xref: /linux/mm/dmapool.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * DMA Pool allocator
3  *
4  * Copyright 2001 David Brownell
5  * Copyright 2007 Intel Corporation
6  *   Author: Matthew Wilcox <willy@linux.intel.com>
7  *
8  * This software may be redistributed and/or modified under the terms of
9  * the GNU General Public License ("GPL") version 2 as published by the
10  * Free Software Foundation.
11  *
12  * This allocator returns small blocks of a given size which are DMA-able by
13  * the given device.  It uses the dma_alloc_coherent page allocator to get
14  * new pages, then splits them up into blocks of the required size.
15  * Many older drivers still have their own code to do this.
16  *
17  * The current design of this allocator is fairly simple.  The pool is
18  * represented by the 'struct dma_pool' which keeps a doubly-linked list of
19  * allocated pages.  Each page in the page_list is split into blocks of at
20  * least 'size' bytes.  Free blocks are tracked in an unsorted singly-linked
21  * list of free blocks within the page.  Used blocks aren't tracked, but we
22  * keep a count of how many are currently allocated from each page.
23  */
24 
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmapool.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
30 #include <linux/export.h>
31 #include <linux/mutex.h>
32 #include <linux/poison.h>
33 #include <linux/sched.h>
34 #include <linux/slab.h>
35 #include <linux/stat.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/types.h>
39 #include <linux/wait.h>
40 
41 #if defined(CONFIG_DEBUG_SLAB) || defined(CONFIG_SLUB_DEBUG_ON)
42 #define DMAPOOL_DEBUG 1
43 #endif
44 
45 struct dma_pool {		/* the pool */
46 	struct list_head page_list;
47 	spinlock_t lock;
48 	size_t size;
49 	struct device *dev;
50 	size_t allocation;
51 	size_t boundary;
52 	char name[32];
53 	struct list_head pools;
54 };
55 
56 struct dma_page {		/* cacheable header for 'allocation' bytes */
57 	struct list_head page_list;
58 	void *vaddr;
59 	dma_addr_t dma;
60 	unsigned int in_use;
61 	unsigned int offset;
62 };
63 
64 static DEFINE_MUTEX(pools_lock);
65 static DEFINE_MUTEX(pools_reg_lock);
66 
67 static ssize_t
68 show_pools(struct device *dev, struct device_attribute *attr, char *buf)
69 {
70 	unsigned temp;
71 	unsigned size;
72 	char *next;
73 	struct dma_page *page;
74 	struct dma_pool *pool;
75 
76 	next = buf;
77 	size = PAGE_SIZE;
78 
79 	temp = scnprintf(next, size, "poolinfo - 0.1\n");
80 	size -= temp;
81 	next += temp;
82 
83 	mutex_lock(&pools_lock);
84 	list_for_each_entry(pool, &dev->dma_pools, pools) {
85 		unsigned pages = 0;
86 		unsigned blocks = 0;
87 
88 		spin_lock_irq(&pool->lock);
89 		list_for_each_entry(page, &pool->page_list, page_list) {
90 			pages++;
91 			blocks += page->in_use;
92 		}
93 		spin_unlock_irq(&pool->lock);
94 
95 		/* per-pool info, no real statistics yet */
96 		temp = scnprintf(next, size, "%-16s %4u %4Zu %4Zu %2u\n",
97 				 pool->name, blocks,
98 				 pages * (pool->allocation / pool->size),
99 				 pool->size, pages);
100 		size -= temp;
101 		next += temp;
102 	}
103 	mutex_unlock(&pools_lock);
104 
105 	return PAGE_SIZE - size;
106 }
107 
108 static DEVICE_ATTR(pools, S_IRUGO, show_pools, NULL);
109 
110 /**
111  * dma_pool_create - Creates a pool of consistent memory blocks, for dma.
112  * @name: name of pool, for diagnostics
113  * @dev: device that will be doing the DMA
114  * @size: size of the blocks in this pool.
115  * @align: alignment requirement for blocks; must be a power of two
116  * @boundary: returned blocks won't cross this power of two boundary
117  * Context: !in_interrupt()
118  *
119  * Returns a dma allocation pool with the requested characteristics, or
120  * null if one can't be created.  Given one of these pools, dma_pool_alloc()
121  * may be used to allocate memory.  Such memory will all have "consistent"
122  * DMA mappings, accessible by the device and its driver without using
123  * cache flushing primitives.  The actual size of blocks allocated may be
124  * larger than requested because of alignment.
125  *
126  * If @boundary is nonzero, objects returned from dma_pool_alloc() won't
127  * cross that size boundary.  This is useful for devices which have
128  * addressing restrictions on individual DMA transfers, such as not crossing
129  * boundaries of 4KBytes.
130  */
131 struct dma_pool *dma_pool_create(const char *name, struct device *dev,
132 				 size_t size, size_t align, size_t boundary)
133 {
134 	struct dma_pool *retval;
135 	size_t allocation;
136 	bool empty = false;
137 
138 	if (align == 0)
139 		align = 1;
140 	else if (align & (align - 1))
141 		return NULL;
142 
143 	if (size == 0)
144 		return NULL;
145 	else if (size < 4)
146 		size = 4;
147 
148 	if ((size % align) != 0)
149 		size = ALIGN(size, align);
150 
151 	allocation = max_t(size_t, size, PAGE_SIZE);
152 
153 	if (!boundary)
154 		boundary = allocation;
155 	else if ((boundary < size) || (boundary & (boundary - 1)))
156 		return NULL;
157 
158 	retval = kmalloc_node(sizeof(*retval), GFP_KERNEL, dev_to_node(dev));
159 	if (!retval)
160 		return retval;
161 
162 	strlcpy(retval->name, name, sizeof(retval->name));
163 
164 	retval->dev = dev;
165 
166 	INIT_LIST_HEAD(&retval->page_list);
167 	spin_lock_init(&retval->lock);
168 	retval->size = size;
169 	retval->boundary = boundary;
170 	retval->allocation = allocation;
171 
172 	INIT_LIST_HEAD(&retval->pools);
173 
174 	/*
175 	 * pools_lock ensures that the ->dma_pools list does not get corrupted.
176 	 * pools_reg_lock ensures that there is not a race between
177 	 * dma_pool_create() and dma_pool_destroy() or within dma_pool_create()
178 	 * when the first invocation of dma_pool_create() failed on
179 	 * device_create_file() and the second assumes that it has been done (I
180 	 * know it is a short window).
181 	 */
182 	mutex_lock(&pools_reg_lock);
183 	mutex_lock(&pools_lock);
184 	if (list_empty(&dev->dma_pools))
185 		empty = true;
186 	list_add(&retval->pools, &dev->dma_pools);
187 	mutex_unlock(&pools_lock);
188 	if (empty) {
189 		int err;
190 
191 		err = device_create_file(dev, &dev_attr_pools);
192 		if (err) {
193 			mutex_lock(&pools_lock);
194 			list_del(&retval->pools);
195 			mutex_unlock(&pools_lock);
196 			mutex_unlock(&pools_reg_lock);
197 			kfree(retval);
198 			return NULL;
199 		}
200 	}
201 	mutex_unlock(&pools_reg_lock);
202 	return retval;
203 }
204 EXPORT_SYMBOL(dma_pool_create);
205 
206 static void pool_initialise_page(struct dma_pool *pool, struct dma_page *page)
207 {
208 	unsigned int offset = 0;
209 	unsigned int next_boundary = pool->boundary;
210 
211 	do {
212 		unsigned int next = offset + pool->size;
213 		if (unlikely((next + pool->size) >= next_boundary)) {
214 			next = next_boundary;
215 			next_boundary += pool->boundary;
216 		}
217 		*(int *)(page->vaddr + offset) = next;
218 		offset = next;
219 	} while (offset < pool->allocation);
220 }
221 
222 static struct dma_page *pool_alloc_page(struct dma_pool *pool, gfp_t mem_flags)
223 {
224 	struct dma_page *page;
225 
226 	page = kmalloc(sizeof(*page), mem_flags);
227 	if (!page)
228 		return NULL;
229 	page->vaddr = dma_alloc_coherent(pool->dev, pool->allocation,
230 					 &page->dma, mem_flags);
231 	if (page->vaddr) {
232 #ifdef	DMAPOOL_DEBUG
233 		memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
234 #endif
235 		pool_initialise_page(pool, page);
236 		page->in_use = 0;
237 		page->offset = 0;
238 	} else {
239 		kfree(page);
240 		page = NULL;
241 	}
242 	return page;
243 }
244 
245 static inline bool is_page_busy(struct dma_page *page)
246 {
247 	return page->in_use != 0;
248 }
249 
250 static void pool_free_page(struct dma_pool *pool, struct dma_page *page)
251 {
252 	dma_addr_t dma = page->dma;
253 
254 #ifdef	DMAPOOL_DEBUG
255 	memset(page->vaddr, POOL_POISON_FREED, pool->allocation);
256 #endif
257 	dma_free_coherent(pool->dev, pool->allocation, page->vaddr, dma);
258 	list_del(&page->page_list);
259 	kfree(page);
260 }
261 
262 /**
263  * dma_pool_destroy - destroys a pool of dma memory blocks.
264  * @pool: dma pool that will be destroyed
265  * Context: !in_interrupt()
266  *
267  * Caller guarantees that no more memory from the pool is in use,
268  * and that nothing will try to use the pool after this call.
269  */
270 void dma_pool_destroy(struct dma_pool *pool)
271 {
272 	bool empty = false;
273 
274 	if (unlikely(!pool))
275 		return;
276 
277 	mutex_lock(&pools_reg_lock);
278 	mutex_lock(&pools_lock);
279 	list_del(&pool->pools);
280 	if (pool->dev && list_empty(&pool->dev->dma_pools))
281 		empty = true;
282 	mutex_unlock(&pools_lock);
283 	if (empty)
284 		device_remove_file(pool->dev, &dev_attr_pools);
285 	mutex_unlock(&pools_reg_lock);
286 
287 	while (!list_empty(&pool->page_list)) {
288 		struct dma_page *page;
289 		page = list_entry(pool->page_list.next,
290 				  struct dma_page, page_list);
291 		if (is_page_busy(page)) {
292 			if (pool->dev)
293 				dev_err(pool->dev,
294 					"dma_pool_destroy %s, %p busy\n",
295 					pool->name, page->vaddr);
296 			else
297 				pr_err("dma_pool_destroy %s, %p busy\n",
298 				       pool->name, page->vaddr);
299 			/* leak the still-in-use consistent memory */
300 			list_del(&page->page_list);
301 			kfree(page);
302 		} else
303 			pool_free_page(pool, page);
304 	}
305 
306 	kfree(pool);
307 }
308 EXPORT_SYMBOL(dma_pool_destroy);
309 
310 /**
311  * dma_pool_alloc - get a block of consistent memory
312  * @pool: dma pool that will produce the block
313  * @mem_flags: GFP_* bitmask
314  * @handle: pointer to dma address of block
315  *
316  * This returns the kernel virtual address of a currently unused block,
317  * and reports its dma address through the handle.
318  * If such a memory block can't be allocated, %NULL is returned.
319  */
320 void *dma_pool_alloc(struct dma_pool *pool, gfp_t mem_flags,
321 		     dma_addr_t *handle)
322 {
323 	unsigned long flags;
324 	struct dma_page *page;
325 	size_t offset;
326 	void *retval;
327 
328 	might_sleep_if(gfpflags_allow_blocking(mem_flags));
329 
330 	spin_lock_irqsave(&pool->lock, flags);
331 	list_for_each_entry(page, &pool->page_list, page_list) {
332 		if (page->offset < pool->allocation)
333 			goto ready;
334 	}
335 
336 	/* pool_alloc_page() might sleep, so temporarily drop &pool->lock */
337 	spin_unlock_irqrestore(&pool->lock, flags);
338 
339 	page = pool_alloc_page(pool, mem_flags & (~__GFP_ZERO));
340 	if (!page)
341 		return NULL;
342 
343 	spin_lock_irqsave(&pool->lock, flags);
344 
345 	list_add(&page->page_list, &pool->page_list);
346  ready:
347 	page->in_use++;
348 	offset = page->offset;
349 	page->offset = *(int *)(page->vaddr + offset);
350 	retval = offset + page->vaddr;
351 	*handle = offset + page->dma;
352 #ifdef	DMAPOOL_DEBUG
353 	{
354 		int i;
355 		u8 *data = retval;
356 		/* page->offset is stored in first 4 bytes */
357 		for (i = sizeof(page->offset); i < pool->size; i++) {
358 			if (data[i] == POOL_POISON_FREED)
359 				continue;
360 			if (pool->dev)
361 				dev_err(pool->dev,
362 					"dma_pool_alloc %s, %p (corrupted)\n",
363 					pool->name, retval);
364 			else
365 				pr_err("dma_pool_alloc %s, %p (corrupted)\n",
366 					pool->name, retval);
367 
368 			/*
369 			 * Dump the first 4 bytes even if they are not
370 			 * POOL_POISON_FREED
371 			 */
372 			print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1,
373 					data, pool->size, 1);
374 			break;
375 		}
376 	}
377 	if (!(mem_flags & __GFP_ZERO))
378 		memset(retval, POOL_POISON_ALLOCATED, pool->size);
379 #endif
380 	spin_unlock_irqrestore(&pool->lock, flags);
381 
382 	if (mem_flags & __GFP_ZERO)
383 		memset(retval, 0, pool->size);
384 
385 	return retval;
386 }
387 EXPORT_SYMBOL(dma_pool_alloc);
388 
389 static struct dma_page *pool_find_page(struct dma_pool *pool, dma_addr_t dma)
390 {
391 	struct dma_page *page;
392 
393 	list_for_each_entry(page, &pool->page_list, page_list) {
394 		if (dma < page->dma)
395 			continue;
396 		if ((dma - page->dma) < pool->allocation)
397 			return page;
398 	}
399 	return NULL;
400 }
401 
402 /**
403  * dma_pool_free - put block back into dma pool
404  * @pool: the dma pool holding the block
405  * @vaddr: virtual address of block
406  * @dma: dma address of block
407  *
408  * Caller promises neither device nor driver will again touch this block
409  * unless it is first re-allocated.
410  */
411 void dma_pool_free(struct dma_pool *pool, void *vaddr, dma_addr_t dma)
412 {
413 	struct dma_page *page;
414 	unsigned long flags;
415 	unsigned int offset;
416 
417 	spin_lock_irqsave(&pool->lock, flags);
418 	page = pool_find_page(pool, dma);
419 	if (!page) {
420 		spin_unlock_irqrestore(&pool->lock, flags);
421 		if (pool->dev)
422 			dev_err(pool->dev,
423 				"dma_pool_free %s, %p/%lx (bad dma)\n",
424 				pool->name, vaddr, (unsigned long)dma);
425 		else
426 			pr_err("dma_pool_free %s, %p/%lx (bad dma)\n",
427 			       pool->name, vaddr, (unsigned long)dma);
428 		return;
429 	}
430 
431 	offset = vaddr - page->vaddr;
432 #ifdef	DMAPOOL_DEBUG
433 	if ((dma - page->dma) != offset) {
434 		spin_unlock_irqrestore(&pool->lock, flags);
435 		if (pool->dev)
436 			dev_err(pool->dev,
437 				"dma_pool_free %s, %p (bad vaddr)/%Lx\n",
438 				pool->name, vaddr, (unsigned long long)dma);
439 		else
440 			pr_err("dma_pool_free %s, %p (bad vaddr)/%Lx\n",
441 			       pool->name, vaddr, (unsigned long long)dma);
442 		return;
443 	}
444 	{
445 		unsigned int chain = page->offset;
446 		while (chain < pool->allocation) {
447 			if (chain != offset) {
448 				chain = *(int *)(page->vaddr + chain);
449 				continue;
450 			}
451 			spin_unlock_irqrestore(&pool->lock, flags);
452 			if (pool->dev)
453 				dev_err(pool->dev, "dma_pool_free %s, dma %Lx already free\n",
454 					pool->name, (unsigned long long)dma);
455 			else
456 				pr_err("dma_pool_free %s, dma %Lx already free\n",
457 				       pool->name, (unsigned long long)dma);
458 			return;
459 		}
460 	}
461 	memset(vaddr, POOL_POISON_FREED, pool->size);
462 #endif
463 
464 	page->in_use--;
465 	*(int *)vaddr = page->offset;
466 	page->offset = offset;
467 	/*
468 	 * Resist a temptation to do
469 	 *    if (!is_page_busy(page)) pool_free_page(pool, page);
470 	 * Better have a few empty pages hang around.
471 	 */
472 	spin_unlock_irqrestore(&pool->lock, flags);
473 }
474 EXPORT_SYMBOL(dma_pool_free);
475 
476 /*
477  * Managed DMA pool
478  */
479 static void dmam_pool_release(struct device *dev, void *res)
480 {
481 	struct dma_pool *pool = *(struct dma_pool **)res;
482 
483 	dma_pool_destroy(pool);
484 }
485 
486 static int dmam_pool_match(struct device *dev, void *res, void *match_data)
487 {
488 	return *(struct dma_pool **)res == match_data;
489 }
490 
491 /**
492  * dmam_pool_create - Managed dma_pool_create()
493  * @name: name of pool, for diagnostics
494  * @dev: device that will be doing the DMA
495  * @size: size of the blocks in this pool.
496  * @align: alignment requirement for blocks; must be a power of two
497  * @allocation: returned blocks won't cross this boundary (or zero)
498  *
499  * Managed dma_pool_create().  DMA pool created with this function is
500  * automatically destroyed on driver detach.
501  */
502 struct dma_pool *dmam_pool_create(const char *name, struct device *dev,
503 				  size_t size, size_t align, size_t allocation)
504 {
505 	struct dma_pool **ptr, *pool;
506 
507 	ptr = devres_alloc(dmam_pool_release, sizeof(*ptr), GFP_KERNEL);
508 	if (!ptr)
509 		return NULL;
510 
511 	pool = *ptr = dma_pool_create(name, dev, size, align, allocation);
512 	if (pool)
513 		devres_add(dev, ptr);
514 	else
515 		devres_free(ptr);
516 
517 	return pool;
518 }
519 EXPORT_SYMBOL(dmam_pool_create);
520 
521 /**
522  * dmam_pool_destroy - Managed dma_pool_destroy()
523  * @pool: dma pool that will be destroyed
524  *
525  * Managed dma_pool_destroy().
526  */
527 void dmam_pool_destroy(struct dma_pool *pool)
528 {
529 	struct device *dev = pool->dev;
530 
531 	WARN_ON(devres_release(dev, dmam_pool_release, dmam_pool_match, pool));
532 }
533 EXPORT_SYMBOL(dmam_pool_destroy);
534