1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * DAMON Primitives for Virtual Address Spaces 4 * 5 * Author: SeongJae Park <sjpark@amazon.de> 6 */ 7 8 #define pr_fmt(fmt) "damon-va: " fmt 9 10 #include <asm-generic/mman-common.h> 11 #include <linux/highmem.h> 12 #include <linux/hugetlb.h> 13 #include <linux/mmu_notifier.h> 14 #include <linux/page_idle.h> 15 #include <linux/pagewalk.h> 16 #include <linux/sched/mm.h> 17 18 #include "prmtv-common.h" 19 20 #ifdef CONFIG_DAMON_VADDR_KUNIT_TEST 21 #undef DAMON_MIN_REGION 22 #define DAMON_MIN_REGION 1 23 #endif 24 25 /* 26 * 't->id' should be the pointer to the relevant 'struct pid' having reference 27 * count. Caller must put the returned task, unless it is NULL. 28 */ 29 static inline struct task_struct *damon_get_task_struct(struct damon_target *t) 30 { 31 return get_pid_task((struct pid *)t->id, PIDTYPE_PID); 32 } 33 34 /* 35 * Get the mm_struct of the given target 36 * 37 * Caller _must_ put the mm_struct after use, unless it is NULL. 38 * 39 * Returns the mm_struct of the target on success, NULL on failure 40 */ 41 static struct mm_struct *damon_get_mm(struct damon_target *t) 42 { 43 struct task_struct *task; 44 struct mm_struct *mm; 45 46 task = damon_get_task_struct(t); 47 if (!task) 48 return NULL; 49 50 mm = get_task_mm(task); 51 put_task_struct(task); 52 return mm; 53 } 54 55 /* 56 * Functions for the initial monitoring target regions construction 57 */ 58 59 /* 60 * Size-evenly split a region into 'nr_pieces' small regions 61 * 62 * Returns 0 on success, or negative error code otherwise. 63 */ 64 static int damon_va_evenly_split_region(struct damon_target *t, 65 struct damon_region *r, unsigned int nr_pieces) 66 { 67 unsigned long sz_orig, sz_piece, orig_end; 68 struct damon_region *n = NULL, *next; 69 unsigned long start; 70 71 if (!r || !nr_pieces) 72 return -EINVAL; 73 74 orig_end = r->ar.end; 75 sz_orig = r->ar.end - r->ar.start; 76 sz_piece = ALIGN_DOWN(sz_orig / nr_pieces, DAMON_MIN_REGION); 77 78 if (!sz_piece) 79 return -EINVAL; 80 81 r->ar.end = r->ar.start + sz_piece; 82 next = damon_next_region(r); 83 for (start = r->ar.end; start + sz_piece <= orig_end; 84 start += sz_piece) { 85 n = damon_new_region(start, start + sz_piece); 86 if (!n) 87 return -ENOMEM; 88 damon_insert_region(n, r, next, t); 89 r = n; 90 } 91 /* complement last region for possible rounding error */ 92 if (n) 93 n->ar.end = orig_end; 94 95 return 0; 96 } 97 98 static unsigned long sz_range(struct damon_addr_range *r) 99 { 100 return r->end - r->start; 101 } 102 103 /* 104 * Find three regions separated by two biggest unmapped regions 105 * 106 * vma the head vma of the target address space 107 * regions an array of three address ranges that results will be saved 108 * 109 * This function receives an address space and finds three regions in it which 110 * separated by the two biggest unmapped regions in the space. Please refer to 111 * below comments of '__damon_va_init_regions()' function to know why this is 112 * necessary. 113 * 114 * Returns 0 if success, or negative error code otherwise. 115 */ 116 static int __damon_va_three_regions(struct vm_area_struct *vma, 117 struct damon_addr_range regions[3]) 118 { 119 struct damon_addr_range gap = {0}, first_gap = {0}, second_gap = {0}; 120 struct vm_area_struct *last_vma = NULL; 121 unsigned long start = 0; 122 struct rb_root rbroot; 123 124 /* Find two biggest gaps so that first_gap > second_gap > others */ 125 for (; vma; vma = vma->vm_next) { 126 if (!last_vma) { 127 start = vma->vm_start; 128 goto next; 129 } 130 131 if (vma->rb_subtree_gap <= sz_range(&second_gap)) { 132 rbroot.rb_node = &vma->vm_rb; 133 vma = rb_entry(rb_last(&rbroot), 134 struct vm_area_struct, vm_rb); 135 goto next; 136 } 137 138 gap.start = last_vma->vm_end; 139 gap.end = vma->vm_start; 140 if (sz_range(&gap) > sz_range(&second_gap)) { 141 swap(gap, second_gap); 142 if (sz_range(&second_gap) > sz_range(&first_gap)) 143 swap(second_gap, first_gap); 144 } 145 next: 146 last_vma = vma; 147 } 148 149 if (!sz_range(&second_gap) || !sz_range(&first_gap)) 150 return -EINVAL; 151 152 /* Sort the two biggest gaps by address */ 153 if (first_gap.start > second_gap.start) 154 swap(first_gap, second_gap); 155 156 /* Store the result */ 157 regions[0].start = ALIGN(start, DAMON_MIN_REGION); 158 regions[0].end = ALIGN(first_gap.start, DAMON_MIN_REGION); 159 regions[1].start = ALIGN(first_gap.end, DAMON_MIN_REGION); 160 regions[1].end = ALIGN(second_gap.start, DAMON_MIN_REGION); 161 regions[2].start = ALIGN(second_gap.end, DAMON_MIN_REGION); 162 regions[2].end = ALIGN(last_vma->vm_end, DAMON_MIN_REGION); 163 164 return 0; 165 } 166 167 /* 168 * Get the three regions in the given target (task) 169 * 170 * Returns 0 on success, negative error code otherwise. 171 */ 172 static int damon_va_three_regions(struct damon_target *t, 173 struct damon_addr_range regions[3]) 174 { 175 struct mm_struct *mm; 176 int rc; 177 178 mm = damon_get_mm(t); 179 if (!mm) 180 return -EINVAL; 181 182 mmap_read_lock(mm); 183 rc = __damon_va_three_regions(mm->mmap, regions); 184 mmap_read_unlock(mm); 185 186 mmput(mm); 187 return rc; 188 } 189 190 /* 191 * Initialize the monitoring target regions for the given target (task) 192 * 193 * t the given target 194 * 195 * Because only a number of small portions of the entire address space 196 * is actually mapped to the memory and accessed, monitoring the unmapped 197 * regions is wasteful. That said, because we can deal with small noises, 198 * tracking every mapping is not strictly required but could even incur a high 199 * overhead if the mapping frequently changes or the number of mappings is 200 * high. The adaptive regions adjustment mechanism will further help to deal 201 * with the noise by simply identifying the unmapped areas as a region that 202 * has no access. Moreover, applying the real mappings that would have many 203 * unmapped areas inside will make the adaptive mechanism quite complex. That 204 * said, too huge unmapped areas inside the monitoring target should be removed 205 * to not take the time for the adaptive mechanism. 206 * 207 * For the reason, we convert the complex mappings to three distinct regions 208 * that cover every mapped area of the address space. Also the two gaps 209 * between the three regions are the two biggest unmapped areas in the given 210 * address space. In detail, this function first identifies the start and the 211 * end of the mappings and the two biggest unmapped areas of the address space. 212 * Then, it constructs the three regions as below: 213 * 214 * [mappings[0]->start, big_two_unmapped_areas[0]->start) 215 * [big_two_unmapped_areas[0]->end, big_two_unmapped_areas[1]->start) 216 * [big_two_unmapped_areas[1]->end, mappings[nr_mappings - 1]->end) 217 * 218 * As usual memory map of processes is as below, the gap between the heap and 219 * the uppermost mmap()-ed region, and the gap between the lowermost mmap()-ed 220 * region and the stack will be two biggest unmapped regions. Because these 221 * gaps are exceptionally huge areas in usual address space, excluding these 222 * two biggest unmapped regions will be sufficient to make a trade-off. 223 * 224 * <heap> 225 * <BIG UNMAPPED REGION 1> 226 * <uppermost mmap()-ed region> 227 * (other mmap()-ed regions and small unmapped regions) 228 * <lowermost mmap()-ed region> 229 * <BIG UNMAPPED REGION 2> 230 * <stack> 231 */ 232 static void __damon_va_init_regions(struct damon_ctx *ctx, 233 struct damon_target *t) 234 { 235 struct damon_target *ti; 236 struct damon_region *r; 237 struct damon_addr_range regions[3]; 238 unsigned long sz = 0, nr_pieces; 239 int i, tidx = 0; 240 241 if (damon_va_three_regions(t, regions)) { 242 damon_for_each_target(ti, ctx) { 243 if (ti == t) 244 break; 245 tidx++; 246 } 247 pr_debug("Failed to get three regions of %dth target\n", tidx); 248 return; 249 } 250 251 for (i = 0; i < 3; i++) 252 sz += regions[i].end - regions[i].start; 253 if (ctx->min_nr_regions) 254 sz /= ctx->min_nr_regions; 255 if (sz < DAMON_MIN_REGION) 256 sz = DAMON_MIN_REGION; 257 258 /* Set the initial three regions of the target */ 259 for (i = 0; i < 3; i++) { 260 r = damon_new_region(regions[i].start, regions[i].end); 261 if (!r) { 262 pr_err("%d'th init region creation failed\n", i); 263 return; 264 } 265 damon_add_region(r, t); 266 267 nr_pieces = (regions[i].end - regions[i].start) / sz; 268 damon_va_evenly_split_region(t, r, nr_pieces); 269 } 270 } 271 272 /* Initialize '->regions_list' of every target (task) */ 273 static void damon_va_init(struct damon_ctx *ctx) 274 { 275 struct damon_target *t; 276 277 damon_for_each_target(t, ctx) { 278 /* the user may set the target regions as they want */ 279 if (!damon_nr_regions(t)) 280 __damon_va_init_regions(ctx, t); 281 } 282 } 283 284 /* 285 * Functions for the dynamic monitoring target regions update 286 */ 287 288 /* 289 * Check whether a region is intersecting an address range 290 * 291 * Returns true if it is. 292 */ 293 static bool damon_intersect(struct damon_region *r, 294 struct damon_addr_range *re) 295 { 296 return !(r->ar.end <= re->start || re->end <= r->ar.start); 297 } 298 299 /* 300 * Update damon regions for the three big regions of the given target 301 * 302 * t the given target 303 * bregions the three big regions of the target 304 */ 305 static void damon_va_apply_three_regions(struct damon_target *t, 306 struct damon_addr_range bregions[3]) 307 { 308 struct damon_region *r, *next; 309 unsigned int i; 310 311 /* Remove regions which are not in the three big regions now */ 312 damon_for_each_region_safe(r, next, t) { 313 for (i = 0; i < 3; i++) { 314 if (damon_intersect(r, &bregions[i])) 315 break; 316 } 317 if (i == 3) 318 damon_destroy_region(r, t); 319 } 320 321 /* Adjust intersecting regions to fit with the three big regions */ 322 for (i = 0; i < 3; i++) { 323 struct damon_region *first = NULL, *last; 324 struct damon_region *newr; 325 struct damon_addr_range *br; 326 327 br = &bregions[i]; 328 /* Get the first and last regions which intersects with br */ 329 damon_for_each_region(r, t) { 330 if (damon_intersect(r, br)) { 331 if (!first) 332 first = r; 333 last = r; 334 } 335 if (r->ar.start >= br->end) 336 break; 337 } 338 if (!first) { 339 /* no damon_region intersects with this big region */ 340 newr = damon_new_region( 341 ALIGN_DOWN(br->start, 342 DAMON_MIN_REGION), 343 ALIGN(br->end, DAMON_MIN_REGION)); 344 if (!newr) 345 continue; 346 damon_insert_region(newr, damon_prev_region(r), r, t); 347 } else { 348 first->ar.start = ALIGN_DOWN(br->start, 349 DAMON_MIN_REGION); 350 last->ar.end = ALIGN(br->end, DAMON_MIN_REGION); 351 } 352 } 353 } 354 355 /* 356 * Update regions for current memory mappings 357 */ 358 static void damon_va_update(struct damon_ctx *ctx) 359 { 360 struct damon_addr_range three_regions[3]; 361 struct damon_target *t; 362 363 damon_for_each_target(t, ctx) { 364 if (damon_va_three_regions(t, three_regions)) 365 continue; 366 damon_va_apply_three_regions(t, three_regions); 367 } 368 } 369 370 static int damon_mkold_pmd_entry(pmd_t *pmd, unsigned long addr, 371 unsigned long next, struct mm_walk *walk) 372 { 373 pte_t *pte; 374 spinlock_t *ptl; 375 376 if (pmd_huge(*pmd)) { 377 ptl = pmd_lock(walk->mm, pmd); 378 if (pmd_huge(*pmd)) { 379 damon_pmdp_mkold(pmd, walk->mm, addr); 380 spin_unlock(ptl); 381 return 0; 382 } 383 spin_unlock(ptl); 384 } 385 386 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 387 return 0; 388 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 389 if (!pte_present(*pte)) 390 goto out; 391 damon_ptep_mkold(pte, walk->mm, addr); 392 out: 393 pte_unmap_unlock(pte, ptl); 394 return 0; 395 } 396 397 #ifdef CONFIG_HUGETLB_PAGE 398 static void damon_hugetlb_mkold(pte_t *pte, struct mm_struct *mm, 399 struct vm_area_struct *vma, unsigned long addr) 400 { 401 bool referenced = false; 402 pte_t entry = huge_ptep_get(pte); 403 struct page *page = pte_page(entry); 404 405 if (!page) 406 return; 407 408 get_page(page); 409 410 if (pte_young(entry)) { 411 referenced = true; 412 entry = pte_mkold(entry); 413 huge_ptep_set_access_flags(vma, addr, pte, entry, 414 vma->vm_flags & VM_WRITE); 415 } 416 417 #ifdef CONFIG_MMU_NOTIFIER 418 if (mmu_notifier_clear_young(mm, addr, 419 addr + huge_page_size(hstate_vma(vma)))) 420 referenced = true; 421 #endif /* CONFIG_MMU_NOTIFIER */ 422 423 if (referenced) 424 set_page_young(page); 425 426 set_page_idle(page); 427 put_page(page); 428 } 429 430 static int damon_mkold_hugetlb_entry(pte_t *pte, unsigned long hmask, 431 unsigned long addr, unsigned long end, 432 struct mm_walk *walk) 433 { 434 struct hstate *h = hstate_vma(walk->vma); 435 spinlock_t *ptl; 436 pte_t entry; 437 438 ptl = huge_pte_lock(h, walk->mm, pte); 439 entry = huge_ptep_get(pte); 440 if (!pte_present(entry)) 441 goto out; 442 443 damon_hugetlb_mkold(pte, walk->mm, walk->vma, addr); 444 445 out: 446 spin_unlock(ptl); 447 return 0; 448 } 449 #else 450 #define damon_mkold_hugetlb_entry NULL 451 #endif /* CONFIG_HUGETLB_PAGE */ 452 453 static const struct mm_walk_ops damon_mkold_ops = { 454 .pmd_entry = damon_mkold_pmd_entry, 455 .hugetlb_entry = damon_mkold_hugetlb_entry, 456 }; 457 458 static void damon_va_mkold(struct mm_struct *mm, unsigned long addr) 459 { 460 mmap_read_lock(mm); 461 walk_page_range(mm, addr, addr + 1, &damon_mkold_ops, NULL); 462 mmap_read_unlock(mm); 463 } 464 465 /* 466 * Functions for the access checking of the regions 467 */ 468 469 static void __damon_va_prepare_access_check(struct damon_ctx *ctx, 470 struct mm_struct *mm, struct damon_region *r) 471 { 472 r->sampling_addr = damon_rand(r->ar.start, r->ar.end); 473 474 damon_va_mkold(mm, r->sampling_addr); 475 } 476 477 static void damon_va_prepare_access_checks(struct damon_ctx *ctx) 478 { 479 struct damon_target *t; 480 struct mm_struct *mm; 481 struct damon_region *r; 482 483 damon_for_each_target(t, ctx) { 484 mm = damon_get_mm(t); 485 if (!mm) 486 continue; 487 damon_for_each_region(r, t) 488 __damon_va_prepare_access_check(ctx, mm, r); 489 mmput(mm); 490 } 491 } 492 493 struct damon_young_walk_private { 494 unsigned long *page_sz; 495 bool young; 496 }; 497 498 static int damon_young_pmd_entry(pmd_t *pmd, unsigned long addr, 499 unsigned long next, struct mm_walk *walk) 500 { 501 pte_t *pte; 502 spinlock_t *ptl; 503 struct page *page; 504 struct damon_young_walk_private *priv = walk->private; 505 506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 507 if (pmd_huge(*pmd)) { 508 ptl = pmd_lock(walk->mm, pmd); 509 if (!pmd_huge(*pmd)) { 510 spin_unlock(ptl); 511 goto regular_page; 512 } 513 page = damon_get_page(pmd_pfn(*pmd)); 514 if (!page) 515 goto huge_out; 516 if (pmd_young(*pmd) || !page_is_idle(page) || 517 mmu_notifier_test_young(walk->mm, 518 addr)) { 519 *priv->page_sz = ((1UL) << HPAGE_PMD_SHIFT); 520 priv->young = true; 521 } 522 put_page(page); 523 huge_out: 524 spin_unlock(ptl); 525 return 0; 526 } 527 528 regular_page: 529 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 530 531 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) 532 return -EINVAL; 533 pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl); 534 if (!pte_present(*pte)) 535 goto out; 536 page = damon_get_page(pte_pfn(*pte)); 537 if (!page) 538 goto out; 539 if (pte_young(*pte) || !page_is_idle(page) || 540 mmu_notifier_test_young(walk->mm, addr)) { 541 *priv->page_sz = PAGE_SIZE; 542 priv->young = true; 543 } 544 put_page(page); 545 out: 546 pte_unmap_unlock(pte, ptl); 547 return 0; 548 } 549 550 #ifdef CONFIG_HUGETLB_PAGE 551 static int damon_young_hugetlb_entry(pte_t *pte, unsigned long hmask, 552 unsigned long addr, unsigned long end, 553 struct mm_walk *walk) 554 { 555 struct damon_young_walk_private *priv = walk->private; 556 struct hstate *h = hstate_vma(walk->vma); 557 struct page *page; 558 spinlock_t *ptl; 559 pte_t entry; 560 561 ptl = huge_pte_lock(h, walk->mm, pte); 562 entry = huge_ptep_get(pte); 563 if (!pte_present(entry)) 564 goto out; 565 566 page = pte_page(entry); 567 if (!page) 568 goto out; 569 570 get_page(page); 571 572 if (pte_young(entry) || !page_is_idle(page) || 573 mmu_notifier_test_young(walk->mm, addr)) { 574 *priv->page_sz = huge_page_size(h); 575 priv->young = true; 576 } 577 578 put_page(page); 579 580 out: 581 spin_unlock(ptl); 582 return 0; 583 } 584 #else 585 #define damon_young_hugetlb_entry NULL 586 #endif /* CONFIG_HUGETLB_PAGE */ 587 588 static const struct mm_walk_ops damon_young_ops = { 589 .pmd_entry = damon_young_pmd_entry, 590 .hugetlb_entry = damon_young_hugetlb_entry, 591 }; 592 593 static bool damon_va_young(struct mm_struct *mm, unsigned long addr, 594 unsigned long *page_sz) 595 { 596 struct damon_young_walk_private arg = { 597 .page_sz = page_sz, 598 .young = false, 599 }; 600 601 mmap_read_lock(mm); 602 walk_page_range(mm, addr, addr + 1, &damon_young_ops, &arg); 603 mmap_read_unlock(mm); 604 return arg.young; 605 } 606 607 /* 608 * Check whether the region was accessed after the last preparation 609 * 610 * mm 'mm_struct' for the given virtual address space 611 * r the region to be checked 612 */ 613 static void __damon_va_check_access(struct damon_ctx *ctx, 614 struct mm_struct *mm, struct damon_region *r) 615 { 616 static struct mm_struct *last_mm; 617 static unsigned long last_addr; 618 static unsigned long last_page_sz = PAGE_SIZE; 619 static bool last_accessed; 620 621 /* If the region is in the last checked page, reuse the result */ 622 if (mm == last_mm && (ALIGN_DOWN(last_addr, last_page_sz) == 623 ALIGN_DOWN(r->sampling_addr, last_page_sz))) { 624 if (last_accessed) 625 r->nr_accesses++; 626 return; 627 } 628 629 last_accessed = damon_va_young(mm, r->sampling_addr, &last_page_sz); 630 if (last_accessed) 631 r->nr_accesses++; 632 633 last_mm = mm; 634 last_addr = r->sampling_addr; 635 } 636 637 static unsigned int damon_va_check_accesses(struct damon_ctx *ctx) 638 { 639 struct damon_target *t; 640 struct mm_struct *mm; 641 struct damon_region *r; 642 unsigned int max_nr_accesses = 0; 643 644 damon_for_each_target(t, ctx) { 645 mm = damon_get_mm(t); 646 if (!mm) 647 continue; 648 damon_for_each_region(r, t) { 649 __damon_va_check_access(ctx, mm, r); 650 max_nr_accesses = max(r->nr_accesses, max_nr_accesses); 651 } 652 mmput(mm); 653 } 654 655 return max_nr_accesses; 656 } 657 658 /* 659 * Functions for the target validity check and cleanup 660 */ 661 662 bool damon_va_target_valid(void *target) 663 { 664 struct damon_target *t = target; 665 struct task_struct *task; 666 667 task = damon_get_task_struct(t); 668 if (task) { 669 put_task_struct(task); 670 return true; 671 } 672 673 return false; 674 } 675 676 #ifndef CONFIG_ADVISE_SYSCALLS 677 static unsigned long damos_madvise(struct damon_target *target, 678 struct damon_region *r, int behavior) 679 { 680 return 0; 681 } 682 #else 683 static unsigned long damos_madvise(struct damon_target *target, 684 struct damon_region *r, int behavior) 685 { 686 struct mm_struct *mm; 687 unsigned long start = PAGE_ALIGN(r->ar.start); 688 unsigned long len = PAGE_ALIGN(r->ar.end - r->ar.start); 689 unsigned long applied; 690 691 mm = damon_get_mm(target); 692 if (!mm) 693 return 0; 694 695 applied = do_madvise(mm, start, len, behavior) ? 0 : len; 696 mmput(mm); 697 698 return applied; 699 } 700 #endif /* CONFIG_ADVISE_SYSCALLS */ 701 702 static unsigned long damon_va_apply_scheme(struct damon_ctx *ctx, 703 struct damon_target *t, struct damon_region *r, 704 struct damos *scheme) 705 { 706 int madv_action; 707 708 switch (scheme->action) { 709 case DAMOS_WILLNEED: 710 madv_action = MADV_WILLNEED; 711 break; 712 case DAMOS_COLD: 713 madv_action = MADV_COLD; 714 break; 715 case DAMOS_PAGEOUT: 716 madv_action = MADV_PAGEOUT; 717 break; 718 case DAMOS_HUGEPAGE: 719 madv_action = MADV_HUGEPAGE; 720 break; 721 case DAMOS_NOHUGEPAGE: 722 madv_action = MADV_NOHUGEPAGE; 723 break; 724 case DAMOS_STAT: 725 return 0; 726 default: 727 return 0; 728 } 729 730 return damos_madvise(t, r, madv_action); 731 } 732 733 static int damon_va_scheme_score(struct damon_ctx *context, 734 struct damon_target *t, struct damon_region *r, 735 struct damos *scheme) 736 { 737 738 switch (scheme->action) { 739 case DAMOS_PAGEOUT: 740 return damon_pageout_score(context, r, scheme); 741 default: 742 break; 743 } 744 745 return DAMOS_MAX_SCORE; 746 } 747 748 void damon_va_set_primitives(struct damon_ctx *ctx) 749 { 750 ctx->primitive.init = damon_va_init; 751 ctx->primitive.update = damon_va_update; 752 ctx->primitive.prepare_access_checks = damon_va_prepare_access_checks; 753 ctx->primitive.check_accesses = damon_va_check_accesses; 754 ctx->primitive.reset_aggregated = NULL; 755 ctx->primitive.target_valid = damon_va_target_valid; 756 ctx->primitive.cleanup = NULL; 757 ctx->primitive.apply_scheme = damon_va_apply_scheme; 758 ctx->primitive.get_scheme_score = damon_va_scheme_score; 759 } 760 761 #include "vaddr-test.h" 762