1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * DMA Pool allocator 4 * 5 * Copyright 2001 David Brownell 6 * Copyright 2007 Intel Corporation 7 * Author: Matthew Wilcox <willy@linux.intel.com> 8 * 9 * This allocator returns small blocks of a given size which are DMA-able by 10 * the given device. It uses the dma_alloc_coherent page allocator to get 11 * new pages, then splits them up into blocks of the required size. 12 * Many older drivers still have their own code to do this. 13 * 14 * The current design of this allocator is fairly simple. The pool is 15 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 16 * allocated pages. Each page in the page_list is split into blocks of at 17 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 18 * list of free blocks within the page. Used blocks aren't tracked, but we 19 * keep a count of how many are currently allocated from each page. 20 */ 21 22 #include <linux/device.h> 23 #include <linux/dma-mapping.h> 24 #include <linux/dmapool.h> 25 #include <linux/kernel.h> 26 #include <linux/list.h> 27 #include <linux/export.h> 28 #include <linux/mutex.h> 29 #include <linux/poison.h> 30 #include <linux/sched.h> 31 #include <linux/sched/mm.h> 32 #include <linux/slab.h> 33 #include <linux/stat.h> 34 #include <linux/spinlock.h> 35 #include <linux/string.h> 36 #include <linux/types.h> 37 #include <linux/wait.h> 38 39 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 40 #define DMAPOOL_DEBUG 1 41 #endif 42 43 struct dma_pool { /* the pool */ 44 struct list_head page_list; 45 spinlock_t lock; 46 size_t size; 47 struct device *dev; 48 size_t allocation; 49 size_t boundary; 50 char name[32]; 51 struct list_head pools; 52 }; 53 54 struct dma_page { /* cacheable header for 'allocation' bytes */ 55 struct list_head page_list; 56 void *vaddr; 57 dma_addr_t dma; 58 unsigned int in_use; 59 unsigned int offset; 60 }; 61 62 static DEFINE_MUTEX(pools_lock); 63 static DEFINE_MUTEX(pools_reg_lock); 64 65 static ssize_t 66 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 67 { 68 unsigned temp; 69 unsigned size; 70 char *next; 71 struct dma_page *page; 72 struct dma_pool *pool; 73 74 next = buf; 75 size = PAGE_SIZE; 76 77 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 78 size -= temp; 79 next += temp; 80 81 mutex_lock(&pools_lock); 82 list_for_each_entry(pool, &dev->dma_pools, pools) { 83 unsigned pages = 0; 84 unsigned blocks = 0; 85 86 spin_lock_irq(&pool->lock); 87 list_for_each_entry(page, &pool->page_list, page_list) { 88 pages++; 89 blocks += page->in_use; 90 } 91 spin_unlock_irq(&pool->lock); 92 93 /* per-pool info, no real statistics yet */ 94 temp = scnprintf(next, size, "%-16s %4u %4zu %4zu %2u\n", 95 pool->name, blocks, 96 pages * (pool->allocation / pool->size), 97 pool->size, pages); 98 size -= temp; 99 next += temp; 100 } 101 mutex_unlock(&pools_lock); 102 103 return PAGE_SIZE - size; 104 } 105 106 static DEVICE_ATTR(pools, 0444, show_pools, NULL); 107 108 /** 109 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 110 * @name: name of pool, for diagnostics 111 * @dev: device that will be doing the DMA 112 * @size: size of the blocks in this pool. 113 * @align: alignment requirement for blocks; must be a power of two 114 * @boundary: returned blocks won't cross this power of two boundary 115 * Context: not in_interrupt() 116 * 117 * Given one of these pools, dma_pool_alloc() 118 * may be used to allocate memory. Such memory will all have "consistent" 119 * DMA mappings, accessible by the device and its driver without using 120 * cache flushing primitives. The actual size of blocks allocated may be 121 * larger than requested because of alignment. 122 * 123 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 124 * cross that size boundary. This is useful for devices which have 125 * addressing restrictions on individual DMA transfers, such as not crossing 126 * boundaries of 4KBytes. 127 * 128 * Return: a dma allocation pool with the requested characteristics, or 129 * %NULL if one can't be created. 130 */ 131 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 132 size_t size, size_t align, size_t boundary) 133 { 134 struct dma_pool *retval; 135 size_t allocation; 136 bool empty = false; 137 138 if (align == 0) 139 align = 1; 140 else if (align & (align - 1)) 141 return NULL; 142 143 if (size == 0) 144 return NULL; 145 else if (size < 4) 146 size = 4; 147 148 size = ALIGN(size, align); 149 allocation = max_t(size_t, size, PAGE_SIZE); 150 151 if (!boundary) 152 boundary = allocation; 153 else if ((boundary < size) || (boundary & (boundary - 1))) 154 return NULL; 155 156 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 157 if (!retval) 158 return retval; 159 160 strlcpy(retval->name, name, sizeof(retval->name)); 161 162 retval->dev = dev; 163 164 INIT_LIST_HEAD(&retval->page_list); 165 spin_lock_init(&retval->lock); 166 retval->size = size; 167 retval->boundary = boundary; 168 retval->allocation = allocation; 169 170 INIT_LIST_HEAD(&retval->pools); 171 172 /* 173 * pools_lock ensures that the ->dma_pools list does not get corrupted. 174 * pools_reg_lock ensures that there is not a race between 175 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create() 176 * when the first invocation of dma_pool_create() failed on 177 * device_create_file() and the second assumes that it has been done (I 178 * know it is a short window). 179 */ 180 mutex_lock(&pools_reg_lock); 181 mutex_lock(&pools_lock); 182 if (list_empty(&dev->dma_pools)) 183 empty = true; 184 list_add(&retval->pools, &dev->dma_pools); 185 mutex_unlock(&pools_lock); 186 if (empty) { 187 int err; 188 189 err = device_create_file(dev, &dev_attr_pools); 190 if (err) { 191 mutex_lock(&pools_lock); 192 list_del(&retval->pools); 193 mutex_unlock(&pools_lock); 194 mutex_unlock(&pools_reg_lock); 195 kfree(retval); 196 return NULL; 197 } 198 } 199 mutex_unlock(&pools_reg_lock); 200 return retval; 201 } 202 EXPORT_SYMBOL(dma_pool_create); 203 204 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 205 { 206 unsigned int offset = 0; 207 unsigned int next_boundary = pool->boundary; 208 209 do { 210 unsigned int next = offset + pool->size; 211 if (unlikely((next + pool->size) >= next_boundary)) { 212 next = next_boundary; 213 next_boundary += pool->boundary; 214 } 215 *(int *)(page->vaddr + offset) = next; 216 offset = next; 217 } while (offset < pool->allocation); 218 } 219 220 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 221 { 222 struct dma_page *page; 223 224 page = kmalloc(sizeof(*page), mem_flags); 225 if (!page) 226 return NULL; 227 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 228 &page->dma, mem_flags); 229 if (page->vaddr) { 230 #ifdef DMAPOOL_DEBUG 231 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 232 #endif 233 pool_initialise_page(pool, page); 234 page->in_use = 0; 235 page->offset = 0; 236 } else { 237 kfree(page); 238 page = NULL; 239 } 240 return page; 241 } 242 243 static inline bool is_page_busy(struct dma_page *page) 244 { 245 return page->in_use != 0; 246 } 247 248 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 249 { 250 dma_addr_t dma = page->dma; 251 252 #ifdef DMAPOOL_DEBUG 253 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 254 #endif 255 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 256 list_del(&page->page_list); 257 kfree(page); 258 } 259 260 /** 261 * dma_pool_destroy - destroys a pool of dma memory blocks. 262 * @pool: dma pool that will be destroyed 263 * Context: !in_interrupt() 264 * 265 * Caller guarantees that no more memory from the pool is in use, 266 * and that nothing will try to use the pool after this call. 267 */ 268 void dma_pool_destroy(struct dma_pool *pool) 269 { 270 struct dma_page *page, *tmp; 271 bool empty = false; 272 273 if (unlikely(!pool)) 274 return; 275 276 mutex_lock(&pools_reg_lock); 277 mutex_lock(&pools_lock); 278 list_del(&pool->pools); 279 if (pool->dev && list_empty(&pool->dev->dma_pools)) 280 empty = true; 281 mutex_unlock(&pools_lock); 282 if (empty) 283 device_remove_file(pool->dev, &dev_attr_pools); 284 mutex_unlock(&pools_reg_lock); 285 286 list_for_each_entry_safe(page, tmp, &pool->page_list, page_list) { 287 if (is_page_busy(page)) { 288 if (pool->dev) 289 dev_err(pool->dev, "%s %s, %p busy\n", __func__, 290 pool->name, page->vaddr); 291 else 292 pr_err("%s %s, %p busy\n", __func__, 293 pool->name, page->vaddr); 294 /* leak the still-in-use consistent memory */ 295 list_del(&page->page_list); 296 kfree(page); 297 } else 298 pool_free_page(pool, page); 299 } 300 301 kfree(pool); 302 } 303 EXPORT_SYMBOL(dma_pool_destroy); 304 305 /** 306 * dma_pool_alloc - get a block of consistent memory 307 * @pool: dma pool that will produce the block 308 * @mem_flags: GFP_* bitmask 309 * @handle: pointer to dma address of block 310 * 311 * Return: the kernel virtual address of a currently unused block, 312 * and reports its dma address through the handle. 313 * If such a memory block can't be allocated, %NULL is returned. 314 */ 315 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 316 dma_addr_t *handle) 317 { 318 unsigned long flags; 319 struct dma_page *page; 320 size_t offset; 321 void *retval; 322 323 might_alloc(mem_flags); 324 325 spin_lock_irqsave(&pool->lock, flags); 326 list_for_each_entry(page, &pool->page_list, page_list) { 327 if (page->offset < pool->allocation) 328 goto ready; 329 } 330 331 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ 332 spin_unlock_irqrestore(&pool->lock, flags); 333 334 page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO)); 335 if (!page) 336 return NULL; 337 338 spin_lock_irqsave(&pool->lock, flags); 339 340 list_add(&page->page_list, &pool->page_list); 341 ready: 342 page->in_use++; 343 offset = page->offset; 344 page->offset = *(int *)(page->vaddr + offset); 345 retval = offset + page->vaddr; 346 *handle = offset + page->dma; 347 #ifdef DMAPOOL_DEBUG 348 { 349 int i; 350 u8 *data = retval; 351 /* page->offset is stored in first 4 bytes */ 352 for (i = sizeof(page->offset); i < pool->size; i++) { 353 if (data[i] == POOL_POISON_FREED) 354 continue; 355 if (pool->dev) 356 dev_err(pool->dev, "%s %s, %p (corrupted)\n", 357 __func__, pool->name, retval); 358 else 359 pr_err("%s %s, %p (corrupted)\n", 360 __func__, pool->name, retval); 361 362 /* 363 * Dump the first 4 bytes even if they are not 364 * POOL_POISON_FREED 365 */ 366 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 367 data, pool->size, 1); 368 break; 369 } 370 } 371 if (!(mem_flags & __GFP_ZERO)) 372 memset(retval, POOL_POISON_ALLOCATED, pool->size); 373 #endif 374 spin_unlock_irqrestore(&pool->lock, flags); 375 376 if (want_init_on_alloc(mem_flags)) 377 memset(retval, 0, pool->size); 378 379 return retval; 380 } 381 EXPORT_SYMBOL(dma_pool_alloc); 382 383 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 384 { 385 struct dma_page *page; 386 387 list_for_each_entry(page, &pool->page_list, page_list) { 388 if (dma < page->dma) 389 continue; 390 if ((dma - page->dma) < pool->allocation) 391 return page; 392 } 393 return NULL; 394 } 395 396 /** 397 * dma_pool_free - put block back into dma pool 398 * @pool: the dma pool holding the block 399 * @vaddr: virtual address of block 400 * @dma: dma address of block 401 * 402 * Caller promises neither device nor driver will again touch this block 403 * unless it is first re-allocated. 404 */ 405 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 406 { 407 struct dma_page *page; 408 unsigned long flags; 409 unsigned int offset; 410 411 spin_lock_irqsave(&pool->lock, flags); 412 page = pool_find_page(pool, dma); 413 if (!page) { 414 spin_unlock_irqrestore(&pool->lock, flags); 415 if (pool->dev) 416 dev_err(pool->dev, "%s %s, %p/%pad (bad dma)\n", 417 __func__, pool->name, vaddr, &dma); 418 else 419 pr_err("%s %s, %p/%pad (bad dma)\n", 420 __func__, pool->name, vaddr, &dma); 421 return; 422 } 423 424 offset = vaddr - page->vaddr; 425 if (want_init_on_free()) 426 memset(vaddr, 0, pool->size); 427 #ifdef DMAPOOL_DEBUG 428 if ((dma - page->dma) != offset) { 429 spin_unlock_irqrestore(&pool->lock, flags); 430 if (pool->dev) 431 dev_err(pool->dev, "%s %s, %p (bad vaddr)/%pad\n", 432 __func__, pool->name, vaddr, &dma); 433 else 434 pr_err("%s %s, %p (bad vaddr)/%pad\n", 435 __func__, pool->name, vaddr, &dma); 436 return; 437 } 438 { 439 unsigned int chain = page->offset; 440 while (chain < pool->allocation) { 441 if (chain != offset) { 442 chain = *(int *)(page->vaddr + chain); 443 continue; 444 } 445 spin_unlock_irqrestore(&pool->lock, flags); 446 if (pool->dev) 447 dev_err(pool->dev, "%s %s, dma %pad already free\n", 448 __func__, pool->name, &dma); 449 else 450 pr_err("%s %s, dma %pad already free\n", 451 __func__, pool->name, &dma); 452 return; 453 } 454 } 455 memset(vaddr, POOL_POISON_FREED, pool->size); 456 #endif 457 458 page->in_use--; 459 *(int *)vaddr = page->offset; 460 page->offset = offset; 461 /* 462 * Resist a temptation to do 463 * if (!is_page_busy(page)) pool_free_page(pool, page); 464 * Better have a few empty pages hang around. 465 */ 466 spin_unlock_irqrestore(&pool->lock, flags); 467 } 468 EXPORT_SYMBOL(dma_pool_free); 469 470 /* 471 * Managed DMA pool 472 */ 473 static void dmam_pool_release(struct device *dev, void *res) 474 { 475 struct dma_pool *pool = *(struct dma_pool **)res; 476 477 dma_pool_destroy(pool); 478 } 479 480 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 481 { 482 return *(struct dma_pool **)res == match_data; 483 } 484 485 /** 486 * dmam_pool_create - Managed dma_pool_create() 487 * @name: name of pool, for diagnostics 488 * @dev: device that will be doing the DMA 489 * @size: size of the blocks in this pool. 490 * @align: alignment requirement for blocks; must be a power of two 491 * @allocation: returned blocks won't cross this boundary (or zero) 492 * 493 * Managed dma_pool_create(). DMA pool created with this function is 494 * automatically destroyed on driver detach. 495 * 496 * Return: a managed dma allocation pool with the requested 497 * characteristics, or %NULL if one can't be created. 498 */ 499 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 500 size_t size, size_t align, size_t allocation) 501 { 502 struct dma_pool **ptr, *pool; 503 504 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 505 if (!ptr) 506 return NULL; 507 508 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 509 if (pool) 510 devres_add(dev, ptr); 511 else 512 devres_free(ptr); 513 514 return pool; 515 } 516 EXPORT_SYMBOL(dmam_pool_create); 517 518 /** 519 * dmam_pool_destroy - Managed dma_pool_destroy() 520 * @pool: dma pool that will be destroyed 521 * 522 * Managed dma_pool_destroy(). 523 */ 524 void dmam_pool_destroy(struct dma_pool *pool) 525 { 526 struct device *dev = pool->dev; 527 528 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 529 } 530 EXPORT_SYMBOL(dmam_pool_destroy); 531