1 /* 2 * DMA Pool allocator 3 * 4 * Copyright 2001 David Brownell 5 * Copyright 2007 Intel Corporation 6 * Author: Matthew Wilcox <willy@linux.intel.com> 7 * 8 * This software may be redistributed and/or modified under the terms of 9 * the GNU General Public License ("GPL") version 2 as published by the 10 * Free Software Foundation. 11 * 12 * This allocator returns small blocks of a given size which are DMA-able by 13 * the given device. It uses the dma_alloc_coherent page allocator to get 14 * new pages, then splits them up into blocks of the required size. 15 * Many older drivers still have their own code to do this. 16 * 17 * The current design of this allocator is fairly simple. The pool is 18 * represented by the 'struct dma_pool' which keeps a doubly-linked list of 19 * allocated pages. Each page in the page_list is split into blocks of at 20 * least 'size' bytes. Free blocks are tracked in an unsorted singly-linked 21 * list of free blocks within the page. Used blocks aren't tracked, but we 22 * keep a count of how many are currently allocated from each page. 23 */ 24 25 #include <linux/device.h> 26 #include <linux/dma-mapping.h> 27 #include <linux/dmapool.h> 28 #include <linux/kernel.h> 29 #include <linux/list.h> 30 #include <linux/export.h> 31 #include <linux/mutex.h> 32 #include <linux/poison.h> 33 #include <linux/sched.h> 34 #include <linux/slab.h> 35 #include <linux/stat.h> 36 #include <linux/spinlock.h> 37 #include <linux/string.h> 38 #include <linux/types.h> 39 #include <linux/wait.h> 40 41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON) 42 #define DMAPOOL_DEBUG 1 43 #endif 44 45 struct dma_pool { /* the pool */ 46 struct list_head page_list; 47 spinlock_t lock; 48 size_t size; 49 struct device *dev; 50 size_t allocation; 51 size_t boundary; 52 char name[32]; 53 struct list_head pools; 54 }; 55 56 struct dma_page { /* cacheable header for 'allocation' bytes */ 57 struct list_head page_list; 58 void *vaddr; 59 dma_addr_t dma; 60 unsigned int in_use; 61 unsigned int offset; 62 }; 63 64 static DEFINE_MUTEX(pools_lock); 65 66 static ssize_t 67 show_pools(struct device *dev, struct device_attribute *attr, char *buf) 68 { 69 unsigned temp; 70 unsigned size; 71 char *next; 72 struct dma_page *page; 73 struct dma_pool *pool; 74 75 next = buf; 76 size = PAGE_SIZE; 77 78 temp = scnprintf(next, size, "poolinfo - 0.1\n"); 79 size -= temp; 80 next += temp; 81 82 mutex_lock(&pools_lock); 83 list_for_each_entry(pool, &dev->dma_pools, pools) { 84 unsigned pages = 0; 85 unsigned blocks = 0; 86 87 spin_lock_irq(&pool->lock); 88 list_for_each_entry(page, &pool->page_list, page_list) { 89 pages++; 90 blocks += page->in_use; 91 } 92 spin_unlock_irq(&pool->lock); 93 94 /* per-pool info, no real statistics yet */ 95 temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n", 96 pool->name, blocks, 97 pages * (pool->allocation / pool->size), 98 pool->size, pages); 99 size -= temp; 100 next += temp; 101 } 102 mutex_unlock(&pools_lock); 103 104 return PAGE_SIZE - size; 105 } 106 107 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL); 108 109 /** 110 * dma_pool_create - Creates a pool of consistent memory blocks, for dma. 111 * @name: name of pool, for diagnostics 112 * @dev: device that will be doing the DMA 113 * @size: size of the blocks in this pool. 114 * @align: alignment requirement for blocks; must be a power of two 115 * @boundary: returned blocks won't cross this power of two boundary 116 * Context: !in_interrupt() 117 * 118 * Returns a dma allocation pool with the requested characteristics, or 119 * null if one can't be created. Given one of these pools, dma_pool_alloc() 120 * may be used to allocate memory. Such memory will all have "consistent" 121 * DMA mappings, accessible by the device and its driver without using 122 * cache flushing primitives. The actual size of blocks allocated may be 123 * larger than requested because of alignment. 124 * 125 * If @boundary is nonzero, objects returned from dma_pool_alloc() won't 126 * cross that size boundary. This is useful for devices which have 127 * addressing restrictions on individual DMA transfers, such as not crossing 128 * boundaries of 4KBytes. 129 */ 130 struct dma_pool *dma_pool_create(const char *name, struct device *dev, 131 size_t size, size_t align, size_t boundary) 132 { 133 struct dma_pool *retval; 134 size_t allocation; 135 136 if (align == 0) { 137 align = 1; 138 } else if (align & (align - 1)) { 139 return NULL; 140 } 141 142 if (size == 0) { 143 return NULL; 144 } else if (size < 4) { 145 size = 4; 146 } 147 148 if ((size % align) != 0) 149 size = ALIGN(size, align); 150 151 allocation = max_t(size_t, size, PAGE_SIZE); 152 153 if (!boundary) { 154 boundary = allocation; 155 } else if ((boundary < size) || (boundary & (boundary - 1))) { 156 return NULL; 157 } 158 159 retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev)); 160 if (!retval) 161 return retval; 162 163 strlcpy(retval->name, name, sizeof(retval->name)); 164 165 retval->dev = dev; 166 167 INIT_LIST_HEAD(&retval->page_list); 168 spin_lock_init(&retval->lock); 169 retval->size = size; 170 retval->boundary = boundary; 171 retval->allocation = allocation; 172 173 INIT_LIST_HEAD(&retval->pools); 174 175 mutex_lock(&pools_lock); 176 if (list_empty(&dev->dma_pools) && 177 device_create_file(dev, &dev_attr_pools)) { 178 kfree(retval); 179 retval = NULL; 180 } else 181 list_add(&retval->pools, &dev->dma_pools); 182 mutex_unlock(&pools_lock); 183 184 return retval; 185 } 186 EXPORT_SYMBOL(dma_pool_create); 187 188 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page) 189 { 190 unsigned int offset = 0; 191 unsigned int next_boundary = pool->boundary; 192 193 do { 194 unsigned int next = offset + pool->size; 195 if (unlikely((next + pool->size) >= next_boundary)) { 196 next = next_boundary; 197 next_boundary += pool->boundary; 198 } 199 *(int *)(page->vaddr + offset) = next; 200 offset = next; 201 } while (offset < pool->allocation); 202 } 203 204 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags) 205 { 206 struct dma_page *page; 207 208 page = kmalloc(sizeof(*page), mem_flags); 209 if (!page) 210 return NULL; 211 page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation, 212 &page->dma, mem_flags); 213 if (page->vaddr) { 214 #ifdef DMAPOOL_DEBUG 215 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 216 #endif 217 pool_initialise_page(pool, page); 218 page->in_use = 0; 219 page->offset = 0; 220 } else { 221 kfree(page); 222 page = NULL; 223 } 224 return page; 225 } 226 227 static inline int is_page_busy(struct dma_page *page) 228 { 229 return page->in_use != 0; 230 } 231 232 static void pool_free_page(struct dma_pool *pool, struct dma_page *page) 233 { 234 dma_addr_t dma = page->dma; 235 236 #ifdef DMAPOOL_DEBUG 237 memset(page->vaddr, POOL_POISON_FREED, pool->allocation); 238 #endif 239 dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma); 240 list_del(&page->page_list); 241 kfree(page); 242 } 243 244 /** 245 * dma_pool_destroy - destroys a pool of dma memory blocks. 246 * @pool: dma pool that will be destroyed 247 * Context: !in_interrupt() 248 * 249 * Caller guarantees that no more memory from the pool is in use, 250 * and that nothing will try to use the pool after this call. 251 */ 252 void dma_pool_destroy(struct dma_pool *pool) 253 { 254 mutex_lock(&pools_lock); 255 list_del(&pool->pools); 256 if (pool->dev && list_empty(&pool->dev->dma_pools)) 257 device_remove_file(pool->dev, &dev_attr_pools); 258 mutex_unlock(&pools_lock); 259 260 while (!list_empty(&pool->page_list)) { 261 struct dma_page *page; 262 page = list_entry(pool->page_list.next, 263 struct dma_page, page_list); 264 if (is_page_busy(page)) { 265 if (pool->dev) 266 dev_err(pool->dev, 267 "dma_pool_destroy %s, %p busy\n", 268 pool->name, page->vaddr); 269 else 270 printk(KERN_ERR 271 "dma_pool_destroy %s, %p busy\n", 272 pool->name, page->vaddr); 273 /* leak the still-in-use consistent memory */ 274 list_del(&page->page_list); 275 kfree(page); 276 } else 277 pool_free_page(pool, page); 278 } 279 280 kfree(pool); 281 } 282 EXPORT_SYMBOL(dma_pool_destroy); 283 284 /** 285 * dma_pool_alloc - get a block of consistent memory 286 * @pool: dma pool that will produce the block 287 * @mem_flags: GFP_* bitmask 288 * @handle: pointer to dma address of block 289 * 290 * This returns the kernel virtual address of a currently unused block, 291 * and reports its dma address through the handle. 292 * If such a memory block can't be allocated, %NULL is returned. 293 */ 294 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags, 295 dma_addr_t *handle) 296 { 297 unsigned long flags; 298 struct dma_page *page; 299 size_t offset; 300 void *retval; 301 302 might_sleep_if(mem_flags & __GFP_WAIT); 303 304 spin_lock_irqsave(&pool->lock, flags); 305 list_for_each_entry(page, &pool->page_list, page_list) { 306 if (page->offset < pool->allocation) 307 goto ready; 308 } 309 310 /* pool_alloc_page() might sleep, so temporarily drop &pool->lock */ 311 spin_unlock_irqrestore(&pool->lock, flags); 312 313 page = pool_alloc_page(pool, mem_flags); 314 if (!page) 315 return NULL; 316 317 spin_lock_irqsave(&pool->lock, flags); 318 319 list_add(&page->page_list, &pool->page_list); 320 ready: 321 page->in_use++; 322 offset = page->offset; 323 page->offset = *(int *)(page->vaddr + offset); 324 retval = offset + page->vaddr; 325 *handle = offset + page->dma; 326 #ifdef DMAPOOL_DEBUG 327 { 328 int i; 329 u8 *data = retval; 330 /* page->offset is stored in first 4 bytes */ 331 for (i = sizeof(page->offset); i < pool->size; i++) { 332 if (data[i] == POOL_POISON_FREED) 333 continue; 334 if (pool->dev) 335 dev_err(pool->dev, 336 "dma_pool_alloc %s, %p (corrupted)\n", 337 pool->name, retval); 338 else 339 pr_err("dma_pool_alloc %s, %p (corrupted)\n", 340 pool->name, retval); 341 342 /* 343 * Dump the first 4 bytes even if they are not 344 * POOL_POISON_FREED 345 */ 346 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, 347 data, pool->size, 1); 348 break; 349 } 350 } 351 memset(retval, POOL_POISON_ALLOCATED, pool->size); 352 #endif 353 spin_unlock_irqrestore(&pool->lock, flags); 354 return retval; 355 } 356 EXPORT_SYMBOL(dma_pool_alloc); 357 358 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma) 359 { 360 struct dma_page *page; 361 362 list_for_each_entry(page, &pool->page_list, page_list) { 363 if (dma < page->dma) 364 continue; 365 if (dma < (page->dma + pool->allocation)) 366 return page; 367 } 368 return NULL; 369 } 370 371 /** 372 * dma_pool_free - put block back into dma pool 373 * @pool: the dma pool holding the block 374 * @vaddr: virtual address of block 375 * @dma: dma address of block 376 * 377 * Caller promises neither device nor driver will again touch this block 378 * unless it is first re-allocated. 379 */ 380 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma) 381 { 382 struct dma_page *page; 383 unsigned long flags; 384 unsigned int offset; 385 386 spin_lock_irqsave(&pool->lock, flags); 387 page = pool_find_page(pool, dma); 388 if (!page) { 389 spin_unlock_irqrestore(&pool->lock, flags); 390 if (pool->dev) 391 dev_err(pool->dev, 392 "dma_pool_free %s, %p/%lx (bad dma)\n", 393 pool->name, vaddr, (unsigned long)dma); 394 else 395 printk(KERN_ERR "dma_pool_free %s, %p/%lx (bad dma)\n", 396 pool->name, vaddr, (unsigned long)dma); 397 return; 398 } 399 400 offset = vaddr - page->vaddr; 401 #ifdef DMAPOOL_DEBUG 402 if ((dma - page->dma) != offset) { 403 spin_unlock_irqrestore(&pool->lock, flags); 404 if (pool->dev) 405 dev_err(pool->dev, 406 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 407 pool->name, vaddr, (unsigned long long)dma); 408 else 409 printk(KERN_ERR 410 "dma_pool_free %s, %p (bad vaddr)/%Lx\n", 411 pool->name, vaddr, (unsigned long long)dma); 412 return; 413 } 414 { 415 unsigned int chain = page->offset; 416 while (chain < pool->allocation) { 417 if (chain != offset) { 418 chain = *(int *)(page->vaddr + chain); 419 continue; 420 } 421 spin_unlock_irqrestore(&pool->lock, flags); 422 if (pool->dev) 423 dev_err(pool->dev, "dma_pool_free %s, dma %Lx " 424 "already free\n", pool->name, 425 (unsigned long long)dma); 426 else 427 printk(KERN_ERR "dma_pool_free %s, dma %Lx " 428 "already free\n", pool->name, 429 (unsigned long long)dma); 430 return; 431 } 432 } 433 memset(vaddr, POOL_POISON_FREED, pool->size); 434 #endif 435 436 page->in_use--; 437 *(int *)vaddr = page->offset; 438 page->offset = offset; 439 /* 440 * Resist a temptation to do 441 * if (!is_page_busy(page)) pool_free_page(pool, page); 442 * Better have a few empty pages hang around. 443 */ 444 spin_unlock_irqrestore(&pool->lock, flags); 445 } 446 EXPORT_SYMBOL(dma_pool_free); 447 448 /* 449 * Managed DMA pool 450 */ 451 static void dmam_pool_release(struct device *dev, void *res) 452 { 453 struct dma_pool *pool = *(struct dma_pool **)res; 454 455 dma_pool_destroy(pool); 456 } 457 458 static int dmam_pool_match(struct device *dev, void *res, void *match_data) 459 { 460 return *(struct dma_pool **)res == match_data; 461 } 462 463 /** 464 * dmam_pool_create - Managed dma_pool_create() 465 * @name: name of pool, for diagnostics 466 * @dev: device that will be doing the DMA 467 * @size: size of the blocks in this pool. 468 * @align: alignment requirement for blocks; must be a power of two 469 * @allocation: returned blocks won't cross this boundary (or zero) 470 * 471 * Managed dma_pool_create(). DMA pool created with this function is 472 * automatically destroyed on driver detach. 473 */ 474 struct dma_pool *dmam_pool_create(const char *name, struct device *dev, 475 size_t size, size_t align, size_t allocation) 476 { 477 struct dma_pool **ptr, *pool; 478 479 ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL); 480 if (!ptr) 481 return NULL; 482 483 pool = *ptr = dma_pool_create(name, dev, size, align, allocation); 484 if (pool) 485 devres_add(dev, ptr); 486 else 487 devres_free(ptr); 488 489 return pool; 490 } 491 EXPORT_SYMBOL(dmam_pool_create); 492 493 /** 494 * dmam_pool_destroy - Managed dma_pool_destroy() 495 * @pool: dma pool that will be destroyed 496 * 497 * Managed dma_pool_destroy(). 498 */ 499 void dmam_pool_destroy(struct dma_pool *pool) 500 { 501 struct device *dev = pool->dev; 502 503 WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool)); 504 } 505 EXPORT_SYMBOL(dmam_pool_destroy); 506