include <linux/slab.h>
33  #include <linux/stat.h>
34  #include <linux/spinlock.h>
35  #include <linux/string.h>
36  #include <linux/types.h>
37  #include <linux/wait.h>
38  
39  #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40  #define DMAPOOL_DEBUG 1
41  #endif
42  
43  struct dma_pool {		/* the pool */
44  	struct list_head page_list;
45  	spinlock_t lock;
46  	size_t size;
47  	struct device *dev;
48  	size_t allocation;
49  	size_t boundary;
50  	char name[32];
51  	struct list_head pools;
52  };
53  
54  struct dma_page {		/* cacheable header for 'allocation' bytes */
55  	struct list_head page_list;
56  	void *vaddr;
57  	dma_addr_t dma;
58  	unsigned int in_use;
59  	unsigned int offset;
60  };
61  
62  static DEFINE_MUTEX(pools_lock);
63  static DEFINE_MUTEX(pools_reg_lock);
64  
65  static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf)
66  {
67  	unsigned temp;
68  	unsigned size;
69  	char *next;
70  	struct dma_page *page;
71  	struct dma_pool *pool;
72  
73  	next = buf;
74  	size = PAGE_SIZE;
75  
76  	temp = scnprintf(next, size, "poolinfo - 0.1\n");
77  	size -= temp;
78  	next += temp;
79  
80  	mutex_lock(&pools_lock);
81  	list_for_each_entry(pool, &dev->dma_pools, pools) {
82  		unsigned pages = 0;
83  		unsigned blocks = 0;
84  
85  		spin_lock_irq(&pool->lock);
86  		list_for_each_entry(page, &pool->page_list, page_list) {
87  			pages++;
88  			blocks += page->in_use;
89  		}
90  		spin_unlock_irq(&pool->lock);
91  
92  		/* per-pool info, no real statistics yet */
93  		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
94  				 pool->name, blocks,
95  				 pages * (pool->allocation / pool->size),
96  				 pool->size, pages);
97  		size -= temp;
98  		next += temp;
99  	}
100  	mutex_unlock(&pools_lock);
101  
102  	return PAGE_SIZE - size;
103  }
104  
105  static DEVICE_ATTR_RO(pools);
106  
107  /**
108   * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
109   * @name: name of pool, for diagnostics
110   * @dev: device that will be doing the DMA
111   * @size: size of the blocks in this pool.
112   * @align: alignment requirement for blocks; must be a power of two
113   * @boundary: returned blocks won't cross this power of two boundary
114   * Context: not in_interrupt()
115   *
116   * Given one of these pools, dma_pool_alloc()
117   * may be used to allocate memory.  Such memory will all have "consistent"
118   * DMA mappings, accessible by the device and its driver without using
119   * cache flushing primitives.  The actual size of blocks allocated may be
120   * larger than requested because of alignment.
121   *
122   * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
123   * cross that size boundary.  This is useful for devices which have
124   * addressing restrictions on individual DMA transfers, such as not crossing
125   * boundaries of 4KBytes.
126   *
127   * Return: a dma allocation pool with the requested characteristics, or
128   * %NULL if one can't be created.
129   */
130  struct dma_pool *dma_pool_create(const char *name, struct device *dev,
131  				 size_t size, size_t align, size_t boundary)
132  {
133  	struct dma_pool *retval;
134  	size_t allocation;
135  	bool empty = false;
136  
137  	if (align == 0)
138  		align = 1;
139  	else if (align & (align - 1))
140  		return NULL;
141  
142  	if (size == 0)
143  		return NULL;
144  	else if (size < 4)
145  		size = 4;
146  
147  	size = ALIGN(size, align);
148  	allocation = max_t(size_t, size, PAGE_SIZE);
149  
150  	if (!boundary)
151  		boundary = allocation;
152  	else if ((boundary < size) || (boundary & (boundary - 1)))
153  		return NULL;
154  
155  	retval = kmalloc(sizeof(*retval), GFP_KERNEL);
156  	if (!retval)
157  		return retval;
158  
159  	strscpy(retval->name, name, sizeof(retval->name));
160  
161  	retval->dev = dev;
162  
163  	INIT_LIST_HEAD(&retval->page_list);
164  	spin_lock_init(&retval->lock);
165  	retval->size = size;
166  	retval->boundary = boundary;
167  	retval->allocation = allocation;
168  
169  	INIT_LIST_HEAD(&retval->pools);
170  
171  	/*
172  	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
173  	 * pools_reg_lock ensures that there is not a race between
174  	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
175  	 * when the first invocation of dma_pool_create() failed on
176  	 * device_create_file() and the second assumes that it has been done (I
177  	 * know it is a short window).
178  	 */
179  	mutex_lock(&pools_reg_lock);
180  	mutex_lock(&pools_lock);
181  	if (list_empty(&dev->dma_pools))
182  		empty = true;
183  	list_add(&retval->pools, &dev->dma_pools);
184  	mutex_unlock(&pools_lock);
185  	if (empty) {
186  		int err;
187  
188  		err = device_create_file(dev, &dev_attr_pools);
189  		if (err) {
190  			mutex_lock(&pools_lock);
191  			list_del(&retval->pools);
192  			mutex_unlock(&pools_lock);
193  			mutex_unlock(&pools_reg_lock);
194  			kfree(retval);
195  			return NULL;
196  		}
197  	}
198  	mutex_unlock(&pools_reg_lock);
199  	return retval;
200  }
201  EXPORT_SYMBOL(dma_pool_create);
202  
203  static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
204  {
205  	unsigned int offset = 0;
206  	unsigned int next_boundary = pool->boundary;
207  
208  	do {
209  		unsigned int next = offset + pool->size;
210  		if (unlikely((next + pool->size) >= next_boundary)) {
211  			next = next_boundary;
212  			next_boundary += pool->boundary;
213  		}
214  		*(int *)(page->vaddr + offset) = next;
215  		offset = next;
216  	} while (offset < pool->allocation);
217  }
218  
219  static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
220  {
221  	struct dma_page *page;
222  
223  	page = kmalloc(sizeof(*page), mem_flags);
224  	if (!page)
225  		return NULL;
226  	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
227  					 &page->dma, mem_flags);
228  	if (page->vaddr) {
229  #ifdef	DMAPOOL_DEBUG
230  		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
231  #endif
232  		pool_initialise_page(pool, page);
233  		page->in_use = 0;
234  		page->offset = 0;
235  	} else {
236  		kfree(page);
237  		page = NULL;
238  	}
239  	return page;
240  }
241  
242  static inline bool is_page_busy(struct dma_page *page)
243  {
244  	return page->in_use != 0;
245  }
246  
247  static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
248  {
249  	dma_addr_t dma = page->dma;
250  
251  #ifdef	DMAPOOL_DEBUG
252  	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
253  #endif
254  	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
255  	list_del(&page->page_list);
256  	kfree(page);
257  }
258  
259  /**
260   * dma_pool_destroy - destroys a pool of dma memory blocks.
261   * @pool: dma pool that will be destroyed
262   * Context: !in_interrupt()
263   *
264   * Caller guarantees that no more memory from the pool is in use,
265   * and that nothing will try to use the pool after this call.
266   */
267  void dma_pool_destroy(struct dma_pool *pool)
268  {
269  	struct dma_page *page, *tmp;
270  	bool empty = false;
271  
272  	if (unlikely(!pool))
273  		return;
274  
275  	mutex_lock(&pools_reg_lock);
276  	mutex_lock(&pools_lock);
277  	list_del(&pool->pools);
278  	if (pool->dev && list_empty(&pool->dev->dma_pools))
279  		empty = true;
280  	mutex_unlock(&pools_lock);
281  	if (empty)
282  		device_remove_file(pool->dev, &dev_attr_pools);
283  	mutex_unlock(&pools_reg_lock);
284  
285  	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
286  		if (is_page_busy(page)) {
287  			if (pool->dev)
288  				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
289  					pool->name, page->vaddr);
290  			else
291  				pr_err("%s %s, %p busy\n", __func__,
292  				       pool->name, page->vaddr);
293  			/* leak the still-in-use consistent memory */
294  			list_del(&page->page_list);
295  			kfree(page);
296  		} else
297  			pool_free_page(pool, page);
298  	}
299  
300  	kfree(pool);
301  }
302  EXPORT_SYMBOL(dma_pool_destroy);
303  
304  /**
305   * dma_pool_alloc - get a block of consistent memory
306   * @pool: dma pool that will produce the block
307   * @mem_flags: GFP_* bitmask
308   * @handle: pointer to dma address of block
309   *
310   * Return: the kernel virtual address of a currently unused block,
311   * and reports its dma address through the handle.
312   * If such a memory block can't be allocated, %NULL is returned.
313   */
314  void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
315  		     dma_addr_t *handle)
316  {
317  	unsigned long flags;
318  	struct dma_page *page;
319  	size_t offset;
320  	void *retval;
321  
322  	might_alloc(mem_flags);
323  
324  	spin_lock_irqsave(&pool->lock, flags);
325  	list_for_each_entry(page, &pool->page_list, page_list) {
326  		if (page->offset < pool->allocation)
327  			goto ready;
328  	}
329  
330  	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
331  	spin_unlock_irqrestore(&pool->lock, flags);
332  
333  	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
334  	if (!page)
335  		return NULL;
336  
337  	spin_lock_irqsave(&pool->lock, flags);
338  
339  	list_add(&page->page_list, &pool->page_list);
340   ready:
341  	page->in_use++;
342  	offset = page->offset;
343  	page->offset = *(int *)(page->vaddr + offset);
344  	retval = offset + page->vaddr;
345  	*handle = offset + page->dma;
346  #ifdef	DMAPOOL_DEBUG
347  	{
348  		int i;
349  		u8 *data = retval;
350  		/* page->offset is stored in first 4 bytes */
351  		for (i = sizeof(page->offset); i < pool->size; i++) {
352  			if (data[i] == POOL_POISON_FREED)
353  				continue;
354  			if (pool->dev)
355  				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
356  					__func__, pool->name, retval);
357  			else
358  				pr_err("%s %s, %p (corrupted)\n",
359  					__func__, pool->name, retval);
360  
361  			/*
362  			 * Dump the first 4 bytes even if they are not
363  			 * POOL_POISON_FREED
364  			 */
365  			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
366  					data, pool->size, 1);
367  			break;
368  		}
369  	}
370  	if (!(mem_flags & __GFP_ZERO))
371  		memset(retval, POOL_POISON_ALLOCATED, pool->size);
372  #endif
373  	spin_unlock_irqrestore(&pool->lock, flags);
374  
375  	if (want_init_on_alloc(mem_flags))
376  		memset(retval, 0, pool->size);
377  
378  	return retval;
379  }
380  EXPORT_SYMBOL(dma_pool_alloc);
381  
382  static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
383  {
384  	struct dma_page *page;
385  
386  	list_for_each_entry(page, &pool->page_list, page_list) {
387  		if (dma < page->dma)
388  			continue;
389  		if ((dma - page->dma) < pool->allocation)
390  			return page;
391  	}
392  	return NULL;
393  }
394  
395  /**
396   * dma_pool_free - put block back into dma pool
397   * @pool: the dma pool holding the block
398   * @vaddr: virtual address of block
399   * @dma: dma address of block
400   *
401   * Caller promises neither device nor driver will again touch this block
402   * unless it is first re-allocated.
403   */
404  void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
405  {
406  	struct dma_page *page;
407  	unsigned long flags;
408  	unsigned int offset;
409  
410  	spin_lock_irqsave(&pool->lock, flags);
411  	page = pool_find_page(pool, dma);
412  	if (!page) {
413  		spin_unlock_irqrestore(&pool->lock, flags);
414  		if (pool->dev)
415  			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
416  				__func__, pool->name, vaddr, &dma);
417  		else
418  			pr_err("%s %s, %p/%pad (bad dma)\n",
419  			       __func__, pool->name, vaddr, &dma);
420  		return;
421  	}
422  
423  	offset = vaddr - page->vaddr;
424  	if (want_init_on_free())
425  		memset(vaddr, 0, pool->size);
426  #ifdef	DMAPOOL_DEBUG
427  	if ((dma - page->dma) != offset) {
428  		spin_unlock_irqrestore(&pool->lock, flags);
429  		if (pool->dev)
430  			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
431  				__func__, pool->name, vaddr, &dma);
432  		else
433  			pr_err("%s %s, %p (bad vaddr)/%pad\n",
434  			       __func__, pool->name, vaddr, &dma);
435  		return;
436  	}
437  	{
438  		unsigned int chain = page->offset;
439  		while (chain < pool->allocation) {
440  			if (chain != offset) {
441  				chain = *(int *)(page->vaddr + chain);
442  				continue;
443  			}
444  			spin_unlock_irqrestore(&pool->lock, flags);
445  			if (pool->dev)
446  				dev_err(pool->dev, "%s %s, dma %pad already free\n",
447  					__func__, pool->name, &dma);
448  			else
449  				pr_err("%s %s, dma %pad already free\n",
450  				       __func__, pool->name, &dma);
451  			return;
452  		}
453  	}
454  	memset(vaddr, POOL_POISON_FREED, pool->size);
455  #endif
456  
457  	page->in_use--;
458  	*(int *)vaddr = page->offset;
459  	page->offset = offset;
460  	/*
461  	 * Resist a temptation to do
462  	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
463  	 * Better have a few empty pages hang around.
464  	 */
465  	spin_unlock_irqrestore(&pool->lock, flags);
466  }
467  EXPORT_SYMBOL(dma_pool_free);
468  
469  /*
470   * Managed DMA pool
471   */
472  static void dmam_pool_release(struct device *dev, void *res)
473  {
474  	struct dma_pool *pool = *(struct dma_pool **)res;
475  
476  	dma_pool_destroy(pool);
477  }
478  
479  static int dmam_pool_match(struct device *dev, void *res, void *match_data)
480  {
481  	return *(struct dma_pool **)res == match_data;
482  }
483  
484  /**
485   * dmam_pool_create - Managed dma_pool_create()
486   * @name: name of pool, for diagnostics
487   * @dev: device that will be doing the DMA
488   * @size: size of the blocks in this pool.
489   * @align: alignment requirement for blocks; must be a power of two
490   * @allocation: returned blocks won't cross this boundary (or zero)
491   *
492   * Managed dma_pool_create().  DMA pool created with this function is
493   * automatically destroyed on driver detach.
494   *
495   * Return: a managed dma allocation pool with the requested
496   * characteristics, or %NULL if one can't be created.
497   */
498  struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
499  				  size_t size, size_t align, size_t allocation)
500  {
501  	struct dma_pool **ptr, *pool;
502  
503  	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
504  	if (!ptr)
505  		return NULL;
506  
507  	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
508  	if (pool)
509  		devres_add(dev, ptr);
510  	else
511  		devres_free(ptr);
512  
513  	return pool;
514  }
515  EXPORT_SYMBOL(dmam_pool_create);
516  
517  /**
518   * dmam_pool_destroy - Managed dma_pool_destroy()
519   * @pool: dma pool that will be destroyed
520   *
521   * Managed dma_pool_destroy().
522   */
523  void dmam_pool_destroy(struct dma_pool *pool)
524  {
525  	struct device *dev = pool->dev;
526  
527  	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
528  }
529  EXPORT_SYMBOL(dmam_pool_destroy);
530