1 /* 2 * DMA Pool allocator 3 * 4 * Copyright 2001 David Brownell 5 * Copyright 2007 Intel Corporation 6 * Author: Matthew Wilcox <willy@linux.intel.com> 7 * 8 * This software may be redistributed and/or modified under the terms of 9 * the GNU General Public License ("GPL") version 2 as published by the 10 * Free Software Foundation. 11 * 12 * This allocator returns small blocks of a given size which are DMA-able by 13 * the given device. It uses the dma_alloc_coherent page allocator to get 14 * new pages, then splits them up into blocks of the required size. 15 * Many older drivers still have their own code to do this. 16 * 17 * The current design of this allocator is fairly simple. The pool is 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 19 * allocated pages. Each page in the page_list is split into blocks of at 20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 21 * list of free blocks within the page. Used blocks aren't tracked, but we 22 * keep a count of how many are currently allocated from each page. 23 */ 24 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmapool.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/module.h> 31 #include <linux/mutex.h> 32 #include <linux/poison.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/spinlock.h> 36 #include <linux/string.h> 37 #include <linux/types.h> 38 #include <linux/wait.h> 39 40 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 41 #define DMAPOOL_DEBUG 1 42 #endif 43 44 struct dma_pool { /* the pool */ 45 struct list_head page_list; 46 spinlock_t lock; 47 size_t size; 48 struct device *dev; 49 size_t allocation; 50 size_t boundary; 51 char name[32]; 52 wait_queue_head_t waitq; 53 struct list_head pools; 54 }; 55 56 struct dma_page { /* cacheable header for 'allocation' bytes */ 57 struct list_head page_list; 58 void *vaddr; 59 dma_addr_t dma; 60 unsigned int in_use; 61 unsigned int offset; 62 }; 63 64 #define POOL_TIMEOUT_JIFFIES ((100 /* msec */ * HZ) / 1000) 65 66 static DEFINE_MUTEX(pools_lock); 67 68 static ssize_t 69 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 70 { 71 unsigned temp; 72 unsigned size; 73 char *next; 74 struct dma_page *page; 75 struct dma_pool *pool; 76 77 next = buf; 78 size = PAGE_SIZE; 79 80 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 81 size -= temp; 82 next += temp; 83 84 mutex_lock(&pools_lock); 85 list_for_each_entry(pool, &dev->dma_pools, pools) { 86 unsigned pages = 0; 87 unsigned blocks = 0; 88 89 spin_lock_irq(&pool->lock); 90 list_for_each_entry(page, &pool->page_list, page_list) { 91 pages++; 92 blocks += page->in_use; 93 } 94 spin_unlock_irq(&pool->lock); 95 96 /* per-pool info, no real statistics yet */ 97 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", 98 pool->name, blocks, 99 pages * (pool->allocation / pool->size), 100 pool->size, pages); 101 size -= temp; 102 next += temp; 103 } 104 mutex_unlock(&pools_lock); 105 106 return PAGE_SIZE - size; 107 } 108 109 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); 110 111 /** 112 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 113 * @name: name of pool, for diagnostics 114 * @dev: device that will be doing the DMA 115 * @size: size of the blocks in this pool. 116 * @align: alignment requirement for blocks; must be a power of two 117 * @boundary: returned blocks won't cross this power of two boundary 118 * Context: !in_interrupt() 119 * 120 * Returns a dma allocation pool with the requested characteristics, or 121 * null if one can't be created. Given one of these pools, dma_pool_alloc() 122 * may be used to allocate memory. Such memory will all have "consistent" 123 * DMA mappings, accessible by the device and its driver without using 124 * cache flushing primitives. The actual size of blocks allocated may be 125 * larger than requested because of alignment. 126 * 127 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 128 * cross that size boundary. This is useful for devices which have 129 * addressing restrictions on individual DMA transfers, such as not crossing 130 * boundaries of 4KBytes. 131 */ 132 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 133 size_t size, size_t align, size_t boundary) 134 { 135 struct dma_pool *retval; 136 size_t allocation; 137 138 if (align == 0) { 139 align = 1; 140 } else if (align & (align - 1)) { 141 return NULL; 142 } 143 144 if (size == 0) { 145 return NULL; 146 } else if (size < 4) { 147 size = 4; 148 } 149 150 if ((size % align) != 0) 151 size = ALIGN(size, align); 152 153 allocation = max_t(size_t, size, PAGE_SIZE); 154 155 if (!boundary) { 156 boundary = allocation; 157 } else if ((boundary < size) || (boundary & (boundary - 1))) { 158 return NULL; 159 } 160 161 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 162 if (!retval) 163 return retval; 164 165 strlcpy(retval->name, name, sizeof(retval->name)); 166 167 retval->dev = dev; 168 169 INIT_LIST_HEAD(&retval->page_list); 170 spin_lock_init(&retval->lock); 171 retval->size = size; 172 retval->boundary = boundary; 173 retval->allocation = allocation; 174 init_waitqueue_head(&retval->waitq); 175 176 if (dev) { 177 int ret; 178 179 mutex_lock(&pools_lock); 180 if (list_empty(&dev->dma_pools)) 181 ret = device_create_file(dev, &dev_attr_pools); 182 else 183 ret = 0; 184 /* note: not currently insisting "name" be unique */ 185 if (!ret) 186 list_add(&retval->pools, &dev->dma_pools); 187 else { 188 kfree(retval); 189 retval = NULL; 190 } 191 mutex_unlock(&pools_lock); 192 } else 193 INIT_LIST_HEAD(&retval->pools); 194 195 return retval; 196 } 197 EXPORT_SYMBOL(dma_pool_create); 198 199 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 200 { 201 unsigned int offset = 0; 202 unsigned int next_boundary = pool->boundary; 203 204 do { 205 unsigned int next = offset + pool->size; 206 if (unlikely((next + pool->size) >= next_boundary)) { 207 next = next_boundary; 208 next_boundary += pool->boundary; 209 } 210 *(int *)(page->vaddr + offset) = next; 211 offset = next; 212 } while (offset < pool->allocation); 213 } 214 215 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 216 { 217 struct dma_page *page; 218 219 page = kmalloc(sizeof(*page), mem_flags); 220 if (!page) 221 return NULL; 222 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 223 &page->dma, mem_flags); 224 if (page->vaddr) { 225 #ifdef DMAPOOL_DEBUG 226 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 227 #endif 228 pool_initialise_page(pool, page); 229 list_add(&page->page_list, &pool->page_list); 230 page->in_use = 0; 231 page->offset = 0; 232 } else { 233 kfree(page); 234 page = NULL; 235 } 236 return page; 237 } 238 239 static inline int is_page_busy(struct dma_page *page) 240 { 241 return page->in_use != 0; 242 } 243 244 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 245 { 246 dma_addr_t dma = page->dma; 247 248 #ifdef DMAPOOL_DEBUG 249 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 250 #endif 251 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 252 list_del(&page->page_list); 253 kfree(page); 254 } 255 256 /** 257 * dma_pool_destroy - destroys a pool of dma memory blocks. 258 * @pool: dma pool that will be destroyed 259 * Context: !in_interrupt() 260 * 261 * Caller guarantees that no more memory from the pool is in use, 262 * and that nothing will try to use the pool after this call. 263 */ 264 void dma_pool_destroy(struct dma_pool *pool) 265 { 266 mutex_lock(&pools_lock); 267 list_del(&pool->pools); 268 if (pool->dev && list_empty(&pool->dev->dma_pools)) 269 device_remove_file(pool->dev, &dev_attr_pools); 270 mutex_unlock(&pools_lock); 271 272 while (!list_empty(&pool->page_list)) { 273 struct dma_page *page; 274 page = list_entry(pool->page_list.next, 275 struct dma_page, page_list); 276 if (is_page_busy(page)) { 277 if (pool->dev) 278 dev_err(pool->dev, 279 "dma_pool_destroy %s, %p busy\n", 280 pool->name, page->vaddr); 281 else 282 printk(KERN_ERR 283 "dma_pool_destroy %s, %p busy\n", 284 pool->name, page->vaddr); 285 /* leak the still-in-use consistent memory */ 286 list_del(&page->page_list); 287 kfree(page); 288 } else 289 pool_free_page(pool, page); 290 } 291 292 kfree(pool); 293 } 294 EXPORT_SYMBOL(dma_pool_destroy); 295 296 /** 297 * dma_pool_alloc - get a block of consistent memory 298 * @pool: dma pool that will produce the block 299 * @mem_flags: GFP_* bitmask 300 * @handle: pointer to dma address of block 301 * 302 * This returns the kernel virtual address of a currently unused block, 303 * and reports its dma address through the handle. 304 * If such a memory block can't be allocated, %NULL is returned. 305 */ 306 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 307 dma_addr_t *handle) 308 { 309 unsigned long flags; 310 struct dma_page *page; 311 size_t offset; 312 void *retval; 313 314 might_sleep_if(mem_flags & __GFP_WAIT); 315 316 spin_lock_irqsave(&pool->lock, flags); 317 restart: 318 list_for_each_entry(page, &pool->page_list, page_list) { 319 if (page->offset < pool->allocation) 320 goto ready; 321 } 322 page = pool_alloc_page(pool, GFP_ATOMIC); 323 if (!page) { 324 if (mem_flags & __GFP_WAIT) { 325 DECLARE_WAITQUEUE(wait, current); 326 327 __set_current_state(TASK_UNINTERRUPTIBLE); 328 __add_wait_queue(&pool->waitq, &wait); 329 spin_unlock_irqrestore(&pool->lock, flags); 330 331 schedule_timeout(POOL_TIMEOUT_JIFFIES); 332 333 spin_lock_irqsave(&pool->lock, flags); 334 __remove_wait_queue(&pool->waitq, &wait); 335 goto restart; 336 } 337 retval = NULL; 338 goto done; 339 } 340 341 ready: 342 page->in_use++; 343 offset = page->offset; 344 page->offset = *(int *)(page->vaddr + offset); 345 retval = offset + page->vaddr; 346 *handle = offset + page->dma; 347 #ifdef DMAPOOL_DEBUG 348 memset(retval, POOL_POISON_ALLOCATED, pool->size); 349 #endif 350 done: 351 spin_unlock_irqrestore(&pool->lock, flags); 352 return retval; 353 } 354 EXPORT_SYMBOL(dma_pool_alloc); 355 356 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 357 { 358 struct dma_page *page; 359 360 list_for_each_entry(page, &pool->page_list, page_list) { 361 if (dma < page->dma) 362 continue; 363 if (dma < (page->dma + pool->allocation)) 364 return page; 365 } 366 return NULL; 367 } 368 369 /** 370 * dma_pool_free - put block back into dma pool 371 * @pool: the dma pool holding the block 372 * @vaddr: virtual address of block 373 * @dma: dma address of block 374 * 375 * Caller promises neither device nor driver will again touch this block 376 * unless it is first re-allocated. 377 */ 378 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 379 { 380 struct dma_page *page; 381 unsigned long flags; 382 unsigned int offset; 383 384 spin_lock_irqsave(&pool->lock, flags); 385 page = pool_find_page(pool, dma); 386 if (!page) { 387 spin_unlock_irqrestore(&pool->lock, flags); 388 if (pool->dev) 389 dev_err(pool->dev, 390 "dma_pool_free %s, %p/%lx (bad dma)\n", 391 pool->name, vaddr, (unsigned long)dma); 392 else 393 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", 394 pool->name, vaddr, (unsigned long)dma); 395 return; 396 } 397 398 offset = vaddr - page->vaddr; 399 #ifdef DMAPOOL_DEBUG 400 if ((dma - page->dma) != offset) { 401 spin_unlock_irqrestore(&pool->lock, flags); 402 if (pool->dev) 403 dev_err(pool->dev, 404 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 405 pool->name, vaddr, (unsigned long long)dma); 406 else 407 printk(KERN_ERR 408 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 409 pool->name, vaddr, (unsigned long long)dma); 410 return; 411 } 412 { 413 unsigned int chain = page->offset; 414 while (chain < pool->allocation) { 415 if (chain != offset) { 416 chain = *(int *)(page->vaddr + chain); 417 continue; 418 } 419 spin_unlock_irqrestore(&pool->lock, flags); 420 if (pool->dev) 421 dev_err(pool->dev, "dma_pool_free %s, dma %Lx " 422 "already free\n", pool->name, 423 (unsigned long long)dma); 424 else 425 printk(KERN_ERR "dma_pool_free %s, dma %Lx " 426 "already free\n", pool->name, 427 (unsigned long long)dma); 428 return; 429 } 430 } 431 memset(vaddr, POOL_POISON_FREED, pool->size); 432 #endif 433 434 page->in_use--; 435 *(int *)vaddr = page->offset; 436 page->offset = offset; 437 if (waitqueue_active(&pool->waitq)) 438 wake_up_locked(&pool->waitq); 439 /* 440 * Resist a temptation to do 441 * if (!is_page_busy(page)) pool_free_page(pool, page); 442 * Better have a few empty pages hang around. 443 */ 444 spin_unlock_irqrestore(&pool->lock, flags); 445 } 446 EXPORT_SYMBOL(dma_pool_free); 447 448 /* 449 * Managed DMA pool 450 */ 451 static void dmam_pool_release(struct device *dev, void *res) 452 { 453 struct dma_pool *pool = *(struct dma_pool **)res; 454 455 dma_pool_destroy(pool); 456 } 457 458 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 459 { 460 return *(struct dma_pool **)res == match_data; 461 } 462 463 /** 464 * dmam_pool_create - Managed dma_pool_create() 465 * @name: name of pool, for diagnostics 466 * @dev: device that will be doing the DMA 467 * @size: size of the blocks in this pool. 468 * @align: alignment requirement for blocks; must be a power of two 469 * @allocation: returned blocks won't cross this boundary (or zero) 470 * 471 * Managed dma_pool_create(). DMA pool created with this function is 472 * automatically destroyed on driver detach. 473 */ 474 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 475 size_t size, size_t align, size_t allocation) 476 { 477 struct dma_pool **ptr, *pool; 478 479 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 480 if (!ptr) 481 return NULL; 482 483 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 484 if (pool) 485 devres_add(dev, ptr); 486 else 487 devres_free(ptr); 488 489 return pool; 490 } 491 EXPORT_SYMBOL(dmam_pool_create); 492 493 /** 494 * dmam_pool_destroy - Managed dma_pool_destroy() 495 * @pool: dma pool that will be destroyed 496 * 497 * Managed dma_pool_destroy(). 498 */ 499 void dmam_pool_destroy(struct dma_pool *pool) 500 { 501 struct device *dev = pool->dev; 502 503 WARN_ON(devres_destroy(dev, dmam_pool_release, dmam_pool_match, pool)); 504 dma_pool_destroy(pool); 505 } 506 EXPORT_SYMBOL(dmam_pool_destroy); 507