xref: /linux/mm/dmapool.c (revision 987b741c52c7c6c68d46fbaeb95b8d1087f10b7f)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * DMA Pool allocator
4  *
5  * Copyright 2001 David Brownell
6  * Copyright 2007 Intel Corporation
7  *   Author: Matthew Wilcox <willy@linux.intel.com>
8  *
9  * This allocator returns small blocks of a given size which are DMA-able by
10  * the given device.  It uses the dma_alloc_coherent page allocator to get
11  * new pages, then splits them up into blocks of the required size.
12  * Many older drivers still have their own code to do this.
13  *
14  * The current design of this allocator is fairly simple.  The pool is
15  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
16  * allocated pages.  Each page in the page_list is split into blocks of at
17  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
18  * list of free blocks within the page.  Used blocks aren't tracked, but we
19  * keep a count of how many are currently allocated from each page.
20  */
21 
22 #include <linux/device.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/kernel.h>
26 #include <linux/list.h>
27 #include <linux/export.h>
28 #include <linux/mutex.h>
29 #include <linux/poison.h>
30 #include <linux/sched.h>
31 #include <linux/sched/mm.h>
32 #include <linux/slab.h>
33 #include <linux/stat.h>
34 #include <linux/spinlock.h>
35 #include <linux/string.h>
36 #include <linux/types.h>
37 #include <linux/wait.h>
38 
39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
40 #define DMAPOOL_DEBUG 1
41 #endif
42 
43 struct dma_pool {		/* the pool */
44 	struct list_head page_list;
45 	spinlock_t lock;
46 	size_t size;
47 	struct device *dev;
48 	size_t allocation;
49 	size_t boundary;
50 	char name[32];
51 	struct list_head pools;
52 };
53 
54 struct dma_page {		/* cacheable header for 'allocation' bytes */
55 	struct list_head page_list;
56 	void *vaddr;
57 	dma_addr_t dma;
58 	unsigned int in_use;
59 	unsigned int offset;
60 };
61 
62 static DEFINE_MUTEX(pools_lock);
63 static DEFINE_MUTEX(pools_reg_lock);
64 
65 static ssize_t
66 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
67 {
68 	unsigned temp;
69 	unsigned size;
70 	char *next;
71 	struct dma_page *page;
72 	struct dma_pool *pool;
73 
74 	next = buf;
75 	size = PAGE_SIZE;
76 
77 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
78 	size -= temp;
79 	next += temp;
80 
81 	mutex_lock(&pools_lock);
82 	list_for_each_entry(pool, &dev->dma_pools, pools) {
83 		unsigned pages = 0;
84 		unsigned blocks = 0;
85 
86 		spin_lock_irq(&pool->lock);
87 		list_for_each_entry(page, &pool->page_list, page_list) {
88 			pages++;
89 			blocks += page->in_use;
90 		}
91 		spin_unlock_irq(&pool->lock);
92 
93 		/* per-pool info, no real statistics yet */
94 		temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n",
95 				 pool->name, blocks,
96 				 pages * (pool->allocation / pool->size),
97 				 pool->size, pages);
98 		size -= temp;
99 		next += temp;
100 	}
101 	mutex_unlock(&pools_lock);
102 
103 	return PAGE_SIZE - size;
104 }
105 
106 static DEVICE_ATTR(pools, 0444, show_pools, NULL);
107 
108 /**
109  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
110  * @name: name of pool, for diagnostics
111  * @dev: device that will be doing the DMA
112  * @size: size of the blocks in this pool.
113  * @align: alignment requirement for blocks; must be a power of two
114  * @boundary: returned blocks won't cross this power of two boundary
115  * Context: not in_interrupt()
116  *
117  * Given one of these pools, dma_pool_alloc()
118  * may be used to allocate memory.  Such memory will all have "consistent"
119  * DMA mappings, accessible by the device and its driver without using
120  * cache flushing primitives.  The actual size of blocks allocated may be
121  * larger than requested because of alignment.
122  *
123  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
124  * cross that size boundary.  This is useful for devices which have
125  * addressing restrictions on individual DMA transfers, such as not crossing
126  * boundaries of 4KBytes.
127  *
128  * Return: a dma allocation pool with the requested characteristics, or
129  * %NULL if one can't be created.
130  */
131 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
132 				 size_t size, size_t align, size_t boundary)
133 {
134 	struct dma_pool *retval;
135 	size_t allocation;
136 	bool empty = false;
137 
138 	if (align == 0)
139 		align = 1;
140 	else if (align & (align - 1))
141 		return NULL;
142 
143 	if (size == 0)
144 		return NULL;
145 	else if (size < 4)
146 		size = 4;
147 
148 	size = ALIGN(size, align);
149 	allocation = max_t(size_t, size, PAGE_SIZE);
150 
151 	if (!boundary)
152 		boundary = allocation;
153 	else if ((boundary < size) || (boundary & (boundary - 1)))
154 		return NULL;
155 
156 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
157 	if (!retval)
158 		return retval;
159 
160 	strscpy(retval->name, name, sizeof(retval->name));
161 
162 	retval->dev = dev;
163 
164 	INIT_LIST_HEAD(&retval->page_list);
165 	spin_lock_init(&retval->lock);
166 	retval->size = size;
167 	retval->boundary = boundary;
168 	retval->allocation = allocation;
169 
170 	INIT_LIST_HEAD(&retval->pools);
171 
172 	/*
173 	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
174 	 * pools_reg_lock ensures that there is not a race between
175 	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
176 	 * when the first invocation of dma_pool_create() failed on
177 	 * device_create_file() and the second assumes that it has been done (I
178 	 * know it is a short window).
179 	 */
180 	mutex_lock(&pools_reg_lock);
181 	mutex_lock(&pools_lock);
182 	if (list_empty(&dev->dma_pools))
183 		empty = true;
184 	list_add(&retval->pools, &dev->dma_pools);
185 	mutex_unlock(&pools_lock);
186 	if (empty) {
187 		int err;
188 
189 		err = device_create_file(dev, &dev_attr_pools);
190 		if (err) {
191 			mutex_lock(&pools_lock);
192 			list_del(&retval->pools);
193 			mutex_unlock(&pools_lock);
194 			mutex_unlock(&pools_reg_lock);
195 			kfree(retval);
196 			return NULL;
197 		}
198 	}
199 	mutex_unlock(&pools_reg_lock);
200 	return retval;
201 }
202 EXPORT_SYMBOL(dma_pool_create);
203 
204 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
205 {
206 	unsigned int offset = 0;
207 	unsigned int next_boundary = pool->boundary;
208 
209 	do {
210 		unsigned int next = offset + pool->size;
211 		if (unlikely((next + pool->size) >= next_boundary)) {
212 			next = next_boundary;
213 			next_boundary += pool->boundary;
214 		}
215 		*(int *)(page->vaddr + offset) = next;
216 		offset = next;
217 	} while (offset < pool->allocation);
218 }
219 
220 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
221 {
222 	struct dma_page *page;
223 
224 	page = kmalloc(sizeof(*page), mem_flags);
225 	if (!page)
226 		return NULL;
227 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
228 					 &page->dma, mem_flags);
229 	if (page->vaddr) {
230 #ifdef	DMAPOOL_DEBUG
231 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
232 #endif
233 		pool_initialise_page(pool, page);
234 		page->in_use = 0;
235 		page->offset = 0;
236 	} else {
237 		kfree(page);
238 		page = NULL;
239 	}
240 	return page;
241 }
242 
243 static inline bool is_page_busy(struct dma_page *page)
244 {
245 	return page->in_use != 0;
246 }
247 
248 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
249 {
250 	dma_addr_t dma = page->dma;
251 
252 #ifdef	DMAPOOL_DEBUG
253 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
254 #endif
255 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
256 	list_del(&page->page_list);
257 	kfree(page);
258 }
259 
260 /**
261  * dma_pool_destroy - destroys a pool of dma memory blocks.
262  * @pool: dma pool that will be destroyed
263  * Context: !in_interrupt()
264  *
265  * Caller guarantees that no more memory from the pool is in use,
266  * and that nothing will try to use the pool after this call.
267  */
268 void dma_pool_destroy(struct dma_pool *pool)
269 {
270 	struct dma_page *page, *tmp;
271 	bool empty = false;
272 
273 	if (unlikely(!pool))
274 		return;
275 
276 	mutex_lock(&pools_reg_lock);
277 	mutex_lock(&pools_lock);
278 	list_del(&pool->pools);
279 	if (pool->dev && list_empty(&pool->dev->dma_pools))
280 		empty = true;
281 	mutex_unlock(&pools_lock);
282 	if (empty)
283 		device_remove_file(pool->dev, &dev_attr_pools);
284 	mutex_unlock(&pools_reg_lock);
285 
286 	list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) {
287 		if (is_page_busy(page)) {
288 			if (pool->dev)
289 				dev_err(pool->dev, "%s %s, %p busy\n", __func__,
290 					pool->name, page->vaddr);
291 			else
292 				pr_err("%s %s, %p busy\n", __func__,
293 				       pool->name, page->vaddr);
294 			/* leak the still-in-use consistent memory */
295 			list_del(&page->page_list);
296 			kfree(page);
297 		} else
298 			pool_free_page(pool, page);
299 	}
300 
301 	kfree(pool);
302 }
303 EXPORT_SYMBOL(dma_pool_destroy);
304 
305 /**
306  * dma_pool_alloc - get a block of consistent memory
307  * @pool: dma pool that will produce the block
308  * @mem_flags: GFP_* bitmask
309  * @handle: pointer to dma address of block
310  *
311  * Return: the kernel virtual address of a currently unused block,
312  * and reports its dma address through the handle.
313  * If such a memory block can't be allocated, %NULL is returned.
314  */
315 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
316 		     dma_addr_t *handle)
317 {
318 	unsigned long flags;
319 	struct dma_page *page;
320 	size_t offset;
321 	void *retval;
322 
323 	might_alloc(mem_flags);
324 
325 	spin_lock_irqsave(&pool->lock, flags);
326 	list_for_each_entry(page, &pool->page_list, page_list) {
327 		if (page->offset < pool->allocation)
328 			goto ready;
329 	}
330 
331 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
332 	spin_unlock_irqrestore(&pool->lock, flags);
333 
334 	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
335 	if (!page)
336 		return NULL;
337 
338 	spin_lock_irqsave(&pool->lock, flags);
339 
340 	list_add(&page->page_list, &pool->page_list);
341  ready:
342 	page->in_use++;
343 	offset = page->offset;
344 	page->offset = *(int *)(page->vaddr + offset);
345 	retval = offset + page->vaddr;
346 	*handle = offset + page->dma;
347 #ifdef	DMAPOOL_DEBUG
348 	{
349 		int i;
350 		u8 *data = retval;
351 		/* page->offset is stored in first 4 bytes */
352 		for (i = sizeof(page->offset); i < pool->size; i++) {
353 			if (data[i] == POOL_POISON_FREED)
354 				continue;
355 			if (pool->dev)
356 				dev_err(pool->dev, "%s %s, %p (corrupted)\n",
357 					__func__, pool->name, retval);
358 			else
359 				pr_err("%s %s, %p (corrupted)\n",
360 					__func__, pool->name, retval);
361 
362 			/*
363 			 * Dump the first 4 bytes even if they are not
364 			 * POOL_POISON_FREED
365 			 */
366 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
367 					data, pool->size, 1);
368 			break;
369 		}
370 	}
371 	if (!(mem_flags & __GFP_ZERO))
372 		memset(retval, POOL_POISON_ALLOCATED, pool->size);
373 #endif
374 	spin_unlock_irqrestore(&pool->lock, flags);
375 
376 	if (want_init_on_alloc(mem_flags))
377 		memset(retval, 0, pool->size);
378 
379 	return retval;
380 }
381 EXPORT_SYMBOL(dma_pool_alloc);
382 
383 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
384 {
385 	struct dma_page *page;
386 
387 	list_for_each_entry(page, &pool->page_list, page_list) {
388 		if (dma < page->dma)
389 			continue;
390 		if ((dma - page->dma) < pool->allocation)
391 			return page;
392 	}
393 	return NULL;
394 }
395 
396 /**
397  * dma_pool_free - put block back into dma pool
398  * @pool: the dma pool holding the block
399  * @vaddr: virtual address of block
400  * @dma: dma address of block
401  *
402  * Caller promises neither device nor driver will again touch this block
403  * unless it is first re-allocated.
404  */
405 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
406 {
407 	struct dma_page *page;
408 	unsigned long flags;
409 	unsigned int offset;
410 
411 	spin_lock_irqsave(&pool->lock, flags);
412 	page = pool_find_page(pool, dma);
413 	if (!page) {
414 		spin_unlock_irqrestore(&pool->lock, flags);
415 		if (pool->dev)
416 			dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n",
417 				__func__, pool->name, vaddr, &dma);
418 		else
419 			pr_err("%s %s, %p/%pad (bad dma)\n",
420 			       __func__, pool->name, vaddr, &dma);
421 		return;
422 	}
423 
424 	offset = vaddr - page->vaddr;
425 	if (want_init_on_free())
426 		memset(vaddr, 0, pool->size);
427 #ifdef	DMAPOOL_DEBUG
428 	if ((dma - page->dma) != offset) {
429 		spin_unlock_irqrestore(&pool->lock, flags);
430 		if (pool->dev)
431 			dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n",
432 				__func__, pool->name, vaddr, &dma);
433 		else
434 			pr_err("%s %s, %p (bad vaddr)/%pad\n",
435 			       __func__, pool->name, vaddr, &dma);
436 		return;
437 	}
438 	{
439 		unsigned int chain = page->offset;
440 		while (chain < pool->allocation) {
441 			if (chain != offset) {
442 				chain = *(int *)(page->vaddr + chain);
443 				continue;
444 			}
445 			spin_unlock_irqrestore(&pool->lock, flags);
446 			if (pool->dev)
447 				dev_err(pool->dev, "%s %s, dma %pad already free\n",
448 					__func__, pool->name, &dma);
449 			else
450 				pr_err("%s %s, dma %pad already free\n",
451 				       __func__, pool->name, &dma);
452 			return;
453 		}
454 	}
455 	memset(vaddr, POOL_POISON_FREED, pool->size);
456 #endif
457 
458 	page->in_use--;
459 	*(int *)vaddr = page->offset;
460 	page->offset = offset;
461 	/*
462 	 * Resist a temptation to do
463 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
464 	 * Better have a few empty pages hang around.
465 	 */
466 	spin_unlock_irqrestore(&pool->lock, flags);
467 }
468 EXPORT_SYMBOL(dma_pool_free);
469 
470 /*
471  * Managed DMA pool
472  */
473 static void dmam_pool_release(struct device *dev, void *res)
474 {
475 	struct dma_pool *pool = *(struct dma_pool **)res;
476 
477 	dma_pool_destroy(pool);
478 }
479 
480 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
481 {
482 	return *(struct dma_pool **)res == match_data;
483 }
484 
485 /**
486  * dmam_pool_create - Managed dma_pool_create()
487  * @name: name of pool, for diagnostics
488  * @dev: device that will be doing the DMA
489  * @size: size of the blocks in this pool.
490  * @align: alignment requirement for blocks; must be a power of two
491  * @allocation: returned blocks won't cross this boundary (or zero)
492  *
493  * Managed dma_pool_create().  DMA pool created with this function is
494  * automatically destroyed on driver detach.
495  *
496  * Return: a managed dma allocation pool with the requested
497  * characteristics, or %NULL if one can't be created.
498  */
499 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
500 				  size_t size, size_t align, size_t allocation)
501 {
502 	struct dma_pool **ptr, *pool;
503 
504 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
505 	if (!ptr)
506 		return NULL;
507 
508 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
509 	if (pool)
510 		devres_add(dev, ptr);
511 	else
512 		devres_free(ptr);
513 
514 	return pool;
515 }
516 EXPORT_SYMBOL(dmam_pool_create);
517 
518 /**
519  * dmam_pool_destroy - Managed dma_pool_destroy()
520  * @pool: dma pool that will be destroyed
521  *
522  * Managed dma_pool_destroy().
523  */
524 void dmam_pool_destroy(struct dma_pool *pool)
525 {
526 	struct device *dev = pool->dev;
527 
528 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
529 }
530 EXPORT_SYMBOL(dmam_pool_destroy);
531