xref: /linux/mm/dmapool.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/module.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/spinlock.h>
36 #include <linux/string.h>
37 #include <linux/types.h>
38 #include <linux/wait.h>
39 
40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
41 #define DMAPOOL_DEBUG 1
42 #endif
43 
44 struct dma_pool {		/* the pool */
45 	struct list_head page_list;
46 	spinlock_t lock;
47 	size_t size;
48 	struct device *dev;
49 	size_t allocation;
50 	size_t boundary;
51 	char name[32];
52 	wait_queue_head_t waitq;
53 	struct list_head pools;
54 };
55 
56 struct dma_page {		/* cacheable header for 'allocation' bytes */
57 	struct list_head page_list;
58 	void *vaddr;
59 	dma_addr_t dma;
60 	unsigned int in_use;
61 	unsigned int offset;
62 };
63 
64 #define	POOL_TIMEOUT_JIFFIES	((100 /* msec */ * HZ) / 1000)
65 
66 static DEFINE_MUTEX(pools_lock);
67 
68 static ssize_t
69 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
70 {
71 	unsigned temp;
72 	unsigned size;
73 	char *next;
74 	struct dma_page *page;
75 	struct dma_pool *pool;
76 
77 	next = buf;
78 	size = PAGE_SIZE;
79 
80 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
81 	size -= temp;
82 	next += temp;
83 
84 	mutex_lock(&pools_lock);
85 	list_for_each_entry(pool, &dev->dma_pools, pools) {
86 		unsigned pages = 0;
87 		unsigned blocks = 0;
88 
89 		spin_lock_irq(&pool->lock);
90 		list_for_each_entry(page, &pool->page_list, page_list) {
91 			pages++;
92 			blocks += page->in_use;
93 		}
94 		spin_unlock_irq(&pool->lock);
95 
96 		/* per-pool info, no real statistics yet */
97 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
98 				 pool->name, blocks,
99 				 pages * (pool->allocation / pool->size),
100 				 pool->size, pages);
101 		size -= temp;
102 		next += temp;
103 	}
104 	mutex_unlock(&pools_lock);
105 
106 	return PAGE_SIZE - size;
107 }
108 
109 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
110 
111 /**
112  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
113  * @name: name of pool, for diagnostics
114  * @dev: device that will be doing the DMA
115  * @size: size of the blocks in this pool.
116  * @align: alignment requirement for blocks; must be a power of two
117  * @boundary: returned blocks won't cross this power of two boundary
118  * Context: !in_interrupt()
119  *
120  * Returns a dma allocation pool with the requested characteristics, or
121  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
122  * may be used to allocate memory.  Such memory will all have "consistent"
123  * DMA mappings, accessible by the device and its driver without using
124  * cache flushing primitives.  The actual size of blocks allocated may be
125  * larger than requested because of alignment.
126  *
127  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
128  * cross that size boundary.  This is useful for devices which have
129  * addressing restrictions on individual DMA transfers, such as not crossing
130  * boundaries of 4KBytes.
131  */
132 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
133 				 size_t size, size_t align, size_t boundary)
134 {
135 	struct dma_pool *retval;
136 	size_t allocation;
137 
138 	if (align == 0) {
139 		align = 1;
140 	} else if (align & (align - 1)) {
141 		return NULL;
142 	}
143 
144 	if (size == 0) {
145 		return NULL;
146 	} else if (size < 4) {
147 		size = 4;
148 	}
149 
150 	if ((size % align) != 0)
151 		size = ALIGN(size, align);
152 
153 	allocation = max_t(size_t, size, PAGE_SIZE);
154 
155 	if (!boundary) {
156 		boundary = allocation;
157 	} else if ((boundary < size) || (boundary & (boundary - 1))) {
158 		return NULL;
159 	}
160 
161 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
162 	if (!retval)
163 		return retval;
164 
165 	strlcpy(retval->name, name, sizeof(retval->name));
166 
167 	retval->dev = dev;
168 
169 	INIT_LIST_HEAD(&retval->page_list);
170 	spin_lock_init(&retval->lock);
171 	retval->size = size;
172 	retval->boundary = boundary;
173 	retval->allocation = allocation;
174 	init_waitqueue_head(&retval->waitq);
175 
176 	if (dev) {
177 		int ret;
178 
179 		mutex_lock(&pools_lock);
180 		if (list_empty(&dev->dma_pools))
181 			ret = device_create_file(dev, &dev_attr_pools);
182 		else
183 			ret = 0;
184 		/* note:  not currently insisting "name" be unique */
185 		if (!ret)
186 			list_add(&retval->pools, &dev->dma_pools);
187 		else {
188 			kfree(retval);
189 			retval = NULL;
190 		}
191 		mutex_unlock(&pools_lock);
192 	} else
193 		INIT_LIST_HEAD(&retval->pools);
194 
195 	return retval;
196 }
197 EXPORT_SYMBOL(dma_pool_create);
198 
199 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
200 {
201 	unsigned int offset = 0;
202 	unsigned int next_boundary = pool->boundary;
203 
204 	do {
205 		unsigned int next = offset + pool->size;
206 		if (unlikely((next + pool->size) >= next_boundary)) {
207 			next = next_boundary;
208 			next_boundary += pool->boundary;
209 		}
210 		*(int *)(page->vaddr + offset) = next;
211 		offset = next;
212 	} while (offset < pool->allocation);
213 }
214 
215 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
216 {
217 	struct dma_page *page;
218 
219 	page = kmalloc(sizeof(*page), mem_flags);
220 	if (!page)
221 		return NULL;
222 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
223 					 &page->dma, mem_flags);
224 	if (page->vaddr) {
225 #ifdef	DMAPOOL_DEBUG
226 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
227 #endif
228 		pool_initialise_page(pool, page);
229 		list_add(&page->page_list, &pool->page_list);
230 		page->in_use = 0;
231 		page->offset = 0;
232 	} else {
233 		kfree(page);
234 		page = NULL;
235 	}
236 	return page;
237 }
238 
239 static inline int is_page_busy(struct dma_page *page)
240 {
241 	return page->in_use != 0;
242 }
243 
244 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
245 {
246 	dma_addr_t dma = page->dma;
247 
248 #ifdef	DMAPOOL_DEBUG
249 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
250 #endif
251 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
252 	list_del(&page->page_list);
253 	kfree(page);
254 }
255 
256 /**
257  * dma_pool_destroy - destroys a pool of dma memory blocks.
258  * @pool: dma pool that will be destroyed
259  * Context: !in_interrupt()
260  *
261  * Caller guarantees that no more memory from the pool is in use,
262  * and that nothing will try to use the pool after this call.
263  */
264 void dma_pool_destroy(struct dma_pool *pool)
265 {
266 	mutex_lock(&pools_lock);
267 	list_del(&pool->pools);
268 	if (pool->dev && list_empty(&pool->dev->dma_pools))
269 		device_remove_file(pool->dev, &dev_attr_pools);
270 	mutex_unlock(&pools_lock);
271 
272 	while (!list_empty(&pool->page_list)) {
273 		struct dma_page *page;
274 		page = list_entry(pool->page_list.next,
275 				  struct dma_page, page_list);
276 		if (is_page_busy(page)) {
277 			if (pool->dev)
278 				dev_err(pool->dev,
279 					"dma_pool_destroy %s, %p busy\n",
280 					pool->name, page->vaddr);
281 			else
282 				printk(KERN_ERR
283 				       "dma_pool_destroy %s, %p busy\n",
284 				       pool->name, page->vaddr);
285 			/* leak the still-in-use consistent memory */
286 			list_del(&page->page_list);
287 			kfree(page);
288 		} else
289 			pool_free_page(pool, page);
290 	}
291 
292 	kfree(pool);
293 }
294 EXPORT_SYMBOL(dma_pool_destroy);
295 
296 /**
297  * dma_pool_alloc - get a block of consistent memory
298  * @pool: dma pool that will produce the block
299  * @mem_flags: GFP_* bitmask
300  * @handle: pointer to dma address of block
301  *
302  * This returns the kernel virtual address of a currently unused block,
303  * and reports its dma address through the handle.
304  * If such a memory block can't be allocated, %NULL is returned.
305  */
306 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
307 		     dma_addr_t *handle)
308 {
309 	unsigned long flags;
310 	struct dma_page *page;
311 	size_t offset;
312 	void *retval;
313 
314 	might_sleep_if(mem_flags & __GFP_WAIT);
315 
316 	spin_lock_irqsave(&pool->lock, flags);
317  restart:
318 	list_for_each_entry(page, &pool->page_list, page_list) {
319 		if (page->offset < pool->allocation)
320 			goto ready;
321 	}
322 	page = pool_alloc_page(pool, GFP_ATOMIC);
323 	if (!page) {
324 		if (mem_flags & __GFP_WAIT) {
325 			DECLARE_WAITQUEUE(wait, current);
326 
327 			__set_current_state(TASK_UNINTERRUPTIBLE);
328 			__add_wait_queue(&pool->waitq, &wait);
329 			spin_unlock_irqrestore(&pool->lock, flags);
330 
331 			schedule_timeout(POOL_TIMEOUT_JIFFIES);
332 
333 			spin_lock_irqsave(&pool->lock, flags);
334 			__remove_wait_queue(&pool->waitq, &wait);
335 			goto restart;
336 		}
337 		retval = NULL;
338 		goto done;
339 	}
340 
341  ready:
342 	page->in_use++;
343 	offset = page->offset;
344 	page->offset = *(int *)(page->vaddr + offset);
345 	retval = offset + page->vaddr;
346 	*handle = offset + page->dma;
347 #ifdef	DMAPOOL_DEBUG
348 	memset(retval, POOL_POISON_ALLOCATED, pool->size);
349 #endif
350  done:
351 	spin_unlock_irqrestore(&pool->lock, flags);
352 	return retval;
353 }
354 EXPORT_SYMBOL(dma_pool_alloc);
355 
356 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
357 {
358 	struct dma_page *page;
359 
360 	list_for_each_entry(page, &pool->page_list, page_list) {
361 		if (dma < page->dma)
362 			continue;
363 		if (dma < (page->dma + pool->allocation))
364 			return page;
365 	}
366 	return NULL;
367 }
368 
369 /**
370  * dma_pool_free - put block back into dma pool
371  * @pool: the dma pool holding the block
372  * @vaddr: virtual address of block
373  * @dma: dma address of block
374  *
375  * Caller promises neither device nor driver will again touch this block
376  * unless it is first re-allocated.
377  */
378 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
379 {
380 	struct dma_page *page;
381 	unsigned long flags;
382 	unsigned int offset;
383 
384 	spin_lock_irqsave(&pool->lock, flags);
385 	page = pool_find_page(pool, dma);
386 	if (!page) {
387 		spin_unlock_irqrestore(&pool->lock, flags);
388 		if (pool->dev)
389 			dev_err(pool->dev,
390 				"dma_pool_free %s, %p/%lx (bad dma)\n",
391 				pool->name, vaddr, (unsigned long)dma);
392 		else
393 			printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n",
394 			       pool->name, vaddr, (unsigned long)dma);
395 		return;
396 	}
397 
398 	offset = vaddr - page->vaddr;
399 #ifdef	DMAPOOL_DEBUG
400 	if ((dma - page->dma) != offset) {
401 		spin_unlock_irqrestore(&pool->lock, flags);
402 		if (pool->dev)
403 			dev_err(pool->dev,
404 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
405 				pool->name, vaddr, (unsigned long long)dma);
406 		else
407 			printk(KERN_ERR
408 			       "dma_pool_free %s, %p (bad vaddr)/%Lx\n",
409 			       pool->name, vaddr, (unsigned long long)dma);
410 		return;
411 	}
412 	{
413 		unsigned int chain = page->offset;
414 		while (chain < pool->allocation) {
415 			if (chain != offset) {
416 				chain = *(int *)(page->vaddr + chain);
417 				continue;
418 			}
419 			spin_unlock_irqrestore(&pool->lock, flags);
420 			if (pool->dev)
421 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx "
422 					"already free\n", pool->name,
423 					(unsigned long long)dma);
424 			else
425 				printk(KERN_ERR "dma_pool_free %s, dma %Lx "
426 					"already free\n", pool->name,
427 					(unsigned long long)dma);
428 			return;
429 		}
430 	}
431 	memset(vaddr, POOL_POISON_FREED, pool->size);
432 #endif
433 
434 	page->in_use--;
435 	*(int *)vaddr = page->offset;
436 	page->offset = offset;
437 	if (waitqueue_active(&pool->waitq))
438 		wake_up_locked(&pool->waitq);
439 	/*
440 	 * Resist a temptation to do
441 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
442 	 * Better have a few empty pages hang around.
443 	 */
444 	spin_unlock_irqrestore(&pool->lock, flags);
445 }
446 EXPORT_SYMBOL(dma_pool_free);
447 
448 /*
449  * Managed DMA pool
450  */
451 static void dmam_pool_release(struct device *dev, void *res)
452 {
453 	struct dma_pool *pool = *(struct dma_pool **)res;
454 
455 	dma_pool_destroy(pool);
456 }
457 
458 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
459 {
460 	return *(struct dma_pool **)res == match_data;
461 }
462 
463 /**
464  * dmam_pool_create - Managed dma_pool_create()
465  * @name: name of pool, for diagnostics
466  * @dev: device that will be doing the DMA
467  * @size: size of the blocks in this pool.
468  * @align: alignment requirement for blocks; must be a power of two
469  * @allocation: returned blocks won't cross this boundary (or zero)
470  *
471  * Managed dma_pool_create().  DMA pool created with this function is
472  * automatically destroyed on driver detach.
473  */
474 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
475 				  size_t size, size_t align, size_t allocation)
476 {
477 	struct dma_pool **ptr, *pool;
478 
479 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
480 	if (!ptr)
481 		return NULL;
482 
483 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
484 	if (pool)
485 		devres_add(dev, ptr);
486 	else
487 		devres_free(ptr);
488 
489 	return pool;
490 }
491 EXPORT_SYMBOL(dmam_pool_create);
492 
493 /**
494  * dmam_pool_destroy - Managed dma_pool_destroy()
495  * @pool: dma pool that will be destroyed
496  *
497  * Managed dma_pool_destroy().
498  */
499 void dmam_pool_destroy(struct dma_pool *pool)
500 {
501 	struct device *dev = pool->dev;
502 
503 	WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool));
504 	dma_pool_destroy(pool);
505 }
506 EXPORT_SYMBOL(dmam_pool_destroy);
507