1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMA Pool allocator 4 * 5 * Copyright 2001 David Brownell 6 * Copyright 2007 Intel Corporation 7 * Author: Matthew Wilcox <willy@linux.intel.com> 8 * 9 * This allocator returns small blocks of a given size which are DMA-able by 10 * the given device. It uses the dma_alloc_coherent page allocator to get 11 * new pages, then splits them up into blocks of the required size. 12 * Many older drivers still have their own code to do this. 13 * 14 * The current design of this allocator is fairly simple. The pool is 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 16 * allocated pages. Each page in the page_list is split into blocks of at 17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 18 * list of free blocks across all pages. Used blocks aren't tracked, but we 19 * keep a count of how many are currently allocated from each page. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmapool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/export.h> 28 #include <linux/mutex.h> 29 #include <linux/poison.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/slab.h> 33 #include <linux/stat.h> 34 #include <linux/spinlock.h> 35 #include <linux/string.h> 36 #include <linux/types.h> 37 #include <linux/wait.h> 38 39 #ifdef CONFIG_SLUB_DEBUG_ON 40 #define DMAPOOL_DEBUG 1 41 #endif 42 43 struct dma_block { 44 struct dma_block *next_block; 45 dma_addr_t dma; 46 }; 47 48 struct dma_pool { /* the pool */ 49 struct list_head page_list; 50 spinlock_t lock; 51 struct dma_block *next_block; 52 size_t nr_blocks; 53 size_t nr_active; 54 size_t nr_pages; 55 struct device *dev; 56 unsigned int size; 57 unsigned int allocation; 58 unsigned int boundary; 59 char name[32]; 60 struct list_head pools; 61 }; 62 63 struct dma_page { /* cacheable header for 'allocation' bytes */ 64 struct list_head page_list; 65 void *vaddr; 66 dma_addr_t dma; 67 }; 68 69 static DEFINE_MUTEX(pools_lock); 70 static DEFINE_MUTEX(pools_reg_lock); 71 72 static ssize_t pools_show(struct device *dev, struct device_attribute *attr, char *buf) 73 { 74 struct dma_pool *pool; 75 unsigned size; 76 77 size = sysfs_emit(buf, "poolinfo - 0.1\n"); 78 79 mutex_lock(&pools_lock); 80 list_for_each_entry(pool, &dev->dma_pools, pools) { 81 /* per-pool info, no real statistics yet */ 82 size += sysfs_emit_at(buf, size, "%-16s %4zu %4zu %4u %2zu\n", 83 pool->name, pool->nr_active, 84 pool->nr_blocks, pool->size, 85 pool->nr_pages); 86 } 87 mutex_unlock(&pools_lock); 88 89 return size; 90 } 91 92 static DEVICE_ATTR_RO(pools); 93 94 #ifdef DMAPOOL_DEBUG 95 static void pool_check_block(struct dma_pool *pool, struct dma_block *block, 96 gfp_t mem_flags) 97 { 98 u8 *data = (void *)block; 99 int i; 100 101 for (i = sizeof(struct dma_block); i < pool->size; i++) { 102 if (data[i] == POOL_POISON_FREED) 103 continue; 104 dev_err(pool->dev, "%s %s, %p (corrupted)\n", __func__, 105 pool->name, block); 106 107 /* 108 * Dump the first 4 bytes even if they are not 109 * POOL_POISON_FREED 110 */ 111 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 112 data, pool->size, 1); 113 break; 114 } 115 116 if (!want_init_on_alloc(mem_flags)) 117 memset(block, POOL_POISON_ALLOCATED, pool->size); 118 } 119 120 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 121 { 122 struct dma_page *page; 123 124 list_for_each_entry(page, &pool->page_list, page_list) { 125 if (dma < page->dma) 126 continue; 127 if ((dma - page->dma) < pool->allocation) 128 return page; 129 } 130 return NULL; 131 } 132 133 static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 134 { 135 struct dma_block *block = pool->next_block; 136 struct dma_page *page; 137 138 page = pool_find_page(pool, dma); 139 if (!page) { 140 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n", 141 __func__, pool->name, vaddr, &dma); 142 return true; 143 } 144 145 while (block) { 146 if (block != vaddr) { 147 block = block->next_block; 148 continue; 149 } 150 dev_err(pool->dev, "%s %s, dma %pad already free\n", 151 __func__, pool->name, &dma); 152 return true; 153 } 154 155 memset(vaddr, POOL_POISON_FREED, pool->size); 156 return false; 157 } 158 159 static void pool_init_page(struct dma_pool *pool, struct dma_page *page) 160 { 161 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 162 } 163 #else 164 static void pool_check_block(struct dma_pool *pool, struct dma_block *block, 165 gfp_t mem_flags) 166 { 167 } 168 169 static bool pool_block_err(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 170 { 171 if (want_init_on_free()) 172 memset(vaddr, 0, pool->size); 173 return false; 174 } 175 176 static void pool_init_page(struct dma_pool *pool, struct dma_page *page) 177 { 178 } 179 #endif 180 181 static struct dma_block *pool_block_pop(struct dma_pool *pool) 182 { 183 struct dma_block *block = pool->next_block; 184 185 if (block) { 186 pool->next_block = block->next_block; 187 pool->nr_active++; 188 } 189 return block; 190 } 191 192 static void pool_block_push(struct dma_pool *pool, struct dma_block *block, 193 dma_addr_t dma) 194 { 195 block->dma = dma; 196 block->next_block = pool->next_block; 197 pool->next_block = block; 198 } 199 200 201 /** 202 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 203 * @name: name of pool, for diagnostics 204 * @dev: device that will be doing the DMA 205 * @size: size of the blocks in this pool. 206 * @align: alignment requirement for blocks; must be a power of two 207 * @boundary: returned blocks won't cross this power of two boundary 208 * Context: not in_interrupt() 209 * 210 * Given one of these pools, dma_pool_alloc() 211 * may be used to allocate memory. Such memory will all have "consistent" 212 * DMA mappings, accessible by the device and its driver without using 213 * cache flushing primitives. The actual size of blocks allocated may be 214 * larger than requested because of alignment. 215 * 216 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 217 * cross that size boundary. This is useful for devices which have 218 * addressing restrictions on individual DMA transfers, such as not crossing 219 * boundaries of 4KBytes. 220 * 221 * Return: a dma allocation pool with the requested characteristics, or 222 * %NULL if one can't be created. 223 */ 224 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 225 size_t size, size_t align, size_t boundary) 226 { 227 struct dma_pool *retval; 228 size_t allocation; 229 bool empty; 230 231 if (!dev) 232 return NULL; 233 234 if (align == 0) 235 align = 1; 236 else if (align & (align - 1)) 237 return NULL; 238 239 if (size == 0 || size > INT_MAX) 240 return NULL; 241 if (size < sizeof(struct dma_block)) 242 size = sizeof(struct dma_block); 243 244 size = ALIGN(size, align); 245 allocation = max_t(size_t, size, PAGE_SIZE); 246 247 if (!boundary) 248 boundary = allocation; 249 else if ((boundary < size) || (boundary & (boundary - 1))) 250 return NULL; 251 252 boundary = min(boundary, allocation); 253 254 retval = kzalloc(sizeof(*retval), GFP_KERNEL); 255 if (!retval) 256 return retval; 257 258 strscpy(retval->name, name, sizeof(retval->name)); 259 260 retval->dev = dev; 261 262 INIT_LIST_HEAD(&retval->page_list); 263 spin_lock_init(&retval->lock); 264 retval->size = size; 265 retval->boundary = boundary; 266 retval->allocation = allocation; 267 INIT_LIST_HEAD(&retval->pools); 268 269 /* 270 * pools_lock ensures that the ->dma_pools list does not get corrupted. 271 * pools_reg_lock ensures that there is not a race between 272 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 273 * when the first invocation of dma_pool_create() failed on 274 * device_create_file() and the second assumes that it has been done (I 275 * know it is a short window). 276 */ 277 mutex_lock(&pools_reg_lock); 278 mutex_lock(&pools_lock); 279 empty = list_empty(&dev->dma_pools); 280 list_add(&retval->pools, &dev->dma_pools); 281 mutex_unlock(&pools_lock); 282 if (empty) { 283 int err; 284 285 err = device_create_file(dev, &dev_attr_pools); 286 if (err) { 287 mutex_lock(&pools_lock); 288 list_del(&retval->pools); 289 mutex_unlock(&pools_lock); 290 mutex_unlock(&pools_reg_lock); 291 kfree(retval); 292 return NULL; 293 } 294 } 295 mutex_unlock(&pools_reg_lock); 296 return retval; 297 } 298 EXPORT_SYMBOL(dma_pool_create); 299 300 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 301 { 302 unsigned int next_boundary = pool->boundary, offset = 0; 303 struct dma_block *block, *first = NULL, *last = NULL; 304 305 pool_init_page(pool, page); 306 while (offset + pool->size <= pool->allocation) { 307 if (offset + pool->size > next_boundary) { 308 offset = next_boundary; 309 next_boundary += pool->boundary; 310 continue; 311 } 312 313 block = page->vaddr + offset; 314 block->dma = page->dma + offset; 315 block->next_block = NULL; 316 317 if (last) 318 last->next_block = block; 319 else 320 first = block; 321 last = block; 322 323 offset += pool->size; 324 pool->nr_blocks++; 325 } 326 327 last->next_block = pool->next_block; 328 pool->next_block = first; 329 330 list_add(&page->page_list, &pool->page_list); 331 pool->nr_pages++; 332 } 333 334 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 335 { 336 struct dma_page *page; 337 338 page = kmalloc(sizeof(*page), mem_flags); 339 if (!page) 340 return NULL; 341 342 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 343 &page->dma, mem_flags); 344 if (!page->vaddr) { 345 kfree(page); 346 return NULL; 347 } 348 349 return page; 350 } 351 352 /** 353 * dma_pool_destroy - destroys a pool of dma memory blocks. 354 * @pool: dma pool that will be destroyed 355 * Context: !in_interrupt() 356 * 357 * Caller guarantees that no more memory from the pool is in use, 358 * and that nothing will try to use the pool after this call. 359 */ 360 void dma_pool_destroy(struct dma_pool *pool) 361 { 362 struct dma_page *page, *tmp; 363 bool empty, busy = false; 364 365 if (unlikely(!pool)) 366 return; 367 368 mutex_lock(&pools_reg_lock); 369 mutex_lock(&pools_lock); 370 list_del(&pool->pools); 371 empty = list_empty(&pool->dev->dma_pools); 372 mutex_unlock(&pools_lock); 373 if (empty) 374 device_remove_file(pool->dev, &dev_attr_pools); 375 mutex_unlock(&pools_reg_lock); 376 377 if (pool->nr_active) { 378 dev_err(pool->dev, "%s %s busy\n", __func__, pool->name); 379 busy = true; 380 } 381 382 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { 383 if (!busy) 384 dma_free_coherent(pool->dev, pool->allocation, 385 page->vaddr, page->dma); 386 list_del(&page->page_list); 387 kfree(page); 388 } 389 390 kfree(pool); 391 } 392 EXPORT_SYMBOL(dma_pool_destroy); 393 394 /** 395 * dma_pool_alloc - get a block of consistent memory 396 * @pool: dma pool that will produce the block 397 * @mem_flags: GFP_* bitmask 398 * @handle: pointer to dma address of block 399 * 400 * Return: the kernel virtual address of a currently unused block, 401 * and reports its dma address through the handle. 402 * If such a memory block can't be allocated, %NULL is returned. 403 */ 404 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 405 dma_addr_t *handle) 406 { 407 struct dma_block *block; 408 struct dma_page *page; 409 unsigned long flags; 410 411 might_alloc(mem_flags); 412 413 spin_lock_irqsave(&pool->lock, flags); 414 block = pool_block_pop(pool); 415 if (!block) { 416 /* 417 * pool_alloc_page() might sleep, so temporarily drop 418 * &pool->lock 419 */ 420 spin_unlock_irqrestore(&pool->lock, flags); 421 422 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 423 if (!page) 424 return NULL; 425 426 spin_lock_irqsave(&pool->lock, flags); 427 pool_initialise_page(pool, page); 428 block = pool_block_pop(pool); 429 } 430 spin_unlock_irqrestore(&pool->lock, flags); 431 432 *handle = block->dma; 433 pool_check_block(pool, block, mem_flags); 434 if (want_init_on_alloc(mem_flags)) 435 memset(block, 0, pool->size); 436 437 return block; 438 } 439 EXPORT_SYMBOL(dma_pool_alloc); 440 441 /** 442 * dma_pool_free - put block back into dma pool 443 * @pool: the dma pool holding the block 444 * @vaddr: virtual address of block 445 * @dma: dma address of block 446 * 447 * Caller promises neither device nor driver will again touch this block 448 * unless it is first re-allocated. 449 */ 450 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 451 { 452 struct dma_block *block = vaddr; 453 unsigned long flags; 454 455 spin_lock_irqsave(&pool->lock, flags); 456 if (!pool_block_err(pool, vaddr, dma)) { 457 pool_block_push(pool, block, dma); 458 pool->nr_active--; 459 } 460 spin_unlock_irqrestore(&pool->lock, flags); 461 } 462 EXPORT_SYMBOL(dma_pool_free); 463 464 /* 465 * Managed DMA pool 466 */ 467 static void dmam_pool_release(struct device *dev, void *res) 468 { 469 struct dma_pool *pool = *(struct dma_pool **)res; 470 471 dma_pool_destroy(pool); 472 } 473 474 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 475 { 476 return *(struct dma_pool **)res == match_data; 477 } 478 479 /** 480 * dmam_pool_create - Managed dma_pool_create() 481 * @name: name of pool, for diagnostics 482 * @dev: device that will be doing the DMA 483 * @size: size of the blocks in this pool. 484 * @align: alignment requirement for blocks; must be a power of two 485 * @allocation: returned blocks won't cross this boundary (or zero) 486 * 487 * Managed dma_pool_create(). DMA pool created with this function is 488 * automatically destroyed on driver detach. 489 * 490 * Return: a managed dma allocation pool with the requested 491 * characteristics, or %NULL if one can't be created. 492 */ 493 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 494 size_t size, size_t align, size_t allocation) 495 { 496 struct dma_pool **ptr, *pool; 497 498 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 499 if (!ptr) 500 return NULL; 501 502 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 503 if (pool) 504 devres_add(dev, ptr); 505 else 506 devres_free(ptr); 507 508 return pool; 509 } 510 EXPORT_SYMBOL(dmam_pool_create); 511 512 /** 513 * dmam_pool_destroy - Managed dma_pool_destroy() 514 * @pool: dma pool that will be destroyed 515 * 516 * Managed dma_pool_destroy(). 517 */ 518 void dmam_pool_destroy(struct dma_pool *pool) 519 { 520 struct device *dev = pool->dev; 521 522 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 523 } 524 EXPORT_SYMBOL(dmam_pool_destroy); 525